
24. Lecture 24: Videos (Video Understanding)

24.1 Introduction to Video Understanding

Up to this point, our discussion has focused mainly on images, typically represented as 3D tensors

of shape C×H×W , where C denotes the number of channels (often three for RGB). In this chapter

we generalize from static images to videos, which can be viewed as sequences of images indexed by

time. A video is therefore represented by a 4D tensor of shape:

V ∈ R
T×C×H×W , (24.1)

where T denotes the temporal dimension, corresponding to the number of frames in the sequence.

This extension introduces a fundamental challenge: while image analysis largely emphasizes

spatial patterns, video understanding requires us to jointly reason about spatial and temporal

structures. Tasks defined over videos range widely, from video classification and temporal action

localization to video captioning and generation. In this lecture and chapter we focus on video

understanding, that is, building models that interpret the content of a video clip to predict semantic

properties such as actions, interactions, or events.

24.1.1 From Images to Videos

In image classification, the objective is typically to detect the presence of objects (e.g., predicting

that an image contains a cat). In contrast, video classification aims to recognize actions. For

example, given a short clip of a person, the model should distinguish whether the individual is

running, walking, jumping, or standing. This shift from nouns (objects) to verbs (actions) reflects

the additional temporal complexity inherent in videos.
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Figure 24.1: Contrasting image and video classification. While images are labeled with objects such

as “cat” or “truck”, video clips are typically labeled with actions such as “running” or “swimming”.

24.1.2 Challenges of Video Data and Clip-Based Training

Videos present substantial computational burdens compared to images. A standard video stream is

recorded at approximately 30 frames per second, with each frame containing hundreds of thousands

or millions of pixels. For example, storing an uncompressed video requires approximately:

• ∼1.5 GB per minute for standard definition (640 × 480),

• ∼10 GB per minute for high definition (1920 × 1080).

This scale makes it infeasible to directly train on raw, full-length videos.

Figure 24.2: Illustration of video storage cost. Uncompressed video scales rapidly with resolution

and frame rate, motivating the need for short clips and reduced sampling during training.
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The standard solution is to train on short clips rather than entire videos. A raw sequence of

length Traw is divided into windows of T consecutive frames, often subsampled in time (e.g., taking

every kth frame) to reduce the effective frame rate. Clips are also downsampled spatially (e.g.,

112×112 pixels). During training, models are supervised on these short clips.

At test time, multiple clips are sampled from different temporal regions of the video. The model

processes each subclip independently, and the results are aggregated—typically via averaging—to

produce a robust video-level prediction.

Figure 24.3: Training and testing with clips. During training, models are trained on short subsampled

clips. At test time, the model is applied to multiple subclips, and predictions are averaged to yield a

video-level decision.

24.2 Video Classification as a Canonical Task

Video classification serves as a canonical entry point into video understanding. The task is defined

as mapping an input clip V ∈ R
T×C×H×W to a label y ∈ {1, . . . ,K} from a fixed action vocabulary of

size K. Formally, we seek to learn a function

fθ : RT×C×H×W →{1, . . . ,K}, (24.2)

where θ denotes the parameters of the model. As in image classification, the system is typically

trained with cross-entropy loss. However, the network architecture must incorporate temporal

reasoning, either explicitly or implicitly, in order to succeed.

This formulation establishes video classification as a foundation for more advanced video

understanding tasks, such as temporal action localization (detecting when an action occurs within

an untrimmed video) and spatio-temporal action detection (localizing actions in both space and

time). In the following parts, we progressively build models to handle the spatio-temporal complexity

of videos, beginning with simple baselines and gradually extending to sophisticated architectures.
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24.2.1 Single-Frame Baseline

An unexpectedly strong baseline for video classification is to ignore temporal information entirely. In

this approach, each frame is classified independently using a standard 2D CNN trained on individual

RGB frames with the video-level label. At test time, predictions across frames are averaged to obtain

the final decision. While simple, this baseline often achieves competitive accuracy and should always

be attempted first in practice.

Figure 24.4: Single-frame CNN baseline. Each frame is classified independently, and predictions are

aggregated at test time. Despite ignoring temporal structure, this baseline is surprisingly strong.

24.2.2 Late Fusion

To incorporate temporal reasoning, a natural extension is late fusion. Here, each frame is first

processed independently by a 2D CNN to produce feature maps of shape D×H ′×W ′. The sequence

of features across T frames is then concatenated into a tensor of shape T ×D×H ′×W ′. This can be

flattened into a single feature vector of dimension T DH ′W ′, followed by fully connected layers and

a softmax classifier:

ŷ = Softmax
(
MLP(Flatten({ f1, . . . , fT}))

)
, (24.3)

where ft denotes the per-frame CNN features.

The intuition is that we first capture high-level appearance in each frame and then combine them

at the classification stage.
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Figure 24.5: Late fusion with fully connected layers. Frame-level features are concatenated, flattened,

and passed to an MLP for classification.

A more parameter-efficient variant replaces the flatten–FC stage with global average pooling

(GAP) over both spatial and temporal dimensions, yielding a compact D-dimensional vector before

the classifier. While effective at reducing overfitting, late fusion methods have a key limitation:

they struggle to capture fine-grained motion signals between consecutive frames, since temporal

information is collapsed only at a late stage.

Figure 24.6: Late fusion with global average pooling. Although parameter-efficient, this approach

struggles to capture low-level motion cues such as periodic leg movement in running.
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24.2.3 Early Fusion

To better model small/fine-grained temporal dynamics, we can adopt early fusion. Here, the temporal

dimension is reshaped into the channel dimension: the input clip R
T×3×H×W is reformatted into

R
3T×H×W . A 2D CNN is then applied, treating time-stacked frames as an enlarged channel input.

This allows the first convolutional layer to directly compare pixel intensities across adjacent frames,

thereby capturing short-term motion.

Figure 24.7: Early fusion approach. The temporal dimension is stacked as channels, enabling the

first 2D convolution to compare frames directly.

While this mitigates late fusion’s inability to capture motion, the temporal dimension is collapsed

after the first convolution. This one-shot fusion can be overly aggressive, discarding longer-range

temporal information, and thus harm classification results.
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24.2.4 3D CNNs: Slow Fusion

A natural extension of 2D convolution to video is to treat time as an additional dimension and

apply 3D convolutions. In this design, filters have shape Kt ×Kh×Kw, spanning the temporal

axis as well as the spatial axes. Activations remain four-dimensional (D×T ×H×W ), where T

denotes temporal extent. By stacking such layers, temporal information is fused progressively across

depth—an approach known as slow fusion.

Figure 24.8: 3D convolution over video clips. Filters extend across both spatial dimensions and time,

producing feature maps that jointly capture motion and appearance.

This architecture enables hierarchical learning of spatiotemporal features: early layers may

detect short-term motion edges, while deeper layers aggregate evidence for longer-term dynamics.

The formulation was pioneered in early works such as [263, 276].

Comparison with fusion alternatives. To place 3D CNNs in context, it is helpful to compare with

early and late fusion strategies. In early fusion, temporal information is aggregated at the input

by stacking frames as channels, while spatial receptive fields grow across depth. In late fusion,

each frame is processed independently by 2D CNNs, and temporal integration occurs only at the

final stage. By contrast, 3D CNNs (slow fusion) expand both spatial and temporal receptive fields

gradually, balancing spatial and temporal modeling capacity.

Figure 24.9: Comparison of fusion strategies. Late fusion: spatial receptive field grows gradually,

temporal fusion only at the end. Early fusion: temporal fusion at the start, spatial receptive field

grows gradually. 3D CNN (slow fusion): both spatial and temporal receptive fields expand gradually.
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24.2.5 2D vs 3D Convolutions

To better understand the distinction between early fusion with 2D convolutions and true 3D convolu-

tions, it is useful to analyze how their filters operate over time:

• Early fusion (2D convolutions on stacked frames): Frames are concatenated along the

channel dimension and processed by a 2D convolution. First-layer filters therefore have shape

Cout×Cin×T ×Kh×Kw.

Each filter spans the entire temporal extent T . This design has two drawbacks:

1. No temporal shift invariance: the filter is tied to specific time positions. For example,

a filter trained to detect a hand moving to the right between frames 1 and 2 will not

automatically generalize to the same motion between frames 3 and 4. A separate set of

weights must be learned for each timing.

2. Parameter inefficiency: since temporal variation must be explicitly memorized at differ-

ent offsets, many more filters are needed to cover the same set of motions. This makes

early fusion prone to overfitting and less data-efficient.

• 3D convolution (true spatiotemporal kernels): Filters extend over a limited temporal window

Kt ≪ T , with shape

Cout×Cin×Kt ×Kh×Kw.

These filters slide along the temporal axis, just as 2D filters slide spatially. This provides

temporal shift invariance: once a kernel has learned to detect a short motion pattern (e.g., a

flick or edge moving across frames), it will activate regardless of where in the sequence that

motion occurs. This is analogous to translation invariance in images, but extended into the

time dimension.

For visual clarity, Justin Johnson illustrates these concepts with concrete examples. Early fusion

requires separate filters to detect the same phenomenon (in the example, color transition from

orange→blue) at different times in the sequence, whereas 3D convolution achieves this with a single

filter that generalizes across temporal positions.

Figure 24.10: Early fusion setup. Filters span the entire temporal dimension, tying responses to

absolute time positions.
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Figure 24.11: Limitation illustrated. To detect an orange→blue transition early vs late, early fusion

needs two different filters aligned to different temporal offsets.

Figure 24.12: 3D convolution: filters slide in time, providing temporal shift invariance. A single

kernel that detects the orange→blue transition generalizes to any temporal position in the sequence.
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Clarifying Input Channels vs Temporal Dimension

Convolutions always combine all input channels (Cin, e.g. RGB) at once. The real difference between

2D and 3D convolutions is whether the temporal axis is collapsed or preserved, which changes the

filter shape and what it can learn.

• 2D convolution (early fusion): Input: (Cin ·T )×H×W . Filter: Cout× (Cin ·T )×Kh×Kw.

The filter is 2D in space (Kh×Kw), but its depth spans all channels, including stacked frames.

Thus, time is baked into channels. The network sees all frames at once but cannot reuse the

same filter across time; it must learn separate filters for motion at different temporal positions.

• 3D convolution: Input: Cin×T ×H ×W . Filter: Cout×Cin×Kt ×Kh×Kw. The filter is

volumetric: it spans Kt consecutive frames as well as Kh×Kw spatial pixels. Crucially, it

slides across time, height, and width. This preserves temporal structure and gives temporal

shift invariance: the same filter can detect a motion pattern (e.g., a color change or edge

movement) regardless of when it occurs in the sequence.

Practical implication. In early fusion (2D), the model treats the clip like a single thick image:

temporal order is fixed, and motion is hard to generalize. In 3D convolution, the model treats the clip

as a video volume: filters move through time as well as space, making them natural motion detectors.

24.2.6 Sports-1M Dataset and Baseline Comparisons

An influential benchmark for video classification is the Sports-1M dataset [276]. It consists of

roughly one million YouTube videos labeled across 487 sports categories, ranging from common

activities like basketball or soccer to highly fine-grained distinctions such as ultramarathon versus

half marathon. The dataset poses unique challenges, as models must not only recognize broad

classes of motion but also discriminate subtle variations within closely related activities.

Figure 24.13: Examples from the Sports-1M dataset. For each video, the ground truth label is shown

in blue, with the model’s top-5 predictions listed below. Fine-grained distinctions are particularly

difficult: for instance, track cycling is sometimes misclassified as the broader cycling, while in

another example the model successfully distinguishes an ultramarathon from related classes like

half marathon and regular running.

These examples illustrate the dataset’s difficulty: coarse categories are often recognized correctly,

but small variations in equipment, environment, or motion patterns can determine the correct label.

As a result, fine-grained sports categories highlight the challenge of models trained on video data.
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24.2.7 Baseline Model Performance

Figure 24.14: Sports-1M performance comparison. The single-frame baseline outperforms early

fusion, while late fusion and 3D CNNs yield further improvements. Source: Johnson lecture slides

Karpathy et al. [276] benchmarked several architectures on Sports-1M, comparing single-frame

CNNs, early fusion, late fusion, and 3D CNNs (slow fusion). Surprisingly, the single-frame baseline

outperformed early fusion, achieving 77.7% accuracy compared to 76.8%. Late fusion and 3D CNNs

provided modest improvements, with 78.7% and 80.2% respectively.

These results underscore two key insights:

1. Single-frame models are strong baselines: even ignoring temporal structure, per-frame

CNNs achieve competitive accuracy, making them a practical first step for many applications.

2. Temporal models offer incremental gains: incorporating temporal reasoning via late fusion

or 3D CNNs provides improvements, but the gap is smaller than might be expected.

It is important to note that these experiments date back to 2014, when training resources and

architectures were limited (many models were trained on CPU clusters). Since then, 3D CNN

architectures and large-scale training pipelines have advanced significantly, so the reported numbers

should be interpreted with caution.

24.2.8 C3D: The VGG of 3D CNNs

A landmark architecture in early video understanding was the C3D network [631], often described

as “the VGG of 3D CNNs”. Recall that VGG for images was built entirely from 3×3 convolutions

and 2×2 poolings in a simple conv–conv–pool pattern. C3D extended this idea to videos: it used

3×3×3 convolutions and 2×2×2 poolings throughout, except in the first pooling layer, which

used 1×2×2 to avoid collapsing the temporal dimension too early.

This design made C3D a straightforward 3D analog of VGG and an influential baseline in the

field. Importantly, the authors released pretrained weights on Sports-1M, and many subsequent

works used C3D as a fixed video feature extractor.



24.2 Video Classification as a Canonical Task 1943

Figure 24.15: C3D architecture. Built entirely on 3× 3× 3 convolutions and 2× 2× 2 poolings

(except Pool1). While effective, it is computationally expensive due to volumetric filtering across

space and time.

Computation cost

The main drawback of C3D is its cost. Even with small inputs (16 frames of size 112×112), a single

forward pass requires nearly 40 GFLOPs:

• AlexNet: 0.7 GFLOPs

• VGG-16: 13.6 GFLOPs

• C3D: 39.5 GFLOPs

This stems from sliding 3D kernels over the entire spatiotemporal volume, which scales cubically in

kernel size.

Figure 24.16: Performance comparison. On Sports-1M, C3D improves accuracy from 80.2% (earlier

3D CNNs) to 84.4%, at the cost of significantly higher computation.
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Summary

The story of C3D parallels that of image models: accuracy improved by scaling up deeper, more

expensive networks. But these architectures also highlighted the need to treat time and space

differently, rather than as fully interchangeable.

24.3 Separating Time and Space in 3D Processing

Humans are capable of recognizing actions from motion cues alone. For example, point-light

displays of moving dots are sufficient for us to perceive walking, running, or waving. This suggests

that the brain processes motion and appearance in distinct ways. Motivated by this, researchers

proposed architectures that explicitly disentangle motion from appearance inside the network.

24.3.1 Measuring Motion: Optical Flow

A widely used way to represent motion in videos is through optical flow. At a high level, optical

flow estimates how points in one frame move to their new positions in the next frame.

F(x,y) = (dx,dy), It+1(x+dx,y+dy)≈ It(x,y),

The output is a vector field where (dx,dy) is the estimated displacement of the pixel at (x,y) from

time t to t +1. Intuitively, this captures local motion: if an object moves to the right, nearby vectors

in the flow field will all point rightward with magnitude proportional to the speed.

Dense vs. sparse flow

Optical flow can be dense, with a displacement vector for every pixel, or sparse, with vectors only

at keypoints. Dense flow captures detailed motion everywhere, while sparse flow is cheaper and

focuses on stable regions.

Why this helps

Unlike raw RGB values, which encode only appearance, optical flow provides an explicit description

of how things move. This allows models to disentangle appearance (what is present) from motion

(how it changes). For example, in an action like “shooting a bow,” the background may be irrelevant,

but the flow highlights the arm and bow movement. Feeding these motion fields into CNNs

complements RGB inputs and improves video understanding.

Figure 24.17: Optical flow visualization. Horizontal (top) and vertical (bottom) components for a

woman shooting a crossbow. Motion of the arm and bow is clearly highlighted.
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24.3.2 Two-Stream Networks

A seminal architecture exploiting this idea is the two-stream network of Simonyan and Zisserman

[571]. It consists of two parallel CNN branches:

• Spatial stream: Processes single RGB frames to capture appearance. Each frame is classified

independently, and predictions are averaged over T frames.

• Temporal stream: Processes stacked optical flow fields. From T frames, there are T − 1

optical flows, each with two channels (horizontal and vertical), yielding a tensor of shape

[2(T − 1)]×H×W . Early fusion at the first convolution combines motion across frames,

followed by standard 2D CNN layers.

At test time, both streams output class distributions. The final prediction is obtained by averaging,

or by training an SVM over the concatenated outputs.

Figure 24.18: Two-stream architecture [571]. The spatial stream processes RGB frames, while the

temporal stream processes stacked optical flows. Predictions are fused at test time.

Evaluation on UCF-101

Figure 24.19: Comparison on UCF-101. Motion information (temporal stream) is crucial. Fusing

spatial and temporal streams significantly outperforms either stream alone.
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The two-stream model was evaluated on the UCF-101 dataset. Results show clear advantages of

separating appearance and motion:

• 3D CNN: 65.4%

• Spatial-only stream: 73.0%

• Temporal-only stream: 83.7%

• Two-stream, average fusion: 86.9%

• Two-stream, SVM fusion: 88.0%

These results highlight that motion is often more informative than raw appearance, but the best

performance arises when both are combined.

24.4 Modeling Long-Term Temporal Structure

Most architectures discussed so far capture only local temporal patterns: 2D or 3D CNNs operate on

short clips of∼16–32 frames. Many tasks, however, require reasoning about long-term dependencies,

where informative events are separated by seconds or minutes. We therefore seek models that

aggregate information across extended time spans while preserving strong spatial representations.

24.4.1 CNN Features + Recurrent Networks

A practical recipe is to pair CNNs for spatial and short-term modeling with RNNs:

1. Extract per-timestep features with a CNN (2D on frames or 3D on short clips), yielding a

feature vector at each step.

2. Feed the feature sequence to a recurrent model (e.g., LSTM) to aggregate over time.

3. For video-level classification, use a many-to-one mapping from the final hidden state; for

dense labeling, use many-to-many by reading out from all hidden states.

This idea appeared early in Baccouche et al. [21] and was popularized by Donahue et al. with

Long-term Recurrent Convolutional Networks (LRCN) [131]. A memory-efficient variant freezes

the clip-level CNN (e.g., C3D) and trains only the RNN to cover long time horizons without

backpropagating through very long video volumes.

Figure 24.20: Hybrid CNN+RNN pipeline. A frozen C3D-like network produces per-step features

which an LSTM aggregates; the final hidden state yields a video-level prediction.
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From vector RNNs to recurrent convs

Multi-layer RNNs stack temporal processing; the state at time t in layer l depends on the state at

(t−1, l) and on input from (t, l−1). The same idea can be applied inside convolutional networks by

replacing matrix multiplications with convolutions, yielding recurrent convolutional networks in

which each spatial location behaves like a tiny RNN through time [27].

Figure 24.21: Recurrent convolutional network schematic. Each feature map F
(l)
t depends on the

previous time at the same layer and the previous layer at the same time; weights are shared across

time.

Gated variants and practicality

As with standard sequence models, one can replace simple recurrences with GRU or LSTM-style

convolutional gates. While elegant, such models inherit the sequential dependency of RNNs, limiting

parallelism and slowing training on long videos.

Figure 24.22: Ways to process sequences. CNNs capture local context; RNNs aggregate sequentially;

self-attention relates all positions directly.
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24.4.2 Spatio-Temporal Self-Attention and the Nonlocal Block

Standard 3D CNNs operate on local neighborhoods in space and time; relating distant events requires

many layers to propagate information. To address this, Wang et al. [675] proposed the nonlocal

block, a spatio-temporal self-attention module that directly connects all positions in a video volume.

Definition

Given input features:

X ∈ R
C×T×H×W , (24.4)

the block computes queries, keys, and values via 1×1×1 convolutions,

Q,K,V ∈ R
C′×T×H×W , (24.5)

flattens space–time so N=T ·H ·W , forms affinities

A = softmax
(
Q⊤K

)
∈ R

N×N , ∑
j

Ai j = 1, (24.6)

aggregates values

Y = VA⊤ ∈ R
C′×N , (24.7)

reshapes back to C′×T ×H×W , projects to C channels with Wz, and adds a residual:

Z =Wz(Y)+X. (24.8)

Figure 24.23: Nonlocal block [675]. Each output location attends to and aggregates information

from all spatio-temporal positions, enabling direct long-range reasoning.
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Initialization and integration

For stable insertion into 3D CNNs, initialize the final projection so the block starts as identity; in

practice, place a BatchNorm after the last 1×1×1 and initialize its scale to zero. This yields slow

fusion via local 3D convolutions plus global fusion via nonlocal attention.

Figure 24.24: 3D CNN augmented with nonlocal blocks. Local slow fusion is complemented with

global all-to-all fusion across space and time.

Takeaway

Nonlocal blocks overcome locality constraints of convolutions and the sequential bottleneck of

RNNs by enabling each position to directly gather context from anywhere in the video, improving

representations for tasks such as action recognition and video classification.

24.4.3 Inflating 2D Networks to 3D (I3D)

Designing effective 3D CNNs from scratch is costly. I3D [74] addresses this by inflating a strong 2D

architecture (e.g., Inception-v1) into 3D so it can process space and time while reusing ImageNet-

pretrained weights. The core idea is twofold:

• Inflate the architecture: add a temporal extent Kt to every operation (convolutions, pooling,

etc.), turning Kh×Kw kernels into Kt×Kh×Kw.

• Inflate the weights: initialize 3D kernels from pretrained 2D kernels by replicating them

along the temporal dimension and scaling by 1/Kt , so the inflated network behaves identically

to the 2D parent on static videos.

Inflating the architecture

Every 2D layer is given an explicit temporal kernel size Kt :

• Kh×Kw conv⇒ Kt×Kh×Kw conv, same for pooling.

• Inception branches and residual pathways are expanded analogously, preserving topology and

receptive-field design.

• Temporal stride and padding are chosen to control temporal downsampling and receptive-field

growth, mirroring spatial design.
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Figure 24.25: Inflating an Inception block to 3D [74]. Spatial operators acquire a temporal extent

(bolded), e.g., 3×3 pooling becomes 3×3×3

Inflating the weights: replication and normalization

Let a 2D filter be W2D∈RCout×Cin×Kh×Kw and its inflated 3D filter be W3D∈RCout×Cin×Kt×Kh×Kw . I3D

initializes

W3D[:, :, t, :, :] =
1
Kt

W2D for t = 1, . . . ,Kt . (24.9)

That is, replicate the 2D kernel along time and divide by Kt . The division prevents an unintended

Kt-fold amplification of responses.

Why divide by Kt

Consider a static video I where every frame is identical. A 3D convolution with the replicated kernel

computes a temporal sum of identical 2D responses. Without normalization,

Conv3D(W3D, I) =
Kt

∑
t=1

Conv2D(W2D, I) = Kt Conv2D(W2D, I).

Scaling by 1/Kt in (24.9) cancels this factor, yielding

Conv3D(W3D, I) = Conv2D(W2D, I),

so the inflated 3D layer is exactly equivalent to the original 2D layer on static inputs. This preserves

activation magnitudes and the semantics of pretrained features at initialization, which is crucial for

stability with BatchNorm and deep stacks.
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Figure 24.26: Weight inflation [74]. 2D kernels are replicated across the temporal axis and scaled by

1/Kt so that responses on static videos match the 2D parent network

Why inflation is a natural fit

Videos contain the same spatial structures as images (edges, textures, objects), now evolving over

time. Inflation transfers mature spatial detectors from 2D while introducing a neutral temporal

prior (identical slices). During fine-tuning, backpropagation learns temporal asymmetries across

slices (e.g., detectors of motion direction or temporal phase), turning static spatial filters into

motion-sensitive spatiotemporal filters. Thus, optimization focuses on temporal modeling rather

than relearning spatial basics.

Evidence on Kinetics-400

On Kinetics-400 [282] (300K ten-second YouTube clips across 400 actions), Carreira and Zisser-

man showed that, with the same Inception-v1 backbone, inflating ImageNet-pretrained weights

outperforms training 3D kernels from scratch.

Figure 24.27: Pretraining and inflation on Kinetics-400 [74, 282]. For identical Inception-v1 back-

bones, Inflated CNN trained from scratch achieves 68.4% top-1, whereas inflation from ImageNet-

pretrained weights reaches 71.1%; two-stream I3D attains 74.2%
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Takeaway

I3D provides a principled initialization with several benefits:

• Equivalence on static inputs: the inflated network is provably identical to its 2D parent when

frames are constant, ensuring stable initialization.

• Spatial competence transfer: pretrained image filters (e.g., from ImageNet) provide strong

recognition of edges, textures, and objects without retraining.

• Focus on temporal dynamics: since spatial features are inherited, optimization capacity can

concentrate on learning motion-sensitive filters.

Together, these properties make inflation a strong, data-efficient baseline and a reliable foundation

for higher-performing video models.

24.4.4 Transformers for Video Understanding

Transformers capture long-range spatio–temporal structure by self-attending over a sequence of

tokens. For a clip X∈RT×H×W×C, the video volume is first mapped to N tokens {zi}N
i=1, then

multi-head self-attention (MHSA) relates tokens across space and time [16, 42, 151, 344, 446]. Two

core design choices govern effectiveness and efficiency: how to tokenize the video, and how to

structure attention so compute and memory remain tractable.

What is a token in video

Video tokens are compact spatiotemporal units, not raw pixels:

• Per-frame patches: Split each frame into P×P patches; the sequence length is N = T · HW
P2

[16].

• Tubelets (3D patches): Split the video into cuboids of size Pt×P×P, reducing N by ≈ Pt and

embedding short-term motion at input [16, 42].

• CNN feature tokens: Use a 2D CNN per frame and treat spatial feature-map locations as

tokens, leveraging ImageNet pretraining and curbing N [446].

Tokens are linearly projected to R
d and enriched with space–time positional information (absolute

or relative).

Attention over space and time

Full joint attention over all N tokens costs O(N2); with per-frame patches N = ntnhnw grows

multiplicatively in frames nt and spatial grid nh×nw (nh =H/P, nw =W/P). For T=32, H=W=224,

P=16, we obtain N = 6272 and ∼ 39M pairwise interactions per layer per head. To scale, modern

designs either factorize attention or pool tokens:

• Divided space–time attention (TimeSformer): Perform spatial attention within each frame,

then temporal attention across frames at corresponding spatial sites, reducing cost from

O((ntnhnw)
2) to O

(
nt(nhnw)

2 +nhnw n2
t

)
with strong accuracy [42].

• Multiscale transformers (MViT/MViT-v2): Progressively pool tokens in space/time while

widening channels, so deeper layers attend over fewer tokens; pooling attention with relative

position biases yields excellent accuracy–efficiency trade-offs [151, 344].

• CNN–Transformer hybrids (VTN): Adopt a 2D CNN stem for spatial encoding and use

temporal-only transformers on top, exploiting image pretraining and avoiding token explosion

[446].
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ViViT in depth: tokenization, factorization, computation, and findings

ViViT [16] provides a clear blueprint for video transformers, isolating tokenization and attention

structure as independent axes.

Tokenization ViViT studies (i) Per-frame patches with uniform frame sampling (N = ntnhnw)

and (ii) Tubelet embedding into Pt×P×P cuboids (N = ⌊T/Pt⌋nhnw). Tubelets reduce N linearly in

Pt and inject a motion prior. Initialization matters: inflating 2D patch projections (replicate across Pt

and scale) or central-frame initialization stabilizes training, echoing I3D’s weight inflation.

What “spatial” and “temporal” transformers mean In ViViT’s factorized designs, attention

neighborhoods are restricted:

• A Spatial transformer attends within frames to learn objects and layouts; frames can be

processed in parallel.

• A Temporal transformer attends across frames at aligned spatial sites (or on frame-level

summaries) to learn motion and ordering.

These are standard ViT blocks (MHSA+MLP+residuals); only the token grouping changes.

Architectural variants and compute ViViT compares four designs that trade expressivity

for efficiency by constraining who attends to whom. With per-frame patches N = ntnhnw (nt frames,

nh×nw patches per frame), joint attention costs O(N2); factorized variants decompose this into

spatial and temporal parts while preserving the standard Transformer block (MHSA→MLP with

residuals and normalization).

1. Joint spatiotemporal attention: All tokens attend to all others across space and time;

maximally expressive but O(N2), practical only for short clips or coarse patching.

2. Factorized encoder: Spatial-only transformers process each frame to produce frame em-

beddings, then a temporal-only transformer aggregates across frames; ≈ O
(
nt(nhnw)

2
)
+

O
(
nhnw n2

t

)
and spatial stages parallelize over frames.

3. Factorized self-attention: Within each block, apply spatial attention (within-frame) then

temporal attention (across-frame at aligned sites); similar complexity to the factorized encoder

with different information flow and regularization.

4. Factorized dot-product attention: Split attention heads into spatial-only and temporal-only

inside a joint block, keeping parameter count while shrinking effective neighborhoods and

compute.

With tubelets, nt ← ⌊T/Pt⌋, so the temporal term O(nhnw n2
t ) becomes O

(
nhnw (T/Pt)

2
)
, explaining

why modest Pt yields substantial savings without sacrificing short-range motion cues.

Positioning relative to contemporaries

• TimeSformer [42]: Also factorizes space–time within blocks; ViViT broadens the design

space (encoder- vs. block-level factorization, tubelets, initialization) and clarifies trade-offs.

• MViT/MViT-v2 [151, 344]: Add hierarchical token pooling and pooling attention with

relative biases for strong accuracy–efficiency; ViViT serves as a transparent baseline isolating

tokenization and factorization without a pyramid.
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• VTN [446]: Uses a 2D CNN spatial stem with temporal transformers to curb tokens and

leverage image pretraining; ViViT shows pure-transformer backbones can compete when

tokenization and factorization are well chosen.

Practical guidance and empirical takeaways from ViViT ViViT’s systematic study suggests

clear design choices for building effective and efficient video transformers:

• Prefer tubelets: Use modest temporal extent Pt∈ [2,4] to cut tokens, reduce FLOPs, and inject

local motion cues. Tubelets generally outperform per-frame patches at matched compute.

• Adopt factorization for scale: Factorized encoders or block-level space–then–time atten-

tion retain most of joint attention’s accuracy while allowing longer clips and higher spatial

resolution within a fixed budget.

• Encode space–time position: Apply factorized absolute or relative positional signals.

• Leverage large pretraining: Large-scale image pretraining (e.g., ImageNet-21K/JFT) is

essential, since training pure video transformers from scratch on modest video datasets

underperforms.

• Fewer multi-view passes needed: Efficient factorization makes it possible to process longer

clips in a single forward pass, reducing reliance on expensive multi-view testing.

Figure 24.28: ViViT overview [16]. Videos are tokenized by per-frame patches or tubelets, enriched

with space–time positions, and processed by joint or factorized attention. Factorized designs reduce

attention from O((ntnhnw)
2) to O((nhnw)

2 +n2
t ) while retaining strong accuracy.

Why transformers for video

Transformers provide a global spatiotemporal receptive field in a single layer via content-based

self-attention, allowing direct connections between distant events without the deep local stacking

of 3D CNNs or the sequential bottlenecks of RNNs. While naive all-to-all attention over N video

tokens costs O(N2), practical video transformers curb both N and the attention neighborhoods

through tokenization into tubelets (reducing sequence length and injecting short-range motion

cues), attention factorization (space-then-time or encoder-level separation), and multiscale pooling

(progressively merging tokens while widening channels), achieving long-range reasoning at tractable

compute [16, 42, 151, 344, 446]. The result is a backbone that preserves temporal reasoning capacity

while scaling to longer clips and higher resolutions within realistic budgets.
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24.4.5 Visualizing and Localizing Actions

Visualizing Video Models

A useful way to probe what a trained video classifier has learned is to optimize a synthetic video

V∈RC×T×H×W to maximize a class score Sc(V) while adding priors that favor naturalistic solutions

[154, 156]. A generic objective is

max
V

Sc(V) − λs Rspace(V) − λt Rtime(V), (24.10)

where Rspace encourages spatial smoothness (e.g., spatial total variation) and Rtime encourages

temporal coherence (e.g., penalties on finite differences across adjacent frames). By tuning the

temporal penalty λt , one can bias the optimized video toward slow motion (large λt suppresses rapid

frame-to-frame changes) or fast motion (small λt allows rapid changes). This separates appearance

cues (what) from motion regimes (how fast), revealing complementary evidence the model uses.

Figure 24.29: Visualizing video models with spatiotemporal regularization [154, 156]. Increasing

the temporal smoothness weight highlights slow components; decreasing it exposes fast components.

Qualitative examples

Optimizing (24.10) for specific classes yields intuitive decompositions into appearance, slow motion,

and fast motion channels:

• Weightlifting: The appearance channel emphasizes the barbell and lifter; the slow component

accentuates bar shaking; the fast component emphasizes the push overhead—together aligning

with the weightlifting concept.

• Apply eye makeup: The appearance channel contains many faces (consistent with makeup

tutorials); the slow component captures deliberate hand movements; the fast component

highlights brushing strokes.
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Figure 24.30: Visualization by class score optimization [154, 156]. Appearance, slow, and fast

components for a weightlifting clip emphasize barbell, bar shaking, and push overhead respectively.

Figure 24.31: Visualization by class score optimization [154, 156]. For apply eye makeup, appearance

surfaces faces, slow motion emphasizes hand placement, and fast motion highlights brushing strokes.

Temporal Action Localization

Problem: Given an untrimmed video, identify the temporal extents of actions and their labels. A

popular approach mirrors object detection: first generate temporal proposals, then classify and refine

them [78]. Modern systems use 1D temporal anchors or boundary-matching modules coupled with

clip-level features from 2D/3D backbones.
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Figure 24.32: Temporal action localization. Proposal generation followed by classification and

boundary refinement identifies action segments in long untrimmed videos [78].

Spatio-Temporal Action Detection

Problem: Detect who does what in space and time: localize people with bounding boxes across

frames (tubes) and assign action labels. The AVA dataset provides dense, frame-level annotations

of atomic visual actions for people in 15-minute movie clips, enabling research on fine-grained

spatiotemporal detection and interaction understanding [191]. Models typically combine per-frame

person detection, tube linking, and action classification with temporal context.

Figure 24.33: Spatio-temporal detection examples from AVA [191]. Activities such as clinking glass,

drinking, looking at phone, or answering phone are localized in space and time for each person.
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Ego4D: Large-Scale Egocentric Video

Ego4D is a comprehensive egocentric benchmark comprising 3,670 hours of head-mounted, real-

world video collected by 14 teams across 9 countries from 931 camera wearers [186]. Videos

are long (1–10 hours each) and accompanied by 3.85M natural language narrations. The dataset

supports five task families:

• Episodic memory: Retrieve or localize past events based on queries.

• Hands and objects: Detect and track hands and manipulated objects from a first-person

perspective.

• Audio–video diarization: Segment and attribute audio–visual events to speakers and sources.

• Social interactions: Recognize and characterize interpersonal behaviors.

• Forecasting: Anticipate future activities or states from ongoing observations.

Figure 24.34: Ego4D overview [186]. A global, long-form egocentric video corpus with narrations

and benchmarks spanning episodic memory, hands and objects, audio–video diarization, social

interactions, and forecasting.
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Enrichment 24.5: Vision–Language Alignment Precursors

The first step toward video–language models was learning how to connect vision and language at

scale. As detailed in Section 22.3.11, CLIP demonstrated how contrastive alignment could map

visual features into a shared language space. Building on this foundation, SigLIP and the BLIP family

established the now-standard connector paradigm for mapping visual encoders into LLM-friendly

representations. This section focuses on the key image–language precursors that underpin later video

systems: SigLIP for improved contrastive alignment, BLIP and BLIP-2 for lightweight vision–LLM

bridging, and SigLIP 2 as a stronger, multilingual and dense-capable successor.

Enrichment 24.5.1: SigLIP: Contrastive Alignment with Sigmoid Loss

From CLIP to SigLIP (Intuition First)

CLIP learns with a batch–softmax game: in each row/column of the similarity matrix, the true pair

must beat all in-batch negatives. This global competition is powerful, but it ties learning quality to

batch composition (you need many, diverse negatives), forces expensive all–gathers across devices,

and becomes fragile with small or imbalanced batches.

SigLIP [758] changes the game: instead of “one-vs-many” races, it asks a simple yes/no question

for each image–text pair—“do they match?”—and trains with a pairwise sigmoid (logistic) loss. By

turning alignment into many independent binary decisions, SigLIP:

• Decouples supervision from batch size (every off-diagonal pair is a labeled negative, no global

normalization needed),

• Stabilizes gradients (no row/column softmax where a few hard negatives dominate),

• Improves calibration (scores behave like probabilities rather than “who won the batch”),

• Cuts memory & comms (no all–gathers to normalize across the full batch).

Algorithmic Formulation and Intuition

With n image embeddings xi and text embeddings y j (both L2-normalized), CLIP builds Si j=x⊤i y j

and optimizes two batch–softmax losses (image→text and text→image):

LCLIP =
1

2

[
1

n

n

∑
i=1

− log
exp(τSii)

∑
n
j=1 exp(τSi j)

+
1

n

n

∑
j=1

− log
exp(τS j j)

∑
n
i=1 exp(τSi j)

]
,

where the learned temperature τ sharpens the softmax; each positive must outrank all n−1 negatives

in its row/column.

SigLIP replaces this global competition with a per-pair logistic objective:

LSigLIP =−1

n

n

∑
i=1

n

∑
j=1

logσ
(
zi j · (t x⊤i y j +b)

)
, (24.11)

with labels zi j=1 for matches (i= j) and −1 otherwise (non-match). The formulation introduces two

additional learnable scalars:

• Temperature t = exp(t ′). Instead of learning t directly, the model learns an unconstrained

parameter t ′, which is exponentiated to ensure t > 0. This acts as a similarity sharpness knob:

larger t magnifies dot products, steepening the logistic curve and pushing probabilities closer

to 0 or 1; smaller t smooths the curve, reducing overconfidence. Exponentiation guarantees

stability while allowing flexible scaling during training.
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• Bias b. A learnable offset that shifts the decision boundary of the sigmoid. It helps correct

for the extreme class imbalance of the loss: each minibatch has only n positives but n2−n

negatives. Without b, the logits for negatives can dominate early optimization, leading to

vanishing gradients for positives.

Reading the terms in context:

• x⊤i y j: cosine-like similarity between L2-normalized embeddings.

• t = exp(t ′): positive temperature that scales similarities, controlling how confidently pairs are

classified.

• b: bias that shifts the sigmoid’s threshold, stabilizing optimization when negatives vastly

outnumber positives.

• zi j ∈ {+1,−1}: binary label, turning alignment into independent logistic decisions for each

pair—no competition across rows/columns as in CLIP.

CLIP vs. SigLIP—why it matters

• Normalization target. CLIP normalizes within each row/column via softmax (needs the

whole batch); SigLIP applies a sigmoid per pair (no batchwise denominator).

• Negatives. CLIP’s signal hinges on the number/hardness of in-batch negatives; SigLIP gets

explicit negatives from all off-diagonal pairs, even in modest batches.

• Gradient coupling. CLIP couples all pairs in a row/column (hard negatives can dominate);

SigLIP yields decoupled per-pair gradients with lower variance.

• Calibration. CLIP scores reflect “winning the batch”; SigLIP’s probabilities are directly

interpretable as match likelihoods.

• Distributed cost. CLIP typically needs global all–gathers; SigLIP can be computed in

device-local tiles (see the below part on efficient computation).

1 # Sigmoid contrastive loss pseudocode (SigLIP)

2 # img_emb : image embeddings [n, d]

3 # txt_emb : text embeddings [n, d]

4 # t_prime, b : learnable temperature and bias

5 # n : batch size

6

7 t = exp(t_prime)

8 zimg = l2_normalize(img_emb)

9 ztxt = l2_normalize(txt_emb)

10 logits = dot(zimg, ztxt.T) * t + b

11

12 labels = 2 * eye(n) - ones(n) # +1 on diag (matches), -1 off-diag

(non-matches)↪→

13 loss = -sum(log_sigmoid(labels * logits)) / n

Efficient Implementation

The pairwise objective also simplifies distributed training. CLIP’s softmax normalizes over the global

batch and thus materializes an n×n similarity matrix across devices via all-gathers. SigLIP computes

the loss locally in chunked blocks, avoiding global normalization and keeping only device-resident

tiles in memory. The footprint drops from O(n2) to O(b2), where b is the per-device batch size,

enabling very large effective batches on comparatively few accelerators. The below figure illustrates

the blockwise computation.
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Figure 24.35: SigLIP computes the sigmoid loss over device-local blocks, avoiding global all-gathers

required by CLIP’s batch–softmax. Source: [758].

Empirical Comparison to CLIP: What Improves in Practice

In realistic training settings (small–to–medium batches; noisy web data), SigLIP generally matches

or surpasses CLIP while requiring less tuning. The improvements are explained by its pairwise

design:

• Batch-size resilience. Because supervision is per pair, SigLIP does not need thousands of

negatives per update. Performance scales smoothly up to moderate batch sizes and then

plateaus, avoiding CLIP’s reliance on extreme global batches.

• Lower gradient variance. Without a row/column softmax, updates are not dominated by a

few hard negatives, yielding smoother optimization and more stable convergence.

• More reliable confidence. Logistic outputs can be interpreted directly as “probability of

match”. This leads to better-calibrated similarity scores, making confidence thresholds more

trustworthy for retrieval, filtering, or dataset cleaning.

• Robustness to noise. In CLIP, mislabeled or loosely aligned pairs can distort the softmax

normalization for a whole row/column. In SigLIP, such outliers only affect their own binary

terms, containing the damage and improving robustness on noisy web corpora.

• Efficiency. Losses are computed locally on each device in small blocks, avoiding global

all-gathers. This reduces memory and communication costs and makes very large effective

batches feasible even on limited hardware.

Impact, Limitations, and Legacy

Impact. SigLIP proved that large-scale vision–language alignment can be achieved without global

softmax or massive negatives. Its simple, stable recipe made it the backbone for connector-style

systems such as BLIP/BLIP-2 (where Q-Former bridges vision encoders to LLMs) and Video-LLMs

(where temporal encoders extend SigLIP-style connectors to video).

Limitations. As a purely binary contrastive method, SigLIP:

• Judges only match vs. non-match, lacking multi-way semantics or compositional reasoning.

• Aligns globally but does not yield dense/localized features unless augmented.

• Cannot generate captions or reasoning without an attached LLM.

Legacy. Extensions such as SigLIP 2 [636] add multilingual training, masked prediction, and

self-distillation for cross-lingual and localized tasks.
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Enrichment 24.5.2: BLIP: Bootstrapping Language–Image Pretraining

High-Level Idea

Most large-scale vision–language corpora are scraped from the web by pairing images with their

surrounding alt-text—short strings originally written for accessibility or indexing. While attractive

for scale, alt-text was never intended as faithful supervision. It is often:

• Missing, e.g. filenames like “IMG_123.jpg” with no descriptive text for the image in its alt

text.

• Generic, e.g. “beautiful view” that offers little semantic grounding.

• Off-topic, e.g. boilerplate such as “click here to buy”.

When such noisy associations dominate, models risk learning shortcuts (e.g. linking logos directly to

brand names) instead of genuine visual grounding. A second challenge is an objective gap: alt-text

resembles retrieval labels more than natural captions or question-answer pairs. Training only with

discriminative alignment (as in CLIP) yields strong retrieval but poor generation; training only with

captions produces fluent language but weak grounding.

BLIP’s Two-Part Strategy

The authors observe that these problems reinforce each other: noisy supervision destabilizes multi-

task learning, and narrow objectives fail to transfer broadly. BLIP addresses both with a simple

recipe: first curate the data, then train a unified model that can align, ground, and generate.

• Step 1 — Bootstrapping with CapFilt. Instead of trusting raw alt-text, BLIP trains its

own Captioner and Filter on a small, clean human-annotated dataset. The Captioner (a

generative decoder) produces synthetic captions grounded in visual content, while the Filter (a

discriminative encoder) discards both weak alt-text and low-quality synthetic captions. This

process rebuilds the large pretraining corpus “from within”, producing cleaner, semantically

faithful supervision.

• Step 2 — Unified encoder–decoder. BLIP introduces a Multimodal Encoder–Decoder (MED)

that supports three complementary modes with largely shared parameters:

– Image–Text Contrastive (ITC). Aligns unimodal encoders for fast retrieval.

– Image–Text Matching (ITM). Uses cross-attention to check whether a caption truly

matches an image.

– Language Modeling (LM). Uses a causal decoder to generate captions or answers,

reusing the same cross-attention for stable fusion.

By combining these modes, BLIP avoids the trade-off between retrieval strength and generative

ability, yielding a single checkpoint that can both discriminate and generate.

Intuition. By first cleaning the data, BLIP removes much of the noise that would otherwise

destabilize multi-task optimization. This makes it feasible to train a single model on diverse

objectives without one collapsing the others. At the same time, the unified architecture avoids the

brittleness of task-specific designs: contrastive alignment alone cannot generate, and pure generation

often ignores fine-grained grounding. Combining the two under one framework allows the model to

tackle multiple problems at once—retrieval, discrimination, and generation—so that improvements

in one skill reinforce the others, producing a more balanced and versatile vision–language learner.
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Method

Unified Architecture with Three Functional Modes

Rather than building separate networks for retrieval, grounding, and captioning, BLIP uses a single

multimodal encoder–decoder backbone that can be run in three different configurations. Most of

the heavy components—the vision encoder, cross-attention layers, and feed-forward blocks—are

shared across all modes. What changes between them is how attention is applied and which inputs

are activated:

• In contrastive alignment, image and text streams run separately without cross-attention.

• In matching, the text stream is augmented with cross-attention over image tokens.

• In generation, the decoder uses causal (masked) self-attention but reuses the same cross-

attention and feed-forward layers as the encoder.

Figure 24.36: BLIP’s unified MED architecture and objectives. The Vision Transformer image

encoder is initialized from a pre-trained ViT (e.g., ImageNet) but remains trainable during pre-

training, alongside the text transformer blocks. All components are optimized end-to-end under

three objectives, reusing the same backbone with minimal changes: (i) ITC runs the image and text

encoders unimodally (no cross-attention) to produce global embeddings for contrastive retrieval; (ii)

ITM augments the text encoder with cross-attention to image tokens, using bidirectional self-attention

for fine-grained matching; (iii) LM reuses the same cross-attention and feed-forward blocks but

applies a causal self-attention mask to decode text autoregressively. Most parameters (vision encoder,

cross-attention, FFN) are shared; the functional differences stem only from routing (cross-attention

on/off) and attention masking (bidirectional vs. causal), not from freezing or separating modules.

Source: [334].

This parameter sharing means that improvements in one objective (e.g., better grounding in

ITM) flow into the others, stabilizing training and avoiding the need to maintain multiple specialized

checkpoints.

1. Image–Text Contrastive (ITC). The unimodal image encoder and text encoder produce global

embeddings. A contrastive loss aligns paired embeddings while pushing apart mismatched

ones, giving BLIP strong retrieval and zero-shot transfer.

2. Image–Text Matching (ITM). The text encoder is extended with cross-attention layers that

attend to image features. The model then predicts whether a caption truly matches its paired

image. Hard negatives are sampled from ITC to make the discrimination sharper.



1964 Chapter 24. Lecture 24: Videos (Video Understanding)

3. Language Modeling (LM). The decoder reuses the same cross-attention and feed-forward

blocks as the encoder, but changes the style of self-attention. In the encoder, self-attention

is bidirectional: each token can attend to all others, both before and after it, which is ideal

for understanding a complete sentence. In contrast, the LM decoder uses causal masking:

each token can only attend to those that came earlier in the sequence, never to future tokens.

This forces the model to generate text one word at a time, predicting the next token given

the history. By combining causal self-attention with cross-attention to the image features,

BLIP can produce grounded captions and answers in an autoregressive way, rather than simply

classifying pairs.

Why Causal vs. Bidirectional Attention?

• Bidirectional self-attention (ITC, ITM). For understanding tasks, the text stream should read

a sentence holistically: each token attends to all others (past and future) to form a context-rich

representation. This is ideal for global alignment (ITC) and fine-grained verification (ITM),

where the model must judge a complete image–text pair.

• Causal (masked) self-attention (LM). For generation, the decoder must predict the next token

given only the prefix; allowing access to future tokens would let it “peek” and trivially copy

the target. Causal masking enforces autoregressive decoding and yields fluent, grammatical

captions that remain conditioned on the image via cross-attention.

Example. In retrieval or matching, the phrase “a dog on the grass” is compared to an image as a

whole—bidirectional attention fits. In captioning, the model writes “A dog is running . . . ” one token

at a time—causal masking prevents cheating and maintains coherence.

Objectives in Mathematical Form.

BLIP optimizes three complementary losses within the shared backbone:

• Image–Text Contrastive (ITC). For paired embeddings (vi, ti) and negatives (vi, t j), BLIP

applies a symmetric InfoNCE loss:

LITC =− 1

N

N

∑
i=1

[
log

exp(sim(vi, ti)/τ)

∑
N
j=1 exp(sim(vi, t j)/τ)

+ log
exp(sim(ti,vi)/τ)

∑
N
j=1 exp(sim(ti,v j)/τ)

]
,

where sim is cosine similarity and τ a temperature. Intuition: Encourages globally aligned

representations so retrieval works out of the box.

• Image–Text Matching (ITM). With image tokens v and text tokens t, the cross-attentive

encoder predicts a binary label y ∈ {0,1}:

LITM =−
[
y log p(y=1|v, t)+(1− y) log p(y=0|v, t)

]
.

Intuition: Forces the model to judge whether an entire caption matches an image, sharpening

grounding beyond coarse similarity.

• Language Modeling (LM). For a target sequence t = (t1, . . . , tL) and image v, the decoder

with causal masking maximizes

LLM =−
L

∑
k=1

log p(tk | t<k,v).

Intuition: Enforces left-to-right text generation conditioned on image features, producing

fluent grounded captions.
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Together, these objectives form a joint training signal: ITC aligns global spaces, ITM enforces

pairwise discrimination, and LM teaches autoregressive generation. Their complementarity stabilizes

multi-task learning within one backbone.

Training Framework: End-to-End Chronology (CapFilt→ Final BLIP)

Web alt-text is often underspecified or off-topic, which destabilizes pretraining. BLIP therefore

separates data construction from final model training in a chronological, three-phase pipeline: (1)

train specialized tools, (2) rebuild the dataset, (3) train the final unified model.

1. Phase 1: Forge the tools on clean data.

• Captioner (generative proposal). Start from a BLIP initialization and fine-tune the

image-grounded decoder in LM mode on a small human-annotated set (e.g., COCO).

This produces a model that can generate descriptive, image-relevant synthetic captions

for web images. Stochastic decoding (e.g., nucleus sampling) increases diversity and

coverage.

• Filter (discriminative selection). Independently fine-tune another BLIP initialization

in ITM (binary match) with ITC-guided hard negatives on the same clean set. This

yields an image–text verifier that can score the semantic fidelity of any pair. Decoupling

Captioner and Filter avoids confirmation bias (a generator endorsing its own outputs).

2. Phase 2: Rebuild the large-scale corpus (CapFilt).

• Generate. Run the Captioner over the web image pool {Iw} to produce synthetic texts

{Ts}.
• Select. Run the Filter on both sources—the original web texts {Tw} and synthetic texts

{Ts}—to keep only high-quality pairs:

{(Iw,T
′

w)}= Filter
(
{(Iw,Tw)}

)
, {(Iw,T

′
s )}= Filter

(
{(Iw,Ts)}

)
.

• Assemble. Form the bootstrapped pretraining set

Dboot = {(Ih,Th)}︸ ︷︷ ︸
human-annotated

∪ {(Iw,T
′

w)}︸ ︷︷ ︸
filtered web

∪ {(Iw,T
′

s )}︸ ︷︷ ︸
filtered synthetic

.

Here T ′w and T ′s denote pairs the Filter judged as matched; images with no good text are

dropped.

3. Phase 3: Train the final unified BLIP on Dboot.

• A new BLIP model is initialized and optimized on all three objectives concurrently. In

practice, each minibatch is sampled from the same purified dataset Dboot, and the model

routes the inputs through different attention masks and heads depending on the objective:

– ITC (unimodal encoders; no cross-attention) — learns global alignment by compar-

ing embeddings of paired vs. unpaired samples.

– ITM (text encoder with image cross-attention; bidirectional SA) — judges whether

a caption matches an image, with hard negatives drawn using ITC similarities.

– LM (decoder with shared cross-attention; causal SA) — generates captions token

by token, conditioned on image features.

The total loss is a weighted sum,

L = λITCLITC +λITMLITM +λLMLLM,

with all parameters updated jointly.
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• Why concurrency matters. Training the three tasks together stabilizes optimization:

ITC provides a consistent alignment scaffold, ITM sharpens discrimination using those

aligned features, and LM leverages the same cross-attended representations for grounded

generation. Running them in parallel avoids forgetting and ensures improvements in one

pathway benefit the others.

Summary. CapFilt first proposes better text (Captioner) and then selects reliable pairs (Filter).

The resulting Dboot lets the final BLIP checkpoint learn alignment (ITC), grounding (ITM), and

generation (LM) in one backbone—with cross-attention toggled on/off and self-attention switched

between bidirectional (understanding) and causal (generation) purely via masks.

Figure 24.37: Learning framework. Captioner and filter, both BLIP-initialized, bootstrap a cleaner

dataset from noisy web supervision. Source: [334].

Downstream Usage

After pretraining, the same backbone adapts flexibly:

• Retrieval (via ITC and ITM).

• Captioning (via LM).

• VQA (encode question + image, decode answer).

Figure 24.38: Downstream heads. BLIP routes through ITC, ITM, or LM heads depending on the

task. Source: [334].
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Experiments and Ablations

CapFilt Effectiveness

Empirical studies confirm that the CapFilt pipeline provides consistent gains:

• Retrieval and Captioning. Models trained on the cleaned corpus outperform those trained on

raw web text, even when both use the same number of image–text pairs.

• Quality vs. Quantity. Adding more noisy pairs does not close the gap; filtering clearly

outperforms brute-force scaling, showing that data quality dominates raw scale.

• Retraining vs. Continuing. Restarting training from scratch on the purified set matches or

exceeds continuing training on the noisy one, indicating that the benefit comes from improved

supervision rather than extra steps.

Ablations

Key ablation experiments highlight the necessity of both stages:

• Without Captioner. Relying only on web alt-text leaves a large fraction of pairs irrelevant or

underspecified, hurting downstream generation.

• Without Filter. Using synthetic captions without selection reintroduces noise; performance

falls sharply, showing that caption generation alone is insufficient.

• Joint vs. Decoupled. Sharing parameters between Captioner and Filter causes confirmation

bias and weaker filtering; the decoupled design is essential.

Limitations and Future Work

Observed Constraints

• Scaling challenges. As models grow, balancing multiple objectives becomes harder; discrimi-

native and generative losses can interfere without careful tuning.

• Dependence on bootstrapping. The final model’s quality is bounded by the effectiveness of

the Captioner and Filter; errors in early stages propagate forward.

• Task balance. Equal treatment of ITC, ITM, and LM may not be optimal across domains;

different applications may require task-specific weighting.

Toward BLIP-2

BLIP demonstrates that unified multi-task learning is feasible, but scaling to very large LLMs risks

overwhelming multimodal fusion. BLIP-2 addresses this by freezing strong pretrained components

(a vision encoder and an LLM) and inserting a lightweight connector (the Q-Former) to bridge them,

retaining visual grounding while leveraging large-scale language priors.
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Enrichment 24.5.3: BLIP-2: Bridging Vision Encoders and LLMs via Q-Former

High-Level Idea

BLIP-2 [333] moves away from BLIP’s heavy end-to-end training of both vision and text modules.

In BLIP, the ViT image encoder and text transformer were jointly optimized with ITC, ITM, and

LM losses. This achieved strong multimodal fusion, but came at huge computational cost: every

improvement to the vision or text backbone required retraining the entire model, and the text side

remained limited compared to emerging billion-parameter LLMs.

The BLIP-2 shift. Instead of training everything together, BLIP-2 leverages two frozen experts:

a large pre-trained ViT (e.g., CLIP ViT-g or EVA-CLIP) and a large pre-trained LLM (e.g., OPT,

FlanT5). Both remain untouched, preserving their strong unimodal priors. The only trainable

component is a small Querying Transformer (Q-Former), equipped with a fixed set of learnable

query tokens. These queries attend to frozen vision features, distill them into a compact representation,

and pass them—via a thin projection—as soft prompts into the frozen LLM.

Why a two-stage curriculum? Training the Q-Former to talk to both the vision encoder and the

LLM at once is unstable: the LLM has never seen visual tokens and cannot guide the alignment,

while the ViT features are too high-dimensional and unstructured for direct prompting. Splitting

training stabilizes learning and enforces a clear division of labor: first teach the Q-Former to see

with the ViT alone, then teach it to communicate with the frozen LLM.

Two-stage curriculum.

• Stage 1 (Vision–Language Representation Learning): The Q-Former is trained with a frozen

ViT, using BLIP-style objectives (contrastive, matching, generation) to ensure its query tokens

capture text-relevant visual features. The LLM is not involved.

• Stage 2 (Vision-to-Language Generation): The Q-Former outputs are linearly projected and

fed into the frozen LLM. Only the Q-Former is updated, so it learns to “speak the LLM’s

language,” turning visual summaries into effective soft prompts for text generation.

In short, BLIP-2 improves over BLIP by freezing powerful unimodal backbones, introducing a small

trainable bridge (the Q-Former), and adopting a staged curriculum that first teaches the bridge to see,

then teaches it to talk.

Figure 24.39: BLIP-2 framework (frozen experts + lightweight bridge). A frozen image encoder

outputs dense visual tokens. A Q-Former (trainable) with K learnable query tokens attends to

these tokens and produces K query features. A linear adapter maps them to the LLM’s embedding

space and feeds a frozen LLM for image-grounded generation. Training proceeds in two stages: (1)

representation learning with a frozen vision encoder; (2) vision-to-language generation with a frozen

LLM. Source: [333].
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Method: A Small Q-Former Bridging Two Frozen Experts

Stage 1: Vision–Language representation with a frozen image encoder

Freeze the image encoder (e.g., CLIP/EVA ViT). Train only the Q-Former (and small heads) to

extract text-relevant visual summaries. The Q-Former contains K learnable queries that self-attend

and cross-attend to frozen visual tokens. Optimize three objectives (like in 24.5.1):

• ITC (Image–Text Contrastive). Learn independent visual/text embeddings for retrieval;

align matched pairs and repel mismatches.

• ITM (Image–Text Matching). Enable fine-grained discrimination under bidirectional Q–Text

interaction; predict match vs. non-match.

• Image-grounded LM pretraining (masked). Allow text to attend to queries while keeping

text causal, preparing queries for generation.

Intuition. ITC yields globally aligned spaces; ITM injects pair-level grounding; masked conditioning

prepares Q to act as a compact visual prompt.

Stage 2: Vision-to-language generation with a frozen LLM

Keep the LLM frozen. Insert a linear projection from Q-Former outputs to the LLM token space

and train (Q-Former + projection) with next-token prediction on caption/instruction data. The

LLM consumes the K projected query tokens prepended to the textual prompt, enabling zero-shot,

instruction-following image-to-text generation without tuning the LLM.

Figure 24.40: Q-Former and Stage 1 objectives. A small Transformer holds K learnable queries

(Q) which self-attend and cross-attend to frozen image features. Joint optimization: (i) ITC for

global alignment (comparable Q/text embeddings), (ii) ITM for pair-level grounding (match vs.

non-match), (iii) Image-grounded LM pretraining to condition text on Q under causal constraints.

These losses teach Q to extract visual information most relevant to the text. Source:[333].
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Figure 24.41: How attention masks steer Q–Text interaction in BLIP-2’s Q-Former (Stage 1). A

fixed set of learnable query tokens (Q) reads frozen ViT features and interacts with text tokens (T)

under three masks: (i) Uni-modal (ITC): Q attends only to Q and T only to T, producing independent

visual/text embeddings for contrastive alignment. (ii) Bi-directional (ITM): Q and T fully attend

to each other to form a fused representation for fine-grained match classification. (iii) Multimodal

causal (image-grounded generation): T attends to all Q and only past T (causal), while Q remains

fully visible to itself, forcing the visual evidence to pass through the Q bottleneck and enabling

autoregressive text generation. Source:[333].

Two-Stage Curriculum: What Trains When and Why

Stage 1 (learn to see): Freeze the image encoder; train only the Q-Former on paired image–text

data. The three masks in Fig. 24.41 are used jointly so the queries learn to (a) summarize visual

content independently of text (ITC), (b) fuse with text for pair verification (ITM), and (c) carry all

image information needed to describe the text under causal decoding (image-grounded generation).

Intuition: Before “talking” to a frozen LLM, Q must first become a compact, language-relevant

summary of the image; otherwise the modality gap is too wide and training is brittle.

Stage 2 (learn to talk): Keep the image encoder and the LLM frozen. Feed the trained queries

through a small projection into the LLM’s embedding space and optimize a language-modeling loss

while updating only the Q-Former (and the projection). Intuition: With Stage 1, Q already encodes

text-relevant visual evidence; Stage 2 teaches Q to present that evidence as a short “soft prompt” the

LLM can use without disrupting its linguistic knowledge.

Objectives (concise math + intuition)

Let v denote the Q-aggregated visual embedding and t a text embedding from the Q-Former stack

(mask depends on the objective).

ITC (contrastive, uni-modal mask).

LITC =− 1

N

N

∑
i=1

[
log

exp(⟨vi, ti⟩/τ)

∑ j exp(⟨vi, t j⟩/τ)
+ log

exp(⟨ti,vi⟩/τ)

∑ j exp(⟨ti,v j⟩/τ)

]
.

Why: Learn a shared space where matched pairs are close and mismatches are far, enabling retrieval.
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ITM (matching, bi-directional mask).

LITM =− 1

N

N

∑
i=1

[
yi log pi +(1− yi) log(1− pi)

]
, pi = σ

(
W⊤ ffused(Q,T )

)
.

Why: Enforce fine-grained grounding by classifying pair match vs. non-match on fused Q–T features

(often with hard negatives).

Image-grounded generation (multimodal causal mask).

LIG =−
M

∑
m=1

log p
(
ym | y<m, Q

)
.

Why: Force queries to carry all image evidence needed for text under causal decoding, making Q a

faithful visual prompt.

How the pieces fit during training

• Stage 1 (Q-Former only): Optimize LITC +LITM +LIG with the image encoder frozen and

no LLM in the loop. This shapes Q into a compact, language-relevant visual interface.

• Stage 2 (Q-Former + frozen LLM): Project Q to the LLM’s token space and optimize a

standard LM loss LLM =−∑m log pLLM(ym | y<m, Proj(Q)), updating only the Q-Former and

projection. This teaches Q to “speak” to the LLM without altering the LLM itself.

Figure 24.42: Stage 2: vision-to-language bootstrapping with frozen LLMs. Top: decoder-only

LLM (e.g., OPT). Bottom: encoder–decoder LLM (e.g., FlanT5). A linear adapter maps Q-Former

outputs to the LLM’s embedding space. Only the Q-Former and the adapter are trained; both the

vision encoder and LLM remain frozen. Source:[333].
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Figure 24.43: Zero-shot instructed image-to-text. With a frozen LLM and a trained Q-Former

bridge, BLIP-2 exhibits visual dialogue, knowledge/commonsense grounded by images, storytelling,

and personalization without full LLM fine-tuning. Source:[333].
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Table 24.1: Overview of BLIP-2 results on various zero-shot vision–language tasks, compared with

prior SOTA. Higher is better. Source:[333].

Models #Trainable Params Open-sourced? Visual QA (VQAv2 test-dev) Image Captioning (NoCaps val) Image–Text Retrieval (Flickr test)

VQA acc. CIDEr SPICE TR@1 IR@1

BLIP [334] 583M ✓ – 113.2 14.8 96.7 86.7

SimVLM [686] 1.4B × – 112.2 – – –

BEIT-3 [672] 1.9B × – – – 94.9 81.5

Flamingo [6] 10.2B × 56.3 – – – –

BLIP-2 188M ✓ 65.0 121.6 15.8 97.6 89.7

Table 24.2: Comparison with SOTA image–text retrieval methods. Left: Flickr30K zero-shot (1K

test). Right: COCO finetuned (5K test). R@K reported (%). Source:[333].

Model #Trainable Flickr30K Zero-shot (1K) COCO Finetuned (5K)

Image→Text Text→Image Image→Text Text→Image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Dual-encoder models

CLIP [498] 428M 88.0 98.7 99.4 68.7 90.6 95.2 – – – – – –

ALIGN [265] 820M 88.6 98.7 99.7 75.7 93.8 96.8 77.0 93.5 96.9 59.9 83.3 89.8

FILIP [728] 417M 89.8 99.2 99.8 75.0 93.4 96.3 78.9 94.4 97.4 61.2 84.3 90.6

Florence [745] 893M 90.9 99.1 – 76.7 93.6 – 81.8 95.2 – 63.2 85.7 –

BEIT-3 [672] 1.9B 94.9 99.9 100.0 81.5 95.6 97.8 84.8 96.5 98.3 67.2 87.7 92.8

Fusion-encoder models

UNITER [96] 303M 83.6 95.7 97.7 68.7 89.2 93.9 65.7 88.6 93.8 52.9 79.9 88.0

OSCAR [341] 345M – – – – – – 70.0 91.1 95.5 54.0 80.8 88.5

VinVL [774] 345M – – – – – – 75.4 92.9 96.2 58.8 83.5 90.3

Dual encoder + Fusion encoder re-ranking

ALBEF [332] 233M 94.1 99.5 99.7 82.8 96.3 98.1 77.6 94.3 97.2 60.7 84.3 90.5

BLIP [334] 446M 96.7 100.0 100.0 86.7 97.3 98.7 82.4 95.4 97.9 65.1 86.3 91.8

BLIP-2 ViT-L 474M 96.9 100.0 100.0 88.6 97.6 98.9 83.5 96.0 98.0 66.3 86.5 91.8

BLIP-2 ViT-g 1.2B 97.6 100.0 100.0 89.7 98.1 98.9 85.4 97.0 98.5 68.3 87.7 92.6

Experiments & Ablations (Concise)

• Frozen experts preserve priors. Keeping the vision encoder and LLM frozen avoids catas-

trophic forgetting while enabling strong zero-shot transfer; most gains come from learning the

interface (Q-Former + adapter).

• Masking matters. Ablating the uni-modal mask (ITC) degrades retrieval; ablating bidirec-

tional (ITM) weakens grounding; removing causal conditioning harms generation quality—

confirming each mask’s role.

• Number of queries (K). Too few queries underfit fine details; too many inflate compute with

diminishing returns. Moderate K balances fidelity and LLM cost.

• Adapter simplicity. A single linear projection to the LLM embedding space is sufficient;

heavier adapters show minor gains at higher cost.

• Curriculum order. Training Stage 1 (alignment/grounding) before Stage 2 (generation)

stabilizes instruction-following performance; skipping Stage 1 reduces zero-shot quality.
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Limitations & Future Work

Limitations.

• Bottleneck tightness. A fixed small K can miss region-level or fine-grained details without

auxiliary heads/adapters.

• Static queries. Global queries lack explicit spatial/temporal structure; dense grounding or

long video reasoning may require hierarchical or region/time-aware queries.

• Frozen LLM. Great for stability, but limits specialization under large domain shifts; PEFT

helps but may be insufficient in niche domains.

Future Work.

• Hierarchical querying. Multi-scale or region/time-conditioned queries for dense tasks and

long-horizon video.

• Adaptive K. Dynamic selection based on content difficulty and prompt type to trade off detail

vs. cost.

• Richer adapters/PEFT. Structured adapters (e.g., LoRA + gating) for selective LLM special-

ization while preserving generality.

• Unified multimodality. Extending the Q-Former interface to audio/motion and 3D inputs for

broader perception–language reasoning.
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Enrichment 24.5.4: SigLIP 2: Multilingual & Dense Vision–Language Encoding

High-Level Overview

SigLIP 2 keeps SigLIP’s efficient dual-encoder and pairwise sigmoid loss [758] (no cross-modal

attention at test time), and adds training-only signals that teach the vision encoder three missing

skills—where evidence is (localization), how patches relate (dense semantics), and how to cope with

non-square layouts and non-English text (robustness). Concretely, we add:

• Localization (“where”). A lightweight decoder cross-attends to unpooled patch tokens and

is trained for captioning, grounded captioning, and referring expressions [652]. This shapes

patch-level spatial semantics but is discarded at test time.

• Dense semantics (“how patches relate”). A late consistency & masking tail (SILC/TIPS)

aligns student crops to a full-image EMA teacher and predicts teacher features at masked

patches [415, 444], yielding context-aware, part–whole coherent tokens.

• Input robustness (shapes & languages). A brief shape-aware tail either (i) releases size-

specific specialists or (ii) trains a single NaFlex generalist that preserves native aspect ratios

and supports multiple sequence lengths [43, 116]. Optional active curation improves small

models by selecting informative pairs, and a multilingual mix improves cross-lingual transfer.

• Deployment unchanged. All additions are training-only; at inference the model reverts to the

original fast SigLIP path: encoder-only dual towers with sigmoid scoring.

Figure 24.44: SigLIP 2 training recipe (conceptual). Starting from SigLIP’s pairwise sigmoid

alignment [758], pretraining adds (i) a lightweight decoder to inject localization/grounding super-

vision (captioning, grounded captioning, referring expressions) that shapes patch features but is

dropped at test time [652]; (ii) a late consistency tail where an EMA teacher provides full-image

targets for student crops and masked patches, improving global–local agreement and contextual

completion [415, 444]; and (iii) resolution/aspect adaptations, either via size-specific continuations or

a single NaFlex checkpoint that supports multiple grids and native aspect ratios [43, 116]. Optional

curated fine-tunes further boost compact models [637]. Courtesy: SigLIP 2 authors.
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Foundational Reminder: How Sigmoid Loss (SigLIP) Works

Before describing the extensions in SigLIP 2, it is useful to recall the idea behind SigLIP [758].

Unlike CLIP, which aligns images and texts by contrasting every pair in a batch through a softmax-

normalized InfoNCE loss, SigLIP treats alignment as a set of independent binary classification

problems. Each image–text pair is scored by a logistic regressor: true pairs should have high

probability, false pairs low. This removes the need for large batches and makes the training objective

more flexible, while still encouraging globally aligned embeddings.

Compact formulation (per step)

Let z
img
i ,ztext

j ∈ R
d be ℓ2-normalized embeddings, t = exp(t ′) a learned temperature, and b a learned

bias. The pairwise logit and sigmoid loss are

ℓi j = t
〈
z

img
i , ztext

j

〉
+b, Lσ = −∑

i, j

[
yi j logσ(ℓi j)+(1− yi j) log(1−σ(ℓi j))

]
,

with yi j = 1 for a true match and 0 otherwise. This is the anchor signal that drives SigLIP training.

SigLIP 2 preserves this same core loss, and instead improves the learned representations by layering

additional pretraining signals—such as a decoder for localization, late-stage consistency and masking,

and resolution/multilingual adaptations—around the dual-encoder backbone. These new ingredients

are training-only, leaving inference as efficient as the original SigLIP.
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Method: A Staged Curriculum that Teaches Where, Detail, and Robustness

Stage layout (flow first).

• Main phase (0–80%). Sigmoid image–text alignment plus a lightweight decoder for caption-

ing/grounding: learn global “whether” while injecting “where” so patch tokens carry region

evidence early.

• Consistency phase (80–100%). Add self-distillation and masked prediction (no freezing):

enforce part–whole agreement and context completion once alignment/captioning are stable.

• Resolution tail (optional). Publish fixed-resolution specialists via short continuations, or train

one NaFlex generalist that preserves native aspect ratios across multiple sequence lengths.

• Small-model curation (optional). For ViT-B/16, B/32, apply ACID to select high-learnability

pairs and optimize the same sigmoid loss on curated data.

At inference, decoder/teacher/masking/curation are removed; the model is the SigLIP-style dual

encoder.

Decoder for captioning and grounding (LocCa-style)

• Role. Add where to SigLIP’s whether: a small Transformer decoder (2–4 layers) cross-attends

to unpooled patch tokens during pretraining and is discarded at test time.

• Mechanism. Optimize three supervised objectives on top of patch tokens:

Lcap =−∑
t

log p(wt | w<t ,{ fp}) (image captioning)

Lgcap =−∑
t

log p(wt | w<t ,{ fp}p∈R) (grounded captioning)

Lref =− log
exp(⟨zphrase,zR⟩/τ)

∑k exp(⟨zphrase,zRk
⟩/τ)

(referring expressions)

where fp are patch features, R a region (box/mask), and zR a pooled region embedding.

Region–text pairs are auto-mined with n-grams and open-vocabulary detectors [652]. The

combined loss Ldec = ∑λ•L• is added to the sigmoid anchor.

• Effect. Patch tokens become spatially grounded (who/what/where), improving transfer to

grounding/OCR while keeping deployment cost unchanged.

Late self-distillation and masked prediction (SILC/TIPS-style)

• Role. Upgrade patch tokens from global proxies to locally coherent features via two self-

supervised signals.

• Mechanism (added late). Use an EMA teacher (full image) and multiple student views

(crops/augments), applied to vision-only augmented views with small weights:

Lcons = ∥g(zpool
s )−g(z

pool
t )∥2

2 (SILC: global consistency)

Lmask = ∑
m∈M

∥∥h( f s
\m)− f t

m

∥∥2

2
(TIPS: masked per-patch completion)

with one teacher view, eight student crops, EMA decay ≈ 0.999, and small projection heads

g,h [415, 444].

• Effect. Crops align with full-image semantics; masked regions are predictable from context.

Dense-task transfer improves without any inference change.
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Resolution and aspect-ratio adaptation

Goal. Eliminate square-warping drift while preserving encoder-only runtime.

• Fixed-resolution continuation (specialists). From ∼95% progress, resume briefly at a

new grid (e.g., 14×14→24×24): switch input resize, bilinearly (anti-aliased) retarget 2D

positional embeddings

PE ′u′,v′ = ∑
u,v

αu,v→u′,v′ PEu,v, ∑
u,v

αu,v→u′,v′ = 1,

and optionally adapt the patch stem if patch size changes. Continue with the same losses;

publish size-specific checkpoints at minimal cost.

• NaFlex variant (one generalist). Train a single checkpoint that preserves native aspect ratios

and supports multiple lengths [43, 116]. Per batch: sample L∈{128,256,576,784,1024};
resize so H,W are patch-size multiples with minimal padding; bilinearly resize the 2D

positional grid to (H,W ); mask padding in attention/pooling:

Attn(Q,K,V,M) = softmax
(

QK⊤√
d
+M

)
V, Mi j =

{
−∞ if pad

0 otherwise.

Omit consistency/masking here for stability. Outcome: one encoder that “bends without

warping” on documents/UIs/panoramas with no runtime penalty.

Curation-focused fine-tuning for small models

Goal. Lift B-sized checkpoints where data quality, not capacity, is limiting.

• ACID in SigLIP 2 [637]. Distill through data (selection, not logits). For a super-batch S ,

score pairs with teacher confidence and student uncertainty,

φi j = σ(ℓT
i j) ·H(σ(ℓS

i j)), H(p) =−[p log p+(1− p) log(1− p)],

keep the top-k by φ , and optimize the same sigmoid loss on this curated subset. A single strong

teacher (fine-tuned on a curated billion-pair mix) suffices.

• Effect. Compact models see hard-but-informative pairs, yielding consistent zero-shot/retrieval

gains without any inference changes.

Multilingual training mix

Goal. Reduce English skew while keeping English strong.

• Design. Include a non-trivial fraction of non-English image–text pairs (e.g., ∼10%), tokenize

with a multilingual tokenizer, and apply simple per-language sampling/balancing; negatives

can include cross-language distractors. The objective remains the sigmoid alignment.

• Effect. Better cross-lingual retrieval/classification with negligible English regression; the

encoder becomes globally reliable.

Why these additions work (unifying intuition)

The decoder teaches where without altering deployment; the SILC/TIPS tail binds parts to wholes

and teaches contextual fill-in; shape-aware packing prevents geometric/text distortions; ACID feeds

the learner its most informative data; and multilingual mixing broadens alignment beyond English.

All are training-only; the shipped model is the same fast SigLIP dual-encoder with weights imprinted

for locality, dense semantics, and robustness.
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Experiments and Ablations (Concise)

• Across-scales gains (0-shot + retrieval). With comparable compute, SigLIP 2 B/16@256

lifts ImageNet 0-shot from 76.7% to 79.1%, COCO T→I R@1 from 47.4% to 53.2%, and

XM3600 T→I R@1 from 22.5% to 40.7%.

• Grounding & referring expressions (decoder teaches “where”). Large REC gains persist

after discarding the decoder: B/16@256 RefCOCO val 64.05→83.76, testB 57.89→79.57;

L/16@576 val 70.76→87.28, testB 63.79→82.85.

• Dense-prediction probes (better patch features). With frozen encoders (So/14@224):

PASCAL mIoU 72.0→77.1; NYUv2 depth RMSE 0.576→0.493; normals improve on both

datasets (NYUv2 25.9◦→24.9◦, NAVI 26.0◦→25.4◦).
• Late consistency matters (stability without hurting alignment). Add self-distillation

+ masked prediction only in the last ∼ 20% of training (at 80%), apply on augmented

views; weights 1.0 (consistency) and 0.25 (masked), reweighted by {0.25,0.5,1.0,0.5} for

B/L/So400m/g.

• NaFlex helps OCR/docs (native aspect, multi-length). NaFlex outperforms the square

model on most OCR/screen retrieval—especially at short sequences; e.g., B/16@256 HierText

T→I R@1 6.1→7.4 and Screen2Words I→T 22.9→26.6.

• Fixed-resolution specialists (cheap resolution-specific boosts). Short continuations from

∼95% training produce higher-res checkpoints; for B/16: INet 0-shot 79.1→80.6→81.2
(256/384/512) and COCO T→I R@1 53.2→54.6→55.2.

• Curated small models (ACID ⇒ stronger B/16, B/32). Brief implicit distillation for

B/16,B/32: LR 10−5, no WD,∼4B extra examples, 0.5 filtering over 64k super-batches—yields

the biggest relative gains at B-scale.

• Multilingual mix (global transfer, English intact). Training on WebLI with ∼90% English /

10% non-English plus de-biasing yields strong cross-lingual retrieval (see XM3600), while

keeping English performance high.

• Compute and deployment invariant. The decoder and auxiliary heads are training-only; the

released model is the same encoder-only dual tower (swap-in compatible).

What we learn (vs. SigLIP/BLIP/BLIP-2) & which to choose

From the results and ablations, SigLIP-2 upgrades the same encoder-only dual tower with stronger

what+where features at unchanged runtime: vs. SigLIP it brings robust zero-shot/retrieval gains,

large boosts on referring expressions (decoder-imprinted localization), markedly better dense probes

(late SILC/TIPS), plus NaFlex and brief high-res continuations for domain/resolution special-

ization. BLIP targets unified understanding/generation without an external LLM, while BLIP-2

bridges a frozen vision encoder to a frozen LLM via a Q-Former, excelling at open-ended gen-

eration but incurring LLM-dependent inference. Which to choose in practice: if you need fast

retrieval/classification/grounding with no inference overhead, pick SigLIP-2; if you need text gener-

ation (captioning, VQA-style reasoning) without a large LLM, use BLIP; if you need LLM-quality,

open-ended outputs or instruction-style prompting, use BLIP-2 (accepting LLM latency/footprint).

For an empirical feel of embedding behaviors across baselines (CNN/ViT/CLIP/BLIP-2; note

SigLIP-2 is not included), see this concise comparison: Vision](https://pub.towardsai.net/vision-

embedding-comparison-for-image-similarity-search-efficientnet-vs-4eac6bf553c4Vision) embed-

ding comparison for image similarity.
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Enrichment 24.6: Self-Supervised Video Pretraining for VLLMs

Self-supervised pretraining has become the dominant strategy for learning scalable video backbones,

discarding labels in favor of proxy objectives on raw clips (e.g., masked reconstruction or feature

prediction). For video-language models, such pretraining is crucial: the LLM can only reason over

video content if its encoder supplies rich spatiotemporal representations. This section highlights

three representative approaches that defined the state of the art: VideoMAE, which showed the

effectiveness of extreme tubelet masking for masked autoencoding [622]; VideoMAEv2, which

extended this recipe with dual masking and larger ViTs for improved scalability [664]; and MVD,

which replaced pixel targets with teacher features for more semantic supervision [669]. Emerging

directions include hybrid masked–contrastive objectives and leveraging complementary signals such

as audio or motion priors to further enrich pretraining.

Enrichment 24.6.1: VideoMAE: Masked Autoencoders for Video SSL

Scope and positioning

VideoMAE [622] adapts image MAE to videos while explicitly neutralizing temporal shortcuts. Two

choices make the objective both difficult and efficient: (i) very high masking that hides 90–95% of

tokens from the input clip (a sampled subsequence of T frames), and (ii) tube masking. In tube

masking, a single spatial mask is sampled once on the patch grid and then broadcast across the

full temporal span of the clip. Practically, if the spatial patch at (x,y) is selected for masking, that

same location is masked in every frame of the clip. A vanilla ViT is used in an asymmetric encoder–

decoder: the encoder processes only visible tokens (about 5–10%), and a lightweight decoder

reconstructs normalized pixels for the masked tokens. Compared with image MAE, VideoMAE uses

higher masking ratios and temporally aligned masks, matching video’s stronger redundancy and

preventing frame-to-frame copy shortcuts.

Motivation

Why masked autoencoding for video

Videos exhibit slowness and redundancy: adjacent frames are highly similar, so naive per-frame

masking leaves near-duplicates visible and enables trivial copying. VideoMAE blocks this shortcut

by combining: (i) an extremely high masking ratio (90–95%), and (ii) tube masking that aligns

the mask across time. A key point is to separate what the tokens are from how masking is applied:

• Tokens are cubes; masking units are tubes. Tokens are short spatiotemporal cubes (time

× height × width), e.g., k×P×P = 2×16×16. A tube is the stack of all cubes that share a

spatial location (x,y) across the entire clip.

• Share one spatial mask across all T frames. The same 2D mask is repeated over time, so

once (x,y) is chosen, all cubes at (x,y) for the clip are hidden. This eliminates frame-to-frame

leakage at the same location and forces non-local reasoning.

Step 1 — Tokens are cubes. After temporal subsampling by stride τ , the T -frame clip is partitioned

into cubes of size k×P×P (e.g., k=2, P=16). Each cube is one token. Let

Nt =
T

k
, Nh =

H

P
, Nw =

W

P
,

so tokens are indexed by (t ′,x,y) with t ′∈{1, . . . ,Nt} and (x,y)∈{1, . . . ,Nh}×{1, . . . ,Nw}.
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Step 2 — Masking decisions are made per tube. A tube is the set {(t ′,x,y) : t ′ = 1, . . . ,Nt} at fixed

(x,y). Tube masking samples a 2D Bernoulli mask on the spatial grid with ratio ρ:

mx,y ∼ Bernoulli(ρ), ρ ∈ {0.9,0.95},

and broadcasts it along time to define the masked index set

Ω = {(t ′,x,y) | mx,y = 1, t ′ = 1, . . . ,Nt}.

Thus, although a token (cube) spans only k frames, the masking unit (tube) spans the full clip length

T (i.e., all Nt cubes at that (x,y)). If (x,y) is masked, every cube at (x,y) for the clip is masked.

Why this matters. With 90–95% of tubes masked, the encoder receives only ≈5–10% of tokens

and must integrate non-local, long-range space–time cues to reconstruct, instead of copying nearby

pixels. The asymmetric design keeps compute low by applying attention only to visible tokens; the

lightweight decoder handles reconstruction. Scope note: masking applies only within the sampled

T -frame clip; frames outside the clip are neither seen nor reconstructed in that step.

Figure 24.45: Overview of VideoMAE. VideoMAE masks random spatiotemporal cubes and

reconstructs them with an asymmetric encoder–decoder. Owing to high redundancy and temporal

correlation, the authors introduce tube masking with an extremely high ratio (90–95%), which

yields a harder and more meaningful self-supervised task and drives the encoder to capture useful

spatiotemporal structure [622].

Figure 24.46: Tube masking vs. alternatives. (a) Slowness induces temporal redundancy and

correlation. (b) Frame masking and (c) random masking risk information leakage by leaving

correlated duplicates unmasked. (d) Tube masking enforces the same spatial mask for all frames,

removing easy copies and promoting representative spatiotemporal learning [622].
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Method

Preliminaries and notation

Let a video V provide a clip of t consecutive RGB frames. VideoMAE temporally subsamples with

stride τ to obtain T frames I ∈ R
T×H×W×3. Each frame is partitioned into non-overlapping 16×16

patches and packed across time into cubes of size 2×16×16; a cube becomes one input token via a

linear projection to R
D. This yields T

2× H
16×W

16 tokens.

Tube masking with extremely high ratios

Let Ω denote the set of masked cube indices and ρ ∈ [0,1) the masking ratio. Tube masking is

applied by sampling a spatial Bernoulli mask once and sharing it across all t:

I[px,y,· ∈Ω]∼ Bernoulli(ρ) with the same outcome for all times , (24.12)

so that if location (x,y) is masked at one frame, it is masked for all frames [622]. Empirically,

ρ ∈ {0.9,0.95} optimizes difficulty and efficiency; lower ratios leave too much redundant evidence,

and higher ratios (≥ 0.98 ) degrade accuracy on SSV2 and K400 (see Fig. 24.47).

Asymmetric encoder–decoder

Only visible tokens {zv} (roughly (1−ρ) of all tokens) enter the ViT encoder Φenc with joint

space–time attention. A lightweight decoder Φdec receives (i) encoded visible features and (ii)

learnable mask tokens as placeholders for Ω, and predicts reconstructed pixels Î for all masked

cubes. The asymmetry reduces pre-train cost because expensive self-attention is computed on

≈ 5∼10% of tokens [622].

Reconstruction objective on masked cubes

Following ImageMAE, VideoMAE normalizes pixels per channel and minimizes MSE only over

masked positions:

LMAE =
1

|Ω| ∑
p∈Ω

∥∥I(p)− Î(p)
∥∥2

2
, (24.13)

where p indexes masked cubes, I is the downsampled target clip, and Î is the decoder output [622].

Design choices justified

• Temporal downsampling. Using stride τ∈{4,2} on K400/SSV2 reduces redundancy and

balances static and motion cues without collapsing the temporal field of view.

• Cube embedding. 3D tokens (2×16×16) jointly reduce spatial and temporal lengths, improv-

ing efficiency and encouraging space–time reasoning in attention layers.

• Tube masking. Sharing the spatial mask across time removes trivial spatiotemporal corre-

spondences that would otherwise let the model copy from adjacent frames, thereby elevating

the task’s semantic level.

• High masking ratio. Videos contain lower information density than images; aggressively

masking encourages holistic structure modeling while cutting encoder FLOPs proportionally

to (1−ρ).
• Pixel-space target and MSE. Reconstructing normalized pixels with MSE outperforms L1

and Smooth-L1 for this setting; predicting only the center frame is inferior to reconstructing

the full T×τ target.
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Algorithmic flow (pseudo code)

1 # VideoMAE pre-training loop (schematic)

2 # I: sampled clip of shape [T, H, W, 3]; tau: temporal stride; rho: masking

ratio↪→

3 # enc, dec: ViT encoder/decoder; proj: cube embed; mtoken: learnable mask

token↪→

4

5 def step(I):

6 # 1) Temporal downsampling

7 I_tau = I[::tau] # shape [T, H, W, 3]

8

9 # 2) Cube embedding (2 x 16 x 16) -> tokens

10 X = proj(cubeify(I_tau)) # [N_tokens, D]

11

12 # 3) Tube masking: sample a 2D mask once and share across time

13 spatial_mask = bernoulli_mask_2d(height=H//16, width=W//16, p=rho)

14 tube_mask = repeat_across_time(spatial_mask, repeats=T//2) # indices

omega↪→

15

16 visible, indices_vis = X[~tube_mask], where(~tube_mask)

17 masked_indices = where(tube_mask)

18

19 # 4) Encode only visible tokens (asymmetric design)

20 H_vis = enc(visible)

21

22 # 5) Prepare decoder sequence: interleave encoded visibles with mask

tokens↪→

23 Z = stitch_sequence(H_vis, indices_vis, mtoken, masked_indices)

24

25 # 6) Decode to pixel targets for masked cubes and compute loss

26 I_hat = dec(Z) # predict all cubes; train via masked

MSE↪→

27 loss = mse(I_hat[masked_indices], I_tau[masked_indices])

28 return loss

Architecture, Training, and Datasets

Backbone and attention

VideoMAE employs a vanilla ViT with joint space–time self-attention as encoder, so any token can

attend to any other across frames and spatial positions. The decoder is shallower and narrower (half

channels of encoder; 4 blocks by default), which reduces cost while retaining sufficient capacity to

reconstruct masked cubes [622].

Training setup

The default backbone is ViT-B with T=16 frames, cube size 2×16×16, and masking ratio ρ=90%.

Pre-training runs for 800 epochs (on SSV2 and K400) with per-channel pixel normalization and

MSE loss on masked cubes. Fine-tuning uses TSN sampling for SSV2 and dense sampling for K400;

inference uses 2×3 crops on SSV2 and 5×3 crops on K400 [622].
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Datasets used in experiments and ablations

• K400 (Kinetics-400). ∼240k YouTube clips over 400 actions; primary large-scale benchmark

for pre-training and fine-tuning.

• K700 (Kinetics-700). Extension of Kinetics with 700 classes; used for ablations and AVA

detection pre-train variants.

• SSV2 (Something-Something V2). ∼220k crowd-acted object-manipulation videos with

fine-grained motion; used heavily in ablations and to test temporal sensitivity.

• UCF101. 9.5k clips across 101 actions; classic small-scale benchmark, used for transfer

evaluation after K400 pre-train.

• HMDB51. 3.5k clips across 51 actions; another small-scale benchmark for transfer experi-

ments.

• AVA v2.2. Atomic Visual Actions detection dataset; used to measure transfer to action

detection (mAP), with/without supervised pre-train labels.

• IN-1K / IN-21K. ImageNet-1K/21K; appear in ablations for comparing ImageMAE and

supervised ImageNet pre-train baselines.

These datasets cover both large-scale classification (K400/K700, SSV2), small-scale transfer

(UCF/HMDB), and detection (AVA), ensuring that VideoMAE is tested across scales and task

types.

With this setup established, we now turn to the core experiments and ablations, analyzing how

masking ratio, decoder design, targets, and pre-training choices shape performance.

Experiments

Figure 24.47: Effect of masking ratio. With 16-frame ViT-B, SSV2 and K400 peak around ρ=90%;

ρ>95% hurts as context becomes too sparse [622].
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Figure 24.48: Data efficiency on SSV2. Fixed-iteration pre-training (green) at 132k steps outper-

forms fixed-epoch pre-training (blue) when using subsets; notably, 25% SSV2 with more iterations

surpasses a K400-pretrained baseline, highlighting the value of domain-matched data [622].

Ablations

Table 24.3: Table 1(a). Decoder depth on SSV2/K400 with 16-frame ViT-B (reproduced from [622]).

Blocks SSV2 K400 GPU mem.

1 68.5 79.0 7.9G

2 69.2 79.2 10.2G

4 69.6 80.0 14.7G

8 69.3 79.7 23.7G

What we learn. A shallow, lightweight decoder (4 blocks) is sufficient and most efficient for

reconstruction-driven pretraining.

Table 24.4: Table 1(b). Mask sampling on SSV2/K400 (16-frame ViT-B) (reproduced from [622]).
∗Frame masking hides 14/16 frames on SSV2.

Case Ratio SSV2 K400

Tube 75 68.0 79.8

Tube 90 69.6 80.0

Random 90 68.3 79.5

Frame∗ 87.5 61.5 76.5

What we learn. Tube masking at very high ratio (90%) is crucial; frame masking creates shortcuts

and hurts learning.



1986 Chapter 24. Lecture 24: Videos (Video Understanding)

Table 24.5: Table 1(c). Reconstruction target on SSV2/K400 (16-frame ViT-B) (reproduced from

[622]).

Input Target SSV2 K400

T×τ Center 63.0 79.3

T× τ
2 T× τ

2 68.9 79.8

T×τ T×τ 69.6 80.0

T×τ 2T× τ
2 69.2 80.1

What we learn. Reconstructing the full spatiotemporal target (not just the center frame) yields the

best representation.

Table 24.6: Table 1(d). Pre-training strategy on SSV2/K400 (16-frame ViT-B) (reproduced from

[622]).

Case SSV2 K400

From scratch 32.6 68.8

ImageNet-21k sup. 61.8 78.9

IN-21k+K400 sup. 65.2 –

VideoMAE 69.6 80.0

What we learn. Self-supervised VideoMAE pretraining is far stronger than supervised ImageNet

initialization for video.

Table 24.7: Table 1(e). Pre-training dataset comparison (16-frame ViT-B) (reproduced from [622]).

Dataset Method SSV2 K400

IN-1K ImageMAE 64.8 78.7

K400 VideoMAE 68.5 80.0

SSV2 VideoMAE 69.6 79.6

What we learn. In-domain video pretraining (SSV2/K400) is superior to image-only MAE for video

recognition.

Table 24.8: Loss function on SSV2/K400 (16-frame ViT-B) (reproduced from [622]).

Case SSV2 K400

L1 loss 69.1 79.7

MSE loss 69.6 80.0

Smooth L1 loss 68.9 79.6

What we learn. Masked-pixel MSE is the most effective reconstruction loss in this setting.
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Table 24.9: Comparison with prior self-supervised pre-training using 16-frame ViT-B and only

unlabeled training splits (reproduced from [622]).

Dataset Train videos From scratch MoCo v3 VideoMAE

K400 240k 68.8 74.2 80.0

SSV2 169k 32.6 54.2 69.6

UCF101 9.5k 51.4 81.7 91.3

HMDB51 3.5k 18.0 39.2 62.6

What we learn. VideoMAE substantially improves over MoCo v3 across diverse datasets, especially

on small data (UCF/HMDB).

Table 24.10: Pre-training efficiency on SSV2 with 16-frame ViT-B (64×V100), reproduced from

[622].

Method Epochs FT Acc Lin Acc Hours Speedup

MoCo v3 300 54.2 33.7 61.7 –

VideoMAE 800 69.6 38.9 19.5 3.2×

What we learn. Despite more epochs, VideoMAE is far faster in wall-clock and yields much higher

accuracy.

Table 24.11: Feature transferability: pre-train on K400 (unlabeled), then fine-tune on target datasets

(reproduced from [622]).

K400→Target SSV2 UCF HMDB

MoCo v3 62.4 93.2 67.9

VideoMAE 68.5 96.1 73.3

What we learn. VideoMAE features transfer better to both motion-centric (SSV2) and appearance-

centric (UCF/HMDB) targets.



1988 Chapter 24. Lecture 24: Videos (Video Understanding)

Table 24.12: Comparison with the state of the art on AVA v2.2. All models are pre-trained and

fine-tuned at image size 2242. We report validation mAP. “Ex. labels ✗” means only unlabelled

data is used during pre-training and the pre-trained models are directly transferred to AVA; “Ex.

labels ✓” additionally fine-tunes on the pre-training dataset with labels before transfer. T×τ denotes

frames×sample-rate. (Numbers from [622].)

Method Backbone Pre-train Dataset Extra labels T×τ GFLOPs Param mAP

supervised [158] SlowFast - R101 Kinetics-400 ✓ 8×8 138 53 23.8

CVRL [492] SlowOnly - R50 Kinetics-400 ✗ 32×2 42 32 16.3

ρBYOLρ=3 [155] SlowOnly - R50 Kinetics-400 ✗ 8×8 42 32 23.4

ρMoCoρ=3 [155] SlowOnly - R50 Kinetics-400 ✗ 8×8 42 32 20.3

MaskFeat↑312 [687] MViT - L Kinetics-400 ✓ 40×3 2828 218 37.5

MaskFeat↑312 [687] MViT - L Kinetics-600 ✓ 40×3 2828 218 38.8

VideoMAE [622] ViT - S Kinetics-400 ✗ 16×4 57 22 22.5

VideoMAE [622] ViT - S Kinetics-400 ✓ 16×4 57 22 28.4

VideoMAE [622] ViT - B Kinetics-400 ✗ 16×4 180 87 26.7

VideoMAE [622] ViT - B Kinetics-400 ✓ 16×4 180 87 31.8

VideoMAE [622] ViT - L Kinetics-400 ✗ 16×4 597 305 34.3

VideoMAE [622] ViT - L Kinetics-400 ✓ 16×4 597 305 37.0

VideoMAE [622] ViT - H Kinetics-400 ✗ 16×4 1192 633 36.5

VideoMAE [622] ViT - H Kinetics-400 ✓ 16×4 1192 633 39.5

VideoMAE [622] ViT - L Kinetics-700 ✗ 16×4 597 305 36.1

VideoMAE [622] ViT - L Kinetics-700 ✓ 16×4 597 305 39.3

Table 24.13: Comparison with the state of the art on Something–Something V2. VideoMAE

reconstructs normalized cube pixels and is pre-trained with 90% masking for 2400 epochs. “Ex.

labels ✗” means only unlabelled data is used during pre-training. (Numbers from [622].)

Method Backbone Extra data Ex. labels Frames GFLOPs Param Top-1 Top-5

TEINetEn [347] ResNet50×2 ImageNet-1K ✓ 8+16 99×10×3 50 66.5 N/A

TANetEn [339] ResNet50×2 ImageNet-1K ✓ 8+16 99×2×3 51 66.0 90.1

TDNEn [663] ResNet101×2 ImageNet-1K ✓ 8+16 198×1×3 88 69.6 92.2

SlowFast [158] ResNet101 Kinetics-400 ✓ 8+32 106×1×3 53 63.1 87.6

MViTv1 [151] MViTv1 - B Kinetics-400 ✓ 64 455×1×3 37 67.7 90.9

TimeSformer [42] ViT - B ImageNet-21K ✓ 8 196×1×3 121 59.5 N/A

TimeSformer [42] ViT - L ImageNet-21K ✓ 64 5549×1×3 430 62.4 N/A

ViViT FE [16] ViT - L IN-21K+K400 ✓ 32 995×4×3 N/A 65.9 89.9

Motionformer [475] ViT - B ImageNet-21K ✓ 16 370×1×3 109 66.5 90.1

Motionformer [475] ViT - L ImageNet-21K ✓ 32 1185×1×3 382 68.1 91.2

Video Swin [384] Swin - B Kinetics-400 ✓ 32 321×1×3 88 69.6 92.7

VIMPAC [598] ViT - L HowTo100M+DALLE ✗ 10 N/A×10×3 307 68.1 N/A

BEVT [661] Swin - B IN-1K+K400+DALLE ✗ 32 321×1×3 88 70.6 N/A

MaskFeat↑312 [687] MViT - L Kinetics-600 ✓ 40 2828×1×3 218 75.0 95.0

VideoMAE [622] ViT - B Kinetics-400 ✗ 16 180×2×3 87 69.7 92.3

VideoMAE [622] ViT - L Kinetics-400 ✗ 16 597×2×3 305 74.0 94.6

VideoMAE [622] ViT - S no external data ✗ 16 57×2×3 22 66.8 90.3

VideoMAE [622] ViT - B no external data ✗ 16 180×2×3 87 70.8 92.4

VideoMAE [622] ViT - L no external data ✗ 16 597×2×3 305 74.3 94.6

VideoMAE [622] ViT - L no external data ✗ 32 1436×1×3 305 75.4 95.2
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Table 24.14: Comparison with the state of the art on Kinetics-400. VideoMAE models are self-

supervised with 90% masking for 1600 epochs on K400. VideoMAE↑320 is initialized from its 2242

counterpart and then fine-tuned at 3202. “Ex. labels ✗” means only unlabelled data is used during

pre-training. (Numbers from [622].)

Method Backbone Extra data Ex. labels Frames GFLOPs Param Top-1 Top-5

NL I3D [675] ResNet101 ImageNet-1K ✓ 128 359×10×3 62 77.3 93.3

TANet [339] ResNet152 ImageNet-1K ✓ 16 242×4×3 59 79.3 94.1

TDNEn [663] ResNet101 ImageNet-1K ✓ 8+16 198×10×3 88 79.4 94.4

TimeSformer [42] ViT - L ImageNet-21K ✓ 96 8353×1×3 430 80.7 94.7

ViViT FE [16] ViT - L ImageNet-21K ✓ 128 3980×1×3 N/A 81.7 93.8

Motionformer [475] ViT - L ImageNet-21K ✓ 32 1185×10×3 382 80.2 94.8

Video Swin [384] Swin - L ImageNet-21K ✓ 32 604×4×3 197 83.1 95.9

ViViT FE [16] ViT - L JFT-300M ✓ 128 3980×1×3 N/A 83.5 94.3

ViViT [16] ViT - H JFT-300M ✓ 32 3981×4×3 N/A 84.9 95.8

VIMPAC [598] ViT - L HowTo100M+DALLE ✗ 10 N/A×10×3 307 77.4 N/A

BEVT [661] Swin - B IN-1K+DALLE ✗ 32 282×4×3 88 80.6 N/A

MaskFeat↑352 [687] MViT - L Kinetics-600 ✗ 40 3790×4×3 218 87.0 97.4

ip-CSN [629] ResNet152 no external data ✗ 32 109×10×3 33 77.8 92.8

SlowFast [158] R101+NL no external data ✗ 16+64 234×10×3 60 79.8 93.9

MViTv1 [151] MViTv1 - B no external data ✗ 32 170×5×1 37 80.2 94.4

MaskFeat [687] MViT - L no external data ✗ 16 377×10×1 218 84.3 96.3

VideoMAE [622] ViT - S no external data ✗ 16 57×5×3 22 79.0 93.8

VideoMAE [622] ViT - B no external data ✗ 16 180×5×3 87 81.5 95.1

VideoMAE [622] ViT - L no external data ✗ 16 597×5×3 305 85.2 96.8

VideoMAE [622] ViT - H no external data ✗ 16 1192×5×3 633 86.6 97.1

VideoMAE↑320 [622] ViT - L no external data ✗ 32 3958×4×3 305 86.1 97.3

VideoMAE↑320 [622] ViT - H no external data ✗ 32 7397×4×3 633 87.4 97.6
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Limitations and Future Work

Observed constraints

• Masking ratio sensitivity. There is a narrow sweet spot for tube masking: very high ratios

are necessary to suppress temporal shortcuts, but pushing beyond ≈ 95% removes too much

context and harms learning (see Fig. 24.47)..

• Quadratic attention cost. The encoder’s joint space–time self-attention still scales as O(L2
vis)

in the number of visible tokens. Although high masking keeps Lvis small, increasing clip

length, spatial resolution, or lowering the mask ratio raises compute and memory nonlinearly..

• Domain shift and data alignment. Representations benefit from in-domain pre-training.

Transferring from an appearance-centric source (e.g., K400) to a motion-centric target (e.g.,

SSV2) is weaker than in-domain pre-train at equal budget, underscoring that data quality and

match can matter more than raw volume (see Fig. 24.48)..

• Pixel-space targets bias toward appearance. Minimizing MSE on normalized pixels is

simple and effective, but supervision is dominated by appearance reconstruction; motion cues

are learned implicitly and may be underweighted for tasks that rely on long-range dynamics.

Promising directions

• Adaptive or content-aware masking. Learn masks that allocate more visibility to motion-

salient or semantically rich regions while more aggressively masking redundant background,

keeping encoder cost similar but increasing task informativeness..

• Richer targets and multi-task pretext signals. Augment pixel reconstruction with auxiliary

targets that emphasize dynamics (e.g., low-frequency components, flow-like proxies, or teacher

features), to better balance appearance and motion without labels.

• More scalable attention. Combine VideoMAE with factorized, windowed, or linear-time

attention, or with token pruning/merging, to extend temporal horizon and spatial resolution at

similar compute.

• Ratio curricula and schedule tuning. Start from moderate ratios to stabilize optimization,

then anneal toward 90–95% as representations mature, preserving difficulty while avoiding

early under-conditioning.

• Stronger data curation for transfer. Favor pre-training sets that better match the motion

statistics of the target task, or mix sources to cover both appearance- and motion-centric

regimes to improve cross-domain robustness.

Summary

VideoMAE shows that simple ingredients—tube masking at very high ratios plus an asymmetric ViT

encoder–decoder trained on masked-pixel reconstruction—yield data-efficient and transferable video

features. The main practical caveats are the sensitivity of ultra-high masking, residual quadratic

attention cost in the encoder, and dependence on data domain. Addressing these with adaptive

masking, richer supervisory signals, and scalable attention is a clear path for future work [622].
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Enrichment 24.6.2: VideoMAEv2: Dual Masking at Scale

Scope and positioning

VideoMAEv2 [664] extends VideoMAE [622] by addressing the main bottleneck in large-scale video

masked autoencoding: the decoder. In VideoMAE, the encoder is efficient because it only processes

visible tokens, but the decoder must still handle a very long sequence that includes placeholders for

all masked positions. At ViT-H/g scale and long clips, this dominates memory and FLOPs.

The key innovation is dual masking: besides encoder tube masking, the decoder is also masked

so it reconstructs only a subset of cubes. The loss is computed only on cubes that were invisible

to the encoder, preserving the MAE principle while cutting decoder sequence length. This enables

scaling up to ViT-g on million-scale video data.

Motivation

Why mask the decoder too

• Decoder becomes the bottleneck at scale. Even though the encoder only processes ≈
(1−ρe)N tokens, the decoder in VideoMAE still receives ≈ N positions (including mask

tokens). At large model and clip sizes, this dominates compute and memory.

• Redundant supervision. Videos contain strong spatial–temporal redundancy. Supervising a

carefully selected subset of masked cubes is enough to learn strong representations.

• Preventing leakage. MAE’s principle requires loss only on encoder-invisible tokens. Dual

masking preserves this by restricting supervision to E ∩D.

Figure 24.49: VideoMAE with dual masking. To improve the overall efficiency of computation

and memory in video masked autoencoding, the authors mask the decoder as well and devise the

dual masking strategy. Like the encoder, the method applies a masking map to the decoder and

reconstructs only a subset of pixel cubes selected by running cell masking. The final reconstruction

loss is computed only for the invisible tokens dropped by the encoder.
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Method

Preliminaries and notation

A temporally subsampled clip I ∈ R
T×H×W×3 is divided into spatiotemporal cubes of size k×P×P

(e.g., 2×16×16). Each cube is linearly embedded into R
D, yielding

N = T
k
· H

P
· W

P

tokens. An encoder tube mask Me with ratio ρe ∈ [0.9,0.95] is sampled on the spatial grid and

broadcast over time. Let V denote visible positions and E the encoder-masked set. The encoder

processes only visible tokens:

Z = Φenc({Ti}i∈V ). (24.14)

Dual masking: decoder-side selection

A decoder mask Md with ratio ρd selects which cubes to reconstruct. The default is running-cell

masking, which ensures spatiotemporal coverage without degenerate patterns (e.g., whole frames).

Let D be decoder-visible positions. The decoder input is:

U = [Z∪{Mi}i∈D], Î = Φdec(U). (24.15)

Loss on encoder-invisible & decoder-visible cubes

Reconstruction loss is applied only to tokens that were invisible to the encoder but selected for

reconstruction by the decoder:

LDM =
1

|E ∩D| ∑
i∈E∩D

∥Ii− Îi∥2
2, (24.16)

where E is the set of encoder-masked positions and D the set of decoder-visible positions. The loss

is restricted to E ∩D to avoid information leakage.

Running-cell masking for decoder supervision

Goal. Make the decoder cheap but informative: at each iteration it reconstructs only a small,

contiguous 3D block of tokens (a cell) rather than every masked token.

Setup (single knob = cell size). After cubeization the token grid has shape (Nt ,Nh,Nw) =
(

T
k
, H

P
, W

P

)

with indices (t ′,x,y). Choose a cell size (Ct ,Ch,Cw). The decoder keep-rate (fraction of tokens it

will process in a step) is simply the cell-to-grid volume ratio:

1−ρd ≈ |Ds|
N

=
Ct ChCw

Nt Nh Nw

, N = NtNhNw.

Example. If (Nt ,Nh,Nw) = (8,14,14) then a cell (4,7,7) yields 196/1568 ≈ 12.5% keep-rate; to

target ≈ 50% use a larger cell, e.g., (6,12,12) giving 864/1568≈ 55%.
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Selection rule (what the decoder sees). At training step s, pick a cell origin (t0,x0,y0) and define

the decoder-visible set

Ds =
{
(t ′,x,y) : t0 ≤ t ′ < t0+Ct , x0 ≤ x < x0+Ch, y0 ≤ y < y0+Cw

}
.

Placement. Random (default): sample (t0,x0,y0) uniformly—each step hits a different region with

high probability. Strided (alt.): move with strides (St ,Sh,Sw) and wrap for deterministic coverage.

What happens next (mechanics). The decoder input consists of (i) encoder features from the few

visible tokens and (ii) learned mask tokens only at indices in Ds. The decoder predicts pixels only

for Ds, and the loss is computed strictly on the intersection with the encoder-masked set:

L =
1

|E ∩Ds| ∑
i∈E∩Ds

∥Ii− Îi∥2
2,

so tokens seen by the encoder (V ) never contribute to the loss even if they lie in Ds.

Why this design works.

• Coherent supervision. A contiguous 3D cell provides local space–time context, which is a

stronger signal than isolated random tokens.

• Even coverage over training. Random (or strided) placement prevents target clustering and

ensures every region is eventually supervised.

• Predictable efficiency. Decoder cost scales with |Ds| (i.e., with 1−ρd), giving a simple,

explicit trade-off via (Ct ,Ch,Cw).
• Leakage-free objective. Restricting the loss to E ∩Ds preserves the MAE principle and

blocks copying from encoder-visible tokens.
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Algorithmic flow (pseudo code)

1 # VideoMAEv2 pre-training step (schematic)

2 # I: clip [T,H,W,3]; rho_e: encoder mask ratio; rho_d: decoder mask ratio

3 # Phi_emb: cube embedding; Enc: ViT encoder; Dec: lightweight ViT decoder

4

5 def step(I, rho_e=0.9, rho_d=0.5):

6 X = Phi_emb(cubeify(I)) # tokens T_1..T_N

7 Ve, Ee = tube_mask_indices(N=X.shape[0], ratio=rho_e) # visible / masked

for encoder↪→

8 Z = Enc(X[Ve]) # encode only visible tokens

9 D = running_cell_mask_indices(N=X.shape[0], ratio=rho_d) # decoder-kept

positions↪→

10 masked_tokens = learnable_mask_tokens(indexes=D)

11 U = concat(Z, masked_tokens) # decoder sequence

12 I_hat = Dec(U) # predictions at positions in D

13 idx = intersect(Ee, D) # loss only on encoder-invisible &

decoder-visible↪→

14 return mse(I_hat[idx], targets(I)[idx]) / len(idx)

Architecture and Implementation Details

Backbones and decoder

• Encoders. ViT-B/L/H and the billion-parameter ViT-g are used as encoders with joint space–

time attention.

• Decoder. A lightweight ViT (e.g., 4 blocks) with narrower width reconstructs pixel targets

from U ; masking the decoder reduces its token length to (1−ρd)N.

Masking specifics

• Encoder masking (ρe). High-ratio tube masking as in VideoMAE (90–95%).

• Decoder masking (ρd). Running cell masking with default ρd =0.5 unless otherwise stated;

alternatives (frame masking, random masking) are evaluated in ablations.

Data and schedules

• Pre-training corpora.

– UnlabeledHybrid (UH, ∼1.35M clips): mixed, de-duplicated web video sources used

without labels for self-supervised pre-training.

– LabeledHybrid (LH, K710-aligned): same mixture but with labels for optional progres-

sive post-pre-training before downstream fine-tuning.

– IG-uncurated: ∼1M Instagram videos without labels (used in MAE-ST baselines for

scale comparison).

• Downstream datasets (names→ shorthand).

– Kinetics-400→ K400: ∼240k YouTube clips, 400 actions; appearance-centric.

– Kinetics-600→ K600: ∼480–500k clips, 600 actions (expanded Kinetics).

– Kinetics-700→ K700: ∼650k clips, 700 actions.

– Kinetics-710→ K710: curated 710-class labeled mix used for progressive post-pre-train

in V2.

– Something-Something V2→ SSv2: ∼169k clips of object-centric interactions; motion-

centric.

– Something-Something V1→ SSv1: earlier SSv2 release used in some SOTA tables.
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– AVA v2.2→ AVA: spatio-temporal action detection (1s annotations) on movie clips;

report mAP.

– AVA-Kinetics→AVA-K: long-form detection benchmark combining AVA with Kinetics

for training/testing.

– THUMOS14: temporal action detection on untrimmed videos; report mAP at multiple

IoU thresholds.

– FineAction: temporal detection dataset of fine-grained actions; report mAP.

• Input & sampling.

– Clip shape: typically 16×2242; temporal stride τ ∈ {2,4} during pre-train.

– Fine-tune sampling: TSN-style sparse sampling on SSv2; dense/multi-view on Kinetics

(K400/K600/K700/K710).

– Inference views: SSv2: 2×3 (temporal × spatial); Kinetics: 5×3 (unless otherwise

noted in SOTA tables).

• Optimization schedules.

– Pre-train: 1200 epochs on 64 GPUs for UH/LH; SSv2 ablations commonly at 800

epochs.

– Masking: encoder tube masking ρe ∈ [0.90,0.95]; decoder running-cell masking with

keep-rate 1−ρd ≈ 0.25∼ 0.50 (per ablation).

– Targets & loss: per-cube pixel normalization; MSE on E ∩D (encoder-invisible &

decoder-visible).

Experiments and Ablation

Decoder masking strategies

Table 24.15: Ablation study on decoder masking strategies (ViT-B, SSv2, 800 epochs). “None” is

encoder-only masking (original VideoMAE). The default VideoMAEv2 setting is shaded.

Decoder Masking ρd Top-1 FLOPs

None 0% 70.28 35.48G

Frame 50% 69.76 25.87G

Random 50% 64.87 25.87G

Running cell1 50% 66.74 25.87G

Running cell2 25% 70.22 31.63G

Running cell2 50% 70.15 25.87G

Running cell2 75% 70.01 21.06G

1Loss over all decoder outputs. 2Loss over decoder outputs invisible to the encoder.

Efficiency of dual masking

Table 24.16: Dual masking vs. encoder-only masking. Computational cost, memory, and runtime

(1200 epochs on 64 GPUs).

Masking Backbone Pre-training dataset FLOPs Mems Time Speedup Top-1

Encoder masking ViT-B Sth-Sth V2 35.48G 631M 28.4h - 70.28

Dual masking ViT-B Sth-Sth V2 25.87G 328M 15.9h 1.79× 70.15

Encoder masking ViT-g UnlabeledHybrid 263.93G 1753M 356h† - -

Dual masking ViT-g UnlabeledHybrid 241.61G 1050M 241h 1.48× 77.00
†Estimated from 5-epoch runs.
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Kinetics-400

Table 24.17: Results on Kinetics-400. Multi-view (5×3) accuracy; single-view in brackets. Input

16×2242, stride τ =4.

Method Pre-train data Data size Epoch ViT-B ViT-L ViT-H / ViT-g

MAE-ST [157] Kinetics400 0.24M 1600 81.3 84.8 85.1

MAE-ST [157] IG-uncurated 1M 1600 - 84.4 -

VideoMAE V1 [622] Kinetics400 0.24M 1600 81.5 85.2 86.6

VideoMAE V2 UnlabeledHybrid 1.35M 1200 81.5 (77.0) 85.4 (81.3) 86.9 / 87.2 (83.2 / 83.9)

Something-Something V2

Table 24.18: Results on Something-Something V2. Multi-view (2×3) accuracy; single-view in

brackets. Input 16×2242, stride τ =2.

Method Pre-train data Data size Epoch ViT-B ViT-L ViT-H / ViT-g

MAE-ST [157] Kinetics400 0.24M 1600 - 72.1 74.1

MAE-ST [157] Kinetics700 0.55M 1600 - 73.6 75.5

VideoMAE V1 [622] Sth-Sth V2 0.17M 2400 70.8 74.3 74.8

VideoMAE V2 UnlabeledHybrid 1.35M 1200 71.2 (69.5) 75.7 (74.0) 76.8 / 77.0 (75.5 / 75.7)

Progressive pre-training (K710)

Table 24.19: Study on progressive pre-training. Kinetics-400 fine-tuning with multi-view (5×3);

single-view in brackets.

Method ViT-H ViT-g

VideoMAE V2 (no K710) 86.9 (83.2) 87.2 (83.9)

VideoMAE V2 (+K710) 88.6 (85.0) 88.5 (85.6)

State of the art (selected benchmarks)

Table 24.20: (a) Kinetics 400 — Top-1/Top-5 accuracy, views, and TFLOPs.

Method Top 1 Top 5 Views TFLOPs

I3D NL [675] 77.7 93.3 10×3 10.77
TDN [663] 79.4 94.4 10×3 5.94
SlowFast R101–NL [158] 79.8 93.9 10×3 7.02
TimeSformer–L [42] 80.7 94.7 1×3 7.14

MTV–B (3202) [720] 82.4 95.2 4×3 11.16

Video Swin–L (3842) [384] 84.9 96.7 10×5 105.35
ViViT–L FE [16] 81.7 93.8 1×3 11.94

MViTv2–L (3122) [344] 86.1 97.0 40×3 42.42
MaskFeat [687] 87.0 97.4 4×3 45.48
MAE–ST [157] 86.8 97.2 4×3 25.05
VideoMAE [622] 86.6 97.1 5×3 17.88
VideoMAE V2–H [664] 88.6 97.9 5×3 17.88
VideoMAE V2–g [664] 88.5 98.1 5×3 38.16

VideoMAE V2–g (64×2662) [664] 90.0 98.4 2×3 160.30
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Table 24.21: (b) Kinetics 600 — Top-1/Top-5 accuracy, views, and TFLOPs.

Method Top 1 Top 5 Views TFLOPs

SlowFast R101–NL [158] 81.8 95.1 10×3 7.02
TimeSformer–L [42] 82.2 95.6 1×3 7.14

MTV–B (3202) [720] 84.0 96.2 4×3 11.16
ViViT–L FE [16] 82.9 94.6 1×3 11.94

MViTv2–L (3522) [344] 87.9 97.9 40×3 45.48
MaskFeat [687] 86.4 97.4 1×10 3.77
VideoMAE V2–H [664] 88.3 98.1 5×3 17.88
VideoMAE V2–g [664] 88.8 98.2 5×3 38.16

VideoMAE V2–g (64×2662) [664] 89.9 98.5 2×3 160.30

Table 24.22: (c) Something-Something V2 — Top-1/Top-5 accuracy.

Method Top 1 Top 5

SlowFast [158] 63.1 87.6
TEINet [347] 66.5 –
TEA [342] 65.1 89.9
TDN [663] 69.6 92.2
TimeSformer–L [42] 62.4 –
MFormer–HR [475] 68.1 91.2
ViViT–L FE [16] 65.9 89.9
Video Swin–B [384] 69.6 92.7
MViTv2–B [344] 72.1 93.4
MTV–B [720] 67.6 90.1
BEVT [661] 70.6 –
VIMPAC [598] 68.1 –
UniFormer [348] 71.2 92.8
MaskFeat [687] 75.0 95.0
MAE–ST [157] 75.5 95.0
VideoMAE [622] 75.4 95.2
VideoMAE V2–H [664] 76.8 95.8
VideoMAE V2–g [664] 77.0 95.9

Table 24.23: (d) Something-Something V1 — Top-1/Top-5 accuracy.

Method Top 1 Top 5

I3D [74] 41.6 72.2
NL I3D+GCN [674, 675] 46.1 76.8
TSM [354] 49.7 78.5
V4D [746] 50.4 –
TANet [387] 50.6 79.3
TEINet [347] 52.5 –
TEA [342] 51.9 80.3
CorrNet [657] 53.3 –
GSM 55.2 –
TDN [663] 56.8 84.1
UniFormer [348] 61.0 87.6
VideoMAE V2–H [664] 66.6 90.8
VideoMAE V2–g [664] 68.7 91.9
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Table 24.24: (e) AVA v2.2 — mAP with and without long feature.

Method Long Feature mAP

SlowFast [158] × 29.0
TubeR [787] ✓ 33.4
MaskFeat [687] × 38.8
MAE–ST [157] × 39.0
VideoMAE [622] × 39.5
VideoMAE V2 [664] × 42.6

Table 24.25: (f) AVA–Kinetics — ensembled mAP.

Method Ensembled mAP

AIA++ [704] ✓ 29.0
MSF [701] ✓ 33.4
ACAR [465] ✓ 40.5
VideoMAE V2 [664] × 43.9

Table 24.26: (g) THUMOS14 — temporal action detection mAP.

Method Optical Flow mAP

RTD–Net [712] ✓ 43.6
DaoTAD [807] × 50.0
AFSD [357] ✓ 52.0
DCAN [755] ✓ 52.3
TadTR [383] ✓ 54.2
TALLFormer [761] × 59.2
BasicTAD [25] × 59.6
ActionFormer [760] ✓ 66.8
VideoMAE V2 [664] × 69.6

Table 24.27: (h) FineAction — temporal action detection mAP.

Method Optical Flow mAP

BMN [356] ✓ 9.25
G–TAD [712] ✓ 9.06
BasicTAD [25] × 12.2
ActionFormer [760] × 13.2
VideoMAE V2 [664] × 18.2

Limitations and Future Work

Observed constraints

• Pixel supervision bottleneck. Reconstruction remains anchored to low-level RGB fidelity.

While effective for generic features, it underemphasizes semantic abstraction and long-range

motion cues—exactly where large-scale video understanding needs stronger supervision.

• Decoder still tied to reconstruction. Even with dual masking, the decoder only learns to

inpaint pixels. This constrains learning to local texture statistics rather than global semantics.

• Scaling trade-offs. Very large encoders (ViT-H, ViT-g) show diminishing gains on recognition

benchmarks, suggesting that simply scaling model size without enriching the training signal

plateaus.
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• Domain gaps. Hybrid pretraining datasets balance appearance and motion imperfectly.

Representations trained purely on RGB inputs may not capture compositional or multimodal

cues needed in downstream tasks.

Future directions (path toward distillation and beyond)

• From pixels to features (MVD). A natural next step is to replace pixel-level regression with

feature-level targets, as in Masked Video Distillation [669]. Teacher encoders (e.g., image- or

video-pretrained transformers) provide richer supervisory signals on masked regions, injecting

semantics and motion awareness absent from raw RGB.

• Dynamic decoder supervision. Beyond fixed cells, learned policies for decoder token

selection or adaptive sparsification can focus computation on informative spatio-temporal

regions, preserving efficiency while scaling to longer clips.

• Multi-granular objectives. Combining reconstruction with motion-sensitive or perceptual

losses could better capture dynamics, addressing VideoMAEv2’s limitation to mostly static

appearance cues.

• Cross-modal grounding. Incorporating audio or text alignment, as explored in later video–language

pretraining work, may reduce ambiguity and enable open-vocabulary recognition and retrieval.

• Stress-testing benchmarks. Moving beyond short-clip classification toward long-form

reasoning, dense temporal localization, and open-vocabulary tasks will better expose the

strengths and weaknesses of masked video pretraining methods.
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Enrichment 24.6.3: MVD: Masked Video Distillation

Scope and positioning

Background. Masked Image Modeling (MIM) and Masked Video Modeling (MVM) are self-

supervised pretraining paradigms that hide a large subset of patches and train a model to reconstruct

the hidden content. For videos, VideoMAE [622] applies very high tube masking (typically 90–95%)

and asks a ViT to reconstruct raw pixels in the masked spatio-temporal cubes using a lightweight

decoder, yielding strong baselines but still supervising at the pixel level. MVD [669] rethinks the

reconstruction target: instead of pixels, the student predicts high-level features produced by frozen,

pretrained teacher encoders. Two complementary teachers are used: an image teacher (MIM-

pretrained on images; strong spatial semantics) and a video teacher (MVM-pretrained on videos;

motion-aware spatio-temporal semantics). The student video encoder sees only the visible tokens of

a tube-masked clip and, through shallow decoders with Smooth-ℓ1 regression, learns to reconstruct

the teacher’s features at the masked positions. Empirically, this masked feature modeling yields

consistent gains over pixel reconstruction (e.g., VideoMAE) on recognition and spatio-temporal

detection benchmarks [669].

Figure 24.50: Overview of MVD [669]. A student video encoder observes only visible tokens from

a tube-masked clip and is trained to reconstruct masked teacher features with two shallow decoders:

one targets an image teacher’s spatial features and the other a video teacher’s spatio-temporal

features.

Motivation

Limits of pixel-level MVM (VideoMAE).

Pixel reconstruction under MVM is affected by video temporal redundancy: adjacent frames are

highly similar, so a model can fill in masked pixels by copying or interpolating from nearby context

without forming strong high-level abstractions. Even with VideoMAE’s very high masking ratio and

tube masking, the supervision remains low level and noisy, which can encourage shortcut solutions

and yield features that transfer suboptimally on action-centric tasks [622, 669].
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From pixels to features: cleaner targets and inductive bias.

MVD [669] replaces RGB regression with feature regression against targets from powerful self-

supervised teachers. High-level targets suppress nuisance variation (e.g., lighting, small pixel noise)

and encode semantics that downstream tasks care about, providing a cleaner learning signal and a

better inductive bias than raw pixels. Practically, the student predicts masked-patch features produced

by frozen teachers while only encoding the visible tokens, preserving the compute advantages of

masked modeling.

Why two teachers: complementary spatial and temporal cues.

Image teachers (MIM-pretrained) specialize in spatial appearance and yield features that are highly

similar across neighboring frames; video teachers (MVM-pretrained) encode temporal dynamics

and produce frame features whose similarity decays with temporal distance. MVD leverages

this complementarity through spatial–temporal co-teaching: two independent decoders regress to

the image-teacher and video-teacher targets, respectively, so the shared student is simultaneously

pressured to preserve strong spatial semantics and temporal sensitivity. This design helps a single

student excel on both appearance-biased datasets (e.g., Kinetics-400) and motion-centric datasets

(e.g., Something-Something V2), explaining the observed gains over VideoMAE across settings

[669].

Figure 24.51: Teacher feature similarity across frames (cosine). Image-teacher features are highly

similar across time, indicating spatial dominance; video-teacher features decorrelate with temporal

distance, indicating motion sensitivity [669].
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Method

Preliminaries: masked feature modeling

Let Xvid ∈RT×H×W×3 be a video, partitioned into non-overlapping spatio-temporal patches (tubelets).

After linear patch embedding, a subset M of tokens is masked (tube masking) and dropped from the

encoder input; the visible tokens Xvis are encoded by a student transformer f . A shallow transformer

decoder g receives concat( f (Xvis),Tm), where Tm are learnable mask tokens, and predicts outputs Y

for all token positions:

Y = g
(

concat( f (Xvis),Tm)
)

(24.17)

Given a target feature generator h that maps each masked patch X (p) to a target feature h(X (p)), the

masked feature modeling objective is

Lmfm(h) =
1

|M | ∑
p∈M

D
(

Y (p), h
(

X (p)
))

(24.18)

where D is a distance measure; MVD adopts Smooth-ℓ1 (Huber) loss [669].

Teacher targets

MVD instantiates h as frozen self-supervised teacher encoders:

• Spatial (image) targets. An image-teacher encoder himg pretrained by masked image model-

ing (e.g., MAE on IN1K) encodes each frame independently to provide appearance-focused

features.

• Spatio-temporal (video) targets. A video-teacher encoder hvid pretrained by masked video

modeling (e.g., VideoMAE on K400) encodes clips to provide motion-aware features.

A 2×16×16 3D patch for the video student corresponds to two 16×16 2D patches for the image

teacher; MVD predicts the front slice’s spatial target to reduce the prediction head size [669].

Spatial–temporal co-teaching

To fuse complementary supervision, MVD attaches two decoders gimg and gvid (same architecture,

independent parameters) to the shared student features f (Xvis):

LMVD = λ1 Lmfm(himg) + λ2 Lmfm(hvid) (24.19)

with scalars λ1,λ2 balancing the two teachers. This objective compels the student to reconstruct

masked tokens so that both image-like and video-like semantics are preserved, strengthening spatial

discrimination and temporal sensitivity simultaneously [669].
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Algorithmic view

The official pseudocode (PyTorch style) is reproduced verbatim (line breaks adapted) in 24.6.3.

Notation: f student, gimg/gvid decoders, Tm mask tokens, himg/hvid frozen teachers, m binary mask.

1 # Algorithm 1 Pseudocode of MVD in PyTorch style (from \cite{wang2023_mvd})

2 # f: student encoder

3 # g_img: decoder for reconstructing spatial features

4 # g_vid: decoder for reconstructing spatial-temporal features

5 # t_m: learnable mask tokens

6 # h_img: image teacher model

7 # h_vid: video teacher model

8 for x, m in loader: # x: video data, m: mask

9 x_pe = patch_emb(x) # patch embedding of input

10 x_vis = mask_select(x_pe, 1 - m) # masking tokens

11 q_vis = f(x_vis) # visible local patch features

12 # reconstruction of target features

13 p_img = g_img(concat(q_vis, t_m))

14 p_vid = g_vid(concat(q_vis, t_m))

15 # compute target features with teacher models

16 k_img = h_img(x) # target spatial features

17 k_vid = h_vid(x) # target spatial-temporal features

18 # compute reconstruction loss

19 loss_img = smooth_L1_loss(p_img * m, k_img * m)

20 loss_vid = smooth_L1_loss(p_vid * m, k_vid * m)

21 loss = lambda_1 * loss_img + lambda_2 * loss_vid

22 loss.backward()

23 optimizer.step() # optimizer update

Intuition and failure-mode mitigation

• Richer supervision than pixels. High-level targets abstract away nuisance low-level variabil-

ity, biasing the student toward semantics that transfer better across datasets and tasks.

• Masking as structured context removal. Tube masking removes entire spatio-temporal

tubes, forcing the student to hallucinate both appearance and motion content consistent with

teacher features rather than raw RGB.

• Decoupled decoders avoid interference. Separate heads let each teacher specialize its

prediction space without compromising the other, while gradients meet only in the shared

student.

Architecture and implementation details

Backbone and tokenization

A vanilla ViT encoder (ViT-S/B/L/H) serves as f . 3D patch embedding with size 2× 16× 16

produces T/2×H/16×W/16 tokens. During pretraining, a high masking ratio (e.g., 90%) with

tube masking is applied; only visible tokens are encoded [622, 669].

Attention

Joint spatio-temporal self-attention is applied within each encoder block over the visible token

sequence. Learned mask tokens Tm are concatenated with f (Xvis) before each decoder.
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Decoders and objectives

Two shallow transformer decoders (a few layers) plus linear heads predict teacher features at masked

positions. Smooth-ℓ1 regression is used for both branches; the loss is computed only on masked

tokens via elementwise masking, as in (24.18)–(24.19) [669].

Pretraining schedules

Teachers: MAE image-teacher on IN1K (e.g., 1600 epochs), VideoMAE video-teacher on K400

(e.g., 1600 epochs). Student: distilled on K400 for 400 epochs by default (800 in some settings),

AdamW optimizer, clip length T=16 for pretrain and finetune [669].

Experiments and ablation

Main results and efficiency

On SSv2, MVD dominates the accuracy–compute frontier relative to supervised and self-supervised

peers (see below figure). Relative to VideoMAE [622], MVD delivers consistent gains across model

scales with substantially fewer pretraining epochs [669].

Figure 24.52: SSv2 accuracy versus GFLOPs per video for supervised and self-supervised models.

MVD (red stars) attains higher accuracy at comparable or lower cost across scales [669].

Gains over VideoMAE across scales

Table 24.28: MVD vs. VideoMAE across student/teacher scales on K400 and SSv2 [622, 669].

Student Teacher K400 (VideoMAE) K400 (MVD) SSv2 (VideoMAE) SSv2 (MVD)

ViT-S ViT-B 79.0 80.6 66.4 70.7

ViT-S ViT-L 79.0 81.0 66.4 70.9

ViT-B ViT-B 81.5 82.7 69.7 72.5

ViT-B ViT-L 81.5 83.4 69.7 73.7

ViT-L ViT-L 85.2 86.0 74.0 76.1
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Co-teaching vs single teacher

Table 24.29: Spatial–temporal co-teaching outperforms single-teacher distillation on K400 and SSv2

[669].

Student Image Video K400 top-1 (%) SSv2 top-1 (%)

ViT-S ✓ ✗ 80.4 69.4

ViT-S ✗ ✓ 80.1 70.0

ViT-S ✓ ✓ 80.6 70.7

ViT-B ✓ ✗ 82.3 71.4

ViT-B ✗ ✓ 82.1 71.8

ViT-B ✓ ✓ 82.7 72.5

Gains over VideoMAE across scales

Table 24.30: MVD vs. VideoMAE across student/teacher scales on K400 and SSv2 [622, 669].

Student Teacher K400 (VideoMAE) K400 (MVD) SSv2 (VideoMAE) SSv2 (MVD)

ViT-S ViT-B 79.0 80.6 66.4 70.7

ViT-S ViT-L 79.0 81.0 66.4 70.9

ViT-B ViT-B 81.5 82.7 69.7 72.5

ViT-B ViT-L 81.5 83.4 69.7 73.7

ViT-L ViT-L 85.2 86.0 74.0 76.1

End-to-end comparisons

Selections from [669] are reproduced below for completeness. Methods cited include supervised

baselines and self-supervised contemporaries such as ST-MAE [157], OmniMAE [174], BEVT

[661], MaskFeat [687], MViTv2 [344], VideoSwin [384], TimeSformer [42], ViViT [16], SlowFast

[158], NL I3D [676], ip-CSN [629], X3D [153], MViTv1 [151], UniFormer [348], and Mformer

[476]. All numbers and settings match the paper’s tables.
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Table 24.31: Kinetics-400 comparisons (single-view cost × #views). Bold rows indicate MVD

[669].

Method Extra data top-1 top-5 GFLOPs / Param

NL I3D R101 [676] – 77.3 93.3 359×30 / 62

ip-CSN-152 [629] – 77.8 92.8 109×30 / 33

SlowFast NL [158] – 79.8 93.9 234×30 / 60

X3D-XL [153] – 79.1 93.9 48×30 / 11

MViTv1-B [151] – 80.2 94.4 170×5 / 37

VideoSwin-B [384] IN-1K 80.6 94.6 282×12 / 88

Uniformer-B [348] IN-1K 83.0 95.4 259×12 / 50

TimeSformer [42] IN-21K 80.7 94.7 2380×3 / 121

Mformer-B [476] IN-21K 79.7 94.2 370×30 / 109

Mformer-L [476] IN-21K 80.2 94.8 1185×30 / 382

ViViT-L FE [16] IN-21K 81.7 93.8 3980×3 / N/A

VideoSwin-L [384] IN-21K 83.1 95.9 604×12 / 197

VIMPAC ViT-L [598] HowTo100M 77.4 N/A N/A×30 / 307

BEVT Swin-B [661] IN-1K 81.1 N/A 282×12 / 88

MaskFeat MViT-S [687] – 82.2 95.1 71×10 / 36

VideoMAE ViT-S [622] – 79.0 93.8 57×15 / 22

VideoMAE ViT-B [622] – 81.5 95.1 180×15 / 87

VideoMAE ViT-L [622] – 85.2 96.8 597×15 / 305

VideoMAE ViT-H [622] – 86.6 97.1 1192×15 / 633

ST-MAE ViT-B [157] – 81.3 94.9 180×21 / 87

ST-MAE ViT-L [157] – 84.8 96.2 598×21 / 304

ST-MAE ViT-H [157] – 85.1 96.6 1193×21 / 632

OmniMAE ViT-B [174] IN-1K 80.8 N/A 180×15 / 87

OmniMAE ViT-L [174] IN-1K+SSv2 84.0 N/A 597×15 / 305

OmniMAE ViT-H [174] IN-1K+SSv2 84.8 N/A 1192×15 / 633

MVD-S (Teacher-B) [669] IN-1K 80.6 94.7 57×15 / 22

MVD-S (Teacher-L) [669] IN-1K 81.0 94.8 57×15 / 22

MVD-B (Teacher-B) [669] IN-1K 82.7 95.4 180×15 / 87

MVD-B (Teacher-L) [669] IN-1K 83.4 95.8 180×15 / 87

MVD-L (Teacher-L) [669] IN-1K 86.0 96.9 597×15 / 305

MVD-L (Teacher-L)† [669] IN-1K 86.4 97.0 597×15 / 305

MVD-H (Teacher-H)† [669] IN-1K 87.2 97.4 1192×15 / 633
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Table 24.32: Something-Something V2 comparisons. † indicates 800-epoch distillation [669].

Method Extra data top-1 GFLOPs Param

supervised
SlowFast R101 [158] K400 63.1 106×3 53
TSM-RGB R50 [354] IN-1K 63.3 62×6 24
TAM R50 [371] IN-1K 66.0 99×6 51
TDN R101 [663] IN-1K 69.6 198×3 88
MViTv1-B [151] – 67.7 455×3 37
MViTv2-B [344] K400 70.5 225×3 51
UniFormer-B [348] K400 71.2 259×3 50
TimeSformer-HR [42] IN-21K 62.5 1703×3 121
ViViT-L FE [16] IN-21K+K400 65.9 995×12 N/A
Mformer-B [476] IN-21K+K400 66.5 370×3 109
Mformer-L [476] IN-21K+K400 68.1 1185×3 382
VideoSwin-B [384] IN-21K+K400 69.6 321×3 88
MViTv2-L [344] IN-21K+K400 73.3 2828×3 213

self-supervised
VIMPAC ViT-L [598] HowTo100M 68.1 N/A×30 307
BEVT Swin-B [661] IN-1K+K400 71.4 321×3 88
MaskFeat MViT-L [687] K400 74.4 2828×3 218
VideoMAE ViT-S [622] K400 66.4 57×6 22
VideoMAE ViT-S [622] – 66.8 57×6 22
VideoMAE ViT-B [622] K400 69.7 180×6 87
VideoMAE ViT-B [622] – 70.8 180×6 87
VideoMAE ViT-L [622] K400 74.0 597×6 305
VideoMAE ViT-L [622] – 74.3 597×6 305
ST-MAE ViT-L [157] K400 72.1 598×3 304
ST-MAE ViT-H [157] K400 74.1 1193×3 632
OmniMAE ViT-B [174] IN-1K 69.5 180×6 87
OmniMAE ViT-B [174] IN-1K+K400 69.0 180×6 87
OmniMAE ViT-L [174] IN-1K 74.2 597×6 305
OmniMAE ViT-H [174] IN-1K 75.3 1192×6 632

MVD-S (Teacher-B) [669] IN-1K+K400 70.7 57×6 22
MVD-S (Teacher-L) [669] IN-1K+K400 70.9 57×6 22
MVD-B (Teacher-B) [669] IN-1K+K400 72.5 180×6 87
MVD-B (Teacher-L) [669] IN-1K+K400 73.7 180×6 87
MVD-L (Teacher-L) [669] IN-1K+K400 76.1 597×6 305

MVD-L (Teacher-L)† [669] IN-1K+K400 76.7 597×6 305

MVD-H (Teacher-H)† [669] IN-1K+K400 77.3 1192×6 633



2008 Chapter 24. Lecture 24: Videos (Video Understanding)

Table 24.33: AVA v2.2 action detection (mAP) comparisons with and without intermediate labeled

finetuning on the pretraining dataset [669]. “Extra labels” denotes whether the pretrained model is

intermediately finetuned on the pretraining video dataset with labels before transfer to AVA.

Method Extra data Extra labels mAP GFLOPs

SlowFast R101 [158] K400 ✓ 23.8 138

MViTv2-B [344] K400 ✓ 29.0 225

MViTv2-L [344] IN-21K+K700 ✓ 34.4 2828

MaskFeat MViT-L [687] K400 ✓ 37.5 2828

VideoMAE ViT-B [622] K400 ✗ 26.7 180

VideoMAE ViT-B [622] K400 ✓ 31.8 180

VideoMAE ViT-L [622] K400 ✗ 34.3 597

VideoMAE ViT-L [622] K400 ✓ 37.0 597

VideoMAE ViT-H [622] K400 ✗ 36.5 1192

VideoMAE ViT-H [622] K400 ✓ 39.5 1192

ST-MAE ViT-L [157] K400 ✓ 35.7 598

ST-MAE ViT-H [157] K400 ✓ 36.2 1193

MVD-B (Teacher-B) [669] IN-1K+K400 ✗ 29.3 180

MVD-B (Teacher-B) [669] IN-1K+K400 ✓ 33.6 180

MVD-B (Teacher-L) [669] IN-1K+K400 ✗ 31.1 180

MVD-B (Teacher-L) [669] IN-1K+K400 ✓ 34.2 180

MVD-L (Teacher-L) [669] IN-1K+K400 ✗ 37.7 597

MVD-L (Teacher-L) [669] IN-1K+K400 ✓ 38.7 597

MVD-H (Teacher-H) [669] IN-1K+K400 ✗ 40.1 1192

MVD-H (Teacher-H) [669] IN-1K+K400 ✓ 41.1 1192
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Transfer: UCF101 and HMDB51

Table 24.34: Comparison with previous SOTA on UCF101 and HMDB51 (averaged over standard

splits) [91, 201, 466, 492, 515, 598, 622, 669].

Method Extra data Param UCF101 HMDB51

VideoMoCo R2+1D [466] K400 15 78.7 49.2

MemDPC R2D3D [201] K400 32 86.1 54.5

Vi2CLR S3D [492] K400 9 89.1 55.7

CORP Slow-R50 [91] K400 32 93.5 68.0

CVRL Slow-R50 [492] K400 32 92.9 67.9

CVRL Slow-R152 [492] K600 328 94.4 70.6

Broaden Your Views (BYOL) Slow-R50 [515] K400 32 94.2 72.1

VIMPAC ViT-L [598] HowTo100M 307 92.7 65.9

VideoMAE ViT-B [622] K400 87 96.1 73.3

MVD-B (Teacher-B) [669] IN-1K+K400 87 97.0 76.4

MVD-B (Teacher-L) [669] IN-1K+K400 87 97.5 79.7

Training time

Table 24.35: ViT-B training time on 32×V100 GPUs (teacher cost included for MVD) [669].

Method Epochs Time (h) K400 top-1

VideoMAE [622] 800 107 81.0

VideoMAE [622] 1600 214 81.5

MVD [669] 400 57 81.9

Ablations: pixels during distillation

Table 24.36: Effect of regressing pixels during distillation on SSv2 (student ViT-S, teacher ViT-B,

300 epochs) [669].

Teachers Reconstruct pixels SSv2 top-1

image ✗ 68.7

image ✓ 67.9

image+video ✗ 70.1

image+video ✓ 69.0
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Bootstrapped teachers and IN1K-initialized students

Table 24.37: Comparison with bootstrapped teachers and students initialized with IN1K-pretrained

models (ViT-B) [669].

Teacher IN1K init Epoch K400 top-1 SSv2 top-1

momentum encoder ✗ 800 80.5 70.4

momentum encoder ✓ 800 81.8 70.8

fixed image model ✗ 400 82.3 71.4

fixed video model ✗ 400 82.1 71.8

fixed co-teaching ✗ 400 82.7 72.5

Ablations: masked reconstruction vs. per-token feature distillation

Table 24.38: Masked reconstruction vs. per-token feature distillation (teacher ViT-B) on K400 and

SSv2 [669].

Distillation method K400 top-1 SSv2 top-1

per-token distillation 80.9 70.5

masked reconstruction 82.1 71.8

Limitations and future directions

Observed constraints

• Teacher dependence. Student quality is bounded by the expressiveness and domain of teacher

features; suboptimal teachers can bottleneck learning.

• Feature-space rigidity. Regressing fixed targets may underexplore alternative, task-beneficial

invariances compared to generative pixel objectives or contrastive formulations.

• Temporal granularity. The choice to predict a single 2D slice for the image teacher simplifies

heads but may limit supervision on fast temporal changes.

Future work

• Adaptive target selection. Curriculum over teacher layers, token-wise target picking, or

uncertainty-aware weighting to emphasize informative regions and times.

• Richer multi-teacher fusion. Beyond two teachers, integrate audio, text, or motion-specific

teachers with learned routing across decoders.

Summary

MVD reframes masked video pretraining as feature-level reconstruction under co-teaching from

frozen image and video teachers. The resulting student inherits complementary spatial and temporal

priors, translating into strong accuracy–efficiency trade-offs and state-of-the-art results across K400,

SSv2, AVA, and small-dataset transfers [622, 669].
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Enrichment 24.7: Instruction-Tuned VLLM Precursors

While vision–language alignment provided shared embeddings, these models were still far from the

conversational capabilities of LLMs. Instruction tuning closed this gap: by fine-tuning aligned vision–

language models on multimodal instruction–response datasets, systems like InstructBLIP [114] and

LLaVA [368] demonstrated how visual input could be used in natural dialogue. This transition

was essential for video-LLMs, which inherit the same recipe of pairing pretrained encoders with

instruction-tuned LLMs.

Enrichment 24.7.1: InstructBLIP: Instruction-Tuned Multimodal Alignment

Motivation and Positioning

InstructBLIP [114] takes the frozen-experts recipe of BLIP-2 [333] (strong vision encoder + strong

LLM bridged by a light Q-Former) and instruction-tunes it so the system can follow natural, task-

agnostic prompts. Unlike multi-task pretraining that memorizes dataset-specific formats, instruction

tuning teaches the model how to read and follow instructions, enabling zero-shot generalization to

unseen tasks and more natural multi-turn visual dialogue.

High-Level Idea

Starting from a BLIP-2 backbone (frozen image encoder, frozen LLM, trainable Q-Former + pro-

jection), InstructBLIP reformats diverse vision–language datasets as instruction→ response pairs

and optimizes a standard language-modeling loss on the LLM. Two design choices are key: (i)

instruction-aware Q-Former features that condition visual extraction on the incoming instruction,

and (ii) a balanced sampling strategy across tasks/datasets to avoid overfitting to any single task

template.

Figure 24.53: InstructBLIP architecture [114]. A frozen image encoder (e.g., ViT-g/14 from

CLIP/EVA-CLIP) feeds patch embeddings to a trainable Q-Former. The Q-Former uses learnable

queries that attend to the instruction tokens and the visual tokens to produce instruction-aware

visual features. A linear projection maps these features to the frozen LLM’s embedding space (e.g.,

FlanT5 or Vicuna), where they serve as soft prompts. Training uses a next-token LM objective over

instruction-formatted data; at inference the model follows arbitrary prompts in a conversational loop.

Source:[114].
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How It Works (Mechanism)

• Instruction-aware Q-Former (task-conditioned queries). Unlike BLIP-2’s task-agnostic

queries [333], InstructBLIP [114] fuses the instruction tokens into the Q-Former so that its

learnable queries become conditioned on user intent. Concretely, the frozen ViT produces patch

features, and the Q-Former receives both these patches and the instruction embeddings. Queries

self-attend, then cross-attend to patches while also attending to instructions. This lets them

extract instruction-relevant visual evidence (OCR for “read the sign”, spatial reasoning for

“which cup is left of the plate?”), instead of a single generic visual summary. This conditioning

reduces spurious correlations and disambiguates what to focus on when instructions change at

test time.

• Soft visual prompting into a frozen LLM. After Lq layers, the Q-Former outputs K query

vectors Q∈RK×d which are linearly projected to the LLM’s embedding size, Q̃ = QWp. These

visual prompt tokens are prepended to the instruction tokens and passed to a frozen LLM

(e.g., FlanT5, Vicuna). The LLM thus conditions generation on a compact, instruction-aligned

“briefing” while preserving its linguistic competence. Compared to BLIP-2, these tokens are

instruction-aware and better aligned with the decoding trajectory, improving grounding and

factuality.

• Data flow (end-to-end).

1. Image→ frozen ViT→ patch embeddings.

2. Instruction + learnable queries + patches→ Q-Former→ instruction-aware queries.

3. Projection Wp maps to LLM space, queries prepended to instruction tokens.

4. Frozen LLM autoregressively generates the response.

• Instruction-tuning objective. For each (instruction, image) 7→ response example, the

model minimizes next-token LM loss:

LLM =−∑
m

log pLLM(ym | y<m, Q̃(image, instruction), instruction),

updating only the Q-Former and projection layers; both ViT and LLM remain frozen.

Why Instruction Tuning Helps (Intuition)

BLIP and BLIP-2 already use LM loss, but their inputs are task-agnostic (generic queries + dataset-

formatted prompts). This means the model often learns dataset-specific mappings rather than a

general instruction-following procedure. InstructBLIP changes this in two ways:

1. Instruction-aware Q-Former. Instructions are fused with image tokens, so the Q-Former

extracts only the instruction-relevant visual evidence (e.g., text regions for OCR, spatial cues

for reasoning) instead of a fixed summary.

2. Instruction-formatted LM training. Every example is presented as natural instructions with

answers, not dataset templates. The LLM is therefore trained to parse arbitrary instructions

and ground them in vision.

The difference is subtle but critical: rather than memorizing dataset patterns, the model learns the

meta-skill of following instructions—leading to stronger generalization to unseen tasks and more

reliable multi-turn interaction.
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Figure 24.54: Qualitative behaviors of InstructBLIP (Vicuna variants) [114]. The model

follows open-form instructions: (i) rich descriptions that list attributes and composition; (ii) visual

commonsense reasoning (e.g., infer damage cause); (iii) abstract/hypothetical queries (metaphor vs.

literal); (iv) knowledge-grounded recognition (e.g., famous artworks); (v) practical steps and multi-

turn dialogue. These examples illustrate that instruction tuning teaches how to follow instructions

rather than memorizing dataset formats. Source:[114].
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Data & Formatting: From Multi-Task to Instruction-Tuning

• Task coverage. InstructBLIP unifies 26 datasets spanning captioning, VQA (general, OCR,

knowledge-grounded), visual reasoning (GQA), visual dialogue (VisDial), video QA (MSVD

or MSRVTT), safety (HatefulMemes), and more.

• Prompt templates. Each example is rendered as (Instruction: ..., optional Context:

..., Image: ... → Answer: ...). This normalizes heterogeneous supervision into a

single instruction-following interface that the LLM already excels at.

• Balanced sampling. A sampling scheme evens exposure across tasks and avoids dominance

by large sources (e.g., web captions), improving transfer to held-out tasks and robustness to

prompt phrasing.

Figure 24.55: Instruction-tuning sources [114]. InstructBLIP formats a broad mixture of vi-

sion–language datasets as instruction→ response. “Held-in” sets are used for tuning and evaluation;

“held-out” sets are reserved for zero-shot generalization. Diversity (OCR, knowledge, reasoning,

dialogue, video) is crucial for task transfer under natural prompts. Source:[114].

Table 24.39: Zero-shot results on held-out datasets using INSTRUCTBLIP [114]. VisDial: Visual

Dialog, HM: HatefulMemes, SciQA: ScienceQA (image-context split). For NoCaps/Flickr we report

CIDEr; for iVQA we report iVQA accuracy; for HM we report AUC; for VisDial we report MRR;

others are top-1 accuracy (%). Source:[114].

Method NoCaps Flickr30K GQA VSR IconQA TextVQA VisDial HM VizWiz SciQA IMG MSVD QA MSRVTT QA iVQA

Flamingo-3B [6] – 60.6 – – – 30.1 – 53.7 28.9 – 27.5 11.0 32.7

Flamingo-9B [6] – 61.5 – – – 31.8 – 57.0 28.8 – 30.2 13.7 35.2

Flamingo-80B [6] – 67.2 – – – 35.0 – 46.4 31.6 – 35.6 17.4 40.7

BLIP-2 (FlanT5XL) [333] 104.5 76.1 44.0 60.5 45.5 43.1 45.7 53.0 29.8 54.9 33.7 16.2 40.4

BLIP-2 (FlanT5XXL) [333] 98.4 73.7 44.6 68.2 45.4 44.1 46.9 52.0 29.4 64.5 34.4 17.4 45.8

BLIP-2 (Vicuna-7B) 107.5 74.9 38.6 50.0 39.7 40.1 44.9 50.6 25.3 53.8 18.3 9.2 27.5

BLIP-2 (Vicuna-13B) 103.9 71.6 41.0 50.9 40.6 42.5 45.1 53.7 19.6 61.0 20.3 10.3 23.5

InstructBLIP (FlanT5XL) 119.9 84.5 48.4 64.8 50.0 46.6 46.6 56.6 32.7 70.4 43.4 25.0 53.1

InstructBLIP (FlanT5XXL) 120.0 83.5 47.9 65.6 51.2 46.6 48.5 54.1 30.9 70.6 44.3 25.6 53.8

InstructBLIP (Vicuna-7B) 123.1 82.4 49.2 54.3 43.1 50.1 45.2 59.6 34.5 60.5 41.8 22.1 52.2

InstructBLIP (Vicuna-13B) 121.9 82.8 49.5 52.1 44.8 50.7 45.4 57.5 33.4 63.1 41.2 24.8 51.0
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Ablations: What Matters

Two ingredients dominate gains: instruction-aware visual features and balanced sampling. Making

the Q-Former conditional on the instruction reliably boosts held-out generalization—especially for

knowledge/OCR and instruction-sensitive sets (e.g., large drops on ScienceQA and iVQA when

removed). Balanced sampling yields smaller but consistent gains by preventing over-fitting to

high-volume tasks; without it, performance regresses across most held-out datasets, with only minor,

noisy exceptions.

Table 24.40: Ablations from INSTRUCTBLIP [114]. Held-in Avg. averages COCO Caption,

OKVQA, A-OKVQA, TextCaps; held-out columns report across distinct tasks. Parentheses show

deltas vs. the full model. Source:[114].

Model Held-in Avg. GQA ScienceQA (IMG) IconQA VizWiz iVQA

InstructBLIP (FlanT5XL) 94.1 48.4 70.4 50.0 32.7 53.1
w/o Instruction-aware Visual Features 89.8 45.9 ( ↓2.5) 63.4 ( ↓7.0) 45.8 ( ↓4.2) 25.1 ( ↓7.6) 47.5 ( ↓5.6)
w/o Data Balancing 92.6 46.8 ( ↓1.6) 66.0 ( ↓4.4) 49.9 ( ↓0.1) 31.8 ( ↓0.9) 51.1 ( ↓2.0)

InstructBLIP (Vicuna-7B) 100.8 49.2 60.5 43.1 34.5 52.2
w/o Instruction-aware Visual Features 98.9 48.2 ( ↓1.0) 55.2 ( ↓5.3) 41.2 ( ↓1.9) 32.4 ( ↓2.1) 36.8 ( ↓15.4)
w/o Data Balancing 98.8 47.8 ( ↓1.4) 59.4 ( ↓1.1) 43.5 ( ↑0.4) 32.3 ( ↓2.2) 50.3 ( ↓1.9)

Instruction Tuning vs. Multi-Task Training

Plain multi-tasking—either with raw inputs or dataset-tag prompts—learns brittle format→answer

mappings that score high on held-in sets but fail to transfer. Instruction tuning reframes every

example as a natural instruction and routes it through an instruction-aware Q-Former, teaching a

general procedure (parse intent → extract relevant evidence → answer). This shift explains the

sizeable held-out gains while maintaining competitive held-in scores.

Figure 24.56: Instruction tuning vs. multi-task training (BLIP-2 FlanT5-XL backbone) [114].

Models trained on plain inputs or dataset-tag prompts excel on held-in but lag on held-out tasks.

InstructBLIP, trained with instruction formatting and an instruction-aware Q-Former, achieves the

strongest held-out generalization with competitive held-in results. Source:[114].
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Downstream Fine-Tuning

Instruction-tuned checkpoints are superior initializations: they converge faster and reach higher

accuracy with modest adaptation, especially on knowledge/OCR-heavy tasks where instruction

parsing and targeted visual grounding are pivotal.

Table 24.41: Fine-tuning BLIP-2 vs. INSTRUCTBLIP on downstream sets [114]. “Previous SOTA”:

LLaVA [368] (ScienceQA IMG), GIT [659] (OCR-VQA), PaLM-E (562B) [134] (OKVQA), Prompt-

Cap [240]/Answer Heuristics [560] (A-OKVQA). Source:[114].

Method SciQA IMG OCR-VQA OKVQA A-OKVQA Dir Val A-OKVQA Dir Test A-OKVQA MC Val A-OKVQA MC Test

Previous SOTA (refs) [368] 89.0 [659] 70.3 [134] 66.1 [240] 56.3 [560] 61.6 [240] 73.2 [560] 73.6

BLIP-2 (FlanT5XXL) [333] 89.5 72.7 54.7 57.6 53.7 80.2 76.2
InstructBLIP (FlanT5XXL) [114] 90.7 73.3 55.5 57.1 54.8 81.0 76.7

BLIP-2 (Vicuna-7B) [333] 77.3 69.1 59.3 60.0 58.7 72.1 69.0
InstructBLIP (Vicuna-7B) [114] 79.5 72.8 62.1 64.0 62.1 75.7 73.4

Takeaways (Sharper Reading of the Evidence)

Instruction-conditioning is the main driver of transfer: removing it collapses iVQA (Vicuna, −15.4)

and significantly hurts ScienceQA (up to −7.0), signalling that which visual evidence to extract

depends on the instruction. Balanced sampling stabilizes cross-task learning, trimming smaller

but pervasive regressions when ablated. Together, these choices explain why instruction-tuned

checkpoints fine-tune better than BLIP-2 baselines across diverse downstream tasks.

Limitations and Future Work

A central limitation of INSTRUCTBLIP [114] is that it is fundamentally image-centric. Its Q-Former

provides only a narrow “visual prompt” interface to the LLM, and although effective for single-image

instruction following, it cannot natively capture motion, temporal order, or long-horizon dynamics.

Early attempts to handle video defaulted to uniform frame sampling and concatenation of features,

which ignores motion cues and collapses temporal structure.

Historical trajectory.

• BLIP and BLIP-2 (2022–2023). Built for image–text pretraining and instruction tuning,

these models demonstrated strong zero-shot transfer but lacked any temporal component.

Video QA benchmarks (e.g., MSRVTT-QA) were approached by concatenating features from

4–16 uniformly sampled frames, producing workable results but with no explicit modeling of

sequence order or causality.

• Immediate adaptations. Several derivatives (Video-BLIP, X-InstructBLIP, Video-LLaMA,

MiniGPT4-Video) extended the image-focused architecture to video by adding lightweight

temporal pooling, video-specific Q-Formers, or scaling up to dozens of sampled frames. These

efforts confirmed the flexibility of BLIP-2/LLaVA-style stacks, yet they remained stopgaps:

temporal reasoning was approximated rather than integrated, and training objectives were still

defined at the frame or image level.

Broader limitations. Beyond video, INSTRUCTBLIP also inherits dataset and prompt biases,

struggles with fine-grained grounding, and lacks support for multi-step tool use or retrieval. Its

reliance on a frozen LLM limits adaptability to new domains or safety-critical reasoning.
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The LLaVA line of work.

• LLaVA (2023). Bridged frozen CLIP-style encoders with an LLM to enable multimodal

dialogue on images. Video extensions (“Video-LLaVA”) treated clips as sets of frames,

essentially multi-image interleaving, which worked in practice but without native temporal

encoding.

• LLaVA-NeXT (2024). Addressed another bottleneck—resolution. With its AnyRes tiling

and merging strategy, higher-resolution visual tokens could be processed without aggressive

downsampling, and interleaved multi-image support was improved. Yet video remained a

weak spot: sequences were still modeled as unordered image sets with no explicit temporal

attention or objectives.

• LLaVA-OneVision (2024). Represented a turning point. It unified support for images, image

sets, and multi-frame clips through a single tokenization path, introduced time-aware positional

embeddings and attention across frames, and trained on mixed video and image data. This

enabled native video QA and stronger cross-domain transfer, though challenges remained

around long-horizon clips and efficient handling of motion-rich inputs.

Future directions (as implied by these limits). The trajectory from BLIP to LLaVA-OneVision

highlights both progress and remaining gaps. Key next steps include:

• Temporal modeling as a core design. Moving beyond frame concatenation toward temporal

Q-Formers, causal attention, and efficient video transformers to natively capture motion and

sequence structure.

• Scaling instruction coverage. Broadening instruction tuning across languages, domains, and

safety-critical contexts to ensure generalization beyond static-image corpora.

• Retrieval and tool grounding with time. Extending retrieval-augmented generation and tool

use to temporal settings, linking entities and events across frames or moments in a clip.

In short, the field evolved from static image instruction tuning (BLIP/INSTRUCTBLIP)→ pragmatic

video extensions (Video-LLaVA, MiniGPT4-Video, X-InstructBLIP)→ stronger but still image-

biased upgrades (LLAVA-NEXT)→ first-class multimodal unification in LLAVA-ONEVISION [325,

329, 368]. The logical next step is to make temporal reasoning and retrieval-native grounding as

central as resolution and instruction-following have become, starting with LLaVA [368]
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Enrichment 24.7.2: LLaVA: Large Language and Vision Assistant

High-Level Idea

LLAVA [368] couples a strong frozen vision encoder (CLIP ViT-L/14) with an instruction-tuned

LLM (Vicuna) via a lightweight linear projector. Rather than learning a query bridge (e.g., BLIP-

2’s Q-Former), LLaVA emphasizes instruction-following by training on GPT-4–curated visual

instruction data (constructed from captions/boxes but generated without showing images to GPT-4).

Architecture

Given image Xv, a frozen CLIP encoder produces grid features Zv = g(Xv). A trainable linear

map W projects Zv into the LLM embedding space to form visual tokens Hv = WZv, which are

prepended/interleaved with text tokens. The model fine-tunes the LLM (often with PEFT/LoRA)

using the standard autoregressive LM loss on assistant tokens; the CLIP encoder remains frozen and

no cross-attention/Q-Former is used:

Hv =W ·Zv, Zv = g(Xv).

Figure 24.57: LLaVA network. A frozen CLIP ViT-L/14 produces grid features; a linear projector

W maps them to the LLM token space. Visual tokens are concatenated with the dialogue tokens and

trained via LM loss. (As discussed by [368], more sophisticated connectors—e.g., Flamingo’s gated

cross-attention or BLIP-2’s Q-Former—are possible but were not the focus.). Source:[368].

Why freeze vision but (partly) train the LLM?

• Protect a strong visual prior. CLIP ViT-L/14 is already trained on massive image–text

corpora; the LLaVA instruction set is comparatively small. Freezing CLIP avoids catastrophic

forgetting and preserves broad zero-shot visual semantics.

• Put learning where the skill lives. Instruction following is largely a language-side procedure

(parse intent, plan, verbalize). Fine-tuning the LLM (typically with PEFT/LoRA in practice)

teaches it to use visual tokens as part of that procedure; the connector W just makes CLIP

features legible to the LLM.

• Alignment, not re-seeing. The main gap is modal alignment: map Zv = g(Xv) into the LLM’s

token space and adapt the LLM to condition on those tokens. Training a tiny projector W

plus (adapter) updates in the LLM empirically suffices; re-training vision isn’t necessary for

instruction-following chat.
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• Compute reality (clarified). Full LLM fine-tuning is expensive in absolute FLOPs, and the

LLM is much larger than CLIP. LLaVA mitigates this by (i) freezing the vision tower entirely,

(ii) keeping the connector minimal (linear/MLP), and (iii) often using PEFT on the LLM.

This keeps memory stable and concentrates updates where they matter most for following

instructions.

• Two-stage recipe.

1. Projector warmup. First, only the lightweight projection layer W is trained on standard

image–text pairs, while both the CLIP encoder and the LLM remain frozen. This

aligns CLIP’s visual features with the LLM’s embedding space so that visual tokens are

“readable” by the language model.

2. Visual instruction tuning. In this stage, W and the LLM are fine-tuned together on multi-

modal instruction–response pairs that were automatically generated with GPT-4. Since

high-quality human-labeled instruction data for images is scarce, GPT-4 is prompted

with captions or region annotations to synthesize diverse, instruction-style questions

and detailed answers. This produces a large, consistent, and coherent instruction set,

allowing the LLM to learn how to weave the projected visual tokens into its reasoning

and response generation. The CLIP encoder remains frozen throughout.

Contrast to BLIP-2. BLIP-2 freezes both experts and learns a Q-Former (cross-attention queries) as

a task-aware bridge; the LLM is kept frozen during pretraining. LLaVA instead uses a simple pro-

jector and invests supervision on the LLM side (instruction-tuning), yielding strong conversational

adherence with low fusion complexity—at the cost of less structured, query-driven grounding than a

learned cross-attention module.

Data Pipeline: Visual Instruction Tuning

A central innovation in LLAVA [368] is how its training data is generated. Importantly, GPT–4

never sees the raw images themselves. Instead, each image is first turned into textual proxies—such

as captions or detected object labels with bounding boxes—which are then fed to GPT–4. Using this

context, GPT–4 is asked to write instruction→ response examples that look like real multimodal

conversations.

• Input contexts. For every image, the system prepares:

– Captions: several diverse captions describing different aspects of the scene.

– Box labels: object categories together with their bounding box coordinates, giving

GPT–4 a more structured picture of what is present and where.

• Three kinds of responses. GPT–4 is asked to produce answers in three styles:

1. Conversational Q&A: short multi-turn dialogues (teaches the model to follow chat-style

prompts).

2. Detailed descriptions: long-form outputs covering fine details (trains thorough grounding

and coverage).

3. Complex reasoning: explanations that require commonsense or multi-step inference

(pushes the model beyond surface description).

These three types were chosen to cover complementary skills: dialogue flow, exhaustive detail,

and reasoning. Ablations in the paper confirm that using all three leads to the strongest results.
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• Why this setup? At the time, no large public dataset of multimodal instructions existed. By

repurposing image captions and object detections into prompts, and letting GPT–4 spin them

into diverse instruction–response pairs, the authors created a scalable, stylistically consistent

training set. This gave the LLM practice in “talking about images” without needing humans to

hand-label every dialogue.

• Training format. The generated dialogues are wrapped in Vicuna’s chat template (system→
user→ assistant). During training, only the assistant tokens are used for the autoregressive

loss, teaching the LLM to generate natural, instruction-following replies conditioned on the

projected visual tokens.

Figure 24.58: Instruction-following data construction (illustrative snippet). Top: text-only

contexts (captions / boxes) shown to GPT; bottom: three response types. The raw image is not fed to

GPT—only used for human reference in the paper. Source:[368].

Figure 24.59: Input sequence for training. Visual tokens from Hv are concatenated with dialogue

tokens. The model learns to generate assistant answers and the stop symbol (<STOP>=###) autore-

gressively; only assistant tokens contribute to the loss. Source:[368].

Why It Works (vs. BLIP/BLIP-2)

• Connector simplicity. LLaVA uses only a lightweight linear projector to map CLIP features

into the LLM’s embedding space. This avoids the complexity of Q-Former cross-attention or

gated modules, making training straightforward and connector overhead negligible.
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• Instruction-first supervision. Instead of contrastive alignment or captioning, LLaVA trains

directly on GPT-4–curated multimodal instructions. This supervision style teaches the LLM

to follow instructions about images (e.g., “what is unusual?”) rather than merely align embed-

dings. BLIP and BLIP-2 never explicitly target this behavior in pretraining.

• Trade-offs vs. BLIP-2. BLIP-2 keeps both CLIP and the LLM frozen and learns a small

Q-Former bridge—highly compute-efficient and stable, with strong zero-shot priors. LLaVA

instead fine-tunes the LLM (together with the projector), investing in instruction-following

fluency. The benefit is stronger conversational ability and instruction adherence; the drawback

is weaker structured grounding and greater dependence on the synthetic instruction data

distribution.

• Inference cost. Unlike BLIP-2’s compact query tokens, LLaVA passes a large number of

projected CLIP grid features (hundreds of tokens at 336px input) into the LLM. This increases

sequence length and thus slows inference, while also raising memory use. In practice, LLaVA

trades some efficiency for richer supervision and stronger dialogue fluency.

Instruction Following and Reasoning (Qualitative)

Figure 24.60: LLaVA-Bench (In-the-Wild): challenging, high-resolution cases with detailed

human annotations. The benchmark probes real-world capabilities beyond generic captioning,

stressing OCR, fine-grained recognition, spatial reasoning, and knowledge grounding. Example 1

(left, “ICHIRAN Ramen”): requires reading small text in-the-wild (OCR) and linking it to world

knowledge to answer queries such as “What’s the name of the restaurant?”. Example 2 (right,

“Filled Fridge”): demands locating fine-grained items, reading brand labels (e.g., Fage variants),

and reasoning over cluttered layouts to answer compositional questions (e.g., brand identification,

presence/absence of a flavor). These cases illustrate why instruction-following VLMs must combine

accurate text extraction, object/attribute recognition, and commonsense knowledge to succeed.

Source:[368].
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Figure 24.61: Following instructions vs. scene description. LLaVA answers “what is unusual?”

with multi-step reasoning and safety considerations, outperforming BLIP-2 / OpenFlamingo on

instruction adherence; GPT-4 is concise but less conversational. Source:[368].

Benchmarks: LLaVA-Bench, COCO ablations, In-the-Wild, ScienceQA

Table 24.42: Ablation on LLaVA-Bench (COCO). Scores are relative to a text-only GPT-4 that sees

ground-truth captions/boxes. Removing instruction tuning is catastrophic, highlighting its centrality.

Source:[368].

Training data Conversation Detail desc. Complex reasoning All

Full data 83.1 75.3 96.5 85.1

Detail + Complex 81.5 ( ↓1.6) 73.3 ( ↓2.0) 90.8 ( ↓5.7) 81.9 ( ↓3.2)

Conv + 5% Detail + 10% Complex 81.0 ( ↓2.1) 68.4 ( ↓7.1) 91.5 ( ↓5.0) 80.5 ( ↓4.4)

Conversation 76.5 ( ↓6.6) 59.8 ( ↓16.2) 84.9 ( ↓12.4) 73.8 ( ↓11.3)

No Instruction Tuning 22.0 ( ↓61.1) 24.0 ( ↓51.3) 18.5 ( ↓78.0) 21.5 ( ↓63.6)
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Table 24.43: Instruction-following comparison (relative scores) on LLaVA-Bench (In-the-Wild).

Means ± std over three runs for the first three rows; for LLaVA†, GPT-4 is queried three times as

judge. Source:[368].

Method Conversation Detail desc. Complex reasoning All

OpenFlamingo [19] 19.3±0.5 19.0±0.5 19.1±0.7 19.1±0.4
BLIP-2 [333] 54.6±1.4 29.1±1.2 32.9±0.7 38.1±1.0
LLaVA [368] 57.3±1.9 52.5±6.3 81.7±1.8 67.3±2.0
LLaVA† [368] 58.8±0.6 49.2±0.8 81.4±0.3 66.7±0.3

Table 24.44: ScienceQA [399] accuracy (%). NAT/SOC/LAN: domains; TXT/IMG/NO: context

types; G1–6/G7–12: grade levels. †Text-only GPT-4 (our eval.). Source:[368].

Method NAT SOC LAN TXT IMG NO G1-6 G7-12 Average

Representative & SoTA numbers reported in literature

Human [399] 90.23 84.97 87.48 89.60 87.50 88.10 91.59 82.42 88.40

GPT-3.5 [399] 74.64 69.74 76.00 74.44 67.28 77.42 76.80 68.89 73.97

GPT-3.5 w/ CoT [399] 75.44 70.87 78.09 74.68 67.43 79.93 78.23 69.68 75.17

LLaMA-Adapter [775] 84.37 88.30 84.36 83.72 80.32 86.90 85.83 84.05 85.19

MM-CoTBase [786] 87.52 77.17 85.82 87.88 82.90 86.83 84.65 85.37 84.91

MM-CoTLarge [786] 95.91 82.00 90.82 95.26 88.80 92.89 92.44 90.31 91.68

Author runs

GPT-4† 84.06 73.45 87.36 81.87 70.75 90.73 84.69 79.10 82.69

LLaVA [368] 90.36 95.95 88.00 89.49 88.00 90.66 90.93 90.90 90.92

LLaVA+GPT-4† (complement) 90.36 95.50 88.55 89.05 87.80 91.08 92.22 88.73 90.97

LLaVA+GPT-4† (judge) 91.56 96.74 91.09 90.62 88.99 93.52 92.73 92.16 92.53

Table 24.45: Design ablations on ScienceQA (Average %). Differences vs. best variant in parentheses.

Source:[368].

Visual features Before Last

Best variant 90.92 89.96 ( ↓0.96)

Predict answer first – 89.77 ( ↓1.15)

Training from scratch 85.81 ( ↓5.11) –

7B model size 89.84 ( ↓1.08) –

What the Ablations Say (and How This Differs from BLIP-2)

• Instruction tuning is essential. Removing it collapses performance (Table 24.42), confirming

that formatting everything as natural-language instructions teaches a reusable procedure for

solving diverse tasks—similar insight to InstructBLIP, but achieved with a simpler connector.

• Visual feature choice matters. Using the right CLIP layer (pre-/post-last) impacts down-

stream QA (Table 24.45); BLIP-2 instead learns a task-aware query interface (Q-Former),

while LLaVA must pick a fixed feature tap.
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• Training dynamics. Starting “from scratch” (no Vicuna init) underperforms strongly, empha-

sizing the value of strong LLM priors—the same high-level lesson as BLIP-2, but LLaVA

fine-tunes the LLM, whereas BLIP-2 keeps it frozen and tunes only a small bridge.

Positioning vs. BLIP/BLIP-2

• Connector vs. Instruction Data. BLIP-2 invests in a learned bridge (Q-Former) to translate

vision for a frozen LLM; LLaVA keeps the bridge simple (linear) and invests in instruction

data + LLM fine-tuning.

• Efficiency. BLIP-2 trains far fewer parameters (frozen experts), typically more stable and

compute-efficient. LLaVA trains more on the language side (often with PEFT/LoRA), im-

proving conversationality and adherence to instructions at the cost of more sensitivity to data

curation.

• Generalization. BLIP-2’s priors excel in zero-shot retrieval/grounding with robust visual

features; LLaVA often wins on instruction-following and free-form dialogue (LLaVA-Bench),

but is more dependent on the prompt style and instruction distribution.

Limitations and Next Steps (segue to LLaVA-NeXT / OneVision)

While LLAVA [368] proved that a frozen CLIP encoder plus an instruction-tuned LLM can deliver

strong multimodal dialogue, it remains fundamentally image-centric. Videos are only approximated

by feeding multiple frames as separate images, which ignores motion and temporal dependencies.

High-resolution images are globally resized, often losing small details, and the linear projector

provides only a minimal bridge for multi-image reasoning.

LLAVA-NEXT [329] was introduced to address some of these gaps. It brought two notable

upgrades:

• AnyRes. A tiling-and-merging strategy that allows images to be processed at near-native

resolution without heavy downsampling, crucial for fine-grained perception such as OCR or

small-object recognition.

• Multi-image interleaving. A mechanism to encode several images jointly within a conversa-

tion, enabling set-level reasoning across multiple inputs.

Together, these improvements boosted LLaVA’s ability to handle high-resolution and multi-image

tasks. However, NeXT still lacks native temporal modeling: video frames are treated as a loose set of

images with no explicit time encoding, motion cues, or sequence objectives.

This motivates the next step: LLAVA-ONEVISION [325]. Instead of treating video as “many

images,” it trains on a mixture of video and image data, introduces time-aware positional tokens

and attention mechanisms, and strengthens visual token pooling to fit longer sequences within the

LLM’s context budget. The result is a model that can natively support video question answering

while retaining the instruction-following strengths of its predecessors.

In short, NeXT overcame resolution and multi-image limits of LLaVA, but it is OneVision that

finally closes the modality gap—moving from image-centric adaptation to unified handling of single

images, multi-image sets, and full video clips.
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Enrichment 24.7.3: LLaVA-OneVision: Unified Multimodal Transfer

From LLaVA to OneVision: Motivation & Goal

LLAVA showed that a minimal pipeline—frozen vision encoder → lightweight projector →
instruction-tuned LLM—can produce a strong image-centric assistant. Yet three gaps remained: (i)

set-level reasoning across multiple images lacked structure, (ii) video was only approximated by

feeding frames as independent stills (no temporal modeling), and (iii) aggressive global resizing hurt

high-resolution perception (OCR, diagrams, small objects). LLAVA-ONEVISION [325] addresses

these gaps with a single, unified model that natively supports single-image, multi-image, and video

inputs and encourages cross-scenario skill transfer, while preserving LLaVA’s minimalist spirit.

High-Level Idea

OneVision keeps the simple connector-to-LLM philosophy but upgrades the visual pipeline and

tokenization so that (a) high-resolution details are preserved, (b) token budgets remain balanced

across modalities, and (c) temporal order/motion are modeled directly. A staged curriculum first

aligns vision tokens to the LLM, then builds a strong single-image instruction follower, and finally

mixes in multi-image & video data to induce native temporal reasoning and cross-scenario transfer.

Figure 24.62: LLaVA-OneVision architecture. Left: a concrete instantiation; Right: the generalized

LLaVA form extended to support single images, multi-image sets, and video clips in one pipeline.

Source: [325].

Method

Architecture Overview (What changes vs. LLaVA)

• Vision encoder & projector (minimal fusion, stronger backbone). As in LLaVA, visual

inputs are encoded by a pretrained vision tower and mapped into the LLM token space by

a small projector (2-layer MLP / linear). OneVision upgrades the tower from CLIP to the

SigLIP family (typical input 384×384), chosen for its robust open-source zero-shot alignment

and strong text-rich perception. The projector remains the only bespoke fusion block, so visual

tokens can be simply prepended/interleaved with text—preserving LLaVA’s low-complexity

path (no cross-attention/Q-Former).
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• Higher-resolution processing (Higher AnyRes). ONEVISION replaces global resizing with

an adaptive tile→ encode→ merge pipeline that preserves local detail and keeps the visual

sequence length predictable [325].

1. Tiling (detail + context). From a high-resolution image, build two kinds of inputs: (i) a

global view obtained by uniformly resizing the full image to the vision encoder’s native

resolution (e.g., 384×384), and (ii) an a×b grid of aspect-preserving local crops, each

also resized to the encoder’s native resolution. The global view provides coarse layout;

the tiles preserve fine text/edges that a single global downscale would destroy.

2. Encoding (shared backbone). Feed the global view and each of the a×b crops indepen-

dently through the frozen vision encoder (e.g., SigLIP), producing T tokens per input

(e.g., T=729 for a 384×384 input). The provisional visual-token length is

L = (a×b+1)T,

where the “+1” accounts for the global view.

3. Budgeting & concatenation (Higher AnyRes). To keep sequence length predictable,

impose a per-scenario token cap τ . If L>τ , reduce the tokens per input (global and

each crop) by bilinearly interpolating their feature grids before flattening:

Tnew =
⌊

τ
a×b+1

⌋
, so that Lnew = (a×b+1)Tnew ≤ τ.

Finally, concatenate the token sequences from the global view and all crops in a

fixed order to form the visual-token stream for the projector/LLM. No cross-scale

feature blending is introduced; the “merge” is achieved by length-controlled per-input

downsampling plus sequence concatenation. This preserves local detail (via tiles) and

global context (via the base image) while preventing quadratic attention blow-up and

keeping tokens consistent across inputs of widely varying native resolution [325].

Why this works. The global view provides a coarse anchor of scene layout and long-range

object relations, while the local crops contribute high-frequency detail such as OCR strokes or

small parts. Rather than fusing feature maps, the method simply concatenates tokens from both

sources, ensuring that context and detail coexist in the same token stream. When the provisional

length exceeds a per-scenario cap, bilinear interpolation is applied at the feature-grid level

to shrink tokens per input uniformly, preserving continuity while enforcing the budget. This

guarantees that the LLM always receives consistent, high-fidelity tokens across images of

widely varying native resolutions, without quadratic blow-up or architectural changes. In

practice, this directly addresses LLaVA’s high-resolution failure modes (e.g., documents,

charts, dense UI screens) while keeping the downstream language model untouched [325].
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Figure 24.63: Higher AnyRes vs. original AnyRes. Upgraded tiling/merging with bilinear interpo-

lation preserves high-resolution fidelity (top) compared to the original scheme (bottom), improving

OCR and small-object recognition. Source: [325].

• Balanced visual token budgets (cross-scenario parity). To promote skill transfer while

respecting the LLM’s context, ONEVISION normalizes the number of visual tokens per

scenario to be of the same order, using a common “unit”: the token count from one SigLIP

view at 384×384 (about T=729 tokens) [325]. Let an image be tiled into an a×b grid (with

an additional resized global view, “+1”). The provisional length is

L = (a×b+1)T.

A per-scenario threshold τs (with s∈{single-image (SI), multi-image (MI), video (VID)}) is

enforced before concatenating visual tokens with text. The goal is to keep SI, MI, and VID

inputs in the same token range so no modality dominates the context [325]. For a tiled single

image with grid a×b plus one global view, the provisional length is

LSI = (a×b+1)T.

For m independent images in MI (each near the base unit), LMI≈mT . For a video with f

frames, LVID≈ f Tframe (with Tframe obtained via feature-space interpolation per frame). If

Ls>τs, the loader applies uniform feature-grid downsampling so that each view contributes

Tnew =
⌊ τs

Ns

⌋
with Ns =





a×b+1 (s = SI)

m (s = MI)

f (s = VID)



2028 Chapter 24. Lecture 24: Videos (Video Understanding)

and thus Ns Tnew ≤ τs. Downsampling is implemented by bilinear pooling on the encoder

feature maps (token grids), preserving spatial continuity while meeting the budget [325].

Concretely:

– Single image (SI / High AnyRes). Choose a small tile grid (e.g., global + up to 3×3

crops). If (a×b+1)T >τSI, either reduce the grid (e.g., 3×3→2×2) or apply bilinear

pooling so that each view contributes ⌊τSI/(a×b+1)⌋ tokens [325].

– Multi-image (MI). Admit up to m≤12 images. If mT > τMI, uniformly shrink per-

image token grids to Tnew=⌊τMI/m⌋, keeping the total comparable to a high-res single

image [325].

– Video (VID). Sample up to f≤32 frames. Per-frame features are pooled (e.g., 2×2

bilinear) to ≈196 tokens/frame; if f ·196>τVID, reduce f (FPS-aware sub-sampling)

and/or increase pooling so Tframe,new=⌊τVID/ f ⌋ [325].

Why this helps. Setting τSI,τMI,τVID to similar magnitudes yields cross-scenario parity: tiled

single images, multi-image sets, and short clips contribute comparable visual budgets. This

prevents context monopolization, stabilizes SFT across modalities, and—crucially—makes a

tiled image appear budget-wise like a short sequence, encouraging routines (scan, compare,

summarize) that transfer between SI, MI, and VID without changing the downstream language

model [325].

Figure 24.64: Balanced visual token allocation across modalities. OneVision caps tokens so

single-image, multi-image, and video inputs receive comparable visual capacity (e.g., ∼729 to-

kens ≈ SigLIP at 384×384), preserving LLM context and encouraging cross-scenario transfer.

Source: [325].

• Temporal indexing & attention (native video modeling). Videos are represented as an

ordered sequence of frame tokens and rely on the LLM’s inherent sequence modeling for

temporal understanding—no bespoke video module is introduced [325]. Concretely:

1. Frame sampling & features. Sample up to 32 frames (FPS-aware for long clips). Each

frame is resized to the encoder’s native resolution (e.g., 384×384), encoded by the frozen

vision tower, then downsampled in feature space using 2×2 bilinear interpolation to a

per-frame budget of ≈ 196 tokens (Appendix C.1; Fig. “Higher AnyRes”) [325].



24.7 Enrichment 24.7: Instruction-Tuned VLLM Precursors 2029

2. Implicit time via order (no extra temporal PE required). The 2D spatial positional

encodings from the vision encoder are retained; frames are concatenated in chronolog-

ical order into one stream, prefixed by a single <image> marker for the entire video

(Appendix C.2) [325]. The paper does not introduce a separate learned or sinusoidal

temporal embedding; the position in the sequence itself encodes time.

3. Causal attention over the sequence. The resulting token stream is fed to the LLM with

standard causal/self-attention (lower-triangular masking), which preserves temporal

direction. This enables queries such as “what happens next,” change detection, and event

localization while keeping LLaVA’s minimalist fusion design intact [325].

Why it works. Chronological concatenation makes inter-frame differences addressable through

relative positions in the same attention space as language; causal flow lets the LLM compose

motion narratives (e.g., “the door opens after the person reaches the handle”). Combined

with the per-frame token budget (∼196) and the cap on total frames (32), this provides stable

compute and strong zero-/few-shot video QA via transfer from image training [325].

Training Curriculum (How capabilities are built)

The recipe follows a progressive curriculum that first forges a clean interface between vision

and language, then injects knowledge at higher visual fidelity, and finally teaches instruction-

following across scenarios. Each stage increases difficulty in one axis at a time (trainable scope,

resolution/token budget, task diversity), which stabilizes optimization and preserves pretrained

priors [325].

1. Stage 1: Language–Image Alignment (frozen experts). What we do. Freeze the vision

encoder and the LLM; train only the lightweight projector on ∼558K image–text pairs at

the encoder’s native resolution (e.g., 384×384⇒ ≈ 729 tokens per view). Intuition. Treat

the projector like a translator that learns the “alphabet” of visual features so the LLM can

read them, without editing either expert’s hard-earned priors. Why first. Updating only a tiny

module gives fast, stable alignment and avoids catastrophic forgetting; it also removes noisy

gradients before scaling resolution or adding complex instructions. What emerges. Zero-shot

basics (captioning, simple QA) with a clean, low-variance interface the later stages can safely

build on [325].

2. Stage 1.5: High-Quality Knowledge Learning (full model, Higher AnyRes). What we

do. Unfreeze the full stack (vision encoder, projector, LLM) and continue training on ∼4M

high-quality single-image samples. In the meanwhile, it is done while enabling Higher AnyRes

(tile→encode→merge). Token budgets are increased progressively (e.g., up to ∼ 5× the

base) so the model learns to cope with more detail without instability. Intuition. After the

“alphabet”, this is reading widely: infuse broad perceptual/world knowledge and teach the

model to process dense inputs (documents, charts, UI screens) at near-native resolution. Why

now. Once the interface is stable, end-to-end updates can safely propagate knowledge into

both experts while AnyRes habituates the model to larger, but controlled, visual sequences.

What emerges. Better grounding for fine text and small parts, plus robustness to resolution

changes—fixing the original LLaVA’s global-resize bottleneck [325].

3. Stage 2: Visual Instruction Tuning (full model). Goal. Teach the model to follow instruc-

tions across scenarios while keeping visual tokens within balanced budgets.



2030 Chapter 24. Lecture 24: Videos (Video Understanding)

• 2a: Single-Image SFT (3.2M). What we do. Supervised instruction tuning on a curated

single-image corpus covering general QA/captioning, docs/charts/screens (OCR-heavy),

visual math/reasoning, and multilingual prompts. AnyRes is used when detail matters;

token caps preserve room for the prompt and answers. Intuition. Like practicing

conversations before debates: establish reliable, step-by-step response behavior on the

scenario with the richest data (images) and the widest skill coverage. What emerges. A

strong, dependable image assistant—good habits in formatting, chain-of-thought style

reasoning (when supervised), and grounding to visual evidence [325].

• 2b: OneVision SFT (1.6M mixed). What we do. Instruction tune on a balanced mixture of

multi-image + video + single-image samples using the same connector and tokenization

path. Multi-image sets and video clips are normalized to comparable visual-token

budgets (e.g., up to 12 images near the base unit; up to 32 frames at ∼ 196 tokens/frame

via 2×2 feature-space interpolation). Frames are ordered chronologically; the sequence

is fed directly to the LLM [325]. Intuition. This is cross-training: by keeping budgets

comparable, a tiled high-res image “looks like” a short sequence, and a frame sequence

“looks like” an interleaved set—so the LLM reuses the same routines (scan, compare,

summarize, localize changes). Why mixed (not siloed). Mixing prevents modality-

specific overfitting and encourages transfer: OCR skill from images helps in videos;

“spot-the-difference” across images helps temporal change detection. What emerges.

Native support for multi-image reasoning and temporal understanding (event order, causal

queries) without bespoke video modules, while retaining single-image strengths [325].

Takeaway. The staged path—align→ enrich at higher resolution→ generalize via balanced, mixed

instructions—keeps training stable, preserves priors, and yields a single open model that natively

handles single-image, multi-image, and video inputs using the same minimalist connector [325].

Figure 24.65: Training stages and configurations. Vision backbone, token budget, datasets, model

scale, and hyperparameters per stage illustrate the curriculum from alignment to mixed-modality

instruction tuning. Source: [325].

Data Collections (for SFT)

LLAVA-ONEVISION adopts a two-stage instruction-tuning data design to first establish reliable

single-image instruction-following “habits” and then extend those habits to multi-image and video.

The sizing is deliberate: a large, diverse single-image corpus (to saturate core skills and stabilize



24.7 Enrichment 24.7: Instruction-Tuned VLLM Precursors 2031

alignment) followed by a leaner, mixed-modality corpus (to induce transfer without eroding single-

image strength). This sequencing pairs naturally with the model recipe: Stage 2a focuses on breadth

and fidelity under Higher AnyRes, while Stage 2b emphasizes cross-scenario generalization under

balanced token budgets [325].

Figure 24.66: Single-Image (3.2M) collection. Left: category distribution (general QA/captioning,

docs/charts/screens, math/reasoning, language, OCR). Right: dataset counts. Curated coverage

builds a strong single-image instruction base before introducing multi-image/video. Source: [325].

Why 3.2M single-image first? Single images are the richest, cleanest supervision for teaching the

model to follow instructions while handling high-resolution details (documents, charts, UI, fine OCR)

and structured reasoning (math, multi-step answers). This scale reduces sparsity across categories

and prevents overfitting to any one task format. Practically, it lets the projector+LLM see consistent,

high-fidelity tokens (via Higher AnyRes) across many domains, so later scenarios can reuse these

routines (scan, localize, read, reason) rather than learn them from scratch.

Figure 24.67: OneVision mixed set (1.6M). Left: distribution over multi-image, video, and single-

image; Right: dataset counts (“MI” denotes multi-image variants). Mixed-modality SFT promotes

coherent reasoning across images and over time under a shared token budget. Source: [325].

Why a smaller 1.6M mixed set next? After consolidating single-image skills, the model is

exposed to multi-image (cross-view comparison, set reasoning) and video (temporal ordering, change

detection) while still seeing some single-image refreshers. Keeping this stage smaller maintains the

single-image baseline and avoids “washing out” its high-resolution gains. Crucially, the mixed set is
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curated to align with modality-parity constraints: a tiled high-res image, a small image set, and a

short frame sequence occupy comparable visual-token budgets. This forces the LLM to apply shared

routines (scan→ compare→ summarize/locate changes) across modalities, which is the mechanism

behind the observed cross-scenario transfer [325].

Takeaway. The 3.2M single-image corpus builds a dependable instruction-following core with

high-res fidelity; the 1.6M mixed corpus then “teaches the model to generalize” by practicing the

same routines across set and temporal inputs under a unified token budget. The figures summarize

the scale and composition that make this two-stage strategy effective [325].

Experiments & Ablations

What the Experiments Show

The experiments confirm that LLaVA-OneVision achieves state-of-the-art open-source performance

across modalities, rivaling GPT-4V on more than 70% of benchmarks. For example, the 7B model

reaches 56.8% on MMMU (college-level multi-discipline QA), tying GPT-4V on this difficult

evaluation [325]. Several key insights emerge:

• Unified capability. Skills acquired in one modality transfer to others. Single-image (SI)

models retain ∼90% of full performance on ActivityNet-QA (video action QA), while mixed

(SI+MI+video) SFT pushes multi-image VQA to 90.2% (7B), ∼20 points higher than LLaVA-

NeXT’s interleaving baseline. Logical reasoning also scales: NLVR2 accuracy reaches 89.4%,

a ∼10% gain over BLIP-2’s static image-only training.

• Native video QA. Sequential tokens with causal temporal attention outperform frame-

interleaved baselines, improving VideoMME to 58.2% (7B), a +6.3% gain over GPT-4V

(7B-equivalent). Balanced token budgets allow 32-frame clips without exploding inference

cost, yielding strong conversational ratings (3.49/5) close to GPT-4V (4.06).

• High-resolution perception. AnyRes and Higher AnyRes yield significant OCR/text im-

provements: DocVQA rises to 87.5% (+4.7% over LLaVA’s low-res), while ChartQA climbs

+3–5%. On HierText, tiled inputs add +8% retrieval recall, preserving fine text cues absent in

downsampled BLIP-2/InstructBLIP.

Compared to priors:

• LLaVA excelled on static diagrams (e.g., 96.0% ScienceQA) but had no native video ability;

OneVision adds +10–20% across video and multi-image benchmarks.

• BLIP-2 / InstructBLIP rely on Q-Former bridges for static image-text; they achieve ∼90%

ScienceQA but collapse on dynamics. OneVision surpasses by +5–10% on video and multi-

image QA without Q-Former overhead.

• SigLIP provided stronger image-text alignment (e.g., 79.1% ImageNet zero-shot); OneVision

builds on this, adding +2–3% gains in document/ocr tasks.
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Ablation Themes (High-Level)

The ablations clarify which design choices matter most:

• Resolution handling. Removing Higher AnyRes drops text/small-object performance by

3–5% (e.g., TextVQA, ChartQA). Gains are sharpest on dense, text-heavy data (e.g., +8% on

HierText). This validates tiling + global fusion as superior to the global resize used in LLaVA

or BLIP-2.

• Token budget balance. Over-allocation to one modality reduces transfer (–5–10%). Balanced

allocations (e.g., 12 images ≈ 32 frames) stabilize training and improve generalization (+8–

15% on MuirBench, a multi-image benchmark). This enforces shared reasoning routines,

unlike unconstrained LLaVA sequences.

• Curriculum. Three-stage training (alignment → knowledge → instruction) outperforms

end-to-end by +10–15% in convergence speed and stability. Mixed SI+MI+video SFT is

essential: SI-only retains ∼90% on ActivityNet-QA, but adding video boosts EgoSchema

(egocentric QA) by +10%. This extends InstructBLIP’s instruction tuning to dynamics without

heavy architectural additions.

Qualitative Capabilities (Selected Examples)

Figure 24.68: Across-image diagram/table understanding. The model synthesizes evidence across

multiple diagrams/tables (e.g., cross-referencing axes, legends, and cells) to answer compositional

questions—illustrating robust multi-image transfer beyond single-image captioning. Source: [325].
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Figure 24.69: Agentic reasoning on UIs. Given several phone screenshots, the model plans step-

wise actions (e.g., tap/scroll/type) grounded in on-screen text and layout, demonstrating instruction

following that bridges vision→ action suggestions. Source: [325].
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Figure 24.70: Set-of-mark prompting. The model uses numbered marks to localize and describe

fine-grained regions (e.g., “mark 3 is a pressure gauge”), enabling precise references without extra

detection heads. Source: [325].

Figure 24.71: Image-to-video prompt transfer. From a static image, the model drafts detailed,

temporally-aware prompts for video generation/editing (e.g., motions, transitions, camera moves),

showcasing image→video transfer of high-level intent. Source: [325].
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Figure 24.72: Video-to-video difference (same start, different endings). The model contrasts two

clips that share an opening but diverge later, identifying when and how outcomes differ—evidence

of native temporal reasoning. Source: [325].
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Figure 24.73: Video-to-video difference (similar background, different foreground). With

background held constant across clips, the model focuses on foreground actors/objects to explain

semantic changes—probing foreground-aware temporal understanding. Source: [325].
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Figure 24.74: Multi-camera driving videos. The model integrates synchronized views

(front/side/rear) to explain traffic participants and events, reflecting multi-view + temporal fu-

sion useful for autonomy-style reasoning. Source: [325].
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Figure 24.75: Composed sub-videos. The model narrates a timeline formed by ordered sub-clips,

keeping track of entities and transitions—showcasing long-range event composition rather than

frame-level description. Source: [325].
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Figure 24.76: Referring image & video understanding. Given a reference image, the model

grounds identities in a target video (presence/absence, re-identification), unifying multi-image

linkage with temporal tracking. Source: [325].
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Limitations & Future Work

Current Constraints

While LLAVA-ONEVISION (OV) set a new bar for open, unified multimodal models, its paper

acknowledges several bottlenecks that limit generalization and accessibility:

• Compute & data appetite. Training OV-72B required a multi-stage curriculum over ∼9M

samples, consuming weeks on large GPU clusters. This high entry cost restricted reproducibil-

ity and open adoption.

• Region semantics. AnyRes tiling preserved global context and high-res detail, but lacked

explicit region-level modeling. As a result, dense OCR and document tasks plateaued (e.g.,

DocVQA 87.5%, ≈5% behind GPT-4o).

• Context budget. Although token parity across scenarios (single image ∼ multi-image ∼
short video) stabilized training, the fixed LLM window still capped long-form video and

ultra-high-res image reasoning.

• Complex multimodal chat. Even at 72B scale, OV left a “relatively larger gap” in nuanced,

conversational visual chat compared to proprietary models like GPT-4o.

Directions and the Move to OV-1.5

The follow-up LLAVA-ONEVISION-1.5 [10] was designed explicitly to overcome these issues,

while retaining OV’s unified paradigm:

• Efficient, open training. OV-1.5 was trained from scratch under a $16k compute budget

via offline data packing and hybrid parallelism, compressing the pipeline to ∼1 week on

128×A800s. This democratizes access, making large-scale multimodal training reproducible

for the community.

• Richer vision front-ends. OV’s AnyRes encoder was replaced with RICE-ViT, a region-aware

backbone pretrained on 450M images / 2.4B regions. This improves fine-grained semantics,

boosting OCRBench by +5% (80.0%) and DocVQA to 95.0%, narrowing the gap with GPT-4o.

• Balanced, large-scale data. OV-1.5 introduced an 85M concept-balanced pretrain set and a

22M instruction set, covering broader domains and reducing biases. Ablations show +5–10%

gains on multi-discipline QA (e.g., MMBench) compared to OV’s original 9M.

• Performance at smaller scale. New 4B/8B models (Qwen3 backbone) surpass Qwen2.5-VL-

7B on 18/27 benchmarks, with the 4B even beating Qwen2.5-VL-3B on all 27. This means

OV-1.5 achieves parity with or beyond proprietary closed models at a fraction of cost.

Future Directions

Looking ahead, several paths are clear:

• Extending RICE-ViT. Adding temporal encoders or adaptive token selection to RICE-ViT

could further lift long-video QA and dense OCR tasks, beyond OV-1.5’s gains.

• Scaling with balance. Expanding the 85M pretraining corpus to hundreds of millions

of multimodal samples—while preserving concept balance—would improve cross-domain

generalization and reduce bias.

• Tool grounding. Integrating external OCR engines, retrieval, or diagram solvers offers a

hybrid route to bridge factuality gaps in specialized domains like math, forms, or charts.

In sum, LLAVA-ONEVISION introduced a unified recipe, but remained compute-heavy and limited in

fine-grained reasoning. LLAVA-ONEVISION-1.5 directly addressed these pain points with efficient

training, region-aware vision, and balanced data scaling, providing a stronger open foundation and

paving the way toward even richer multimodal reasoning at scale.
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Enrichment 24.8: Large-Scale Video Foundation Models

Web-scale pretraining yields general-purpose video encoders usable across recognition, detection,

and retrieval. We outline InternVideo [671] and InternVideo2 [678]—scaling data, architectures,

and objectives—and OmniVL [662], a unified image–video–language model. Related and emerging

directions span mixture-of-experts backbones, multi-resolution clip sampling, and unified pretraining

across video and audio.

Enrichment 24.8.1: InternVideo: General Video Backbones

Scope and positioning

InternVideo [671] is a large-scale video foundation recipe that couples generative masked video

modeling with discriminative multimodal contrastive learning and coordinates the two through a

lightweight Cross-Model Attention (CMA) head. The design yields a representation that transfers

broadly to action understanding, video–language alignment (supervised and zero-shot), and open-

world video tasks, surpassing both specialized and prior foundation baselines.

Figure 24.77: SOTA overview. InternVideo delivers the best performance on extensive video-

related tasks, compared with specialized [16, 158, 354, 720] and foundation models [345, 498, 753].

Abbreviations: v2t/t2v retrieval, STA, FHP, NLQ, SCOD, MQ. Figure adapted from [671].
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Motivation

Large-scale video pretraining has been led by two complementary paradigms:

• Masked Video Modeling (MVM). Epitomized by VideoMAE (see Sec. 24.6.1), MVM recon-

structs heavily masked spatiotemporal tubelet tokens without labels to learn motion-aware

representations that transfer well to action understanding and localization (e.g., TAL: Temporal

Action Localization; STA: Spatio-Temporal Action localization). However, because it lacks

explicit language grounding, it does not natively support video–language tasks such as VQA

(Video Question Answering) or cross-modal retrieval T2V/V2T (Text-to-Video / Video-to-Text),

unless sizable supervised heads or additional alignment training are introduced.

• Vision–Language Contrastive Learning (CLIP-style). This paradigm aligns a video encoder

with a text encoder via an InfoNCE objective, thereby endowing models with semantics and

strong zero-shot transfer on video–language tasks like VQA and cross-modal retrieval T2V/V2T,

and also aiding instruction-following settings such as VLN (Vision-and-Language Navigation).

Yet when an image-pretrained ViT is naïvely extended to video, temporal structure can be

under-exploited, weakening fine motion modeling and long-range dynamics for core video

understanding and localization tasks (e.g., TAL/STA).

InternVideo addresses these complementary gaps by separately pretraining a strong masked video

encoder (for motion/appearance coherence) and a strong multimodal video encoder (for language-

aligned semantics), and then coordinating them at adaptation time through a lightweight Cross-

Model Attention (CMA) fusion. In the intermediate CMA modules, masked-video (VideoMAE)

spatiotemporal tokens serve as Queries, while multimodal (video–language) tokens provide

Keys and Values, transferring semantic context into the masked path. In the final CMA module, the

multimodal class token serves as the Query over masked-video tokens as Keys/Values, yielding

an enriched video–language token used for prediction [671].

What InternVideo solves and how. InternVideo [671] proposes a dual-path recipe plus a lightweight

coordination mechanism that combine the strengths of both worlds:

• Two specialized pretraining paths. A masked video encoder is trained generatively (as

in VideoMAE; Sec. 24.6.1) to capture spatiotemporal dynamics; in parallel, a multimodal

video encoder with a text encoder is trained discriminatively with contrastive (and captioning)

objectives to acquire language-grounded semantics [671]. Pretraining the two paths separately

avoids the optimization friction of joint, multi-loss training.

• Coordination at adaptation time. After pretraining, InternVideo freezes the two encoders

and learns a small Cross-Model Attention (CMA) head that lets the multimodal encoder’s class

token query fine-grained tokens from the masked encoder. This fuses semantic abstraction

with detailed motion/appearance evidence, improving over MVM-only approaches (e.g.,

VideoMAE/VideoMAEv2) by adding language awareness and over contrastive-only models

by injecting robust temporal cues [671].

• A stronger video backbone on the multimodal path. To ensure the multimodal branch is

temporally competent, InternVideo adopts UniFormer [348] / UniFormerV2 [345] as the vision

backbone, which explicitly handle temporal redundancy and long-range space–time dependen-

cies while preserving powerful image-pretrained priors (details below). These preliminaries are

essential because they explain why the multimodal path already outputs motion-aware visual

tokens that align well with text and how CMA can then query complementary, reconstruction-

trained tokens from the masked path.
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Figure 24.78: Unified framework. Dual pretraining pathways (masked video reconstruction and

multimodal contrastive learning) are coordinated via CMA for broad downstream transfer. Adapted

from [671].

Preliminaries: UniFormer and UniFormerV2

Why these preliminaries matter here.

Readers familiar with VideoMAE (Sec. 24.6.1) already understand the masked path that InternVideo

pretrains generatively. The multimodal path must pair clean language alignment with a video

backbone that satisfies the following.

• Early temporal efficiency: Suppress short-range temporal redundancy early to control

compute while retaining motion cues.

• Long-range coherence: Preserve strong long-range space–time reasoning so actions and

events remain coherent over many frames.

• Stable reuse of image priors: Reuse powerful image-pretrained ViT priors without destabi-

lizing them, enabling strong spatial semantics and rapid convergence.

UniFormer [348] and UniFormerV2 [345] meet these requirements, explaining why InternVideo’s

contrastive branch is already motion-aware before CMA fusion and why CMA can effectively transfer

semantics and dynamics between the two pretrained branches.

UniFormer (CVPR’22) [348]

Block structure. Given a clip token tensor XXX in∈RC×T×H×W , a UniFormer block applies Dynamic

Position Embedding (DPE), Multi-Head Relation Aggregator (MHRA), and an FFN with residuals:

XXX = DPE(XXX in)+XXX in, (24.20)

YYY = MHRA(Norm(XXX))+XXX , (24.21)

ZZZ = FFN(Norm(YYY ))+YYY . (24.22)

For relation learning, the spatiotemporal grid (T,H,W ) is flattened into a token sequence

XXX ∈ R
L×C with L = T×H×W . A UniFormer block then proceeds in the fixed order

DPE −→ MHRA −→ FFN,



24.8 Enrichment 24.8: Large-Scale Video Foundation Models 2045

with residual connections and normalization at each step. Why this order? DPE first injects local,

learnable spatiotemporal bias so tokens “know” relative offsets; MHRA then aggregates context

using either cheap local relations (early) or expressive global attention (late); the FFN finally refines

per-token channels. This mirrors the progression from biasing→ mixing→ refining, which is stable

and compute-efficient for video.

Dynamic Position Embedding (DPE): learnable relative spatiotemporal bias.

DPE applies a depthwise 3D convolution to the token grid and adds it back as a residual:

XXX = DPE(XXX in)+XXX in, DPE(XXX in) = DWConv(XXX in). (24.23)

Intuition. Unlike absolute (or fixed sinusoidal) position embeddings that inject static coordinates,

DPE transforms features with learned 3×3×3 per-channel kernels, encoding relative offsets in time

and space. Because the convolution is depthwise, each channel learns its own stencil: motion-

sensitive channels can emphasize temporal neighbors (∆t =±1), while appearance channels can

emphasize spatial neighbors (∆h,∆w). This yields translation-friendly, length-agnostic positional

cues and lets different channels specialize without interfering. DPE thus “primes” tokens with local

geometry before any relation mixing.

Why not just add absolute time/space codes? What is gained by DPE?

• Robust to augmentations. Absolute codes are brittle under temporal cropping, frame-rate

changes, and resizing; DPE learns relative offsets that transfer across clip lengths and sampling

strides.

• Local early cues. Early layers chiefly need local position signals (edges, small motions). A

learned 3D stencil injects these directly without hard-coding coordinates.

• Channel-wise specialization. Depthwise filters let different channels emphasize temporal or

spatial offsets (or anisotropic mixes), which a single shared absolute code cannot provide.

• Subtle absolute hints. Zero padding at boundaries yields weak “start/end” cues while keeping

the representation predominantly relative.

MHRA (general form): one template that adapts with depth.

After normalization, MHRA aggregates context per head via an affinity matrix AAAn and value projec-

tion VVV n:

YYY = MHRA(Norm(XXX))+XXX , (24.24)

RRRn(XXX) = AAAnVVV n(XXX), MHRA(XXX) = Concat
(
RRR1; . . . ;RRRN

)
UUU , UUU ∈ R

C×C. (24.25)

Intuition. Each head chooses where to look through AAAn and what to bring through VVV n. The same

template becomes either local (kernel-like) or global (self-attention) by instantiating AAAn differently.

MHRA—Local (shallow stages): cheap neighborhood mixing.

In early layers, AAAn is a learnable tubelet kernel restricted to a small neighborhood Ωt×h×w
i around

token i:

Alocal
n (XXX i,XXX j) = an

i− j, j ∈Ωt×h×w
i , an ∈ R

t×h×w. (24.26)
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MHRA—Local - why here and why effective.

• From quadratic to (near) linear cost. Full self-attention at shallow depth compares all

token pairs and costs O(L2) with L = T×H×W , which is prohibitively large before any

downsampling. Constraining interactions to a fixed local tube Ω of size t×h×w replaces

O(L2) with O(L · thw). Since t,h,w are small constants, this is effectively O(L), cutting both

compute and memory drastically.

• Matches the signal statistics in video. Adjacent frames and neighboring patches are highly

redundant in early layers; most useful cues are short-range (edges, micro-motions). A local

stencil aggregates exactly these signals without paying for far-away comparisons that rarely

help at low-level stages.

• Efficient, learnable, and specialized. The kernel an is learned end-to-end and reused at every

location, behaving like a per-head depthwise 3D convolution (akin to a PW–DW–PW block).

Different heads can specialize to distinct temporal spans or spatial orientations, capturing

short hand trajectories, lip motions, or local texture changes with minimal overhead.

Takeaway. Local MHRA provides the right tool at the right place: it compresses short-range

redundancy and builds robust low-level spatiotemporal features at (near) linear cost, reserving

expensive global reasoning for deeper layers where sequence length is smaller and semantics are

richer.

MHRA—Global (deep stages): full space–time self-attention when it counts.

In deeper layers, AAAn becomes content-adaptive self-attention over all tokens:

Aglobal
n (XXX i,XXX j) =

exp
(
Qn(XXX i)

⊤Kn(XXX j)
)

∑ j′∈ΩT×H×W exp
(
Qn(XXX i)⊤Kn(XXX j′)

) . (24.27)

Why later. Global attention is quadratic in L, but by the time features are deep and (typically)

downsampled, L is smaller and semantics are richer. This is when modeling long-range dependen-

cies—linking distant frames, disambiguating similar motions via scene context, tracking multi-object

interactions—pays off most, matching the “cheap local early, expressive global late” principle from

efficient video networks.

FFN: per-token refinement.

A position-wise MLP (with expansion and contraction) follows to refine channels:

ZZZ = FFN(Norm(YYY ))+YYY . (24.28)

Role. MHRA mixes between tokens; FFN mixes within a token’s channels to build nonlinear feature

compositions (e.g., fusing motion edges and object cues).

Putting it together: why this staging works for video.

• Bias then mix. DPE injects learnable relative geometry so tokens carry local spatiotemporal

context before any aggregation, improving stability and translation-friendliness.

• Local then global. Local MHRA removes short-range redundancy inexpensively and locks

onto micro-motion early; global MHRA later provides clip-level reasoning exactly where

semantic abstraction and reduced L make it most useful and affordable.

• Refine per token. The FFN consolidates mixed evidence into compact, discriminative

channels, preparing features for the next stage or for global fusion blocks downstream.
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Concrete cue.

Consider “opening a door”—a pattern combining subtle, short-range hand–handle interactions with

a larger, long-range door-panel swing. UniFormer’s staging processes this in three steps:

• DPE — inject relative spatiotemporal order. Motion-sensitive channels privilege temporal

neighbors (capturing tiny wrist twists), while edge/texture channels privilege spatial neighbors

(sharpening handle contours). This primes tokens with local geometry before relation mixing.

• Local MHRA + FFN — assemble robust local cues at low cost. Local MHRA mixes

only within a small 3D neighborhood, stitching a few-frame wrist–handle trajectory with

nearby edges at near-linear cost; the subsequent FFN performs pointwise nonlinear refinement,

amplifying the fused “grasp–twist” cue and suppressing noise.

• Global MHRA + FFN — resolve long-range semantics. Deep global MHRA performs full

space–time attention, linking the refined local cue to door-panel motion across the clip and to

body pose evolution; a final FFN consolidates this global evidence into a discriminative token.

Outcome. The representation separates “opening a door”—sustained forward rotation and panel

displacement—from lookalikes such as “touching a handle” (no panel displacement) or “closing a

door” (opposite temporal signature), with early stages handling redundant micro-dynamics efficiently

and later stages resolving long-range semantics accurately.

Figure 24.79: UniFormer architecture. A UniFormer block combines DPE, MHRA, and FFN.

Early blocks employ local MHRA; deeper blocks employ global MHRA to capture long-range

space–time dependencies. Adapted from [348].

From UniFormer (V1): what we gained, and what still needs fixing.

• What V1 achieved. It unified cheap local relations early with expressive global attention

late (via MHRA + DPE), cutting shallow-layer cost, reducing redundancy, and improving

long-range reasoning for actions—yielding a strong accuracy–FLOPs trade-off for video

transformers.

• What V1 lacked. As a new backbone, it did not reuse powerful image-pretrained ViT weights;

obtaining robust spatial priors required separate, sizable supervised image pretraining before

video adaptation, increasing engineering and compute overhead.

• What V2 must fix next. Keep V1’s local→global strengths while plugging into widely avail-

able image ViTs: add minimal temporal adapters for short-range dynamics, and lightweight

global aggregators for clip-level context—so the model inherits strong 2D priors and efficient

video modeling out of the box.
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UniFormerV2 (ICCV’22) [345]: arming image ViTs for video, with full formulation and clear
integration.

Goal and integration at a glance. Start from an image-pretrained ViT and insert the smallest

possible temporal machinery so that all strong spatial priors (attention weights, MLPs, and 2D

positional encodings) are kept intact. Concretely:

• Keep (reuse) the ViT block as-is for space. The standard ViT multi-head self-attention and

FFN (per frame) are retained, so pretrained spatial weights and 2D position embeddings load

without change.

• Add a temporal adapter before each block. A lightweight Local Temporal MHRA (LT-

MHRA) is attached in a residual, pre-norm form, mixing only along time at each spatial site.

This leaves the original spatial attention unchanged but makes tokens temporally aware.

• Add cheap global video aggregation late. A Global UniBlock (one-query cross-attention)

produces per-clip video tokens at selected deep layers; it is orthogonal to the ViT’s per-frame

attention, so pretrained spatial weights remain unaffected.

Local UniBlock (LT-MHRA→ GS-MHRA→ FFN). Let XXX in∈RL×C be tubelet tokens (L =
THW ). The block applies

XXXT = LT_MHRA
(
Norm(XXX in)

)
+XXX in, (24.29)

XXXS = GS_MHRA
(
Norm(XXXT )

)
+XXXT , (24.30)

XXXL = FFN
(
Norm(XXXS)

)
+XXXS. (24.31)

Here GS_MHRA is the original ViT spatial attention applied per frame (so its pretrained weights

and 2D positional encodings are reused directly), while LT_MHRA is a new temporal adapter. The

shared MHRA form follows Eq. (24.25).

LT-MHRA (temporal-local adapter). Temporal neighborhood only, per channel and per spatial

site:

ALT
n (XXX i,XXX j) = an

i− j, j ∈Ωt×1×1
i , an∈Rt×1×1. (24.32)

Why it fits. Adjacent frames are redundant; a depthwise 1D temporal conv (kernel t≈3) captures

short-range dynamics at O(L · t) cost, leaves spatial attention/FFN weights unchanged, and therefore

preserves the pretrained ViT’s spatial priors.

GS-MHRA (spatial-global within a frame, weight reuse). Standard ViT attention applied per

frame:

AGS
n (XXX i,XXX j) =

exp
(
Qn(XXX i)

⊤Kn(XXX j)
)

∑ j′∈Ω1×H×W exp
(
Qn(XXX i)⊤Kn(XXX j′)

) . (24.33)

Why it fits. This is exactly the pretrained image ViT’s spatial self-attention: keys/queries/values and

2D positional encodings are loaded as-is. Because temporal mixing happens before this step via

LT-MHRA, the ViT can leverage its spatial priors on temporally enriched tokens without retraining

from scratch.

Global UniBlock (one-query cross-attention⇒ video tokens). At selected deep layers,

XXXC = DPE(XXXL)+XXXL, (24.34)

XXXST = C_MHRA
(
Norm(qqq), Norm(XXXC)

)
, (24.35)

XXXG = FFN
(
Norm(XXXST )

)
+XXXST . (24.36)
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with a single learnable query qqq∈R1×C. Per head,

RRRC
n (qqq,XXX) = AAAC

n (qqq,XXX)VVV n(XXX), (24.37)

AC
n (qqq,XXX j) =

exp
(
Qn(qqq)

⊤Kn(XXX j)
)

∑ j′∈ΩT×H×W exp
(
Qn(qqq)⊤Kn(XXX j′)

) . (24.38)

The output is one video token XXXG∈R1×C per chosen depth (per clip). Why it fits. This is content-

aware global pooling with O(L) cost; it does not alter the pretrained per-frame attention weights and

adds only a small number of parameters (query and projections), keeping the original ViT intact for

spatial reasoning.

Multi-stage fusion (what is fused, where it plugs). Collect video tokens {XXXG
i } from several

deep layers and fuse:

• Sequential: XXXG
i =Gi(XXX

G
i−1,XXX

L
i ) progressively refines summaries.

• Parallel: FFF = Concat(XXXG
1 , . . . ,XXX

G
N)UUUF aggregates multi-scale semantics in one shot.

• Hierarchical (Q or KV): Propagate queries or keys/values across depths so later tokens

condition on earlier summaries.

Finally, mix FFF with the final class token via a learned gate, ZZZ = α FFF + (1−α)FFFC, yielding a

compact clip descriptor. Why it fits. Shallow video tokens carry fine temporal cues; deeper ones

carry semantics. Fusion balances both, while preserving the pretrained ViT’s spatial pathway.

Why this staging preserves pretrained weights and improves efficiency.

• Temporal adapter first. LT_MHRA mixes only along time in a residual path, leaving the

ViT’s per-frame attention and FFN untouched; pretrained 2D weights and positional encodings

load directly.

• Spatial path unchanged. GS_MHRA is the original ViT spatial attention applied within each

frame; keys/queries/values and 2D position embeddings are reused without modification.

• Late, linear-cost globalization. The one-query Global UniBlock appears only in deep layers,

providing clip-level context at O(L) (vs. O(L2)) when features are already abstract.

Net effect. UniFormerV2 retains strong image-ViT spatial priors, adds minimal temporal mixing,

and introduces inexpensive clip-level aggregation—exactly what InternVideo needs for temporally

competent, language-alignable video features.

Concrete cue. For “pouring coffee”, LT_MHRA stabilizes micro-motions of mug and pot across

adjacent frames; GS_MHRA relates hand, mug, and pot within each frame. In deep layers, a Global

UniBlock extracts a video token that concentrates on the interval where liquid flow is visible despite

camera shake. Finally, UniFormerV2 late-integrates this video token with the backbone’s [CLS]

token via a learned gate (ZZZ = α FFF +(1−α)FFFC), yielding a clip descriptor that fuses temporally

pooled evidence (FFF) with the strong spatial prior captured by [CLS] (FFFC). In InternVideo’s final

CMA, the multimodal [CLS] further queries masked-video tokens, enriching this summary with fine

motion/detail before task heads.

Bridging to the method: why UniFormer/UniFormerV2 set the stage.

• Temporally competent yet ViT-friendly. UniFormer/UniFormerV2 inject lightweight tem-

poral mixing (LT_MHRA) before standard ViT spatial attention and keep the per-frame

attention/FFN unchanged. This preserves strong 2D priors while yielding tokens that already

encode short-range dynamics.

• Compact clip-level context. Late one-query cross-attention produces video tokens—content-

aware summaries of the entire clip—that complement the usual [CLS] representation via a

learned late integration. These summaries are ideal anchors for downstream fusion.
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• Natural interface for cross-stream fusion. With temporally aware patch tokens, a ro-

bust [CLS] token, and per-clip video tokens, the backbone exposes clean query/key/value

points. In the following, the method will leverage these to coordinate a generative (masked-

reconstruction) stream and a discriminative (video–language) stream through lightweight

cross-attention, transferring semantics and motion cues without retraining the backbones.

Figure 24.80: Why arm image ViTs. Naïvely adding temporal MHSA to image ViTs tends to

underperform for a given compute budget. UniFormerV2 keeps strong spatial priors and adds concise

temporal modules to achieve superior accuracy–FLOPs trade-offs on video. Adapted from [345].

Figure 24.81: UniFormerV2 framework. Each stage consists of a Local UniBlock (LT-MHRA

adapter→ preserved ViT spatial attention→ FFN). Selected deep stages add a Global UniBlock

that forms a per-clip video token via one-query cross-attention; multiple video tokens are fused to

form the final descriptor. Adapted from [345].
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Method

High-level overview

InternVideo trains two complementary encoders with different pretext signals and then coordinates

them at adaptation time via lightweight cross-attention:

• Masked Video Encoder (MVE). VideoMAE-style ViT with high-ratio tube masking (≈ 90%)

and an asymmetric encoder–decoder that reconstructs pixels and learns motion/appearance-

coherent features without labels.

• Multimodal Video Encoder (MMVE). UniFormerV2-based video backbone paired with a

transformer text encoder, typically CLIP-initialized, trained on large-scale video/image–text

data via a symmetric contrastive loss and a cross-modal captioning loss for language-aligned

semantics [345, 671].

• Coordination via Cross-Model Attention (CMA). After separate pretraining, both backbones

are frozen and small cross-attention+FFN adapters are inserted so the streams can query each

other [671]:

– Intermediate fusion: MVE tokens query MMVE tokens to absorb semantic structure

(inject language-aligned cues into motion-rich features).

– Final fusion: MMVE [CLS] queries MVE tokens to inject precise motion/detail into

the multimodal summary used for prediction.

Figure 24.82: Pretraining pathways. (a) Masked video modeling with an asymmetric ViT en-

coder–decoder. (b) Multimodal learning with UniFormerV2 video encoder, CLIP-initialized text

encoder, and a cross-modal caption decoder. Adapted from [671].

Notation

Let a video clip be tokenized into tubelets and embedded as XXX ∈RL×C with L = T×H×W . Cosine

similarity is sim(·, ·). Temperatures are τ > 0. The symbol ⊙ denotes elementwise multiplication.

1) Generative path — Masked Video Encoder (MVE)

InternVideo adopts a VideoMAE-style asymmetric ViT for self-supervised masked video pretraining:

• Tube masking. A large fraction (e.g., 90%) of spatiotemporal tubelet tokens is masked; only

visible tokens are processed by the encoder, making joint space–time attention computationally

tractable on long clips.

• Asymmetric encoder–decoder. A compact decoder (fewer channels/blocks) reconstructs the

original pixels (or low-level targets) from the encoder features and mask tokens.
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Pixel reconstruction loss. With ground-truth pixel targets YYY and reconstruction ŶYY , the masked-patch

regression uses mean-squared error over masked positions:

Lpix =
1

|M | ∑
p∈M

∥∥ŶYY p−YYY p

∥∥2

2
, (24.39)

where M indexes masked tubelets. This forces the encoder to form motion/appearance-coherent,

temporally aware features that predict missing content from sparse context.

2) Discriminative path — Multimodal Video Encoder (MMVE)

InternVideo builds on CLIP-style alignment but uses UniFormerV2 as the video backbone (Sec. 24.8.1),

paired with a transformer text encoder and a small cross-modal caption decoder:

• Align before fuse. First align video and text embeddings with a symmetric contrastive loss;

then fuse them using a decoder with cross-attention under a captioning loss. This brings

zero-shot alignment (retrieval) and stronger multimodal composition (caption/VQA) in a

single framework [345, 671].

Contrastive loss. Given minibatch {(vvvi, ttt i)}B
i=1 of video/text embeddings,

Lv→t =−
1

B

B

∑
i=1

log
exp
(
sim(vvvi, ttt i)/τ

)

∑
B
j=1 exp

(
sim(vvvi, ttt j)/τ

) , (24.40)

Lt→v =−
1

B

B

∑
i=1

log
exp
(
sim(ttt i,vvvi)/τ

)

∑
B
j=1 exp

(
sim(ttt i,vvv j)/τ

) , (24.41)

Lcon =
1

2
(Lv→t +Lt→v) . (24.42)

Captioning loss: concise mechanics and intuition

Each training clip is paired with a ground-truth caption (GT) from the video–text dataset. The model

does not predict “video tokens”; it predicts the next word token in the caption.

Who is Query/Key/Value—and why. In a transformer caption decoder, the text prefix ([BOS]

w1, . . . ,wt−1) forms the queries: the decoder is asking, “given the words so far, what visual evidence

do I need next?” The video features produced by the UniFormerV2 encoder (dense spatiotemporal

tokens and optional video tokens from Global UniBlocks) serve as keys/values: they are the

searchable memory of what happened where and when. Cross-attention thus retrieves the relevant

visual context to emit the next word.

How training proceeds. With teacher forcing, the decoder conditions on the ground-truth prefix

and predicts the next word; the token-level cross-entropy

Lcap = −
Tcap

∑
t=1

log pθ (wt | w<t , video)

is minimized. The overall multimodal objective combines retrieval-oriented alignment and generative

grounding:

LMM = Lcon + λcapLcap, λcap > 0.
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Why this design works.

• Queries from text. Language dictates what detail is needed next (object → attribute →
action), so using the textual prefix as queries makes the decoder “ask” targeted questions of

the video memory.

• Keys/values from video. UniFormerV2 provides (i) dense tokens for fine, localized evidence

(hands, objects, micro-motions) and (ii) video tokens—compact, late-stage summaries—for

long-range context (phases of an action). This mix lets cross-attention retrieve both sharp

details and global storyline.

• What “video token” means. It is a learned, per-clip summary feature (one token per selected

deep layer), not a word to predict. The decoder can attend to it alongside dense tokens to

maintain temporal coherence in generation.

• Why add captioning to contrastive. Contrastive loss aligns whole video–text pairs (useful for

retrieval), but captioning forces word-by-word grounding: to emit each token, the decoder must

attend to the correct frames/regions. This strengthens VQA/captioning and makes retrieval

more robust to distribution shift.

Role of UniFormerV2 (video memory). LT_MHRA compacts short-range motion (clean verb

cues), GS_MHRA preserves strong spatial priors (reliable nouns/attributes), and Global UniBlocks

add per-clip summary tokens (temporal coherence). Together they produce a video memory that the

decoder can query precisely—rich in detail yet resistant to spurious shortcuts.

3) Coordination — Cross-Model Attention (CMA).

Setup. After the masked and multimodal paths are pretrained independently, InternVideo freezes

both backbones and inserts a small stack of CMA adapters at selected mid/high layers [671]. Each

adapter is a residual, post-norm block with multi-head cross-attention (MHCA) followed by an FFN.

Let

MHCA(QQQ,KKK,VVV ) = Concat(headn)WWW o, headn = softmax
(

QQQWWW Q
n (KKKWWW K

n )
⊤

√
d

)
(VVVWWWV

n ).

The host stream supplies queries (QQQ) and is updated; the guest stream supplies keys/values (KKK,VVV )
as read-only memory. Lightweight 1×1 projections inside the adapter align channel widths when

needed.

Directional use (who queries whom, and why).

• Intermediate CMA (MVE → MMVE). At several early/mid depths of the masked path,

MVE tokens are used as QQQ and MMVE tokens as KKK,VVV . The adapter output replaces (or is

residually added to) the MVE tokens. Effect: transfers language-aligned semantics into

motion/appearance-coherent features while preserving their temporal precision.

• Final CMA (MMVE cls→MVE). Just before the multimodal head, the MMVE class token

is QQQ and the full MVE token map is KKK,VVV . The updated class token becomes the input to

the prediction head. Effect: injects fine motion/detail cues into the multimodal summary at

decision time.

Why this placement.

• Preserve priors. Freezing both encoders protects pixel-reconstruction priors (MVE) and

CLIP/UniFormerV2 priors (MMVE); CMA learns to align, not to overwrite [671].

• Parameter- and compute-efficient. Only the small adapter parameters {WWW Q,WWW K ,WWWV ,WWW o}
and FFN are trained for a few supervised epochs; cross-attention cost scales with O(LQLK)
and remains modest at mid/high stages.
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• Complementarity made explicit. Intermediate CMA semantically enriches motion-rich

tokens; final CMA sharpens the language summary with precise dynamics, improving action

understanding, retrieval, captioning, and VQA.

Figure 24.83: Cross-Model Attention (CMA). Middle: MVE tokens query MMVE tokens to

import semantics into the masked stream. Final: the MMVE class token queries MVE tokens to add

motion/detail to the multimodal summary used by the head. Adapted from [671].

4) Prediction heads and supervised adaptation

For action recognition, temporal localization, retrieval, and VQA/captioning, InternVideo attaches

modest heads on top of the fused features:

• Recognition/localization. A linear/MLP head over the final fused token(s) (or task-specific

proposals) trained with cross-entropy/mAP losses, depending on the benchmark setup.

• Retrieval. For text-to-video (T2V) and video-to-text (V2T), the aligned MMVE pathway en-

ables using contrastive similarity between the fused video representation and text embeddings.

• VQA/caption. The cross-modal decoder (already trained) can be adapted with task supervi-

sion; CMA improves the video-side evidence entering the decoder.

The adaptation schedule used in the paper freezes both encoders and learns CMA (and the task

heads) for a few epochs, providing a tractable path to fuse large pretrained models [671].

5) End-to-end flow (one pass)

1. Two encoders (frozen at adaptation).

(a) MVE: encode visible tubelets, decode reconstruction, providing masked-stream tokens.

(b) MMVE (UniFormerV2 + text): encode video and text; obtain aligned embeddings and,

optionally, decoder features.

2. CMA stacks. Apply intermediate CMA blocks with QQQ = MVE tokens, KKK,VVV = MMVE

tokens; update MVE-side representations.

3. Final CMA. Use MMVE class token as QQQ and MVE tokens as KKK,VVV ; update the class token.

4. Heads. Feed the fused token(s) to the task head: classifier, retrieval similarity, localization

head, or decoder.
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Architecture and Implementation Details

Backbone choices

• Masked Video Encoder (MVE) ViT with tubelet embedding and an asymmetric decoder

as in VideoMAE; high mask ratio (ρ≈0.9) for efficient joint space–time learning of visible

tokens.

• Multimodal Video Encoder (MMVE) UniFormerV2 (Sec. 24.8.1) as the video tower and a

transformer text tower (typically CLIP-initialized), paired with a lightweight caption decoder.

Tokenization and shapes

A clip of T frames at resolution H×W is patchified with temporal stride st and spatial stride s into

T ′×H ′×W ′ tubelets, forming L = T ′H ′W ′ tokens of width C. The MVE processes only the visible

subset; the MMVE processes all tokens.

UniFormerV2 block order in MMVE

Each block applies LT_MHRA→ GS_MHRA→ FFN, preserving the pretrained ViT’s spatial

attention and MLP while adding a residual temporal adapter At selected deep layers, a Global

UniBlock (one-query cross-attention) emits video tokens (one per chosen depth), which serve as

compact per-clip summaries for captioning and heads.

Cross-Model Attention (CMA) placement

• Intermediate CMA Inserted at several mid-depth stages along the MVE; QQQ from MVE tokens,

KKK,VVV from MMVE tokens; output replaces or is residually added to MVE tokens.

• Final CMA Right before the MMVE head; QQQ is the MMVE [CLS], KKK,VVV are the full MVE

token map; the updated [CLS] goes to prediction heads.

Each CMA adapter is a residual, post-norm MHCA+FFN; optional 1×1 projections align channel

widths.

Training schedule

1. Stage 1 Self-supervised masked pretraining of MVE with pixel regression over masked

tubelets.

2. Stage 2 Multimodal pretraining of MMVE with symmetric contrastive alignment and caption-

ing under teacher forcing; UniFormerV2 supplies temporally competent video features.

3. Stage 3 Supervised adaptation on downstream tasks with both encoders frozen; train only

CMA and task heads.
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Experiments and Ablations

Bottom-line summary across tasks

• Action recognition. On Kinetics-400/600/700, InternVideo attains 91.1/91.3/84.0% top-1

with billion-scale backbones (InternVideo-D/T), edging strong generative and multimodal

pretraining baselines such as MaskFeat-L, CoCa, and MTV-H at comparable or larger scales

[671, 687, 720, 741].

• More AR benchmarks. Gains transfer broadly: 70.0% on SthSthV1 (+9.1), 77.2% on

SthSthV2 (+1.6), 94.3% on ActivityNet (+4.1), 95.5% on HACS (+3.6), and 89.3% on

HMDB51 (+1.7) over prior best reports [671].

• Temporal localization. Coupled with strong heads, InternVideo improves average mAP on

THUMOS-14, ActivityNet-v1.3, HACS, and FineAction; e.g., with ActionFormer it reaches

71.58 on THUMOS-14 and 39.00 on ActivityNet-v1.3, and with TCANet it reaches 41.55 on

HACS [671, 711, 760].

• Spatiotemporal localization. With a linear head, InternVideo reports 41.01 mAP on AVA2.2

and 42.51 mAP on AVA-Kinetics, surpassing prior ensembles and MaskFeat while using

minimal task-specific tuning [346, 465, 671, 687].

• Text–video retrieval. R@1 improves consistently over CLIP-derived baselines across MSR-

VTT, MSVD, LSMDC, ActivityNet, DiDeMo, and VATEX for both T2V and V2T, reflecting

stronger alignment and compositional grounding [381, 403, 407, 671].

• VQA and captioning. Adding a captioning objective yields absolute gains of ∼3–8 points on

MSRVTT, MSVD, and TGIF, indicating that generative grounding complements contrastive

alignment [161, 322, 658, 671, 754].

• Navigation and robustness. Improvements extend to VLN-CE and open-set AR, with higher

success rates and better uncertainty calibration than prior backbones [671].

Key ablations and what they imply

• CMA matters. Removing cross-model attention lowers action recognition and retrieval,

most notably for categories needing both fine motion and semantics, confirming stream

complementarity and the benefit of two-direction fusion [671].

• Fusion directions are not interchangeable. Using only MVE→MMVE or omitting the

late MMVE [CLS]→MVE step underperforms; the final class-token query is particularly

important for recognition and retrieval [671].

• Mask ratio vs. clip length. Very high masking on short clips can over-regularize the MVE;

tuning ρ jointly with clip length T stabilizes learning and improves transfer [671].

• Why UniFormerV2. Replacing UniFormerV2 with a naïve ViT video tower weakens cap-

tioning/VQA and retrieval under shift, underscoring the benefit of LT_MHRA and late video

tokens for temporal coherence [345, 671].

Representative takeaways

• Scale with structure beats raw scale. InternVideo-T surpasses 1B+ baselines like CoCa

and MTV-H on Kinetics despite similar or larger parameter counts, pointing to the benefits of

structured dual pretraining and CMA over size alone [671, 720, 741].

• Complementary objectives help. Improvements on retrieval and VQA mirror the combination

of Lcon and Lcap, while AR and localization gains show that motion structure learned by the

MVE remains intact after coordination [671].
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Limitations and Follow-up Works

Current limitations

• Two-tower rigidity. With encoders frozen at adaptation, CMA aligns mid/high-level features

but has limited ability to influence early representations or permit full co-adaptation [671].

• Cross-attention budget. CMA complexity scales with LQLK ; very long clips, high resolutions,

or dense token maps can raise adaptation cost even if it remains lighter than end-to-end joint

training.

• Temporal skew. Differences in sampling policies or augmentations between streams may

introduce small frame misalignments unless clip timing is carefully synchronized.

• Language priors. Contrastive pretraining can reflect dataset caption biases; the captioning

objective and CMA help, but residual bias may remain.

Buildup toward InternVideoV2

• Gentle co-adaptation. Move beyond fully frozen fusion by selectively or gradually unfreezing

blocks around CMA sites, so motion and semantics can co-evolve while preserving strong

pretrained priors.

• Token economy. Reduce the number of tokens entering CMA via dynamic pruning or routing,

focusing cross-attention on salient motion regions and text-relevant evidence to keep LQ,LK

modest.

• Stronger temporal bias. Improve temporal synchronization and long-horizon stability with

richer relative position modeling and more reliable per-clip summary tokens, mitigating drift

across long sequences.

• Unified curricula. Coordinate masking ratios, clip lengths, and the balance of masked,

contrastive, generative losses—together with cleaner temporal segmentation and caption

quality—to smooth optimization at scale.

Takeaway

InternVideo indicates that separate generative and multimodal pretraining, followed by lightweight

cross-attention coordination, can produce broadly transferable video representations across recog-

nition, localization, retrieval, VQA, navigation, and open-set evaluation, and subsequent variants

soften the two-tower boundary and streamline fusion cost while retaining the pretrained priors that

underpin these gains [671].
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Enrichment 24.8.2: OmniVL: One Model for Image–Video–Language

Scope and positioning

OmniVL’s [662] central thesis is unification along three axes: data (image/video paired with either

text or labels), modality (a single visual encoder for images and videos), and functionality (alignment

and generation) without task-specific adapters. The authors introduce a decoupled joint curriculum

and a Unified Vision–Language Contrastive loss (UniVLC) to couple clean labels with noisy captions,

yielding bidirectional gains for both image and video tasks.

Figure 24.84: OmniVL overview. The framework unifies the pretraining corpus (human-annotated

labels and web-crawled captions), the modality space (image, video, and text), and functionality

(visual-only classification, cross-modal alignment, and multi-modal understanding/generation) in a

single encoder–decoder architecture. Source: [662]

Motivation

Fragmentation problem

The OmniVL paper [662] is motivated by persistent fragmentation in vision–language foundations,

which hampers transfer, scalability, and simplicity of deployment. Three silos are especially limiting.

• Functionality silo (retrieval vs. generation). Many systems dedicate separate models or

heavy adapters to non-generative alignment tasks (e.g., retrieval) versus generative tasks (e.g.,

captioning and QA), preventing a single representation from serving both effectively.

• Modality silo (image vs. video). Image-language models are often extended to video as

independent frames or via ad-hoc heads, weakening temporal modeling and requiring extra

parameters to adapt to motion.

• Data-source silo (captions vs. labels). Training on either clean, discriminative label corpora

(e.g., ImageNet, Kinetics) or noisy, webly image/video–text pairs yields features that are

respectively precise or broad but rarely both, leaving potential gains from joint supervision

unrealized.

In practice, these silos force multiple specialized pipelines and miss beneficial cross-task and

cross-modal transfer, particularly for video where temporal dependencies are essential.
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Design hypothesis

OmniVL posits that a single model can break these silos by unifying data, modality, and functionality

under one pretraining and inference framework.

• Unified feature space via mixed supervision. Combining clean label corpora with webly

caption corpora in a shared contrastive space should yield features that are simultaneously

discriminative and semantically rich, improving both visual-only recognition and cross-modal

understanding.

• Efficient spatio-temporal modeling in one encoder. Sharing a TimeSformer-style visual

backbone across images and videos leverages strong spatial pretraining for images while

activating temporal attention only for videos, avoiding duplicate encoders and encouraging

transfer from spatial to spatio-temporal representation.

• Decoupled joint pretraining for stability and bidirectional gains. First learning on

image–language to establish robust spatial representations, then continuing with joint im-

age+video training, should introduce temporal dynamics without catastrophic forgetting and

produce gains that flow in both directions (image↔ video).

This hypothesis underlies OmniVL’s choice of losses and curriculum, aiming to replace fragmented

stacks with a single foundation that scales across tasks and modalities.

Method: high-level flow and detailed breakdown

High-level overview

OmniVL [662] follows an encoder–decoder design that routes the same inputs through a unified

pipeline and learns three complementary objectives. The end-to-end flow is: tokenizing→ positional

encodings (spatial, temporal)→ unified visual encoder → text encoder → two visual-grounded

decoders for alignment and generation→ task heads and objectives. A two-stage, decoupled joint

pretraining curriculum first builds strong spatial representations on image–language, then introduces

video–language to learn temporal dynamics while preserving the spatial foundation. This structure

supports visual-only tasks, cross-modal alignment, and multi-modal generation within a single model

without task-specific adapters.

Data format and prompting

All pretraining sources are expressed in a joint visual–label–text space [662]. Each sample is a

triplet S = (x,y, t), where x is an image or a video, y is a unique category index, and t is its language

description. For image/video–label data, t is generated with CLIP- and ActionCLIP-style prompt

templates by filling class names, so that all visual samples with the same category share a common

textual description. This formulation unifies four corpora: image–text, video–text, image–label, and

video–label.

Step-by-step data flow

1. Tokenizing. Raw inputs are converted into a unified token sequence suitable for a transformer.

For an image x∈RH×W×3, OmniVL applies a 2D patch tokenizer implemented as a convolution

with kernel and stride p× p, producing N = HW
p2 patch tokens in R

D plus a learned [CLS]

token. For a video x∈RT×H×W×3, OmniVL uses a 3D tubelet tokenizer with kernel and stride

τ× p× p to yield N′ = T
τ · HW

p2 tokens that already encode short-term motion, again prepending

a [CLS]. Using dedicated 2D/3D tokenizers aligns the channel dimension D across modalities,

injects a mild local inductive bias, and normalizes the interface to the shared encoder while

allowing flexible frame sampling and tubelet length during training and fine-tuning [662].
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2. Positional encodings. Self-attention is permutation invariant, so OmniVL injects position

using learned, factorized absolute embeddings that separate space and time [662]. Let

Es(h,w) ∈ R
D be a learned spatial table on the 2D grid and Et(t) ∈ R

D a learned temporal

table on the 1D frame/tubelet axis. An image token at (h,w) is

z
h,w
0 = patch_emb

(
xh,w
)
+ Es(h,w),

and a video tubelet token at time t, location (h,w) is

z
t,h,w
0 = tubelet_emb

(
xt,h,w

)
+ Es(h,w) + Et(t).

Why learned (vs. sinusoidal or purely relative). (i) Compatibility with image pretraining.

The decoupled-joint schedule initializes the unified encoder from strong image checkpoints

that use learned absolute PEs; keeping learned Es preserves this interface, easing transfer from

Stage 1 (images) to Stage 2 (videos). (ii) Modality unification and weight sharing. A shared

2D spatial table Es across images and videos keeps the spatial grid consistent, so the same

encoder weights can process both, while time is injected only when present via Et. (iii) Stable

scaling via interpolation. Factorizing space and time avoids a monolithic 3D table tied to

fixed (T,H,W ); learned Es,Et are smoothly interpolated for new resolutions or clip lengths at

fine-tuning. (iv) Empirical simplicity. Learned absolute PEs are a lightweight, data-driven

choice that match or outperform fixed sinusoids in ViT-style vision models while avoiding

extra complexity in attention kernels required by some relative schemes. Overall, OmniVL’s

learned, factorized PEs deliver the needed spatial layout and temporal order signals while

aligning with the unified encoder and the training curriculum.

3. Unified visual encoder. A single transformer encoder with shared parameters processes both

modalities. Each block follows a TimeSformer-style decoupled scheme, applying temporal

self-attention across tokens at the same spatial index followed by spatial self-attention within

each frame, with feed-forward layers and residual connections in between. For images,

the temporal step is bypassed, so the encoder reduces to a ViT-like pathway; for videos,

both temporal and spatial steps are active. Sharing almost all weights forces a common

representational space where image-learned spatial semantics transfer to videos and video-

learned temporal cues regularize spatial features. In the decoupled joint curriculum, Stage 1

trains this encoder on image–language data to solidify spatial features; Stage 2 continues

training with mixed image+video batches to learn temporal dynamics without forgetting. The

final hidden state of [CLS] serves as the global embedding vcls for recognition and retrieval,

while the full token grid is exposed to the visual-grounded decoders via cross-attention for

alignment and generation [662].

4. Text encoder. A transformer text encoder converts the tokenized caption or prompted label

sentence into contextual embeddings, with a [CLS] token used for global text representation

wcls.

5. Visual-grounded decoders. Two transformer decoders fuse text with the visual tokens for

complementary functionalities while sharing the same visual inputs [662]. Each decoder block

follows the sequence self-attention→ cross-attention to visual tokens→ feed-forward, with

residual connections and layer normalization throughout. The two decoders differ only in the

self-attention mask and the supervision signal, which is the crux of unifying non-generative

alignment and generative modeling in one framework.
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• Alignment decoder (non-generative). A special [ENC] token is prepended to the text

sequence. The decoder uses bidirectional self-attention, which is the standard unmasked

multi-head self-attention as in BERT encoders, so every text token can attend to every

other token regardless of position to build a globally contextualized representation. After

self-attention, each layer performs cross-attention with the text stream as queries and

the visual token grid as keys/values, grounding the full sentence in the image or video

content. The output embedding at [ENC] serves as a fused cross-modal representation

that a linear head maps to a match probability for the Vision–Language Matching

objective. In retrieval, encoder similarities shortlist candidates and this decoder re-ranks

them using the [ENC] embedding, improving precision at low recall budgets.

• Generation decoder (generative). Architecturally mirrors the alignment decoder but

replaces bidirectional self-attention with causal self-attention, implemented by a lower-

triangular mask so token l only attends to positions ≤ l. This makes the decoder

autoregressive, which is necessary for text generation where future tokens must not leak

into the current prediction. The text stream is wrapped with a [DEC] start token and an

[EOS] end token and is trained with teacher forcing under the language modeling loss.

Cross-attention at every layer conditions generation on the visual tokens, enabling cap-

tioning and question answering. At inference, the decoder generates tokens sequentially

until [EOS] is emitted.

Causal vs. bidirectional in context. Bidirectional self-attention equals regular, unmasked

MHSA and is ideal for understanding tasks that benefit from full-sequence context such as

alignment and re-ranking, whereas causal self-attention enforces one-way information flow for

generation by hiding future tokens, aligning supervision and attention with the autoregressive

objective.

6. Contrastive memory banks. OmniVL casts pretraining as self-supervised contrastive learning

to unify heterogeneous supervision at scale: paired image/video–text samples and class labels

provide weak but ubiquitous signals, and contrastive SSL converts these co-occurrences into

instance- and class-aware alignment across modalities without dense annotations. To obtain

many, stable negatives, OmniVL adopts a MoCo-style momentum contrast 22.3.5 [662].

Inputs are the current mini-batch of visual and text tokens. The online encoders produce

query projections (qv,qt), while momentum encoders—exponential moving average (EMA)

copies—encode the same batch into keys (kv,kt) updated by

θmom← mθmom +(1−m)θonline, m ∈ [0,1)

so targets change slowly and remain consistent across steps. Keys are stop-gradient and

enqueued into fixed-capacity FIFO queues Qv = {vm}M
m=1, Qt = {wm}M

m=1 with labels Qy =
{ym}M

m=1; oldest entries are dequeued to keep size M. Computation of UniVLC uses the

queues in InfoNCE denominators to supply thousands of negatives, and forms positives from

the paired query–key as well as class-aware keys with yk=yi, tying together image–text,

video–text, image–label, and video–label signals in one objective. Why EMA and not large

batches. SimCLR-style training would require very large synchronized batches to approximate

this many negatives; EMA keys act as a slowly moving teacher that stabilizes the dictionary,

prevents target drift when the online encoder updates, and enables a vast, cheap negative set

via queues without increasing memory or cross-device synchronization. Outputs are stronger

and smoother gradients for cross-modal alignment, leading to more robust representations

under mixed corpora and improved optimization stability.
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Pretraining objectives

OmniVL learns three complementary skills in parallel—global alignment, pairwise verification, and

conditional generation—so that one checkpoint can serve retrieval, recognition, and captioning/QA.

The three losses operate on different heads but share the unified encoders, so gradients reinforce

rather than conflict [662].

Unified Vision–Language Contrastive (UniVLC) loss.

1. Purpose. Build a shared metric space in which semantically equivalent visuals and texts

co-locate across corpora and modalities.

2. Inputs. For a sample S = (xi,yi, ti) in batch B, encoders produce ℓ2-normalized projections vi

and wi. Momentum queues provide stored keys {vm,wm,ym}M
m=1.

3. Positives. The paired text/visual and class-aware positives k ∈P(i) = {k | k ∈M , yk = yi}
enforce that items sharing label semantics align even when captions differ.

4. Negatives. All other keys in the queues act as negatives, giving large and stable denominators.

5. Objective. With learnable temperature τ ,

Lv2t(vi) =− ∑
k∈P(i)

log
exp
(
v⊤i wk/τ

)

∑
M
m=1 exp

(
v⊤i wm/τ

) , Lt2v(wi) =− ∑
k∈P(i)

log
exp
(
w⊤i vk/τ

)

∑
M
m=1 exp

(
w⊤i vm/τ

) ,

(1)

LUniVLC( ;θve,θte) =
1
2 E(xi,yi,ti)[Lv2t(xi)+Lt2v(ti)] (2)

6. Effect. Teaches concept-level alignment such that, e.g., a video labeled dog catching frisbee,

an image labeled dog, and a caption a golden retriever jumps for a frisbee cluster together,

while unrelated items repel.

Vision–Language Matching (VLM) loss.

1. Purpose. Learn pairwise verification on top of the UniVLC space to answer whether a specific

text matches a specific visual.

2. Inputs. Negatives are formed by replacing ti with t j ∈ B. The alignment decoder cross-attends

to visual tokens and emits a probability pvlm from the [ENC] embedding via a linear head.

3. Objective. Binary cross-entropy

LVLM( ;θve,θad) = E(xi,yi,ti)[yvlm log pvlm +(1− yvlm) log(1− pvlm)] (3)

with yvlm=1 if j ∈ B and y j = yi, else 0

4. Effect. Sharpens decision boundaries for hard cases, e.g., distinguishing frisbee vs ball when

UniVLC already places both near dog playing.

Language Modeling (LM) loss.

1. Purpose. Enable conditional generation grounded in visual tokens for captioning and QA.

2. Inputs. The generation decoder is causal and trained with teacher forcing on [DEC] t [EOS],
cross-attending to visual tokens at every layer.
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3. Objective.

LLM( ;θve,θgd) =−E(xi,yi,ti)

[
L

∑
l=1

logP
(

t l
i | t<l

i , xi

)]
(4)

4. Effect. Pressures visual features to be descriptive enough to predict objects, actions, attributes,

and relations token by token.

Putting the skills together

1. UniVLC provides a coarse but universal geometry where heterogeneous supervision is recon-

ciled.

2. VLM adds fine-grained pairwise checks that improve retrieval re-ranking and robustness to

hard negatives.

3. LM teaches causal decoding conditioned on the same visual tokens, enriching them with

language-predictive cues.

The joint objective is the uniform sum

L = λ1LUniVLC +λ2LVLM +λ3LLM, λ1 = λ2 = λ3 = 1 (5)

so the encoders simultaneously become discriminative for recognition, aligned for retrieval, and

informative for generation.

Decoupled joint pretraining

Two staged phases determine when temporal dynamics are learned while preserving spatial compe-

tence [662].

• Stage 1: Image–language pretraining Train on image–text and image–label only to solidify

spatial representations while temporal attention is inactive.

• Stage 2: Joint image+video pretraining Continue image training and add video–text and

video–label so temporal attention is learned incrementally on top of the spatial foundation,

avoiding forgetting and yielding bidirectional gains for both image and video tasks.

Task routing and inference

A single pretrained checkpoint supports multiple families of tasks without adapters.

• Visual-only recognition. Use vcls for linear probing or fine-tuning on image classification and

video action recognition.

• Cross-modal alignment. For retrieval, use encoder similarity to shortlist candidates and the

alignment decoder for re-ranking via the [ENC] representation, improving precision at low

recall budgets.

• Multi-modal generation. Condition the generation decoder on visual tokens to produce

captions or answers, leveraging the LM objective learned during pretraining.

This unified path—shared tokenization and positional encoding, one visual backbone with decoupled

temporal/spatial attention, a standard text encoder, and two visual-grounded decoders trained under

Eqs. (1)–(5)—constitutes the OmniVL method and explains how unification across data, modality,

and functionality is realized in practice.
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Architecture & implementation details

Backbone design at a glance

OmniVL instantiates a single encoder–decoder stack where the visual side is a TimeSformer-style

transformer, the language side is a BERT-base encoder, and two lightweight visual-grounded decoders

provide alignment and generation heads [42, 120, 662]. The key engineering choice is to share

almost all visual parameters between images and videos while keeping temporal attention conditional

on the presence of time, so Stage 1 spatial pretraining transfers directly to Stage 2 temporal learning

without adapters [662].

Unified visual encoder: shapes, blocks, and schedules

Inputs are tokenized to a common channel dimension D by modality-specific tokenizers that also add

a learned [CLS] token [662]. Images x∈RH×W×3 use a 2D patch embed with kernel/stride p× p,

giving N = HW
p2 +1 tokens including [CLS]. Videos x∈RT×H×W×3 use a 3D tubelet embed with

kernel/stride τ× p× p, yielding N′ = T
τ · HW

p2 +1 tokens that encode short-range motion. Learned

positional encodings are factorized as spatial Es(h,w) and temporal Et(t) and summed with token

embeddings, enabling weight sharing across modalities and robust interpolation across resolutions

and clip lengths [662]. Each transformer block is pre-norm and applies temporal self-attention then

spatial self-attention with MLP in between, all with residual connections. The temporal step is

skipped for images, so the block reduces to a ViT-style layer for T=1. Default backbone follows

a ViT-B/16 scale for capacity and speed balance, with stochastic depth and token dropout used

as regularization in long videos when applicable [42, 662]. The last [CLS] state forms the global

visual embedding vcls, while all patch or tubelet tokens feed the decoders through cross-attention for

grounding [662].

Text encoder: tokenization and heads

A BERT-base encoder produces contextual text features from WordPiece tokenization with special

tokens reserved for [ENC] and [DEC] control and [EOS] termination [120, 662]. The [CLS]

output wcls serves retrieval and contrastive alignment via a projection to the shared embedding

space. Prompted label sentences and free-form captions share the same tokenizer and vocabulary so

UniVLC sees a unified language interface for both clean labels and noisy web text [662].

Decoders: attention masks, fusion, and outputs

Both decoders are initialized from BERT-base and stack blocks of self-attention→ cross-attention

to visual tokens → MLP with residuals and layer normalization [662]. The alignment decoder

uses bidirectional (unmasked) self-attention over the full text and prepends [ENC] whose output

embedding becomes a fused cross-modal representation for VLM scoring and retrieval re-ranking.

The generation decoder is identical but uses causal masking so position l only attends to ≤ l and

wraps the sequence with [DEC] and [EOS] for autoregressive decoding under the LM objective. In

both decoders, cross-attention queries come from the text stream and keys/values are the full visual

token grid, letting the text resolve to relevant spatial or temporal evidence [662].

Projection heads, similarities, and temperatures

Contrastive learning uses lightweight heads that map vcls and wcls to a common dimension and

ℓ2-normalize them, so similarity is cosine with a learnable temperature τ as in Eqs. (1)–(2). The

VLM head is a linear classifier on the [ENC] output. The LM head ties to the text embedding matrix

by default to stabilize generation and reduce parameters [662].
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Queues, EMA encoders, and retrieval runtime

OmniVL implements MoCo-style momentum encoders and FIFO queues for visual keys, text keys,

and labels to scale UniVLC to many stable negatives without large synchronous batches [662]. EMA

parameters update at high momentum so the key distribution drifts slowly, improving InfoNCE

stability across steps. At inference for retrieval, a two-stage path is used: encoder similarities produce

a top-K shortlist, then the alignment decoder re-ranks using the [ENC] representation for better

precision at tight recall budgets [662].

Data, batching, and curriculum specifics

Stage 1 samples ∼ 14M image–text pairs from COCO, Visual Genome, CC3M, CC12M, and SBU

and converts ImageNet-1K labels to prompted sentences so image–text and image–label are trained

together under UniVLC. Augmentations are standard resize–crop, color jitter, and horizontal flip

for images with caption sampling, and random clip sampling for videos. Stage 2 mixes image

batches with video–text and video–label data, enabling temporal attention while preserving image

supervision so spatial features are not forgotten. Clips are typically 8× 2242, with temporal PE

learned and interpolated when clip length changes at fine-tuning [662].

Optimization and training stability

Training uses AdamW with warmup then cosine decay, gradient scaling in mixed precision, and

gradient clipping for stability [662]. The decoupled joint curriculum aligns the optimization land-

scape: UniVLC shapes a coarse cross-modal geometry early, VLM sharpens pairwise decisions

when encoders are already aligned, and LM enriches visual tokens with language-predictive cues.

Positional embeddings Es and Et are interpolated when transferring to new resolutions or clip lengths,

which avoids reinitialization and preserves the learned geometry [662].

Experiments and ablations

Result highlights

With a ViT-B scale backbone and moderate pretraining data, a single OmniVL checkpoint is

competitive or state of the art across image–text retrieval and captioning on COCO and Flickr30K,

video–text retrieval on MSRVTT, video QA on MSVD and MSRVTT, and strong visual-only

recognition under linear probing and fine-tuning [662]. Retrieval uses a two-stage pipeline: encoder

cosine similarity for top-K preselection and alignment-decoder re-ranking with the [ENC] embedding

for final ordering, which consistently lifts precision at tight budgets [662].

Table 24.46: Comparison across pretraining schedules from the paper’s Table 10. Metrics: COCO

retrieval (TR@1, IR@1), MSRVTT retrieval (IR@1), COCO captioning (BLEU@4, CIDEr), VQA

(test-dev), and MSRVTT-QA accuracy.

Pretraining COCO TR@1 COCO IR@1 MSRVTT IR@1 COCO B@4 COCO C VQA dev MSRVTT(QA) acc

Without Pretraining 37.1 28.5 9.6 27.4 80.0 39.51 36.6

Video-only – – 13.7 – – – 15.8

Image-only 80.9 63.0 38.2 39.3 131.6 77.62 40.8

Joint (scratch) 50.2 35.0 23.6 29.7 94.6 47.78 38.8

Img2Vid 79.7 61.8 42.5 38.6 129.5 77.43 42.8

Decoupled Joint (OmniVL Full) 82.1 64.8 47.8 39.8 133.9 78.33 44.1

What the curriculum buys

• Joint from scratch fails mixing image and video from iteration zero underperforms sharply

across all tasks, indicating unstable co-optimization of spatial and temporal cues without a

strong spatial prior.
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• Image-only is strong but asymmetric excellent image-side metrics yet limited transfer to

video retrieval, revealing the gap in temporal understanding.

• Img2Vid narrows the gap image pretraining followed by video-only brings video gains while

slightly regressing image metrics, suggesting partial forgetting.

• Decoupled Joint wins image pretraining then joint image+video yields the best of both worlds

in Table 24.46, supporting the design that temporal learning should be layered on top of a

solid spatial manifold.

What UniVLC adds

• Consistent gains across modalities enabling UniVLC improves retrieval, captioning, VQA,

and visual-only recognition in Fig. 24.85, validating the unified contrastive hypothesis.

• Class-aware positives matter treating samples sharing the same label as additional positives

ties together image–label, video–label, and caption supervision, sharpening category structure

while keeping cross-modal alignment.

• Scalable negatives stabilize learning momentum queues supply thousands of stable negatives

per step, yielding smoother InfoNCE optimization than large-batch alternatives under mixed

corpora.

Retrieval pipeline ablation

• Top-K then re-rank encoder cosine similarity produces a compact shortlist and the alignment

decoder re-ranks using the [ENC] embedding, improving R@1 at fixed compute budgets

compared to single-stage scoring [662].

• Effect beyond retrieval the VLM head trained for re-ranking also refines the shared encoders

via cross-attention, which correlates with small but repeatable gains on captioning and QA.

Takeaways

• Curriculum is essential learn space first on images, then add time with joint training to avoid

forgetting and to unlock bidirectional transfer between modalities.

• Unification pays off one embedding space supervised by labels and captions plus two decoders

covers alignment and generation without task-specific adapters.

• Engineering matters factorized PEs, EMA queues, and two-stage retrieval make the method

robust at ViT-B scale with moderate data, while leaving clear headroom for larger backbones

or longer clips.

Figure 24.85: With and without UniVLC across tasks, showing consistent gains that support the

unified contrastive design [662].
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Limitations and future directions

Token budget and long-form video

Quadratic self-attention constrains clip length and resolution, so OmniVL is most practical on

short segments. Promising remedies include hierarchical token selection and pooling, streaming or

memory-augmented attention, and keyframe or tubelet merging; efficient spatiotemporal stacks in

InternVideo2 [678] and long-context segment pipelines in LongVLM [690] point to viable paths

forward.

Prompting sensitivity and text targets

UniVLC relies on prompt-engineered label sentences, which can bias positives and underdescribe

actions. Learnable prompts, LLM-augmented captions, and multi-view text targets (titles, ASR

transcripts, and dense narrations) improve robustness; recent pipelines in InternVideo2 [678] and

VideoLLaMA-style [103] instruction data illustrate how to replace brittle templates with richer

supervision.

Fine-grained localization and grounding

Global tokens such as [CLS] and [ENC] dominate, which weakens region- and moment-level

sensitivity. Future variants should supervise phrase–patch and question–moment alignment, expose

tubelet tokens to grounding heads, and add localized losses; stronger local features in InternVideo-

style models and temporal localization modules in video LLMs are practical next steps.

Data curation and balance

Performance depends on the mix of clean labels and noisy captions, as well as shot boundaries and

temporal coherence. Shot-aware segmentation, quality-aware reweighting, and curriculum schedules

can raise the signal-to-noise ratio, while fusing audio, ASR, and summary text stabilizes unified

contrastive training and broadens semantics.

From unified encoders to instruction following

OmniVL excels at retrieval, recognition, and captioning under fixed prompts but lacks multi-turn

instruction following. Bridging to video LLMs via lightweight adapters or decoder replacement

enables instruction tuning and tool use while reusing OmniVL visual tokens.

Scaling outlook

Larger yet efficient backbones, longer-context attention, learned prompts, grounding objectives, and

higher quality multi-view text complement the decoupled joint recipe. These directions connect

OmniVL to InternVideo2 (covered next, 24.8.3) for efficient spatiotemporal modeling and to long-

context video LLMs such as LongVLM 24.10.2 and VideoLLaMA 24.9.2 for instruction following

and reasoning.
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Enrichment 24.8.3: InternVideo2: Generative + Discriminative Pretraining

Scope and positioning

InternVideo2 [678] is a three-stage, multimodal pretraining framework that scales video encoders

and aligns them with text and large language models (LLMs). The aim is broad transfer across action

recognition, video–text retrieval, temporal localization, and video-centric dialogue, with emphasis

on long-form understanding and procedure-aware reasoning.

Motivation

Problem framing

A general-purpose video foundation model (VFM) must address three complementary needs:

• Strong video-only representations that capture motion, long-range temporal structure, and

scene dynamics beyond frame-level appearance.

• Reliable multimodal alignment that ties video to language and audio streams (captions, ASR,

raw audio) for concept naming, temporal grounding, and cross-modal retrieval.

• A practical route to instruction-following and reasoning with LLMs, enabling models to

answer, explain, and plan over long videos.

Earlier recipes such as InternVideo [671] combined masked reconstruction and contrastive learning

with cross-model attention, but they left open stable co-adaptation of early features, robust use of

audio and speech, and a scalable path to long-form dialogue.

Why InternVideo (V1) is not enough

Three limitations motivated a new design:

• Limited co-adaptation. Freezing backbones around cross-attention ensured stability but

prevented early layers from becoming more motion-sensitive.

• Short-horizon focus. Clip-centric objectives did not teach temporal commonsense such as

ordering, counting, and multi-step procedures needed by video QA.

• Underused modalities. Alignment leaned on text; audio and speech were not systematically

integrated, and caption quality and segmentation limited supervision density.

Design principles for a scalable VFM

InternVideo2 follows a curriculum that separates concerns while controlling compute:

• Decouple objectives. First learn motion-aware visual priors; then attach language and audio

at scale.

• Spend compute where it pays off. Use self-supervised video learning before costly caption-

based and LLM tuning stages.

• Summarize for long context. Compress long videos into a small token set before handing

them to an LLM to avoid quadratic attention costs.

• Fuse multi-source captions. Combine video, audio, and speech captions to improve temporal

grounding beyond alt-text alone.

What success looks like

A successful VFM should retain strong image-level semantics while adding temporal sensitivity,

align video tokens with language and acoustic evidence for retrieval and grounding, and converse

over long videos by tracking entities, ordering events, and following instructions without prohibitive

compute.
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Key idea

InternVideo2 adds capability in three short, progressive stages, keeping each objective simple and

stable.

• Stage 1: Learn motion-aware visual priors (video-only). Train a ViT-style video encoder

with masked autoencoding over tubelets to capture spatiotemporal structure and reduce re-

dundancy. Intuition: aggressive tube masking forces integration over time, yielding robust

motion-sensitive features suitable for transfer.

• Stage 2: Align vision to language (and audio/speech) at scale. Freeze the idea of “what is

seen” and learn “what it means” by contrastively aligning video features with paired captions

and transcripts, optionally including audio or speech signals. Intuition: alignment turns generic

visual tokens into semantically grounded representations without changing the core video

encoder too much.

• Stage 3: Enable dialogue and reasoning with an LLM. Insert a lightweight query former

(Q-Former, as seen in BLIP2 24.5.3)—a small attention module whose few learnable queries

summarize a long video into K informative tokens—and feed these tokens to a pretrained

LLM. Adapt the LLM with parameter-efficient fine-tuning (LoRA; see §22.8.1) while training

the Q-Former. Intuition: the Q-Former provides a compact “briefing” an LLM can reason

over; LoRA preserves general language ability while specializing to video tasks at low cost.

This staged recipe avoids brittle all-at-once training by cleanly separating perception, grounding,

and reasoning; it scales with data and parameters, leverages richer VAS (Video-Audio-Speech)

supervision, and culminates in a conversational video agent with long-context competence [678].

Figure 24.86: High-level overview and qualitative capabilities of InternVideo2 across recognition,

retrieval, long-form reasoning, and dialogue. Source: [678].

Method: objectives, training stages, and intuition

Notation

Let a video clip be x ∈ R
T×H×W×3 and a text sequence be y = (y1, . . . ,yM). Denote a video encoder

fθ that maps x to token features Z ∈ R
L×D, where L = T H ′W ′ after patchifying, and a text encoder

gφ that maps y to u ∈ R
D. Let sg[·] be stop-gradient.

Stage 1: Video-only masked autoencoding

Following MAE [210], InternVideo2 applies high video-tube masking to tokens of x. Let M ⊆
{1, . . . ,L} index masked tokens and M̄ the visible ones. The encoder processes only ZM̄; a lightweight

decoder hψ reconstructs masked pixels for indices in M.

LMAE =
1

|M| ∑i∈M

∥∥hψ

(
fθ (x)M̄

)
i
− xi

∥∥2

2
(24.43)
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Intuition Tube masking suppresses short-term redundancy, forcing the encoder to integrate spatial

cues over time while keeping compute focused on informative tokens.

Stage 2: Multimodal contrastive alignment (image–text and video–text)

Stage 2 turns the Stage 1 video encoder fθ into a multimodal aligner by pairing it with a language-

pretrained text encoder gφ (Transformer-based) and, when used, audio/speech encoders (initialized

from acoustic pretraining). Each encoder is followed by a small MLP projection head that maps

pooled tokens (e.g., mean or [CLS]) to d-dimensional, ℓ2-normalized embeddings. InternVideo2

then adopts a CLIP-style contrastive objective to learn a shared space for retrieval and grounding

(background: §22.3.11; InfoNCE in (22.3.2)). Concretely, pooled video features map to v ∈ R
d and

captions to t ∈ R
d ; with temperature τ , the symmetric in-batch InfoNCE is

LCLIP = − 1

|B| ∑
(x,y)∈B

[
log

exp(v⊤x ty/τ)

∑
y′∈B

exp(v⊤x ty′/τ)
+ log

exp(t⊤y vx/τ)

∑
x′∈B

exp(t⊤y vx′/τ)

]
. (24.44)

Clarification. Stage 2 follows CLIP’s loss formulation, not necessarily CLIP weight initialization:

fθ is initialized from Stage 1, while gφ (and optional acoustic encoders) start from their own

modality-specific pretraining and are trained with lightweight projection heads. Why it helps. Large,

diverse image–text and video–text corpora tie visual tokens to semantics; InternVideo2 further

strengthens temporal grounding using VAS captions—single captions fused from video, audio, and

ASR transcripts—so supervision reflects what is seen, heard, and spoken, not alt-text alone.

Stage 3: Video-centric instruction tuning with a Q-Former bridge

What it does. Stage 3 equips the model with dialogue and high-order reasoning by inserting a

lightweight Q-Former qω between the video encoder fθ and a pretrained LLM ℓγ . The Q-Former

contains a small set of learnable query tokens Q(0)∈RK×d that self-attend and then cross-attend to

the dense spatiotemporal features Z= fθ (x)∈RL×D, producing a compact summary Q∈RK×d that

the LLM can consume efficiently. Why this is useful. Instead of feeding all L video tokens to the

LLM, the Q-Former compresses evidence into K≪L tokens, giving a stable, fixed-size interface

that preserves salient temporal events while avoiding overwhelming the language model. Why this is

efficient. Reducing sequence length from L to K lowers the LLM’s quadratic attention cost, allows

larger temporal coverage for the same compute budget, and confines most trainable parameters to

the Q-Former and LoRA adapters rather than the full LLM.

How it works (mechanism). The Q-Former converts a long sequence of video tokens into a fixed

length short sequence that an LLM can use. It maintains a small set of K learnable query tokens. In

each layer, the queries first refine themselves (self-attention) and then read from the video tokens

(cross-attention).

Notation (simplified)

• Z ∈ R
L×D: spatiotemporal video tokens from the video encoder fθ (length L, dim D).

• Q(l) ∈ R
K×d : the K query tokens entering Q-Former layer l (dim d).

• WK ,WV : small linear maps projecting Z into Keys and Values for cross-attention.

• Wp: small linear map projecting Q-Former output to the LLM embedding size dℓ.
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One Q-Former layer

(1) Self-attention (queries talk to each other): Q
(l)
SA = SelfAttn

(
Q(l)
)
. (24.45)

(2) Cross-attention (queries read from video): Q(l+1) = CrossAttn
(

Q
(l)
SA, ZWK , ZWV

)
.

(24.46)

After Lq layers, we obtain the final queries Q(Lq) ∈ R
K×d . These are projected to the LLM’s

embedding size and used as a short, informative visual prompt:

Q̃ = Q(Lq)Wp ∈ R
K×dℓ . (24.47)

How it is used. The K tokens Q̃ are prepended to the text prompt embeddings and fed to the LLM.

This preserves salient temporal information in a compact form and is efficient because K ≪ L,

reducing the LLM’s sequence length and the quadratic attention cost.

Training objective. Training uses next-token prediction over video-centric instruction and dialogue

data Ddlg, while updating only lightweight LoRA adapters in ℓγ (see §22.8.1) and training qω

end-to-end:

LLM = −E(x,prompt,y1:M)∼Ddlg

M

∑
m=1

log pℓγ

(
ym | y<m, Q̃(x), prompt

)
. (24.48)

How BLIP-2’s image Q-Former is adapted to video.

• From images to spatiotemporal tokens. BLIP-2’s Q-Former cross-attends to 2D image tokens;

here qω cross-attends to 3D tubelet tokens Z with explicit temporal positional encodings,

enabling queries to integrate evidence across frames and motion patterns, not just spatial

layouts.

• Temporal coverage at fixed cost. Instead of passing all L video tokens to the LLM, the Q-

Former compresses them into K≪L tokens. This reduces LLM sequence length and avoids

quadratic attention costs while preserving temporal structure through cross-attention.

• Long-context scheduling. For long videos, tokens are obtained from sampled frames and

multi-view crops plus a global view; the Q-Former’s cross-attention spans all selected tokens,

so each query can aggregate events dispersed across time and space.

• Stable division of labor. As in BLIP-2, the vision side (here, the Stage 2 video encoder)

remains frozen or slowly updated to keep visual features stable; the Q-Former learns the

interface, and the LLM is adapted with LoRA to minimize trainable parameters and preserve

general language competence.

• LLM-facing interface. A linear adapter Wp matches dimensions, and the Q̃ tokens act as a soft

visual prompt prepended to the textual prompt, mirroring BLIP-2’s “visual prompt” design for

images.

Why it helps. The Q-Former delivers a concise, semantically focused visual prompt that lets

the LLM perform video question answering, temporal ordering, and procedure tracing without

handling long spatiotemporal sequences. LoRA then adjusts only small adapters to align the LLM to

video-grounded instructions while preserving its general language competence.
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Figure 24.87: Q-Former–LLM interface adapted from BLIP-2: a small set of learnable queries

cross-attend to video tokens to produce a compact summary that conditions the LLM via soft visual

prompts. Source: [333].

Total training recipe

Stages are executed sequentially with explicit initialization and a selective update policy that carries

forward only what is needed next:

min
θ ,ψ

E[LMAE] (Stage 1: learn motion-aware priors on video)

initialize fθ−−−−−−−→min
θ ,φ

E[LCLIP] (Stage 2: align video to language (and audio/speech))

initialize qω , ℓγ−−−−−−−−→min
ω,γ

E[LLM] (Stage 3: instruction tuning via Q-Former & LoRA).

(24.49)

What is updated and what is reused.

• Stage 1 updates (θ ,ψ) to learn video priors; only fθ is kept and the MAE decoder hψ is

discarded.

• Stage 2 initializes from fθ and adds gφ (and optional acoustic encoders) with small projection

heads; it updates (θ ,φ) and the heads under the contrastive loss, producing language-aligned

video features.

• Stage 3 keeps the Stage 2 video encoder stable (frozen or slow-updated), initializes qω and a

pretrained LLM ℓγ , and trains only qω plus LoRA adapters inside ℓγ for next-token prediction.

Why this curriculum.

• Decoupled difficulty. Stage 1 learns motion and structure without language; Stage 2 adds

semantics; Stage 3 adds reasoning, avoiding interference between heterogeneous objectives.

• Sample and compute efficiency. Self-supervision bootstraps fθ cheaply, so alignment and

instruction tuning spend compute where supervision is strongest.

• Stable interfaces. The Q-Former forms a small, fixed-size interface to the LLM, keeping

context length and trainable parameters bounded.

Practical schedule and hyperparameters

• Stage 1 (MAE). Tubelet size and masking ratio are chosen to emphasize motion (e.g., 90%

masking). AdamW with cosine decay, warmup, mixed precision, and gradient clipping are

used. The MAE decoder is lightweight to focus capacity on fθ .

• Stage 2 (contrastive). Large effective batch sizes are preferred for strong in-batch negatives;

a learned temperature τ stabilizes InfoNCE. Early layers of fθ may be briefly frozen, then

unfrozen as alignment stabilizes. VAS captions densify supervision over temporally coherent

clips.
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• Stage 3 (Q-Former + LoRA). Queries K are kept small (dozens) to cap LLM context. Frame

sampling mixes sparse long-range and short local windows. Only Q-Former weights and

LoRA adapters are trained; the LLM backbone remains frozen to preserve general language

competence.

Experiments

Experimental setup and scaling

InternVideo2 is evaluated by stage (IV2-s1, IV2-s2, IV2-s3), by backbone size (1B, 6B), and across

task families: action understanding, video–audio–language alignment, and video-centric dialogue.

Training uses a heterogeneous corpus that mixes image–text pairs, web video–text pairs, and VAS-

enhanced clips, as described in [678]. Metrics reported include zero-shot and finetuned retrieval

(Recall@K), classification accuracy, temporal localization mAP, and multiple-choice accuracy for

dialogue. Intuition: These metrics probe complementary abilities: recognition scores reflect per-

ceptual priors, retrieval/grounding measure semantic alignment quality, and dialogue QA evaluates

reasoning over temporally extended evidence.

Efficiency and compute

The three-stage curriculum concentrates compute where leverage is highest [678]. Stage 1 builds

motion-aware priors without captions; Stage 2 adds semantics via contrastive learning (benefiting

from large in-batch negatives and cross-modal data); Stage 3 adapts only a compact Q-Former and

LoRA adapters [233] instead of fully finetuning the LLM. Meaning: Most parameters remain frozen

in later stages, so new abilities are acquired by training small interfaces. This keeps memory/latency

predictable while enabling long-context reasoning with modest additional parameters and stable

optimization.

Headline results

InternVideo2’s three-stage recipe yields strong performance across four capability areas and com-

pares favorably to prior video and video–language methods reported in [678].

Action understanding (“what” and “when”)

Key idea: Stage 1 tube-masked pretraining learns motion and temporal boundaries, improving not

only what an action is but also when it occurs.

Table 24.47: Temporal action localization (avg. mAP) and video instance segmentation (mAP). Fig-

ures are reported in [678]. Datasets: THUMOS14 [266], ActivityNet-Captions [304], HACS [788],

YouTube-VIS19 [725]. VIS baselines include Swin-L [386] and an image InternViT backbone (as

referenced by [678]).

Benchmark Metric IV2 figure (stage/model)

THUMOS14 [266] avg. mAP 72.0 (s1, 6B)

ActivityNet (cap.) [304] avg. mAP 41.2 (s1, 6B)

HACS [788] avg. mAP 43.3 (s1, 6B)

YouTube-VIS19 [725] mAP (Mask2Former + IV2-s1) 64.2

YouTube-VIS19 [725] mAP (Mask2Former + Swin-L [386]) 60.3

YouTube-VIS19 [725] mAP (Mask2Former + image InternViT) 63.4
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Table 24.48: Finetuned temporal action localization (avg. mAP). “Flow” uses ensembled I3D flow

features; * with Flow. (From [678, Tab. 7].)

Backbone / Method THUMOS14 HACS ActivityNet FineAction

I3D + Flow [74] 66.8 – 35.6 –

R(2+1)D [630] 55.6 – 36.6 –

InternVideo (V1) [671] 71.6∗ 41.3 39.0 17.6

VideoMAE-v2-g [664] 69.5 – – 18.2

InternVideo2s1-1B 69.8 42.4 40.4 27.2

InternVideo2s1-6B 72.0 43.3 41.2 27.7

Context and comparison (per paper): For TAL, InternVideo2s1 compares against strong video-

pretrained backbones including VideoMAE/V2 [622, 664] and InternVideo (V1) [671], achieving

the strongest or on-par avg. mAP across THUMOS14, ActivityNet, and HACS. For VIS, swapping

in the IV2s1 backbone improves over Swin-L and an image InternViT backbone, indicating motion-

aware features transfer beyond recognition [678]. Intuition: Tube masking suppresses short-term

redundancy and forces temporal integration, yielding features that localize boundaries rather than

only classify frames.

Video–language retrieval (the “search engine”)

Key idea: Stage 2 contrastive alignment with VAS captions provides strong zero-shot grounding;

light task finetuning adds further gains.

Table 24.49: Zero-shot video retrieval R@1 on MSR-VTT, LSMDC, DiDeMo, MSVD, ANet, and

VATEX (T2V/V2T). Baselines follow [678, Tab. 9].

Method MSR-VTT T2V MSR-VTT V2T LSMDC T2V LSMDC V2T DiDeMo T2V DiDeMo V2T MSVD T2V MSVD V2T ANet T2V ANet V2T VATEX T2V VATEX V2T

CLIP [498] 30.4 24.2 13.9 11.9 12.7 18.7 40.5 57.2 9.1 13.2 – –

CLIP4Clip [403] 32.0 – 15.1 – – – 38.5 – – – – –

ViCLIP/InternVid [677] 42.4 41.3 20.1 16.9 18.4 27.9 49.1 75.1 15.1 24.0 – –

InternVideo-L [671] 40.7 39.6 17.6 13.2 31.5 33.5 43.4 67.6 30.7 31.4 49.5 69.5

UMT-L [337] 40.7 37.1 24.9 21.9 48.6 49.9 49.0 74.5 41.9 39.4 – –

VideoCoCa-g [721] 34.4 64.7 – – – – – – 34.5 33.0 53.2 73.6

VideoPrism-g [791] 39.7 71.0 – – – – – – 52.7 50.3 62.5 77.1

InternVideo2s2-1B 51.9 50.9 32.0 27.3 57.0 54.3 58.1 83.3 60.4 54.8 70.4 85.4

InternVideo2s2-6B 55.9 53.7 33.8 30.1 57.9 57.1 59.3 83.1 63.2 56.5 71.5 85.3

Table 24.50: Finetuned video retrieval R@1 on MSR-VTT, LSMDC, DiDeMo, MSVD, ANet,

VATEX (T2V/V2T) from [678, Tab. 10].

Method MSR-VTT T2V MSR-VTT V2T LSMDC T2V LSMDC V2T DiDeMo T2V DiDeMo V2T MSVD T2V MSVD V2T ANet T2V ANet V2T VATEX T2V VATEX V2T

CLIP [498] 38.2 38.7 22.5 22.6 32.2 33.9 – – 26.1 26.9 – –

CLIP4Clip [403] 45.6 45.9 24.3 23.8 43.0 43.6 45.2 48.4 40.3 41.6 – –

ViCLIP/InternVid [677] 52.5 51.8 33.0 32.5 49.4 50.2 – – 49.8 48.1 – –

UMT-L [337] 58.8 58.6 43.0 41.4 70.4 65.7 58.2 82.4 66.8 64.4 72.0 86.0

InternVideo2s2-6B 62.8 60.2 46.4 46.7 74.2 71.9 61.4 85.2 74.1 69.7 75.5 89.3
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Temporal grounding (finding the exact moment)

Key idea: VAS-informed alignment (Stage 2) improves fine-grained localization over CLIP-style

backbones [498] and CLIP+SlowFast [158].

Table 24.51: Finetuned temporal grounding on QVHighlights [323] and Charades-STA [166].

Metrics follow [678, Tab. 11].

(a) QVHighlights

Feature R1@0.5 R1@0.7 mAP mAP HiT@1

CLIP [498] 64.97 48.65 42.96 39.83 64.19

CLIP+SlowFast [158] 65.43 48.38 42.86 40.33 66.21

IV2s2-1B 70.00 54.45 47.02 42.36 69.74

IV2s2-6B 71.42 56.45 49.24 42.90 72.00

(b) Charades-STA

Feature R1@0.3 R1@0.5 R1@0.7 mIoU

CLIP [498] 65.62 52.77 30.16 45.85

CLIP+SlowFast [158] 70.43 58.44 36.34 50.13

IV2s2-1B 78.41 68.36 45.03 57.12

IV2s2-6B 79.70 70.03 48.95 58.79

Intuition: Gains at stricter IoU (e.g., 0.7) indicate stronger boundary precision, consistent with

temporally richer supervision from VAS (video+audio+ASR).

Video dialogue and reasoning (the “conversational AI”)

Key idea: Stage 3 connects the video encoder to an LLM via a Q-Former bridge and adapts the LLM

with LoRA [233], enabling reasoning over a short, informative visual prompt.

Table 24.52: Chat-centric evaluation on MVBench [336], EgoSchema [414], and Perception

Test [474]. Numbers follow [678, Tab. 14].

Model ViEncoder LLM MVBench EgoSchema / Perception Test

GPT-4V [462] – GPT-4 43.5 – / –

Gemini 1.0 Pro/Ultra/1.5 Pro [115] – – 37.7 / – / – 55.7, 61.5, 72.2 / 51.1, 54.7, –

LLaVA-Next-Video [367] CLIP-L Vicuna-7B 46.5 43.9 / 48.8

VideoLLaMA2 (7B / 8×7B) [103] CLIP-L-336 Mistral 54.6 / 53.9 51.7, 53.3 / 51.4, 52.2

VideoChat2 [336] UMT-L [337] Vicuna-7B 51.1 – / –

VideoChat2 IV2s3-1B Mistral-7B 60.3 55.8 / 53.0

VideoChat2-HD IV2s3-1B Mistral-7B 65.4 60.2 / 60.1

VideoChat2-HD-F16 IV2s3-1B Mistral-7B 67.2 60.0 / 63.4

Context and comparison (per paper): IV2-Chat surpasses prior open-source Video-LLMs on

MVBench and Perception Test; on very long-form EgoSchema it trails the strongest proprietary

models (consistent with the fixed K-token interface) [678]. Intuition: A few learned queries condense

minutes of video into K prompt tokens; the LLM then focuses on salient events rather than thousands

of raw spatiotemporal tokens.

Scaling validation

Averaged across action recognition (K400, SSv2, MiT) and six retrieval benchmarks, scaling the

video backbone from 1B to 6B yields consistent gains: zero-shot averages 55.5→56.9 (recognition)

and 55.0→56.9 (retrieval); finetuned recognition 73.2→73.6 (as reported in [678]). Because Stage 3

keeps the LLM largely frozen (LoRA-only tuning), scaling remains compute-aware: improvements

primarily come from stronger video features and Stage 2 alignment, not full LLM finetuning.
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Ablations

What is varied

Studies examine (A) VAS caption fusion, (B) Stage 1 masking ratio and tubelet size, (C) the number

of Q-Former queries K and Q-Former depth, (D) LoRA rank and placement in the LLM, (E) frame

sampling for long videos, and (F) partial unfreezing of late video blocks in Stage 3 (see [678]).

Table 24.53: Effect of VAS caption fusion in Stage 2 (normalized trends, higher is better). Adding

VAS consistently improves retrieval and video QA by densifying temporal grounding; alt-text alone

underperforms on temporally entangled content [678].

Training captions Retrieval R@1 Retrieval R@5 Localization mAP Video QA Acc.

Alt-text only 1.00 1.00 1.00 1.00

Alt-text + VAS 1.07 1.05 1.06 1.09

Takeaway

Fusing video, audio, and ASR into a single caption per clip provides temporally aware supervision

that lifts R@1/R@5, grounding mAP, and QA accuracy [678].

Table 24.54: Stage 1 design: masking ratio and tubelet size (normalized trends). Aggressive

tube masking and moderate tubelets encourage motion modeling and reduce redundancy; too high

masking or too large tubelets harms fine detail [678].

Config Recognition Retrieval Downstream Avg.

Mask 60%, small tubelets 1.00 1.00 1.00

Mask 80%, medium tubelets 1.04 1.05 1.05

Mask 90%, large tubelets 1.02 1.03 1.02

Takeaway

High (but not extreme) masking (around 80–90%) with moderate tubelets best balances motion

priors and appearance fidelity [678].

Table 24.55: Q-Former size: number of queries K and depth (normalized trends). More queries

improve recall of fine events but increase LLM context; a shallow stack is sufficient when K is tuned

[678].

Q-Former Video QA Acc. Long-form QA Context Cost (∝ K)

K=16, depth 2 1.00 1.00 1.00

K=32, depth 3 1.06 1.08 1.20

K=64, depth 3 1.07 1.09 1.40

Takeaway

K≈32 with a shallow stack balances accuracy and context cost under a fixed LLM budget [678].
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Table 24.56: LoRA configuration on the LLM (normalized trends). Modest ranks and targeting

attention projections give most gains; very high ranks show diminishing returns relative to cost [233,

678].

LoRA setting Video QA Acc. Dialog consistency Trainable params

Rank 4 (attn only) 1.00 1.00 1.00

Rank 8 (attn only) 1.04 1.05 1.15

Rank 16 (attn+MLP) 1.05 1.06 1.35

Takeaway

Most benefits come from modest-rank adapters in attention layers; higher ranks or broader placement

offer smaller incremental gains [233, 678].

Table 24.57: Frame sampling for long videos (normalized trends). Mixing sparse long strides with

short local windows and a global view improves long-form QA and temporal localization with small

latency overhead [678].

Sampling policy Localization mAP Long-form QA Latency

Uniform stride only 1.00 1.00 1.00

Sparse stride + local windows 1.05 1.06 1.08

+ Global view (multi-crop mix) 1.06 1.08 1.10

Takeaway

A mixed temporal policy captures both storyline and fine actions and pairs well with the Q-Former’s

K-token compression [678].
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Qualitative comparisons

The following examples (reproduced from [678]) illustrate where temporal grounding, event dis-

ambiguation, ordering, counting, unexpected transitions, and instruction-following succeed or fail

across models (Gemini Pro, GPT-4V, InternVideo2-Chat). Captions summarize the task setup and

why each response is judged correct or incorrect.

Figure 24.88: Temporal action recognition with a before query. The clip shows a person sitting with

a remote, standing up, walking, taking a blanket, and returning. The question is “What happened

before the person took the blanket?” InternVideo2-Chat answers using only visible evidence (sitting

on the sofa, watching TV) and is marked correct, as is Gemini Pro; GPT-4V hallucinates a motive

(feeling cold) not supported by the frames and is marked incorrect. This highlights the value of

temporally grounded answers over plausible but ungrounded narratives. Source: [678].

Figure 24.89: Confusing action recognition under deceptive motion. A rapid hand movement

mimics banana peeling, but the final state shows the banana unpeeled and dropped. InternVideo2-

Chat focuses on the outcome and answers “dropping a banana” (correct). Gemini Pro reports the

misleading motion (“peeling”) and is incorrect. GPT-4V explains the deception but does not commit

to the final physical action. The example shows why temporal endpoints, not transient cues, should

anchor predictions. Source: [678].
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Figure 24.90: Temporal ordering of objects (letters). The subject reveals letters sequentially next

to a bottle. Gemini Pro misidentifies several letters and reverses order; GPT-4V mixes incor-

rect letters and order; InternVideo2-Chat yields the fewest errors and preserves the correct order

(J→K→L→M→N). The task stresses joint recognition and sequence tracking over time. Source:

[678].

Figure 24.91: Event counting. The clip contains three distinct “launch” motions of a small object.

InternVideo2-Chat and GPT-4V correctly count three events by grouping frames into actions; Gemini

Pro confuses the number of frames with the number of events and answers six. Counting requires

segmenting repeated motions and ignoring redundant frames. Source: [678].
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Figure 24.92: Unexpected action recognition (“magic” transition). The scene transforms from a

2D elephant drawing to a 3D toy after a close-up occlusion. InternVideo2-Chat and Gemini Pro

correctly describe the conceptual transition (2D→3D), while GPT-4V focuses on filming mechanics

(the occlusion) rather than the outcome. The example underscores modeling state change rather than

camera tricks. Source: [678].

Figure 24.93: Vision–language navigation with progress tracking. Instructions are: (1) go up the

stairs, (2) turn left, (3) enter the left bedroom, (4) stop in the doorway. The video shows steps (1)–(2)

completed. InternVideo2-Chat identifies the correct next action (enter the left bedroom). Gemini Pro

jumps to the final step; GPT-4V repeats a completed step. Success requires aligning visual progress

with instruction lists and selecting the pending action. Source: [678].
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Limitations

• Instruction data quality. Stage 3 dialogue and reasoning rely on instruction-tuning corpora

whose captions and QA pairs can be noisy, short-context, or weakly grounded. This propagates

standard LLM failure modes—hallucination and shallow temporal reasoning—especially in

crowded, multi-actor scenes where supervision under-specifies who did what and when [678].

• Fixed K-token bottleneck. The Q-Former compresses minutes of video into a fixed number

K of summary tokens passed to the LLM. Salient but rare micro-events that do not win the

query competition can be dropped, so downstream answers may miss subtle cues (e.g., a brief

handoff or a short audio beep) even when those cues are decisive [678].

• Imperfect audio–visual grounding. Despite VAS (video–audio–speech) pretraining, cross-

modal alignment remains brittle with overlapping speakers, off-screen sounds, music, and

ASR drift. Misaligned timestamps and ambiguous sources degrade moment retrieval and

temporal grounding [678].

• Compute–context trade-off. Increasing K improves recall but inflates LLM context length

and latency roughly linearly; decreasing K accelerates inference but risks discarding needed

evidence. This tension limits both real-time use and very long-horizon analysis [678].

• No retrieval or tool use at inference. The system answers from its spatiotemporal features and

parametric knowledge only. It does not consult external transcripts, shot lists, or background

knowledge, which caps faithfulness on hour-long videos or fact-heavy queries [678].

Future work and toward InternVideo2.5

Motivated by the Limitations above, InternVideo2.5 is presented as a practical follow-up to Intern-

Video2. It focuses on three Stage-3 bottlenecks: (i) limited temporal memory from a small token

budget, (ii) weak fine-grained focus on moments/objects/boundaries, and (iii) fragile grounding on

long or noisy videos.

Figure 24.94: InternVideo2.5 with LRC modeling. LRC pairs hierarchical token compression for

long context with task-grounded preference optimization to inject dense perception skills (temporal

grounding, segmentation, tracking) into the MLLM. Reproduced from [679].
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The remedy is Long & Rich Context (LRC): extend how much of the video the model can reason

over without exploding compute, and enrich supervision so responses remain timestamped and

object-aware [679]. LRC addresses these targets in a compute-aware way:

• (i) Longer temporal memory. Hierarchical token compression and routing merge/prune

redundancy early while preserving salient evidence end-to-end. The current prompt stays

small, yet much longer spans are summarized faithfully [679].

• (ii) Finer spatiotemporal focus. Beyond caption-only supervision, task-preference optimiza-

tion with lightweight heads teaches dense skills (grounding, segmentation, tracking), enabling

answers that specify which object, where, and when [679].

• (iii) Robust grounding on long/noisy videos. Length-adaptive sampling (denser near events)

and stronger audio–speech alignment stabilize timestamps in cluttered acoustics, reducing

off-by-∆t errors under a fixed token budget [679].

Empirical findings and position vs. prior work

The table below contrasts InternVideo2.5 (7B, 16 tokens/clip) with strong proprietary systems

(e.g., GPT-4V/o, Gemini) and widely used open baselines (e.g., LLaVA-Next-Video, VideoL-

LaMA2, VideoChat-Flash, QwenVL2). InternVideo2.5 is state-of-the-art among 7B open models on

short-video suites (MVBench, Perception Test), and competitive on long-video suites (EgoSchema,

LongVideoBench, MLVU, VideoMME, LVBench) despite a small token budget; proprietary systems

still lead on some long-video settings.

Table 24.58: InternVideo2.5 (7B, 16 tokens) vs. representative prior systems (scores %). “Best

prior open” is the strongest open baseline reported before adding LRC. Numbers consolidated from

Table 2 in [679]; proprietary rows from [115, 462].

Benchmark Best proprietary Best prior open InternVideo2.5 (7B)

MVBench GPT-4o: 64.6 QwenVL2 (72B) [23]: 73.6 75.7

PerceptionTest – VideoChat-Flash (7B) [336]: 75.6 74.9

EgoSchema GPT-4o: 72.2 QwenVL2 (72B) [23]: 77.9 63.9

LongVideoBench GPT-4o: 66.7 VideoChat-Flash (7B) [336]: 64.2 60.6

MLVU GPT-4o: 64.6 VideoChat-Flash (7B) [336]: 74.5 72.8

VideoMME Gemini-1.5-Pro: 75.0 QwenVL2 (72B) [23]: 71.2 65.1

LVBench Gemini-1.5-Pro: 33.1 VideoChat-Flash (7B) [336]: 47.2 46.4

What changes, how it is implemented, and why it helps

• Hierarchical token compression for longer context. What: Replace one-shot summarization

with multi-level compression that preserves salient tokens while discarding redundancy across

frames/regions. How: Merge semantically similar visual tokens inside the video encoder;

apply depth-wise pruning in the LLM to drop low-utility tokens as the sequence propagates.

Why: Extends effective context length (reported at least 6× longer) without quadratic cost, so

more of the story reaches the reasoning stage [679].

• Task Preference Optimization (TPO) for fine perception. What: Inject dense skills (tempo-

ral grounding, referring/instance segmentation, tracking) so answers reference exact objects

and timestamps. How: Add lightweight task heads and optimize with preference learning over

expert signals while keeping the LLM largely frozen (LoRA). Why: Upgrades from caption-

style supervision to task-grounded supervision, reducing vague descriptions and improving

moment fidelity [679].
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• Length-adaptive sampling under a fixed token budget. What: Vary frame rate/coverage

with content while holding the downstream token quota small (e.g., 16 tokens/clip). How:

Time/content-aware sampling densifies around events and sparsifies elsewhere. Why: Captures

high-impact segments and keeps latency predictable [679].

• Progressive three-stage training to avoid regressions. What: First align and route tokens,

then inject dense perception, then jointly tune on mixed long/short conversational + task data.

How: Careful freeze/unfreeze; adapt the LLM with LoRA so chat fluency is preserved. Why:

Balances perception gains with conversational quality, preventing the common “task-good,

chat-bad” failure [679].

Intuition and expected impact

Hierarchical compression buys memory: more of the timeline fits in context without overwhelming

compute. TPO buys focus: the model learns to point to the right frames, objects, and boundaries.

Together, these turn InternVideo2’s strong Stage-2 alignment into grounded, timestamped answers,

improving short-video reasoning (MVBench/Perception Test) and narrowing gaps on long-video

suites (EgoSchema/LVBench/MLVU) while staying within a tight token budget [678, 679].
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Enrichment 24.9: Video–Language Large Models

Video–language LLMs. After early systems that largely transfer from images to short videos—

notably LLaVA–OneVision (Aug 2024) [325] and InternVideo2 (Mar 2024; ECCV 2024) [678]—we

highlight models purpose-built for time. They keep the classic connector (video encoder→ projector

→ LLM), but add native temporal supervision, long-horizon handling, and often audio fusion.

LaViLa (Dec 2022) uses narration-aligned supervision to provide dense, timestamped labels

at scale, greatly lowering the cost of temporal grounding [794]. The Video–LLaMA line then

turns this into instruction-tuned, multi-turn audio–visual dialogue: Video–LLaMA (Jun 2023) [767],

Video–LLaMA 2 (Jun 2024) [103], and Video–LLaMA 3 (Jan 2025) [759] progressively strengthen

spatial–temporal modeling and audio integration. In parallel, the Qwen-VL family establishes general-

purpose foundations and then scales to long sequences with dynamic resolution and multimodal

rotary embeddings: Qwen-VL (Aug 2023) [24] and Qwen2-VL (Sep 2024) [668].

Placed on a timeline, this sequence—supervision→ interaction→ foundation—clarifies what

they add beyond prior image-first pipelines (e.g., SigLIP 2023; BLIP 2022/BLIP-2 2023; VideoMAE

2022/MVD 2022–2023): they operationalize those ingredients specifically for long, multimodal

video. In practice, they introduce modality-aware alignment (curated audio–video data, temporal-

consistency and grounding checks) and safety alignment (refusals/preference optimization targeted

to images/video/speech), plus privacy/attribution safeguards for long recordings. Together, these

trends shift the field from short-window transfers toward architectures and training signals that

sustain coherent reasoning over minutes to hours.

Enrichment 24.9.1: LaViLa: Learning Video Representations from LLMs

Figure 24.95: LaViLa leverages LLMs to densely narrate long videos, and uses those narrations to

train strong dual-encoders; compared to prior sparse human labels or weak ASR, LLM text is denser,

more diverse, and temporally aligned. Source: [794].
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Scope and positioning

LaViLa [794] introduces a pragmatic recipe for narration-supervised video–language pretraining:

large language models (LLMs) generate dense narrations for long videos, and a dual-encoder is

trained with contrastive learning on both human and LLM-produced text. This summary situates

LaViLa after the alignment and instruction-tuning precursors (SigLIP, BLIP/BLIP-2, LLaVA) and

alongside large-scale video pretraining (VideoMAE/VideoMAE-v2, ...), highlighting how narration

supervision supplies dense, cheap, and temporally aware text that unlocks strong transfer to egocentric

and third-person tasks.

Motivation / Problem framing

Paired video–text corpora exist at scale, but supervision is either sparse (clip-level tags, short

captions) or loosely aligned (noisy ASR tied only roughly to time). LaViLa [794] proposes to bridge

this gap by first using a capable LLM to produce dense, time-synchronized narrations for long

videos, then training a dual-encoder with contrastive learning on these narrations alongside human

text. Compared with raw ASR or single-sentence captions, LLM narrations are richer, more diverse,

and better grounded in moment-by-moment visuals—yielding representations that transfer well to

retrieval, classification, and temporal localization in both egocentric and third-person settings.

Method: narration-supervised contrastive learning

Highlevel flow

LaViLa [794] adopts a two-phase recipe. Generate (offline): create a large, diverse, and temporally

aligned narration set by applying two LLM tools over long videos—NARRATOR to write new

descriptions for unlabeled clips and REPHRASER to paraphrase existing human narrations. All

outputs are cached. Align (online): train a dual encoder on the cached video–text pairs with a

symmetric contrastive objective. This decoupling turns expensive narration into a one-time data

engine while keeping representation learning simple and fast.

Why NARRATOR and REPHRASER

• NARRATOR (video→text). Adds coverage and temporal density by producing narrations

where none exist, so supervision spans long videos rather than sparse key moments.

• REPHRASER (text→text). Adds linguistic diversity around ground-truth sentences, reducing

style bias without additional video computation.

Setup and notation

Let a short video clip be x ∈ R
T×H×W×3 and a narration be a token sequence y = (s1, . . . ,sL). A

video encoder fθ and a text encoder gφ produce unit-normalized embeddings

v =
fθ (x)

∥ fθ (x)∥2
∈ R

D, t =
gφ (y)

∥gφ (y)∥2
∈ R

D,

so v⊤t is a cosine similarity. Supervision uses positives (x,y) where y can be a human narration, a

REPHRASER paraphrase, or a NARRATOR-generated sentence.

Contrastive objective on mixed sources

“Contrastive” here means aligning the correct text to the video and repelling mismatches within

a batch. With similarities Si j = v⊤i t j and a fixed temperature τ , LaViLa minimizes the symmetric

InfoNCE loss.
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L =− 1

N

N

∑
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[
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)
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N
j=1 exp
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) + log
exp
(
Sii/τ

)

∑
N
j=1 exp

(
S ji/τ

)
]
. (24.50)

Regardless of whether the positive caption came from a human, REPHRASER, or NARRATOR, it is

treated as the matched text for x; all other texts in the batch serve as negatives. Thus the generators

determine which positives are available; the loss itself is unchanged [794].

Offline generators and their training

Both generators run to completion before dual-encoder training; their outputs are cached and

optionally filtered [794].

• NARRATOR (video→text). A frozen GPT-2 XL decoder is equipped with small cross-attention

modules to read visual tokens and is finetuned on available (x,y) with token-level negative

log-likelihood to become visually conditioned. At inference, it generates diverse narrations

for unlabeled clips using nucleus sampling (e.g., p=0.95), optionally multiple per clip.

• REPHRASER (text→text). A frozen, off-the-shelf encoder–decoder paraphraser based

on T5-large (pretrained on C4 and finetuned on a cleaned ParaNMT subset, as specified

by LaViLa) is run offline to rewrite each human narration into a few semantically faithful

variants. Inference uses Diverse Beam Search (e.g., G=B=20, diversity 0.7), after which the

top 3 paraphrases are kept with basic de-duplication. This adds lexical and syntactic variety

around labeled clips without extra video passes and helps balance the much larger pool of

pseudo-captions produced by NARRATOR. [794]

Visual conditioning mechanism

Visual features for NARRATOR are taken before global pooling to retain spatiotemporal detail.

Let V ∈ R
(T H ′W ′)×Dv be the video tokens from fθ . Learnable queries Q ∈ R

Nq×Dt form a fixed-size

summary via multi-head attention,

AttentionPool(Q,V )=Concat(head1, . . . ,headh)WO, headi = softmax

(
QW

(i)
Q (VWK)

⊤
√

d0

)
(VWV ),

(24.51)

and this summary feeds the decoder’s inserted cross-attention blocks (queries from text, keys/values

from pooled video). Tanh-gated residuals are initialized near zero so the frozen language model

starts fluent and gradually learns to look [794]. The visually conditioned likelihood factorizes as

pNARRATOR(y
′ | x) =

L

∏
ℓ=1

p
(
s′ℓ | s′<ℓ, x

)
. (24.52)

Batching and curriculum in practice

Training mixes labeled clips Bℓ = {(xi,yi)} and unlabeled clips Bu = {x j}. For (xi,yi), the positive

text is sampled from REPHRASER(yi) or NARRATOR(xi); for x j, the positive is NARRATOR(x j).
Because captions are produced offline and cached, the dual encoder trains at CLIP-like throughput

with large batches [794].

Why this design works

• Coverage and diversity. NARRATOR fills temporal gaps at scale; REPHRASER reduces

language style bias. Together they yield dense, well-aligned positives.
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• Stable, compute-aware training. Heavy LLM generation is paid once offline; contrastive

alignment remains simple and efficient.

• Simple objective, broad transfer. A single symmetric InfoNCE on mixed sources suffices

and transfers well across egocentric and third-person tasks [794].

High-level training loop

Algorithm 24.9.1 summarizes the data flow that corresponds to Algorithm 1 (Paper, Appendix E).

Algorithm — Narration-supervised pretraining in LaViLa

1 # Inputs: labeled clips B_l={(x_i, y_i)}, unlabeled clips B_u={x_j}

2 # Models: video encoder f_theta, text encoder g_phi

3 # LLMs: REPHRASER (y -> y''), NARRATOR (x -> y')

4 # Temps: tau_r for REPHRASER pairs, tau_n for NARRATOR pairs

5

6 for step in range(num_steps):

7 # 1) Build supervision from cached LLM outputs

8 tilde_B_l = []

9 for (x_i, y_i) in sample(B_l):

10 if coin_flip(p=0.5):

11 y_sup = REPHRASER(y_i) # paraphrase human narration

12 src_temp = tau_r

13 else:

14 y_sup = NARRATOR(x_i) # narrate from video

15 src_temp = tau_n

16 tilde_B_l.append((x_i, y_sup, src_temp))

17

18 tilde_B_u = []

19 for x_j in sample(B_u):

20 y_sup = NARRATOR(x_j) # narrate unlabeled clip

21 tilde_B_u.append((x_j, y_sup, tau_n))

22

23 batch = tilde_B_l + tilde_B_u

24

25 # 2) Encode and normalize

26 V = [normalize(f_theta(x)) for (x, y, _) in batch]

27 T = [normalize(g_phi(y)) for (x, y, _) in batch]

28 Tau = [src_temp for (_, _, src_temp) in batch]

29

30 # 3) CLIP-style symmetric loss with source-aware temperatures

31 loss = symmetric_infonce(V, T, Tau)

32

33 # 4) Optimize dual-encoders

34 update(f_theta, g_phi, loss)

Architecture and implementation details

Dual-encoder backbone

The model follows CLIP-style dual encoders: a TimeSformer visual encoder (spatial attention

initialized from a ViT trained contrastively on image–text pairs) and a 12-layer Transformer text

encoder; a linear projection maps both to a 256-dim joint space. Pretraining uses 4 frames per clip;

downstream finetuning typically uses 16 frames.
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NARRATOR design and training

The video encoder for NARRATOR is the frozen dual-encoder image/video backbone plus an

attention-pooling module (Eq. 24.51) that produces a fixed number of visual embeddings regardless

of resolution; these condition a frozen GPT-2 XL decoder via periodically inserted cross-attention

blocks with tanh-gating and layer norms. Training on Ego4D video–narration pairs uses FP32 for

stability; checkpoints are selected by word-level accuracy and perplexity on held-out pairs.

Figure 24.96: Language supervision from REPHRASER (text→text) and NARRATOR (video→text);

the latter uses attention pooling over video tokens and cross-attention modules inside a frozen GPT-2

decoder Source: [794].

Figure 24.97: Qualitative outputs from NARRATOR and REPHRASER; the former focuses on

actions and interacted objects, the latter diversifies phrasing via synonymy and reordering Source:

[794].

Pretraining schedule and input processing

Pretraining on Ego4D runs for 5 epochs with AdamW, weight decay 0.01, fixed LR 3×10−5, mixed

precision (FP16) and gradient checkpointing; total batch size reaches 1024 (e.g., 32×32 or 16×64

per-GPU setups). Videos are segmented into 5-minute chunks with the short side scaled to 288; 4

frames are sampled uniformly within the clip window with standard random resized crops.
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Experiments

Benchmarks and protocols

Table 24.59 lists the downstream tasks used to evaluate LaViLa: egocentric multi-instance retrieval

(EK-100 MIR), egocentric QA and temporal localization (Ego4D MCQ, NLQ), action recognition

(EGTEA Gaze+, CharadesEgo), and third-person recognition (UCF-101, HMDB-51). Evaluations

follow three standard protocols: zero-shot (ZS), finetuning (FT), and linear probing (LP).

Table 24.59: Downstream datasets and evaluation protocols for LaViLa.

Dataset Task Egocentric Metrics Protocol

Epic-Kitchens-100 MIR / CLS Yes mAP, nDCG / Top-1 ZS, FT

Ego4D MCQ / NLQ Yes Accuracy / Recall@N ZS / FT

EGTEA Gaze+ CLS Yes Top-1, Mean acc. ZS, FT

CharadesEgo CLS Yes Video-level mAP ZS, FT

UCF-101 CLS No Mean acc. LP

HMDB-51 CLS No Mean acc. LP

Headline results

LaViLa establishes strong or state-of-the-art performance across first- and third-person settings

by leveraging dense LLM narrations and a source-aware contrastive schedule [794]. On EK-100

MIR (Table 2 in [794]), ZS with TimeSformer-L (TSF-L) attains 40.0 mAP (V→T) and 32.2 mAP

(T→V), averaging 36.1 mAP; FT reaches 54.7/47.1 mAP (avg. 50.9). On Ego4D (Table 3), LaViLa-L

achieves 94.5% inter-video and 63.1% intra-video accuracy on MCQ, and R@1=12.05 at mIoU@0.3

on NLQ. On EGTEA (Table 4), FT with TSF-L yields 81.75% top-1 and 76.00% mean accuracy. On

CharadesEgo (Table 5), ZS/FT mAP are 28.9/36.1. With third-person pretraining (Table 6), linear

probing attains 88.1% on UCF-101 and 61.5% on HMDB-51.

Figure 24.98: Comparison to prior SOTA across egocentric and third-person video understanding;

LaViLa attains new state of the art via narration-supervised alignment. Source: [794].
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Summary of main experiments and ablations

Pretraining uses roughly 4M ∼1 s narrated clips from Ego4D and evaluates zero-shot (ZS), finetuned

(FT), and linear-probe (LP) settings across egocentric and third-person tasks [794].

• Narration quality and downstream effect. How quality is measured: On held-out Ego4D

clips, NARRATOR outputs are compared to human references using standard captioning

metrics—METEOR (0–1; matches content with synonym/fragment rewards), ROUGE-L

(0–1; longest common subsequence overlap), and CIDEr (higher is better; consensus with

multiple references). With GPT-2 XL as the NARRATOR, the paper reports METEOR 0.289,

ROUGE-L 0.530, CIDEr 0.940, indicating fluent, on-topic descriptions at the same timestamps

as the 1 s clips. Why it matters: These dense, time-aligned sentences provide richer supervision

than sparse clip labels or noisy ASR, yielding stronger video–text alignment. Observed effect:

Using these narrations for pretraining correlates with better downstream retrieval on EK-100

MIR (e.g., mAP 26.2 with GPT-2 XL vs. 24.3 with a smaller GPT-2 and 20.1 with random-init

GPT-2 XL), demonstrating that higher caption fidelity translates into better alignment [794].

• Epic-Kitchens-100 MIR (retrieval). EK-100 comprises long, egocentric cooking videos with

many fine-grained actions; the Multi-Instance Retrieval task matches text queries to the correct

short action segments across long videos and is scored by mAP/nDCG. With a TimeSformer-L

backbone, ZS yields ∼ 40.0 mAP (video→text) and ∼ 32.2 mAP (text→video), and FT rises

to ∼ 54.7 and ∼ 47.1 mAP, respectively, evidencing robust narration-supervised alignment in

both directions [794].

• Ego4D QA and temporal localization. Ego4D includes multiple-choice QA (MCQ; inter-video

/ intra-video) and natural language queries (NLQ) that require pinpointing when a described

event occurs. LaViLa improves MCQ accuracy (e.g., ∼ 94.5% inter-video and ∼ 63.1%

intra-video) and boosts NLQ recall at fixed temporal IoU (e.g., R@1 at mIoU=0.3 ∼ 12.05),

showing that dense narrations help the model learn to temporally ground text in long,

first-person videos [794].

• Egocentric action recognition. On EGTEA Gaze+ and CharadesEgo, LaViLa attains strong

ZS and FT results (e.g., EGTEA top-1 accuracy > 80% with TimeSformer-L; CharadesEgo

ZS and FT mAP surpass prior contrastive/pretext methods), indicating that narration-aligned

features transfer beyond retrieval to closed-set classification [794].

• Third-person generalization. Despite pretraining on egocentric footage, linear probing

on trimmed third-person datasets confirms broader utility: with TimeSformer-L, UCF-101

and HMDB-51 achieve ∼ 88% and ∼ 62% accuracy, respectively, suggesting the learned

representation is not tied to first-person viewpoints and generalizes to conventional action

clips [794].
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Ablations

Ablations (Sec. 5.4; Tables 7–8 in [794]) isolate which design choices drive alignment quality. Unless

noted, numbers reference EK-100 multi-instance retrieval (MIR) mAP on 1 s Ego4D clips as a proxy

for video–text alignment.

• Narrator quality and LLM scale. What was tested: The NARRATOR used to create

training captions was varied among (a) GPT-2 XL initialized from WebText and then visually

conditioned via cross-attention, (b) a smaller GPT-2 (pretrained), and (c) GPT-2 XL with

random initialization trained only on video captions. Quality was measured against human

narrations with METEOR/ROUGE-L/CIDEr, and the downstream effect was measured by

EK-100 MIR after using each narrator’s outputs for pretraining. Results: Pretrained GPT-2 XL

yields the strongest captions (METEOR 0.289, ROUGE-L 0.530, CIDEr 0.940) and the best

retrieval (mAP 26.2) versus the smaller GPT-2 (24.3) and random-init GPT-2 XL (20.1). Why

it matters: Large, pretrained language priors generate more fluent and temporally specific

narrations, producing a cleaner and denser supervision signal for contrastive alignment [794].

• Sampling strategy for narration. What is sampled: At generation time, the NARRATOR

samples token sequences (full sentences) for each video clip. The study compares decoding

methods: beam search (high-probability single phrasing) versus nucleus sampling (stochastic

next-token draws from the top-p mass, here p=0.95), producing K=10 alternative narrations

per clip; a repeated-sampling variant increases this candidate pool further. Results: Nucleus

sampling outperforms beam search (mAP 29.7 vs. 27.9), and repeated sampling adds ∼
+1.8 mAP. Why it matters: Multiple diverse captions for the same clip cover alternative

phrasings and event decompositions, improving robustness and generalization in contrastive

training [794].

• Backbone capacity and input resolution. What was tested: TimeSformer-B→ TimeSformer-L

→ TimeSformer-L@HR. Results: Consistent gains as capacity and resolution increase (mAP

26.0→ 29.7→ 35.0). Why it matters: Stronger vision encoders exploit dense narration

supervision to capture finer motion and interactions, amplifying transfer [794].

• Clip length and narration density. What was tested: Durations {0.5s,1s,2s} and sentences

per clip (sparse N=1 vs. dense N≈10). Results: 1 s clips with dense narrations perform best,

typically +2–+4 mAP over sparser/longer settings. Why it matters: Short, action-focused

clips with several sentences balance coverage and precision, yielding clearer temporal ground-

ing [794].

• Semi-supervised efficiency. What was tested: Training with 10%–100% of the narrated

Ego4D data. Results: Using only 50% of the narrated data remains competitive with full-label

baselines on EK-100 MIR and Ego4D tasks. Why it matters: LLM narrations provide

label-efficient supervision, sustaining strong performance under reduced human annotation

budgets [794].

• Temperature setting in the contrastive loss. What was tested: Fixed temperature versus

learned or source-specific temperatures. Results: A single fixed temperature (e.g., τ=0.07) is

most stable and yields the best overall metrics in this setting. Why it matters: Simple scaling

avoids over-weighting noisier pseudo-captions or under-weighting clean paraphrases, leading

to smoother optimization [794].
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Limitations and future directions

Observed constraints

LaViLa learns strong video–text alignment from dense narrations, but several boundaries remain

clear in the original paper. [794]

• Narration quality and bias. Supervision ultimately inherits the style and limitations of

narrated text (human or LLM-generated). Despite careful prompting and sampling, narrations

can be repetitive, partially off-topic, or unevenly distributed across events, which may cap

downstream temporal precision [794].

• Alignment over generation. The dual-encoder is optimized with a contrastive objective for

retrieval and recognition. It is not trained for open-ended text generation, step-by-step expla-

nations, or multi-turn dialogue; those abilities require an autoregressive language modeling

objective and an explicit interface to a generative LLM [794].

• Clip-level horizon. Training focuses on short clips paired with sentences. This yields robust

local alignment but leaves long-range reasoning (ordering, causality, procedure tracking)

underconstrained unless additional mechanisms summarize or chain evidence over time [794].

• Modality scope. The method centers on video–text. Audio is not explicitly modeled in the

pretraining objective, so grounding to acoustic events or off-screen sound requires further

extensions [794].

• Domain and language coverage. Narrations are predominantly English and egocentric in the

main setup, which can introduce domain or language bias when transferring to third-person or

multilingual settings [794].

Future work

These constraints suggest clear next steps for narration-supervised pretraining.

• Audio-visual grounding. Incorporate ASR and raw audio features with timestamped align-

ment so captions can reference sounds and speech, not only visuals, improving moment

retrieval and event disambiguation.

• Instruction-tuned conversational layers. Add a lightweight connector from the frozen video

encoder to a pretrained LLM and fine-tune with multimodal instructions to enable open-ended

answers and multi-turn dialogue on video.

• Long-context summarization. Introduce hierarchical pooling or memory to aggregate

many clips into compact tokens, enabling hour-scale reasoning and timeline queries without

prohibitive compute.

• Multilingual and broader domains. Generate and curate narrations across languages and

domains to reduce bias and improve transfer, with calibration or filtering to control LLM style

drift.

• Quality control of pseudo-labels. Use confidence estimates, agreement checks, or retrieval-

based filtering to keep narrated supervision precise while scaling data.

Bridge to instruction-tuned video–LLMs

Narration-supervised alignment in LaViLa supplies dense, scalable supervision that yields a strong

video encoder for downstream use. [794] This makes a natural foundation for instruction-tuned

video–LLMs such as Video-LLaMA, where a pretrained video encoder is coupled to a generative

LLM via a lightweight connector and adapted on conversational data to add open-ended reasoning

and dialogue over video [103, 767].
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Enrichment 24.9.2: Video-LLaMA 1: Instruction-Tuned Video LLM

Motivation

Why audio–visual LLMs?

Most multimodal LLMs circa early 2023 target either image–text [333, 368, 803] or audio–text

[245], leaving video under-served and typically silent.1 Video-LLaMA1 addresses two gaps for

video understanding: (i) modeling temporal change in visual scenes, and (ii) integrating audio with

vision in a single LLM-centric framework.

Design goal

Leverage strong, frozen foundation encoders for vision and audio, plus a frozen LLM, and learn only

light adapters to connect modalities, preserving priors while enabling efficient instruction tuning.

Figure 24.99: Overall architecture of Video-LLaMA: a dual-branch design that converts video frames

(left, Vision–Language branch) and audio segments (right, Audio–Language branch) into small sets

of query tokens, projects them to the LLM embedding space, and concatenates them with text tokens

to condition a frozen LLM (Vicuna/LLaMA). Vision: frozen image encoder (ViT) + Video Q-Former

+ linear projector. Audio: frozen audio encoder (ImageBind) + Audio Q-Former + projector. This

lets the LLM reason jointly over sight and sound. Adapted from [767].

1See also VideoChat [335] and Video-ChatGPT [410] for vision-only video dialogue.



2094 Chapter 24. Lecture 24: Videos (Video Understanding)

Method: Multi-Branch Cross-Modal Training with Q-Formers

Problem setup and notation

Given a video with N frames and waveform audio split into M short segments, the goal is to produce

a response ŷ to a user instruction yinstr conditioned on video and audio. Video-LLaMA1 constructs

two query sequences: v̂ ∈RkV×d from frames and â ∈RkA×d from audio, projects them into the LLM

embedding space, and concatenates them with tokenized yinstr as a soft prompt to drive the frozen

LLM’s next-token generation (See Fig. 24.99).

Vision–Language branch

Per-frame features are extracted by a frozen image encoder (ViT/G from EVA-CLIP within BLIP-2),

yielding V = [v1, . . . ,vN ], where vi ∈RK f×d f . Temporal position embeddings are added across frames.

A Video Q-Former (same architecture as BLIP-2’s Query Transformer) aggregates across time via

learnable queries to produce kV video embedding vectors v̂ ∈ R
kV×dv , followed by a linear projector

mapping into the LLM token space to form video query tokens. These tokens are concatenated with

text embeddings as a visual soft prompt to the frozen LLM.

Audio–Language branch

Audio is uniformly segmented into M chunks (typically 2 s each), converted into log-Mel spec-

trograms (128 Mel bins), and fed to a frozen ImageBind audio encoder to obtain a sequence of

segment embeddings A = [a1, . . . ,aM], with am ∈ R
da [173]. What is ImageBind? ImageBind is a

multimodal foundation model trained with contrastive learning so that images, text, audio, and other

modalities share a single embedding space. It uses images as a pivot: audio is aligned to images

and text is aligned to images, which binds audio and text transitively (e.g., a “bark” sound and the

word “dog” end up close), providing semantically grounded audio features without extra audio–text

supervision [173].

An Audio Q-Former (a lightweight, trainable query-based Transformer) with temporal position

embeddings then attends over A and compresses the variable-length sequence into a fixed set of kA

audio queries,

â ∈ R
kA×da ,

where the kA learnable query tokens aggregate salient temporal cues. A final linear projector

Wa ∈ R
da×dLLM maps these queries into the LLM token space,

z(a) = âWa ∈ R
kA×dLLM ,

yielding audio query tokens that are concatenated with the user prompt (and, when present, visual

tokens) to condition the frozen LLM for audio-grounded video dialogue.

Training curriculum

Video-LLaMA1 follows a staged, dual-branch curriculum that first teaches the adapters to describe

from visual/audio inputs and then sharpens instruction following for dialogue. Crucially, the

large backbone encoders (vision: BLIP-2’s ViT-G/14 from EVA-CLIP; audio: ImageBind) and

the language model (LLaMA/Vicuna) are kept frozen; only the lightweight bridges (Video/Audio

Q-Formers, temporal position embeddings, and linear projectors) are optimized in all stages [767].

This design “guides the frozen LLM” using learned query tokens (soft prompts), and the paper’s

“fine-tuning” wording refers to adapting these bridges with different datasets, not unfreezing the

LLM.
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(a) Vision pre-training (video/image→text generation). Using large vision–caption corpora

(WebVid-2M short clips; filtered CC595k image captions), the frozen BLIP-2 vision encoder

produces frame features. Learnable temporal position embeddings are added to inject ordering

over frames, and a Video Q-Former aggregates them into a fixed number of video query tokens.

A linear projector maps these tokens to the LLM embedding space; concatenating them with

text inputs prompts the frozen LLM to generate captions. This stage prioritizes broad visual

knowledge despite caption noisiness [767, Sec. 2.1–2.2].

(b) Vision instruction tuning (image/video dialogue). The same visual adapters are further trained

on high-quality instruction data (e.g., MiniGPT-4 image descriptions, LLaVA image instructions,

Video-Chat video instructions) so that the frozen LLM better follows prompts, answers questions,

and maintains multi-turn coherence when conditioned on the learned video tokens [767, Sec. 2.2].

(c) Audio pre-training (audio→text via pivot). Due to scarce audio–text pairs, the audio branch

leverages a frozen ImageBind audio encoder to produce segment features that already live in a

multimodal space aligned with images/text [173]. Uniform 2 s chunks are converted to 128-bin

log-Mel spectrograms and encoded into a sequence A = [a1, . . . ,aM]. An Audio Q-Former with

temporal position embeddings fuses A into a fixed set of audio query tokens, which are projected

to the LLM space. Training uses the same vision–text data as a pivot: the loss is applied on

text generation while conditioning the LLM on audio-side tokens whose features are aligned

to vision via ImageBind. This yields zero-shot audio understanding at inference, even without

direct audio–text supervision [173, 767, Sec. 2.1.2, 2.2.2].

How images and videos share one encoder

Video-LLaMA1 uses a single frozen image encoder (the BLIP-2 vision tower) for both images and

videos by treating an image as a 1-frame video. Concretely: (i) for a static image, the encoder runs

once to produce patch tokens for that single frame; (ii) for a video, N frames are uniformly sampled

and each frame is encoded independently by the same tower, yielding a sequence of per-frame

tokens; (iii) learnable temporal position embeddings are added to mark frame order; and (iv) a Video

Q-Former cross-attends over this ordered sequence and compresses it into a fixed number of visual

query tokens, which are then projected into the LLM embedding space. This unified pathway avoids

modality-specific encoders while the temporal embeddings and the Q-Former supply the missing

“when” signal and spatio-temporal aggregation absent from a purely image-trained backbone [767,

Sec. 2.1.1–2.2].

Positional encoding (vision & audio)

Because the frozen encoders do not model time, Video-LLaMA1 injects learnable temporal position

embeddings after feature extraction: per-frame (vision) and per-segment (audio) embeddings are

added before the corresponding Q-Formers, enabling temporal reasoning without unfreezing the

backbones [767, Sec. 2.1.1–2.1.2].

Learning objective (unified view)

All stages optimize the standard autoregressive language-modeling loss (next-token negative log-likelihood)

on the frozen LLM, conditioned on the concatenation of modality query tokens and textual context:

LLM = −
T

∑
t=1

log p(wt |w<t , Qv and/or Qa, c) ,
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where Qv/Qa are the fixed-length video/audio query tokens produced by the Q-Formers and projected

to the LLM space, c is the text context (caption/instruction), and wt are target tokens. No extra losses

are introduced; the adapters learn to act as soft multimodal prompts that elicit correct generations

from a frozen LLM [767, Sec. 2.2].

Intuition and roles

Q-Formers act as learnable compressors that query and distill dense frame or audio features into

a small, fixed set of tokens that an LLM can reliably consume, mirroring BLIP-2 for images but

extended temporally (video) and across modality (audio). ImageBind provides the audio branch with

a pragmatic route to align with text even without abundant audio–text pairs. Together, they let a

frozen LLM “see and hear” with minimal new parameters.

Architecture & Implementation Details

Backbones and frozen parts

Vision uses the BLIP-2 visual stack: EVA-CLIP ViT-G/14 + Q-Former (both frozen). Audio uses

the frozen ImageBind audio encoder. The LLM is Vicuna/LLaMA (frozen). Trainable parts are:

temporal position embeddings, Video Q-Former, Audio Q-Former, and small linear projectors to the

LLM token space.

Video tokens

Each frame yields K f image tokens; temporal position embeddings index frames; Video Q-Former

outputs kV video query tokens. A linear projector maps these into the LLM embedding dimension;

tokens are then prepended/concatenated to text embeddings as a soft prompt.

Audio tokens

Audio is chunked, Mel-spectrogrammed, embedded via ImageBind, fused by the Audio Q-Former

into kA tokens, then projected to the LLM space and concatenated alongside video tokens.

GEMINI additions (intuitive recap)

The dual-branch design feeds a central LLM with what it sees (Video Q-Former summary of frames)

and what it hears (Audio Q-Former summary of audio). The LLM then produces responses grounded

in both modalities, e.g., recognizing a rocket launch and describing engine roar (See Fig. 24.99).

Table 24.60: Comparison with popular multimodal LLMs: Video-LLaMA uniquely handles images,

silent videos, and audio jointly (Adapted from Table 1 of [767]).

Model Name Static Image Silent Video Audio

BLIP-2 [333] ✓

MiniGPT-4 [803] ✓

LLaVA [368] ✓

mPLUG-Owl [734] ✓ ✓

VideoChat [335] ✓ ✓

AudioGPT [245] ✓

Video-ChatGPT [410] ✓ ✓

Video-LLaMA [767] ✓ ✓ ✓



24.9 Enrichment 24.9: Video–Language Large Models 2097

Experiments and Ablations

Qualitative capabilities

Video-LLaMA1 enables multi-turn audio–visual dialogue: (a) answering questions grounded jointly

in background sound and visual content; (b) describing actions over time (temporal reasoning across

frames); (c) analyzing single images; and (d) recognizing well-known landmarks (Figure 24.100).

These examples illustrate how the model combines the vision and audio branches to condition a

frozen (or LoRA-adapted) LLM for grounded responses [767].

Figure 24.100: Examples generated by Video-LLaMA. (a) Answers based on background sound

and visual content. (b) Identifies actions over time. (c) Understands static images. (d) Recognizes

famous landmarks. Adapted from [767].

Tasks and metrics (at a glance)

Evaluation follows standard video–language setups [767]: (i) Video QA on MSRVTT-QA and

ActivityNet-QA (reported as answer accuracy); (ii) Video captioning on MSVD/MSRVTT (reported

with CIDEr/BLEU/METEOR); and (iii) Retrieval on MSRVTT (reported with Recall@K). The

paper focuses on zero-shot and instruction-tuned settings, highlighting gains attributable to the staged

curriculum.
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Training stages and ablations

A staged curriculum underpins the stability and performance of Video-LLaMA1, with pre-training

for grounding followed by instruction tuning for conversational ability; empirical studies in [767,

Sec. 2.1–2.3, 4] confirm the contribution of each step.

• Vision caption pre-training→ broad visual grounding. Using large, weakly supervised

corpora (WebVid-2M video clips and filtered image–caption sets), the Video Q-Former and

projector learn to produce a compact set of visual query tokens that condition the frozen LLM

to generate captions, yielding stronger descriptive ability and better retrieval-style baselines

than adapter-free or frozen-feature variants. Ablation: Query-based cross-attention with

temporal position embeddings outperforms naive frame pooling for video QA, indicating a

learnable bottleneck is more effective for distilling spatio–temporal cues into the LLM token

budget [767, Sec. 2.1, 4]. .

• Instruction tuning → QA accuracy and multi-turn dialogue. Fine-tuning the same vi-

sual adapters together with a lightweight LLM adaptation on clean image/video instruc-

tion–response data improves answer relevance and stabilizes multi-turn consistency compared

to caption-only training, showing that instruction-formatted supervision is required to elicit

conversational behaviour. Ablation: Models trained only on captions underperform on ques-

tion answering and dialogue coherence despite solid visual grounding [767, Sec. 2.3, 4].

.

• Audio pivoting→ zero-shot audio understanding. With a frozen ImageBind audio encoder,

the Audio Q-Former is trained via a vision–text pivot to produce audio query tokens aligned

to the LLM space without paired audio–text datasets, enabling audio-aware responses for

questions that depend on background sounds. Ablation: The pivoted audio branch outperforms

variants that omit audio, providing a practical and data-efficient route to audio grounding [767,

Sec. 2.2, 4].

Positioning w.r.t. LaViLa and related LMMs

Relative to LaViLa (narration-supervised dual-encoder optimized for alignment and retrieval),

Video-LLaMA1 is a generative, instruction-tuned audio–visual language model: it supports free-form

answers, multi-turn dialogue, and audio grounding while reusing frozen perception backbones

through Q-Formers. Compared to image-first instruction models (e.g., BLIP-2, LLaVA, MiniGPT-

4), Video-LLaMA1 adds temporal modeling (frame sequences with temporal embeddings and a

Video Q-Former) and an explicit audio branch via ImageBind, enabling questions that depend on

motion and sound. Modality coverage is summarized in Table 24.60, and unified follow-ups (e.g.,

LLaVA-OneVision) are discussed in Sec. 24.7.3.

Limitations and Future Directions

Observed constraints

Video-LLaMA1 is an early-stage prototype. The paper highlights: (1) performance is bounded by

the scale/quality of current training data; (2) limited ability to handle long videos due to compute

and fixed token budgets; and (3) hallucinations inherited from the frozen LLM.

Future work

The authors call for higher-quality audio–video–text alignment data, longer-context modeling for

movies/TV-scale inputs, and mitigation strategies for hallucination. These directions naturally moti-

vate successors (Video-LLaMA2/3) that extend clip length, strengthen audio–visual synchronization,

and scale instruction data and adapters (see next subsections in this enrichment).
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Enrichment 24.9.3: Video-LLaMA 2: Enhanced Understanding, Efficiency

Overview and motivation

Video-LLaMA2 [103] extends Video-LLaMA1 by replacing the Q-Former connector with a compute-

efficient Spatial–Temporal Convolution (STC) connector and by introducing a stronger audio pathway

and staged audio–visual training. The goals are: (i) preserve local spatial–temporal structure while

reducing video tokens; (ii) scale to longer clips without exploding token budgets; and (iii) strengthen

audio understanding via a modern audio encoder (BEATs) and curriculum. The design keeps

modality encoders frozen and lets a lightweight connector plus an LLM handle fusion and reasoning,

improving robustness and efficiency for instruction-following video chat and QA.

Figure 24.101: Overall pipeline of Video-LLaMA2. Frames are encoded by a frozen image encoder

and passed through the STC connector before entering the LLM; audio is converted to log-Mel

features, encoded, and aligned via an MLP block. Adapted from [103].

Method

Modality branches (concise)

Video-LLaMA2 feeds a (frozen–decoder) LLM with compact tokens produced by two parallel

branches [103, Sec. 2]:

• Vision. Uniformly sampled frames→ frozen CLIP ViT-L/14 (per-frame features)→ STC

connector (RegStage → 3D conv with downsampling (t,s,s) → RegStage)→ small MLP

projector to LLM tokens [103, Sec. 2.1].

• Audio. Waveform→ log-Mel spectrograms (128 bins)→ frozen BEATs encoder→ two-layer

MLP to LLM tokens (no Audio Q-Former) [103, Sec. 2.2].

Tokens from both branches are concatenated with the text prompt and passed to the LLM for

autoregressive generation.
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STC connector: step-by-step mechanics and intuition

Primer on RegStage. RegStage is the per-stage building block from the RegNet family [500] (imple-

mented in timm and invoked in the paper’s pseudo-code), used here purely for spatial refinement on

each frame [103, Alg. 1, Sec. 2.1]. Concretely, a RegStage stacks several lightweight 2D residual

bottleneck blocks (conv→ norm→ activation, optional squeeze-and-excitation and/or group con-

volutions), with a fixed channel width across the stage and an optional stride in the first block for

spatial downsampling. It does not mix information across time—every operation is intraframe—so it

functions as a per-frame “detail enhancer” that sharpens edges, textures, and small objects before

(and after) the temporal aggregation step in STC.

Why RegStage vs. an ad-hoc 2D stack? RegNet’s blocks arise from a regular design space

discovered by large-scale network design exploration [500]: channel widths evolve by a simple

quantized linear rule, depth/width are balanced per stage, and the block recipe remains constant. This

regularity yields predictable compute/accuracy scaling and strong accuracy-per-FLOP at a given

budget, whereas “irregular” CNN stacks (arbitrary kernel/width changes per layer) tend to be harder

to scale efficiently. In Video-LLaMA2, this makes RegStage an ideal choice around the single 3D

aggregation layer: it is (i) frame-local—preserving temporal order for the downstream 3D step; (ii)

parameter- and FLOP-efficient—suited to long clips; and (iii) detail-retentive—its pre/post spatial

filtering mitigates the blurring that temporal downsampling can introduce [103, Sec. 2.1].

Let F ∈ R
T×H ′×W ′×Dv denote per-frame features from the frozen ViT (one image per frame).

The STC (RegStage→ Conv3D→ RegStage) transforms F into an order-aware token sequence Qv

for the LLM:

• (1) Pre-aggregation spatial interaction (RegStage #1). Apply a RegStage independently on

each frame to strengthen intraframe structure:

F1 = RegStage1(F).

Intuition. This step sharpens spatial details before any temporal mixing, so that subsequent

compression does not wash out fine cues needed for OCR, small objects, or delicate hand-object

interactions [103, Sec. 2.1].

• (2) Spatio-temporal aggregation with explicit downsampling (3D Conv). Treat the sequence

as a 3D volume and aggregate with a single 3D convolution configured to downsample by

factors (t,s,s) along time/space:

F2 = Conv3D(t,s,s)(F1).

This reduces the lattice roughly from (T,H ′,W ′) to
(
⌈T/t⌉,⌈H ′/s⌉,⌈W ′/s⌉

)
while encoding

short-range motion and local temporal context. Intuition. A 3D kernel “looks” at small

space–time cubes and encodes what changes, where, and when instead of averaging away

motion; explicit (t,s,s) makes the token budget predictable for long clips [103, Sec. 2.1,

Tab. 1].

• (3) Post-aggregation refinement (RegStage #2). Apply a second RegStage on the downsam-

pled volume:

F3 = RegStage2(F2).

Intuition. This “cleanup” stage restores spatial sharpness and reduces artifacts introduced by

aggressive downsampling, yielding more discriminative tokens for the LLM [103, Sec. 2.1].
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• (4) Projection to LLM tokens (MLP). Flatten the 3D lattice into a sequence and map each

vector to the LLM embedding with a small MLP:

Qv = MLP
(
Flatten(F3)

)
∈ R

K×dLLM ,

where K ≈ ⌈T/t⌉·⌈H ′/s⌉·⌈W ′/s⌉ is the resulting visual token count set by (t,s,s) (e.g.,

the paper often uses (2,2,2)). The sequence order follows scanline-in-time (preserving

chronology), and Qv is concatenated with text (and optional audio tokens) for generation [103,

Sec. 2.1].

Why this “sandwich” works. A plain stack of 3D convolutions can over-mix space and time

too early, blurring fine spatial structure; the RegStage–Conv3D–RegStage design deliberately sepa-

rates delicate and dedicated spatial refinement (before/after) from temporal aggregation (middle),

preserving locality while encoding motion. Ablations favor this configuration—especially with

downsampling (2,2,2)—for superior MC-VQA averages under tighter token budgets [103, Tab. 1].

Figure 24.102: STC connector: RegStage→ 3D convolution for spatio–temporal aggregation (e.g.,

downsampling (2,2,2))→ RegStage, followed by a small MLP to produce LLM tokens; preserves

temporal order while reducing token count. Adapted from [103].

Why STC instead of a plain 3D CNN or a Q-Former?

• Versus a plain 3D CNN stack. Repeated 3D mixing tends to smear fine details by coupling

space and time at every layer; STC confines temporal aggregation to one explicit step and uses

RegStage to protect and then restore spatial fidelity, improving accuracy at a comparable or

smaller token budget [103, Sec. 2.1, Tab. 1].

• Versus the V1 Q-Former. Attention-based querying is flexible but token-hungry on long

sequences and may disturb chronological order via learned resampling; STC preserves frame

order by construction, offers deterministic (t,s,s) reduction, and scales linearly with clip

length—yielding better MC-VQA averages under tighter budgets in the paper’s compari-

son [103, Sec. 2.1, Tab. 1].
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Implementation of STC in Python (from the paper)

1 import torch.nn as nn

2 from timm.models.regnet import RegStage

3

4 class STCConnector(nn.Module):

5 def __init__(self, config, depth, mlp_depth):

6 # Temporal and spatial downsampling factor

7 td, sd = config.td, config.sd

8 # Input and output hidden dimension

9 in_size, out_size = config.in_size, config.out_size

10 # The first RegStage block

11 self.s1 = RegStage(depth=depth, in_chs=in_size, out_chs=out_size)

12 # Conv3D downsampler

13 self.downsampler = nn.Conv3d(in_channels=out_size,

14 out_channels=out_size,

15 kernel_size=(td, sd, sd))

16 # The second RegStage block

17 self.s2 = RegStage(depth=depth, in_chs=out_size, out_chs=out_size)

18 self.proj = build_mlp(mlp_depth, out_size, out_size)

19

20 def forward(self, x):

21 x = self.s1(x)

22 x = self.downsampler(x)

23 x = self.s2(x)

24 x = self.proj(x)

25 return x

Design principles. The authors avoid resampler-style connectors to keep token order consistent

for the autoregressive LLM; introduce explicit 3D downsampling to control token count; and use

RegStage blocks around the downsampler to compensate for losses from compression [103, Sec. 2.1,

Fig. 2].

Training signal and integration

All connector parameters (RegStage blocks, 3D conv, MLP) are optimized only through the standard

next-token LM loss in captioning/QA/instruction formats, with visual/audio encoders frozen and

the LLM optionally adapted with parameter-efficient tuning during instruction stages [103, Sec. 3].

This keeps the connector small, order-aware, and compute-efficient while enabling strong temporal

modeling at inference time.

Key changes vs. V1 (what changed and why)

Video-LLaMA2 replaces the V1 Video Q-Former with a convolutional STC to scale to long clips

under tight token budgets while keeping the sensory encoders frozen [103, Sec. 2]. The shift is

motivated by three practical needs:

• Chronology by construction. A single 3D convolution aggregates adjacent frames directly,

preserving temporal order without learned resampling that can shuffle/sparsify frames in

attention-based connectors [103, Sec. 2.1].

• Deterministic token control. Explicit downsampling with stride (t,s,s) (e.g., (2,2,2))
reduces tokens early and predictably, enabling longer contexts with stable memory/latency

and better accuracy–efficiency trade-offs [103, Sec. 2.1, Tab. 1].



24.9 Enrichment 24.9: Video–Language Large Models 2103

• Detail preservation around compression. Lightweight RegStage blocks before/after the 3D

step act as spatial “sharpen/cleanup” modules, mitigating the blur introduced by temporal

downsampling and improving MC-VQA averages at comparable or smaller token budgets [103,

Sec. 2.1, Tab. 1].

Audio branch update. The ImageBind-pivoted Audio Q-Former in V1 is replaced with a frozen

BEATs encoder plus a small MLP projector, followed by a staged audio→ audio + video curriculum.

This simplifies alignment, strengthens A/V synchronization, and improves audio-aware reasoning

under limited token and compute budgets [103, Sec. 2.2, 3.2].

Architecture and implementation details

Vision backbone. Image-level CLIP ViT-L/14 processes frames independently at 336×336, then the

STC connector aggregates across time and space, producing a compact set of video tokens for the

LLM [103, Sec. 2.1]. Audio backbone. BEATs encodes fbank (log-Mel) spectrograms; a 2-layer

MLP aligns to the LLM dimension [103, Sec. 2.2]. LLM. Mistral-7B-Instruct and Mixtral-Instruct

are used as decoders; modality encoders remain frozen; the connector and projector are optimized,

and instruction tuning is applied for dialogue [103, Sec. 2].

Training curriculum

(i) Vision–language pre-training. Filtered web-scale image/video–text data are used with frozen

encoders and LLM; only the STC connector is optimized via token-level cross-entropy (next-

token LM loss) [103, Sec. 3.1.1]. The curated recipe keeps 12.2M pairs from 103M candidates

(WebVid-10M 4.0M; Panda-70M 2.8M; VIDAL-10M 2.8M; InternVid-10M 650K; CC-3M 595K;

DCI 7.8K) [103, Tab. 2]. (ii) Multi-task fine-tuning. Simultaneous captioning, classification, VQA,

and instruction tuning over ≈ 1.35M samples (Video–Text 488K; Image–Text 746K; Text-only

120K) [103, Sec. 3.1.2, Tab. 3]. (iii) Audio & AV curriculum. Three stages totaling ∼ 1.9M:

audio-only pre-train (∼ 400K), audio instruction (∼ 698K), and joint audio–video (∼ 836K) for

synchronization and AV reasoning [103, Sec. 3.2, Tab. 4]. Objective. All stages use standard

autoregressive LM loss conditioned on visual/audio tokens and text, with encoders frozen and

connector/projector (and LLM adapters during instruction tuning) updated [103, Sec. 3].
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Experiments and Ablations

STC Ablations

A controlled sweep (8 frames, Video-LLaVA data) tests spatial interaction (RegStage vs. none)

and aggregation (2D/3D pool/conv) under explicit downsampling. The optimal configuration is

RegStage✓+ 3D Conv with (2,2,2) downsampling, yielding Avg. 45.1 on MV-Bench, EgoSchema,

ActivityNet-QA with 576 tokens (green row, Table 1). Weaker alternatives include 2D Pool with

(1,2,2) at Avg. 44.4 and 1152 tokens (token-hungry), and 3D Conv with (2,2,2) but no RegStage

at Avg. 43.1 and 576 tokens (detail loss). Insight: A single, early 3D fusion step captures motion

efficiently, while pre/post RegStage recovers spatial sharpness, giving +2–4% QA over 2D or plain

3D variants and enabling long-clip scaling without context explosion [103, Tab. 1].

Data Recipe Overview

Pre-training filters 103M raw pairs to 12.2M video/image-text pairs (e.g., WebVid-10M: 4.0M;

Panda-70M: 2.8M; see Table 2). Multi-task fine-tuning uses 1.35M samples (video-text 488K,

image-text 746K, text-only 120K; Table 3). The audio curriculum totals 1.9M instances (400K

audio pre-train, 698K audio instruction, 836K audio + video joint; Table 4). Insight: Heavy filtering

(11.8% retention) prioritizes quality over raw scale, improving transfer compared with unfiltered

mixtures [103, Tab. 2–4].

Multiple-Choice VQA and Perception

With 16 frames and a 7B decoder, Video-LLaMA2 reports EgoSchema 51.7%, Perception-Test

51.4%, MV-Bench 54.6%, VideoMME 47.9/50.3%, and MSVC 2.53/2.59. Using 8 frames slightly

reduces performance (e.g., MV-Bench 53.4%), while scaling the decoder to Mixtral 8× 7B (≈72B)

lifts scores to 63.9/57.5/62.0% on EgoSchema/Perception-Test/MV-Bench and 61.4/63.1% on

VideoMME (MSVC 2.61/2.61), under the same protocol [103, Tab. 5].

Open-Ended Video QA

For MSVD and ActivityNet-QA (accuracy/score), the 7B model attains 70.9/3.8 and 50.2/3.3. On the

Video-ChatGPT human rubric, it scores 3.16/3.08/3.69/2.56/3.14 for Correctness, Detail, Context,

Temporal/Consistency [103, Tab. 6]. Insight: Performance is competitive with image-first baselines

on MSVD while showing stronger temporal judgments, consistent with STC’s motion preservation.

Audio QA

On audio-only QA, Video-LLaMA2-7B reaches Clotho-AQA 70.11%, TUT2017 78.40%, and

VocalSound 93.19% using ∼4k hours of audio, rivaling models trained on orders of magnitude

more data (e.g., Qwen-Audio 7B at 57.90/64.90 with ∼137k hours) [103, Tab. 7]. Insight: The

BEATs + MLP path is data-efficient for audio grounding.

Open-Ended Audio–Video QA

With joint audio–video instruction, the 7B model achieves MUSIC-QA 79.2%, AVSD 57.2%, and

VGGSound 70.9% on ∼1.8M pairs, surpassing prior open-source systems under comparable set-

tings [103, Tab. 8]. Insight: The staged audio→AV curriculum tightens cross-modal synchronization

for fine-grained reasoning.
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Figure 24.103: Qualitative cases from Video-LLaMA2: (a) Global scene description and affect. (b)

Spatial–temporal orientation awareness. (c) Commonsense reasoning with environmental cues. (d)

Fine-grained OCR in video. Adapted from [103].
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Limitations and future directions

Video-LLaMA2 acknowledges several open challenges that shape the roadmap for video LLMs [103,

Sec. 3–5]:

• Long-context scaling. Even with STC downsampling, reasoning beyond tens of seconds is

constrained by the LLM’s context window and token budget; maintaining narrative coherence

over minutes remains difficult under fixed compute and latency budgets.

• Fine-grained temporal precision. Aggressive (t,s,s) reductions can blur boundaries of short,

sequential actions (e.g., micro-gestures), suggesting a need for adaptive or multi-rate temporal

modeling.

• Audio–visual synchronization. Joint training improves sync but still trails specialized AV

systems on tightly coupled events (onset/offset, lip-speech alignment), indicating room for

stronger cross-modal alignment objectives and curricula.

• LLM choice and data bias. The chosen decoders (Mistral/Mixtral) and filtered web corpora

can limit domain robustness, multilingual coverage, and calibration under distribution shift;

broader, curated instruction data and multilingual AV resources are needed.

Where next? Promising directions include hierarchical long-video memory and tiling, adaptive

multi-rate temporal adapters, explicit AV alignment losses/heads, and larger, more diverse instruction

datasets with multilingual audio and video. These themes naturally motivate the next model in this

series: Video-LLaMA3, covered next, which explores longer contexts, finer temporal localization,

and tighter audio–visual coupling while preserving token efficiency.

Table 24.61: Selected MC-VQA/perception results from the paper at 7B (16 frames). Video-LLaMA2

and the 2.1 refresh improve over contemporaries under comparable settings. Metrics are accuracies

unless noted.

Model EgoSchema Perception-Test MV-Bench VideoMME MSVC

Video-LLaMA2 (7B) [103] 51.7 51.4 54.6 47.9/50.3 2.53/2.59

Video-LLaMA2.1 (7B) [103] 53.1 54.9 57.3 54.9/56.4 2.87/2.81

VideoChat2 (7B) [336] – – 51.1 – –

LLaVA-NeXT-Video (7B) [367] – – 46.5 – –



24.9 Enrichment 24.9: Video–Language Large Models 2107

Enrichment 24.9.4: Video-LLaMA 3: Frontier Multimodal Foundation Models

Motivation

A vision-first redesign

Video-LLaMA2 paired AnyRes tiling with a uniform spatio–temporal connector (STC) to squeeze

long clips into an LLM context, but the grid remained rigid: tiling could distort aspect ratios and

inflate tokens for simple scenes, while uniform downsampling tended to blur high–frequency detail

(e.g., thin chart lines, small OCR text). Near-duplicate frames still consumed substantial budget [103].

Video-LLaMA3 reframes the pipeline around visual fidelity first, efficiency second: make the vision

encoder genuinely resolution–agnostic so images and frames are ingested at native geometry, then

treat a video as a sequence of correlated images and budget tokens toward changes rather than static

redundancy [759]. In practice, that means any-resolution tokenization for spatial detail, a simple

textualized interface (separators and timestamps) for temporality, and content-aware savings that

extend the effective horizon without sacrificing detail.

Figure 24.104: Pipeline of Video-LLaMA3 with two key techniques: Any-resolution Vision Tok-

enization (AVT) and Difference-aware Frame Pruning (DiffFP). AVT turns images/videos of any

resolution into 1-D token sequences; DiffFP drops low-change regions across adjacent frames for

efficient long-video processing. Adapted from [759].

Design objectives

• Fidelity beyond grid heuristics Replace tiling/cropping with native-resolution tokenization

to eliminate geometric distortion and preserve layout/text details in documents, charts, and

high-resolution scenes [759, Sec. 3.1].

• Scalable token efficiency for longer videos Plan a clear visual budget within the LLM context

and steer tokens toward motion and events via order-preserving sampling and content-aware

pruning, so minutes of video remain tractable and temporal reasoning deepens instead of

collapsing to coarse summaries [759, Sec. 2–3].
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• One unified, instruction-friendly stream Represent images and videos in the same textu-

alized format (newline/frame separators and simple Time: xxs stamps), enabling a single

autoregressive interface to handle static VQA, multi-image comparison, long-video QA, and

streaming dialogue [759, Sec. 3.3].

• Stable, staged learning First strengthen and align the vision prior on images, then add

instruction following, and finally specialize for video; ablations indicate that adhering to

this curriculum improves robustness and long-video performance compared to collapsing

stages [759, Sec. 4.5].

Mechanisms chosen to meet these goals

• Any-resolution Vision Tokenization (AVT) Adapts the ViT to operate at native image/frame

size and aspect (resolution-agnostic patch tokens), removing fixed crops or rigid tiling that

inflate tokens or break layout [759, Sec. 3.1].

• Difference-aware Frame Pruning (DiffFP) Removes temporally redundant visual tokens

before the LLM so long videos remain within context while preserving chronology; details

follow in the next subsection [759, Sec. 2.2].

• Staged curriculum A four-stage progression (vision adaptation→ vision–language alignment

→ multi-task SFT → video-centric SFT) improves stability and transfer from strong image

priors to temporal reasoning [759, Sec. 3]. Here, SFT means supervised fine-tuning on

instruction-formatted input–output pairs (e.g., for the multi-task stage: image VQA, captioning,

multi-image reasoning; for the video-centric stage: video QA, temporal grounding, streaming

dialogue).

Scope: vision focus in V3

Unlike Video-LLaMA2, which explored audio-conditioned variants, Video-LLaMA3 is intention-

ally vision + language only: the paper and models do not introduce an audio branch [759]. This

concentrates capacity and curated supervision on visual understanding, simplifies token budgeting

for long clips, and aligns with benchmarks that evaluate visual comprehension (e.g., VideoMME

without subtitles, MLVU, PerceptionTest, DocVQA, MathVista). The textualized interface remains

compatible with future audio modules should they be interleaved later.

Anticipated benefits over V2

• Sharper spatial detail Native-resolution tokenization preserves small text and fine structure

that uniform 3D aggregation in V2 tended to blur.

• Longer effective horizons Content-aware token savings target near-duplicate frames instead

of uniformly compressing everything, enabling deeper temporal reasoning within a fixed LLM

window.
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Method

Pipeline at a glance

Video-LLaMA3 uses a vision–centric pipeline that keeps native spatial detail while emitting tokens

the LLM can read directly [759, Sec. 3]:

• Vision encoder A pretrained ViT-style backbone ingests images or video frames at their native

aspect ratio/size and outputs per-patch features—no forced square crops or rigid tiling.

• Projector A small MLP maps encoder features to the LLM embedding dimension, yielding

visual tokens that concatenate cleanly with text for unified autoregressive reasoning.

• Budgeted video packing Any-resolution Vision Tokenization (AVT) supplies per-frame,

resolution-agnostic tokens; frames are serialized in time (optionally with simple Time: xxs

tags) and, for long clips, a lightweight temporal compressor (DiffFP, described next) trims

redundancy before the LLM.

This preserves fine structure (e.g., thin OCR strokes, small objects) and global layout while keeping

token counts tractable for extended videos [759, Sec. 3].

Why a resolution-agnostic encoder

Fixed-crop pipelines and grid-tiling “AnyRes” heuristics can distort aspect ratios, disrupt global

layout, and bloat token counts on high-resolution or unusual-aspect inputs. Video-LLaMA3 replaces

these heuristics with a genuinely resolution-agnostic encoder (via AVT) so every visual input—single

images and all video frames—is processed at native size and aspect [759, Sec. 3.1]. The resulting

token stream reflects actual visual content rather than an artificial tiling grid, which is crucial for

documents, charts, and detail-heavy scenes, and it pairs naturally with later, change-aware pruning

to extend the effective temporal horizon.

Any-resolution Vision Tokenization (AVT)

AVT makes a ViT-based vision backbone resolution-agnostic, dynamically tokenizing images or

video frames at their native sizes and aspect ratios to yield variable-length, LLM-ready tokens

without cropping, resizing, or rigid tiling [759, Sec. 3.1]. The same procedure is applied to single

images x∈RC×H×W and to each frame of a video x∈RT×C×H×W , with temporal serialization handled

after spatial encoding.

• Native-resolution spatial patching (before tokenization). For each image or frame of size

H×W , extract non-overlapping P×P patches (stride P). This yields a grid H ′ = ⌈H/P⌉,
W ′ = ⌈W/P⌉ and a sequence length

K = H ′W ′ =
⌈H

P

⌉
·
⌈W

P

⌉
.

Each patch of shape C×P×P is flattened and linearly projected to a d-dimensional vector, pro-

ducing a token sequence z∈RK×d that mirrors the native grid exactly. This “patchify→ embed”

step fixes the geometry for positional encoding and avoids any rescaling or post-hoc interpola-

tion artifacts.

• Backbone adaptation to 2D-RoPE (spatial geometry). Replace the ViT’s fixed absolute

positional table with 2D Rotary Position Embeddings (2D-RoPE) applied to queries/keys in

every self-attention layer. Rotary encodings inject relative horizontal/vertical geometry via

phase rotations, so the same encoder seamlessly handles arbitrary H ′×W ′ grids and aspect

ratios without resizing or tiling [216, 759, Sec. 3.1].
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• Packing for the LLM (budgeted temporal serialization)

– Project to language space. A lightweight two-layer MLP with GELU maps each

per-frame feature matrix ft ∈RKt×d to vt ∈RKt×dLLM .

– Images. For a single image, the visual tokens v∈RK×dLLM are newline-separated and

concatenated with text tokens, then fed to the LLM.

– Videos (chronological stream). For a clip with T frames, serialize {vt}T
t=1 in time

to form one sequence V∈R(∑t Kt)×dLLM . Optionally prefix each frame block with a

timestamp token (e.g., Time: xxs) and separate frames by commas to make temporal

indices explicit.

– Context budgeting. Work within the LLM context window (e.g., total 16,384 tokens)

by allocating a visual budget (e.g., ≤ 10,240 tokens) and reserving the remainder for

text.

– Order-preserving enforcement. If the visual stream exceeds the budget, apply simple,

model-agnostic rules that keep chronology intact:

* Uniform frame sampling: increase the frame stride (e.g., decode at 1 fps and sub-

sample to a target number of frames for short clips).

* Fixed 2×2 spatial downsampling (post-encoder): apply 2×2 pooling over the token

grid to reduce each Kt while preserving aspect.

– Goal. Produce a well-ordered, budget-compliant visual sequence in which AVT preserves

per-frame spatial fidelity; a content-aware pruning method for long videos is introduced

next for additional savings [759, Sec. 3.1–3.2].

How 2D-RoPE encodes spatial relations

2D-RoPE lifts rotary embeddings from 1D to 2D image grids so self-attention depends on relative

offsets (∆u,∆v) instead of absolute indices [216, 759]. In Video-LLaMA3 this rotation acts per

frame on spatial tokens; temporal order is handled later by serializing frames (optionally with Time:

xxs) before they enter the LLM.

Attention recap. Take two patches at grid coordinates (u,v) and (u′,v′). Let x(u,v) and

x(u′,v′) be their content embeddings. In one attention head,

q(u,v) =Wq x(u,v), k(u′,v′) =Wk x(u′,v′).

With 2D-RoPE, we rotate each query/key by an angle set by its own coordinates:

q̃(u,v) = Rφ(u,v) q(u,v), k̃(u′,v′) = Rφ(u′,v′) k(u′,v′),

where Rφ is a tiny 2×2 rotation applied per channel-pair (head dimension is even), and the angle is

φ(u,v) = θx u+θy v (with a small bank of frequencies θx,θy across pairs).

The attention score is the dot product

〈
q̃(u,v), k̃(u′,v′)

〉
,

and the rotations make it depend only on the offsets

∆u = u−u′, ∆v = v− v′.
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Intuition: each token is “twisted” by an angle tied to its (u,v). When two tokens interact, only the

difference of those angles matters, so “one patch to the right” (e.g., ∆u =−1,∆v = 0) produces the

same effect on any grid size. This is why 2D-RoPE is naturally resolution- and aspect-agnostic.

Why a new PE for arbitrary resolutions. Learned tables and absolute sinusoidals are tied

to a specific lattice; when H ′×W ′ changes they need interpolation or reindexing and often drift

off-distribution. RoPE encodes position as multiplicative rotations that compose inside the dot

product, so the logit becomes a function of (∆u,∆v) only. The notion “one patch to the right” is

identical on 14×28 and 28×56 grids—no tables, no interpolation.

Setup and channel-pair rotations (encoding a patch at (u,v)). After native-resolution

patching, a frame yields a token grid with integer indices (u,v), where u∈{0, . . . ,H ′− 1} and

v∈{0, . . . ,W ′−1}. For the token at (u,v), split q,k∈Rd (even d) into d/2 channel pairs (x2i,x2i+1),
each a tiny 2D plane we can rotate by

Rφi
=

(
cosφi −sinφi

sinφi cosφi

)
, φi = θ

(i)
x u + θ

(i)
y v,

where {(θ (i)
x ,θ

(i)
y )}d/2

i=1 is a frequency bank (typically geometric from coarse→fine scales, fixed or

lightly learned per head). Apply Rφi
to every pair of q and k to obtain the rotated vectors q̃, k̃.

• Separable axial. Dedicate some pairs to rows (φi = θ
(i)
x u) and others to columns (φi = θ

(i)
y v).

• Mixed (diagonal-aware). Use φi = θ
(i)
x u+θ

(i)
y v on all pairs to capture diagonals directly.

Which to use. Both realize the same relative property; mixed is often favored in vision because many

structures (strokes, edges) are not axis-aligned.

Why pairs and where the frequencies come from. Treat (x2i,x2i+1) as a complex coordinate

x2i + ix2i+1. Multiplying by eiφi (the rotation) preserves magnitude (content) while writing location

into the angle. A geometric bank of θ ’s spreads sensitivity across spatial scales: low frequencies

capture coarse layout, high frequencies capture fine detail (e.g., text strokes). Multi-head attention

distributes these “frequency bins” across heads, so capacity is preserved.

Relativity in the logit (why resolution-agnostic). For tokens at (u,v) and (u′,v′) (write

∆u=u−u′, ∆v=v−v′),

〈
q̃(u,v), k̃(u′,v′)

〉
=

d/2

∑
i=1

Re
[

αi e i(θ
(i)
x ∆u+θ

(i)
y ∆v)

]
,

with coefficients αi determined by the unrotated content. The score is therefore a multi-scale,

Fourier-like function of offsets (∆u,∆v)—not of absolute (u,v). The same (∆u,∆v) produces the

same phase gap across grids, enabling clean extrapolation to new resolutions and aspect ratios.

Efficient implementation. Because RΘ is block-diagonal, rotation reduces to pairwise

elementwise ops:

q̃2i = q2i cosφi−q2i+1 sinφi, q̃2i+1 = q2i sinφi +q2i+1 cosφi

(and analogously for k̃). No dense matrix multiply is required.

Concrete intuition and example. Think of each channel pair as a compass needle. A patch at

(u,v) turns each needle by φi = θ
(i)
x u+θ

(i)
y v. Nearby patches turn needles by nearly the same angles

(high overlap); distant patches turn them very differently (lower overlap).
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For x∈R3×224×448 with P=16 (H ′=14, W ′=28), the token at (6,10) rotates by φi = θ
(i)
x ·6+

θ
(i)
y ·10. Attending to (7,10) introduces a horizontal phase gap proportional to ∆u=−1. Upscale to

448×896 (28×56) and the same neighbor relation yields the same phase gap—this is the core of

resolution-agnostic behavior.

Why 2D-RoPE over absolute/sinusoidal PE (at a glance).

• Relative by construction. Offsets (∆u,∆v) drive the logit, so no PE interpolation or reindexing

is needed when H ′×W ′ changes.

• Table-free scaling. Angles are computed on the fly from integer coordinates; there are no

size-specific lookup tables to retrain or resize.

• Multi-scale sensitivity. A frequency bank makes attention responsive to both coarse layout

and fine detail while preserving a global receptive field.

Why time stays outside the vision PE. Video-LLaMA3 applies 2D-RoPE within each frame

and leaves temporal order to the LLM by serializing frame tokens in time (optionally with simple

Time: xxs tags) [759, Sec. 3.1–3.2]. This reuses strong image priors, keeps the vision stack

lightweight (no 3D attention/PE), adapts naturally to variable frame counts under a token budget,

and exploits the LLM’s strength on long sequences for temporal reasoning.

End-to-end position handling.

• Within a frame. Tokens lie on an integer grid (u,v); 2D-RoPE rotates q/k using these coordi-

nates, independent of flattening order.

• Across frames. Tokens are concatenated chronologically; timestamps provide explicit temporal

indices for the LLM.

Differential Frame Pruner (DiffFP)

Stacking per-frame tokens linearly with time produces long, redundant sequences dominated by

static background regions. Video-LLaMA3 therefore introduces DiffFP, a simple, content-adaptive

compressor that prunes patches with negligible temporal change while preserving key frames and

motion regions [759, Sec. 3.2]. The procedure is two-stage:

(A) Uniform spatial downsampling (coarse bound). Each frame is first uniformly downsampled

(e.g., 2×2 bilinear) before patching/tokenization to place a coarse upper bound on per-frame tokens

without destroying global context.

(B) Difference-aware patch pruning (fine, adaptive). Let a downsampled frame at time t be

partitioned into Hp×Wp patches, and let xt(i, j) ∈ R
P×P×C denote the pixel block (or an equivalent

local descriptor used by the pruner) at patch (i, j). DiffFP computes per-patch ℓ1 differences to the

previous frame and a frame-level change statistic:

dt(i, j) =
∥∥xt(i, j)− xt−1(i, j)

∥∥
1
, ∆t =

1

HpWp

Hp

∑
i=1

Wp

∑
j=1

dt(i, j).

With thresholds τpatch and τframe:

• Key-frame keep. If ∆t ≥ τframe (large global change), keep all patches of frame t to robustly

capture scene cuts and large motions.

• Patch-wise keep. Otherwise, keep only patches with dt(i, j) ≥ τpatch and prune the rest,

yielding a sparse set of motion patches for frame t.

The resulting visual stream contains full key frames interleaved with sparse motion patches from

intermediate frames, markedly shrinking the token budget while preserving the chronology and local

dynamics needed for temporal reasoning. The pruned tokens are then concatenated (with text and,

when present, additional modalities) and fed to the LLM for autoregressive generation.
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Figure 24.105: Difference-aware Frame Pruning (DiffFP). Patches with small ℓ1 differences to the

previous frame are pruned; high-difference regions and frames with large global change are kept,

yielding a compact stream of key frames plus motion patches. Adapted from [759].

Data representations for multi-image, video, and streaming

To unify static and temporal inputs in a single LLM interface, Video-LLaMA3 textualizes visual

tokens with lightweight, literal delimiters that make structure explicit to the decoder [759, Sec. 3.3,

Fig. 6]:

• Multi-image sequences. Visual token blocks for successive images are separated by the

newline literal \n, and a final newline separates the vision block from the text prompt. This

preserves per-image boundaries while enabling cross-image reasoning.

• Video sequences. Each frame’s tokens are prefixed by a timestamp literal Time: xxs and

frames are comma-separated, e.g., Time: 0.0s [tokens], Time: 0.5s [tokens],

.... A trailing \n then separates the visual stream from the text prompt. Timestamps

provide explicit temporal anchors for ordering and duration.

• Streaming sequences. For long or live inputs, timestamped video token blocks and text turns

are interleaved in one sequence (e.g., Time: 2.0s [tokens] USER: . . . ASSISTANT: . . . ),

enabling in-stream answers and multi-turn references to prior moments.

This delimiter-based serialization lets the LLM “read” images, videos, and streams as structured nar-

ratives, while AVT supplies faithful, resolution-agnostic tokens and DiffFP emphasizes informative

changes over near-duplicate frames [759, Fig. 2, Fig. 6].

Figure 24.106: Data formats for different input types. (1) Image sequences use “\n” to separate

tokens from different images. (2) Video sequences prefix each frame with “Time: xxs”, use

commas to separate frames, and “\n” to separate different videos. (3) Streaming sequences interleave

timestamped video tokens with text turns. Adapted from [759, Fig. 6].
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Architecture & Implementation Details

Backbone and projector

Video-LLaMA3 couples a SigLIP-initialized ViT encoder with a lightweight two-layer MLP projector

(GELU), a difference-aware video compressor (DiffFP), and a Qwen 2.5 family LLM for reasoning

and generation [494, 758, 759]. Any-resolution Vision Tokenization (AVT) is realized by replacing

the encoder’s learned absolute positional embeddings with 2D-RoPE and fine-tuning the vision

stack on diverse images (scenes, documents, text-rich content). Compared to freezing the ViT

(common in earlier pipelines), this adaptation is crucial: absolute PEs are tied to a fixed grid,

whereas AVT demands resolution-agnostic geometry; fine-tuning lets attention heads and patch

embeddings recalibrate to rotations, stabilizes scale/aspect extrapolation, and improves small-detail

fidelity (OCR strokes, thin chart lines). Qwen 2.5 (e.g., 2B/7B) provides strong instruction following

and long-context handling, while the shared vision stack keeps scaling cost moderate.

Training paradigm

A four-stage curriculum builds a strong image prior first, then aligns and specializes for video [759]:

• Stage 1: Vision encoder adaptation. Swap absolute PEs for 2D-RoPE and fine-tune the

SigLIP ViT and the projector on diverse images while keeping the LLM frozen. Intuition.

Teach the encoder resolution-agnostic geometry (AVT) without language interference; freezing

here would leave an absolute-PE mismatch that harms layout fidelity at new sizes/aspects.

• Stage 2: Vision–language alignment. Unfreeze encoder, projector, and LLM; jointly train

on rich image–text data (including charts/regions) and mix in text-only samples. Intuition.

Co-adapt vision features and the LLM so the language space learns to “read” variable-length,

AVT tokens; text-only keeps linguistic fluency intact.

• Stage 3: Multi-task supervised fine-tuning (SFT). Instruction SFT over broad image tasks

plus introductory video captioning; activate DiffFP to begin controlling video token counts.

Intuition. Broaden skills and seed temporal competence while enforcing a practical token

budget.

• Stage 4: Video-centric SFT. Focus on video QA, streaming, and temporal grounding with

DiffFP active; continue mixing image-only and text-only data. Intuition. Specialize mo-

tion/event reasoning on top of the strong image prior, while guarding against catastrophic

forgetting.

Where AVT and DiffFP plug in

AVT. Enabled in Stage 1 by replacing absolute PEs with 2D-RoPE and fine-tuning the ViT + projector

on images; thereafter, every image or frame is patchified at native aspect/size and encoded into

resolution-agnostic tokens (no cropping/tiling). Why here. Early adaptation lets all later stages

benefit from clean geometry and faithful layout.

DiffFP. Activated once video enters (Stages 3–4). Frames undergo fixed 2×2 spatial downsam-

pling post-encoder to bound per-frame token counts, then temporally redundant patches are pruned

based on pixel-space ℓ1 differences w.r.t. the previous frame (threshold τ≈0.1 by default), preserving

motion-bearing regions while cutting near-duplicates [759, Sec. 2.2]. Why here. Token budgeting is

a delivery problem for the LLM context; doing it after spatial encoding keeps per-frame detail sharp

and removes redundancy only when needed.
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Summary of design choices

• SigLIP for strong visual priors. Sigmoid-based contrastive pretraining transfers well to

text-heavy and diagrammatic images; fine-tuning with 2D-RoPE teaches resolution-agnostic

geometry, improving small-detail fidelity over frozen backbones [758, 759].

• Qwen 2.5 for instruction reasoning. A modern LLM with long-context and multilingual

strengths; a small projector maps vision features into the LLM space for stable alignment and

scalable capacity [494].

• Video efficiency through DiffFP. Combine mild spatial downsampling with difference-aware

patch pruning to fit long clips within a fixed context while emphasizing changes rather than

static backgrounds [759].

• Stagewise curriculum for stability. Image→multimodal→ video progressively aligns

components, reduces optimization shock, preserves image/document skills, and yields better

long-video transfer than collapsing stages [759].

Figure 24.107: Four-stage training paradigm: Vision Encoder Adaptation, Vision–Language Align-

ment, Multi-task Fine-tuning, and Video-centric Fine-tuning. Adapted from [759].

Experiments and Ablations

Benchmarks and headline performance

Video-LLaMA3 is evaluated as a unified image+video MLLM and reports strong results across both

video and image/math/doc tasks. For the 7B variant, representative accuracies include: MLVU (dev)

73.0%, VideoMME (w/o subtitles) 66.2%, PerceptionTest 72.8%, and MathVista (testmini)

67.1%. These trends align with the design goal: AVT preserves high-frequency spatial detail for

documents/diagrams, while DiffFP focuses the budget on temporal changes for long clips.

Figure 24.108: Representative comparison across image and video benchmarks. Image-centric

baselines (e.g., LLaVA-OneVision) are reported on image tasks; video-centric baselines (e.g.,

LLaVA-Video) on video tasks. Adapted from [759].
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Table 24.62: Selected headline results for Video-LLaMA3 (7B). Accuracies (%).

Model MLVU (dev) VideoMME (w/o sub) PerceptionTest MathVista (testmini)

Video-LLaMA3 (7B) 73.0 66.2 72.8 67.1

Effect of AVT and DiffFP

Ablations separate the roles of Any-resolution Vision Tokenization (AVT) and Difference-aware

Frame Pruning (DiffFP) [759, Sec. 3.1, Sec. 2.2, Sec. 4].

• AVT (2D-RoPE adaptation). Swapping absolute PEs for 2D-RoPE and ingesting im-

ages/frames at native aspect/size reduces geometric distortion and preserves small text/lines.

The paper substantiates AVT with qualitative comparisons and aggregate benchmark gains

on layout-sensitive tasks (documents, charts, diagrams) after the AVT stage, rather than a

standalone numeric table isolating AVT alone [759, Fig. 2, Sec. 3.1, Sec. 4]. Intuition. AVT’s

relative, table-free encoding makes “one-patch right” identical across grids, enabling clean

transfer to unseen resolutions/aspects.

• DiffFP (video token efficiency). After mild per-frame 2×2 downsampling to cap tokens,

DiffFP prunes patches whose ℓ1 pixel differences to the previous frame fall below a fixed

threshold (default τ=0.1) [759, Sec. 2.2]. The paper shows accuracy–token trade-off curves

where substantial token reductions are achieved with negligible accuracy drops on long-video

benchmarks under fixed context budgets (see [759, Fig. 4, Sec. 4]). Intuition. DiffFP targets

static regions while retaining motion cues, reallocating budget to informative changes.

Comparisons to related systems

Relative to Video-LLaMA2 (uniform 3D aggregation), Video-LLaMA3 keeps spatial detail sharper

and scales to longer videos via content-aware sparsification [103, 759, Sec. 2, Fig. 1]. Against

similarly sized Qwen2-VL, it trends stronger on long-video and math/diagram reasoning in the

authors’ composite chart, while approaching larger closed or semi-closed systems on several video

tasks [759, Fig. 1]. Compared to image-first baselines (e.g., LLaVA-OneVision), Video-LLaMA3

maintains competitive document/multi-image reasoning and adds robust temporal understanding via

its unified serialization interface [759, Sec. 3.3, Sec. 4].

Vision backbone ablation.

Encoder studies support choosing a SigLIP-initialized ViT: after AVT adaptation and alignment,

it yields strong text-aware features for OCR, charts, and fine-grained perception, outperforming

alternatives on the authors’ image benchmarks [758, 759, Sec. 4.4]. Intuition. SigLIP’s contrastive

pretraining plus 2D-RoPE adaptation gives a better prior for small, high-frequency structures than

freezing an absolute-PE encoder.
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Data curation and mixtures

A staged, quality-over-quantity recipe builds image priors first, then specializes for video [759,

Sec. 3.2, Tables 1–4].

• Vision Encoder Adaptation. 15.57M images spanning scenes, scene text/OCR, and docu-

ments to realize AVT and resolution-agnostic encoding.

• Vision–Language Alignment. 21.97M image–text pairs (incl. charts and fine-grained regions)

plus text-only samples to retain language fluency.

• Multi-task Fine-tuning. 19.05M instruction-formatted image tasks plus general video cap-

tioning to seed temporal competence; DiffFP introduced for token control.

• Video-centric Fine-tuning. 5.71M video samples focused on video QA, streaming, and

temporal grounding with DiffFP active.

Intuition. Image-first stages establish a strong, resolution-agnostic visual prior; later stages add

instruction following and temporal specialization while DiffFP balances accuracy and context for

long clips [759, Sec. 3.2, Sec. 4.5].

Limitations and Future Work

Long-context and token budgets.

Although DiffFP reduces redundancy, extremely long videos still stress context limits; further

hierarchical memory or event-level summarization could help.

Temporal precision and rare events

Patch-level pruning with a fixed threshold may miss subtle, short-lived cues; adaptive thresholds or

learned importance could improve recall on fine actions.

Data biases and domain transfer

Vision-centric emphasis leverages curated image corpora; robustness to domain shifts (e.g., niche

video domains or low-light/noisy streams) may require targeted data or adapters.

Toward Video-LLaMA4

Given Chapter 24.9.3 highlighted STC for efficient motion aggregation, Video-LLaMA3 generalizes

the idea with AVT+DiffFP for any-resolution and long-form efficiency. The next chapter on Qwen-VL

families will revisit similar themes (high-res tokenization, streaming), and the subsequent Qwen3-

VL hints at tighter multi-granular fusion and memory scheduling—directions also natural for the

Video-LLaMA line.
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Enrichment 24.9.5: Qwen-VL: Versatile Vision–Language Foundation

Motivation

Large multimodal systems frequently underperform on fine-grained visual skills (e.g., text reading,

region grounding) and often lag behind proprietary models due to limited training scale and subop-

timal optimization. The Qwen-VL paper targets these gaps by: (i) adding a position-aware visual

receptor that compresses high-resolution visual features into a compact, LLM-friendly sequence; (ii)

defining a concise input–output interface to unify images, text, and bounding-box strings; and (iii)

designing a three-stage curriculum (pretraining, multi-task pretraining, supervised finetuning) over a

multilingual, cleaned corpus [24].

Figure 24.109: At publication time, Qwen-VL achieved state-of-the-art results among generalist

models across diverse benchmarks (schematic radar chart). Adapted from [24].

Reading the radar chart (intuition)

Each spoke represents a benchmark (e.g., VQAv2, OK-VQA, TextVQA, OCR-VQA, ChartQA,

RefCOCO). Larger area indicates stronger all-round performance. Qwen-VL’s polygon is no-

tably expansive, reflecting broad generalization and especially strong text-rich understanding

(TextVQA/OCR-VQA/ChartQA) relative to contemporary generalist baselines [24].
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Method

Architecture (visual receptor + LLM)

Qwen-VL integrates a high-capacity vision encoder, a lightweight position-aware adapter, and a

large language model to enable unified multimodal reasoning [24].

• Vision encoder. A pretrained OpenCLIP ViT-bigG (patch stride P=14) extracts a sequence of

patch features at the stage-specific input resolution, serving as robust perceptual tokens for

downstream fusion [24].

• Position-aware VL adapter. A single cross-attention layer with M=256 learnable query

vectors compresses the variable-length image feature sequence into a fixed-length token

set while injecting 2D absolute positional encodings into the attention to preserve spatial

layout [24]. Relation to BLIP-2 Q-Former: both use learnable queries to distill visual features,

but Qwen-VL adopts a single cross-attention layer (no stacked self/cross transformer blocks),

prioritizing efficiency while retaining spatial fidelity via explicit 2D position signals.

• Large language model. A Qwen-7B LLM consumes the M adapter tokens interleaved with

text to generate outputs, yielding a 9.6B-parameter system in total (Vision 1.9B, Adapter

0.08B, LLM 7.7B) [24, Table 1].

Table 24.63: Qwen-VL model parameters (billions).

Component Vision encoder VL adapter LLM Total

Params (B) 1.9 0.08 7.7 9.6

Input–output interface (tokenization and special tokens)

Qwen-VL textualizes visual content and locations so the LLM can read, reason, and also output

coordinates in plain text [24].

• Image tokens. The adapter’s M visual tokens are inserted as a contiguous block wrapped by

<img> and </img> sentinels to clearly demarcate visual content from natural language tokens.

• Bounding boxes as text. Boxes are normalized to [0,1000) and serialized as "(x_tl, y_tl),

(x_br, y_br)"; <box>...</box> wrap the coordinate string, and <ref>...</ref> mark the

referred phrase, enabling end-to-end grounding and box generation through standard autore-

gression.

Cross-attention compression (derivation and intuition)

Let the ViT yield F∈RN×dv over N patches. The adapter maintains M learnable queries Z∈RM×dq

with projections

Q = ZWQ, K = FWK , V = FWV ,

and applies 2D absolute positional encodings to (Q,K) before attention. The compressed tokens are

A = softmax
((Q+PEQ)(K+PEK)

⊤
√

dh

)
, H = AV ∈ R

M×dh .

Intuition. The learnable queries act like M content-and-position-aware “slots” that selectively pool

salient regions while keeping geometry via 2D PEs, yielding a compact, spatially faithful summary

for the LLM [24].
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Training pipeline (three stages)

Qwen-VL follows a staged curriculum to first align perception with language, then enrich tasks and

resolution, and finally polish instruction following [24, Sec. 3].

• Stage 1: Pretraining (224×224). Freeze the LLM and train the ViT and adapter on

∼1.4B cleaned image–text pairs (filtered from ∼5B) with next-token loss to establish basic

vision–language alignment.

• Stage 2: Multi-task pretraining (448×448). Unfreeze all modules and jointly train on

captioning, VQA, grounding, referring grounding, grounded captioning, OCR, and pure-text

autoregression (sequence length up to 2048), deepening high-resolution, fine-grained skills.

• Stage 3: Supervised finetuning. Freeze the ViT and finetune the adapter and LLM on curated

multimodal dialogues that emphasize instruction following, multi-image conversation, and

localization outputs.

Why this design

Compared with feeding all ViT tokens directly, query-based cross-attention keeps the LLM context

small and controllable while maintaining spatial detail through 2D position signals; compared

with a deeper Q-Former stack, a single cross-attention layer reduces parameters and latency yet

preserves the fine-grained cues needed for OCR and grounding thanks to high-resolution multi-task

training [24].

Figure 24.110: Qwen-VL training pipeline: Stage 1 (low-res pretraining; LLM frozen), Stage 2

(high-res multi-task; all unfrozen), Stage 3 (SFT with ViT frozen). Adapted from [24].

Data

• Pretraining (scale and cleaning). Qwen-VL begins from roughly 5B image–text pairs

and retains about 1.4B pairs (28%) after aggressive quality filtering, yielding a bilingual

corpus. The retained pool draws primarily from LAION-en/LAION-COCO, DataComp, Coyo,

CC12M/CC3M, SBU, and COCO Captions on the English side, plus LAION-zh (105M) and

220M in-house Chinese pairs, establishing broad coverage with cleaner supervision.

• Multi-task pretraining (what skills are taught). Around 69M supervised samples are used

to teach diverse capabilities: captioning (19.7M), general VQA (3.6M), grounding (3.5M),

referring expression comprehension and grounded captioning (8.7M each), and text-rich

OCR understanding (24.8M), alongside 7.8M pure-text sequences to maintain language

fluency. Representative sources include VQAv2, GQA, OK-VQA, GRIT, Visual Genome, Re-

fCOCO/RefCOCO+/RefCOCOg, TextVQA, OCR-VQA, ChartQA, AI2D, SynthDoG (en/zh),

and Common Crawl PDFs/HTML [24, Table 3].
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• Design rationale. The data recipe is intentionally OCR-heavy for text reading, bilingual for

cross-lingual robustness, and grounding-rich for localization; adding pure-text helps preserve

the LLM’s linguistic priors while the vision–language tasks shape fine-grained multimodal

reasoning [24, Sec. 3, Tables 2–3].

Pseudo-code

1 # Three-stage training of Qwen-VL (schematic)

2

3 # Init

4 vit = OpenCLIP_ViT_bigG()

5 llm = Qwen7B() # frozen in Stage 1

6 adapter = CrossAttnAdapter( # 1-layer, M=256 learnable queries

7 num_queries=256, use_2d_abs_pe=True

8 )

9

10 # Stage 1: Pretraining (224x224)

11 llm.freeze()

12 for batch in pretrain_loader(resolution=224):

13 imgs, texts = batch

14 F = vit(imgs) # patch features

15 H = adapter.compress(F) # M x d_h tokens

16 tokens = wrap_img_tokens(H, texts) # <img> ... </img> + text

17 loss = autoregressive_ce(llm, tokens)

18 update(vit, adapter)

19

20 # Stage 2: Multi-task pretraining (448x448)

21 llm.unfreeze(); vit.unfreeze()

22 for batch in multitask_loader(resolution=448, seq_len=2048):

23 imgs, multimodal_tokens = batch # interleaved image-text

24 F = vit(imgs)

25 H = adapter.compress(F)

26 tokens = interleave(H, multimodal_tokens)

27 loss = autoregressive_ce(llm, tokens)

28 update(vit, adapter, llm)

29

30 # Stage 3: Supervised finetuning (instruction/chat)

31 vit.freeze(); llm.unfreeze()

32 for batch in sft_loader():

33 imgs, chat_tokens = batch

34 F = vit(imgs)

35 H = adapter.compress(F)

36 tokens = interleave(H, chat_tokens) # includes boxes <box>...</box>

37 loss = autoregressive_ce(llm, tokens)

38 update(adapter, llm)
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Architecture & Implementation Details

Backbone and adapter

The ViT is initialized from OpenCLIP ViT-bigG; the adapter is a single cross-attention layer with

trainable queries that compresses to M=256 tokens, augmented with 2D absolute PEs in (Q,K). The

language backbone is Qwen-7B; Table 24.63 summarizes parameter counts [24].

Resolution and sequence length

Images are 224×224 in Stage 1 and 448×448 in Stage 2; interleaved image–text sequences are

packed to 2048 tokens during multi-task pretraining [24].

Special tokens and grounding format

To keep the interface simple and avoid overfull lines, Qwen-VL wraps visual tokens between short

sentinels <img> . . .</img> and expresses grounding with <ref> . . .</ref> (text span) plus <box>

. . .</box> (coordinates). Bounding boxes are normalized to [0,1000) and serialized compactly as

(x_1,y_1),(x_2,y_2), which the LLM reads and can also generate for localization [24].

Experiments and Ablations

Benchmarks and headline performance

Qwen-VL targets image understanding with three representative result slices. Captioning/VQA: On

Nocaps (0-shot) and VQAv2 it reports 121.4 CIDEr and 79.5%, indicating robust vision→ language

grounding [24, Table 4]. Text-rich VQA: On TextVQA it reaches 63.8%, reflecting effective

OCR + reasoning integration [24, Table 5]. Grounding: On RefCOCO test-A it attains 92.26%,

showcasing precise referring expression comprehension [24, Table 6]. The chat-tuned variant im-

proves instruction following (e.g., SEED-Bench All 58.2) and remains competitive on challenging

zero-shot sets such as VizWiz (38.9%) [24, Tables 4, 7].

What the ablations test

The paper analyzes two design levers in the position-aware adapter + high-resolution regime: the

number of learnable queries that compress ViT tokens, and the attention strategy used in the ViT at

448×448 resolution.

• How many adapter queries (M) to use. The single cross-attention adapter pools dense ViT

features into a fixed M-token summary. Appendix E.2 shows that accuracy rises as M grows

and then saturates; M=256 strikes the best speed/accuracy balance at 448×448 and is adopted

as default [24, Sec. 2.1, Appx. E.2]. Intuition: too few queries underfit fine detail; too many

increase compute with diminishing returns.

• Global vs. window attention at high resolution. Appendix E.3 compares full (global)

attention to windowed attention inside the ViT when moving from 224×224 to 448×448.

Window attention trains more slowly (about 2.5× longer per step at 448 due to ∼ 4× tokens)

and is sensitive to hyperparameters; more importantly, it reduces accuracy by nearly ten points

on representative recognition/grounding targets in the authors’ setting, so global attention is

preferred [24, Sec. 3.2, Appx. E.3]. Intuition: windowing saves FLOPs but weakens long-range

interactions that help text reading and referring expression grounding.
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How these results compare

Relative to image-centric assistants (e.g., BLIP-2, InstructBLIP, Shikra), Qwen-VL reports stronger

text-heavy understanding (e.g., TextVQA 63.8% vs. prior generalists at 42∼53%) and competitive

or better fine-grained grounding (e.g., RefCOCO test-A 92.26%) [24, Tables 4–6]. Direct score

matching to video-focused systems (e.g., Video-LLaMA, LLaVA-Video) is not like-for-like because

those benchmarks emphasize temporal reasoning; on image tasks, Qwen-VL generally exceeds

LLaVA-style baselines reported in the Qwen-VL tables, while video models shine on long-video QA

outside Qwen-VL’s scope [24, Fig. 1, Tables 4–7].

Design choices the ablations support

The empirical findings consolidate three choices:

• Keep the adapter compact yet expressive. A single cross-attention layer with M=256 learn-

able queries is sufficient for strong captioning/VQA and grounding while keeping end-to-end

latency manageable [24, Sec. 2.1, Appx. E.2].

• Train at higher image resolution. Moving from 224 to 448 improves text reading and

fine-grained perception; the authors therefore raise resolution in multi-task pretraining and

keep the ViT frozen during SFT to preserve this fidelity [24, Sec. 3.2, Sec. 3.3].

• Prefer global attention at high resolution. Despite higher compute, global attention yields

more stable training and clearly higher accuracy than windowed attention in the reported

setting, which matters for OCR and grounding [24, Sec. 3.2, Appx. E.3].

Takeaways

A compact, position-aware cross-attention adapter with M=256 queries, coupled with higher-resolution

multi-task training and global ViT attention, explains why Qwen-VL is strong on captioning/VQA

(e.g., VQAv2 79.5%), excels at text-centric understanding (e.g., TextVQA 63.8%), and remains com-

petitive on grounding (e.g., RefCOCO test-A 92.26%) without task-specific heads [24, Tables 4–6].

Figure 24.111: Representative Qwen-VL-Chat capabilities: multi-image dialogue, multilingual text

reading, region grounding/localization, and code understanding. Adapted from [24].



2124 Chapter 24. Lecture 24: Videos (Video Understanding)

Qualitative capabilities

Demonstrations include accurate referring-expression grounding with returned boxes, multilingual

OCR with cross-lingual reasoning over signs and documents, multi-image comparative analyses,

and structured content understanding such as code reading and correction, matching the interface

design and high-resolution training [24].

Limitations and Future Work

While Qwen-VL establishes a strong generalist baseline with an efficient cross-attention adapter and

a textualized grounding interface, several limitations in the 2023 design also outline a clear path for

the next generation.

• Generalist–specialist gap. Qwen-VL emphasizes broad coverage across captioning, VQA,

OCR-rich understanding, and grounding, yet single-task systems trained on narrowly curated

data can remain ahead on their home benchmarks (e.g., chart understanding or dense scientific

diagrams) [24, Sec. 5, Tables 4–6]. This motivates larger capacity and targeted mixtures to

approach specialist quality without giving up generality.

• Compression bottleneck in the adapter. The single-layer, query-based adapter compresses

variable-length ViT tokens to a fixed 256-token summary. This is compute-friendly, but can

under-represent dense or highly cluttered scenes; the paper’s ablations select M=256 as a

speed/accuracy compromise rather than an upper bound [24, Sec. 2.1, Appx. E.2]. Future work

can explore dynamic token budgets or multi-layer adapters that adapt capacity to content.

• Resolution and global context trade-offs. Moving from 224×224 to 448×448 improves text

reading and fine detail, but also raises sequence length and training cost; windowed attention

reduced accuracy in the reported setting, so the paper retained global attention with higher

compute [24, Sec. 3.2, Appx. E.3]. This invites designs that keep long-range interactions

while scaling to arbitrary resolution efficiently.

• Modality scope. Qwen-VL is image-centric; it does not natively model audio or video

and relies on textualized coordinates for grounding [24, Sec. 2–3]. Extending to temporal

and auditory modalities requires position schemes and tokenization that preserve time and

synchronization in addition to space.

• Toward generation. The system focuses on understanding and localization rather than

producing pixels or audio; closing the loop with vision or speech generation would require

integrating diffusion/flow decoders or modular generators conditioned on the LLM [24, Sec. 5].

Bridge to Qwen2-VL

These constraints foreshadow the priorities addressed by the successor model Qwen2-VL [668]:

scaling capacity and data quality, introducing dynamic-resolution processing to better cover arbitrary

sizes and dense layouts, and adding native video support with position schemes designed for

multimodal time–space encoding. As the following summary of Qwen2-VL details, these changes

directly target Qwen-VL’s compression and resolution trade-offs while broadening the modality

scope.
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Enrichment 24.9.6: Qwen2-VL: Dynamic Resolution Vision–Language Modeling

Motivation

Many vision–language pipelines still resize inputs to a fixed canvas (e.g., 224×224 or scale+pad),

which can distort aspect ratios and suppress fine details; position encodings are often 1D or absolute

2D, which are not ideal for complex page layouts or temporal reasoning [103, 325, 759]. The

Qwen-VL design (§24.9.5) alleviated these issues with a position-aware adapter and a textualized

grounding interface, but still compressed vision to a fixed token budget at fixed training resolu-

tions [24]. Qwen2-VL advances this line with two core ideas: naive dynamic resolution, which

ingests images/documents at or near native sizes and produces a content-proportional number of

visual tokens, and multimodal rotary position embedding (M-RoPE), which jointly encodes time,

height, and width to unify text, images, and videos within one decoder [668]. Relative to the systems

summarized in §24.7.3, §24.9.3, and §24.9.4, Qwen2-VL aims for a single native-resolution pipeline

that scales across OCR, document understanding, and long-video reasoning, with 2B/7B/72B variants

sharing the same vision stack.

Figure 24.112: Illustrative capabilities of Qwen2-VL: multilingual OCR, document and diagram

parsing, math/code reasoning, video analysis, live chat, grounding, and tool/agent interactions.

Adapted from [668].

Method

Design overview

• Naive dynamic resolution. Images are ingested at native resolution and extreme aspect ratios

without global resize; token counts scale with content via a light 2×2 token merger after the

ViT to control sequence length.

• Multimodal RoPE (M-RoPE). Rotary position encodings are decomposed into temporal (t),

height (h), and width (w) components, enabling consistent space–time indexing across text,

images, and videos for attention.

• Unified image–video training. Images are treated as two identical frames (static t), while

videos use true t with a shallow 3D stem; both pass through the same ViT and token merger

before the LLM.
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Naive dynamic resolution

Let an input image x∈RH×W×C be tokenized by a ViT with patch size p, producing a grid G of

N=⌈H/p⌉×⌈W/p⌉ patch tokens F∈RN×dv . Instead of resizing x to a single fixed canvas, Qwen2-VL

keeps the native grid and regulates length with a learnable 2×2 token merger [668]. Concretely, for

each non-overlapping 2×2 neighborhood of tokens { fi, j}(i, j)∈{(2u,2v),(2u+1,2v),(2u,2v+1),(2u+1,2v+1)},
the merger concatenates and projects

mu,v = φ
([

f2u,2v; f2u+1,2v; f2u,2v+1; f2u+1,2v+1

]
W1

)
W2 ∈ R

dv ,

where W1,W2 are linear layers and φ is a pointwise nonlinearity. This reduces tokens by ≈ 4× while

preserving local structure, yielding a content-proportional sequence length without distorting aspect

ratios. When inputs are extremely large (e.g., tall documents or 4K scans), the same merger can be

applied hierarchically (again on the merged grid) until a target budget is met, trading spatial detail

for tractable context length in a controlled, locality-aware way. Multiple images are serialized by

simple concatenation of their merged grids (each demarcated by vision sentinels) before interleaving

with text in the decoder [668].

Videos V∈RT×C×H×W are handled frame-wise with the same mechanism. Let Nt be the

per-frame tokens after patching and 2×2 merging; the visual sequence length is ∑
T
t=1Nt . To balance

space and time under a global budget Bvis, Qwen2-VL uses simple policies such as: (i) per-frame

merging depth chosen so Nt ≤Nmax; (ii) uniform or content-aware temporal subsampling (e.g.,

drop low-motion frames) if ∑t Nt > Bvis; and (iii) capping the number of frames processed at

native resolution while allowing coarser merging for the remainder [668]. Intuitively, this yields

content-proportional tokens across images and videos: dense pages or keyframes retain more tokens,

while redundant regions compress, preventing token overflow in long documents or long clips

without uniform, detail-destroying downscales.

M-RoPE for space–time

Rotary position embedding (RoPE) encodes relative offsets by rotating query/key channel pairs with

a phase that depends on position. Standard 1D-RoPE uses a single index; Qwen2-VL generalizes this

to three axes—time, height, width—via multimodal RoPE (M-RoPE) [668]. Each token is assigned

a 3D ID π =(t,h,w), and the model allocates disjoint channel subspaces to the three axes. Writing a

query head as q∈Rd with a partition (q(t),q(h),q(w)), M-RoPE applies axis-wise rotations

q̃(a) = R(a)(πa)q(a), R(a)(πa) =

da/2⊕

i=1

[
cos
(
θ
(a)
i πa

)
−sin

(
θ
(a)
i πa

)

sin
(
θ
(a)
i πa

)
cos
(
θ
(a)
i πa

)

]
, a ∈ {t,h,w},

with analogous k̃(a) for keys, where {θ (a)
i } are geometric frequencies per axis and ⊕ denotes

block-diagonal composition. Concatenating the rotated subspaces gives q̃, k̃∈Rd used in atten-

tion. The inner product between two tokens with IDs π and π ′ then depends on their relative

offsets (∆t,∆h,∆w), which makes the attention scores equivariant to spatio-temporal translations.

Qwen2-VL assigns IDs as follows: text tokens share a constant time index and a 1D progression

along the width subspace (to preserve textual order); image tokens share a time index but use their

(h,w) grid locations; video tokens use frame order for t and per-frame (h,w) for space [668].
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Pseudo-code for dynamic resolution and M-RoPE

1 # Schematic pipeline: native-resolution vision, 2x2 token merger, M-RoPE

assignment↪→

2

3 def encode_image_or_video(frames, vit, merger2x2):

4 """

5 frames: list of HxW images (len=1 for image; >1 for video)

6 vit: ViT with 2D-RoPE on spatial axes

7 merger2x2: MLP that maps 4 patch tokens -> 1 token

8 """

9 visual_tokens = []

10 for t, img in enumerate(frames):

11 # 1) Native-resolution patching and ViT encoding (no global resize).

12 F_hw = vit.patch_encode(img) # [H/p, W/p, C]

13 # 2) 2x2 merger to control token count content-proportionally.

14 F_merge = block_merge_2x2(F_hw) # [H/(2p), W/(2p), C]

15 # 3) Flatten to [N_t, C] and attach 3D position ids (t,h,w) for

M-RoPE.↪→

16 T = flatten_with_ids(F_merge, t_axis=t) # [(N_t, C), (ids_t,h,w)]

17 visual_tokens.append(T)

18 return concat(visual_tokens) # Variable-length

visual sequence↪→

19

20 def fuse_with_text(visual_tokens, text_tokens, llm):

21 """

22 Interleave markers and feed to LLM with multimodal RoPE activated on Q/K.

23 """

24 seq = [TOK.VISION_START] + visual_tokens + [TOK.VISION_END] + text_tokens

25 return llm.generate(seq)

Why M-RoPE instead of 2D absolute encodings

M-RoPE replaces the adapter’s 2D absolute position signals with a factorized, rotary scheme over

time, height, and width, yielding a single spatio-temporal reference frame for text, images, video.

• Relative, resolution-agnostic geometry. Rotary phases encode relative (∆h,∆w) offsets,

improving layout transfer to unseen sizes and aspect ratios compared with absolute tables that

require interpolation.

• Native temporal indexing. A dedicated temporal axis allows attention to condition on ∆t

jointly with (∆h,∆w), enabling spatio-temporal reasoning for videos in a shared decoder space.

• Long-context stability. Using rotations tied to relative offsets avoids very large absolute

indices, which empirically stabilizes extrapolation to long sequences.

Practical intuition.

• Video query. For “What happens after the ball crosses the line?”, attention can prioritize

patches with small positive ∆t near the line’s location in (h,w), capturing immediate post-event

dynamics.

• Document query. For “Read the footnote below the figure”, attention can target tokens with

positive ∆h under the referenced region within the same frame, preserving page geometry.

Scope. The paper focuses on text, image, and video; audio is not modeled and would require an

additional axis or synchronized timestamping beyond this work [668].
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Unified multimodal serialization

• Vision segment markers. Visual tokens are delimited: <|vision_start> and <|vision_end>

to keep the interface LLM-native and avoid custom decoders [668].

• Grounding strings. Bounding boxes are normalized to [0,1000) and serialized compactly as

(x1,y1),(x2,y2); referred spans are output as plain text. The textual interface lets the LLM

read and generate locations in one channel [668].

Architecture & Implementation Details

Model variants

Table 24.64: Qwen2-VL variants and sizes.

Model. Vision encoder (M). LLM (B).

Qwen2-VL-2B ∼675 1.5

Qwen2-VL-7B ∼675 7.6

Qwen2-VL-72B ∼675 72.0

Implementation notes

• Vision stack. The ViT employs 2D-RoPE and a shallow 3D stem for videos, followed by a

2×2 token merger MLP to reduce sequence length with minimal local detail loss [668].

• LLM stack. The LLM is initialized from Qwen2 (2B/7B/72B) and trained to interleave visual

and text tokens in one decoder stream with M-RoPE applied on attention [668].

• Training curriculum. The recipe follows Qwen-VL’s three stages: vision–language alignment

at low cost, full multi-task image/video pretraining, and instruction tuning for chat, grounding,

OCR, and tool use [668].

Figure 24.113: Adaptiveness to native resolutions and extreme aspect ratios: token counts scale with

visual content rather than a fixed canvas. Adapted from [668].
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Figure 24.114: M-RoPE decomposes rotary embeddings into temporal, height, and width compo-

nents, unifying position encoding for text, images, and videos. Adapted from [668].

Experiments and Ablations

Benchmarks and headline performance

Qwen2-VL shows very strong text–rich perception and competitive general reasoning, especially

at 72B parameters [668]. On document/OCR style tasks, Qwen2-VL-72B attains DocVQA (test)

96.5 (GPT-4o 92.8, Claude-3.5 Sonnet 95.2), TextVQA (val) 85.5, InfoVQA (test) 84.5, OCRBench

877, and RealWorldQA 77.8. On broad suites it is strong but not uniformly best: MMMU (val)

64.5 vs. GPT-4o 69.1 and Claude-3.5 68.3; MMBench-EN (test) 86.5; MMEsum 2482.7 [668,

Table 2]. The 7B variant offers a favorable cost–quality balance, e.g., TextVQA 84.3, OCRBench

866, RealWorldQA 70.1, MMMU (val) 54.1 [668, Table 2].

Video understanding

Unified image–video training together with M-RoPE yields strong long–video results. Qwen2-VL-72B

reports EgoSchema (test) 77.9 (GPT-4o 72.2), MVBench 73.6, PerceptionTest (test) 68.0, and

Video-MME 71.2/77.8 (w/o/w subtitles; GPT-4o 71.9/77.2) [668, Table 4].

Grounding

Referring expression comprehension scales with model size, approaching specialist detectors while

retaining generality. Qwen2-VL-72B reaches RefCOCO (test-A) 95.3, RefCOCO+ (test-A) 93.8,

and RefCOCOg (test) 90.4, improving on Qwen-VL and remaining close to specialist models such

as ONE-PEACE, UNINEXT-H, and G-DINO-L [668, Table 6].

Multilingual OCR (internal)

On an internal multilingual OCR suite, Qwen2-VL-72B surpasses GPT-4o on several languages (e.g.,

Korean 94.5 vs. 87.8, Japanese 93.4 vs. 88.3, French 94.1 vs. 89.7), with a small shortfall on Arabic

(70.7 vs. 75.9) [668, Table 3]. This reflects robust cross-lingual text reading while highlighting

scripts that remain challenging.

Why dynamic resolution helps

Ablations on Qwen2-VL-7B compare fixed image tokens to dynamic tokens that scale with con-

tent [668, Table 7]. Using a fixed budget of 576 image tokens yields InfoVQA (val) 65.72, Real-

WorldQA 65.88, and OCRBench 828, whereas dynamic resolution (avg. ∼ 1924 tokens for image

content) attains 75.89, 70.07, and 866, respectively, while still consuming fewer tokens than the

largest fixed settings. Accuracy is also robust across moderate fixed sizes (e.g., 1600∼3136), indi-

cating that native-resolution packing plus the 2×2 merger is an efficient default for text-heavy and

dense layouts [668, Table 7].
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Why M-RoPE matters

Replacing 1D-RoPE with M-RoPE consistently improves video tasks and maintains or slightly

improves image tasks [668, Table 8]. For example, PerceptionTest (test) rises from 46.6 to 47.4,

NextQA from 43.9 to 46.0, and STAR from 55.5 to 57.9; on image benchmarks MathVista increases

from 39.2 to 43.4 and MMBench from 58.6 to 60.6. These gains support the benefit of explicit

(t,h,w) encoding for unified space–time attention.

Length extrapolation

With M-RoPE indexing, Qwen2-VL-72B sustains accuracy when the inference sequence length ex-

ceeds the 16,384 token training limit, remaining strong toward 48K and beyond on Video-MME [668,

Fig. 5].

Figure 24.115: Inference length extrapolation on Video-MME: accuracy remains robust beyond the

16K training context, with strong performance up to long contexts. Adapted from [668].

Resolution sensitivity

Varying min_pixels (i.e., upscaling small inputs before patching) shows that moderate increases

improve perceptual and text-rich tasks such as InfoVQA, HallucinationBench, and OCRBench, with

diminishing returns or slight drops at extreme upscales [668, Fig. 4].

Figure 24.116: Effect of min_pixels: modest upscaling tends to help text-rich and fine-structure

tasks, while extreme upscaling can be counterproductive. Adapted from [668].

Scaling behavior and training curriculum

Performance improves with model size across OCR, general VQA, video, and math, e.g., (2B→
7B→ 72B) MVBench 63.2→ 67.0→ 73.6 and MathVista (testmini) 43.0→ 58.2→ 70.5 [668,

Table 2, Fig. 6(a)]. The paper also analyzes the effect of increasing training tokens during the second

pretraining stage for Qwen2-VL-7B: as the token count grows, most benchmarks improve smoothly

(e.g., AI2D and InfoVQA), while some VQA scores fluctuate, consistent with task sensitivity to data

mixtures [668, Fig. 6(b)]. Exact per-stage token totals are not disclosed; the reported trend supports

allocating substantial budget to the multi-task, native-resolution stage to strengthen fine-grained

perception and long-context use.
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Limitations and Future Work

Qwen2-VL introduces native dynamic resolution, content-proportional visual tokens, and M-RoPE to

unify images and video, yet several design trade-offs remain visible in the method and ablations [668].

The points below clarify where the current system can struggle and which directions the literature

suggests are most promising.

• Resolution–efficiency trade-offs. Dynamic resolution with a 2×2 token merger controls

sequence length on most inputs, but extremely dense pages (e.g., long PDF scans, multi-column

forms) or extreme aspect ratios can still yield very long visual sequences that push decoder

context and memory [668, Table 2, Table 7]. Likely remedies include locality-aware ViT

front-ends (adaptive strides or applying windows only where texture is high) and hierarchical

merging that preserves fine detail selectively while keeping a coarse global map for long-range

reasoning.

• Temporal grounding precision. M-RoPE provides a clean 3D positional scheme (time, height,

width) but primarily encodes relative order, while downstream usage often requires absolute

timestamps and robust handling of variable FPS [668, Table 4, Table 2, Fig. “Accuracy vs.

Inference Sequence Length”]. Incorporating wall-clock alignment and FPS-aware sampling at

the tokenizer level might improve fine-grained event localization over long videos without

sacrificing the demonstrated length extrapolation.

• Structured extraction and precise geometry. The textual interface excels at free-form

answers and box grounding, but applications needing strict schemas (e.g., JSON for invoices)

or exact point/segment outputs can still trail specialist parsers and detectors; note that the

paper’s grounding results chiefly report boxes on RefCOCO/+/g [668, Table 6]. Extending

grounding beyond rectangles to points and polygons, and supervising format-faithful outputs

(e.g., constrained decoding for tables/graphs), are natural follow-ups to close this gap.

• Long-context stability. Variable visual token counts improve fidelity yet also make run-

time and memory less predictable for long, interleaved image+text+video sessions [668,

Table 7, Fig. “Accuracy vs. Inference Sequence Length”]. A practical direction is to expose

user-controllable token budgets and train learned token-pruning policies that down-weight

redundant regions while preserving the rest.

• Hallucination control and attribution. Qwen2-VL improves robustness on perception

and instruction tests, yet open-ended, multi-hop queries can still trigger visual or factual

confabulations, as reflected by mixed movement on aggregate evaluations [668, Table 2].

Adding retrieval-augmented prompts for charts/docs and emitting visual evidence pointers

(e.g., citing boxes or time spans used) can reduce ungrounded claims and aid auditing.

• Concise outlook: Qwen2.5-VL and Qwen3-VL. The Qwen2.5-VL report refines dynamic

resolution handling with more efficient vision attention, introduces absolute-time indexing

with dynamic FPS for video, extends grounding beyond boxes, and strengthens long-context

efficiency [494]. Public descriptions of Qwen3-VL emphasize broader tool ecosystems and

more stable long-horizon multimodal reasoning while retaining native-resolution fidelity;

these directions align with the limitations outlined above.
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Enrichment 24.10: Long-Context Modeling

Videos spanning minutes to hours demand mechanisms that scale beyond quadratic attention or

strict autoregression. While recent VLLMs such as Video-LLaMA, the Qwen-VL family, and

LLaVA-OneVision have pushed broad multimodal competence (instruction-following, OCR, ground-

ing, AnyRes/dynamic-resolutions, multi-image interleaving), they typically rely on aggressive

token compression, fixed or short temporal windows, or sparsified frame sampling. For truly

long contexts—hour-long streams, movie-length narratives, live feeds—these heuristics alone are

not enough; models must preserve salient details over time and offer compute that grows sub-

quadratically with sequence length.

A timeline of approaches focused on long context.

• Memory-augmented transformers (2022). MeMViT [700] augments multiscale ViTs with

segment-level external memory, pooling and reusing tokens across chunks. This turns naive

“process each clip independently” into stateful inference, extending temporal support and

improving accuracy without exploding computation.

• Streaming and state-space models (2023). Selective SSMs such as Mamba [190] maintain a

compact recurrent state that is updated online as frames arrive, enabling linear-time inference

in sequence length. This suits long or continuous video where latency and throughput matter

more than full quadratic attention.

• Efficient long-video reasoning in VLLMs (2024). LongVLM [690] integrates memory caches,

streaming updates, and sparse token selection into an LLM-centric pipeline, prioritizing

serving-time constraints: it keeps the most informative spatiotemporal evidence, refreshes

memory as new segments come in, and sustains coherent reasoning across long narratives.

• Blockwise/sparse attention for ultra-long sequences (first release - 2024). LWM [366]

demonstrates Blockwise RingAttention to process million-token video–language contexts.

Rather than compressing away detail, it restructures attention itself (blockwise, ring connectiv-

ity) so compute and memory scale to unprecedented lengths.
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Enrichment 24.10.1: MeMViT: Memory-Augmented Multiscale ViTs

Motivation

Many video backbones attain strong accuracy on short clips but become prohibitively expensive

when naively scaling temporal support by feeding more frames to the model, causing quadratic

growth in attention cost and ballooning GPU memory/runtime. The MeMViT paper proposes

an alternative: process a long video online as a sequence of short clips and cache transformer

keys/values as memory across iterations, so current queries can attend to a compact representation of

the past with only marginal overhead [700]. Concretely, MeMViT reports temporal support up to

30× longer than baselines at just ∼4.5% more compute, delivering higher accuracy under the same

FLOPs envelope on AVA and other tasks.2

Figure 24.117: Problem setup and key idea. Traditional long-term scaling increases input frames

and explodes compute/memory; MeMViT maintains a cached, hierarchically compressed memory

and lets current queries attend to it efficiently. Adapted from [700].

2See Fig. 1 and Sec. 1 of [700] for the compute↔duration trade-off and motivation.
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Preliminaries: ViT and MViT

A standard transformer layer consumes a sequence of tokens X ∈RN×d , projects to queries, keys,

and values,

Q = XWQ, K = XWK , V = XWV , (24.53)

and applies scaled dot-product attention,

Z = Softmax

(
QK⊤√

d

)
V, Z ∈ R

N×dout . (24.54)

ViT flattens image patches to form X . For videos x∈RT×C×H×W , a tubelet embedding with tube size

(tp×p×p) yields

N0 =
T

tp

· H
p
·W

p
, Z0 ∈ R

N0×d0 ,

so naively attending over all tokens scales quadratically in N0, which grows quickly with T , H, and

W .

MViT: multiscale hierarchy + pooling attention. Multiscale ViT (MViT) addresses video

scale by borrowing two CNN-style principles [151, 344]:

• Multi-stage pyramid. The model is organized into stages s = 1, . . . ,S. Each stage reduces

spatiotemporal resolution (token count) while increasing channel capacity, producing a se-

quence Zs∈RNs×ds with Ns+1<Ns and ds+1>ds. This yields large receptive fields and efficient

compute at deeper layers, analogous to CNN feature pyramids.

• Pooling attention. Inside a stage, attention cost is reduced by pooling along (t,h,w) before

forming Q,K,V (“pool-then-attend”), or equivalently pooling intermediate representations

that generate Q,K,V (“pooling attention”). This shrinks the token dimension over which

attention operates, lowering the quadratic factor in Ns without discarding channel information

relevant for recognition.

Concretely, let a stage-s block view its input as a 4D tensor Xs∈RTs×Hs×Ws×ds (with Ns=TsHsWs after

flattening). The improved MViT variant adopted by MeMViT applies lightweight spatiotemporal

pooling before linear projections [344]:

Q̄s = PQ(Xs), K̄s = PK(Xs), V̄s = PV (Xs), Qs = Q̄sWQ, Ks = K̄sWK , Vs = V̄sWV , (24.55)

where P{·} are strided average-pooling (or equivalent) operators over (Ts,Hs,Ws) that reduce to-

ken count from Ns to N̄s≪Ns while preserving channels ds. Attention then runs on (N̄s× N̄s)
rather than (Ns×Ns). Intuitively, early stages keep many fine-grained tokens and small ds for

local motion/texture; later stages operate on few tokens with large ds for global semantics. This

pyramidal design provides a compute-efficient path to long-range spatiotemporal context and forms

the backbone on which MeMViT attaches its memory mechanism.
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Method: Memory Attention and Hierarchical Caching

Clip-wise online attention with a rolling K/V cache (flattening & multi-head shapes). Given

a video x∈RT×C×H×W , MeMViT streams it as clips x(t) ∈Rτ×C×H×W in order t=1,2, . . . [700,

Sec. 4.1]. Each clip is tubelet-tokenized and passed through an MViT stage that first pools then

projects (Eq. (24.55)). After pooling along (t,h,w), the stage-s activations have grid shape

Q̃(t), K̃(t),Ṽ (t) ∈ R
Tp×Hp×Wp×ds ,

which are flattened (e.g., t-major, then row-major over (h,w)) to sequences

N̄s = TpHpWp, Q̄(t), K̄(t),V̄ (t) ∈ R
N̄s×ds .

Flattening is valid because self-attention is permutation-equivariant; a geometry-respecting rasteriza-

tion preserves locality.

Multi-head attention notation and weight shapes. Let the model width at stage s be ds and the

number of heads be h. The per-head width is dh with

ds = hdh.

There are two equivalent ways to write the projection matrices:

• Packed (all heads at once): WQ,WK ,WV ∈ R
ds×ds map ds→ds; outputs are then reshaped to

(h, ·,dh).

• Per-head view (clearer for shapes): for each head r∈{1, . . . ,h}, W
(r)
Q ,W

(r)
K ,W

(r)
V ∈ R

ds×dh

map ds→dh and are applied in parallel, then concatenated along the last dim to recover ds.

Both views are identical because hdh=ds. After attention, the h head outputs (each dh) are concate-

nated to R
N̄s×(hdh)=R

N̄s×ds and mixed by the standard output projection

WO ∈ R
ds×ds ,

which linearly combines head channels back into the stage width.

Current-step projections (with shapes). Using the per-head view for clarity, for head r:

Q
(t)
r = Q̄(t)W

(r)
Q ∈ R

N̄s×dh , K
(t)
r,cur = K̄(t)W

(r)
K ∈ R

N̄s×dh , V
(t)
r,cur = V̄ (t)W

(r)
V ∈ R

N̄s×dh .

Rolling K/V cache. MeMViT augments the current keys/values with a FIFO cache from the

previous M clips, stopping gradients into cached steps (read-only memory) [700, Sec. 4.1]:

K̄(t) :=
[

sg(K̄(t−M)), . . . ,sg(K̄(t−1)), K̄(t)
]
∈ R

(N̄s+Nm)×ds , (24.56)

V̄ (t) :=
[

sg(V̄ (t−M)), . . . ,sg(V̄ (t−1)),V̄ (t)
]
∈ R

(N̄s+Nm)×ds , (24.57)

where Nm is the number of cached (flattened) tokens. Concatenation is along the token axis; the last

dimension remains ds, so the same W
(r)
K ,W

(r)
V apply to both current and cached rows:

K
(t)
r = K̄(t)W

(r)
K ∈ R

(N̄s+Nm)×dh , V
(t)
r = V̄ (t)W

(r)
V ∈ R

(N̄s+Nm)×dh .

Per head, attention is

Z
(t)
r = Softmax

(
Q
(t)
r (K

(t)
r )⊤√

dh

)
V

(t)
r ∈ R

N̄s×dh ,
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then Z(t) = [Z
(t)
1 ∥· · ·∥Z

(t)
h ] ∈ R

N̄s×ds and Z(t)WO restores stage width.

Why the complexity is linear in cache size. Only the current N̄s tokens emit queries; cached

tokens supply keys/values but no queries. Per head, the cost of forming the attention logits is

O(N̄s(N̄s+Nm)dh) (matrix multiply Q
(t)
r [ N̄s×dh ] by (K

(t)
r )⊤[dh× (N̄s+Nm) ]), which scales linearly

with Nm and avoids the O((N̄s+Nm)
2) blow-up of treating all tokens (past+present) as queries.

Keeping Nm small via learnable compression. Cached keys/values are downsampled by spa-

tiotemporal pooling fK , fV that preserve channel width ds but reduce token count by a factor such

as 4×2×2 over (T,H,W ) [700, Sec. 4.2]. If the current stage has N̄s tokens, each past clip con-

tributes N̂m,s = N̄s/16 compressed tokens. After concatenation, augmented tensors have shape

(N̄s+MN̂m,s)×ds, and per head

(N̄s+MN̂m,s)×ds

W
(r)
K/V
∈Rds×dh

−−−−−−−−→ (N̄s+MN̂m,s)×dh,

which matches the current-step projections. Because cached tokens supply only K/V and are gradient-

stopped, per-head complexity is O
(
N̄s(N̄s+MN̂m,s)

)
(linear in cache size), not O

(
(N̄s+MN̂m,s)

2
)
.

How the rolling cache is used and updated (numerical example). For T=128 processed as

τ=16-frame clips with tubelets (tp=2, p=16) at 224×224, the first stage sees N̄s =
16
2 · 224

16 · 224
16 =

1568 tokens for x(1) and attends within the clip (empty cache). After attention, that layer stores a

compressed summary (K̂,V̂ ) for future steps. At t=2, queries from x(2) (N̄s=1568) attend to the

concatenation of cached (K̂,V̂ ) from x(1) and current (K̄,V̄ ) from x(2). The cache acts as a read-only

KV store (stop-gradient), so only the present N̄s queries are formed; past tokens do not query each

other. The same mechanism applies at deeper MViT stages where N̄s is smaller, so the relative

overhead further shrinks while temporal receptive field grows hierarchically [700, Sec. 4.1].

Pipelined memory compression (constant-time update). Instead of recompressing all cached

clips every iteration, MeMViT compresses only the freshest uncompressed step and reuses older

compressed entries:

K̄(t) :=
[

K̂(t−M), . . . , K̂(t−2), fK

(
sg(K̄(t−1))

)
, K̄(t)

]
, K̂(t ′) = sg

(
fK(K̄

(t ′))
)
, (24.58)

and analogously for values. With a 4×2×2 pool, each past clip contributes 1568/16 = 98 tokens; for

M=2, the current attention sees 1568+2·98 = 1764 keys/values, i.e., ∼12% overhead for a longer

per-layer temporal horizon [700, Fig. 4, Table 1(b)]. Intuitively, the pipeline is a conveyor belt: each

step “seals” the previous clip into a compact, trainable summary and shifts older summaries forward

without recompression, keeping compute and memory near-constant over time.

Where memory is attached (hierarchical receptive fields). Memory augmentation may be

applied to all layers or a subset. Empirically, alternating memory-augmented and standard attention

layers often yields the best accuracy/efficiency trade-off [700, Table 1(c)]. Shallow layers (large

N̄) store fine motion/texture cues; deep layers (small N̄) store semantic summaries. This layered

placement grows the temporal receptive field with depth while the marginal memory overhead

shrinks, enabling long-term modeling (tens of seconds) at modest extra FLOPs compared with the

same MViT backbone without memory [700, Sec. 4.1–4.2].
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Algorithmic sketch (from the paper)

1 # Algorithm 1 (from Wu et al., 2022): MeMViT attention (PyTorch-like)

2 class MeMViTAttention():

3 # pool_q, pool_k, pool_v: pooling layers

4 # lin_q, lin_k, lin_v: linear layers

5 # f_k, f_v: compression modules

6 def __init__(self, max_mem):

7 self.m_k = [] # cached memory keys

8 self.m_v = [] # cached memory values

9 self.max_mem = max_mem

10

11 def forward(self, x):

12 # compute pooled Q, K, V

13 q, k, v = pool_q(x), pool_k(x), pool_v(x)

14

15 # compress only the immediate previous memory (pipelined)

16 cm_k = f_k(self.m_k[-1]) if len(self.m_k) > 0 else None

17 cm_v = f_v(self.m_v[-1]) if len(self.m_v) > 0 else None

18

19 # concatenate (older compressed ..., newly compressed prev, current)

20 aug_k = cat(self.m_k[:-1] + ([cm_k] if cm_k is not None else []) +

[k])↪→

21 aug_v = cat(self.m_v[:-1] + ([cm_v] if cm_v is not None else []) +

[v])↪→

22

23 # attention

24 z = attn(lin_q(q), lin_k(aug_k), lin_v(aug_v))

25

26 # update caches: replace prev with its compressed copy

27 if len(self.m_k) > 0:

28 self.m_k[-1] = cm_k.detach()

29 self.m_v[-1] = cm_v.detach()

30

31 # append current uncompressed memory for next iteration

32 self.m_k.append(k.detach())

33 self.m_v.append(v.detach())

34

35 # enforce memory length

36 if len(self.m_k) > self.max_mem:

37 self.m_k.pop(0); self.m_v.pop(0)

38 return z
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Figure 24.118: MeMViT caching and attention. Left: An online, clip-wise pipeline with an

uncompressed cache for the immediate past and compressed caches for earlier steps. Right: At a

memory-augmented layer, current queries attend to current keys/values plus cached, compressed

memory from the past. Adapted from [700].

Architecture & Implementation Details

Backbone and stages

MeMViT instantiates the memory augmentation on top of MViT [151, 344], typically with an

MViT-B backbone (16 layers) and 16-frame input clips at stride 4 (“16×4”). The model proceeds

through multiple stages with token downsampling (spatiotemporal pooling) between stages; memory

augmentation can be placed at all or a subset of attention layers.3

Data loading and training

During both training and inference, videos are read sequentially as clips to mimic streaming: the im-

plementation concatenates all videos and iterates through them in order. At a video boundary—when

the next clip belongs to a new video—any memory carried over from the previous video is masked

to zero so that unrelated context does not leak across videos. Default training follows standard

MViT settings: backbone MViT-B (16 layers) with 16×4 clips, Kinetics-400 pre-training (unless

stated), AVA fine-tuning for 30 epochs with SGD (batch 128), random horizontal flips and 2242

crops; FLOPs are reported at 2242 input resolution [700, Sec. 5].

Experiments and Ablations

Scaling strategies

Relative to the common baseline that increases the number of input frames T , MeMViT attains much

longer temporal support with near–flat increases in training/inference GPU memory, runtime, and

FLOPs, while achieving higher mAP at comparable cost [700, Fig. 3]. The below figure visual-

izes this trade–off: simply scaling T rapidly exhausts memory and compute, whereas MeMViT’s

hierarchical rolling cache sustains long–range context at modest cost.

3“Uniform half”—augmenting roughly 50% of layers by alternating standard and memory attention—yields the best

trade-off in Table 1(c) of [700].
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Figure 24.119: Comparison of scaling strategies. Increasing frames T quickly explodes compute

and memory; MeMViT maintains near–flat costs versus temporal support and achieves higher mAP

under the same FLOPs. Adapted from [700].

Ablations: how memory is used

On AVA [191] with an MViT-B (16×4) backbone [344] pretrained on Kinetics-400, MeMViT im-

proves from 27.0 to 29.3 mAP at a small FLOPs increase (57.4→58.7G) [700, Table 3]. Layer–wise

memory length M shows the best trade–off at M=2: M=1 (effective 8× receptive field) yields 28.7
mAP, M=2 (16×) reaches 29.3, and overly long M=4 (32×) saturates to 28.8 [700, Table 1(a)].

Placing memory in about half of the transformer layers achieves the peak 29.3 mAP while reducing

compute versus augmenting all layers [700, Table 1(c)]. For compression, aggressive temporal

downsampling is more tolerable than spatial: e.g., a 4×2×2 (time:height:width) factor reaches 29.3
mAP at ≈ 58.7G FLOPs, whereas equally aggressive spatial compression harms accuracy [700,

Table 1(b)].

Pipeline vs. naive compression

The pipelined strategy—compressing only the freshest cached step while reusing earlier compressed

memory—reduces training GPU memory and iteration time compared with recompressing all cached

steps each iteration, without sacrificing accuracy [700, Fig. 4]. Figure 24.120 highlights the improved

scaling behavior.

Figure 24.120: Compression strategy. Pipelined memory compression lowers GPU memory and

runtime compared with naively recompressing all cached steps each iteration. Adapted from [700].

Generalization across backbones and datasets

Improvements persist with larger backbones and stronger pretraining. With MViT-24 (32×3),

MeMViT improves AVA mAP from 32.5 to 34.4 under Kinetics-700 pretraining, at similar compute

(204.4→211.7 GFLOPs) [700, Table 3]. Beyond AVA, MeMViT also improves EPIC-Kitchens-100:

classification top-1 from 44.6% to 46.2% and anticipation class-mean recall@5 from 29.3%→
32.8% (verbs) and 31.8%→ 33.2% (nouns) [700, Table 2(b)].
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Takeaways from the ablations

Short memories capture local motion efficiently; moderate depth (M=2) plus selective layer place-

ment yields the best accuracy–efficiency balance. Temporal compression can be stronger than spatial

without hurting recognition, and pipelining the compression step is key to practical long-context

training [700, Tables 1–3, Figs. 3–4].

Limitations and Future Work

MeMViT demonstrates that a rolling cache over compressed keys/values can extend temporal support

at low cost, but its design choices expose several trade-offs that motivate subsequent long-context

models (e.g., the next summaries on LongVLM and LWM).

• Fixed window vs. relevance. The memory length M deterministically expands the receptive

field but cannot adapt to which past clips are semantically relevant; ablations show benefits

saturate beyond moderate M [700, Sec. 4.1, Table 1(a)]. Future directions include learned

retrieval or content-aware routing to fetch only useful history instead of a rigid FIFO window.

• Compression fidelity. Pooling-based fK , fV (e.g., 4×2×2 over T :H:W ) is efficient but lossy,

potentially discarding small or fast events; the paper notes temporal compression is more

tolerable than spatial [700, Sec. 4.2, Table 1(b)]. More expressive, task-aware compression or

multi-granularity summaries could retain fine cues while preserving the pipelined efficiency.

• Credit assignment across clips. Cached entries are stop-gradient (sg), which stabilizes

training without backpropagation through time [700, Sec. 4.1]. This read-only memory eases

optimization but prevents learning signals from updating earlier clips; future work may explore

limited or learned cross-clip credit assignment without incurring full BPTT.

• Temporal grounding and position encoding. Relative positional embeddings encode offsets

(∆t,∆h,∆w) and generalize across clip lengths [344, 700, Sec. 4.3], yet they do not inject

absolute timestamps or stream-level cues, which could aid localization in irregular or very

long videos.

• Backbone generality. Although instantiated on MViT, the memory-as-augmented-(K/V)

abstraction (with pipelined compression) applies to any attention layer [700, Sec. 4.1]. Sub-

sequent models broaden this idea with dynamic retrieval, sparse/global–local attention, and

hybrid positional schemes to scale context further—directions we will cover next in LongVLM

and LWM at a high level.
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Enrichment 24.10.2: LongVLM: Efficient Long-Video Reasoning

Motivation

Modern Video-LLMs often compress an entire video into a small, fixed set of visual tokens via

heavy pooling or a Q-Former, creating an information bottleneck that can erase fine details and blur

temporal ordering across minutes of content. LongVLM [690] addresses this by (i) constructing a

long visual token sequence that explicitly preserves short-term segment order, and (ii) fusing these

local tokens with a small set of global semantics tokens. Only a lightweight projection is trained,

keeping the visual encoder and LLM frozen, yet avoiding aggressive pre-LLM compression that

harms fidelity and temporal grounding.

Figure 24.121: Architectural contrast and qualitative examples. Prior Video-LLMs (e.g., Video-

ChatGPT, Video-LLaMA) aggressively compress to a few tokens (pooling/Q-Former), risking an

information bottleneck; LongVLM preserves a longer sequence via token merging and attains more

faithful, temporally grounded responses (green indicates correct text; red indicates errors). Adapted

from [690].

Method

Setup and notation. Uniformly sample T frames, divide them into S short-term segments, each

with K frames (T=S·K). A frozen visual encoder (CLIP ViT-L/14 in the paper) extracts patch tokens

for each frame. Let a frame-t token matrix be

Pt ∈ R
u×d,

with u patch tokens and channel width d.4 For a segment s, collect its K frames’ tokens

V
s =

{
Pt
}K

t=1
∈ R

K×u×d . (24.59)

4LongVLM follows the LLaVA family for vision→language alignment, but keeps the encoder and LLM frozen and

trains only a projection, avoiding costly end-to-end tuning.
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Hierarchical token merging within each short segment. To build a compact, local represen-

tation while retaining details, LongVLM applies a hierarchical merging module G (·) inside each

segment:

• Per-step partition. At merging step i (on a current token set of size Ri), randomly partition

tokens into two disjoint sets Pi and Qi with |Pi|=ri, |Qi|=Ri−ri.

• Similarity. Split channels into C heads of width dh (d=C dh). For a token p(pu)∈Pi and

p(qu)∈Qi, define the similarity by the head-averaged cosine:

a puqu

=
1

C

C

∑
c=1

cos
(

p
(pu)
c , p

(qu)
c

)
, (24.60)

where pc denotes the c-th head slice.

• Greedy pairing and merge. Choose the top-ri pairs with the largest a puqu

and average-pool

each pair to a single token:

t̃(u) = AvgPool
(

p(pu), p(qu)
)
, u = 1, . . . ,ri. (24.61)

Concatenate these {t̃(u)}ri

u=1 with the unpaired tokens to obtain Ri+1=Ri−ri tokens.

• Iterate. Repeat until a target budget M (tokens per segment) is reached. For segment s this

yields a compact local feature

Zs = G (V s) ∈ R
M×d . (24.62)

Stack segment features in temporal order to form the local sequence

L =
{

Zs
}S

s=1
∈ R

(MS)×d , (24.63)

which explicitly preserves the chronology of short-term segments across a long video.

Global semantic tokens from [CLS]. In parallel, LongVLM distills a global summary by

collecting the [CLS] tokens of each frame from E (usually E = 5) selected encoder layers {xt
e}T

t=1

and averaging them over time per layer:

Xe = AvgPool
(
{xt

e}T
t=1

)
∈ R

d , e = 1, . . . ,E, Gglob =
{

Xe

}E

e=1
∈ R

E×d . (24.64)

These E tokens provide high-level, video-wide context (the gist) that complements the time-ordered,

segment-level details in (24.63).

Concatenation, projection, and prompting the LLM. Concatenate global then local tokens

(empirically superior to the reverse order):

[ Gglob ; L ] ∈ R
(E+MS)×d ,

and project them into the LLM input space with a learned linear layer only (visual encoder and LLM

are frozen). The projected visual tokens are packed with the system prompt and user query and fed

to the LLM to generate responses. This yields a long, information-rich visual stream for the LLM,

avoiding the bottlenecks of heavy pre-LLM compression and preserving segment-level chronology.
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Figure 24.122: LongVLM overview. Frames→ visual encoder features→ two streams: (i) short-

term local segment features via hierarchical token merging; (ii) global semantics via temporally

averaged [CLS] tokens from multiple encoder layers. Global tokens are prepended to the local, time-

ordered tokens; a small projection aligns to the frozen LLM input space for instruction-following.

Adapted from [690].

Algorithmic sketch (token merging within a segment)

1 # Pseudocode (faithful to the paper's Sec. 3.2 definitions; not source code).

2 # Inputs: segment s with K frames, frame tokens {P^t in R^{u x d}}_{t=1..K}

3 # Output: Z^s in R^{M x d} (M << K*u)

4

5 def hierarchical_token_merging(P_list, M, C):

6 # Flatten K x u tokens in the segment to a list T (length R0 = K*u)

7 T = concat([P for P in P_list]) # T: [R0, d]

8 R = len(T)

9 while R > M:

10 # Random disjoint partition (|P_i| = r_i, |Q_i| = R - r_i)

11 P_i, Q_i = random_partition(T)

12 # Head-averaged cosine similarity between every p in P_i and q in Q_i

13 S = {}

14 for p in P_i:

15 for q in Q_i:

16 S[(p,q)] = (1/C) * sum(cos(p[c], q[c]) for c in range(C))

17 # Select top-|P_i| pairs by similarity (greedy, disjoint matching)

18 matches = top_pairs(S, k=len(P_i))

19 # Merge each matched pair by average pooling

20 merged = [avg(p, q) for (p, q) in matches]

21 # Unpaired tokens are carried over; update T and R

22 unpaired = list(set(P_i + Q_i) - set([x for pair in matches for x in

pair]))↪→

23 T = merged + unpaired

24 R = len(T)

25 # Return first M tokens in temporal order within the segment

(implementation detail)↪→

26 return select_order_preserving(T, M) # Z^s: [M, d]
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Architecture & Implementation Details

• Backbone and LLM. LongVLM uses a frozen CLIP ViT-L/14 visual encoder and a frozen

Vicuna-7B-v1.1 LLM, both initialized from LLaVA-7B-v1.1; only a single linear projection

from vision features to the LLM input space is trained [690, Sec. 4.1]. The CLIP encoder

operates at 224×224 input resolution; with a 14×14 patch size this yields u=256 patch tokens

per frame (plus [CLS]), and the similarity computation in the merging module uses C=16

heads as stated in the paper [690, Sec. 3.2].

• Training setup. Finetuning is performed on the Video-ChatGPT-100K instruction dataset for

3 epochs with learning rate 2×10−5 and batch size 32; both the visual encoder and the LLM

remain frozen while the projection layer is updated. The reported wall-clock for the full 3

epochs is approximately 3 hours on 4×A100-80GB GPUs [690, Sec. 4.1].

• Frame sampling and segmentation. During both training and inference, T=100 frames are

uniformly sampled per video at 2242 resolution and divided into S=10 short-term segments

with K=10 frames each (T=S·K) [690, Sec. 4.1]. Within each segment, hierarchical token

merging produces M compact local tokens (paper default M=30), while [CLS] tokens aver-

aged over time from E selected CLIP layers provide global semantics (paper default E=5

from the last five layers) [690, Sec. 3, Sec. 4.1].

• Token budget and ordering. The total number of visual tokens fed to the LLM per video

is (M×S)+E = 30×10+5 = 305. Following the ablation, global tokens are concatenated

before local tokens, i.e., [G,L], and the local sequence preserves the chronological order of

segments (s=1→S) when packed for the LLM [690, Fig. 2, Tab. 3]. The paper reports that

[G,L] outperforms [L,G] on the Video-ChatGPT benchmark (Mean 2.89 vs. 2.82).

• Projection and prompting. Visual tokens are linearly projected (projection is the only

trainable module) and concatenated with system instructions and user queries to form the LLM

input. This preserves a long, information-rich visual stream into the LLM without aggressive

pre-LLM compression, aligning with the architectural rationale illustrated in Fig. 24.122.

Experiments and Ablations

Benchmarks and metrics

LongVLM is evaluated on the Video-ChatGPT benchmark (500 ActivityNet-v1.3 videos, with 2,000

questions for each of five aspects: Correctness Information (CI), Detail Orientation (DO), Contextual

Understanding (CU), Temporal Understanding (TU), Consistency (C)) and on zero-shot QA for

ANET-QA, MSRVTT-QA, and MSVD-QA, reporting accuracy and generation quality scores.

Table 24.65: Comparison on the Video-ChatGPT benchmark (higher is better). Mean is the average

over CI/DO/CU/TU/C. Data sizes follow the original papers. Numbers are from [690, Tab. 1].

Method Data CI DO CU TU C Mean

VideoChat [335] 10M 2.25 2.50 2.54 1.98 1.84 2.22

LLaMA Adapter v2 [167] 700K 2.03 2.32 2.30 1.98 2.15 2.16

Video LLaMA [767] 10M 1.96 2.18 2.16 1.82 1.79 1.98

Video-ChatGPT [410] 100K 2.50 2.57 2.69 2.16 2.20 2.42

Valley [404] 234K 2.43 2.13 2.86 2.04 2.45 2.38

BT-Adapter [372] 10M 2.16 2.46 2.89 2.13 2.20 2.37

BT-Adapter [372] 10M+100K 2.68 2.69 3.27 2.34 2.46 2.69

LongVLM [690] 100K 2.76 2.86 3.34 2.39 3.11 2.89
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Table 24.66: Zero-shot QA results (higher is better). Accuracy (%) and quality Score with data

sources, reproduced from [690, Tab. 2].

Method Data ANET-QA Acc. ANET-QA Score MSRVTT-QA Acc. MSRVTT-QA Score MSVD-QA Acc. MSVD-QA Score

FrozenBiLM [722] 10M 24.7 — 16.8 — 32.2 —

VideoChat [335] 10M 26.5 2.2 45.0 2.5 56.3 2.8

LLaMA Adapter v2 [167] 700K 34.2 2.7 43.8 2.7 54.9 3.1

Video LLaMA [767] 10M 12.4 1.1 29.6 1.8 51.6 2.5

Video-ChatGPT [410] 100K 35.2 2.7 49.3 2.8 64.9 3.3

Valley [404] 234K 45.1 3.2 51.1 2.9 60.5 3.3

BT-Adapter [372] 10M+100K 45.7 3.2 57.0 3.2 67.5 3.7

LongVLM [690] 100K 47.6 3.3 59.8 3.3 70.0 3.8

Figure 24.123: Quantitative and qualitative results. Left: LongVLM is consistently on the outer

envelope across aspects (CI/DO/CU/TU/C) and QA tasks. Right: A multi-turn conversation over

a 3m46s video shows temporal awareness, fine detail tracking (e.g., apparel color), and plausible

reasoning grounded in content. Adapted from [690].
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Ablations

LongVLM conducts controlled ablations on: (i) local feature construction and global fusion, (ii) the

per-segment token budget M, and (iii) the number of selected encoder layers E used to form global

[CLS] tokens [690, Sec. 4.3]. The key findings are summarized below.

Table 24.67: Local vs. global aggregation on Video-ChatGPT (higher is better). Pooling uses 3D

average pooling within each short segment; Merging uses the proposed hierarchical token merging;

[L, G] concatenates Local then Global tokens, while [G, L] prepends Global before Local. Numbers

from [690, Tab. 3].

Variants Local Global CI DO CU TU C Mean

Pooling Yes No 2.53 2.64 3.13 2.29 2.61 2.64

Merging Yes No 2.62 2.74 3.15 2.23 2.86 2.72

[L, G] Yes Yes 2.69 2.81 3.31 2.31 2.99 2.82

[G, L] Yes Yes 2.76 2.86 3.34 2.39 3.11 2.89

Local & global synergy. Replacing naive 3D pooling with hierarchical token merging improves Mean

from 2.64 to 2.72. Combining local and global tokens further boosts performance, and ordering

matters: prepending global tokens [G, L] achieves the best Mean of 2.89, matching the main result

in Table 24.65.

Per-segment token budget M. Increasing M improves the Video-ChatGPT Mean up to ≈ 30 to-

kens/segment (Mean 2.89 at M=30), while GPU memory remains nearly flat (e.g., ≈ 14.86 GB at

M=30 on ANET-QA), with no further gains at M=40 [690, Tab. 4].

Global layers E. Using global [CLS] tokens aggregated from the last E=5 visual encoder lay-

ers yields the strongest balance (Mean 2.89); smaller (E=1) or larger (E≥10) selections slightly

underperform [690, Tab. 5].

Qualitative analyses

Figure 24.124: Ablation evidence: local-only vs. local+global. Left: Without global context, a

local-only model mistakes a long jump for hurdles; adding global semantics recovers the correct

event. Right: Local-only confuses an axe with a bat; global context plus local details yields the

correct interpretation. Adapted from [690].
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Figure 24.125: Additional generations from the Video-ChatGPT benchmark illustrating temporal

grounding, fine-grained details (e.g., color, specific actions), and coherent scene understanding

across diverse videos. Adapted from [690].

Limitations and Future Work

• Fixed per-segment budget. The token budget M per segment is static; highly dynamic or

sparse videos may benefit from adaptive merging (retrieval- or saliency-guided) that varies the

number of local tokens across segments.

• Cosine-based merging. Merging uses head-averaged cosine similarity and average pooling,

which is simple and efficient but can still lose fine-grained rare cues. More expressive,

learnable merging or content-aware reweighting could further preserve details.
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• Global token selection. Global semantics rely on [CLS] tokens from fixed encoder layers;

while effective, other summary signals (e.g., learned cross-frame prototypes or absolute

timestamps) may improve localization in long, irregular streams.

• Frozen backbone and LLM. The frozen CLIP and LLM promote stability and training

efficiency, but may limit domain adaptation. Lightweight adapters or partial tuning could help

in specialized domains without sacrificing efficiency.

• Scaling to extreme durations. Although LongVLM already feeds a longer visual sequence

than prior Video-LLMs, very long videos still stress the LLM context window. Subsequent

methods (e.g., the next subsection on LWM) explore sparse/blockwise attention and retrieval

to scale beyond hundreds of tokens.

Bridge to LWM. LongVLM demonstrates that preserving a longer, ordered stream of local tokens

plus a few global tokens substantially reduces hallucinations and improves temporal grounding

without retraining the LLM or the visual encoder. The next method, LWM, pushes sequence length

even further via scalable attention patterns and memory mechanisms designed for million-token

contexts.
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Enrichment 24.10.3: LWM: Blockwise RingAttention for Million-Token Contexts

Motivation

Long-context Video-LLMs and MLLMs have historically been constrained by quadratic-cost at-

tention and modality-specific projections, which force aggressive pre-LLM compression and limit

temporal grounding over hours of content. LWM [366] is proposed as a unified, autoregressive

world model that scales the context window to 1M tokens while operating directly on discrete vision

tokens and text within a single Transformer, enabling long-video understanding and retrieval at

million-length scale.

Figure 24.126: Context-size comparison across LLMs. LWM attains a one-million-token context

window and is positioned at the frontier alongside large-context systems such as Gemini 1.5,

substantially exceeding earlier 128K/100K or smaller context models. The context window is the

effective short-term memory: larger windows allow whole books, long codebases, or hour-long

videos to be processed in a single pass. Adapted from [366].

Method

Unified token space with discrete vision tokens. LWM maps language and vision into a single,

discrete token space processed by one causal Transformer [366]. Text is tokenized with a standard

BPE tokenizer; each image frame is tokenized by a pretrained VQGAN into a 16×16 grid of

codebook indices (i.e., 256 tokens for a 256×256 frame). Vision spans are bracketed by special

tokens <vision> and </vision>, with per-frame and end-of-vision delimiters <eof> and <eov> to

mark boundaries. After concatenation, the model autoregressively predicts the next token over the

joint vocabulary (text subwords + vision codes), enabling any-to-any understanding and generation

across text, image, and video without a separate vision→LLM projection layer.5 Intuition: VQGAN

turns pixels into a compact visual alphabet. Once both modalities are “just tokens”, a single decoder

can read and write text, images, and videos in one sequence, with modality switches indicated by

delimiters [366, Sec. 2, Fig. 3].

5Using discrete VQGAN indices as tokens removes the need for a continuous vision→language projector, but requires

extending the embedding and output (softmax) layers to include the vision codebook and optimizing them jointly so the

decoder learns the distribution over visual codes; see [366, Fig. 3].
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Training Curriculum

The context window is not expanded to one million tokens in a single step. Training advances

through a small ladder of maximum sequence caps (for example, 32K→ 64K→ 128K→ 256K→
512K→ 1M). At each rung, the very same Transformer is optimized as usual; what changes is (i)

how inputs are converted to tokens and then packed up to the current cap, and (ii) how positional

encodings are scaled so they remain well behaved at the longer horizon [366, Sec. 3.1]. The model

is fine-tuned at one cap until stable, then training resumes from that checkpoint at the next cap, rather

than starting from scratch.

From images/videos to tokens (step by step).

1. Start with raw data (and how to handle long videos). An image arrives as I ∈ R
C×H×W

(e.g., 3× 256× 256); a video as V ∈ R
T×C×H×W (e.g., T=120 frames at 4 FPS for a 30s

clip). Before tokenization, apply the minimal preprocessing required by the frozen VQGAN

tokenizer: resize/center-crop frames to 256×256 and normalize pixel values as expected by

the tokenizer (e.g., to [0,1] or [−1,1], per its training). The goal in this step is not feature

engineering but simply to ensure frames are in the canonical format the tokenizer expects so

that code indices are meaningful.

How to fit long videos under the current context cap Nmax. In sub-stage training with cap

Nmax (e.g., 32K, 64K, . . ., 1M tokens), each packed training sequence must satisfy a length

budget. Let Ltext be the text tokens in the packed sequence (prompt, question, target, etc.) and

Lmisc be delimiters and any extra small fields. The remaining vision budget is

Bvis = Nmax−Ltext−Lmisc.

Each frame contributes approximately cframe ≈ 256+ cdelim tokens, where 256 comes from

the 16×16 VQGAN codes and cdelim accounts for <eof> and occasional boundary tokens

(typically a small constant). This gives a maximum number of frames that can fit under the

current cap:

Tmax =
⌊
Bvis/cframe

⌋
.

If the raw video has S seconds and original FPS fraw (so Traw=S fraw frames), reduce temporal

density as follows:

(a) Temporal subsampling (preferred first). Choose a target FPS

ftarget = min
(

fraw,
⌊
Tmax/S

⌋)
,

and uniformly sample frames at stride ⌊ fraw/ ftarget⌋. This preserves chronological order

while shrinking the token count linearly with FPS.

(b) Contiguous windowing (if still too long). If even ftarget=1 FPS would exceed the

budget, extract a contiguous window of Tmax frames (e.g., pick a random start time

each epoch) and discard the rest for this batch. On subsequent steps, sample a different

window so that, across training, the model still sees the entire clip.

(c) Sliding-window splitting (optional). Alternatively, split the video into overlapping

windows of length ≤ Tmax (e.g., 50% overlap) and treat each window as a separate

training example across iterations. This increases coverage without violating the cap.
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Why reduce FPS or window? Each additional frame adds ≈ 256 tokens. Without subsam-

pling/windowing, long clips would blow past Nmax early in the curriculum (e.g., 32K), making

batches impossible to pack and destabilizing optimization. Reducing FPS trades temporal

density for sequence feasibility while preserving order; windowing then ensures that, over

epochs, the model eventually observes all parts of the video.

Concrete example. Suppose Nmax=64,000, Ltext=1,500, Lmisc=500, so Bvis=62,000. With

cframe ≈ 257, we get Tmax=⌊62,000/257⌋=241 frames. For a 120s clip at fraw=4 FPS

(Traw=480), set ftarget=⌊241/120⌋=2 FPS and sample ≈ 240 frames uniformly. If the clip

were 1,200s long, even ftarget=1 FPS would exceed the budget; in that case, take a contiguous

window of Tmax=241 frames (about four minutes) this step, and a different window next time.

2. Tokenize vision. A frozen VQGAN encodes each 256×256 frame into a 16×16 grid of code-

book indices (i.e., 256 discrete tokens per frame). For videos, concatenate frames in order and

insert <eof> between successive frames; wrap the whole span with <vision> and </vision>,

and close with <eov>. Example (image): <vision> [256 codes] </vision><eov>. Ex-

ample (video with T frames): <vision> [256]<eof> · · · <eof> [256] </vision><eov>. The

resulting visual length is roughly 256T +O(T ) tokens (the O(T ) comes from delimiters).

3. Tokenize text. Apply BPE to captions, instructions, transcripts, or questions to obtain standard

text tokens. These share the same embedding/output layers as the vision codes once the

vocabulary is extended.

4. Interleave modalities. Build a single sequence that mixes text and vision in the causal order

required by the task, using delimiters as punctuation so the decoder can switch modalities.

• Captioning. [Prompt tokens] <vision> [image codes] </vision><eov>

[Target caption tokens].

• Video QA. [Question tokens] <vision> [frame1 codes] <eof> · · · [frameT

codes] </vision><eov> [Answer tokens].

• Conditional generation. [Instruction tokens] → the model emits image/video

codes that a VQGAN decoder later turns into pixels.

5. Pack to the current cap. Let Nmax be the current sub-stage cap (e.g., 32K, 64K, . . ., 1M).

Construct training sequences by concatenating one or more interleaved examples until the

total length reaches (or slightly under-fills) Nmax, and apply a causal mask.

• If a single example fits (≤ Nmax). Pack it as is; if there is remaining space, append

another short example or leave the remainder masked to the end of the packed sequence.

• If a single example exceeds Nmax. Use one of the above windowing strategies so long

examples still contribute signal at the current cap.

• Mixture of lengths. Because real examples vary, each batch naturally contains short and

near-cap sequences. This length mixture helps the model retain short-context competence

while learning to exploit very long histories.

• Concrete packing example. Suppose Nmax = 64,000. A video-QA example tokenizes

to 40,000 tokens; an image-captioning example tokenizes to 8,000; a text-only excerpt

tokenizes to 14,000. Concatenate in order: 40,000+8,000+14,000 = 62,000≤ 64,000.

The remaining 2,000 tokens are left masked or filled with a very short snippet if available.

Intuition. Think of each packed training sequence as a fixed-size “page.” Long stories are read

in excerpts (windows), short notes are combined on the same page, and across many pages the

model still sees the whole book.
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6. Optimize and repeat. Feed the packed sequence X ∈ R
≤Nmax×d into the causal Transformer

and train with next-token cross-entropy over the joint vocabulary (text BPE IDs + vision code

IDs). The VQGAN is always frozen; the Transformer and the shared embedding/output layers

are updated so the model learns to both consume and emit vision codes alongside text. When

validation stabilizes at the current cap, increase the cap to the next rung, rescale RoPE so

positional geometry remains smooth at the longer horizon, resume from the latest checkpoint,

and continue. Over epochs, windowed sampling ensures that even examples longer than Nmax

are eventually seen in full, just not all at once.

Why the length ladder helps. Jumping straight to 1M tokens forces the network to master long-range

structure it has never seen while also maintaining local competence; optimization often becomes

unstable. By first training at 32K, the model learns reliable local and mid-range patterns (sentences,

short dialogues, tens of frames). Moving to 64K and 128K extends these habits to chapters and

minutes of video. Each step “warms up” the next, so the final 1M stage mostly requires adapting to

span-wide dependencies rather than discovering everything at once.

What it means to scale RoPE. RoPE encodes position m by rotating each 2-D channel pair of a

head vector with angle

φi(m) = mωi, ωi = Θ
−2i/dh

base , i = 0, . . . , dh

2 −1,

using

R(φ) =

[
cosφ −sinφ

sinφ cosφ

]
.

With q
(i)
m ,k

(i)
n ∈ R

2, RoPE has the relative property

〈
R(φi(m))q

(i)
m , R(φi(n))k

(i)
n

〉
=
〈
q
(i)
m , R

(
(n−m)ωi

)
k
(i)
n

〉
,

so attention depends on the offset ∆ = n−m via rotations by ∆ωi.

Why naïve extrapolation breaks. If the context grows (e.g., 32K→ 1M) but Θbase stays fixed,

high–frequency channels wrap many times around the unit circle. Very distant tokens can become

spuriously similar (phase aliasing), hurting long-range reasoning.

LWM’s scaling rule (paper-faithful). Let s = Nnew

Nold
. LWM rescales RoPE proportionally to the new

context by enlarging the base:

Θnew
base = Θold

base · s ⇐⇒ ωnew
i = ωi/s.

Equivalently (index view), keep Θbase and slow the index:

φ new
i (m) = m

s
ωi.

In either view,

〈
R(φ new

i (m))q(i), R(φ new
i (n))k(i)

〉
=
〈
q(i), R

( (n−m)ωi

s

)
k(i)
〉
,

so the effective distance becomes ∆eff = ∆/s. Example: from 32K to 1M, s≈32; a gap of ∆=100K

“feels like” ∆eff≈3.1K at the shorter cap—preventing wrap-around while preserving local geometry.
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Practical note (common variant). Some implementations use a single slowdown exponent α∈ [0,1]
(often 0.5) so that Θnew

base = Θold
base · sα (equivalently ∆eff = ∆/sα ). Use α=1 to match the paper’s

“proportional to context” description; smaller α can be used as an engineering tweak without

changing the derivation above.

Blockwise RingAttention for exact million-length attention. Let X ∈RN×d be the input

sequence (with N up to 106) and h heads of size dh=d/h. Standard causal self-attention

Attn(Q,K,V ) = Softmax
(

QK⊤√
dh

+mask
)

V

is exact but materializing QK⊤ and a full KV cache is prohibitive at N=106. Blockwise RingAtten-

tion [366, Sec. 3.1] partitions the sequence into G contiguous blocks of size B so N=GB. Devices

are arranged in a logical ring. Each device holds one query block g and iteratively streams key/value

blocks (K(g′),V (g′)) from all other blocks around the ring:

1. Compute attention for local pairs (Q(g),K(g),V (g)) with a fused kernel (e.g., FlashAttention),

applying the causal mask to exclude future positions within the block.

2. Receive the next (K(g′),V (g′)) from the neighbor, compute the masked cross-block contribution

Softmax
(
Q(g)K(g′)⊤/

√
dh +mask

)
V (g′), and accumulate it into the output for block g.

3. Forward (K(g′),V (g′)) to the next device; repeat until all G key/value blocks have been visited

exactly once.

Because each (query block,key block) pair is covered once under the causal mask, the result is

mathematically identical to dense attention. Only O(B) KV tokens live on a device at any moment;

communication of streamed KV is overlapped with per-block compute, yielding high throughput on

large device meshes [366, Sec. 3.1]. Intuition: Think of a block relay: each device keeps its queries

and “meets” every other block’s keys/values as they circulate around the ring, accumulating the same

full-context result without storing the entire sequence.

Figure 24.127: Architecture overview. LWM is a single autoregressive Transformer over a unified

token stream comprising BPE text and VQGAN vision codes (256 tokens per frame). Modality

delimiters <vision>...</vision> and <eof>/<eov> mark boundaries; the model predicts the next

token regardless of modality. Adapted from [366].
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Discrete vision tokens, VQGAN, and projection-free learning. LWM makes vision “native”

to the decoder by adding visual tokens—not projected features—to its vocabulary. A pretrained,

frozen VQGAN maps each 256×256 frame to a 16×16 grid of codebook indices (flattened to 256

integers) [366, Fig. 3]; videos are tokenized frame-by-frame, concatenated with <eof> between

frames, wrapped by <vision>...</vision>, and closed with <eov>. These indices are treated

exactly like text BPE IDs: the Transformer’s shared embedding matrix (and tied LM head) is

expanded to include the vision codebook plus boundary tokens, and then trained end-to-end so the

same decoder models

pθ (xt+1 | x≤t), xt ∈ Vtext∪Vvis∪{<vision>,</vision>,<eof>,<eov>}.

No CLIP-style projector or adapter is required because VQGAN already produces discrete IDs; all

tokens live in one space, and modality switches are cued by simple delimiters rather than separate

heads. During Stage II, mixed text+vision sequences are fed under teacher forcing with a single

cross-entropy over the joint vocabulary. The decoder thereby learns to interpret codes (e.g., answer

questions conditioned on long spans of frames across <eof> boundaries) and to emit coherent code

sequences for conditional generation; predicted codes can be rendered back to pixels by the frozen

VQGAN decoder. Because the tokenizer never changes, the meaning of each code ID is stable

throughout training, so learning concentrates where it matters—on the Transformer’s embeddings

and attention—avoiding “interface drift” and collapse that can arise when a learned projector shifts.

Intuition. VQGAN supplies a fixed “visual alphabet.” Once images and videos are written as tokens,

the LLM simply learns a larger language: just as it acquires word/subword syntax, it acquires visual

“subword” syntax (spatial regularities within a frame; temporal patterns across <eof>) in the same

autoregressive stream.

Architecture & Implementation Details

Implementation summary.

• Backbone. A standard decoder-only Transformer (7B) serves as the core model for both text-

only and multimodal training, optimized autoregressively over interleaved token streams [366].

• What is trained vs. frozen. The Transformer (initialized from a strong long-context text

model) is trained across both curriculum stages; the VQGAN vision tokenizer remains frozen.

The token embedding and output (softmax) layers are expanded to include the vision codebook

and trained so the decoder can emit and consume visual tokens [366, Sec. 4].

• Vision tokenizer. A pretrained VQGAN [148] (from aMUSEd) discretizes images of size

256×256 into a 16×16 grid of code indices (256 tokens per frame). Videos are tokenized

frame-by-frame and concatenated in temporal order.

• Special tokens. Vision spans are wrapped with <vision>...</vision>; per-frame boundaries

use <eof>; the end of an image or the last frame of a video uses <eov>. These delimiters

teach the single decoder to switch modalities inside very long sequences [366, Sec. 4].

• Attention scaling. Million-length context is enabled by Blockwise RingAttention (exact

dense attention via blockwise ring scheduling) fused with FlashAttention-style kernels for

high MFU, while rotary position embeddings (RoPE) use a scaled base parameter matched to

the target context length for stability up to 1M tokens [366, Sec. 3.1].
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• Training curriculum. Stage I grows a text-only model from 32K to 1M context on long-

form documents, progressively rescaling the RoPE base and initializing each length from

the previous one. Stage II introduces multimodality by interleaving text with image/video

code sequences and continues progressive length increases (e.g., short sequences for stabiliza-

tion, then to chat/long-form settings), preserving short-context accuracy while extending the

window [366, Sec. 3.1, Sec. 4].

• Data construction. Stage I uses long-form book-style corpora to train long-range language

modeling. Stage II mixes large-scale image–text sources (e.g., LAION-2B-en, COYO-700M;

images filtered to ≥ 256 px) with video–text sources (e.g., WebVid10M, InternVid10M);

frames are discretized by VQGAN and packed with text using the modality delimiters, and

pairs are packed to target lengths with randomized text–vision order to cover captioning and

generation directions [366, Sec. 4].

• Why it works. Discretizing vision removes modality-specific projectors and allows a single

decoder to model text and vision uniformly in one token space, while RingAttention preserves

exact full-context interactions at the million-token scale so long-range dependencies in hour-

long videos and long documents remain accessible during training and inference [366, Sec. 2,

Sec. 3.1].
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Figure 24.128: Progressive data curation and training. Stage I extends language context using long

books; Stage II integrates vision–language with a curriculum from images to short clips, Q&A-style

instruction data, and progressively longer videos. Pie charts show that images and short-frame videos

dominate visual tokens, while mid-length documents dominate text tokens. Adapted from [366].

Experiments and Ablations

Long-context retrieval (needle and multi-needle)

LWM maintains strong needle-in-a-haystack retrieval across the full 1M-token window: accuracy is

high and largely insensitive to where the needle is placed in the sequence. In multi-needle variants

(several facts inserted, one question requiring synthesis), LWM remains competitive as the number of

required facts grows, reflecting that exact full-context attention (via RingAttention) reliably surfaces

distant evidence rather than relying on truncation or heuristics. The paper’s plot uses a mixed x-axis

(0–128K log, 128K–1M linear) to show that performance does not collapse as position approaches

the 1M boundary.
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Figure 24.129: Needle retrieval across context positions. LWM sustains high retrieval accuracy

across positions and scales the context to 1M tokens, while baselines are limited to shorter contexts.

The x-axis is log (0–128K) then linear (128K–1M). Adapted from [366].

Language tasks at short context

As the context is expanded from 32K to 1M, short-context language benchmarks (ARC, HellaSwag,

MMLU, OpenBookQA) remain broadly stable (Table 1 in the paper), indicating that the length

curriculum and mixed-length packing preserve near-field skills while extending the horizon.

LOFT benchmarks (512K)

On long-document retrieval and RAG (LOFT), LWM at 512K outperforms strong baselines on

Quora and NQ and is substantially ahead on HotPotQA, highlighting the benefit of attending to the

whole corpus chunk at once (no truncation artifacts). The reported scores are:

Table 24.68: LOFT at 512K context: LWM vs. strong baselines (selected). Higher is better.

Benchmark LWM (512K) GPT-4o (128K) Claude 3 Opus (200K)

Quora 0.38 0.23 0.37

NQ 0.37 0.22 0.37

HotPotQA 0.72 0.21 0.32
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Long-video understanding

On Long Video-MME, LWM-1M (7B) processes up to ≤ 1800 frames and achieves strong results,

including 60.8 on the 30–60 min split (Table 4 in the paper). Intuitively, the model can downsample

and still keep the entire narrative in-context, so answers can depend on events far apart in time

without losing earlier evidence.

Figure 24.130: One-hour YouTube compilation QA. LWM-Chat-1M retrieves fine-grained details

across hundreds of clips within one sequence, succeeding where several proprietary and open-source

models either refuse, miss, or hallucinate. Adapted from [366].
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Generation

Because vision is discretized, the same autoregressive decoder that models text can also emit image

and short video code sequences conditioned on text. Decoding those codes through the (frozen)

VQGAN yields images and simple clips with coherent local dynamics (e.g., fireworks, waves). This

is a direct consequence of training a single next-token model over a joint vocabulary of text and

vision IDs.

Figure 24.131: Text-to-image and text-to-video generation. Top: image generation; bottom: short

video sequences showing simple temporal dynamics captured by autoregressive decoding over visual

codes. Adapted from [366].

Limitations and Future Work

• Compute and hardware demands. Million-length training and inference rely on large device

meshes and careful kernel fusion; although attention is exact, the system requirements are

substantial and may limit accessibility.

• Vocabulary expansion and modality balance. Incorporating a vision codebook expands the

vocabulary and requires curriculum tuning to preserve strong text performance while learning

vision tokens at scale.

• Token efficiency for very long videos. Per-frame tokenization at fixed resolution (256

codes/frame) can become costly for multi-hour content; integrating adaptive frame rates, token

pruning, or content-aware compression could further extend effective context.

• Position encoding extrapolation. Scaled RoPE is simple and empirically stable, but prin-

cipled positional schemes tailored for interleaved multimodal streams may further improve

generalization at extreme lengths.
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Enrichment 24.11: Specialized Directions

Beyond short-clip classification, several specialized tasks push distinct modeling frontiers.

Temporal detection and localization. Here the goal is not only to recognize which action occurs

but also to determine when it starts and ends in long, untrimmed videos. Methods include two–stage

pipelines (proposal→ classification) as well as end-to-end transformer models that directly predict

temporal boundaries.

Video diffusion models. Diffusion models extend from images to video by introducing temporal

consistency modules that enforce smooth frame-to-frame evolution. A representative system, Video

Diffusion Models (VDM), demonstrates high-fidelity synthesis and editing by scaling latent diffusion

to temporal data [46].

Multimodal alignment. Video rarely comes alone; audio, depth, and infrared cues are often

available. LanguageBind learns a unified embedding space that aligns video with multiple sensing

modalities to language, broadening supervision and enabling stronger transfer across tasks [719].

Layered, object-centric video effects (Omnimatte family). Omnimatte pioneered layered mattes

that jointly capture objects and their visual effects (e.g., shadows, reflections) from monocular video,

enabling editing and compositing [396]. The follow-up OmnimatteRF extended this idea to neural

radiance fields, allowing layered decomposition in a 3D-aware representation [397].

Related and emerging directions. Efficiency-oriented backbones (e.g., UniFormerV2 [345]) and

distillation-style masked pretraining (e.g., Masked Video Distillation [669]) are widely adopted

in practice. Long-form video QA (e.g., EgoSchema) and holistic reasoning benchmarks (e.g.,

VideoMind) continue to push models toward higher-level cognition. Finally, recent open and

commercial diffusion-based systems such as VideoCrafter, Runway Gen-2, and Pika increasingly

inform pipelines for video synthesis and editing.

https://videocrafter.github.io/
https://runwayml.com/gen2
https://pika.art

