
23. Lecture 23: 3D vision

23.1 Introduction to 3D Perception from 2D Images

In this part of the course we explore how deep neural networks can process and predict 3D information

from various inputs, particularly focusing on inferring three-dimensional structures from two-

dimensional images. Unlike classical computer vision tasks that operate strictly in 2D, 3D vision

tasks aim to reconstruct or understand the three-dimensional structure of the world. These tasks are

essential in applications ranging from autonomous navigation to augmented reality.

Figure 23.1: Left: Inferring 3D shape (voxel grid) from a single 2D image. Right: Classifying an

object from its 3D representation.

1628 Chapter 23. Lecture 23: 3D vision

23.1.1 Core Tasks in 3D Vision

In this chapter, our main focus will be on two core 3D vision tasks:

1. 3D Shape Prediction: Given a single 2D image (e.g., of an armchair), the model predicts a

corresponding 3D structure, such as a voxel grid that represents the shape of the object. This

task is inherently ill-posed due to the loss of depth information in the 2D projection.

2. 3D-Based Classification: Given a 3D representation (e.g., a voxel grid), the model predicts

the semantic class of the object (e.g., “armchair”), showing understanding from structural

geometry.

Beyond these core problems, 3D vision encompasses a broad range of challenges such as motion

estimation from depth, simultaneous localization and mapping (SLAM), multi-view reconstruction,

and more. Importantly, due to the strong geometric structure of the 3D world, many classical

vision algorithms (e.g., stereo triangulation) remain highly relevant and are often integrated with or

benchmarked against learning-based methods.

23.1.2 3D Representations

A variety of representations can capture the geometry of 3D objects. While differing in format, all

serve the common goal of describing shape and structure in three dimensions:

• Depth Map: A 2D grid where each pixel stores the distance (in meters) from the camera to

the nearest surface point along the ray passing through that pixel. Captured by RGB-D sensors

(e.g., Microsoft Kinect), these are often called 2.5D images since they only encode visible

surfaces, not occluded regions.

• Voxel Grid: A 3D array of binary or real-valued occupancies representing whether a volume

element (voxel) is occupied.

• Point Cloud: A sparse set of 3D points capturing surface geometry.

• Mesh: A polygonal surface composed of vertices, edges, and faces—typically used in graphics.

• Implicit Surface: A continuous function (e.g., signed distance function) where the zero-level

set defines the surface of the object.

Despite differing computational properties and storage formats, all these representations aim to

capture the same underlying 3D structure.

23.2 Predicting Depth Maps from RGB Images

One of the most accessible and widely studied 3D vision tasks is estimating a dense depth map from

a single RGB image. This process, known as monocular depth estimation, aims to assign a depth

value to each pixel, producing a 2.5D representation of scene geometry from a monocular input. The

task is fundamentally ill-posed, as multiple 3D scenes can correspond to the same 2D projection,

making monocular depth estimation a challenging problem that requires strong visual priors.

A common and effective architectural design for this task is the fully convolutional encoder-

decoder network, which is well-suited to dense prediction tasks. These models process an input

image through an encoder to extract semantically rich features and subsequently reconstruct a

dense depth map via a decoder that upsamples these features to the input resolution. The fully

convolutional nature of this pipeline ensures that the spatial correspondence between input pixels

and output predictions is preserved, enabling pixel-aligned depth estimation.

23.2 Predicting Depth Maps from RGB Images 1629

Figure 23.2: Naive approach to monocular depth prediction using a fully convolutional encoder-

decoder network with pixelwise ℓ2 loss.

The encoder typically consists of a convolutional backbone (e.g., ResNet) pretrained on large-

scale classification datasets like ImageNet. Through successive layers of strided convolutions, the

encoder compresses the spatial resolution of the input while increasing the semantic abstraction and

receptive field. This enables the network to aggregate both local texture and global scene layout,

capturing information necessary for reasoning about object scale, occlusion, and perspective.

The decoder reverses this spatial compression, gradually upsampling the feature maps to predict

a dense depth map. In U-Net-style architectures, skip connections are employed to concatenate

feature maps from early encoder layers with corresponding decoder stages, facilitating the recovery

of fine-grained details such as object boundaries and thin structures. This coarse-to-fine decoding

strategy is particularly effective in reconciling global context with local spatial accuracy.

Several influential models build upon this framework:

• MiDaS [511] emphasizes generalization across diverse datasets. Later versions of MiDaS re-

place convolutional encoders with Vision Transformers (ViTs), leveraging global self-attention

to capture long-range dependencies and scene-level structure. This shift enables more coherent

depth maps, particularly in unfamiliar environments.

• BTS (From Big to Small) [320] enhances the decoder with local planar guidance (LPG)

modules. These modules predict local plane parameters at multiple resolutions, guiding the

reconstruction of depth maps by assuming piecewise planar geometry—a useful trait we can

use for scenes with man-made structures or flat surfaces.

• DPT (Dense Prediction Transformer) [510] combines a ViT encoder with a convolutional

decoder, explicitly designed for dense prediction tasks. DPT treats the image as a sequence

of patches from the outset, enabling early global context aggregation. The decoder then

reconstructs high-resolution outputs while retaining global consistency, resulting in state-of-

the-art depth estimation performance on several benchmarks (at the time of publication).

While the architectural choices vary across models, the core principles remain consistent:

extract semantically meaningful, globally aware features with the encoder; restore spatial detail and

pixelwise correspondence with the decoder. These systems have made monocular depth estimation

viable for real-time applications such as AR, robotics, and autonomous navigation, where dense 3D

understanding from a single image is both efficient and essential.

1630 Chapter 23. Lecture 23: 3D vision

Loss Function and the Limitations of Absolute Depth Regression

A foundational approach to monocular depth estimation is to directly regress the ground truth depth

using a pixel-wise ℓ2 loss:

Ldepth =
1

N

N

∑
i=1

(
di− d̂i

)2
,

where di denotes the ground truth depth and d̂i is the predicted depth at pixel i, for a total of N

pixels. This objective treats depth estimation as a supervised regression task, optimizing the per-pixel

distance between prediction and annotation.

Scale-Depth Ambiguity and the Need for Invariant Losses

Despite its simplicity, the ℓ2 loss fails to account for a fundamental limitation in monocular depth

estimation: scale-depth ambiguity. Given only a single RGB image, there exist infinitely many 3D

scenes that could yield the same 2D projection. For example, a small object placed close to the

camera may appear identical in the image to a larger object situated farther away. This ambiguity

makes the estimation of absolute scale from monocular input fundamentally ill-posed.

Figure 23.3: Scale-depth ambiguity in monocular images: a nearby small toy cat and a distant real

cat can produce indistinguishable 2D projections.

While cues such as object size priors, vanishing points, or scene layout may offer some informa-

tion, the absolute scale remains ambiguous without auxiliary data. Consequently, modern methods

replace or augment the naïve ℓ2 objective with loss functions that are invariant to scale and shift and

that emphasize relative structure.

23.2 Predicting Depth Maps from RGB Images 1631

Scale-Invariant Log-Depth Loss

Monocular depth estimation suffers from scale-depth ambiguity: an image alone does not reveal

whether a small object is nearby or a large object is far away. This ambiguity renders absolute

depth supervision fundamentally ill-posed without geometric cues. To address this, [141] proposed a

scale-invariant loss that focuses on preserving relative scene structure while remaining agnostic to

global depth scale.

Let d̂i and di denote the predicted and ground truth depth at pixel i, respectively. Define the

log-space residual at each pixel as

δi = log d̂i− logdi = log

(
d̂i

di

)
.

This transforms multiplicative depth errors—such as those caused by an overall scaling mistake—into

additive biases in log space. For example, if all predictions are off by a constant factor s, then

δi = logs for all i.

The scale-invariant loss is given by:

LSI =
1

n

n

∑
i=1

δ 2
i −

1

n2

(
n

∑
i=1

δi

)2

.

The first term penalizes pixelwise errors in log-depth, while the second term subtracts the squared

mean residual. This centering step ensures that uniform log-space errors—i.e., global scaling

shifts—do not contribute to the loss. In the case where d̂i = s ·di for all i, we have δi = logs and the

two terms cancel exactly, yielding zero loss.

Pairwise Interpretation

An equivalent expression of the same loss emphasizes its structural nature:

LSI =
1

n2 ∑
i, j

[(
log d̂i− log d̂ j

)
− (logdi− logd j)

]2
.

Here, the loss is computed over all pixel pairs, enforcing that the difference in predicted log-depth

between any two pixels matches the difference in ground truth log-depth. This pairwise comparison

naturally preserves the relative depth ordering and ratios across the image, which define the 3D

scene structure up to scale.

Weighted Loss for Training

In practice, [141] used a weighted variant of the loss to trade off scale sensitivity and structure

preservation. The training objective is:

Ltrain =
1

n
∑

i

δ 2
i −λ · 1

n2

(
∑

i

δi

)2

,

where λ ∈ [0,1] determines how strongly the loss penalizes global scale errors. Setting λ = 0 recovers

the standard log-MSE, while λ = 1 gives the fully scale-invariant loss. The authors found λ = 0.5
to offer a good balance—preserving global scale roughly while improving structural coherence and

visual quality of the depth maps.

1632 Chapter 23. Lecture 23: 3D vision

Why a Single Global Scale Correction Suffices

Monocular images lack metric information, so networks often make consistent global depth er-

rors—predicting all depths as uniformly too large or too small. This happens because, without

geometric supervision, the model can recover scene structure (e.g., which objects are closer) but not

absolute scale.

Importantly, such scale errors are not local: the network does not typically stretch some parts

of the scene while shrinking others. Instead, the entire scene is scaled by a single factor s, yielding

predictions d̂i = s ·di for all pixels i. For instance, if a model interprets a real cat as a small nearby

toy, it will likely interpret a real car as a small toy car—misestimating scale consistently across

objects and spatial regions.

This uniformity arises because the only available supervision—the ground truth depth—reveals

the correct scale globally. Thus, if the network makes a pure scaling mistake, it will affect all depths

equally, and a single correction factor suffices to align prediction with ground truth:

d̂i

d̂ j

=
s ·di

s ·d j

=
di

d j

.

The scale-invariant loss captures this by canceling out any constant log-depth offset across the image.

It ensures the network is trained to preserve relative structure, while ignoring inevitable global scale

ambiguity in monocular input.

Scale and Shift-Invariant Losses in MiDaS and DPT

Training monocular depth models on diverse datasets poses a core challenge: different datasets often

encode depth with varying units, unknown camera baselines, or arbitrary scale and shift. For example,

structure-from-motion yields depths up to scale, while stereo systems may produce disparities with

dataset-specific offsets. Comparing predictions directly to such ground truth is ill-defined.

To address this, MiDaS [511] and DPT [510] adopt a scale and shift invariant objective that

aligns predictions to ground truth before measuring error. Specifically, they operate in inverse

depth (disparity) space—numerically stable and compatible with diverse sources—and fit an affine

transformation to the predicted disparity d̂ ∈ R
N to match the ground truth d ∈ R

N . The aligned

prediction is given by:

d̂aligned = ad̂ +b,

where a ∈ R (scale) and b ∈ R (shift) are computed via closed-form least-squares.

Robust Trimmed MAE and Multi-Scale Gradient Losses

Once aligned, the model minimizes two complementary objectives that address distinct challenges

in real-world training data:

1. Trimmed Mean Absolute Error (tMAE). Rather than computing loss over all pixels, MiDaS

and DPT discard the highest residuals—typically the top 20%—and compute the L1 error over the

remaining high-confidence set I ⊂ {1, . . . ,N}:

LtMAE(d, d̂) =
1

|I | ∑
i∈I

∣∣ad̂i +b−di

∣∣ .

23.2 Predicting Depth Maps from RGB Images 1633

This trimmed loss improves robustness in two ways. First, the use of L1 error prevents extreme

residuals from dominating the loss—unlike L2, which excessively penalizes large errors. Second,

trimming ensures that corrupted or misaligned pixels (e.g., due to missing depth, motion blur, or

sensor artifacts) do not influence training. In effect, it converts noisy datasets into reliable training

signals by emphasizing clean, consistent regions first, and gradually incorporating harder cases as

the model improves.

2. Multi-Scale Gradient Matching. While the trimmed MAE loss ensures accuracy on reliable

pixels, it does not capture how depth changes across space—that is, it ignores the local geometry of

surfaces. To remedy this, MiDaS and DPT incorporate a multi-scale gradient loss that encourages

the predicted depth map to exhibit the same structural transitions and surface boundaries as the

ground truth.

The depth gradient at a pixel refers to the rate of change in depth with respect to its horizontal

and vertical neighbors. In flat, smooth regions (e.g., walls, floors), depth changes slowly and the

gradient is small. At object boundaries or depth discontinuities (e.g., the edge of a chair or the

silhouette of a person), depth shifts abruptly and the gradient is large. Thus, gradients serve as a

proxy for geometry: they capture where and how the scene bends, steps, or ends.

Mathematically, the spatial gradient ∇di is computed using finite differences in the x and y

directions—typically as:

∇di = (di+x̂−di, di+ŷ−di) ,

where x̂ and ŷ denote offsets to right and bottom neighbors. This simple local operation reveals the

slope of the depth surface around each pixel.

The multi-scale gradient loss compares these gradients between prediction and ground truth at

various spatial resolutions:

Lgrad = ∑
s

1

Ns

Ns

∑
i=1

∥∥∥∇d̂
(s)
i −∇d

(s)
i

∥∥∥
1
.

The use of an L1 norm ensures robustness to local mismatches. The summation over scales s

(e.g., full, half, quarter resolution) allows the model to reason about both coarse structure (e.g.,

floor-to-wall transitions) and fine details (e.g., edges of thin objects).

Why it works: Traditional pixel-wise losses tend to average out sharp transitions, producing

overly smooth or blurry depth maps. Gradient supervision counteracts this by explicitly penalizing

structural mismatches. It teaches the model not only to match depth values, but to replicate the

contours and discontinuities that define the geometry of the scene.

In effect, this loss forces the network to answer: Where do depth changes occur? How sharply?

Do they match real-world object boundaries? The result is depth predictions with sharper edges,

more accurate occlusions, and higher geometric fidelity—particularly important in zero-shot transfer

settings where structure is more reliable than absolute scale.

Summary

While pixel-wise ℓ2 loss offers a straightforward entry point to monocular depth estimation, it fails

to resolve the ill-posed nature of global scale recovery. Modern approaches instead adopt scale- and

shift-invariant losses in log-depth or inverse-depth space, often augmented with gradient structure

terms. These advances—combined with diverse training data and stronger architectures—have led

to state-of-the-art results in monocular depth estimation across benchmarks such as KITTI, NYUv2,

and ETH3D.

1634 Chapter 23. Lecture 23: 3D vision

23.3 Surface Normals as a 3D Representation

In addition to depth maps, another powerful per-pixel 3D representation is that of surface normals.

For each pixel in the input image, the goal is to estimate a 3D unit vector that represents the

orientation of the local surface at that point in the scene. Surface normals are tightly linked to the

underlying geometry of the object and provide a complementary view to depth.

Unlike depth, which encodes the distance between the camera and scene points, surface normals

capture orientation, offering critical cues for understanding shape, curvature, and object boundaries.

Visualizing Normals

Since each surface normal is a unit vector in R
3, they can be visualized as RGB images by mapping

the x, y, and z components of each normal vector to the red, green, and blue color channels,

respectively. This visualization provides intuitive insight into the orientation of different surfaces.

Figure 23.4: Visualizing surface normals: blue indicates upward-facing normals (e.g., floor, bed

top), red and green indicate horizontal orientations. Mixed colors reflect diagonal or mixed-direction

normals.

Learning Surface Normals

Similar to depth prediction, surface normal estimation can be framed as a dense regression task using

a fully convolutional network. The network predicts a unit vector n̂i ∈ R
3 for each pixel i, and the

objective is to align it with the corresponding ground truth normal ni ∈ R
3. Since the predicted and

ground truth vectors should have the same direction regardless of scale, a natural loss function is the

cosine similarity loss:

Lnormal =
1

N

N

∑
i=1

(
1− n̂i ·ni

∥n̂i∥2 · ∥ni∥2

)
,

where · denotes the dot product and ∥ · ∥2 is the Euclidean norm. Note that since ground truth

normals are unit vectors, predicted vectors are often explicitly normalized before loss computation.

23.4 Voxel Grids 1635

Multi-Task Learning

In practice, tasks like dense segmentation and surface normal prediction are often trained jointly in a

multi-task setup, sharing the same encoder but having separate decoders. This setup encourages the

model to learn a richer and more consistent geometric understanding of the scene.

Limitations

While both depth and surface normals provide dense and informative representations of the visible

geometry in an image, they share a critical limitation: they are inherently restricted to visible surfaces.

Occluded regions, hidden backsides, and self-occlusions are not represented, leading to incomplete

scene understanding. To address this, more global 3D representations such as voxels, point clouds,

or meshes are necessary, as they model complete volumetric structure beyond the image plane.

23.4 Voxel Grids

To model 3D geometry beyond visible surfaces, one of the most intuitive volumetric representations

is the voxel grid. A voxel grid discretizes 3D space into a cubic lattice of resolution V ×V ×V , where

each voxel encodes occupancy information—typically as a binary value: 1 if the voxel is occupied

by an object, and 0 otherwise. This can be viewed as the 3D analog of a 2D binary segmentation

mask, but extended to volumetric space.

Voxel grids offer a conceptually simple and regular structure, making them attractive for early

3D learning pipelines. The representation is reminiscent of how objects are composed in voxel-based

environments such as Minecraft, where entire scenes are built from discrete blocks.

Figure 23.5: Voxel grids: Pros and cons. Left: regular grid and simplicity of representation. Right:

loss of detail in high-frequency regions such as armrests of the sofa, due to limited resolution.

Advantages

The voxel grid format enables straightforward adaptation of classical CNN-based architectures to 3D

data by replacing 2D convolutions with 3D convolutions. Since the voxel grid is regular and aligned

to a grid structure, operations like pooling, upsampling, and convolution generalize naturally from

2D to 3D.

1636 Chapter 23. Lecture 23: 3D vision

Limitations

A critical downside of voxel-based representations is their poor scalability with resolution. The

memory and computational cost of processing a voxel grid scales cubically with resolution: storing

a grid of resolution V requires O(V 3) space. This rapidly becomes intractable for high-resolution

scenes or objects, and fine details are lost at coarse voxel resolutions.

3D Convolutional Processing

Similar to 2D convolution, a 3D convolution applies a local filter over spatial neighborhoods in the

voxel grid. The kernel is a 3D volume of shape k× k× k (typically k = 3 or 5), and it slides across

the grid to compute local features:

y(i, j,k) = ∑
u,v,w

x(i+u, j+ v,k+w) ·w(u,v,w),

where x is the input voxel grid or feature map, w is the learned 3D kernel, and y is the resulting

activation map. These operations can be stacked in deep 3D convolutional networks to perform

classification, segmentation, or shape completion.

Figure 23.6: Processing voxel inputs using 3D convolutions for shape classification. The input

is a 30× 30× 30 occupancy grid representing the 3D shape. The network applies successive 3D

convolutions: a 6× 6× 6 kernel producing a 48× 13× 13× 13 feature volume, followed by a

5×5×5 kernel yielding 160×5×5×5, and a 4×4×4 kernel producing 512×2×2×2. A fully

connected layer maps the final volume to class scores. Adapted from Wu et al. [705].

Application Example: Image-to-Voxel Prediction

A representative application of voxel-based shape representation is 3D reconstruction from a single

RGB image. In this example, an image of an armchair is processed by a 2D convolutional neural

network to extract high-level visual features. These features are then projected into a latent 3D space

and refined through a sequence of 3D convolutional layers, ultimately producing a predicted voxel

occupancy grid.

23.4 Voxel Grids 1637

The pipeline begins with a 3× 112× 112 input image, which is passed through a 2D CNN

backbone to generate a compressed feature representation. This feature tensor is reshaped or lifted

into a 3D voxel grid of shape 1×V ×V ×V (e.g., 323). The lifted volume is then processed by 3D

convolutional filters that reason about the spatial structure of the object in three dimensions.

The final output is a binary or probabilistic voxel grid indicating which regions of 3D space

are likely to be occupied by the object. In our example, the network successfully reconstructs the

volumetric shape of an armchair directly from a single view.

Figure 23.7: Image-to-voxel inference pipeline. A 3×112×112 RGB image is processed by a 2D

CNN to extract features, which are lifted into a latent 3D voxel grid and refined by 3D convolutions.

The output is an occupancy grid representing the shape of the object—in this case, an armchair.

This architecture exemplifies how convolutional models can bridge 2D visual perception and 3D

spatial reasoning. The voxel grid serves as an interpretable intermediate representation, enabling

volumetric reasoning for tasks such as shape completion, reconstruction, etc.

Figure 23.8: Voxel representation memory usage scales cubically with resolution. A V ×V ×V

grid storing 32-bit floats grows rapidly: a 2563 grid requires roughly 64 MB, while a 10243 grid

exceeds 4 GB. This cubic growth severely limits the feasibility of high-resolution volumetric models,

motivating the exploration of more memory-efficient 3D representations.

1638 Chapter 23. Lecture 23: 3D vision

As can be seen in figure 23.8, due to the cubic growth of memory and compute with resolution,

voxel-based methods are constrained in practice, motivating alternative representations such as point

clouds, triangle meshes, and neural implicit fields for higher-fidelity modeling. One thing we can do

though, is try to scale voxels based on Oct-Trees.

23.4.1 Scaling Voxel Grids with Octrees

Standard voxel grids suffer from a key limitation: memory and computation grow cubically with

resolution. For instance, going from a 323 to 1283 grid multiplies storage cost by a factor of 43 = 64.

At high resolutions, this becomes intractable—even though most of the grid is typically empty or

homogeneous. This makes dense voxelization wasteful and limits its ability to capture fine geometric

detail.

To overcome this inefficiency, Tatarchenko et al. introduced the Octree Generating Network

(OGN) [609], which replaces dense grids with a sparse hierarchical structure called an octree.

Octrees: Intuition and Structure

An octree is a tree-based representation that adaptively subdivides 3D space. Starting from a

single cube that covers the full scene (the root), each cube is recursively split into eight subcubes

(octants)—but only when that region contains surface detail. Empty or homogeneous regions remain

unrefined.

• Uniform regions (e.g., open air or flat walls) are stored as large, coarse octree nodes.

• Detailed regions (e.g., object boundaries or thin parts) are recursively subdivided to finer

scales.

This adaptive spatial resolution means memory is focused where it matters: on the surface.

From Dense to Adaptive

To illustrate the impact, consider representing a car at different voxel resolutions:

• A dense 1283 grid would allocate over two million voxels, even for empty space.

• In contrast, an octree might use only thousands of voxels—concentrated near the car’s surface.

This reduces overall memory complexity from O(n3) to approximately O(n2), since the object’s

surface is a 2D manifold embedded in 3D space.

Octree Generating Networks (OGNs)

OGN is a convolutional architecture that generates high-resolution 3D shapes in octree format. It

starts with a coarse prediction of shape (e.g., 83 or 163) and recursively refines it. The model learns

to predict:

• which voxels should be subdivided (occupancy probabilities),

• and what features to pass to each child octant (learned latent codes).

At each refinement level, the network only expands voxels flagged as informative. This enables

high-fidelity 3D shape generation—without wasting memory on empty regions.

Surface-Driven Efficiency

The advantage of octrees becomes clearest at high resolutions. Rather than processing millions of

voxels uniformly, OGNs focus computation where object geometry is complex. For example, flat car

doors are left coarse, while wheels or window edges are subdivided further.

23.4 Voxel Grids 1639

Figure 23.9: Octree-based shape reconstruction from OGN [609]. Left: initial coarse level (323,

blue) captures the basic structure of the car. Middle: refinement to level 2 (643, green) improves

resolution near surfaces such as wheels and front grill. Right: full octree refinement to level 3 (1283,

brown) adds fine details and completes the car’s geometry while avoiding redundant subdivisions in

empty space.

Why and How Octrees Work

Octrees address storage inefficiency by adaptively refining the voxel grid only where necessary,

enabling surface-focused representations with far less memory.

How it works: The octree starts with a coarse resolution (e.g., 323) and maintains a tree where

each node represents a voxel. Each node can be classified as:

• empty: the voxel contains no surface and is not refined further;

• filled: the voxel lies entirely inside the object and needs no further subdivision;

• mixed: the voxel intersects a surface and is therefore recursively subdivided into 8 children.

The key challenge is determining which voxels to refine.

Predicting Subdivision with Neural Networks

At each level of refinement, the octree maintains a sparse set of active leaf voxels. For each such

voxel, the network predicts:

1. A feature vector for the current voxel (using sparse 3D convolutions on the octree structure).

2. An occupancy classification score for the voxel itself.

3. A set of 8 binary flags, one for each potential child voxel. indicating whether that subregion

should be refined.

The voxel is only subdivided if at least one child is predicted as filled or mixed—that is, likely

to be part of the object’s interior or intersect the surface. These predictions are made using a split

prediction head that branches off the decoder.

1640 Chapter 23. Lecture 23: 3D vision

Training with Supervised Supervision

OGNs are trained end-to-end using ground truth voxel occupancy grids, from datasets like ShapeNet.

The training process proceeds in a coarse-to-fine manner:

• At level l (e.g., 323): The network processes the current octree level and predicts occupancy

and subdivision flags for each voxel.

• Ground truth comparison: The predicted occupancy labels and subdivision decisions are

supervised using binary cross-entropy losses against a precomputed ground truth octree. These

labels are derived by voxelizing the 3D CAD mesh and marking voxels as filled, empty, or

mixed.

• Subsequent levels: Only voxels marked for refinement are subdivided. Their children become

the active set for the next finer resolution level (e.g., 643, then 1283, etc.).

This recursive supervision continues until the desired maximum resolution is reached. The result

is a hierarchical, sparsely populated voxel grid that concentrates resolution along object surfaces,

drastically reducing memory and computation.

Why It Works

• Focuses computation: By refining only ambiguous voxels, the model avoids spending

resources on empty space or flat interiors.

• Learns detail adaptively: The network learns where detail is needed from data, rather than

relying on hand-crafted refinement rules.

• Enables higher resolutions: Because only a subset of voxels are represented at each level,

OGNs can generate outputs at resolutions like 2563 or 5123 with the memory footprint of a

much smaller dense grid.

This learned coarse-to-fine generation strategy allows octree-based models to efficiently capture

complex geometry while remaining scalable, making them highly effective for high-resolution 3D

shape prediction tasks.

Limitations and Motivation for Point-Based Methods

Despite their efficiency, octrees still discretize space into axis-aligned cubes, which limits their

ability to model very fine surface curvature or sharp boundaries without deep subdivisions. Moreover,

generating and traversing octree hierarchies can introduce implementation complexity and latency in

practice.

These limitations motivate an alternative family of 3D representations: point clouds. Unlike

voxel grids or octrees, point clouds represent surfaces directly via sampled points in R
3, bypassing

the need to discretize space altogether. Although voxel representation is pretty common in practice,

and point-based methods do not benefit from the grid structure useful in convolutional networks,

they are intriguing as they offer greater flexibility and memory efficiency, especially for capturing

fine-grained surface geometry.

In the following part, we explore point cloud representations and the neural architectures designed

to process them effectively.

23.5 Point Clouds 1641

23.5 Point Clouds

A point cloud is a flexible, sparse, and surface-centric representation of 3D geometry. It models an

object as a set of P points in R
3, each corresponding to a sampled position on the visible surface:

P = {pi ∈ R
3 | i = 1, . . . ,P}

Unlike voxel grids, which discretize the 3D space uniformly and incur cubic memory costs, point

clouds only represent surface points, yielding a compact and efficient encoding. This representation

aligns naturally with real-world sensor data, such as LiDAR in autonomous vehicles.

Figure 23.10: Airplane represented as a point cloud, from [152]. Fine structures such as wings and

tail are densely sampled, while coarse regions like the fuselage use fewer points.

Advantages

Point clouds allow for high-resolution geometric modeling without the cubic scaling of voxel-based

methods. They efficiently capture fine details such as airplane wings or chair slats using a relatively

small number of points (as shown in figure 23.10), while coarser regions like planar surfaces can be

represented sparsely.

Limitations

Point clouds do not encode surface connectivity or topology. This limits their utility for downstream

applications such as mesh rendering or physics simulation, which rely on explicit surface structure.

Additionally, point clouds are unordered and irregularly sampled, requiring specialized neural

architectures for effective processing.

Rendering

Since mathematical points are infinitesimal, visualizations inflate each point into a finite-radius

sphere. This creates the illusion of a continuous surface but does not resolve the lack of connectivity.

To use point clouds for graphics or simulation, surface reconstruction via meshing algorithms is

often necessary.

1642 Chapter 23. Lecture 23: 3D vision

Applications

Point clouds are a core representation in 3D perception and are widely used in robotics, AR/VR,

and autonomous driving. In particular, LiDAR sensors deployed on self-driving vehicles emit laser

pulses to scan the environment and return a dense set of 3D points corresponding to surfaces in the

scene. This raw point cloud data forms the foundation for several high-level tasks:

• Obstacle detection and tracking: Dynamic objects such as vehicles, pedestrians, and cyclists

are localized and tracked in 3D space, enabling collision avoidance and motion planning.

• Semantic scene understanding: Each point in the cloud can be semantically labeled as road,

building, vegetation, etc., supporting downstream reasoning about the environment.

• Mapping and localization: Aggregated LiDAR scans are used to construct high-definition

(HD) maps for accurate self-localization and route planning. These maps include fine-grained

structures such as lane boundaries, curbs, and traffic signs.

• Multi-sensor fusion: Point clouds are often fused with camera and radar inputs to improve

robustness under challenging conditions, such as poor lighting or weather, where single

modalities may fail.

By capturing precise geometric structure independent of appearance, point clouds enable spatial

reasoning and metric-scale perception, making them indispensable for autonomous systems operating

in complex, dynamic environments.

23.5.1 Point Cloud Generation from a Single Image

Fan et al. [152] introduce a landmark framework for reconstructing 3D shapes as point sets directly

from a single RGB image. Unlike voxel grids or multi-view representations, point clouds are

efficient, resolution-independent, and naturally suited to surface-level geometry. The model predicts

an unordered set of 3D points

Ŝ = { ŷi }P1+H ′W ′P2

i=1 ⊂ R
3,

which approximates the visible object surface.

Architecture Overview

The model follows an encoder–decoder structure with a dual-branch output head designed to capture

both global object structure and fine surface detail.

• The encoder is a convolutional neural network that maps the input image I ∈ R
3×H×W to a

latent feature tensor F ∈ R
C×H ′×W ′ . This feature map encodes rich spatial information about

the input’s underlying 3D geometry.

• The decoder splits into two complementary branches:

– Fully-Connected (Global) Branch: The feature map F is flattened and passed through

a multi-layer perceptron (MLP) to produce a fixed set of P1 3D points:

Ŝg = { ŷ
g
i }P1

i=1 ⊂ R
3.

The output dimensionality is predetermined—e.g., a final layer with 3 ·P1 units reshaped

into a P1×3 matrix. This branch captures the global structure, pose, and coarse silhouette

of the object. The hyperparameter P1 is typically chosen to balance expressiveness and

efficiency, and remains fixed during training and inference.

23.5 Point Clouds 1643

– Convolutional (Local) Branch: Rather than collapsing spatial dimensions, this branch

operates directly over the H ′×W ′ grid of the encoded feature map. At each spatial

location (i, j), a shared MLP (implemented as 1×1 convolution) predicts P2 3D points:

Ŝl = { ŷl
i, j,k }H ′

i=1
W ′
j=1

P2

k=1 ⊂ R
3.

Each point is generated relative to a canonical 2D grid anchor, allowing the network to

model high-frequency surface detail. The weight-sharing mechanism enforces translation-

equivariant behavior across the image, which is particularly effective for capturing fine

geometry such as edges, contours, and thin structures. Because it preserves spatial layout,

this branch provides dense, localized surface coverage.

The final output is the union of both branches:

Ŝ = Ŝg∪ Ŝl, with |Ŝ|= P1 +H ′W ′P2.

This architecture enables the model to combine a globally consistent shape prior (via the FC

branch) with spatially grounded local refinement (via the convolutional branch), yielding geometri-

cally faithful point cloud reconstructions with efficient capacity allocation.

Figure 23.11: Dual-branch point cloud generation network of Fan et al. [152]. A 2D CNN encodes

the input image into spatial features. The fully-connected branch (red) predicts P1 global points,

while the convolutional branch (blue) predicts P2 points per spatial location, yielding H ′W ′P2 local

points. Their union forms the final output Ŝ.

Architectural Motivation

This dual-path architecture reflects a coarse-to-fine design philosophy:

• The global branch supplies a stable structural prior, capturing the object’s pose, orientation,

and rough geometry.

• The local branch attends to spatially localized visual cues, enriching the surface detail with

high-frequency geometric structure—particularly beneficial for recovering thin parts and sharp

edges.

Together, they allow the network to generate accurate and detailed 3D reconstructions while keeping

output size and model complexity manageable.

1644 Chapter 23. Lecture 23: 3D vision

Loss Function: Chamfer Distance

When predicting 3D point clouds, we aim to generate a set of points that matches a ground-truth

shape surface. Crucially, both the predicted and target sets are unordered—permuting point indices

does not change the represented shape. This calls for a set-based loss function that is invariant to

point ordering and flexible to varying cardinality.

Fan et al. address this with the Chamfer Distance (CD), a symmetric, differentiable measure of

dissimilarity between two point sets:

• S1 ⊂ R
3: predicted point cloud (previously Ŝ)

• S2 ⊂ R
3: ground-truth point cloud (previously S)

The Chamfer Distance is defined as:

dCD(S1,S2) = ∑
x∈S1

min
y∈S2

∥x− y∥2
2 + ∑

y∈S2

min
x∈S1

∥x− y∥2
2.

Each term plays a complementary role:

• The forward term ensures that every predicted point x ∈ S1 has a close match in the target set

S2. This promotes accurate surface fitting and penalizes extraneous predictions.

• The backward term guarantees that every target point y ∈ S2 is approximated by at least one

predicted point x ∈ S1. This ensures full coverage of the ground-truth surface, even when the

model predicts fewer points than the reference.

The bidirectional structure is key: even if |S1| ≠ |S2|, the loss still compares them fairly by

asking how well each set "explains" the other through nearest-neighbor matching. The use of

minimum distances makes the loss permutation-invariant, and its differentiability (almost everywhere)

enables end-to-end gradient-based optimization. Efficient computation is facilitated via KD-trees or

approximate nearest neighbor search. The only situation in which the loss will be 0 is when the two

sets are the same (each point in one is exactly on a point in the other), which is what we wanted to

achieve.

Figure 23.12: Chamfer distance (forward term): for each predicted point x ∈ S1, find its nearest

ground-truth match y ∈ S2.

23.5 Point Clouds 1645

Figure 23.13: Chamfer distance (backward term): for each ground-truth point y ∈ S2, find the nearest

predicted point x ∈ S1 to ensure coverage.

Intuition and Impact

The Chamfer Distance aligns naturally with the set-based nature of point clouds. By evaluating how

well two sets approximate each other through nearest neighbors, it handles variable point counts and

spatial distributions with ease. This makes it ideal for training neural networks to generate dense

3D surfaces from sparse supervision. Fan et al.’s use of Chamfer loss, coupled with a dual-branch

decoder and CNN encoder, marked the first end-to-end framework to lift 2D images into 3D point sets

with high geometric fidelity—laying the groundwork for many subsequent advances in point-based

and implicit shape reconstruction.

23.5.2 Learning on Point Clouds: PointNet and Variants

Unlike images or voxels, point clouds are unordered and lack an inherent grid structure. This makes

standard convolutional architectures unsuitable for directly processing them. PointNet [489] intro-

duces a neural network architecture specifically designed to handle raw point sets while respecting

their permutation invariance.

Core Design: Set-Invariance via Shared MLP and Symmetric Pooling

Let the input be a point cloud P = {pi}P
i=1 ⊂ R

3, represented as a tensor RP×3. PointNet processes

this set in a permutation-invariant fashion using the following components:

1. Shared MLP: Apply the same MLP to each point independently:

MLP(pi) ∈ R
D, i = 1, . . . ,P

yielding a per-point feature matrix in R
P×D. Shared weights ensure permutation invariance

across the set.

1646 Chapter 23. Lecture 23: 3D vision

2. Symmetric Aggregation: Collapse the point cloud into a global descriptor using a permutation-

invariant operator (e.g., max-pooling):

hglobal =
P

max
i=1

MLP(pi) ∈ R
D.

The result is independent of input order and size.

3. Prediction Head:

• Classification: Pass hglobal through fully-connected layers to produce output scores in

R
C.

• Segmentation: Concatenate hglobal back to each per-point feature, then apply another

shared MLP to predict per-point labels.

Figure 23.14: PointNet architecture (Qi et al., 2017). The classification network (left) takes n points,

applies input and feature transformations, aggregates via max-pooling, and outputs class scores for

k categories. The segmentation network (right) extends this by concatenating per-point and global

features to predict labels at each point. MLP layer sizes are shown in brackets; BatchNorm+ReLU is

used at each layer, and Dropout appears in the final FC layer for classification.

Pose Normalization via T-Net Modules

To improve invariance to arbitrary spatial transformations, PointNet incorporates two optional

Transformation Networks (T-Nets) that learn to align both the input point cloud and its intermediate

feature representations to canonical frames.

• Input T-Net: This module predicts a spatial alignment for the raw coordinates P ∈ R
P×3. It

follows the PointNet architecture—shared MLPs, max-pooling, and fully connected layers—to

regress a 3× 3 transformation matrix, which is then applied directly to the input points.

This normalization step removes global rotation and translation ambiguity, ensuring that the

downstream network processes consistently oriented data.

• Feature T-Net: A second T-Net operates on the intermediate per-point feature vectors (e.g.,

after the first shared MLP), predicting a D×D transformation matrix to align feature embed-

dings in the latent space. This matrix is applied before aggregation, improving the stability

and semantic consistency of learned features across different object poses and variations.

23.5 Point Clouds 1647

• Regularization: To ensure that the predicted feature transformation is approximately orthogo-

nal (i.e., preserves information), a regularization loss of the form

Lreg =
∥∥∥I−AA⊤

∥∥∥
2

F

is added to the training objective, where A ∈ R
D×D is the predicted transformation matrix and

∥ · ∥F denotes the Frobenius norm.

By learning to normalize both geometric and feature-level representations, these T-Net mod-

ules enhance the model’s robustness to pose variation and improve the reliability of downstream

classification or segmentation predictions.

Hierarchical Reasoning via Iterative Refinement

Beyond the basic structure, subsequent variants of PointNet can perform multi-stage feature fusion:

• After the first max-pooling yields hglobal ∈ R
D, it is concatenated with each point feature to

form R
P×2D.

• A shared MLP processes these enriched per-point vectors.

• A second max-pooling generates a refined global descriptor.

• This sequence—concat, MLP, pooling—can be repeated multiple times, allowing the network

to capture hierarchical, higher-order shape attributes.

This iterative deep set reasoning retains permutation invariance while progressively enhancing the

model’s expressive power.

Legacy and Evolution

PointNet demonstrated that symmetry-aware, set-based architectures can rival or surpass volumetric

CNNs in classification and segmentation—while using significantly less memory and supporting

higher-resolution geometry. Its simple yet powerful design has led to a series of influential extensions

that form the backbone of modern 3D deep learning pipelines.

23.5.3 PointNet++: Hierarchical Feature Learning on Point Clouds

While PointNet [489] introduced a powerful set-based paradigm for point cloud processing, it suffers

from a key limitation: the inability to explicitly model local geometric structures. Because PointNet

aggregates all point features globally in a single pooling operation, it lacks sensitivity to fine-grained

local patterns—much like trying to classify a shape without noticing its edges or corners.

PointNet++ [490] addresses this limitation by introducing a hierarchical architecture that

recursively applies PointNet within spatially localized regions. This structure enables the model

to learn point-wise features at progressively larger contextual scales, akin to how CNNs build up

representations from local patches to full-image semantics.

The core architectural unit in PointNet++ is the Set Abstraction (SA) module, which consists of

three main stages:

1. Sampling: From the full point set, a representative subset is selected as centroids of local

regions. This is typically performed using Farthest Point Sampling (FPS), which ensures even

spatial coverage of the point cloud by selecting points that are maximally distant from one

another. This avoids clustering in high-density areas and helps capture the object’s full spatial

extent.

1648 Chapter 23. Lecture 23: 3D vision

2. Grouping: For each sampled centroid, a local neighborhood is defined. The standard method is

a ball query, which includes all points within a fixed radius. This spatially bounded grouping

ensures that the local features extracted are consistent and scale-aware. (Alternatively, k-

nearest neighbors can be used, though ball queries preserve fixed spatial context).

3. PointNet Encoding: Within each local neighborhood, a mini-PointNet is applied—mapping

the points into a local reference frame (relative to the centroid) and computing a feature vector

via shared MLPs and symmetric max-pooling. This step captures local geometric properties

such as curvature, edges, or flatness.

By stacking multiple SA modules, PointNet++ constructs a deep hierarchy of features—from

local patches to global shape descriptors—allowing robust recognition of both coarse and detailed

structure.

Figure 23.15: Hierarchical feature abstraction in PointNet++ [490]. Local regions are formed via

sampling and grouping, then encoded by mini-PointNets. Higher abstraction levels operate on

increasingly larger receptive fields.

Density-Adaptive Grouping and Robustness

A major challenge in real-world point clouds—such as those acquired via LiDAR or RGB-D

sensors—is the presence of non-uniform sampling density. Nearby surfaces often result in dense

clusters of points, while distant or occluded areas may be sparsely sampled. If a network uses

a fixed-radius neighborhood (as in single-scale grouping), it may gather too few points in sparse

regions (leading to unstable features), or be unnecessarily redundant in dense regions (wasting

computation).

To address this, PointNet++ [490] introduces two density-adaptive grouping strategies that

allow feature learning to adapt across varying sampling densities:

• Multi-Scale Grouping (MSG): For each centroid in the set abstraction layer, MSG performs

multiple ball queries of increasing radii (e.g., small, medium, large), forming concentric local

neighborhoods of different scales. Each group is processed by a separate mini-PointNet, and

the resulting feature vectors are concatenated into a unified multi-scale representation.

Intuition: In dense regions, small-radius neighborhoods suffice to capture fine detail; in sparse

regions, larger-radius neighborhoods ensure geometric coverage. MSG makes the model

robust to such density variations at the cost of increased computation due to multiple parallel

branches.

23.5 Point Clouds 1649

• Multi-Resolution Grouping (MRG): As a more efficient alternative, MRG leverages the

hierarchical nature of PointNet++. At each level Li, the feature for a local region is computed

by concatenating:

– a low-resolution feature from the previous level Li−1, summarizing a large, sparse

context;

– a high-resolution feature from a mini-PointNet applied to the raw points in the local

region at level Li.

This dual-path design allows the network to dynamically emphasize coarse or fine structure

depending on local point density.

Intuition: When a region is well-sampled, detailed features from the current level dominate;

when sparse, the network falls back on coarse summaries inherited from deeper layers.

Figure 23.16: Multi-scale and multi-resolution grouping strategies from PointNet++ [490]. (a)

Multi-Scale Grouping (MSG): for each centroid, multiple neighborhoods at different radii are

constructed and processed by parallel mini-PointNets; their features are concatenated to form a

scale-robust representation. (b) Multi-Resolution Grouping (MRG): combines coarse features

propagated from previous abstraction levels with fine features extracted from raw points at the

current level, allowing efficient adaptation to non-uniform sampling densities.

Random Input Dropout: During training, PointNet++ further improves robustness by randomly

dropping input points. This encourages the model to generalize across incomplete or sparsely

sampled inputs—a common scenario in real-world 3D capture.

Feature Propagation for Dense Prediction

For tasks like semantic segmentation—where per-point predictions are required—PointNet++ uses

a feature propagation module to interpolate and upsample coarse features back to the original

resolution. This is achieved via:

• Distance-weighted interpolation from nearby subsampled points.

• Skip connections from earlier levels in the hierarchy.

This ensures that each point benefits from both its raw input and the abstracted global features

accumulated through the hierarchy.

1650 Chapter 23. Lecture 23: 3D vision

Summary and Impact

PointNet++ marks a major evolution in point cloud learning. By extending PointNet with hierarchical

spatial reasoning, local neighborhood modeling, and density-aware design, it achieved state-of-the-

art performance across classification, segmentation, and 3D object detection benchmarks at its time

of publication. The hierarchical Set Abstraction modules provide a powerful and general-purpose

building block for modern geometric deep learning pipelines.

Extensions and Improvements

Numerous architectures have extended the PointNet++ paradigm to enhance expressiveness, effi-

ciency, and scalability:

• PointNeXt [491] revisits PointNet++ with modern training techniques, simplified blocks, and

residual connections for improved accuracy.

• DGCNN [684] introduces dynamic edge convolutions over local graphs, capturing fine-grained

geometric relations across neighboring points.

• Point Transformers [702, 789] apply attention mechanisms to model long-range interactions

in the point set, enabling context-aware reasoning.

These models now underpin many 3D perception systems, spanning applications in classification,

segmentation, shape generation, and scene understanding.

Toward Structured Representations

While point clouds offer an efficient and flexible surface representation, they lack explicit connectivity.

This motivates the transition toward structured outputs such as triangle meshes and implicit surfaces,

which support physically grounded operations like rendering, simulation, and editing.

23.6 Triangle Meshes for 3D Shape Modeling 1651

23.6 Triangle Meshes for 3D Shape Modeling

Triangle meshes are among the most widely used representations for 3D shapes in computer graphics,

simulation, and geometric learning. A triangle mesh explicitly defines the surface of a 3D object

using a finite set of vertices and faces. Let V = {vi ∈ R
3 | i = 1, . . . ,V} denote the set of 3D vertex

coordinates, and let F = {(i, j,k) | i, j,k ∈ [1,V]} denote the set of triangular faces, each indexed

by three vertices.

This representation defines a piecewise-linear manifold embedded in 3D, enabling efficient

rendering and geometric reasoning. Each face defines a planar triangle bounded by edges, and the

entire mesh approximates a continuous surface.

Advantages of Triangle Meshes

Triangle meshes are the standard in real-time and offline 3D applications due to several key properties:

• Surface explicitness: Meshes represent the actual 2D surface geometry embedded in 3D,

facilitating accurate surface-based computations such as rendering, shading, and physical

simulation.

• Adaptive resolution: Large triangles can be used in smooth regions, while dense subdivisions

can capture high-curvature or detailed regions, yielding compact yet expressive representations.

• Rich annotations: Meshes can carry per-vertex attributes such as surface normals, color, and

texture coordinates, which are interpolated over the mesh faces for shading and alignment.

Figure 23.17: Left: A schematic triangle mesh with explicit vertices and faces. Right: A dolphin

mesh reconstructed from real-world geometry. Adapted from lecture slides.

Despite their efficiency, predicting triangle meshes from raw data (e.g., RGB images or point

clouds) presents significant challenges: the output structure is non-Euclidean, connectivity must be

preserved, and operations such as upsampling or interpolation are nontrivial. The next subsection

introduces a model that addresses these challenges through learned graph-based mesh deformation.

1652 Chapter 23. Lecture 23: 3D vision

23.6.1 Pixel2Mesh: Predicting Triangle Meshes

Pixel2Mesh [665] is a landmark method for generating 3D triangle meshes directly from a single

RGB image. Unlike voxel-based approaches—which scale cubically in memory—or point cloud

methods—which lack surface connectivity and require post-processing to extract usable geome-

try—Pixel2Mesh predicts structured mesh outputs: surfaces defined by vertices, edges, and faces.

This makes it particularly suitable for applications that require explicit topology, such as simulation,

CAD, or rendering.

Pre-Pixel2Mesh Landscape

Prior to mesh-based methods, 3D learning architectures primarily explored two output formats:

• Voxel grids: Compatible with 3D convolutions and spatial reasoning, but constrained by high

memory usage. Even modest resolutions (e.g., 643) require hundreds of thousands of cells,

limiting detail.

• Point clouds: More efficient and flexible, but inherently unstructured. Without connectivity,

they cannot express surface geometry directly, making downstream tasks such as meshing or

simulation error-prone.

Core Proposition

Pixel2Mesh offers a structurally informed alternative by modeling 3D shape as a deformable mesh

graph. Starting from a fixed-topology, genus-0 template (typically an ellipsoid), the network learns

to iteratively deform vertex positions to match the object depicted in the image. This progressive

refinement approach reframes the task: instead of generating structure from scratch, the model

predicts residual displacements—small, local adjustments to an existing shape. This both simplifies

learning and naturally preserves manifold topology, as the mesh’s connectivity remains unchanged

across deformations.

Key Innovations

Pixel2Mesh introduced a number of interlinked architectural ideas that made this formulation

tractable:

• Coarse-to-Fine Refinement: The model deforms the mesh over multiple stages. After

each deformation step, the mesh is upsampled—that is, each face is subdivided to increase

resolution—enabling the network to model fine-grained surface detail while maintaining

stability early on.

• Graph Convolution on Meshes: Deformations are computed using graph convolutional

networks (GCNs), which aggregate information across neighboring vertices based on mesh

connectivity. This allows localized, topology-aware reasoning.

• Vertex-Aligned Features: To connect 2D image content with the 3D mesh, the model projects

each vertex onto the image plane and samples CNN features at the corresponding location.

These features are passed to the GCN to guide deformation, grounding mesh updates in visual

evidence.

• Chamfer Distance for Mesh Supervision: Pixel2Mesh supervises mesh prediction by

comparing the predicted vertex set V ⊂ R
3 to a ground-truth point cloud Sgt using the

symmetric Chamfer Distance:

LChamfer = ∑
x∈V

min
y∈Sgt

∥x− y∥2
2 + ∑

y∈Sgt

min
x∈V
∥x− y∥2

2.

23.6 Triangle Meshes for 3D Shape Modeling 1653

Although simple and differentiable, this loss only supervises vertex positions and ignores the

interiors of mesh faces—potentially allowing distortions like sagging or warping between

correctly placed vertices.

Later work, such as GEOMetrics [574], improves on this by comparing point clouds sampled

from the entire predicted surface, offering finer surface-level supervision.

High-Level Pipeline

Pixel2Mesh transforms a single RGB image into a 3D triangle mesh through a progressive mesh

deformation pipeline that unifies convolutional image features and geometric mesh reasoning. The

method begins with two inputs: a 2D image and a coarse, genus-0 mesh template (typically an

ellipsoid centered in front of the camera). This template serves as the canonical starting point for all

reconstructions and encodes strong priors on manifoldness and mesh topology.

The network refines this initial mesh in three stages, each consisting of deformation, unpooling,

and feature update modules. The process is structured as follows:

1. Image Feature Extraction: A 2D convolutional backbone (e.g., VGG-16) processes the

input RGB image to extract multi-scale feature maps from intermediate layers (e.g., conv3_3,

conv4_3, conv5_3). These maps encode both low-level textures and high-level semantic

patterns, offering a rich perceptual signal that guides the 3D reconstruction process.

2. Vertex-to-Image Feature Pooling: Each mesh vertex is projected onto the image plane using

known camera intrinsics. At the projected 2D coordinates, features are bilinearly sampled

from the image’s multi-level CNN maps and concatenated to the vertex’s current geometric

descriptor. This projection-based pooling serves as the only available cue during inference,

anchoring the 3D reconstruction to image evidence. It provides the graph network with

localized appearance information, helping it decide where and how to displace each vertex

and add detail.

3. Graph Convolution for Deformation: The mesh is represented as a graph, with vertices

as nodes and edges defined by mesh connectivity. A Graph Convolutional Network (GCN)

processes this structure, updating each vertex’s feature vector by aggregating information from

its neighbors. The GCN is composed of multiple layers, expanding each vertex’s receptive

field and enabling contextual reasoning across the surface. Crucially, the image-aligned

features from the pooling step guide the GCN’s residual predictions—telling the network how

to deform the shape in 3D to better match the visual evidence.

4. Graph Unpooling for Resolution Increase: To increase geometric detail, the mesh is

upsampled after each deformation stage using edge-based unpooling. New vertices are inserted

at the midpoints of edges, and connectivity is updated to preserve the mesh’s manifold structure.

The positions and features of new vertices are initialized by averaging their endpoints, allowing

the network to seamlessly enrich surface detail without altering global shape or topology.

5. Iterative Refinement: The refined mesh is passed through multiple deformation stages, each

repeating the cycle of vertex-to-image feature pooling (Step 2), GCN-based displacement

prediction (Step 3), and graph unpooling (Step 4). This iterative coarse-to-fine strategy

begins with a low-resolution mesh that captures global structure—benefiting from short

graph diameters and large effective receptive fields—and progressively increases resolution to

recover fine surface details. As the mesh converges toward the target shape, vertex projections

align more accurately with relevant regions in the image, enhancing the quality of sampled

features and enabling increasingly precise geometric corrections at each stage.

1654 Chapter 23. Lecture 23: 3D vision

Figure 23.18: Pixel2Mesh architecture overview. Starting from a coarse ellipsoid mesh, the model

applies a sequence of mesh deformation blocks, each guided by per vertex extracted 2D image-aligned

features and processed via graph convolutions. Between deformation blocks, graph unpooling

operations increase mesh resolution by inserting new vertices at edge midpoints, preserving surface

shape while enabling finer geometric detail in subsequent refinements. As the mesh evolves, vertex

projections better align with informative regions in the image, improving both feature sampling and

deformation accuracy.

This multi-stage architecture offers a powerful compromise between efficiency and fidelity. The low-

resolution mesh allows efficient global shape reasoning in early layers, while unpooling introduces

degrees of freedom necessary for high-resolution surface detail. By integrating 2D image cues at

every stage and learning deformation through graph-based reasoning, Pixel2Mesh generates detailed,

topologically consistent 3D meshes from a single image.

Graph-Based Feature Learning

A core challenge in learning from 3D meshes is that they are non-Euclidean structures. Unlike

images or voxels, which lie on regular grids with fixed-size neighborhoods and translation-invariant

kernels, triangle meshes consist of irregularly connected vertices with no global coordinate frame.

To apply learning methods to this setting, Pixel2Mesh treats the mesh as a graph G = (V ,E), where:

• Nodes (V) are mesh vertices. Each vertex i∈ V is assigned a feature vector fi ∈Rd , initialized

using its 3D coordinates vi ∈ R
3, and later enriched through graph-based message passing.

• Edges (E) encode mesh connectivity. Two nodes i and j share an edge if their corresponding

vertices are adjacent on a triangle face. This forms the local neighborhood N (i) around each

vertex.

23.6 Triangle Meshes for 3D Shape Modeling 1655

Figure 23.19: Graph convolution on meshes: each vertex aggregates features from its 1-ring

neighbors using shared learnable weights.

To extend the receptive field across the mesh and support complex shape reasoning, Pixel2Mesh

stacks multiple such layers into a 14-layer Graph Convolutional ResNet (G-ResNet). The inclusion

of residual (skip) connections helps stabilize optimization, facilitates deeper architectures, and allows

low-level geometry to be preserved and reused throughout the network. As features propagate

through the GCN, each vertex gains access to increasingly broader geometric context—essential for

learning coherent deformations informed by both local surface cues and global object structure.

This graph-based feature hierarchy ultimately enables each vertex to predict a residual 3D

displacement vector ∆vi, which updates its position without altering mesh connectivity. Subsequent

parts detail how these features are fused with 2D image evidence and used to deform the mesh

toward the target shape.

To increase the expressive capacity of the network, Pixel2Mesh stacks 14 such layers into a deep

Graph Convolutional ResNet (G-ResNet). This depth enables each vertex to aggregate information

from increasingly distant nodes, expanding its receptive field over the graph. Unlike grids, graphs

can have highly irregular connectivity, and so reaching distant vertices may require many layers of

message passing. Skip connections—added between GCN layers—help mitigate this by stabilizing

gradient flow during training and facilitating feature reuse. In the context of mesh deformation, these

residual paths are particularly useful: they allow the network to retain low-level spatial signals (e.g.,

coarse geometry or symmetric structures) while progressively layering on fine-grained, high-level

shape refinements.

Predicting Vertex Positions via Graph Projection

At the end of each mesh deformation block, the G-ResNet outputs a refined feature vector fi ∈ R
d

for each vertex i. These features encode both geometric structure (through message passing over the

mesh) and semantic cues (through vertex-aligned image features). To convert these features into

updated vertex coordinates, Pixel2Mesh applies a simple yet crucial operation: a final linear layer

referred to as the graph projection layer.

Formally, the new 3D position of each vertex is predicted as:

vnew
i =Wprojfi,

where Wproj ∈R
d×3 is a learnable weight matrix shared across all vertices. This transformation maps

the high-dimensional vertex features directly into absolute 3D space.

1656 Chapter 23. Lecture 23: 3D vision

Importantly, this step does not compute or apply a residual displacement. The network predicts

the final 3D position outright. Although this may seem counterintuitive—many deformation-based

models favor residual updates for stability—the Pixel2Mesh architecture learns this coordinate

regression implicitly, leveraging the structured feature learning of the G-ResNet. The underlying

mesh structure and feature propagation already encode strong geometric priors, making direct

position regression viable and effective.

Throughout this process, the mesh’s topology remains fixed: only vertex positions are updated,

not their connectivity. This allows each deformation block to operate over a stable graph structure

while progressively refining the mesh surface. After this coarse shape is aligned with the image,

graph unpooling increases mesh resolution by inserting new vertices at edge midpoints. Subsequent

deformation blocks then focus on finer-scale geometry, aided by a denser mesh and more localized

2D image alignment.

Edge-Based Graph Unpooling for Mesh Resolution Refinement

After each stage of coarse deformation, Pixel2Mesh increases the mesh resolution to allow more

fine-grained geometric refinement. This is achieved via a carefully designed graph unpooling

operation that avoids the artifacts common in naive subdivision schemes. Instead of inserting new

vertices at triangle centroids (which creates low-degree, poorly connected nodes), Pixel2Mesh uses

an edge-based unpooling strategy inspired by classical mesh subdivision methods.

The unpooling procedure is as follows:

• A new vertex is inserted at the midpoint of each edge in the mesh.

• This new vertex is connected to the two endpoints of the edge.

• For every triangle in the original mesh, the three mid-edge vertices are connected to form a

new inner triangle.

This process subdivides each original triangle into four smaller triangles and preserves regularity

in vertex degree and local topology. To initialize the features of the new mid-edge vertices, the

network simply averages the features of the parent vertices:

fnew =
1

2
(fi + f j),

where i and j are the endpoints of the edge. This yields smooth and stable feature transitions for

subsequent GCN layers.

Figure 23.20: Graph unpooling in Pixel2Mesh (adapted from [665]): (a) New vertices (black) are

inserted at edge midpoints and connected via dashed edges. (b) Face-based unpooling leads to

irregular vertex degrees and topological imbalance, while edge-based unpooling preserves mesh

regularity and uniform structure.

23.6 Triangle Meshes for 3D Shape Modeling 1657

This coarse-to-fine unpooling scheme allows Pixel2Mesh to expand its receptive field and pre-

diction granularity in tandem. The three-stage pipeline uses meshes with 156, 628, and finally 2466

vertices—an architecture that mirrors the increasing complexity of the shape being reconstructed.

Early blocks handle the “big picture,” while later blocks focus on refining sharp contours, smooth

curvatures, and small geometric details.

Image-to-Mesh Feature Alignment

A key innovation in Pixel2Mesh is its ability to guide 3D mesh deformation using 2D visual cues

extracted from the input image. This involves bridging two fundamentally different data domains: the

regular, grid-aligned structure of 2D images and the irregular, graph-based structure of 3D meshes.

Pixel2Mesh realizes this connection through a Perceptual Feature Pooling module, which aligns

each mesh vertex with semantically relevant image features and dynamically refines that alignment

at each deformation stage.

The process begins with a pretrained VGG-16 network (frozen during training), used to extract

multi-scale image features from the input RGB image. Features are taken from three intermediate

layers—conv3_3, conv4_3, and conv5_3—which together capture both fine textures and abstract

semantics. These layers yield feature maps at decreasing spatial resolutions and increasing channel

dimensionality.

For each vertex i in the current mesh, the following steps are performed:

1. Projection to the Image Plane: The 3D vertex position vi = (xi,yi,zi) ∈ R
3 is projected to

2D image coordinates using known perspective camera intrinsics:

(ui,vi) =

(
fxxi

zi

+ cx,
fyyi

zi

+ cy

)
.

This maps the 3D point to the location on the image where it is expected to appear.

2. Bilinear Feature Sampling: At each projected coordinate (ui,vi), bilinear interpolation is

applied to the VGG feature maps to retrieve image-aligned descriptors. This interpolation

ensures that features can be sampled at subpixel resolution and maintains differentiability

throughout the pipeline.

Figure 23.21: Bilinear interpolation retrieves CNN features at non-integer projected positions. This

mechanism resembles RoIAlign and allows smooth vertex-to-image alignment.

1658 Chapter 23. Lecture 23: 3D vision

3. Multi-Scale Feature Fusion: The sampled feature vectors from conv3_3, conv4_3, and

conv5_3 are concatenated to form a unified descriptor f
img
i ∈ R

1280 (e.g., 256 + 512 + 512

channels). This vector encodes both local appearance and high-level semantics around the

vertex projection.

4. Fusion with Graph Features: The perceptual feature f
img
i is concatenated with the vertex’s

geometric feature fi ∈ R
d , as computed by previous graph convolution layers. The resulting

fused descriptor is then passed to the next G-ResNet deformation block to guide shape

refinement.

Figure 23.22: Image feature alignment: each mesh vertex is projected onto the input image and

associated with interpolated CNN features. These features are fused with graph features and passed

to the GCN.

Importantly, this perceptual pooling process is not static—it is repeated at the beginning of every

mesh deformation block using the current mesh geometry. This creates a dynamic feedback loop:

• In the first stage, vertex projections from the initial ellipsoid are poorly aligned with the object,

so pooled features are coarse and ambiguous.

• After the first deformation block updates vertex positions, the mesh becomes better aligned

with the image.

• When pooling is reapplied in the next stage, projections land on more semantically meaningful

image regions, yielding more informative features.

• This cycle continues, with improved mesh geometry enabling better feature alignment, which

in turn enables more precise deformations.

This iterative loop—deform� reproject� repool—is central to Pixel2Mesh’s effectiveness.

Rather than relying on static image features, the model continuously refines its 2D–3D correspon-

dence, allowing later stages to make sharper, semantically aware deformations based on increasingly

accurate visual cues. The tight coupling of image perception and geometric reasoning enables the

network to generate high-fidelity 3D surfaces even from a single image input.

23.6 Triangle Meshes for 3D Shape Modeling 1659

Loss Function for Mesh Prediction in Pixel2Mesh

To guide the deformation of a coarse mesh into a high-quality 3D reconstruction, Pixel2Mesh

employs a composite loss function that balances geometric accuracy, surface regularity, and structural

plausibility. The loss is applied not only to the final output but also at each intermediate stage in the

coarse-to-fine refinement pipeline.

Primary Objective: Chamfer Distance (Vertex-to-Vertex)

The central supervision signal is the symmetric Chamfer Distance between the predicted mesh

vertices Vpred and a set of ground-truth vertices Vgt, both sampled from respective meshes:

LChamfer = ∑
v∈Vpred

min
u∈Vgt

∥v−u∥2
2 + ∑

u∈Vgt

min
v∈Vpred

∥u− v∥2
2

This term ensures that each predicted vertex lies close to some part of the ground-truth surface,

and vice versa. While originally designed for unordered point sets, this metric is used here as a

surrogate for surface similarity. It is efficient and differentiable, but has limitations—it evaluates

only the positions of vertices and not the geometry of faces.

Laplacian Smoothness Loss

To enforce local geometric coherence and prevent unrealistic surface artifacts, Pixel2Mesh introduces

a Laplacian regularization term that encourages smooth vertex deformations. This loss penalizes

deviations in the Laplacian coordinates of each vertex before and after deformation. The Laplacian

coordinate of vertex i is defined as the offset between its position and the average of its immediate

neighbors:

δi = vi−
1

|N (i)| ∑
j∈N (i)

v j

After a deformation block updates the mesh to new vertex positions v′i, the updated Laplacian

coordinate is denoted δ ′i . The Laplacian loss penalizes the change in these coordinates:

LLap = ∑
i

∥∥δ ′i −δi

∥∥2

2

This loss serves a dual purpose depending on the stage of mesh refinement. In early stages, when

the mesh is still close to the initial ellipsoid, the Laplacian coordinates are small and uniform; the loss

encourages smooth, globally consistent deformations, helping prevent tangled or self-intersecting

geometry. In later stages, once the mesh has learned a plausible coarse shape, the Laplacian

coordinates reflect learned local structure. Penalizing changes to these coordinates helps preserve

previously learned surface details, ensuring that finer deformations do not overwrite or distort earlier

predictions.

Intuitively, this loss encourages vertices to move together with their neighbors, discouraging

isolated spikes, noisy fluctuations, or jagged artifacts—especially in high-curvature or thin regions.

As such, it acts as a learned shape stabilizer throughout the deformation pipeline.

1660 Chapter 23. Lecture 23: 3D vision

Edge Length Regularization

As the mesh undergoes progressive refinement through unpooling, Pixel2Mesh introduces additional

vertices and edges to increase spatial resolution. While this enables finer geometric detail, it

also introduces new degrees of freedom that can destabilize the mesh—especially during early

training or coarse-to-fine transitions. Without proper constraints, vertices may drift far from their

neighbors, forming “flying vertices” connected by abnormally long edges. To suppress such artifacts,

Pixel2Mesh applies an edge length regularization term, defined as:

Ledge = ∑
(i, j)∈E

∥vi−v j∥2
2,

where E is the set of all mesh edges at the current refinement stage. This loss penalizes the

absolute squared length of each edge, thereby encouraging spatial coherence among neighboring

vertices.

While this formulation is unnormalized in the original paper, its contribution to the overall loss

is controlled via a fixed hyperparameter λ , ensuring stability across deformation stages despite

increasing edge count. Importantly, this term does not compare edge lengths to their prior values or

enforce a canonical length. Instead, it acts as a dynamic local tether, discouraging over-extension

without constraining the mesh to a rigid template.

This regularizer is especially critical immediately after graph unpooling. Newly added ver-

tices—typically initialized at edge midpoints—are still trainable and unconstrained by prior geometry.

The edge length loss ensures that their deformations remain consistent with the surrounding structure,

preventing unstable stretching and promoting uniform vertex spacing.

Together with the Laplacian and normal consistency terms, this loss helps maintain the integrity

of the mesh during deformation, guiding the network toward smooth, coherent, and physically

plausible reconstructions.

Normal Consistency Loss

To enhance visual quality and ensure correct surface orientation, a normal loss penalizes misalignment

between predicted edges and ground-truth normals:

Lnormal = ∑
i

∑
j∈N (i)

〈
vi− v j, nq

〉2

Here, nq is the normal at the closest point q on the ground-truth mesh to vertex vi. This loss

encourages edges to lie tangent to the surface, improving shading behavior and geometric realism. It

captures higher-order consistency beyond just vertex positions.

Total Loss

The final loss combines all components with fixed scalar weights:

Ltotal = LChamfer +λ1Lnormal +λ2LLap +λ3Ledge

Pixel2Mesh uses λ1 = 1.6× 10−4, λ2 = 0.3, and λ3 = 0.1. These weights were selected em-

pirically to ensure that geometric fidelity is prioritized while still promoting mesh regularity and

perceptual realism.

23.6 Triangle Meshes for 3D Shape Modeling 1661

Limitations and Future Directions

While this loss formulation is effective, it has several shortcomings:

• Vertex-Only Supervision: The Chamfer loss evaluates only discrete vertex positions, not the

full surface defined by mesh faces.

• Sagging Faces: Large triangles may sag or bulge between correctly placed corner vertices

without incurring loss, as interior deviations are unobserved.

• Oversmoothing Risk: The combination of Laplacian and edge constraints may suppress

sharp features or fine details if not balanced carefully.

• Triangulation Bias: Matching based on vertex positions can penalize geometrically similar

surfaces with differing connectivity.

Later methods such as GEOMetrics address these issues by introducing surface-based sampling

and differentiable point sampling from triangle interiors, allowing more accurate and complete loss

computation over the full mesh surface.

Enrichment 23.6.1.1: Differentiable Surface Sampling in GEOMetrics

Surface-to-Surface Comparison with Differentiable Sampling

A central innovation in GEOMetrics is its replacement of vertex-based supervision with full surface-

level comparison. Pixel2Mesh constrains only mesh vertex positions using a Chamfer loss against a

fixed ground-truth point cloud, ignoring the geometry of the mesh faces that connect them. As a

result, large triangles can sag or bulge without penalty as long as their corner vertices remain close

to the sampled ground truth—leading to visible artifacts.

To resolve this, GEOMetrics computes a symmetric distance between dense point clouds sampled

from the entire surface of both meshes. The primary loss during early training is the Point-to-Point

Chamfer Distance:

LPtP = ∑
p∈Spred

min
q∈Sgt

∥p−q∥2
2 + ∑

q∈Sgt

min
p∈Spred

∥q− p∥2
2

Here, Spred and Sgt are point clouds sampled online from the predicted and ground-truth meshes,

respectively. This loss encourages every sampled point on one surface to be close to some point on

the other, and vice versa—ensuring both coverage and correspondence. The symmetric form (sum of

minimum distances in both directions) avoids degenerate solutions like mode collapse, where one

shape covers the other but not vice versa.

Because sampling is performed over triangle interiors rather than vertex sets, LPtP is invariant to

vertex count, mesh tessellation, or triangulation pattern—making it a true surface-level supervision

signal.

Point-to-Surface Loss and Fine-Tuning

While LPtP is efficient and effective early in training, it remains an approximation: it compares

discrete samples rather than true surfaces. During fine-tuning—the later stage of training when

coarse structure has converged—GEOMetrics switches to the more precise Point-to-Surface loss:

LPtS = ∑
p∈Spred

min
f∈Fgt

Dist(p, f)2 + ∑
q∈Sgt

min
f ′∈Fpred

Dist(q, f ′)2

This loss computes the squared distance from each sampled point to the nearest triangle face on the

opposing mesh, rather than to another sampled point.

1662 Chapter 23. Lecture 23: 3D vision

This leads to a more geometrically faithful signal, especially in regions where faces are large or

sparsely sampled—e.g., flat areas or sharp edges. By comparing to the continuous mesh surface (via

face planes), LPtS avoids underestimating distances due to poor sampling density, making it better

suited for high-precision surface alignment during final optimization.

Differentiable Surface Sampling via Reparameterization

To ensure end-to-end differentiability, GEOMetrics samples surface points from the predicted mesh

using a two-stage stochastic procedure:

• Area-weighted face selection: Each triangle is selected with probability proportional to its

area, ensuring uniform sampling over the surface.

• Barycentric sampling: For a triangle with vertices v1,v2,v3, a sample point r is drawn using:

r = (1−
√

u)v1 +
√

u(1−w)v2 +
√

uwv3, u,w∼U (0,1)

This formula produces points uniformly distributed over triangle interiors. Crucially, r is a smooth

function of the triangle vertices and the sampled random variables u,w. Through the reparameteri-

zation trick—where u,w are held fixed during backpropagation—gradients from the loss propagate

cleanly to the vertex positions. This makes it possible for the model to learn mesh geometry from

supervision applied directly to its surface.

In practice, thousands of points (typically 3k–10k) are sampled per mesh per iteration, enabling

fine-grained geometric feedback across the full predicted surface. This helps eliminate artifacts such

as sagging triangles or curvature mismatches that would go unnoticed under vertex-only supervision.

Figure 23.23: Differentiable surface-aware Chamfer loss in GEOMetrics. Thousands of points

are sampled online from predicted and ground-truth mesh surfaces using area-weighted triangle

selection and barycentric coordinates. The resulting loss provides uniform supervision across the

entire surface and allows gradients to flow through the reparameterized sampling process.

Complete Loss Formulation in GEOMetrics

Beyond surface alignment, GEOMetrics incorporates two additional regularizers for mesh quality:

• Edge Length Regularization Ledge: discourages stretched edges and flying vertices.

• Laplacian Regularization Llap: promotes local smoothness by minimizing differences

between a vertex and the average of its neighbors.

23.6 Triangle Meshes for 3D Shape Modeling 1663

The complete training objective is:

Ltotal = w1LPtS +w2Ledge +w3Llap +w4Llatent

where Llatent is a perceptual loss that encourages global structural consistency using an auxiliary

mesh-to-voxel autoencoder. Weights wi are fixed scalars tuned for empirical balance.

Adaptive Mesh Refinement via Face Splitting

Perhaps even more impactful than its loss function is GEOMetrics’ ability to adaptively modify

mesh topology. Unlike Pixel2Mesh, which deforms a mesh with fixed vertex count and connectivity,

GEOMetrics dynamically adds new vertices and faces during training. It identifies high-curvature or

high-error regions and splits faces accordingly—concentrating resolution where it is needed most.

This allows GEOMetrics to capture sharp details and fine contours without overloading flat regions

with unnecessary vertices, leading to more efficient and expressive meshes.

This synergy between:

• accurate surface-level supervision.

• adaptive geometric capacity.

is what enables GEOMetrics to surpass previous models like Pixel2Mesh++ in reconstruction fidelity.

Advantages Over Vertex-Based Supervision

Unlike Pixel2Mesh’s vertex-to-point Chamfer loss, GEOMetrics’ point-to-point surface loss:

• Supervises the entire surface, including triangle interiors.

• Handles varying mesh resolutions, as supervision is decoupled from vertex count.

• Respects valid geometric variation, allowing alternative triangulations of the same surface

to be treated equally.

• Provides dense feedback, improving training stability and reconstruction fidelity.

Combined with adaptive face splitting, this loss enables GEOMetrics to produce smoother, more

accurate, and topologically robust 3D shapes—closely matching the true surface geometry and not

just sparse surface samples.

Limitations of Pixel2Mesh and the Motivation for Successor Models

While Pixel2Mesh introduced a landmark approach to deforming 3D meshes from a single RGB

image using graph-based convolutions, several fundamental limitations restrict its generality and

reconstruction quality. These include limited supervision, fixed-topology constraints, and reliance

on single-view input. Each of these weaknesses directly motivated the development of successor

models such as Pixel2Mesh++ [689] and Mesh R-CNN [177].

Single-View Ambiguity and 2.5D Reconstruction

Pixel2Mesh is designed for single-view reconstruction. As a result, it struggles to infer geometry for

regions not visible in the input image—such as the back of a chair or the underside of a car—because

no direct pixel-level evidence is available. The model must hallucinate plausible completions from

learned priors, often leading to reconstructions that appear reasonable from the input view but

become implausible from novel viewpoints. This limitation manifests as a 2.5D facade, where only

the visible surfaces are accurate.

Pixel2Mesh++ [689] addresses this challenge by introducing a multi-view deformation network,

which jointly optimizes mesh refinements over multiple input images with known camera poses.

This enforces cross-view consistency, improves alignment across viewpoints, and reduces ambiguity

from occluded regions—ultimately producing shapes that are globally correct, not just front-facing.

1664 Chapter 23. Lecture 23: 3D vision

Topological Rigidity and the Genus-0 Constraint

Because Pixel2Mesh deforms a fixed ellipsoid mesh, it inherits a genus-0 topology by design.

The graph unpooling operations add vertices and increase resolution, but never alter the global

connectivity. As such, the model cannot represent structures with holes, handles, or disconnected

components (e.g., mugs, chairs, or lamps).

This motivated the development of Mesh R-CNN [177], which replaces template deformation

with a two-stage voxel-to-mesh pipeline. A coarse voxel occupancy grid is first predicted and then

converted into a mesh using a differentiable surface extraction method. This allows the resulting

mesh to assume arbitrary topology—including high-genus structures—removing the restrictive

genus-0 bottleneck entirely.

Surface-Level Supervision and Over-Smoothing Limitations

Pixel2Mesh originally supervised mesh deformation by applying the symmetric Chamfer Distance

between predicted vertex positions and a pre-sampled ground-truth point cloud. While effective

for guiding coarse shape, this vertex-only supervision ignores the faces connecting the vertices. As

a result, the model can produce meshes where the corners of triangles are well-aligned, yet the

interiors may sag or bulge—creating visibly inaccurate geometry that incurs no loss penalty.

This deficiency is exacerbated by the use of strong regularizers—such as Laplacian and edge

length losses—which encourage smooth deformations. Combined with the inherently diffusive

nature of graph convolutions, these constraints often lead to over-smoothed reconstructions that lack

sharp creases, high-frequency detail, or geometric precision in sparsely sampled regions.

Pixel2Mesh++ [689] directly addresses this issue by incorporating a resampled surface-level

Chamfer loss. Instead of comparing vertex coordinates, it samples dense point clouds from the

predicted mesh surface using area-weighted barycentric sampling and computes the Chamfer loss

against the ground-truth surface. This resampling improves gradient coverage over the full mesh and

provides more reliable supervision in regions with irregular tessellation or thin structures.

GEOMetrics [574] builds further on this idea by introducing fully differentiable sampling

operations and designing losses that explicitly evaluate surface-to-surface geometry. Its Point-to-

Point (PtP) loss compares dense sampled point clouds, while the more refined Point-to-Surface (PtS)

loss measures exact distances from predicted points to ground-truth triangle faces—yielding higher

fidelity and stronger surface alignment. These losses not only address sagging artifacts, but also

resolve ambiguities due to vertex layout or triangulation mismatches.

While both Pixel2Mesh++ and GEOMetrics move beyond vertex-based loss functions, the key

distinction lies in formulation. Pixel2Mesh++ retains the Chamfer framework but improves its

application via surface sampling; GEOMetrics reformulates the loss to reflect the mesh’s implicit

surface, enabling direct point-to-face supervision.

Domain Shift and Real-World Generalization

Trained primarily on synthetic datasets like ShapeNet, Pixel2Mesh suffers from a domain gap when

tested on real-world imagery. Lighting variation, clutter, occlusion, and camera calibration errors

can all destabilize the vertex-to-image feature alignment step. This leads to inconsistent updates and

poor reconstruction quality in natural scenes.

Mesh R-CNN [177] takes a different route: by grounding its pipeline in instance detection via

Mask R-CNN, it gains robustness to diverse, real-world input. Mesh generation is conditioned on

high-confidence 2D detections, improving generalization to cluttered, multi-object scenes.

23.6 Triangle Meshes for 3D Shape Modeling 1665

Summary and Takeaways

Pixel2Mesh introduced a foundational framework for 3D mesh reconstruction from single RGB

images, combining graph-based deformation, vertex–image alignment, and progressive refinement.

However, key limitations—including its reliance on single-view input, fixed genus-0 template topol-

ogy, and vertex-only supervision—highlighted the need for more flexible and accurate approaches.

The first evolution in this direction was Pixel2Mesh++ [689], which enriched the original

framework without discarding its template-based foundations. By incorporating multi-view image

input and surface-aware losses via differentiable mesh sampling, it improved geometric fidelity

and alleviated ambiguity from occlusion and limited field-of-view—yet still operated under a fixed-

topology deformation regime.

More structurally transformative approaches soon followed:

• GEOMetrics [574] enhanced surface-level supervision through dense differentiable sampling

and adaptive face splitting. This resolved vertex sparsity and sagging-face artifacts while

enabling targeted geometric refinement—but remained limited to low-genus templates.

• Mesh R-CNN [177] broke free from the fixed-topology constraint altogether. By predicting

voxel-based occupancy maps followed by mesh extraction and refinement, it enabled the

generation of arbitrary topology—including holes, handles, and disconnected parts—marking

a major departure from template-based reconstruction.

Together, these successor models reflect a progression: from enriching Pixel2Mesh with multi-

view cues and improved losses, to redefining the reconstruction pipeline entirely. As we now

transition to Mesh R-CNN, we will see how voxel-driven, detection-aware pipelines offer a powerful

alternative for general-purpose, topology-flexible 3D mesh reconstruction.

1666 Chapter 23. Lecture 23: 3D vision

23.6.2 Mesh R-CNN: Topology-Aware Mesh Reconstruction from Real-World Images

Motivation and Key Ideas

Traditional mesh reconstruction pipelines, such as Pixel2Mesh (Section 23.6.1), deform a fixed-

topology template mesh (typically genus-0), which fundamentally limits their capacity to represent

real-world objects with topological complexity—such as holes, multiple parts, or disconnected

components.

Mesh R-CNN [177] introduces a hybrid reconstruction paradigm that overcomes this limitation

by integrating two complementary representations:

• A voxel-based prediction branch first estimates a coarse 3D shape from the input image.

Since voxel grids are regular and topology-agnostic, this stage can represent arbitrary structures,

including objects with holes or non-manifold parts.

• A mesh refinement branch then converts the voxel output into a triangular mesh and applies

graph-based neural operations to improve surface fidelity and geometric detail.

While voxel grids offer topological flexibility, they suffer from low resolution and quantization

artifacts due to memory constraints. Mesh R-CNN resolves this by converting the voxel output into

a surface mesh using the cubify operation, and then refining the mesh using a graph convolutional

network (GCN). This two-stage process combines the strengths of volumetric and surface-based

approaches: arbitrary topology from voxels, and high-resolution detail from meshes.

The entire system is trained end-to-end using paired RGB images and watertight 3D meshes,

enabling amodal 3D shape prediction even in the presence of occlusion.

Figure 23.24: Mesh R-CNN augments Mask R-CNN [209] to move from 2D instance segmentation

to 3D shape prediction. The pipeline proceeds from 2D object detection to voxel prediction and

finally to mesh refinement.

23.6 Triangle Meshes for 3D Shape Modeling 1667

Mask R-CNN as Backbone for 2D Instance Segmentation

Mesh R-CNN builds on the Mask R-CNN architecture introduced in Section 15.5.1, which performs

2D object detection and instance segmentation by augmenting Faster R-CNN with a pixel-level

segmentation head. Given an input image, Mask R-CNN produces:

• Bounding box proposals for object instances.

• RoI-aligned feature maps for each proposal.

• Binary segmentation masks and class labels for each instance.

Mesh R-CNN inherits these components and reuses RoI-aligned features to bootstrap 3D shape

prediction in the following stages.

The Mesh Prediction Head: A Hybrid Voxel-to-Mesh Strategy

With Mask R-CNN as its 2D perception backbone (Section 15.5.1), Mesh R-CNN augments this

architecture with a dedicated 3D shape prediction branch, called the mesh head. This component

reconstructs a full 3D mesh for each detected object instance and is designed to balance topological

flexibility with geometric precision.

The key architectural insight is to decompose the reconstruction task into two complementary

and end-to-end trainable stages:

1. Voxel Prediction: For each object detected by Mask R-CNN, a coarse 3D occupancy grid

is predicted from RoI-aligned image features. This voxel grid serves as a topology-agnostic

representation that can naturally encode complex structures—including holes, thin parts, and

disconnected components—without being constrained by mesh connectivity or genus. Because

voxel occupancy is defined per grid cell, this stage supports per-instance reconstructions with

arbitrary and varying topology.

2. Mesh Refinement: The predicted voxel grid is converted into a watertight triangle mesh using

a dedicated cubify operation, which replaces each occupied voxel with a triangulated cuboid,

merges shared vertices and edges, and removes interior faces. This produces an initial mesh

whose topology directly mirrors the voxelized shape. To improve geometric fidelity, the mesh

is then refined by a sequence of graph convolutional layers that deform vertex positions while

preserving the established connectivity.

This voxel-to-mesh pipeline addresses a major limitation of prior methods like Pixel2Mesh,

which were constrained to deforming a single genus-0 template mesh and thus unable to represent

objects with complex topologies. By deferring mesh construction until after a coarse shape has been

predicted, Mesh R-CNN avoids prematurely committing to a fixed topology and instead enables the

reconstruction of multiple, topologically diverse meshes—one per detected instance—even from a

single input image.

Crucially, the voxel and mesh branches are trained jointly within a fully differentiable framework.

The voxel grid is supervised via a binary occupancy loss, while the mesh is optimized using

surface-level objectives such as Chamfer distance, normal consistency, and edge regularization (all

seen previously with Pixel2Mesh). This tight integration enables the system to learn both what to

reconstruct (via voxels) and how to reconstruct it accurately (via mesh refinement), resulting in

high-quality 3D predictions that generalize across diverse object categories and scene configurations.

1668 Chapter 23. Lecture 23: 3D vision

Figure 23.25: System overview of Mesh R-CNN. The architecture extends Mask R-CNN by adding

a 3D shape prediction head. For each detected object, the voxel branch first predicts a coarse

3D occupancy grid aligned with the camera frustum. This voxel scaffold is then converted into

a watertight mesh via the cubify operation and refined through a cascade of graph-based mesh

deformation stages (similarly to 23.6.1). Each refinement step incorporates both 3D geometry and

2D image features. Figure reproduced from Gkioxari et al. [177].

The Voxel Branch for Topological Flexibility

The first stage of the mesh head in Mesh R-CNN is the voxel prediction branch, which estimates

a coarse 3D shape for each detected object as a voxel occupancy grid. Voxel representations are

topology-agnostic by construction: they impose no constraints on surface connectivity and can

naturally represent complex geometric structures—including holes, disconnected components, and

non-manifold parts—without requiring a mesh template. This stands in contrast to methods like

Pixel2Mesh (Section 23.6.1), which deform a fixed-topology genus-0 sphere and thus cannot model

diverse shape topologies.

In Mesh R-CNN, the voxel branch uses RoI-aligned features from the Mask R-CNN backbone to

predict occupancy probabilities over a grid of shape G×G×G, where G = 24 or 48 depending on

the dataset. Specifically, G = 48 is used for synthetic datasets like ShapeNet, while G = 24 is used

for real-image datasets like Pix3D to manage memory constraints. Each voxel (i, j,k) receives a

scalar logit, which is transformed via a sigmoid activation into an occupancy probability p
pred
i jk ∈ [0,1].

This probabilistic grid forms a coarse but flexible volumetric scaffold that directly determines the

topology of the output mesh in the next stage.

Perspective-Aware Voxel Grid via Camera Frustum Alignment

To ensure metric grounding and spatial consistency, Mesh R-CNN defines its voxel grid within a

camera-aligned 3D frustum. This volume is constructed using the predicted 2D bounding box

and known camera intrinsics K, anchoring the 3D grid in true physical coordinates rather than in an

arbitrary canonical frame. The process consists of two phases: constructing the 3D voxel volume,

and populating it with 2D-aligned features.

23.6 Triangle Meshes for 3D Shape Modeling 1669

Phase 1: Constructing the Frustum-Aligned Voxel Grid

Step 1: Defining the Frustum Volume. Given a Region of Interest (RoI) bounding box

B = (umin, vmin, umax, vmax),

and a known camera intrinsics matrix K, Mesh R-CNN constructs a perspective frustum in 3D

by back-projecting the four image-plane corners of B using K−1. Each back-projected ray

originates at the camera center and passes through a bounding box corner, defining the edges of

the viewing frustum.

To bound the depth extent of the object, these rays are truncated between near and far depth

planes, znear and zfar, which define the front and back clipping planes of the frustum. These

values are not fixed in the paper but are dataset-dependent; for example, values like 0.5m to

2.5m may be used for indoor objects, while normalized scales are often applied for datasets like

ShapeNet. The key point is that the frustum adapts to the RoI and camera parameters, ensuring

that the predicted voxel grid aligns with the object’s visible volume in camera coordinates.

Figure 23.26: Frustum-aligned prediction space in Mesh R-CNN. Rather than predicting occu-

pancy in a uniform world-aligned cube, Mesh R-CNN defines voxel predictions in a space aligned

with the image plane. This is achieved by applying the camera intrinsics matrix K during voxel

warping; applying K−1 transforms the voxel coordinates back into 3D world space. The result

is a truncated frustum bounded by near and far depth planes (znear,zfar), centered on the detected

object. This frustum-aware grid mirrors the actual viewing volume of the camera, ensuring that voxel

resolution is higher for nearby regions and coarser at greater depths—naturally encoding perspective

and spatial priors. For background on camera intrinsics and perspective projection, see [568]. Figure

adapted from Gkioxari et al. [177].

Step 2: Canonical Grid Initialization. A logical voxel grid G ∈ [−1,1]3 is instantiated with shape

G×G×G. This canonical cube serves as a resolution-independent coordinate frame for voxel

predictions. Each voxel index (i, j,k) is mapped to a normalized position (x,y,z) ∈ [−1,1]3,

where:

• x =−1 denotes the leftmost extent and x = 1 the rightmost.

• y =−1 denotes the bottom and y = 1 the top.

• z = −1 corresponds to the front of the volume (near plane), and z = 1 to the back (far

plane).

1670 Chapter 23. Lecture 23: 3D vision

Step 3: Perspective-Aware Warping. To map G into the physical frustum, each normalized coordinate

(x,y,z) is transformed into a 3D point (X ,Y,Z) using a homography induced by the camera

intrinsics and frustum geometry. This transformation ensures:

• Voxels near the camera are tightly packed and represent small metric volumes.

• Voxels deeper in the frustum span larger volumes, mimicking perspective scaling.

This warping is applied before voxel prediction begins, allowing the 3D CNN to operate over a

regular grid while producing perspective-consistent outputs.

Phase 2: Lifting 2D Features into 3D

Intuition. Rather than explicitly constructing a 3D feature volume, Mesh R-CNN leverages a fully-

convolutional 2D network to infer 3D shape by predicting vertical voxel columns directly from

RoI-aligned image features.

Step 4: RoI Feature Extraction. The Mask R-CNN backbone provides RoI-aligned feature maps

F ∈ R
C×G×G for each object proposal, where G denotes the spatial resolution of the voxel grid

along the horizontal and vertical image axes.

Step 5: 2D Fully-Convolutional Prediction. A small 2D fully-convolutional network—analogous in

structure to the Mask R-CNN mask head—is applied to F to produce an output tensor of shape

G×G×G. Here, each pixel location in the G×G grid corresponds to a column of G occupancy

logits along the depth axis of the voxel grid.

Step 6: Voxel Probability Estimation. A sigmoid activation is applied to the output logits to obtain

voxel-wise probabilities:

p
pred
i jk = σ(ℓi jk) for all (i, j,k) ∈ [0,G)3,

where ℓi jk is the logit corresponding to voxel (i, j,k). The result is a perspective-aware, topology-

flexible volumetric prediction aligned with the camera frustum.

Phase 3: Voxel Supervision and Mesh Conversion

Intuition. Starting from a voxel-aligned feature volume, we now convert the predicted occupancy

grid into a coarse surface mesh. The cubify step transforms this discrete structure into a watertight

mesh suitable for graph-based refinement.

Step 7: Voxel-Wise Binary Cross-Entropy. The voxel prediction head outputs a probability grid

ppred ∈ [0,1]G×G×G representing the likelihood of occupancy at each voxel location.

This is trained against a binary ground-truth volume pgt ∈ {0,1}G×G×G using voxel-wise binary

cross-entropy:

Lvoxel =
1

G3 ∑
i, j,k

BCE(p
pred
i jk , p

gt
i jk).

This encourages the network to produce a volumetric shape estimate that captures object

structure and supports topological variation.

23.6 Triangle Meshes for 3D Shape Modeling 1671

Step 8: Thresholding the Occupancy Grid. At inference time, the predicted voxel probabilities are

binarized using a fixed threshold τ = 0.2, as used in the original Mesh R-CNN experiments on

ShapeNet and Pix3D:

Vi jk = ⊮[p
pred
i jk > τ].

This produces a binary voxel occupancy grid V ∈ {0,1}G×G×G that defines the object’s coarse

3D shape. Note: The threshold τ can be adjusted per dataset to balance recall and precision,

though 0.2 was found to work well empirically in the original evaluations [177].

Step 9: Cubify: Voxel Grid to Watertight Mesh. The cubify operator [177] transforms the binary

voxel volume V into a triangle mesh M = (V ,F) using the following procedure:

Step 9:a. Cube Placement. For each occupied voxel Vi jk = 1, a unit cube is placed at grid location

(i, j,k), consisting of 8 vertices and 12 triangle faces.

Step 9:b. Face Culling. If a neighboring voxel in any of the six axial directions is also occupied,

the shared face between cubes is removed. This avoids redundant geometry and ensures

watertightness.

Step 9:c. Vertex Merging. Once all cube faces are placed and pruned, duplicate vertices and edges are

merged, yielding a coherent mesh with consistent connectivity and arbitrary topology.

Vectorized Cubify for Efficient Execution. A naive implementation of cubify would loop

over all G3 voxel cells, checking and processing each one. To make this practical for end-to-end

training, Mesh R-CNN implements a fully vectorized version:

• The binary occupancy grid is convolved with small 3D kernels that detect voxel boundaries

and interior faces.

• Face presence masks are computed in parallel across the grid.

• A custom CUDA kernel emits all vertices and triangles in a batched, GPU-accelerated

fashion.

This reduces cubification time from over 300 ms to roughly 30 ms per batch (N = 32, G = 32),

making it feasible to include mesh conversion directly within the training loop.

Summary and Advantages

The perspective-aware voxel branch enables Mesh R-CNN to predict topologically diverse 3D shapes

directly from image features while preserving metric accuracy and view consistency. By warping

a canonical voxel grid into the camera frustum and anchoring each voxel to a pixel-aligned image

location, this design provides:

• Topological flexibility: Arbitrary shapes with holes, disconnected parts, etc.

• Metric grounding: Voxel predictions are made in camera space, aligned with the object’s

true scale and depth.

• Learning efficiency: The network operates over a regular cube, while projection and warping

handle geometry and alignment.

This voxel branch forms the foundation for Mesh R-CNN’s full 3D mesh reconstruction pipeline.

1672 Chapter 23. Lecture 23: 3D vision

Mesh Refinement Branch: Image-Guided Graph Deformation

The voxel branch provides a coarse, topology-flexible mesh extracted via cubify, but the resulting

geometry is blocky and lacks high-fidelity surface detail. The mesh refinement branch addresses

this by iteratively displacing the vertices of the cubified mesh using image-guided graph convolutions,

producing a final shape aligned with both 2D appearance and 3D structure.

Fixed-Topology Refinement Pipeline

Let M (0) = (V ,E ,F) denote the triangle mesh output by cubification. This mesh has fixed topol-

ogy and vertex count determined entirely by the voxel resolution (e.g., 243). Unlike Pixel2Mesh

(Section 23.6.1), Mesh R-CNN performs no graph unpooling or vertex subdivision. Instead, the re-

finement branch updates vertex positions across three deformation stages s = 1,2,3, each comprising

several stages.

(a) VertAlign [177]: Each vertex v
(s−1)
i ∈ R

3 is projected onto the image plane via the camera

intrinsics K. A RoI-aligned CNN feature map is bilinearly sampled at this projected location,

yielding an image feature vector. This feature is concatenated with the vertex’s current latent

feature vector f
(s−1)
i , enriching it with 2D appearance context.

(b) Graph Convolutional Layers: Several residual GCN layers propagate and transform vertex

features based on the mesh’s fixed edge structure E . These operations aggregate information

from neighboring vertices while preserving geometric and topological coherence.

(c) Vertex Displacement Prediction: A linear MLP head predicts a 3D displacement ∆v
(s)
i ∈R

3 for

each vertex. The updated position is computed via residual addition:

v
(s)
i = v

(s−1)
i + tanh(∆v

(s)
i),

where the tanh activation stabilizes training by bounding displacement magnitude.

This pipeline produces progressively refined meshes M (1),M (2),M (3), each with the same

vertex connectivity as M (0), but improved geometric fidelity.

Loss Functions

Voxel Supervision Loss. The voxel branch predicts a coarse 3D occupancy grid ppred ∈ [0,1]G×G×G,

supervised by binary cross-entropy against a ground-truth volume pgt ∈ {0,1}G×G×G:

Lvoxel = λvoxel ·
1

G3 ∑
i, j,k

BCE
(

p
pred
i jk , p

gt
i jk

)
, λvoxel =

{
1 ShapeNet

3 Pix3D

This term encourages the model to predict a coarse but topologically valid structure that serves

as the scaffold for mesh generation.

Mesh Refinement Loss. At each refinement stage s = 1,2,3, the model samples 5,000 points from

the predicted mesh P(s) and the ground-truth mesh Q and evaluates three differentiable geometric

losses:

• Chamfer Distance:

L
(s)

cham =
1

|P(s)| ∑
p∈P(s)

min
q∈Q
∥p−q∥2

2 +
1

|Q| ∑
q∈Q

min
p∈P(s)

∥q− p∥2
2.

23.6 Triangle Meshes for 3D Shape Modeling 1673

• Normal Consistency:

L
(s)

norm =
1

|F | ∑
f∈F

(
1−

n f ·ngt
f

∥n f ∥ · ∥ngt
f ∥

)
.

• Edge Length Regularization:

L
(s)

edge =
1

|E| ∑
(i, j)∈E

∥vi−v j∥2
2.

This term plays a crucial role in maintaining mesh integrity by discouraging very short edges

that can lead to self-intersections and degenerate faces. While its formulation mathematically

penalizes longer edges more heavily due to its squared length structure, its functional effect during

training—especially in conjunction with shape- and normal-alignment terms—is to prevent vertex

collapse. Extremely short edges often arise when adjacent vertices are pulled too close together,

causing local triangle degeneracy and overlapping surfaces. By imposing a soft constraint on edge

length, this loss nudges the mesh toward a more regular, uniformly tessellated structure, helping

eliminate artifacts like face folding, wrinkling, and self-intersections.

Empirical ablations in the paper confirm that removing this term leads to "degenerate predicted

meshes with many overlapping faces" [177], while including it significantly improves mesh quality

by preserving geometric plausibility.

Each stage’s refinement loss is:

L
(s) = λchamL

(s)
cham +λnormL

(s)
norm +λedgeL

(s)
edge, Lmesh =

1

3

3

∑
s=1

L
(s).

Training Variants. To balance quantitative accuracy and visual quality, Mesh R-CNN defines the

following loss weight settings:

Variant λcham λnorm λedge

Best (ShapeNet, Pix3D) 1.0 0 0

Pretty (ShapeNet) 1.0 0 0.2
Pretty (Pix3D) 1.0 0.1 1.0

The “Best” variant optimizes Chamfer distance exclusively for quantitative benchmarks. The

“Pretty” variant adds smoothness terms: on ShapeNet, a moderate edge weight promotes mesh

regularity; on Pix3D, both edge and normal terms are boosted to improve robustness on real images.

Summary. The voxel loss captures coarse topological structure, while the mesh losses refine

geometry by aligning surfaces (Chamfer), smoothing normals, and avoiding degenerate edges. This

multi-stage supervision enables Mesh R-CNN to produce meshes that are both structurally sound

and visually plausible from single RGB images.

Summary

Mesh R-CNN’s refinement branch combines fixed-topology triangle meshes from voxel predictions

with per-vertex 2D image features to produce detailed, amodal 3D shapes. Unlike Pixel2Mesh,

which deforms and subdivides a template mesh, Mesh R-CNN freezes mesh connectivity after

voxelization and performs all refinement through graph-based vertex displacements. This avoids

topological restrictions, maintains geometric consistency, and enables scalable, instance-specific

mesh generation in real-world scenes.

1674 Chapter 23. Lecture 23: 3D vision

Experiments and Ablations

Mesh R-CNN undergoes comprehensive empirical evaluation on both synthetic and real-world

data, focusing on its ability to predict accurate and topologically diverse 3D meshes from single

images. The experiments evaluate detection, reconstruction, robustness to occlusion, and the effects

of various architectural choices.

Datasets

Two benchmark datasets are used:

• ShapeNet [76]: Used for validating the mesh prediction module. It contains clean renderings

of CAD objects with known camera parameters.

• Pix3D [593]: A real-world dataset pairing 2D images with aligned 3D shapes, including

cluttered scenes and occlusions. Mesh R-CNN is the first system to tackle joint detection and

shape inference on this dataset.

Evaluation Metrics

The system is evaluated using:

• Chamfer Distance (CD): Measures point-wise distance between predicted and ground-truth

surfaces.

• Normal Consistency (NC): Penalizes misaligned surface normals.

• F1τ Score: Harmonic mean of precision and recall over distance threshold τ .

• APmesh: For Pix3D, combines 2D detection and 3D reconstruction quality. A prediction is

correct if its class is correct, it is not a duplicate, and its F10.3 score exceeds 0.5.

• APbox, APmask: Standard COCO-style detection and segmentation metrics, also reported on

Pix3D.

Key Results on ShapeNet

Mesh R-CNN significantly outperforms prior work including Pixel2Mesh+, 3D-R2N2, and PSG. Its

“Best” variant achieves a Chamfer distance of 0.306 and F1τ of 74.84 on the standard test set. On

the “Holes Test Set”—a curated subset of 534 objects with visible holes—Mesh R-CNN far exceeds

template-based methods like Pixel2Mesh+, which are limited by their fixed-topology assumptions.

Figure 23.27: Qualitative ShapeNet comparisons. While Pixel2Mesh+ fails to represent holes due

to spherical initialization, Mesh R-CNN produces topologically faithful reconstructions for chairs,

tables, and other perforated objects (Adapted from ICCV 2019 talk).

23.6 Triangle Meshes for 3D Shape Modeling 1675

Key Results on Pix3D

On real-world scenes, Mesh R-CNN outperforms all baselines (Voxel-Only, Sphere-Init, Pixel2Mesh+)

in APmesh across nearly all object categories. Performance gains are especially notable for topologi-

cally complex classes like bookcases (+21.6%), tables (+16.7%), and chairs (+7.3%).

Figure 23.28: Qualitative Pix3D reconstructions. Mesh R-CNN successfully captures complex scene

structures including desks, tables, and bookshelves.

Amodal Completion

Mesh R-CNN is capable of completing occluded object geometry. As shown in the following figure,

it reconstructs sofas occluded by dogs and chairs, enabled by volumetric reasoning and perceptual

feature alignment.

Figure 23.29: Amodal shape completion: Mesh R-CNN reconstructs full geometry despite occlusion

(e.g., sofa behind dog and chair).

1676 Chapter 23. Lecture 23: 3D vision

Failure Modes

Errors in the 2D segmentation stage can propagate to 3D mesh prediction. The following figure

shows a bookshelf with missing compartments due to segmentation holes in the input mask.

Figure 23.30: Failure case: segmentation noise in 2D leads to missing geometry in the 3D mesh.

Ablation Studies

The performance of Mesh R-CNN is validated through ablation studies that isolate the impact of each

architectural and supervisory component. These experiments, conducted on ShapeNet and Pix3D,

quantitatively and qualitatively demonstrate why voxel-based initialization, iterative refinement, and

geometric regularization are all essential for high-fidelity mesh prediction.

• Voxel-Only: In this setting, the mesh refinement branch is removed and the final mesh

is directly obtained via cubify on the voxel occupancy grid. While this preserves coarse

topology, the resulting meshes are blocky and lack fine detail. On ShapeNet, the voxel-only

model yields a Chamfer distance of 0.916 and an F1@0.3 score of 33.1%, significantly worse

than the full model’s 0.133 Chamfer and 86.6% F1@0.3 [177, Table 2]. Similarly, on Pix3D,

voxel-only achieves an APmesh of only 5.3% vs. 51.1% for the full system (Stage 1, COCO

pretraining). These results confirm that the voxel branch alone is insufficient for detailed

surface recovery; mesh refinement is indispensable.

• Pixel2Mesh+ and Sphere-Init: These baselines deform a fixed-topology template mesh

(typically a genus-0 sphere) using GCN layers. While adequate for simple shapes, they

cannot represent objects with holes or disconnected parts. On ShapeNet’s “Holes Test Set,”

Pixel2Mesh+ achieves a Chamfer distance of 0.137 and F1@0.3 of 85.5%, underperforming

Mesh R-CNN’s 0.130 and 86.7% respectively [177, Table 2]. The performance gap is espe-

cially pronounced on Pix3D, where Mesh R-CNN achieves an APmesh of 48.2% on chairs and

70.2% on bookcases in Stage 1, compared to 26.7% and 34.1% respectively for Pixel2Mesh+,

yielding substantial improvements of +21.5% and +36.1%. These results underscore the

limitations of fixed-topology deformation approaches and demonstrate the superiority of

Mesh R-CNN’s voxel-initialized pipeline, which enables prediction of meshes with arbitrary

topology, better aligned to the structural diversity present in real-world images.

23.6 Triangle Meshes for 3D Shape Modeling 1677

• Refinement Stages: Mesh R-CNN performs mesh refinement in three sequential stages,

each consisting of vertex-image alignment, graph convolution, and vertex updates. This

coarse-to-fine process allows the model to progressively capture global structure and fine

surface detail. While the ShapeNet Chamfer distance for the full model with three stages is

0.133 [177, Table 2], the paper does not report direct Chamfer values for single- or two-stage

variants on ShapeNet. However, a related ablation on Pix3D reveals that reducing from three

to one refinement step degrades APmesh from 51.1% to 48.6% [177, Table 4]. This validates

the benefit of iterative refinement. Although Mesh R-CNN does not visualize per-stage

refinement qualitatively, earlier works like Pixel2Mesh show clear improvements in surface

smoothness and structure across multiple GCN blocks [665, Figure 6], supporting the intuition

that repeated refinement is essential for accurate and detailed reconstructions.

• Loss Term Importance: The edge length regularization loss Ledge plays a crucial role in

ensuring mesh plausibility and geometric stability. While minimizing Chamfer distance

alone may improve quantitative alignment, it can produce structurally degenerate results.

Mesh R-CNN explicitly demonstrates this tradeoff: removing edge regularization (i.e., setting

λedge = 0) yields a lower Chamfer distance of 0.133 for the “Best” model on ShapeNet,

whereas including it with λedge = 0.2 in the “Pretty” model increases Chamfer distance to

0.171 [177, Table 2]. However, this quantitative gain comes at the cost of mesh quality.

As visually shown in Figure 5, the absence of edge regularization leads to self-intersecting,

overlapping faces and triangle clumping [177, Figure 5]. On Pix3D, the “Pretty” model uses a

stronger regularization weight λedge = 1.0, which helps preserve surface coherence and avoid

mesh collapse in cluttered scenes. These results, along with similar findings in prior work such

as Wang et al. [665, Figure 5], confirm that while edge regularization may reduce agreement

with point-based metrics, it is essential for producing visually plausible and topologically

stable meshes.

Conclusion

These experiments demonstrate that Mesh R-CNN overcomes the limitations of fixed-topology

methods by enabling variable-topology meshes, robust 3D inference from cluttered scenes, and

end-to-end optimization of 2D and 3D objectives.

1678 Chapter 23. Lecture 23: 3D vision

23.7 Implicit Surface Representations

From Discrete to Continuous Geometry

Traditional 3D shape representations—such as voxel grids, point clouds, or triangle meshes—explicitly

enumerate spatial elements. In contrast, implicit surface representations define a shape as the level

set of a continuous function f : R3→ 0,1. Given any spatial coordinate x ∈ R
3, the function f (x)

determines whether the point lies inside, outside, or on the object’s surface. The surface is then

implicitly defined as the set {x | f (x) = τ}, where τ is a fixed threshold—typically τ = 0 for signed

distance fields or τ = 0.5 for occupancy fields.

Occupancy Fields vs. Signed Distance Functions

Two widely used formulations of f are:

• Occupancy Function: Models the probability that a point is inside the object. The function

f (x) ∈ [0,1] outputs a probability, and the surface is implicitly defined by the decision

boundary {x | f (x) = 0.5}.
• Signed Distance Function (SDF): Outputs the signed Euclidean distance from point x to the

nearest surface. The sign indicates whether the point is inside (negative) or outside (positive),

and the surface is given by the zero-level set {x | f (x) = 0}.

Figure 23.31: Left: explicit triangle mesh. Right: corresponding implicit field where the decision

boundary f (x) = 0.5 defines the surface.

Neural Implicit Models

Modern methods represent the function f using a small multi-layer perceptron (MLP), which maps

3D coordinates x ∈ R
3 to scalar values indicating occupancy or distance. This neural network can

be evaluated at arbitrary resolutions and enables high-fidelity shape representation with a compact

memory footprint. Notable examples include Occupancy Networks [425] and DeepSDF [467], both

of which learn shape fields by regressing values pointwise.

23.7 Implicit Surface Representations 1679

Why Surface Extraction Is Required

Although neural implicit models are continuous and memory-efficient, they do not produce an

explicit mesh directly. Most downstream tasks—such as rendering, simulation, or surface loss

computation—require a triangulated mesh as output. This motivates dedicated extraction procedures

that convert the learned function f into an explicit surface. The next subsection introduces one

such method: Multi-Scale Iso-surface Extraction (MISE), which constructs a mesh by progressively

refining a voxel grid where the level set f (x) = τ intersects.

23.7.1 Multi-Scale IsoSurface Extraction (MISE)

Occupancy Networks represent 3D geometry not as explicit meshes or voxels, but as the decision

boundary of a learned implicit function fθ (p,x). Here, p ∈ R
3 is a spatial query point, and x is a

conditioning input (e.g., an image or latent vector). The function predicts whether p lies inside the

object depicted by x, typically using a threshold τ = 0.5 to define the surface. To extract an explicit

mesh from this continuous field, Occupancy Networks use the Multiresolution IsoSurface Extraction

(MISE) algorithm [425], which adaptively refines a voxel grid around the surface and outputs a

high-resolution mesh.

Step 1 Coarse Grid Initialization: To locate the surface approximately, MISE first defines a coarse

3D voxel grid (e.g., 323) that spans the object’s bounding box. The occupancy network fθ (p,x)
is evaluated at each corner of the grid. Voxels whose corners straddle the threshold τ—i.e.,

some values are above and some below—are marked active, since the surface likely intersects

them. This step efficiently identifies the region of interest without exhaustively evaluating the

entire volume.

Step 2 Octree Subdivision: Instead of densely refining the whole grid, MISE recursively subdivides

only the active voxels into eight subvoxels (octree refinement). New corner points introduced

by the subdivision are evaluated by fθ , and voxels are again checked for surface crossings.

This process is repeated for N levels. The result is a spatial hierarchy that is fine near the

implicit surface and coarse elsewhere, reducing computation and memory without sacrificing

detail.

Step 3 Marching Cubes Extraction: Once the highest refinement level is reached, the Marching

Cubes algorithm [391] is applied to the final voxel grid. Each voxel’s eight occupancy values

define a binary pattern (inside vs. outside), used to index a precomputed triangulation lookup

table. Triangles are placed within the voxel by interpolating along edges where occupancy

transitions across τ . Assembled over the full grid, this produces a watertight, manifold mesh

approximating the surface.

Step 4 Mesh Refinement via Gradient Descent: The initial mesh may lie slightly off the true surface

due to grid discretization. To correct this, each vertex v ∈ V is optimized using gradient

descent to minimize the loss

Lalign = ∑
v∈V

(fθ (v,x)− τ)2 .

The gradient ∇v fθ (v,x) guides each vertex toward the level set fθ = τ , effectively “snapping”

the mesh onto the continuous surface. This removes stair-step artifacts and enhances surface

fidelity.

1680 Chapter 23. Lecture 23: 3D vision

Each step in MISE builds upon the last: the coarse grid identifies candidate surface regions; octree

subdivision focuses resolution near the surface; Marching Cubes generates an explicit triangle mesh;

and gradient refinement polishes the mesh using the implicit signal. The result is a high-resolution,

watertight mesh faithful to the learned 3D shape.

Figure 23.32: Multi-resolution surface extraction in Occupancy Networks [425]. The function is

queried across a hierarchical voxel grid, refined at boundaries, and meshed via Marching Cubes.

23.7.2 Implicit Surface Advantages & Limitations

Advantages

Implicit surface representations offer several key benefits:

• Resolution Independence: Surfaces can be reconstructed at arbitrary resolution with no cubic

memory growth.

• Topological Flexibility: No constraints on the number of components, holes, or genus of the

reconstructed surface.

• Differentiability: Enables accurate normals, gradient-based surface optimization, and differ-

entiable rendering.

Limitations

Despite their flexibility, implicit methods have drawbacks:

• Post-Processing Required: Explicit mesh output demands surface extraction, often involving

non-differentiable Marching Cubes or costly optimization.

• Slow Evaluation: Each point query requires a forward pass through the network; querying

millions of points is expensive.

• Supervision Demands: High-quality training requires accurate surface-level supervision,

often obtained from watertight CAD models.

Relation to Octrees and Voxel Refinement

As in Octree Generating Networks (OGNs), implicit representations benefit from adaptive sub-

division. Unlike OGNs, however, implicit models do not need to explicitly store voxel con-

tents—pointwise evaluation suffices. This makes them ideal for continuous or parametric 3D

learning pipelines.

23.8 General 3D Topics 1681

23.8 General 3D Topics

This section outlines three foundational aspects relevant across most 3D reconstruction pipelines:

metrics for shape comparison, the choice of coordinate systems, and the major datasets used for

training and evaluation. Understanding these design decisions is critical for interpreting model

performance and selecting the right tools for the task at hand.

23.8.1 Shape Comparison Metrics

Voxel IoU: Intuitive but Limited

In 2D image tasks, metrics like Intersection-over-Union (IoU) for bounding boxes and segmentation

masks are widely used. A natural idea is to extend IoU to 3D by voxelizing the shape and comparing

binary occupancy grids. However, this introduces several issues, as discussed by Tatarchenko et al.

[611]:

• Loss of fine structures: Thin parts (e.g., table legs or airplane wings) may disappear when

voxelized at coarse resolutions.

• Representation mismatch: Point clouds and meshes must be rasterized to voxels, introducing

approximation error.

• Metric collapse: At low overlap, IoU scores saturate near zero and fail to distinguish plausible

from implausible reconstructions.

Figure 23.33: Limitations of 3D IoU: (Left) Summary of common pitfalls. (Right) Visualization of

the metric failing to capture geometry differences in a kite example.

Chamfer Distance: Simple and Effective

A widely adopted alternative is the Chamfer distance (CD), which compares two point clouds by

computing nearest-neighbor distances in both directions:

CD(P,Q) =
1

|P| ∑p∈P

min
q∈Q
∥p−q∥2

2 +
1

|Q| ∑
q∈Q

min
p∈P
∥q− p∥2

2.

CD works well for arbitrary 3D representations and is differentiable, making it a common loss

function. However, it is highly sensitive to outliers due to its reliance on squared ℓ2 distances.

1682 Chapter 23. Lecture 23: 3D vision

Figure 23.34: Comparison of Chamfer Distance (CD) against a ground-truth table. Both predicted

shapes are structurally similar chairs that share the same flat seat base as the table, differing primarily

in their back support. The chair with shorter back support (right) receives a lower CD of 0.15, as

its geometry more closely matches the table. The chair with taller back support (left) receives a

higher CD of 0.21, despite the backrest being the only mismatch. This illustrates CD’s sensitivity to

peripheral outliers: small localized differences—far from the main shape—can disproportionately

inflate the score.

F1 Score: Thresholded Surface Accuracy

To address CD’s sensitivity, we can compute precision and recall over thresholded nearest-neighbor

distances:

• Precision@t: Fraction of predicted points within distance t of the ground-truth surface.

• Recall@t: Fraction of ground-truth points within distance t of the prediction.

• F1@t: Harmonic mean:
2 ·Precision@t ·Recall@t

Precision@t +Recall@t

Figure 23.35: F1 score-based shape evaluation: More robust to outliers and informative across

different geometric scales.

23.8 General 3D Topics 1683

Threshold Sensitivity

F1@t is only meaningful at the right spatial scale. Too small a t penalizes fine misalignments; too

large a t washes out detail. Therefore, it is standard practice to report F1@t for multiple values of t.

Figure 23.36: Comparative behavior of shape metrics across thresholds. F1 curves often reveal

performance differences that CD and IoU miss.

23.8.2 Camera Coordinates: Canonical vs. View-Aligned

Figure 23.37: Canonical (mid column) vs view-aligned (last column) coordinate systems for chair

reconstruction. The latter preserves direct alignment with the input image (first column).

Canonical Coordinates

Many 3D pipelines predict objects in a canonical orientation (e.g., front of chair = +z), which

simplifies training and dataset organization. However, this introduces a disconnect between the input

viewpoint and the output geometry, forcing the model to learn pose estimation as a side task.

1684 Chapter 23. Lecture 23: 3D vision

View Coordinates

Alternatively, we can predict shapes aligned with the input camera pose. This simplifies feature

alignment and improves generalization. The 2018 CVPR study by Shin et al. [565] demonstrates

that view-coordinates lead to better results on novel objects and unseen categories.

Figure 23.38: Feature alignment: View coordinates maintain spatial consistency between input

features and predicted geometry.

Figure 23.39: Generalization gap: Canonical prediction overfits to training shapes. View-aligned

models perform better on novel objects and categories.

Conclusion

Unless a downstream task requires a fixed coordinate frame (e.g., assembly simulation), predicting

in view coordinates is preferred due to its alignment benefits and superior generalization.

23.8 General 3D Topics 1685

23.8.3 3D Datasets

Core Benchmarks for Single-View Reconstruction

3D reconstruction methods typically train and evaluate on a handful of publicly available datasets.

The two most influential are ShapeNet and Pix3D, which together define the synthetic-to-real

spectrum of object-level benchmarks.

ShapeNet

ShapeNet [76] is the dominant synthetic dataset for learning object geometry from images. It

provides clean, manifold CAD meshes with consistent alignment and dense annotations.

• Scale: Over 50,000 3D models across 55 categories. The Core v2 split uses 13 categories for

benchmarking.

• Images: Each object is rendered from 20–25 uniformly sampled viewpoints on a hemisphere.

• Advantages: Large scale, watertight geometry, and complete surface supervision.

• Limitations: Synthetic only; lacks real lighting, texture variation, or background context.

Category distribution is skewed (e.g., chairs dominate).

Pix3D

Pix3D [593] bridges synthetic geometry with real-world scenes. It aligns 3D furniture CAD models

with natural RGB images of the same object instances, captured in real environments.

• Scale: 219 unique 3D models and 17,000 real images across 9 furniture categories.

• Advantages: Contains lighting variation, clutter, and occlusion; includes ground-truth pose,

segmentation, and mesh alignment.

• Limitations: Small object coverage; only one labeled object per image; annotations are

sometimes incomplete or noisy.

Figure 23.40: Comparison of ShapeNet (left) and Pix3D (right). ShapeNet offers synthetic scale and

geometric cleanliness; Pix3D provides real-world variation and appearance realism.

1686 Chapter 23. Lecture 23: 3D vision

Training Strategy

A common pipeline is to pretrain on ShapeNet for geometry learning and fine-tune or evaluate

qualitatively on Pix3D to test robustness to clutter, occlusion, and real-world image statistics.

However, as 3D learning expands, modern benchmarks increasingly push beyond these datasets in

scale, realism, and diversity.

CO3D: Common Objects in 3D

CO3D [521] comprises internet-scale videos of common objects (e.g., bottles, toys, shoes) captured

using handheld phones. It includes camera poses and multi-view image sequences.

• Scale: Over 1.5 million frames from 50 categories; hundreds of object instances per class.

• Use Case: Training category-specific NeRFs and multi-view consistent models.

• Strengths: Real-world occlusion and lighting; dense image-based supervision.

Objaverse and Objaverse-XL

Objaverse [117] is a web-scale dataset of Creative Commons–licensed 3D assets, released to support

foundational 3D vision models and text–3D learning.

• Scale: 10M+ meshes across a wide spectrum of categories; many include textures and captions.

• Use Case: Pretraining CLIP-style vision–language–geometry models.

• Strengths: Unprecedented diversity and licensing openness; extensible for 3D GenAI.

• Challenges: Inconsistent mesh quality and scaling; preprocessing required.

ScanNet

ScanNet [113] provides RGB-D video scans of real-world indoor scenes with semantic and instance

segmentation labels.

• Scale: 1,500 scans and over 2.5 million RGB-D frames.

• Use Case: Scene-level 3D understanding, SLAM, and real-world domain generalization.

• Strengths: Photorealism, full-scene context, dense camera trajectories.

• Limitations: No watertight ground-truth meshes; reconstructed via noisy TSDF fusion.

Supplementary Datasets

While most reconstruction benchmarks focus on visual realism, other datasets support tasks like

analytic surface modeling or object detection.

• ABC Dataset [300]: 1M parametric CAD models in STEP format, designed for curvature

estimation and surface fitting. Rich in metadata but lacks textures and everyday context.

• ModelNet [705]: 12k CAD meshes across 10 or 40 categories. Still common in point cloud

classification; now largely superseded by ShapeNet.

• PartNet [439]: Over 26k 3D models with fine-grained, hierarchical part annotations—useful

for segmentation and affordance tasks.

• Objectron [3]: Short AR videos with annotated 3D bounding boxes for 15 object categories.

Captures real-world scale and motion but only provides sparse 3D annotations.

Summary

ShapeNet and Pix3D remain the standard benchmarks for mesh-level shape prediction. Newer

datasets like CO3D and Objaverse expand the task to multi-view learning and massive-scale general-

ization. Scene-level datasets like ScanNet and industrial corpora like ABC enable new frontiers in

physical realism, structure, and simulation fidelity. A robust training curriculum typically begins

with synthetic pretraining and proceeds to real-world fine-tuning.

23.9 Neural Radiance Fields (NeRF) 1687

23.9 Neural Radiance Fields (NeRF)

23.9.1 Problem Setup: Novel View Synthesis with Known Cameras

What Is Novel View Synthesis?

Imagine taking several photos of a scene—say, a Lego bulldozer—from different known positions.

Now imagine rendering a new image of that same scene from a viewpoint you never captured.

This task is called novel view synthesis: the goal is to generate realistic images of a scene as it

would appear from arbitrary camera positions, given only a sparse set of observed images and their

corresponding camera poses. This problem sits at the intersection of geometry, appearance modeling,

and rendering—and is central to applications in virtual reality, 3D reconstruction, and photorealistic

simulation.

Figure 23.41: NeRF performs novel view synthesis: given images from known viewpoints, it renders

unseen views (example: Lego bulldozer).

Limitations of Traditional Novel View Synthesis Pipelines

Classical novel view synthesis systems follow a brittle, multi-stage pipeline rooted in explicit 3D

reconstruction [553, 558, 785]:

• Structure-from-Motion (SfM). Estimates camera intrinsics and extrinsics by matching 2D

features across views and triangulating sparse 3D keypoints.

• Multi-View Stereo (MVS). Densifies the sparse point cloud using stereo correspondence and

depth estimation across calibrated views.

• Surface reconstruction and texturing. Generates a mesh or voxel grid and back-projects

color information from input images to produce a renderable surface.

This pipeline is highly sensitive to noise. The explicit geometry produced in early stages

must support all downstream tasks; any errors in pose estimation, depth prediction, or surface

reconstruction propagate without correction.

1688 Chapter 23. Lecture 23: 3D vision

In practice, these systems frequently fail due to several structural limitations:

• Limited view coverage. Geometry is only recovered where multiple views overlap. Occluded

or unobserved regions remain incomplete or hallucinated [558].

• Photometric assumptions. Most SfM–MVS methods assume Lambertian surfaces and

brightness constancy. Real-world effects such as specularities, translucency, and variable

illumination violate these assumptions, corrupting correspondence and depth estimates [779].

• Sparse inputs and wide baselines. With few input images or large viewpoint shifts, feature

correspondences become unreliable, degrading both pose and geometry [2].

• Textureless or repetitive regions. Surfaces lacking distinctive features—e.g., white walls—or

containing repeated patterns confuse matching algorithms, leading to holes or incorrect

geometry [785].

• Error accumulation and memory cost. Small mismatches, pose drift, and meshing artifacts

accumulate through the pipeline. High-resolution volumetric grids also incur steep memory

and computational costs [558].

Moreover, traditional methods commit to a single explicit surface. Modeling view-dependent

phenomena (e.g., reflections, specular highlights) requires hand-designed reflectance functions (e.g.,

BRDFs) that are difficult to estimate and rarely generalize across real-world conditions.

Neural Radiance Fields (NeRF) [369, 429] were introduced to overcome these fragilities. Rather

than reconstructing a discrete surface, NeRF learns a continuous, view-conditioned radiance field

from posed images. Novel views are rendered directly by integrating this field along camera rays via

differentiable volume rendering—yielding sharper, more consistent results even under challenging

visibility, appearance, and lighting conditions.

23.9.2 A New Paradigm: Neural Fields

Neural Radiance Fields (NeRF) [429] exemplify a transformative shift in view synthesis: from

pipelines that reconstruct explicit 3D geometry to models that learn neural fields, also known as

implicit neural representations. Rather than discretizing scenes into meshes or voxel grids, neural

fields represent continuous volumetric functions using the parameters of a multilayer perceptron

(MLP). These functions take spatial coordinates—optionally conditioned on direction—and output

physical scene properties such as radiance, density, or occupancy.

Scene Representation

In NeRF, the scene is defined by a function

FΘ : (x,y,z,θ ,φ) 7→ (σ ,c) ∈ R≥0× [0,1]3,

where (x,y,z) ∈ R
3 denotes a location in world coordinates and (θ ,φ) specify the viewing direction

using spherical coordinates. The output consists of:

• Volume density σ : a scalar indicating the probability of light terminating (i.e., hitting material)

at the queried point.

• Radiance c: an RGB value specifying the color emitted from that point in direction (θ ,φ).
This directional dependence enables the model to capture view-dependent phenomena like specular

highlights or reflections.

23.9 Neural Radiance Fields (NeRF) 1689

Why Only Direction Matters

Notably, NeRF conditions on the viewing direction rather than the full camera pose. This is because

the color emitted at a given location depends only on the relative angle between the viewing ray and

the local surface normal—not on the absolute camera orientation. The roll angle (in-plane camera

rotation) does not affect light interaction and is therefore omitted from the input.

Training Supervision: From Images to Rays

NeRF is trained on a set of images with known camera intrinsics and extrinsics. For each pixel, a

corresponding 3D ray is defined using the camera model, and the radiance field is queried along that

ray. The goal is to learn Θ such that the predicted color along each ray matches the observed pixel

value. This requires accurate knowledge of the camera parameters associated with each image in the

dataset.

23.9.3 Camera Parameters as a Prerequisite

For NeRF to model and render a scene accurately, it must first understand the relationship between

each 2D input image and the shared 3D world coordinate system. This requires, for every image, a

complete specification of the camera’s parameters—both internal and external. These parameters

form the geometric scaffolding that enables NeRF to associate each pixel with a corresponding 3D

ray.

• Intrinsics define the internal projection geometry of the camera and are typically encoded by

a 3×3 calibration matrix Kk for image k. This matrix specifies the focal lengths (fx, fy) and

the principal point (cx,cy), which together determine how 3D points in camera coordinates are

projected onto the 2D image plane:

Kk =




fx 0 cx

0 fy cy

0 0 1




Optional intrinsics may also include lens distortion parameters, though these are typically

omitted or corrected in NeRF datasets.

• Extrinsics define the pose of the camera with respect to a global world coordinate frame. They

consist of a rotation matrix Rk and a translation vector tk for image k, which together specify

a camera-to-world transformation [Rk | tk] ∈ SE(3). This mapping is essential for expressing

3D locations consistently across all views.

These parameters are crucial because NeRF learns a function over 3D world coordinates. To

supervise this function using 2D image pixels, the model must be able to trace each pixel’s ray

through the scene—originating from the camera’s position and passing in the direction that pixel

subtends in space. Without accurate intrinsics and extrinsics, this mapping from pixel to 3D ray

cannot be defined, and the network cannot learn a consistent radiance field.

In practice, these camera parameters are not usually provided with the dataset and must be

estimated from the images themselves. Their accuracy is critical: small errors in estimated poses

result in misaligned rays, which in turn degrade the consistency of supervision across views. This

often leads to blurred reconstructions or ghosting artifacts in rendered images, especially in regions

of fine structure or high frequency detail.

Accordingly, before training NeRF, a robust geometric calibration step must be performed to

recover per-image intrinsics and extrinsics. The standard approach is to estimate these parameters

from the image set itself using classical techniques based on multi-view geometry.

1690 Chapter 23. Lecture 23: 3D vision

Recovering Camera Parameters via SfM

As previously mentioned, in most real-world datasets, explicit camera parameters are not available.

To bridge this gap, NeRF typically relies on classical Structure-from-Motion (SfM) [553] pipelines

to estimate both intrinsic and extrinsic parameters directly from the image collection. This process

aligns the entire dataset into a unified 3D coordinate frame and enables ray construction for NeRF

training.

SfM recovers this calibration through the following multi-stage optimization:

1. Feature correspondence: Local image features (e.g., SIFT) are detected and matched across

image pairs to establish 2D correspondences—keypoints that observe the same 3D point across

views.

2. Triangulation: Using matched keypoints and camera projection geometry, 3D point locations

are triangulated, resulting in a sparse point cloud that defines the underlying scene structure.

3. Bundle adjustment: A global nonlinear optimization jointly refines all estimated camera

parameters and 3D points by minimizing reprojection error. This adjusts the intrinsics,

extrinsics, and 3D structure to best explain the observed 2D matches across the dataset.

The result is a calibrated camera model for each image, typically consisting of a pose Pk =
(Rk, tk) ∈ SE(3) and an intrinsics matrix Kk. Together, these determine the origin and direction of

every ray traced from pixel to world, anchoring the supervision of NeRF’s radiance field.

However, SfM is not infallible. Challenging image regions—such as occlusions, textureless

surfaces, or large baselines—can lead to pose drift and imperfect alignments. These miscalibrations

cause ray inconsistencies across views and may lead to visual artifacts such as ghosting or blur. To

address this, many NeRF variants treat the poses as learnable parameters and jointly optimize them

alongside the radiance field, refining camera geometry in tandem with appearance modeling.

With camera calibration complete, each pixel in each training image defines a 3D ray in world

space. The next stage is to evaluate the neural radiance field along these rays using differentiable

volume rendering.

23.9 Neural Radiance Fields (NeRF) 1691

23.9.4 Volume Rendering: From Rays to Pixels

Once calibrated rays are constructed from the camera intrinsics and extrinsics, the NeRF pipeline

proceeds to synthesize pixel colors by simulating how light accumulates along each ray. This is

achieved through a process known as volume rendering, a classical technique from graphics that

models a ray traversing a semi-transparent scene.

Figure 23.42: Volume rendering setup from the pinhole camera model. Light reflects off surfaces in

the scene and enters the camera through a pinhole, projecting onto a virtual image plane. The key

questions at each sampled 3D point are: (1) how much light does it emit? and (2) how opaque is it?

Points on the object (e.g., car) emit colored light and are opaque (σ = 1), while empty space emits

no light and is fully transparent (σ = 0).

To determine the color of a single pixel, NeRF casts a ray from the camera’s optical center into the

3D scene, simulating how light accumulates along that path. Under the pinhole camera model, every

ray originates from a single 3D point—the camera center—and passes through a specific location on

the image plane. This ray is parameterized as:

r(t) = o+ td, t ∈ [tn, t f],

where:

• o ∈ R
3 is the ray origin in world coordinates. It corresponds to the physical center of

projection—the point through which all rays pass—and is computed for image k from its

extrinsics:

ok =−R⊤k tk.

This expression inverts the camera pose transformation [Rk | tk], yielding the camera’s location

in the global coordinate frame.

• d ∈ S
2 is the unit direction vector that points from the camera center o through the center

of pixel (u,v) on the image plane. It is carefully constructed so that the ray intersects the

sub-pixel center of the target pixel, ensuring accurate alignment and avoiding aliasing artifacts.

1692 Chapter 23. Lecture 23: 3D vision

To compute d, NeRF inverts the pinhole projection model in three steps:

1. Target the pixel center: Pixels are indexed by integer raster coordinates (u,v) ∈ Z
2, which

reference their top-left corners. To model light paths more precisely, NeRF offsets these

coordinates by +1
2
, aiming the ray through the center of the square pixel:

ppix =




u+ 1
2

v+ 1
2

1


 .

This homogeneous 2D point lies on the image plane and acts as the projected target for the ray.

2. Unproject to camera space: The camera intrinsics matrix K ∈ R
3×3,

K =




fx 0 cx

0 fy cy

0 0 1


 ,

encodes the focal lengths and principal point. Applying the inverse intrinsics yields a direction

vector in the camera’s local 3D frame:

dcam = K−1ppix.

This vector points from the camera origin through the pixel center, intersecting the virtual

image plane at depth z = 1.

3. Transform to world space and normalize: To express the ray direction in global coordinates,

we rotate the camera-frame direction using the inverse rotation:

dworld = R⊤dcam, d =
dworld

∥dworld∥2

.

The resulting ray r(t) = o+ td travels through two key points: the camera center o and the 3D

location that maps—via projection—to the center of pixel (u,v). This construction ensures that each

pixel defines a unique 3D ray that is both photometrically accurate and geometrically aligned.

• t ∈ [tn, t f] is the depth parameter along the ray. Each value of t specifies a point r(t) in 3D

space. The interval bounds the segment of the ray used for rendering: tn avoids camera-adjacent

voids, and t f limits traversal to a relevant portion of the scene.

This setup defines the geometric foundation for NeRF’s differentiable volume rendering pipeline:

each pixel gives rise to a calibrated 3D ray that queries the scene via learned color and density

functions, enabling accurate supervision from multiview imagery.

The color of a pixel is modeled as a continuous accumulation of radiance along its viewing ray:

C (r) =
∫ t f

tn

T (t)︸︷︷︸
transmittance

·σ(r(t))︸ ︷︷ ︸
density

·c(r(t),d)︸ ︷︷ ︸
radiance

dt.

This integral aggregates light contributions from all points r(t) along the ray segment between a near

bound tn and far bound t f . At each infinitesimal location, the integrand quantifies how much light is

emitted, how much material is present, and how likely that light is to reach the camera unoccluded.

23.9 Neural Radiance Fields (NeRF) 1693

• The volume density σ(r(t)) ∈ [0,1] acts as a soft occupancy field—higher values indicate

denser or more opaque regions, while σ = 0 corresponds to empty space.

• The radiance c(r(t),d) ∈ [0,1]3 gives the RGB color emitted from point r(t) in viewing

direction d.

• The transmittance T (t) ∈ [0,1] denotes the survival probability of light traveling from the

camera to depth t, without being blocked by foreground matter.

Why an integral? Because the scene is modeled as a continuous volumetric field, there is no single

surface to sample. Instead, light can originate from anywhere along the ray. Each point emits some

color, attenuated by the surrounding medium, and contributes only a tiny amount. The integral sums

up these infinitesimal contributions from all depths t ∈ [tn, t f], forming a composite pixel color. This

approach mirrors how light propagates through translucent media in physics and allows smooth

transitions, semi-transparent edges, and view-dependent blending.

More precisely, σ · cdt represents the amount of light emitted by a small segment dt around r(t),
and T (t) scales this emission based on how much of it survives traversal through the density field in

front of it. The closer the point is to the camera, the less likely it is to be occluded, making early

segments contribute more strongly. Distant points can only affect the pixel color if transmittance

remains high—i.e., if the path before them is transparent.

The transmittance term is computed as an exponential of the accumulated density:

T (t) = exp

(
−
∫ t

tn

σ(r(s))ds

)
.

This expression is a solution to the radiative transfer equation under absorption-only conditions and

follows the Beer–Lambert law. It encodes the idea that every unit of density along the path slightly

diminishes light transmission. The more material encountered before t, the smaller T (t) becomes.

Thus, occlusion emerges naturally from integration—no hard surfaces or visibility heuristics are

needed.

This continuous, differentiable formulation enables NeRF to produce photorealistic renderings with

accurate soft shadows, translucency, and gradual occlusion. It replaces discrete surface modeling

with an elegant volumetric framework in which geometry and appearance emerge implicitly from

learned density and radiance fields.

Discretizing the Rendering Equation: Stratified Sampling and Alpha Compositing

Evaluating the continuous integral is analytically intractable for neural fields. NeRF approximates it

by sampling N depths t1, . . . , tN uniformly or via hierarchical importance sampling along the ray. At

each sampled point r(ti), the MLP predicts:

σi := σ(r(ti)), ci := c(r(ti),d).

Assuming that density is constant over the small interval [ti, ti+1], we define:

δi := ti+1− ti, αi := 1− exp(−σiδi),

where αi approximates the opacity—the probability that the ray terminates inside segment i.

The discrete transmittance Ti up to segment i is thus:

Ti :=
i−1

∏
j=1

(1−α j) = exp

(
−

i−1

∑
j=1

σ jδ j

)
,

1694 Chapter 23. Lecture 23: 3D vision

the probability that light successfully traverses all prior segments without being absorbed.

With these components, the rendered pixel color is approximated as:

Ĉ (r) =
N

∑
i=1

Ti ·αi · ci.

This rule is mathematically equivalent to front-to-back alpha compositing, where each semi-

transparent segment contributes its color, modulated by its own opacity and the transparency of

everything in front.

Figure 23.43: Discrete volume rendering along ray r(t) = o+ td. The network predicts density

σi and color ci at N points sampled along the ray. Each segment’s contribution is attenuated by

accumulated transmittance Ti and its own opacity αi.

Figure 23.44: Discrete approximation of volume rendering along a ray r(t) = o+ td. The network

samples N = 4 points at depths t1, t2, t3, t4 within the interval [tn, t f], spaced by intervals δi = ti+1− ti.

For each point r(ti), the MLP predicts a density σi and view-dependent color ci. These are combined

via alpha compositing to produce an estimated pixel color Ĉ (r), which is supervised (i.e., compared

to C (r)) to match the ground truth image color via ℓ2 loss.

23.9 Neural Radiance Fields (NeRF) 1695

From Pixel Color to Supervised 3D Sampling

Once a ray r(t) = o+ td is constructed for pixel (u,v), NeRF must supervise the unknown 3D scene

based solely on the pixel’s ground-truth color C (r) ∈ [0,1]3. There is no direct annotation for which

points along the ray contain surfaces or emit light; supervision is available only at the endpoint of

the entire rendering process. The core insight of NeRF is that even this sparse signal is sufficient: if

a radiance field is to match all observed views, it must explain how light accumulates along each ray

to produce the correct color.

To turn this sparse supervision into dense learning signal, NeRF samples N 3D points along the ray.

Although these points differ in location r(ti), they all share the same viewing direction d, which

defines how color should vary based on perspective. Each point is passed to a neural network fθ ,

yielding:

σi := σ(r(ti)), ci := c(r(ti),d),

where σi ∈ R≥0 is the predicted volume density and ci ∈ [0,1]3 is the view-dependent color.

These are combined via front-to-back alpha compositing to produce an estimated pixel color:

Ĉ (r) =
N

∑
i=1

Ti ·αi · ci, αi = 1− exp(−σiδi), Ti =
i−1

∏
j=1

(1−α j),

where δi = ti+1− ti is the spacing between samples.

This entire pipeline is fully differentiable. NeRF defines an ℓ2 reconstruction loss between the

rendered color and ground truth:

Lrecon =
∥∥Ĉ (r)−C (r)

∥∥2

2
,

and uses backpropagation to update the MLP weights θ . Each pixel thus supervises not just a

point sample, but an entire ray of 3D locations, encouraging the network to learn a coherent global

representation.

Hierarchical Sampling: Coarse-to-Fine Supervision and Loss

To allocate computation effectively along each ray, NeRF employs a coarse-to-fine sampling strategy

using two separate but jointly trained MLPs. The first stage explores the ray with uniform coverage,

while the second concentrates on promising regions—typically those with higher predicted opacity.

Both networks are optimized with ground-truth pixel color supervision, allowing the model to learn

geometry and appearance jointly.

• Coarse stage (exploration): NeRF begins by drawing Nc samples along the ray r(t) = o+ td

using stratified sampling. The interval [tn, t f] is divided into equal-width bins, and one depth

value is jittered uniformly within each:

ti ∼U

[
i−1

Nc

(t f − tn)+ tn,
i

Nc

(t f − tn)+ tn

]
.

Each corresponding 3D location r(ti) is passed through the coarse MLP, which predicts

density σi and radiance ci. These are composited into an initial pixel color estimate Ĉcoarse(r),
supervised by the known ground-truth color C (r) from the training image:

Lcoarse =
∥∥Ĉcoarse(r)−C (r)

∥∥2

2
.

1696 Chapter 23. Lecture 23: 3D vision

• Fine stage (refinement): The coarse compositing weights

wi := Ti ·αi

define a piecewise PDF over the ray that emphasizes surface-adjacent regions. From this

distribution, N f additional samples {t ′j} are drawn. These fine samples are merged with the

coarse ones, and the union is passed to a second fine MLP, which outputs improved density

and color estimates. These are composited into a higher-resolution prediction Ĉfine(r), also

supervised via a reconstruction loss:

Lfine =
∥∥Ĉfine(r)−C (r)

∥∥2

2
.

The final training objective combines both stages:

Ltotal = Lcoarse +Lfine.

This coarse-to-fine architecture allows the coarse MLP to guide sampling adaptively—allocating

more effort where surfaces are likely to be.

Why This Works: Learning Geometry from Pixel Colors

At a glance, NeRF’s approach seems almost paradoxical: the model has no knowledge of surfaces,

yet learns to infer geometry purely from pixel-level color supervision. This works because each

pixel’s color constrains the entire ray beneath it. By rendering sampled 3D points into a single

prediction Ĉ (r), NeRF creates a differentiable bridge between thousands of possible 3D explanations

and a single observed RGB triplet.

• Supervision Distribution: Although we supervise only one color per ray, gradients flow

through all points that contributed to the composited prediction—distributing signal to every

sample r(ti).
• Emergent Surfaces: The only way to consistently satisfy these ray-level constraints across all

views is to assign high density σ to points where many rays agree on a visual transition—i.e.,

surfaces.

• Efficient Focus: Hierarchical sampling ensures that fine-level computation is concentrated

around informative regions, reducing noise and improving convergence.

Together, this architecture allows NeRF to transform sparse RGB supervision into a globally consis-

tent volumetric reconstruction. It replaces dense 3D supervision with a powerful ray-based training

signal that not only enables photorealism, but also implicitly discovers geometry.

A Differentiable Rendering Engine for View Synthesis

The NeRF rendering pipeline is fully differentiable: all operations—depth sampling, MLP querying,

and the computation of per-sample density σi, color ci, opacity αi, transmittance Ti, and accumulated

pixel color—are smooth and continuous. This enables the system to be trained end-to-end via

gradient descent, minimizing a reconstruction loss between predicted colors Ĉ (r) and ground-truth

image values C (r).
At inference time, this same mechanism enables photorealistic novel view synthesis: given an

unseen camera pose, rays are cast through each pixel and evaluated against the learned radiance field

to render new, realistic images of the scene.

23.9 Neural Radiance Fields (NeRF) 1697

To support such high-fidelity synthesis, the underlying model must capture detailed scene

geometry and appearance, including fine spatial structure and subtle view-dependent effects. NeRF

achieves this by modeling the radiance field as a continuous function parameterized by a compact

Multi-Layer Perceptron (MLP), which maps each sampled 5D coordinate (x,d) to a scalar volume

density σ and a direction-conditioned color c.

In practice, this modeling approach must be paired with careful input parameterization and

architectural choices to ensure stable optimization and accurate reconstruction. The next subsection

introduces the key components—starting with how raw input coordinates are encoded and how the

radiance field network is structured to support expressive, high-quality view synthesis.

23.9.5 Practical Implementation Details

To realize photorealistic view synthesis in practice, Neural Radiance Fields (NeRF) rely on careful

architectural design choices and encoding strategies that address the limitations of standard neural

networks in representing fine spatial and angular detail. We begin by discussing the core technique

that enables high-frequency reconstruction—positional encoding—and then present the structure of

the neural network used to model the radiance field.

Positional Encoding for High-Frequency Detail

A key challenge in training Multi-Layer Perceptrons (MLPs) to represent complex 3D scenes is their

inherent spectral bias—a tendency to learn and prioritize low-frequency (smooth) functions during

optimization [502]. This empirically common phenomenon limits an MLP’s ability to accurately

reconstruct fine geometric detail or rapidly varying texture when operating directly on raw spatial or

angular coordinates.

In the context of NeRF, this bias manifests as blurry surfaces, oversmoothed edges, and a

general failure to capture high-frequency content such as thin structures, sharp contours, or specular

highlights. Though MLPs are universal function approximators, their convergence rate for high-

frequency components is significantly slower [506]. This results in poor early representations

and long training times for high-resolution detail, with the network often getting stuck in smooth

approximations of the scene.

This limitation stems from the inductive properties of MLPs: small changes in the input—such

as a slight shift in spatial location or viewing angle—tend to produce small changes in the output,

especially when the input space is unstructured and low-dimensional. As shown in Fourier-domain

analyses of coordinate-based MLPs, deeper or wider networks alone do not resolve this issue [502,

506]. High-frequency functions require precise, localized output variations, which are difficult

to express using standard activation dynamics and gradient descent unless the input is carefully

encoded.

To address this, NeRF introduces a simple yet powerful solution: positional encoding. Instead

of feeding raw 3D coordinates x ∈ R
3 and 2D viewing directions d ∈ S

2 directly into the MLP,

each scalar input value p is transformed by a fixed encoding function γ(p), which projects it into a

high-dimensional space of sinusoids at exponentially increasing frequencies:

γ(p) =
(
sin(20π p),cos(20π p), . . . ,sin(2L−1π p),cos(2L−1π p)

)
.

This transformation is applied independently to each component of x and d, resulting in a total

input dimensionality of 3(2L+1)+3(2L′+1) when using L frequency bands for position and L′ for

direction.

1698 Chapter 23. Lecture 23: 3D vision

The motivation behind this transformation is grounded in Fourier analysis. Positional encoding

effectively “injects” a spectrum of basis functions into the input space, allowing the network

to represent high-frequency signals through linear combinations of these sinusoids in the first

layer. Rather than forcing the MLP to learn such frequency structure through deep nonlinear

compositions—which is inefficient and prone to convergence issues—this encoding enables the

model to access high-frequency expressivity from the start.

Empirical results confirm the importance of this technique: models trained without positional

encoding exhibit significantly reduced visual fidelity, slower convergence, and inability to recover

fine detail. In contrast, networks using positional encoding successfully reconstruct sharp surfaces,

reflective materials, and detailed textures [429]. Subsequent theoretical analysis shows that positional

encoding modifies the neural tangent kernel (NTK) of the MLP to increase its bandwidth and flatten

its spectrum, improving gradient flow and allowing more balanced learning of low- and high-

frequency components [604].

Intuition Behind Positional Encoding

To grasp the role of positional encoding in NeRF, it helps to consider how an MLP "sees" space.

When fed raw spatial or angular coordinates, the network operates in a smooth, low-frequency

regime: small changes in input tend to produce only small changes in output. While this behavior is

appropriate for modeling gradual variations, it becomes a liability when the scene contains sharp

edges, fine textures, or high-frequency lighting effects. In such cases, the desired output—radiance

or density—may change rapidly over very small spatial intervals. Standard MLPs struggle to express

such localized variation due to their spectral bias toward smooth functions.

This limitation arises because MLPs must synthesize high-frequency behavior through deep

compositions of nonlinearities, which is both inefficient and slow to converge. As a result, renderings

trained on raw coordinates tend to exhibit blurred contours and oversmoothed detail—especially

near thin structures or specular surfaces.

Positional encoding addresses this problem by enriching each scalar input with a fixed set of

sinusoidal functions at multiple frequencies:

γ(p) =
(
sin(20π p),cos(20π p), . . . ,sin(2L−1π p),cos(2L−1π p)

)
.

This mapping transforms the input space such that small changes in position or direction can

produce large, expressive shifts in the encoded representation—especially in the higher-frequency

components. Crucially, this does not destabilize the network; rather, it gives the MLP access to a

spectrum of variation that it can combine linearly in the first layer, allowing it to model both smooth

regions and sharp transitions with ease.

An intuitive analogy is that of a painter. Feeding raw coordinates into an MLP is like giving an

artist only broad brushes: suitable for outlining large shapes, but incapable of capturing intricate

structure. Positional encoding equips the model with a complete set of tools—from coarse rollers

to ultra-fine brushes—so it can render both global layout and detailed texture. The high-frequency

“ink” is already embedded in the input; the MLP need only learn how to blend it.

Importantly, positional encoding does not increase the model’s depth or parameter count. Instead,

it reformulates the input representation to align with the underlying complexity of the radiance field.

By embedding frequency structure directly into the input space, it enables the network to express

high-detail content from the very beginning of training—accelerating convergence and dramatically

improving reconstruction fidelity.

23.9 Neural Radiance Fields (NeRF) 1699

Network Architecture and Functional Mapping

The NeRF network is a fully-connected MLP with ReLU activations. Its design reflects a structural

separation between geometric and appearance representations, achieved via a two-stage processing

pipeline.

The input 3D location x, encoded via γ(x), is passed through a series of 8 layers, each with 256

units and ReLU activations. A skip connection concatenates the original positional encoding γ(x) to

the output of the 4th layer. This first stage outputs two quantities:

• A scalar volume density σ , representing how likely the ray is to terminate at that location.

• A learned feature vector h ∈ R
256 representing local geometry and appearance context.

To model view-dependent effects, the encoded viewing direction γ(d) is concatenated with

h, and passed through an additional 1-hidden-layer MLP (with 128 units) to predict RGB color

c ∈ [0,1]3.

This separation allows the network to maintain consistent density across all directions while

permitting directional variation in emitted color, enabling the modeling of non-Lambertian surfaces

such as specular highlights and reflections.

Figure 23.45: NeRF network architecture. Positional encodings are applied to both position and

viewing direction inputs. The MLP first predicts volume density and intermediate features from

position, then conditions RGB color on the viewing direction.

Together, the positional encoding and network design allow NeRF to map input rays to realistic

colors with high accuracy.

1700 Chapter 23. Lecture 23: 3D vision

Training vs. Inference: Pixel-Level Supervision and Scene Reconstruction

Although NeRF is trained using a loss defined at the level of individual image pixels, its learned rep-

resentation is fundamentally volumetric: a continuous 5D field that maps 3D spatial locations and 2D

viewing directions to color and density. A natural question arises—how can independent pixelwise

comparisons to ground-truth RGB values yield a globally consistent 3D scene representation?

The key insight is that each pixel, while evaluated in isolation during training, arises from a

unique ray that passes through the shared 3D environment. As the model is optimized to match

the color seen along each ray, it must learn a radiance field whose volumetric structure explains

not just isolated pixels but the appearance of entire scenes across multiple views. If the model

were to hallucinate geometry or color in one ray that contradicts observations in another, the

accumulated error across views would remain high. Thus, consistency across views serves as a

powerful regularizer: even though supervision is pixel-local, the shared volumetric MLP must

reconcile all views into a coherent underlying scene.

Training Procedure

NeRF is trained on a dataset of posed RGB images {Ik}K
k=1, where each image Ik is accompanied by

known camera intrinsics and extrinsics. For each scene, a dedicated neural radiance field is trained

from scratch using all available views—unlike models trained across multiple scenes, NeRF does

not require train/validation/test image splits for learning. Instead, novel view synthesis is evaluated

on held-out camera poses after scene reconstruction is complete.

At each iteration, a batch of camera rays r = o+ td is randomly sampled from the set of all

training pixels across all images. Each ray is then evaluated using a two-stage hierarchical sampling

scheme. In the first pass, Nc coarse depth samples {ti} are drawn along the ray via stratified sampling,

and the corresponding 3D points r(ti) are passed through the MLP to predict volume densities σi and

view-dependent colors ci. The coarse rendering Ĉc(r) is computed using discrete volume rendering.

These weights are then used to inform a second round of importance sampling, focusing on

regions of high density. An additional N f fine samples are drawn along each ray and passed through

a separate MLP (or the same MLP reused) to produce the final rendering Ĉ f (r). Both renderings are

supervised against the ground-truth pixel color C (r) using an ℓ2 loss:

Ltrain = ∑
r∈B

[∥∥Ĉc(r)−C (r)
∥∥2

2
+
∥∥Ĉ f (r)−C (r)

∥∥2

2

]
,

where B is the minibatch of rays. This loss is minimized via gradient descent, with gradients back-

propagated through the entire rendering pipeline—including MLP evaluations, opacity computation,

and alpha compositing. Over time, this process encourages the network to discover a coherent 3D

radiance field that explains all views simultaneously.

Although the training signal is defined at the pixel level, the MLP must synthesize a global

function that satisfies all camera rays across the scene.

23.9 Neural Radiance Fields (NeRF) 1701

Inference Procedure

At inference time, NeRF renders novel views from previously unseen camera poses. Given new

camera intrinsics and extrinsics—either provided as ground truth or estimated via structure-from-

motion tools like COLMAP—a ray is cast through the center of each pixel in the desired output

image resolution. For each ray r(t) = o+ td, NeRF applies the same stratified and hierarchical

sampling strategy used during training.

Sampled 3D points along the ray are passed through the trained MLP to predict volume densities

σi and view-dependent colors ci. These are combined via discrete volume rendering:

Ĉ (r) =
N

∑
i=1

Ti ·αi · ci,

where αi and Ti represent the segment opacity and transmittance, respectively. This process is

repeated independently for every ray—effectively synthesizing the image pixel by pixel using only

forward passes through the network.

Inference is parallelizable across rays and pixels, making it well-suited for GPU execution.

However, it remains computationally intensive: each output frame requires evaluating hundreds of

MLP queries per pixel. This results in high-fidelity but slow rendering, with original NeRF models

taking tens of seconds per image on modern GPUs for small scenes up to days for more complex

and high-resolution one on weaker GPUs.

Why Pixel-Level Supervision Works

Although NeRF is trained with per-pixel supervision, it does not learn isolated 2D mappings for each

image. Instead, the volumetric rendering process couples every pixel to a ray that traverses the 3D

scene, and these rays intersect and overlap across views. As a result, the color of each pixel depends

on the shared radiance field that defines density and appearance throughout space.

This coupling turns local pixel errors into global constraints: an incorrect prediction at any

point along a ray affects not just one pixel, but all others whose rays pass through the same region.

Minimizing the total photometric loss across all training images therefore requires the model to

discover a single, consistent radiance field that simultaneously explains all views. In this sense,

NeRF performs multi-view 3D reconstruction not through explicit geometry, but through radiance

field alignment guided by view-dependent color integration.

The shared MLP must assign densities and colors that are jointly plausible across view-

points—encoding accurate 3D structure, coherent surface geometry, and realistic appearance effects

such as specularities or occlusions. Crucially, this global consistency acts as an implicit regularizer:

if a sharp edge or fine surface detail is modeled inconsistently across views, the resulting rendering

error remains high and drives the network to correct it. This prevents the network from overfitting to

individual images and enforces smooth, physically plausible reconstructions.

Outlook

The training and inference procedures outlined above empower NeRF to produce photorealistic

images from novel viewpoints, relying on learned volumetric representations encoded within a neural

network. However, this expressivity comes at a significant computational cost: each frame requires

casting thousands of rays and performing hundreds of MLP evaluations per pixel, both during

optimization and at test time. In the parts that follow, we examine NeRF’s empirical performance

through experiments and ablations, before turning to its limitations and the growing body of work

aimed at improving efficiency, scalability, and generalization.

1702 Chapter 23. Lecture 23: 3D vision

23.9.6 Experiments and Ablation Studies

To validate the NeRF architecture, Mildenhall et al. [429] conducted extensive experiments on both

synthetic and real-world datasets. These included comparisons with prior methods and ablation

studies to isolate the contributions of key design components.

Quantitative and Qualitative Evaluation

To assess the effectiveness of NeRF, Mildenhall et al. [429] evaluated their model on two distinct

datasets:

• Realistic Synthetic 360◦: A custom Blender-rendered dataset of eight scenes, each containing

complex geometry and non-Lambertian materials. Each scene provides 100 training views

and 200 held-out test views at a resolution of 800×800 pixels.

• Real Forward-Facing: A real-world dataset derived from handheld captures of eight in-

door/outdoor scenes. These images were processed with COLMAP to extract camera poses,

and 1/8 of the views were held out for evaluation.

Evaluation used the following standard image quality metrics:

• PSNR (Peak Signal-to-Noise Ratio): A log-domain pixel-wise fidelity metric, expressed in

decibels. Higher values indicate better reconstruction accuracy.

• SSIM (Structural Similarity Index Measure): A perceptual metric capturing local luminance,

contrast, and structure similarity. Ranges from 0 to 1; higher is better.

• LPIPS (Learned Perceptual Image Patch Similarity): Measures perceptual similarity using

deep features. Lower values indicate better perceptual fidelity.

Method PSNR ↑ SSIM ↑ LPIPS ↓
SRN [573] 22.26 0.846 0.170

Neural Volumes (NV) [389] 26.05 0.893 0.160

LLFF [428] 24.88 0.911 0.114

NeRF [429] 31.01 0.947 0.081

Table 23.1: Quantitative comparison on the Realistic Synthetic 360◦ dataset [429]. NeRF achieves the

highest performance across all metrics, demonstrating superior geometric reconstruction, perceptual

realism, and high-frequency detail.

These results highlight NeRF’s significant improvement over prior methods. Compared to SRN and

LLFF, NeRF improves PSNR by more than 6 dB, increases structural similarity, and cuts LPIPS

perceptual error nearly in half.

23.9 Neural Radiance Fields (NeRF) 1703

Figure 23.46: Qualitative comparisons on held-out views from the Realistic Synthetic 360◦

dataset [429]. NeRF recovers intricate structures and materials (e.g., Lego gears, Microphone

grille) and captures non-Lambertian effects. In contrast, LLFF exhibits ghosting and aliasing, while

SRN and NV yield blurred or distorted geometry.

Ablation Studies

To understand which components most influence NeRF’s performance, the authors conducted a series

of ablations on the Realistic Synthetic 360° dataset. The study evaluated the effects of disabling

positional encoding (PE), view-dependence (VD), and hierarchical sampling (H), as well as reducing

the number of input views and adjusting frequency hyperparameters.

1704 Chapter 23. Lecture 23: 3D vision

Row Configuration L #Img (Nc,N f) PSNR

1 No PE, VD, H – 100 (256, –) 26.67

2 No Positional Encoding - 100 (64, 128) 28.77

3 No View Dependence 10 100 (64, 128) 27.66

4 No Hierarchical Sampling 10 100 (256, –) 30.06

5 Far fewer images 10 25 (64, 128) 27.78

6 Fewer images 10 50 (64, 128) 29.79

7 Lower frequency (L = 5) 5 100 (64, 128) 30.59

8 Higher frequency (L = 15) 15 100 (64, 128) 30.81

9 Full Model (baseline) 10 100 (64, 128) 31.01

Table 23.2: Ablation study from [429]. Each row disables or modifies one component of the full

model. PE = Positional Encoding, VD = View Dependence, H = Hierarchical Sampling. All metrics

averaged across 8 scenes.

Key observations:

• Positional Encoding (PE) is indispensable for capturing high-frequency details such as edges,

textures, and specular boundaries. Disabling PE (Row 2) reduces PSNR from 31.01 to 28.77,

a 2.24 dB drop. This confirms that raw 3D inputs (xyz) are insufficient due to the spectral bias

of MLPs, which favor learning smooth, low-frequency functions. PE provides the network

with high-frequency sine and cosine basis functions, significantly improving representation

capacity.

• View Dependence (VD) enables NeRF to model view-dependent effects like specular high-

lights and non-Lambertian reflectance. Removing view direction inputs (Row 3) yields a

PSNR of 27.66, a 3.35 dB drop from the full model. Visually, surfaces appear matte and

unrealistically static across viewpoints. This component is essential for photorealism and

dynamic lighting effects.

• Hierarchical Sampling (H) improves both accuracy and training efficiency by allocating

more samples to high-opacity regions. Disabling it (Row 4) leads to a moderate drop of 0.95

dB (PSNR 30.06 vs. 31.01) and increases training cost. While the rendering quality remains

competitive, the uniform sampling strategy is computationally inefficient, often allocating

samples to empty space, causing more noisy predictions.

• Number of Input Views directly affects reconstruction quality. Reducing the number of input

images from 100 (Row 9) to 50 (Row 6) or 25 (Row 5) lowers PSNR to 29.79 and 27.78,

respectively. Notably, even with only 25 views, NeRF still outperforms all prior baselines

evaluated on 100 views, demonstrating robustness. However, performance declines in occluded

or textureless regions, especially under extreme sparsity.

• Frequency Parameter L controls the number of sine/cosine frequency bands in PE. Lowering

L to 5 (Row 7) leads to underfitting, decreasing PSNR to 30.59. Increasing L to 15 (Row 8)

slightly reduces performance (30.81), likely due to overfitting or gradient instability. Thus,

L = 10 (Row 9) offers a well-balanced tradeoff between expressivity and stability.

23.9 Neural Radiance Fields (NeRF) 1705

Figure 23.47: Ablation visualization from [429]. Without view dependence, specular highlights

disappear, e.g., on the bulldozer tread. Without positional encoding, the model fails to recover

high-frequency geometry and textures, leading to blurred reconstructions.

These experiments validate the necessity of all three architectural innovations—Fourier-based

input encoding, view-dependent radiance modeling, and hierarchical sampling—for achieving

NeRF’s high-fidelity results. Removing any one of these leads to degraded reconstructions and/or

reduced realism, and sometimes even to slower convergence.

23.9.7 Limitations of the Original NeRF Architecture

Despite the seminal impact of NeRF on 3D view synthesis, the original architecture introduced

by [429] exhibits several foundational limitations that have since motivated a wave of follow-up

research. These limitations are not isolated flaws but rather systemic consequences of NeRF’s core

design—a monolithic, scene-specific MLP that implicitly encodes geometry and radiance in millions

of uninterpretable parameters. This subsection outlines six key bottlenecks, each of which inspired

entire subfields of NeRF variants and accelerations.

1. Computational Inefficiency: Prohibitive Training and Inference Time

The most immediate drawback of NeRF is its extreme computational cost. Training a single scene

typically requires tens to hundreds of GPU-hours, rendering it impractical for real-time or interactive

use. Even inference is slow: to render a single image, NeRF must trace thousands of rays and query

the MLP hundreds of times per ray, leading to total long runtimes per frame. This high latency renders

applications such as virtual walkthroughs, VR/AR environments, or online editing infeasible without

significant acceleration strategies. As we will see in subsequent parts, this limitation motivated a

wave of speed-focused methods including Plenoxels [160], Instant-NGP [443], and TensoRF [80].

2. Data Hungriness and Pose Sensitivity

NeRF requires dense and accurate supervision: typically 100 or more posed input images for each

scene. With sparse views, the model tends to overfit, memorizing training pixels and producing

incorrect geometry with “floaters”—hallucinated density blobs in empty space. Moreover, NeRF

assumes externally provided camera poses, often estimated via SfM pipelines such as COLMAP.

Pose errors—especially in large or low-texture scenes—can severely degrade reconstruction quality,

introducing ghosting and multi-exposure artifacts. These dependencies make NeRF fragile in

real-world settings, where pose estimation and dense capture are often unavailable or noisy.

1706 Chapter 23. Lecture 23: 3D vision

3. Static Scene Assumption

The original NeRF architecture assumes the scene is completely static during capture. Even minor

motion—e.g., waving trees, moving pedestrians, changing shadows—violates this assumption. Since

the MLP must learn a consistent radiance field, it fails to reconcile inconsistencies in dynamic scenes,

leading to ghosting, blur, or averaged-out artifacts. Consequently, NeRF cannot model temporal

phenomena or non-rigid deformation without significant modification. This limitation gave rise to

dynamic variants such as D-NeRF [488] and subsequent temporally aware architectures.

4. Poor Scalability to Large or Unbounded Scenes

The architectural choice to encode an entire scene in a single MLP imposes a severe scalability

bottleneck. As the physical extent of the scene increases—e.g., modeling a building, city block, or

360° landscape—the network’s finite capacity becomes insufficient. The result is coarse geometry

and low-frequency, blurry reconstructions. Additionally, the fixed near and far depth bounds

used in NeRF’s ray sampling mechanism are ill-suited for outdoor, forward-facing, or horizon-

spanning scenes. These challenges spurred modular representations such as Block-NeRF [602],

which decompose large scenes into a grid of smaller NeRFs with overlapping coverage and shared

appearance embeddings.

5. Inadequate Robustness to Real-World Imaging Conditions

Most NeRF experiments are performed on sanitized datasets of clean, low dynamic range (LDR),

well-lit images. In contrast, real-world imagery often suffers from HDR saturation, sensor noise,

motion blur, lens artifacts, and non-uniform exposure. The original NeRF, trained on LDR values,

fails to reconstruct true radiance under such conditions. Moreover, it lacks mechanisms for denoising

or compensating for exposure variation. Recent works like RawNeRF [430] address this by operating

on raw sensor data directly, enabling robust HDR synthesis and improved fidelity under challenging

lighting.

6. Non-Editable and Opaque Representation

Finally, NeRF’s learned radiance field is entirely implicit—stored in millions of weights of an MLP.

This makes downstream operations such as object editing, segmentation, relighting, or geometry

manipulation extremely difficult. In traditional 3D representations (e.g., meshes or voxels), editing

corresponds to direct manipulation of structures with semantic meaning. In NeRF, by contrast, even

deleting an object or changing its appearance would require retraining the model or resorting to

finetuning tricks. This “black-box” nature remains a key challenge and an active area of research.

Later approaches like Control-NeRF [315] and NeRFShop [260] aim to bridge this gap by decoupling

editable features from rendering logic.

Summary

The limitations of the original NeRF—its slowness, data hungriness, fragility, and lack of editabil-

ity—are all downstream consequences of its monolithic, implicit MLP-based design. Recognizing

this, researchers have shifted towards more modular, explicit, and hybrid representations. As we

will see in upcoming parts, these improvements not only alleviate NeRF’s bottlenecks but also

expand its capabilities to dynamic scenes, outdoor environments, real-time applications, and creative

workflows.

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1707

Enrichment 23.10: NeRF: Acceleration and Representation Revisions

While the original NeRF architecture achieved groundbreaking results in novel view synthesis, it

suffered from severe computational bottlenecks and restrictive design choices. This limitation gave

rise to two key research directions:

• Making NeRFs faster: by improving both scene representation and the rendering pipeline;

• Rethinking representation itself: by exploring whether implicit MLPs are the optimal

abstraction for radiance fields.

This subsection surveys the most prominent families of acceleration techniques and scene represen-

tation variants—each representing a distinct research trajectory in the evolving landscape of neural

rendering.

Explicit Voxel and Point Grid Representations

A fundamental insight that motivated the first wave of NeRF accelerations is that the full power

of an MLP may not be necessary to represent a static radiance field. In the original NeRF, each

query along a ray—at a specific 3D point and viewing direction—requires a forward pass through

a deep, overparameterized network. This becomes prohibitively slow when hundreds of queries

must be processed per pixel in the image. If instead one could cache the radiance field explicitly in

space, the model could avoid MLP evaluation altogether and retrieve color and density via simple,

differentiable lookups.

This leads to a powerful tradeoff: speed versus memory. By storing radiance and density in

spatial grids—either dense or sparsely populated—methods can dramatically reduce inference time

and enable real-time rendering. The price is cubic memory growth with resolution, requiring careful

grid design or pruning to scale. The following two methods exemplify this family of approaches.

Enrichment 23.10.1: Plenoxels: Sparse Voxel Grids with Spherical Harmonics

Plenoxels [160] introduce a fully explicit scene representation that removes neural networks from

the NeRF rendering pipeline. Instead of approximating the radiance field using a continuous MLP

fθ (x,d), Plenoxels define a sparse 3D voxel grid in which each voxel corner—corresponding to a

3D coordinate in space—stores:

• A scalar volume density σ ∈ R+, analogous to NeRF, encoding how much matter is present

at that spatial location.

• Spherical harmonics (SH) coefficients for view-dependent RGB color. For SH degree l, each

corner stores (l +1)2 coefficients per color channel (e.g., 9 per channel for l = 2):

c(x,d) =
l

∑
ℓ=0

ℓ

∑
m=−ℓ

aℓm ·Yℓm(d),

where Yℓm(d) is the SH basis evaluated at viewing direction d, and aℓm ∈ R
3 are the learnable

RGB coefficients.

1708 Chapter 23. Lecture 23: 3D vision

Figure 23.48: Overview of the Plenoxel model, adapted from [160]. (a) A sparse voxel grid stores SH

coefficients and densities at each corner. (b) Sampled points along rays interpolate these values. (c)

Volume rendering integrates color and opacity. (d) Grid parameters are optimized via a reconstruction

loss and regularization.

Inference and Volume Rendering.

For each ray r(t) = o+ td, Plenoxels sample a set of points r(ti) within the interval [tn, t f], as in

NeRF. For each point:

• The trilinear interpolation of densities and SH coefficients is computed from the eight corners

of the voxel enclosing r(ti).
• The interpolated SH coefficients are combined with the viewing direction d via SH basis

functions to compute the radiance ci ∈ [0,1]3.

• These values (σi,ci) are integrated along the ray using the same differentiable alpha composit-

ing rule as NeRF:

Ĉ (r) =
N

∑
i=1

Ti ·αi · ci, αi = 1− exp(−σiδi), Ti =
i−1

∏
j=1

(1−α j).

This process is far more efficient than evaluating an MLP for each query point.

Training via Reconstruction Loss.

Plenoxels are trained using the same loss as NeRF. For a ray with known ground-truth color C (r),
the predicted color Ĉ (r) is supervised by:

Lrecon =
∥∥Ĉ (r)−C (r)

∥∥2

2
.

To ensure smoothness and avoid artifacts, the authors also apply a total variation regularization term

to both the SH coefficients and densities.

Why Spherical Harmonics?

Spherical harmonics are a compact, differentiable basis for modeling smooth directional variation.

At each spatial point, SHs allow the color to change with viewpoint (e.g., capturing specularities),

while still being efficient to store and evaluate. Importantly, their basis functions Yℓm(d) are fixed

and directional—so the only learnable parameters are the SH coefficients per corner.

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1709

Figure 23.49: Training comparison between NeRF and Plenoxels [160]. Plenoxels reconstruct

meaningful geometry within a minute, while NeRF requires tens of minutes for similar fidelity.

Fast Convergence via Coarse-to-Fine Refinement.

The voxel grid is initialized at a low resolution (e.g., 1283), with voxels that have low opacity pruned

early. As training progresses, high-opacity regions (likely to contain object surfaces) are adaptively

subdivided into finer voxels. This hierarchical approach allows Plenoxels to focus memory and

resolution only where detail is required.

Core Insight and Tradeoffs.

Plenoxels’ design replaces learned neural scene functions with a sparse, explicit grid of radiance

information. The grid is fully differentiable, fast to query, and optimized directly—avoiding the

need for costly MLP forward passes. However, this performance comes at the cost of memory:

voxel-based representations scale cubically with resolution, and require pruning and sparsity to

remain tractable.

Key insight: By combining spherical harmonics with sparse voxel grids, Plenoxels offer a radiance

field representation that is fast to optimize and evaluate, enabling high-quality novel view synthesis

in minutes rather than hours.

1710 Chapter 23. Lecture 23: 3D vision

Enrichment 23.10.2: DVGO: Direct Optimization on Dense Voxel Grids

Direct Voxel Grid Optimization (DVGO) [591] accelerates novel view synthesis by replacing NeRF’s

implicit MLP with a fully explicit scene representation: a dense voxel grid storing volume densities

and appearance features. This design allows DVGO to train up to two orders of magnitude faster

than NeRF while retaining differentiable volumetric rendering.

A dense grid refers to a regular axis-aligned 3D array covering a bounded scene volume, where

every voxel is allocated and updated during training—unlike sparse grids, which store only occupied

regions. This simplifies memory layout and interpolation, but requires careful bounding and coarse-

to-fine scheduling to manage memory usage.

Figure 23.50: DVGO framework overview, adapted from [591]. A ray is cast and sampled at 3D

points. Trilinear interpolation retrieves density and appearance features from a dense voxel grid. A

lightweight MLP decodes RGB values. Differentiable volume rendering is used for supervision.

Rendering Pipeline

DVGO preserves the volumetric rendering framework of NeRF but replaces the implicit MLP with

an explicit, grid-based representation. The rendering process is composed of the following steps:

• 1. Ray Sampling: For each pixel, a ray is cast as r(t) = o+ td, where o is the camera origin

and d is the viewing direction. The ray is sampled at depths {ti}N
i=1, yielding 3D sample points

xi = r(ti).
• 2. Grid Query via Trilinear Interpolation: Each point xi is mapped into the dense voxel

grid. DVGO retrieves the interpolated density σ(xi) ∈ R and a learned appearance feature

f(xi) ∈ R
C using trilinear interpolation from the eight surrounding voxels.

• 3. Color Decoding: To produce RGB color, DVGO offers two options:

– Direct RGB: The feature f is directly interpreted as an RGB vector—this is the fastest

and view-independent mode.

– Tiny MLP: A shallow two-layer MLP with the viewing direction d as input decodes the

color as ci = MLP(f,d). This captures simple view-dependent effects at minimal cost.

• 4. Volume Rendering: Colors ci and opacities αi = 1−exp(−σiδi) are combined using alpha

compositing:

Ti =
i−1

∏
j=1

(1−α j), Ĉ (r) =
N

∑
i=1

Ti ·αi · ci.

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1711

The model is trained to minimize the reconstruction loss:

L =
∥∥Ĉ (r)−C (r)

∥∥2

2
.

Coarse-to-Fine Upsampling and Fine Detail Reconstruction

DVGO’s training proceeds in a progressive manner: it begins with a coarse voxel grid (e.g., 1283)

and upsamples it at fixed iteration checkpoints (e.g., after 2k and 4k steps) to finer resolutions

(e.g., 2563, 5123). Each upsampling operation uses trilinear interpolation to initialize the finer

grid from the coarser one. Crucially, nonlinear activations (e.g., ReLU or softplus) are applied

after interpolation—this post-activation strategy enhances sharp surface modeling and reduces

high-resolution artifacts.

This multi-resolution training schedule enables the model to:

• Quickly capture global geometry with minimal compute at low resolution,

• Preserve continuity and prior learning when upsampling,

• Refine high-frequency details and textures in later training phases without restarting optimiza-

tion.

During inference, only the final high-resolution grid is used.

Foreground–Background Decomposition

To support both bounded and unbounded scenes, DVGO introduces a two-grid decomposition. The

foreground region is represented with a dense voxel grid aligned to a tight bounding box. For

unbounded backgrounds (e.g., skies or distant terrain), DVGO uses a secondary cylindrical grid in

log-depth space. Rays first accumulate color and opacity from the foreground; if the transmittance

remains nonzero, they continue into the background grid.

DVGOv2 Improvements

DVGOv2 [591] builds on DVGO with several technical enhancements that improve both training

efficiency and rendering fidelity:

• Distortion-Aware Loss: A fast implementation of the distortion regularization from mip-

NeRF 360 [29], reducing complexity from O(N2) to O(N).
• Adaptive Learning Rate: Voxels observed from fewer views are assigned lower learning

rates to reduce overfitting to sparse observations.

• Low-Opacity Initialization: The density grid is initialized to near-zero opacity to avoid

redundant clouds in empty regions.

• Cuboid Grid Parameterization: Supports unbounded scenes via a contracted cuboid grid

inspired by mip-NeRF 360.

These changes lead to faster convergence, better generalization, and improved visual quality,

especially in complex or forward-facing scenes.

Comparison to Plenoxels and NeRF

• NeRF: Relies on a deep MLP to model density and color, requiring multiple hours of training

per scene. DVGO eliminates the MLP for geometry and uses only a shallow decoder for color,

yielding up to 100× faster training.

• Plenoxels: Employs sparse voxel grids with spherical harmonics (SH) for view-dependent

color. While more memory-efficient, SH can introduce ringing artifacts and requires custom

CUDA kernels. DVGO, in contrast, uses dense grids and is implemented in pure PyTorch,

making it easier to adopt and extend.

1712 Chapter 23. Lecture 23: 3D vision

Efficiency and Tradeoffs

Quantitative benchmarks on the LLFF dataset highlight the tradeoffs:

• Training Time: DVGOv2 converges in ~10.9 minutes vs. 24.2 minutes for Plenoxels.

• Quality: DVGOv2 achieves slightly better PSNR (26.34 vs. 26.29) and lower LPIPS (0.197

vs. 0.210).

• Inference Time: DVGOv2 is slightly slower (0.07–0.36 s per image) than Plenoxels (~0.0667

s), due to its dense grid.

DVGO is ideal for rapid prototyping, differentiable pipelines, and simpler research codebases.

Plenoxels remains competitive in memory-constrained or real-time settings. The choice depends on

application constraints: DVGO favors training speed and modularity; Plenoxels favors compactness

and high-speed inference.

Performance Across Scene Types

DVGO and its improved variant DVGOv2 [592] deliver strong rendering quality across diverse

benchmarks while significantly accelerating training. DVGOv2 incorporates distortion-aware loss,

low-opacity initialization, and adaptive learning rates for enhanced convergence, especially in

real-world or unbounded settings.

Method Train Time PSNR^ SSIM^ LPIPS_

Synthetic-NeRF (8 scenes)

DVGO 14.2m 31.95 0.957 0.053

Plenoxels 11.1m 31.71 0.958 0.049

Instant-NGP 5.0m 33.18 – –

TensoRF (L) 17.6m 33.14 0.963 0.047

DVGOv2 (L) 6.8m 32.76 0.962 0.046

Table 23.3: Results on Synthetic-NeRF [429].

Method Train Time PSNR^ SSIM^ LPIPS_

LLFF (forward-facing)

NeRF [429] ~1440m 26.50 0.811 0.250

Plenoxels 24.2m 26.29 0.839 0.210

TensoRF (S) 19.7m 26.51 0.832 0.217

TensoRF (L) 25.7m 26.73 0.839 0.204

DVGOv2 w/o Ldist 13.9m 26.24 0.833 0.204

DVGOv2 10.9m 26.34 0.838 0.197

Table 23.4: LLFF benchmark results. DVGOv2 achieves strong accuracy with fast training and

compact grids.

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1713

Method Train Time PSNR^ SSIM^ LPIPS_

Tanks&Temples (unbounded)

NeRF++ hours 20.49 0.648 0.478

Plenoxels 27.3m 20.40 0.696 0.420

DVGOv2 w/o Ldist 22.1m 20.08 0.649 0.495

DVGOv2 16.0m 20.10 0.653 0.477

Table 23.5: Results on unbounded inward-facing Tanks&Temples dataset.

Method Train Time PSNR^ SSIM^ LPIPS_

mip-NeRF 360 (unbounded)

NeRF hours 24.85 0.659 0.426

NeRF++ hours 26.21 0.729 0.348

mip-NeRF 360 hours 28.94 0.837 0.208

DVGOv2 w/o Ldist 16.4m 24.73 0.663 0.465

DVGOv2 (p = 2) 13.2m 24.80 0.659 0.468

DVGOv2 (p = ∞) 14.0m 25.24 0.680 0.446

DVGOv2 (p = ∞)* 15.6m 25.42 0.695 0.429

Table 23.6: Results on mip-NeRF 360 dataset. (*) denotes longer schedule with cuboid contraction.

Final Remarks

DVGO and DVGOv2 establish voxel-based grids as powerful alternatives to neural radiance fields.

By combining dense 3D grids, post-activation interpolation, and shallow decoders, they offer rapid

convergence with minimal architectural complexity. DVGOv2 further enhances training stability and

scalability for real-world and unbounded scenes—making it a highly competitive baseline for fast

and differentiable view synthesis.

Hash-Based Feature Grid Representations

While voxel-based methods accelerate NeRF by caching scene representations in spatial grids, they

suffer from cubic memory growth as resolution increases. To overcome this bottleneck, a new family

of approaches—starting with Instant-NGP—replaces dense voxel grids with compact multiresolution

hash encodings. These techniques map 3D points to feature vectors via hash tables that sparsely

index multiscale grids. The result is a flexible and memory-efficient representation that supports fast

training, real-time rendering, and high fidelity.

Core Tradeoff. Hash-based grids strike a balance between speed and quality, avoiding the

memory overhead of dense voxel fields while adapting to scene complexity. However, they introduce

stochasticity due to hash collisions—multiple spatial locations may share a feature if they fall into

the same hash bucket—potentially adding noise to reconstructions. Despite this, hash encodings

have proven remarkably robust and scalable across datasets.

1714 Chapter 23. Lecture 23: 3D vision

Enrichment 23.10.3: Instant-NGP: Multiscale Hash Encoding for Real-Time NeRF

Instant-NGP [443] revolutionized radiance field rendering by achieving real-time training and

inference through a novel multi-resolution hash encoding and a fully optimized GPU pipeline.

The method decouples scene resolution from memory usage by mapping 3D positions to compact,

trainable feature vectors via hash tables. These features, concatenated across multiple spatial scales,

are passed to a small neural decoder to predict density and color.

Multiscale Hash Encoding

Instant-NGP replaces dense voxel grids with a compact, adaptive alternative: a multiresolution

hash grid encoding. The key idea is to approximate the benefits of a high-resolution voxel grid

without paying its cubic memory cost. Instead of explicitly allocating every voxel, the method

uses a hierarchy of virtual grids combined with spatial hashing and trilinear interpolation to extract

meaningful features at arbitrary 3D positions.

At each level ℓ ∈ {1, . . . ,L}, the scene is conceptually divided into a 2ℓ×2ℓ×2ℓ regular grid.

For a given point x ∈ R
3, Instant-NGP performs the following steps at level ℓ:

1. Voxel identification: Scale x to the grid resolution and identify the indices of the 8 surrounding

voxel corners.

2. Hash lookup: Each corner index is passed through a fixed spatial hash function:

h(x,y,z) = ((x · p1)⊕ (y · p2)⊕ (z · p3)) mod T,

where p1, p2, p3 are large primes, ⊕ denotes bitwise XOR, and T is the fixed hash table size.

3. Feature interpolation: Each hash index retrieves a trainable feature vector from a table

specific to level ℓ. These 8 vectors are then interpolated using trilinear interpolation, weighted

by the relative position of x within the voxel, to obtain a level-specific embedding fℓ(x) ∈ R
F .

This process is repeated independently at all L levels. The resulting embeddings are concatenated:

f(x) =
L⊕

ℓ=1

fℓ(x) ∈ R
L·F .

Motivation and Benefits

This design achieves fine-grained spatial adaptivity using constant memory per level. At coarse

levels, the grid size is typically smaller than T , so the hash function provides a near one-to-one

mapping. At fine levels, where the number of grid points exceeds T , multiple spatial positions map

to the same slot—creating collisions. These collisions are tolerated and implicitly resolved through

training: the feature vectors stored in each hash slot are optimized via backpropagation, and the

network learns to disambiguate overlapping mappings by adjusting gradients according to relevance.

This approach yields several key benefits:

• Compactness: Each hash table is small and fixed-size, yet the total system covers extremely

high spatial resolution.

• Continuity: Trilinear interpolation smooths transitions between nearby points.

• Adaptivity: Regions with high-frequency detail attract stronger gradients, naturally concen-

trating representational capacity.

• Efficiency: All hash lookups and interpolations are lightweight and fully parallelizable on

modern GPUs.

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1715

Hash Function and Learning Dynamics

Instant-NGP encodes 3D positions using a multiresolution hierarchy of spatial hash tables. Each

level ℓ ∈ {1, . . . ,L} maintains a separate hash table: an array of T learnable feature vectors in R
F .

The table does not store voxels explicitly. Instead, a fixed spatial hash function maps integer voxel

indices to table slots:

h(x,y,z) = ((x · p1)⊕ (y · p2)⊕ (z · p3)) mod T,

where p1, p2, p3 are large primes, and ⊕ denotes bitwise XOR. The table size T is fixed (typically

T ∈ [214,219]).

Given a query point x ∈ R
3, the encoding proceeds as follows:

1. Multiscale voxelization: For each level ℓ, x is scaled to the level’s virtual grid and enclosed

voxel cell. The 8 surrounding integer voxel corners {ci} ⊂ Z
3 are identified.

2. Hash-based lookup: Each corner ci = (xi,yi,zi) is hashed to index h(xi,yi,zi), retrieving a

feature vector vi ∈ R
F from the level’s table.

3. Interpolation: The 8 vectors {vi} are trilinearly interpolated using x’s relative position in the

voxel to obtain fℓ(x) ∈ R
F .

The results from all L levels are concatenated to form the full encoding:

f(x) =
L⊕

ℓ=1

fℓ(x) ∈ R
L·F ,

which is passed to a lightweight MLP to predict volume density σ and emitted color c.

The only trainable parameters in this encoding stage are the feature vectors {vi} in the hash

tables. These are initialized randomly and updated during training. Although the hash function

and voxel coordinates are fixed and non-differentiable, the downstream operations—interpolation,

concatenation, and the MLP—are differentiable. This allows gradients from the output loss to

backpropagate to the retrieved vectors:

loss→MLP→ f(x)→ fℓ(x)→ weights→{vi}.

Since trilinear interpolation is a linear operation, gradients are distributed proportionally to the

interpolation weights. Each feature vector vi receives a meaningful update via gradient descent,

despite being accessed through a non-differentiable hash index.

This design decouples the spatial access mechanism from learning. The hash function defines a

fast, fixed indexing scheme; the MLP never sees raw coordinates x, only the feature-based encoding

f(x). Learning proceeds entirely by adjusting the content of the hash tables to minimize prediction

error.

To decorrelate nearby spatial positions, the hash function applies two transformations: each

coordinate is multiplied by a large prime to stretch the input space, then the results are combined

using bitwise XOR to mix their bits. This ensures that adjacent voxel indices—such as (x,y,z)
and (x,y,z+1)—produce distant hash indices, scattering neighboring points across the table and

reducing local redundancy.

1716 Chapter 23. Lecture 23: 3D vision

Since the hash table size T is fixed and shared across all levels, collisions are resolution-

dependent. At coarse levels, the number of possible voxel corners is small relative to T , so collisions

are rare. At fine levels, however, the voxel grid grows cubically, quickly exceeding T and making

collisions inevitable—i.e., distinct locations mapping to the same feature vector.

Instant-NGP does not resolve these collisions structurally. Instead, it relies on implicit resolution

through gradient-based optimization. During training, multiple points may share a feature vector,

but their contributions differ: voxels near high-frequency structures (e.g., edges or textured surfaces)

produce stronger gradients, which dominate the updates. Voxels in smooth or empty regions

contribute weak gradients and have little effect. This causes the optimizer to adaptively reallocate

memory: important areas receive sharper, more expressive encodings, while uninformative regions

are compressed.

The multiresolution hierarchy further mitigates the effects of collisions. Even if two points collide

at one level, they are unlikely to do so across all L levels. Since the final encoding f(x) =
⊕L

ℓ=1 fℓ(x)
aggregates interpolated features across resolutions, most spatial positions retain a nearly unique

representation. This enables the MLP to distinguish between distinct locations reliably, despite heavy

parameter sharing.

This collision-tolerant design enables Instant-NGP to maintain high fidelity with a compact

memory budget: a fixed-size hash table per level suffices to encode large scenes efficiently, while

multiscale encoding and gradient-driven adaptivity ensure representational capacity is focused where

it matters most.

Fast MLP Decoder and View Conditioning

The final concatenated multiscale embedding f(x), along with an encoding of the viewing direction

d, is passed to a lightweight MLP decoder:

(σ ,c) = fθ (f(x),d).

This MLP typically has 2–3 layers and is implemented with the tiny-cuda-nn library, which fuses

matrix multiplication and activation layers into a single CUDA kernel. This reduces memory traffic

and enables the entire forward/backward computation to execute in microseconds.

The network outputs:

• A scalar density σ ∈ R+, controlling opacity along the ray.

• An RGB color vector c ∈ [0,1]3, which can depend on the view direction via d.

Figure 23.51: Instant-NGP architecture. Input points are encoded with multi-resolution hash grids,

passed to a fused MLP along with viewing direction, and output density and color are used for

volume rendering.

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1717

This architecture supports real-time training and rendering by combining a compact, hash-based

spatial encoding with an extremely efficient neural decoder.

Occupancy Grid Acceleration

To reduce the number of MLP evaluations in empty space, Instant-NGP employs a coarse occupancy

grid that accelerates volume rendering by identifying which regions of the scene are likely to contain

nonzero density. This grid is dynamically updated during training and acts as a binary mask that

allows rays to skip regions deemed empty, leading to speedups of 10× to 100× in large scenes.

The grid is a 3D bitfield over a coarse voxelization of the scene’s bounding volume. For any

sample point along a camera ray, the renderer first checks the occupancy bit of the voxel containing

the point. If the bit is unset (i.e., the region is marked as empty), the sample is skipped and the MLP

is not queried. This drastically reduces redundant computation in free space and occluded volumes.

The occupancy grid is not static; it is updated periodically based on the current predictions of

the model. Specifically, Instant-NGP maintains a separate floating-point density grid (not visible to

the renderer) to accumulate raw density values over time. Every N training steps (e.g., N = 16), the

system performs the following update:

1. A set of candidate grid cells is selected for update, using a combination of uniform sampling

and rejection sampling near occupied regions.

2. For each selected cell, a random 3D point x within the cell is chosen.

3. The MLP is queried at x to obtain its predicted volume density σ(x).
4. The cell’s accumulated density value is updated by taking the maximum of the existing value

and σ(x).
5. The final occupancy bit is set if this value exceeds a threshold ε; otherwise, the cell remains

marked as empty.

Importantly, the MLP is not evaluated at the eight corners of each voxel for this purpose. Instead,

it is evaluated at a single random point within the cell, which is sufficient to detect occupied space

due to the smoothness of the learned density field. This process ensures that the occupancy grid

reflects the evolving geometry of the scene, pruning away empty regions while preserving regions

with fine detail.

At rendering time, this grid enables efficient ray marching: rays are advanced in larger steps

through empty regions and subdivided only when approaching occupied space. Combined with

Instant-NGP’s compact encoding, this mechanism enables high-fidelity novel view synthesis at

interactive frame rates.

Training and Inference

Training follows the same NeRF paradigm: rays are sampled, feature vectors are encoded from hash

tables, densities and colors are predicted, and volume rendering integrates them into pixel colors.

The MSE loss is backpropagated through the entire system, including the hash table entries (which

are learnable) and the MLP. During inference, the process is purely feed-forward and supports 100+

FPS rendering on modern GPUs.

1718 Chapter 23. Lecture 23: 3D vision

Advantages and Limitations

• Speed and Efficiency: Instant-NGP achieves dramatic acceleration over prior NeRF methods.

With hash-based encoding and optimized CUDA kernels, it reaches high-quality reconstruc-

tions in just seconds. For example, on the LEGO scene, Instant-NGP matches or surpasses

NeRF’s performance (32.54 PSNR) in under 15 seconds of training (see the below table).

Real-time rendering is also enabled at over 60 FPS.

• Quality and Convergence: Despite its speed, Instant-NGP does not sacrifice fidelity. After

just 1 minute of training, it consistently outperforms NeRF [429] and NSVF [370], and

achieves results competitive with or exceeding mip-NeRF [30]. Notably, the hash-encoded

model reaches 33.18 average PSNR in 5 minutes—higher than all baselines.

• Compactness: The hash encoding decouples memory consumption from scene resolution.

Each level uses a fixed-size table of T feature vectors, yielding predictable memory use (e.g.,

2−8 MB), regardless of spatial complexity.

• Adaptivity: Collisions in the hash tables are not explicitly resolved. Instead, gradient-based

optimization allocates representational capacity where needed: voxels near surfaces or textures

produce stronger gradients and dominate updates to shared entries. This enables the model to

prioritize detail-rich regions while ignoring redundant space.

• Limitations:

– Requires custom CUDA kernels and optimized memory layouts, limiting ease of deploy-

ment across platforms.

– Primarily suited for dense photometric supervision; extensions to sparse-view or semantic

tasks are nontrivial.

– Hash collisions may introduce subtle artifacts in high-frequency regions.

Table 23.7: PSNR comparison on the eight synthetic scenes from the NeRF dataset. Instant-NGP

(Hash) achieves top quality within seconds to minutes, outperforming NeRF [429] and NSVF [370],

and approaching or exceeding mip-NeRF [30]. Data from [443].

Method Mic Ficus Chair Hotdog Materials Drums Ship Lego Avg.

Instant-NGP (Hash, 1s) 26.09 21.30 21.55 21.63 22.07 17.76 20.38 18.83 21.20

Instant-NGP (Hash, 5s) 32.60 30.35 30.77 33.42 26.60 23.84 26.38 30.13 29.26

Instant-NGP (Hash, 15s) 34.76 32.26 32.95 35.56 28.25 25.23 28.56 33.68 31.41

Instant-NGP (Hash, 1m) 35.92 33.05 34.34 36.78 29.33 25.82 30.20 35.63 32.64

Instant-NGP (Hash, 5m) 36.22 33.51 35.00 37.40 29.78 26.02 31.10 36.39 33.18

mip-NeRF (hours) 36.51 33.29 35.14 37.48 30.71 25.48 30.41 35.70 33.09

NSVF (hours) 34.27 31.23 33.19 37.14 32.68 25.18 27.93 32.29 31.74

NeRF (hours) 32.91 30.13 33.00 36.18 29.62 25.01 28.65 32.54 31.01

Instant-NGP (Freq., 1m) 26.62 24.72 28.51 32.61 26.36 21.33 24.32 28.88 26.67

Instant-NGP (Freq., 5m) 31.89 28.74 31.02 34.86 28.93 24.18 28.06 32.77 30.06

Key insight: By replacing dense voxel grids with multiresolution hash encodings and using a fully

fused MLP, Instant-NGP transforms NeRF into a memory-efficient and GPU-optimal rendering

system capable of real-time operation.

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1719

Enrichment 23.10.4: Nerfacto: Merging Instant-NGP & NR Pipelines

Nerfacto [605] generalizes the Instant-NGP architecture into a more robust and modular neural

rendering pipeline. It retains the core speed advantages of multiresolution hash encodings, but

integrates a range of techniques from more expressive NeRF variants—including Mip-NeRF 360,

NeRF-W, and Ref-NeRF—to support complex, real-world data. Developed within the Nerfstudio

framework, Nerfacto prioritizes flexibility, semantic extensibility, and practical usability over raw

speed alone.

At the core, Nerfacto still uses a hash-encoded MLP to map each sampled 3D point x ∈ R
3 and

view direction d ∈ S
2 to a predicted color and density. Like Instant-NGP, it queries a multiresolution

hash grid to produce a high-frequency encoding f(x), which is fed to a compact decoder network.

However, Nerfacto departs from Instant-NGP in three major ways:

• Proposal Network Sampling: Nerfacto improves ray efficiency by using a hierarchy of

lightweight proposal networks—small hash-encoded MLPs—that predict coarse density dis-

tributions. These guide sample placement toward regions of likely scene content, reducing

wasted queries and enhancing edge sharpness. This replaces the occupancy grid with a more

learned, view-adaptive sampling strategy, similar to mip-NeRF 360.

• Hybrid Feature Fusion: In addition to 3D hash features, Nerfacto optionally fuses image-

space features from 2D convolutional encoders. These image features can inject view-specific

cues, aiding the model in tasks like relighting, semantic rendering, or pose correction. The

final input to the MLP decoder is a concatenation of 3D features, view direction encodings,

and (optionally) per-image appearance embeddings or 2D descriptors.

• Extended Output and Losses: Unlike Instant-NGP—which focuses solely on color and

density prediction—Nerfacto supports multi-head outputs and diverse losses, including surface

normals, depth supervision, semantic labels, or photometric consistency across views. This

makes it suitable for real-world, unbounded scenes captured with noisy camera poses and

lighting variation.

Figure 23.52: Nerfacto pipeline [605]. Hash-encoded 3D features and auxiliary 2D features are

fused before MLP decoding. The network is trained using RGB, geometric, and semantic losses.

By combining fast hash-based encoding with modular losses, proposal sampling, and auxiliary

inputs, Nerfacto enables real-time training and visualization even in messy, in-the-wild datasets.

While Instant-NGP is best suited for clean, object-centric scenes with pre-registered cameras,

Nerfacto handles general scenes with pose noise, dynamic lighting, and semantic supervision. It

offers a practical middle ground between research flexibility and production deployment.

1720 Chapter 23. Lecture 23: 3D vision

Figure 23.53: Volume rendering output of Nerfacto [605]. Despite real-time training, the model

recovers sharp surfaces and textures.

Applications and Design Goals

Nerfacto is engineered not only for high-quality novel view synthesis, but also as a general-purpose

backbone for a wide range of NeRF-style applications. Its modular design, efficient encoding, and

support for auxiliary supervision make it suitable for both academic experimentation and real-world

deployment. Key goals include:

• Reusability: Nerfacto supports downstream tasks such as relighting, surface extraction, and

semantic segmentation. Fine-tuning is straightforward, enabling rapid adaptation to new

scenes or objectives.

• Speed: By retaining Instant-NGP’s hash-based encoding and efficient volumetric render-

ing, Nerfacto preserves real-time training and inference speeds—despite additional model

components and loss terms.

• Robustness: Nerfacto is designed to operate under imperfect capture conditions, including

sparse viewpoints, noisy poses, and variable lighting. It generalizes well with minimal

hyperparameter tuning and works effectively across both bounded and unbounded scenes.

Compared to Instant-NGP—which focuses on maximal efficiency for object-centric datasets

with known poses—Nerfacto emphasizes extensibility and supervision-rich learning. Its architecture

accommodates semantic objectives, auxiliary features, and dynamic inputs without sacrificing

rendering quality or speed.

Core Insight and Tradeoffs

Nerfacto’s core insight is that fast hash-based scene encoding can be extended into a flexible,

semantically-aware rendering framework. The multiresolution hash grid compresses spatial variation

across scales, while learned decoders map fused 3D and 2D features to rich volumetric outputs. This

allows the model to achieve high fidelity with a compact parameter budget.

Although hash collisions are unavoidable at fine resolutions, their impact is mitigated by the

multilevel encoding: even if two spatial positions collide at one resolution, they are unlikely to collide

across all levels. This ensures that the final encoding f(x) remains discriminative and expressive,

preserving sharp detail and accurate color prediction, just like in Instant-NGP.

Key insight: Nerfacto demonstrates that real-time neural rendering does not require sacrificing flexi-

bility or supervision. By combining Instant-NGP’s memory efficiency with neural field modularity,

it bridges efficient graphics pipelines and modern learning-based scene understanding.

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1721

Enrichment 23.10.5: TensoRF: Tensor-Factorized Fields

TensoRF [80] proposes a compact and interpretable alternative to MLP-based NeRF-style radiance

field models. The scene is still represented as a continuous 5D function

F (x,d) = (σ ,c),

mapping a 3D location x ∈ R
3 and a viewing direction d ∈ S

2 to a scalar volume density σ ∈ R and

a view-dependent RGB color c ∈ R
3.

Overview

Vanilla NeRF computes features by feeding spatial coordinates into a coordinate-based MLP, which

is queried at every sampled point along a ray. TensoRF replaces this with an explicit, low-rank

tensor representation that stores features in a structured form and can be queried directly via

interpolation. This change shifts most computation from deep networks to simple lookups and

lightweight decoding, reducing both memory and runtime while preserving compatibility with

NeRF’s differentiable volume rendering framework. Conceptually, the model consists of:

• A 4D spatial feature tensor T ∈ R
X×Y×Z×C, storing a feature vector of dimension C at each

spatial location x = (x,y,z);
• A lightweight decoder S that maps features and a view direction d to the density σ and RGB

color c.

Radiance Field Decomposition via Tensor Approximation

The latent feature field T is decomposed into:

• Geometry tensor Tσ ∈ R
X×Y×Z×Cσ — features used for density estimation.

• Appearance tensor Tc ∈ R
X×Y×Z×Cc — features used for predicting view-dependent color.

These combine as T = [Tσ |Tc] with C =Cσ +Cc.

Rather than store T densely, TensoRF learns a small number R = Rσ +Rc of axis-aligned

vector–matrix (VM) factors, acting as compressed tensor components. For any point x ∈ [0,1]3:

• Geometry features are reconstructed by summing Rσ geometry VM components.

• Appearance features are reconstructed by summing Rc appearance VM components.

• These are passed to density and color heads to compute σ(x) and c(x,d), respectively.

This factorization reduces storage complexity from O(N3C) for a dense voxel grid to O(N2RC),
enabling high-resolution reconstructions without prohibitive memory costs.

Vector–Matrix (VM) Decomposition

Each tensor field in TensoRF—whether the geometry tensor Tσ or the appearance tensor Tc—is

not stored as a dense 4D grid. Instead, it is approximated using a sum of R low-rank vector–matrix

(VM) components. For any continuous 3D query point x = (x,y,z) ∈ [0,1]3, each rank-r component

evaluates as:

Âr(x) = v
(x)
r (x) ·M(y,z)

r (y,z)+ v
(y)
r (y) ·M(x,z)

r (x,z)+ v
(z)
r (z) ·M(x,y)

r (x,y),

where:

• v
(i)
r (·) ∈ R

Ni is a learnable 1D vector defined along axis i ∈ {x,y,z}, evaluated via linear

interpolation.

• M
(j,k)
r (·, ·) ∈ R

N j×Nk is a learnable 2D matrix over the orthogonal plane (j,k), evaluated via

bilinear interpolation.

1722 Chapter 23. Lecture 23: 3D vision

Each term behaves like a 3D slab: a vector modulates variation along one axis while the

matrix textures the perpendicular plane. This makes VM components far more expressive than

CP decomposition’s fully separable outer products, enabling detailed structures such as diagonal

surfaces or 2D textures with fewer components.

Interpolation: From Discrete Grids to Continuous Coordinates

TensoRF learns vector and matrix values at discrete grid locations (e.g., Nx = 128 entries along the

x-axis), but rendering requires evaluating them at continuous 3D coordinates. This is achieved by

differentiable interpolation:

1. Normalization. All 3D sample points are first mapped from world coordinates into the

normalized unit cube [0,1]3 that encloses the scene. If a ray exits this cube, integration stops and no

further queries are made.

2. Linear interpolation (1D vectors). For a coordinate x ∈ [0,1] and vector v
(x)
r ∈ R

Nx , we:

u = x · (Nx−1), i = ⌊u⌋, α = u− i,

v
(x)
r (x) = (1−α) · v(x)r [i]+α · v(x)r [i+1].

This blends the two neighboring entries based on the fractional offset α . If x aligns with a grid cell

center (e.g., α = 0), it degenerates to a direct lookup.

3. Bilinear interpolation (2D matrices). For a matrix M
(y,z)
r ∈ R

Ny×Nz and normalized coordi-

nates (y,z) ∈ [0,1]2:

u = y · (Ny−1), v = z · (Nz−1),

i = ⌊u⌋, j = ⌊v⌋, α = u− i, β = v− j,

M
(y,z)
r (y,z) = (1−α)(1−β) ·M[i, j]+α(1−β) ·M[i+1, j]

+(1−α)β ·M[i, j+1]+αβ ·M[i+1, j+1].

Example. Suppose x = 0.5, and Nx = 128. Then u = 63.5, so we interpolate between v
(x)
r [63]

and v
(x)
r [64] with equal weights. If y = 0.7, z = 0.2, and Ny = Nz = 128, we blend the four matrix

entries around cell (89,25) according to the local offsets α , β .

Differentiability and Training Efficiency

Since linear and bilinear interpolation are piecewise-linear functions of x, gradients propagate

through them during backpropagation. This enables end-to-end training of all vector and matrix

values using volume rendering loss, just like weights in a neural network.

VM decomposition thus achieves a balance between expressiveness and efficiency. Each axis-

aligned component requires only a small number of memory lookups (2 for vectors, 4 for matrices),

and scales quadratically in spatial resolution rather than cubically like voxel grids. This makes

TensoRF compact, fast, and differentiable, with no need for deep MLPs at inference time.

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1723

Geometry: View-Independent Density Estimation

To compute the scalar volume density at a query point x ∈ [0,1]3, TensoRF evaluates all geometry

VM components and linearly combines them using learned scalar weights w
(σ)
r . This sum is then

passed through a shifted Softplus activation:

σ(x) = log

(
1+ exp

(
Rσ

∑
r=1

w
(σ)
r · Âσ ,r(x)+β

))
,

where β ∈ R is a learned bias.

This decoder-free formulation directly outputs a non-negative scalar density without using a

neural network. The Softplus function, defined as

Softplus(z) = log(1+ exp(z)),

smoothly approximates the ReLU function and ensures that the predicted density is always positive.

The shifted variant Softplus(z+β) improves training stability and expressiveness.

Appearance: View-Dependent Color Prediction

To model view-dependent color, TensoRF uses a separate set of VM components. Each component

r ∈ {1, . . . ,Rc} contributes a 3D appearance feature vector at point x, constructed by concatenating

the outputs from its three axis–plane interactions:

f
(r)
c (x) =

[
v
(x)
r (x)M

(y,z)
r (y,z), v

(y)
r (y)M

(x,z)
r (x,z), v

(z)
r (z)M

(x,y)
r (x,y)

]
.

The full appearance descriptor is then computed by summing over all such components:

fc(x) =
Rc

∑
r=1

f
(r)
c (x) ∈ R

Cc .

This feature vector is projected using a learned matrix B ∈ R
P×Cc , where P is the number of

latent appearance channels used by the color decoder. The projected feature is combined with a

frequency-encoded view direction s(d), and passed to a lightweight decoder S:

c(x,d) = S (B · fc(x), s(d)) .

The decoder S is typically a two-layer MLP or a small set of spherical harmonic (SH) basis

functions. This architecture enables efficient modeling of view-dependent lighting and appearance

while maintaining fast inference.

Comparison to CP Decomposition

TensoRF also explores a CP (CANDECOMP/PARAFAC) decomposition of the form:

T (x,y,z) =
R

∑
r=1

v
(x)
r (x) · v(y)r (y) · v(z)r (z),

where each rank-r term is the outer product of three 1D vectors defined along the spatial axes.

This formulation is highly compact, requiring only O(NR) memory for resolution N, but suffers

from a strong separability constraint: each component captures only rank-1 correlations across

1724 Chapter 23. Lecture 23: 3D vision

the three dimensions. As a result, it lacks the capacity to model complex structures such as depth

discontinuities, slanted edges, or fine textures, unless the rank R is increased substantially.

In contrast, the vector–matrix (VM) decomposition adopted in TensoRF breaks this constraint

by coupling two spatial axes per term. Each component Âr(x) includes bilinear interaction over

a 2D matrix (e.g., y-z) modulated by variation along the third axis (e.g., x). This allows a single

VM component to encode high-frequency planar details or axis-aligned surface patterns that would

require many CP terms to approximate.

Mathematically, the VM decomposition relaxes the strict separability constraint of CP by

modeling 2D spatial interactions explicitly through matrix components. This increases the expressive

power of each rank-r term while preserving a tractable memory footprint of O(N2R), significantly

more scalable than dense voxel grids yet more flexible than rank-1 CP.

Empirically, this design enables TensoRF-VM to achieve superior tradeoffs between accuracy,

efficiency, and compactness. The model converges rapidly—typically within a few to tens of

minutes—while attaining higher PSNR than both CP-based variants and dense-grid baselines.

Furthermore, its compact factorized representation yields scene models as small as 30–75MB that

match or exceed the visual fidelity of MLP-based NeRFs, with real-time rendering performance and

substantially reduced parameter count.

Summary

TensoRF’s VM decomposition reframes 3D scene representation as a problem in efficient multilinear

algebra. It enables fast, continuous queries, low memory usage, and real-time rendering without

relying on deep MLPs. The combination of geometry and appearance factorization into interpretable,

axis-aligned vector–matrix components provides both practical acceleration and theoretical insight

into compact neural field design.

Figure 23.54: TensoRF VM architecture [80]. Each 3D point x is reconstructed from axis-aligned

vector–matrix components. Density is predicted additively; color is produced from appearance

features and view direction using a shallow decoder.

Quantitative Comparison

TensoRF achieves excellent reconstruction quality while offering faster training and reduced memory.

The following table compares TensoRF against major baselines on standard NeRF benchmarks,

including Synthetic-NeRF, NSVF, and Tanks & Temples:

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1725

Table 23.8: Quantitative results from [80]. TensoRF (VM-192) achieves strong PSNR and SSIM

with orders-of-magnitude faster training and smaller model size than most voxel-based methods.

Method Time Size (MB) Synthetic-NeRF NSVF Tanks & Temples

PSNR^ SSIM^ PSNR^ SSIM^ PSNR^ SSIM^

NeRF [429] 35h 5.0 31.01 0.947 30.81 0.952 25.78 0.864

NSVF [370] >48h - 31.75 0.953 35.18 0.979 28.48 0.901

Plenoxels [160] 11.4m 778.1 31.71 0.958 - - 27.43 0.906

DVGO [591] 15.0m 612.1 31.95 0.957 35.08 0.975 28.41 0.911

TensoRF (VM-192) 17.4m 71.8 33.14 0.963 36.52 0.982 28.56 0.920

Qualitative Results

As shown in the below figure, TensoRF produces sharp, photorealistic reconstructions with accurate

geometry and appearance. Notably, it recovers fine details such as the floor and shadows in synthetic

scenes more faithfully than NeRF or Plenoxels, and exhibits fewer aliasing artifacts.

Figure 23.55: Qualitative results from [80]. TensoRF (VM-192) recovers finer geometric and

appearance details compared to NeRF [429], Plenoxels [160], DVGO [591], and NSVF [370].

Key insight: TensoRF shows that tensor decomposition offers a memory-efficient and accurate

alternative to MLP-heavy or voxel-based radiance field models. By factorizing spatial variation into

1D and 2D components, it achieves state-of-the-art results with significantly reduced overhead.

Enrichment 23.10.6: Mip-NeRF: Anti-Aliased Radiance Fields

Motivation: scale ambiguity and aliasing

In standard NeRF [429], each pixel is modeled as a single, infinitesimally thin ray, even though in

reality a pixel sees a finite footprint in the scene. This footprint corresponds to a cone-shaped region

1726 Chapter 23. Lecture 23: 3D vision

of space whose size grows with depth. When training with mixed-scale imagery (both close-up and

distant views), NeRF’s point-sampled positional encoding ignores the footprint size entirely, forcing

the network to reconcile incompatible signals.

Without scale awareness, two characteristic artifacts appear:

• Aliasing in distant views: A faraway pixel’s footprint may intersect fine geometry that is

smaller than the pixel can resolve. Sampling only at its center captures spurious high-frequency

detail, producing jagged edges or temporal shimmer.

• Over-smoothing in close-up views: To remain consistent with coarse, distant observations,

the model suppresses fine detail in close-ups, leading to blurriness and loss of texture.

While supersampling (casting multiple rays per pixel) can reduce both problems by averaging over

the footprint, it does not guarantee perfect removal of aliasing and is prohibitively expensive — each

extra ray multiplies the number of MLP evaluations.

Figure 23.56: Aliasing in NeRF [30]. (a) NeRF trained on high-res images suffers aliasing at lower

resolutions or when zooming. (b) Multi-scale training with NeRF only partially fixes this. (c)

Mip-NeRF yields less aliasing in its renderings across all scales. (d) Ground truth.

From pixels to cones

In a real pinhole camera, a pixel does not capture light from a single infinitesimal ray, but from a

continuous bundle of rays passing through its finite footprint on the image plane. These rays form

a cone whose apex is at the camera center and whose axis points through the pixel center. The

further we travel along this cone into the scene, the larger its cross-section becomes — so the same

pixel may correspond to a tiny region on a nearby surface but a much larger region on a distant one.

To model a pixel’s contribution faithfully, we therefore need to account for how both the position

and the spatial extent of the region it covers change with depth, setting the stage for a depth-wise

decomposition of the cone.

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1727

Why cones are divided into frustums

In volumetric rendering, the color of a pixel is obtained by integrating scene density and radiance

along the corresponding camera ray. For a cone-shaped pixel footprint, doing this integration over

the entire cone in one step is both impractical and physically inaccurate:

• Depth variation: The scene’s density and emitted color change continuously with depth.

• Occlusion: Objects at different distances can block each other, so visibility changes along the

viewing direction.

• Light transport: The transmittance — the fraction of light that reaches the camera — must

be updated incrementally as we progress through space.

If we treated the entire cone as a single unit, these effects would be averaged together indiscriminately,

erasing important depth-dependent structure.

The remedy is to discretize the cone into a sequence of depth intervals

[t0, t1], [t1, t2], . . . ,

each forming a frustum — the portion of the cone between two depth planes. This is conceptually

similar to NeRF’s point sampling along a ray, but instead of single points, each sample now represents

a finite 3D region with a nonzero cross-section. By working with frustums, we can:

• Associate each segment with its own spatial footprint size, enabling scale-aware encoding.

• Capture how density, color, and visibility change between consecutive depth ranges.

• Incrementally update transmittance and accumulate contributions in a physically consistent

manner.

Figure 23.57: Volume coverage ambiguity [30]. NeRF samples points along rays (dots), which can

alias across resolutions. Mip-NeRF casts cones and integrates over the entire volume seen by a pixel

(trapezoids), resolving ambiguity and encoding scale.

1728 Chapter 23. Lecture 23: 3D vision

From frustums to a pixel’s color

Once the cone is split into frustums, the rendering process accumulates their contributions to produce

the final pixel value. For the k-th frustum, the network predicts a mean density σk and a mean color

ck that represent the frustum’s aggregated appearance. These are then combined using the standard

volume rendering equation:

Cpixel =
N

∑
k=1

Tk αk ck,

where:

• αk = 1− exp(−σk ∆tk) is the frustum’s opacity given its depth thickness ∆tk,

• Tk = ∏
k−1
j=1(1−α j) is the transmittance — the fraction of light that reaches frustum k without

being blocked by earlier segments.

This discrete summation mirrors NeRF’s point-based accumulation but replaces points with scale-

aware volumetric regions.

Crucially, unlike the original NeRF [429], which applies positional encoding to a single 3D point

along each ray sample, Mip-NeRF instead asks:

What is the average positional encoding of all points within this frustum?

Here, “positional encoding” refers to the same Fourier feature mapping used in NeRF to represent

high-frequency variation in color and density. Averaging these features over the frustum volume acts

as a principled low-pass filter: sub-frustum spatial variation is integrated out, while coarser structure

is preserved. This transforms each sample into a scale-aware volumetric descriptor rather than a

potentially aliased point measurement.

From pixels to cones

In the pinhole camera model, a pixel corresponds not to a single infinitesimal ray, but to the set of

rays passing through its finite footprint on the image plane. These rays form a cone with apex at the

camera center o ∈ R
3 and central axis along the unit ray direction d ∈ R

3 through the pixel center.

At a depth t along d, the cone’s cross-section is the back-projection of the pixel’s footprint into

3D space. If the pixel is square with width w (in world-space units at the image plane) and the

camera has focal length f (same units), similar triangles show that this cross-section is a square

whose side length—the physical distance between two opposite edges—is:

S(t) =
w

f
t.

At unit depth (t = 1), this reduces to S = w
f
, the side length of the footprint in world units when

projected to 1 meter from the camera.

Approximating the footprint as a disk

To simplify later analytic derivations, Mip-NeRF replaces the square cross-section at each depth

with a rotationally symmetric disk of radius r(t), producing a right circular cone. If we simply

took r(t) = S(t)/2 so the disk matched the square’s width, the two shapes would differ in their

second moments (spatial variances), meaning they would have different frequency responses and

thus different effective blur sizes.

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1729

To ensure the disk has the same spatial spread as the square, Mip-NeRF uses variance matching.

For a shape centered at the origin, the marginal variance along one axis is:

Varsquare =
S2

12
, Vardisk =

R2

4
,

where S is the square’s side length and R is the disk’s radius. Equating these variances:

S2

12
=

R2

4
⇒ R =

S√
3
.

Thus the matched disk radius at depth t is:

r(t) =
S(t)√

3
=

w

f
√

3
t,

so the radius grows linearly with depth with slope

ṙ =
w

f
√

3
,

representing the disk radius per unit depth.

Why variance matching? Variance measures the average squared distance of footprint points

from its center, directly controlling the degree of spatial smoothing. Matching variances ensures

that the simplified disk and the true square blur high-frequency detail in the same way, while the

disk’s rotational symmetry allows later analytic treatment of frustums. This makes it possible for

Mip-NeRF to replace costly Monte Carlo integration with closed-form Gaussian-based anti-aliasing

in subsequent steps.

Frustum geometry and indicator function

To formalize this region of space, Mip-NeRF defines an indicator function

F(x,o,d, ṙ, t0, t1),

which returns 1 if a 3D point x ∈ R
3 lies inside the conical frustum defined by origin o, axis d, slope

ṙ, and depth bounds t0, t1, and 0 otherwise:

F(x,o,d, ṙ, t0, t1)=⊮

{(
t0 <

d⊤(x−o)

∥d∥2
2

< t1

)
∧
(

d⊤(x−o)

∥d∥2 ∥x−o∥2

>
1√

1+(ṙ/∥d∥2)2

)}
. (23.1)

This condition performs two geometric checks:

• Depth check: The term

d⊤(x−o)

∥d∥2
∈ (t0, t1)

measures how far along the ray axis the projection of x lies. Here:

– x−o is the displacement from the ray origin.

– The dot product d⊤(x−o) gives the scalar projection of this displacement onto d.

– Division by ∥d∥2 converts this projection into a true depth value even if d is not unit

length.

1730 Chapter 23. Lecture 23: 3D vision

The inequality enforces that the point lies between the near and far depth planes of the frustum.

• Angular check: This condition tests whether the point x lies inside the angular aperture of the

cone defined by the pixel footprint.

First, recall that the vector d is the central ray direction of the cone, and x−o is the vector

from the camera origin to the point x. The angle between these two vectors is:

θ = ∠(d,x−o),

whose cosine can be computed via the dot product:

cos(θ) =
d⊤(x−o)

∥d∥∥x−o∥ .

The cone’s half-angle α is the angular radius of its cross-section as seen from the apex. From

the slope definition ṙ (radius per unit depth), we have:

tan(α) =
ṙ

∥d∥ ,

and therefore:

cos(α) =
1√

1+(ṙ/∥d∥)2
.

The check:

d⊤(x−o)

∥d∥∥x−o∥ >
1√

1+(ṙ/∥d∥)2

is equivalent to testing:

cos(θ)> cos(α).

Since cos(θ) decreases monotonically with θ over the range [0,π], the inequality cos(θ)>
cos(α) means:

θ < α.

In words: the angular deviation of x from the cone axis is smaller than the cone’s half-angle,

so x lies within the cone’s aperture rather than outside it.

Why this matters: The frustum is defined not only by near and far depth limits along the axis,

but also by the cone’s angular extent. Even if a point lies between t0 and t1 in depth, it must

also pass this angular check to ensure it projects back to the same pixel footprint on the image

plane. Without this test, the frustum definition would include points that are too far off-axis to

be observed through the pixel.

Together, these checks precisely describe the 3D frustum volume subtended by a pixel over

a given depth range. With this exact region defined, Mip-NeRF can next express the expected

positional encoding over the frustum as a normalized volume integral—providing the starting point

for the derivation that follows.

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1731

Expected positional encoding over a frustum

Given the frustum region described by the indicator function F from (23.1), Mip-NeRF defines the

expected positional encoding as the mean of the NeRF positional encoding γ(x) over all 3D points x

lying within the frustum.

Formally, let X be a random point drawn uniformly from the frustum volume

R = {x ∈ R
3 | F(x,o,d, ṙ, t0, t1) = 1}.

The uniform density on R is

p(x) =
1

Vol(R)
⊮R(x), Vol(R) =

∫

R3
⊮R(x)dx.

The expectation of γ(X) under p is therefore

E[γ(X)] =
∫

R3
γ(x) p(x)dx =

1

Vol(R)

∫

R
γ(x)dx.

Substituting the frustum indicator F for ⊮R gives

γ∗(o,d, ṙ, t0, t1) =

∫
R3 γ(x)F(x,o,d, ṙ, t0, t1)dx∫

R3 F(x,o,d, ṙ, t0, t1)dx
. (23.2)

Here:

• The denominator is the frustum’s volume — the total measure of all 3D points that project to

the given pixel between depths t0 and t1.

• The numerator integrates the encoded feature vector γ(x) over exactly the same set of points.

Their ratio is thus the uniform average of γ(x) over the frustum.

Intuition

The expected positional encoding in (23.2) is the uniform average of γ(x) over the frustum R.

Formally, if x∼ Uniform(R), then

E[γ(x)] =
1

Vol(R)

∫

R
γ(x) dx.

In the discrete case, this would be approximated as

1

N

N

∑
i=1

γ(xi), xi
i.i.d.∼ Uniform(R),

and taking N→ ∞ recovers the continuous form above. The denominator in (23.2) normalizes the

numerator, converting it from a total sum over space into a mean per unit volume.

In the original NeRF formulation, each pixel is represented by a single infinitesimally narrow

ray, so γ(x) is evaluated only along that 1D path. This ignores the fact that a real pixel integrates

light over a finite footprint on the image plane, corresponding to a continuum of rays forming a

conical frustum in 3D space. Mip-NeRF instead averages γ(x) over this entire frustum, embedding

the pixel’s full visual support directly into its feature vector.

1732 Chapter 23. Lecture 23: 3D vision

This volumetric averaging acts as a built-in low-pass filter. If the wavelength of a sinusoidal

component in γ(x) is smaller than the frustum’s cross-section, its oscillations average out, attenuating

high-frequency terms that would otherwise cause aliasing when rendering at resolutions or viewing

distances different from training. Frequencies with wavelengths larger than the frustum remain

unaffected, preserving resolvable detail. The result is scale consistency: textures that are smooth at a

distance will not develop spurious high-frequency artifacts up close, and fine details will naturally

fade with distance rather than alias into incorrect patterns.

A straightforward way to compute the average in (23.2) is to approximate it via Monte Carlo

sampling: draw points uniformly inside the frustum and average their encodings. While conceptually

simple, this approach is inefficient in practice:

• High variance: Monte Carlo estimates fluctuate due to sampling noise, especially for the

high-frequency sinusoidal terms in γ(x).
• Computational cost: Achieving stable, low-variance estimates requires many samples per

pixel, inflating training and rendering time.

• Missed structure: The positional encoding γ(x) is composed of sinusoidal basis functions,

whose integrals over certain geometric shapes can be computed exactly.

To avoid stochastic approximation entirely, Mip-NeRF replaces each frustum segment with a

moment-matched Gaussian distribution N (µ,Σ) that has the same first and second moments as the

true frustum. This substitution retains the key spatial statistics while making the expected positional

encoding E[γ(X)] analytically tractable. With this Gaussian model in place, the integral in (23.2)

reduces to closed-form expressions for the mean and covariance of X.

Moment-matched Gaussian approximation

To enable closed-form evaluation of (23.2), Mip-NeRF replaces the uniform distribution over a

frustum segment with a Gaussian N (µ,Σ) having the same first and second moments. The idea

is that the frustum is a truncated cone whose geometry is simple enough that we can compute

these moments analytically, and then replace the frustum with a Gaussian of matching mean and

covariance.

Frustum-centric coordinates We first align our coordinate system so that the ray direction is

the t-axis:

d̂ =
d

∥d∥ , x(t,u) = o+ t d̂+u,

where:

• t ∈ [t0, t1] is the depth along the ray,

• o ∈ R
3 is the ray origin,

• u ∈ R
3 is a vector perpendicular to d̂.

The frustum’s circular cross-section at depth t has radius

r(t) = ṙ t,

where ṙ is the cone’s angular radius in world units (essentially the pixel footprint’s half-width

projected into 3D space).

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1733

Marginal depth distribution p(t)

A key step in Mip-NeRF’s Gaussian frustum approximation is to characterize the depth distribution

of points within a pixel’s 3D footprint. For a given pixel, this footprint is modeled as a right circular

cone originating at the camera center o and extending along the viewing ray. The cone has slope ṙ

(radius per unit depth), chosen to match the pixel’s footprint on the image plane.

At a distance t from o along the ray, the cone’s cross–section is a disk of radius

r(t) = ṙ t,

and therefore exact area

A(t) = π [r(t)]2 = π (ṙ t)2.

A thin slab between depths t and t +dt has volume element

dV (t) = A(t)dt = π (ṙ)2 t2 dt.

The uniform-in-volume assumption means that the probability of sampling a point in a slab is

proportional to its volume. Deeper slabs have larger cross–sections and therefore more 3D volume

per unit depth. Taking the unnormalized marginal depth density to be the actual slice area gives

punnorm(t) = π (ṙ)2 t2, t ∈ [t0, t1],

where t0 and t1 are the near and far bounds of the frustum segment.

To convert punnorm(t) into a probability density, we divide by its total mass over [t0, t1]:

p(t) =
punnorm(t)∫ t1

t0

punnorm(τ)dτ

=
π(ṙ)2 t2

∫ t1

t0

π(ṙ)2 τ2 dτ

=
t2

∫ t1

t0

τ2 dτ

.

The geometric constants π and (ṙ)2 cancel exactly, so no arbitrary constant C must be introduced.

Evaluating the remaining denominator:

∫ t1

t0

τ2 dτ =

[
τ3

3

]t1

t0

=
t3
1 − t3

0

3
,

yields the closed form

p(t) =
3 t2

t3
1 − t3

0

, t ∈ [t0, t1].

This density is the correct marginal for uniform-in-volume sampling, and is later used to compute

the mean depth µt and depth variance σ2
t of the Gaussian frustum. By contrast, weighting by 1/A(t)

would correspond to sampling uniformly along the axis, giving each depth slice equal probability

regardless of its volume—an assumption inconsistent with volumetric pixel modeling.

1734 Chapter 23. Lecture 23: 3D vision

Mean depth µt

In probability theory, the mean (expected) value of a continuous random variable t with probability

density function (PDF) p(t) is

µt = E[t] =
∫ t1

t0

t p(t)dt. (23.3)

In our frustum setting, the marginal depth density p(t) is proportional to the cross-sectional area at

depth t, which grows as t2 for a cone. Normalizing over [t0, t1] yields

p(t) =
3 t2

t3
1 − t3

0

, t ∈ [t0, t1].

Substituting into Eq. 23.3:

µt =
3

t3
1 − t3

0

∫ t1

t0

t3 dt =
3

t3
1 − t3

0

[
t4

4

]t1

t0

(23.4)

=
3(t4

1 − t4
0)

4(t3
1 − t3

0)
. (23.5)

Why not the midpoint? If p(t) were uniform, the mean would be (t0 + t1)/2. Here, p(t) ∝ t2

upweights deeper slices because they occupy more volume, shifting µt toward t1.

Stable reparameterization of µt

When t1 ≈ t0, Eq. 23.5 can suffer from catastrophic cancellation. To avoid this, define

tµ =
t0 + t1

2
, tδ =

t1− t0

2
,

so that t0 = tµ − tδ and t1 = tµ + tδ . Using the binomial expansions

(tµ + tδ)
3− (tµ − tδ)

3 = 6 t2
µ tδ +2 t3

δ ,

(tµ + tδ)
4− (tµ − tδ)

4 = 8 t3
µ tδ +8 tµ t3

δ ,

Eq. 23.5 simplifies to

µt = tµ +
2 tµ t2

δ

3t2
µ + t2

δ

, (23.6)

which is exactly the mean formula in the Mip-NeRF paper.

Axial variance σ2
t

The variance along the ray is

σ2
t = E[t2]−µ2

t , (23.7)

where the second moment is

E[t2] =
3

t3
1 − t3

0

∫ t1

t0

t4 dt =
3

t3
1 − t3

0

[
t5

5

]t1

t0

(23.8)

=
3(t5

1 − t5
0)

5(t3
1 − t3

0)
. (23.9)

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1735

Stable reparameterization of σ2
t

Substitute tµ , tδ and use

(tµ + tδ)
5− (tµ − tδ)

5 = 10 t4
µ tδ +20 t2

µ t3
δ +2 t5

δ ,

along with the cubic difference above, to obtain

E[t2] =
3(t4

µ +2 t2
µ t2

δ +
1
5
t4
δ)

3 t2
µ + t2

δ

.

Similarly, squaring Eq. 23.6 gives

µ2
t =

(3t3
µ +3tµt2

δ)
2

(3t2
µ + t2

δ)
2

.

Substituting into Eq. 23.7 yields the closed form

σ2
t =

t2
δ

3
−

4t4
δ

(
12t2

µ − t2
δ

)

15
(
3t2

µ + t2
δ

)2
, (23.10)

which matches the formulation in the Mip-NeRF paper and remains numerically stable for small tδ .

Radial (perpendicular) variance σ2
r

Alongside the axial statistics (µt , σ2
t), the Gaussian frustum approximation also needs to capture the

spread of points perpendicular to the ray axis. If the axial variance σ2
t describes how far points are

distributed along the beam (depth uncertainty), then σ2
r quantifies how far they spread sideways at a

given depth.

Flashlight analogy. Imagine shining a flashlight in a dark room. The light beam widens as it travels

away from the source, creating a circular spot that grows with distance. The axial variance tells us

how long the illuminated region is along the beam; the radial variance tells us how wide it is at each

depth. Both are needed to fully describe the shape of the illuminated volume.

Role in completion. Together, σ2
t and σ2

r form the two orthogonal variance components of the

frustum:

• σ2
t : spread parallel to the ray — measures the frustum’s thickness in depth.

• σ2
r : spread perpendicular to the ray — measures the frustum’s width in either orthogonal

direction.

Combining them into a covariance matrix yields a full 3D Gaussian that moment-matches the

frustum, enabling Integrated Positional Encoding to adjust high-frequency features according to both

depth uncertainty and footprint size.

Step 1: Conditional second moment at fixed depth At a given depth t, the cross-section of

the frustum is a disk of radius

Rt = r(t) = ṙ t,

where ṙ is the cone slope (radius per unit depth). We want the per-axis radial variance at this depth

— i.e., the variance of the x-coordinate (or y-coordinate) of points uniformly distributed inside this

disk.

1736 Chapter 23. Lecture 23: 3D vision

Why an area integral? The definition of the conditional second moment of the radial distance is:

E[ρ2 | t] =

∫

disk
ρ2 dA

∫

disk
dA

,

where:

• ρ =
√

x2 + y2 is the Euclidean distance from the axis in the perpendicular plane.

• dA is an infinitesimal area element.

• The denominator normalizes by the total cross-sectional area, ensuring the result is the mean

of ρ2 over the disk.

Switching to polar coordinates. In polar coordinates (ρ,θ), the area element is dA = ρ dρ dθ and

the disk is parameterized by:

0 ≤ ρ ≤ Rt , 0 ≤ θ < 2π.

Substituting into the definition gives:

E[ρ2 | t] =

∫ 2π

0

∫ Rt

0
ρ2 ·ρ dρ dθ

∫ 2π

0

∫ Rt

0
ρ dρ dθ

(definition of mean over the disk) (23.11)

=

∫ 2π

0

∫ Rt

0
ρ3 dρ dθ

πR2
t

. (23.12)

Evaluating the integrals. The angular integration yields 2π , so:

E[ρ2 | t] = 2π

πR2
t

∫ Rt

0
ρ3 dρ =

2

R2
t

[
ρ4

4

]Rt

0

=
R2

t

2
.

From radial to per-axis variance. Because the distribution is rotationally symmetric, the variance

splits evenly between the x and y axes:

E[x2 | t] = E[y2 | t] = E[ρ2 | t]
2

=
R2

t

4
. (23.13)

This per-axis quantity is what will later be averaged over t to obtain the unconditional radial variance

σ2
r .

Step 2: Averaging over depth The unconditional per-axis radial variance is the expectation of

Eq. 23.13 over the marginal depth density p(t) from the frustum geometry:

σ2
r = E[x2] =

∫ t1

t0

R2
t

4
p(t)dt (23.14)

=
∫ t1

t0

ṙ2t2

4
· 3 t2

t3
1 − t3

0

dt =
3 ṙ2

4(t3
1 − t3

0)

∫ t1

t0

t4 dt. (23.15)

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1737

Evaluating the remaining polynomial integral:

∫ t1

t0

t4 dt =

[
t5

5

]t1

t0

=
t5
1 − t5

0

5
.

Thus:

σ2
r = ṙ2 3(t5

1 − t5
0)

20(t3
1 − t3

0)
, t ∈ [t0, t1]. (23.16)

Numerical stability via midpoint–half-width parameterization. As in the axial variance case,

direct evaluation of Eq. 23.16 can suffer from catastrophic cancellation when t1 ≈ t0. To mitigate

this, Mip-NeRF reparameterizes:

tµ =
t0 + t1

2
, tδ =

t1− t0

2
,

so that

t0 = tµ − tδ , t1 = tµ + tδ .

The difference-of-powers terms in Eq. 23.16 then become:

t3
1 − t3

0 = (tµ + tδ)
3− (tµ − tδ)

3 = 6t2
µtδ +2t3

δ = 2tδ
(
3t2

µ + t2
δ

)
,

t5
1 − t5

0 = (tµ + tδ)
5− (tµ − tδ)

5 = 10t4
µtδ +20t2

µt3
δ +2t5

δ = 2tδ
(
5t4

µ +10t2
µt2

δ + t4
δ

)
.

Substituting into Eq. 23.16 and simplifying yields:

σ2
r = ṙ2 3

20
·

2tδ
(
5t4

µ +10t2
µt2

δ + t4
δ

)

2tδ
(
3t2

µ + t2
δ

) = ṙ2 ·
5t4

µ +10t2
µt2

δ + t4
δ

10
(
3t2

µ + t2
δ

) .

Finally, polynomial division gives the paper’s stable form:

σ2
r = ṙ2

(
t2
µ

4
+

5t2
δ

12
− 4t4

δ

15
(
3t2

µ + t2
δ

)
)
. (23.17)

Moment-Matched Gaussian in World Space

Given the frustum’s axial statistics (µt ,σ
2
t) and radial variance σ2

r from the previous derivation, we

can represent its full 3D extent with a Gaussian whose mean and covariance match those of the true

uniform distribution inside the frustum. The mean lies along the ray at depth µt , while the covariance

separates into:

• an axial term σ2
t ddT, encoding uncertainty along the ray direction d;

• a radial term σ2
r

(
I− ddT

∥d∥2
2

)
, encoding isotropic spread in the plane orthogonal to d.

This moment-matched Gaussian,

N

(
o+µtd, σ2

t ddT+σ2
r

(
I− ddT

∥d∥2
2

))
,

1738 Chapter 23. Lecture 23: 3D vision

compactly captures both the location and shape of the frustum segment in world space. The next

steps detail how this form arises from decomposing points into axial and radial components and

applying the corresponding projection operators.

Step 1: Decomposition into Axial and Radial Components. Any 3D point x inside the conical

frustum segment can be written as

x = o+ t d+u,

where:

• o ∈ R
3 is the ray origin.

• d ∈ R
3 is the (possibly unnormalized) ray direction.

• t ∈ [t0, t1] is the axial depth coordinate along the ray, with mean E[t] = µt and variance

Var(t) = σ2
t .

• u ∈R
3 is the radial offset from the central ray to the actual point, lying in the plane perpendic-

ular to d.

The vector u appears naturally because the frustum’s cross-section at depth t is a filled circle rather

than a single point. Sampling uniformly from the frustum means sampling both along the axis (via

t) and within the in-plane disk (via u). Rotational symmetry ensures that u is isotropic within the

perpendicular plane and has no component along d.

Step 2: Projectors onto Axial and Radial Subspaces. Any 3D vector can be decomposed into

a component parallel to the ray direction d and a component perpendicular to it. The orthogonal

projection matrix onto the ray direction is

P∥ =
dd⊤

∥d∥2
2

,

which takes any vector v and returns its shadow along d. The complementary projection matrix

P⊥ = I−P∥

removes the axial component, leaving only the part lying in the plane orthogonal to d. Because the

frustum’s cross-section is circular, radial offsets are:

E[u] = 0, Cov(u) = σ2
r P⊥, Cov(t,u) = 0,

meaning they have zero mean, are isotropic in the orthogonal plane, and are independent of depth.

Step 3: Mean in World Space. The expected position inside the frustum is obtained by averaging

over t and u. Since u has zero mean, only the axial displacement contributes:

µ = E[x] = o+E[t]d = o+µt d.

This places the Gaussian’s mean along the ray at depth µt .

Step 4: Covariance in World Space. The total covariance Σ comes from two independent sources

of variation:

• Axial variance from the spread of t along the ray: Cov(t d) = σ2
t dd⊤.

• Radial variance from the circular footprint: Cov(u) = σ2
r P⊥.

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1739

Independence means their contributions simply add:

Σ = σ2
t (dd⊤)+σ2

r P⊥.

Thus, we have isolated the uncertainty along the ray from the uncertainty in the orthogonal plane.

Step 5: Explicit World-Space Formula. Substituting the definition of P⊥ into the covariance

expression gives:

µ = o+µt d,

Σ = σ2
t (dd⊤)+σ2

r

(
I− dd⊤

∥d∥2
2

)
(23.18)

This formula is the direct result of Steps 3–4: the mean comes from the depth centroid, and the

covariance comes from the sum of axial and radial contributions.

Rewriting positional encoding as Fourier features

Having expressed the frustum segment as a Gaussian N (µ,Σ) in world coordinates, the next step

is to evaluate the expected positional encoding of a random point x drawn from this Gaussian.

Recall that in the original NeRF formulation [429], each 3D coordinate x ∈ R
3 is mapped to a

high-dimensional feature vector via a sinusoidal encoding:

γ(x) =
[

sin(20πx1), cos(20πx1), . . . , sin(2L−1πx3), cos(2L−1πx3)
]⊤

,

where L denotes the number of frequency bands.

Motivation for the rewrite. Directly taking the expectation Ex∼N (µ,Σ)[γ(x)] is cumbersome if we

treat each sin and cos term independently. However, note that each channel of γ(x) is a sine or cosine

of a linear form in x, i.e. sin(p⊤x) or cos(p⊤x) for some frequency vector p ∈ R
3. This suggests a

more compact matrix Fourier form in which all frequencies are collected into a single matrix.

Fourier matrix formulation

We collect all per-axis frequency scales into a single frequency matrix P ∈ R
3×3L whose columns

come in triples (for x,y,z) at each band 2k:

P =
[

20I3 21I3 · · · 2L−1I3

]
=




20 0 0 21 0 0 . . . 2L−1 0 0

0 20 0 0 21 0 . . . 0 2L−1 0

0 0 20 0 0 21 . . . 0 0 2L−1


 .

Each block 2kI3 provides the scale 2k applied independently to x,y,z (no cross-axis mixing).

With this notation, NeRF’s positional encoding can be written compactly as

γ(x) =

[
sin
(
P⊤x

)

cos
(
P⊤x

)
]
,

where sin and cos act elementwise on the 3L-vector P⊤x.

1740 Chapter 23. Lecture 23: 3D vision

Why this helps. With the frustum segment modeled as

x∼N (µ,Σ),

the Fourier form of γ(x) applies only a linear projection P⊤ before evaluating sines and cosines. By

the affine transformation property of Gaussian random vectors,

y = Ax+b ⇒ y∼N (Aµ +b, AΣA⊤),

setting A = P⊤ and b = 0 yields

µγ = P⊤µ, Σγ = P⊤ΣP.

Each row p⊤ of P⊤ corresponds to a specific frequency probe; its associated variance in Σγ directly

measures how much that frequency varies across the frustum.

Closed-form expectations. For one frequency probe p⊤, the encoding channel is sin(p⊤x) or

cos(p⊤x) with

z = p⊤x∼N (µz,σ
2
z), µz = p⊤µ, σ2

z = p⊤Σp.

Here, µz is the projected mean of the frustum, and σ2
z its variance along p—small values indicate a

stable frequency, large values signal rapid oscillations and potential aliasing.

Using the complex exponential trick. The expectations E[sin(z)] and E[cos(z)] can be computed

in closed form using the identity

sin(z) = ℑ(eiz), cos(z) = ℜ(eiz),

and the known result for the characteristic function of a Gaussian:

E[eiz] = eiµz e−
1
2

σ2
z .

This follows from the moment-generating function of a normal variable, where the factor e−
1
2

σ2
z

comes from integrating the quadratic term in the exponent.

Taking real and imaginary parts yields:

E[sin(z)] = sin(µz)e−
1
2

σ2
z , E[cos(z)] = cos(µz)e−

1
2

σ2
z .

Interpretation and anti-aliasing effect. The factor e−
1
2

σ2
z attenuates each frequency according to

its variance over the frustum:

• High variance: σ2
z ≫ 0⇒ strong attenuation of high-frequency oscillations that cannot be

reliably represented at the frustum’s scale.

• Low variance: σ2
z ≈ 0⇒ little to no attenuation for low-frequency components.

This provides a principled, scale-aware low-pass filtering that suppresses alias-prone frequencies

while preserving stable ones—precisely the anti-aliasing behaviour missing from vanilla NeRF.

In vector form, this closed-form computation replaces the costly Monte Carlo integration of

the positional encoding over the frustum with a single evaluation per channel, directly yielding the

integrated positional encoding used in Mip-NeRF’s forward pass.

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1741

From scalar attenuation to full IPE. For a single channel, we have shown that

E[sin(z)] = sin(µz)e−
1
2

σ2
z , E[cos(z)] = cos(µz)e−

1
2

σ2
z .

Stacking all frequency probes (rows of P⊤) into vector form gives the integrated positional encoding:

γ(µ,Σ) =

[
sin(µγ)◦ exp

(
− 1

2
diag(Σγ)

)

cos(µγ)◦ exp
(
−1

2
diag(Σγ)

)
]
,

where ◦ denotes elementwise multiplication, µγ = P⊤µ , and Σγ = P⊤ΣP. Only the diagonal of Σγ

is needed because γ(x) factorizes over channels: each sine or cosine depends only on its own 1D

projection variance.

Efficient diagonal computation. To evaluate the integrated positional encoding, we need the

variance of each 1D projected coordinate

z = p⊤x, x∼N (µ,Σ),

for every positional encoding channel. In matrix form, these variances are the diagonal entries of

Σγ = PΣP⊤,

where each row of P corresponds to a frequency vector in the positional encoding basis.

Forming Σγ ∈ R
(3L)×(3L) explicitly is costly when L (the number of frequency bands) is large,

because it requires a full matrix product and storage of all frequency–frequency covariances. For-

tunately, we never need the full matrix: the expectation of sin(z) or cos(z) depends only on the

marginal variance σ2
z for that channel. Since positional encoding applies each frequency inde-

pendently to each spatial dimension, off-diagonal terms in Σγ are irrelevant, and only diag(Σγ) is

required.

Frequency scaling. If the base frequency vector p has variance p⊤Σp, then multiplying p by 2k

scales this variance by (2k)2 = 4k. Each positional encoding band is exactly such a scaled copy of

the base frequency, so the diagonal entries can be written compactly as

diag(Σγ) =
[
diag(Σ), 4diag(Σ), . . . , 4L−1 diag(Σ)

]⊤
.

This reduces the entire problem to computing diag(Σ)∈R3, the per-axis variance of the 3D Gaussian

frustum in world coordinates.

Frustum covariance diagonal. The covariance Σ of the frustum segment encodes both depthwise

and cross-sectional spread of points within that volume. It naturally decomposes into:

• an axial component σ2
t along the ray direction d,

• a radial component σ2
r orthogonal to d.

Projecting the axial variance into (x,y,z) components requires the squared direction vector (d◦d).
The radial component must be distributed equally in all directions orthogonal to d, which is achieved

by projecting with

I− d◦d

∥d∥2
2

,

whose diagonal entries are 1− (d◦d)/∥d∥2
2.

1742 Chapter 23. Lecture 23: 3D vision

Combining these gives the per-axis variances:

diag(Σ) = σ2
t (d◦d)+σ2

r

(
1− d◦d

∥d∥2
2

)
.

Here:

• σ2
t is the variance of depth values t along the ray, scaled per coordinate axis.

• σ2
r is the variance of points in the circular cross-section at each depth, spread uniformly in the

orthogonal plane.

• The projection terms ensure that the decomposition cleanly separates along-ray and cross-ray

uncertainty.

This diagonal–only computation is what makes Mip-NeRF’s IPE practical: instead of a full covari-

ance in the positional encoding basis, we only evaluate three variances in world space and scale them

by known frequency factors. These variances directly control the exponential attenuation e−
1
2

σ2
z

for each channel, suppressing high-frequency features that cannot be resolved within the frustum’s

extent and thereby providing principled, scale-aware anti-aliasing.

Architecture & Implementation Details

Cone tracing and interval IPE features

Aside from cone tracing and IPE, Mip-NeRF follows the NeRF pipeline. For each pixel, we cast a

cone from the camera center o along the view direction d (rather than a single infinitesimal ray). We

then sample a sorted set of n+1 depths

t0 < t1 < · · ·< tn

between near and far planes and form n conical frustum segments [tk, tk+1]. For each segment we:

1. moment-match the segment with a world-space Gaussian N (µk,Σk) using Eq. (8),

2. compute its integrated positional encoding (IPE) by the closed forms in Eqs. (13)–(16).

These IPE features (optionally concatenated with the view-direction encoding as in NeRF) are fed to

the network to produce a density τk and color ck per segment. Volume rendering then proceeds as in

NeRF, using the transmittance weights induced by {τk} over the segments {[tk, tk+1]}.

Single multiscale MLP with hierarchical sampling

NeRF uses two distinct MLPs (“coarse” and “fine”) because PE encodes a single implicit scale. In

contrast, Mip-NeRF’s IPE is scale-aware: the inputs explicitly carry segment size/shape, allowing

a single MLP to model multiple scales. We therefore use one MLP with parameters Θ and still

perform hierarchical sampling:

• Coarse pass: draw n intervals by stratified sampling on [tnear, tfar], compute IPE per interval,

render color C(r;Θ, tc) and weights {wk}.
• Fine pass: construct a resampling PDF from smoothed weights (see Eq. (18) below), draw

another n intervals by inverse transform sampling, compute IPE per interval, and render

C(r;Θ, t f).
Using one network halves the parameter count, simplifies training, and empirically improves accuracy

while keeping total MLP evaluations comparable to NeRF.

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1743

Training objective

Let R be the set of rays and C∗(r) the ground-truth pixel color. With a single MLP, we balance

coarse and fine terms by a scalar λ :

min
Θ

∑
r∈R

(
λ
∥∥C∗(r)−C(r;Θ, tc)

∥∥2

2
+
∥∥C∗(r)−C(r;Θ, t f)

∥∥2

2

)
. (23.19)

In the paper, the authors set λ = 0.1 in experiments.

Smoothed importance sampling for the fine pass

In NeRF and Mip-NeRF, the coarse pass determines where along the ray the scene is likely to have

important structure (surfaces, edges, textures). This information is encoded in the alpha compositing

weights {wk}n
k=1:

wk = Tk

(
1− e−τk ∆tk

)
,

where Tk is the transmittance up to segment k (probability that the ray has not terminated before tk),

τk is the predicted density, and ∆tk = tk+1− tk is the segment length. Intuitively, wk is the fraction of

the ray’s total contribution to the final pixel color coming from segment k. Segments intersecting

visible surfaces will have large wk.

Why these weights are used for sampling. We use {wk} as a discrete probability density function

(PDF) to guide sampling in the fine pass:

• Large wk ⇒ high chance of resampling that region for finer detail.

• Small wk ⇒ low chance, unless we deliberately force exploration.

Given a PDF over the n coarse segments, we can draw new sample depths via inverse transform

sampling: construct the cumulative distribution function (CDF) from {wk}, draw uniform random

numbers u ∈ [0,1], and find the depth bin whose CDF interval contains u.

Why stabilization is needed. Raw {wk} can be:

• Sparse: most weights are near zero, concentrating probability on very few bins, which can

lead to missing geometry slightly outside those bins.

• Noisy: small prediction fluctuations create spiky PDFs, producing unstable fine-pass samples.

This is especially problematic in Mip-NeRF because the coarse and fine passes query the same MLP

(rather than two separate ones as in NeRF), so bad fine-pass samples can directly harm the shared

network’s learning.

Smoothing with max and blur filters. To make the PDF more robust, Mip-NeRF replaces each wk

with a smoothed envelope w′k:

1. 2-tap max filter: For each k, take the maximum weight among (wk−1,wk) and (wk,wk+1), then

average the two maxima:

mk =
max(wk−1,wk)+max(wk,wk+1)

2
.

This widens peaks so that high-probability regions extend to their immediate neighbors (helps

catch slightly misaligned samples).

2. 2-tap blur filter: Apply a local average to mk, which softens sharp spikes and spreads probabil-

ity mass across nearby bins.

1744 Chapter 23. Lecture 23: 3D vision

This sequence—max pooling followed by average pooling—is known in computer vision as a

blurpool filter [776].

Forcing exploration. After smoothing, a small constant α is added to each bin:

w′k = mk +α.

This ensures that even “empty” regions of the ray still have a nonzero probability of being resampled,

avoiding blind spots. The paper sets α = 0.01. Finally, {w′k} is renormalized to sum to 1 before

building the fine-pass CDF.

w′k =
1

2
(max(wk−1,wk)+max(wk,wk+1))+α, renormalize {w′k} to sum to 1. (23.20)

Effect: Compared to NeRF’s approach of merging coarse and fine samples into one sorted list,

Mip-NeRF’s smoothed-PDF resampling:

• Reduces sample collapse into overly narrow regions.

• Guarantees some coverage of empty space.

• Produces more stable fine-pass updates for the shared MLP.

Implementation Details. Mip-NeRF is built on JaxNeRF, a JAX reimplementation of NeRF.

Training follows NeRF’s schedule: Adam for 1×106 iterations with batch size 4096 and a logarithmic

learning-rate decay from 5 ·10−4 to 5 ·10−6. The only substantive architectural changes are:

• Cone tracing with interval IPE.

• A single multiscale MLP.

• Smoothed PDF resampling for the fine pass.

Benefits over NeRF

Encoding interval size/shape into the inputs:

• Halves model size (one MLP instead of two).

• Improves multiscale accuracy (coarse+fine are queries at different sampling budgets, not

different networks).

• Improves runtime a bit (with the same parity, meaning the same total number of per-ray

evaluations).

• Eliminates the need to hand-tune the maximum PE frequency: high frequencies beyond a

segment’s resolvable bandwidth are attenuated automatically by IPE.

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1745

Figure 23.58: Toy 1D visualizations of the positional encoding (PE) used by NeRF (left) and the

integrated positional encoding (IPE) used by Mip-NeRF (right), based on the original figure in [30].

Top row (Samples): In standard PE, each green dot marks a single infinitesimal sample location

along the axis x; in IPE, each green blob represents a Gaussian footprint covering a finite ray segment.

Middle row (Encodings): Each horizontal stripe is a sin or cos channel at a given frequency, with

red/blue denoting positive/negative values. In the PE panel, high-frequency channels (upper stripes)

oscillate much faster than the spacing between sample points, so the vertical black lines cut through

seemingly unrelated phases of the oscillation — a visual sign of aliasing. In IPE, the Gaussian

integration (curved
∫

markers) averages over these oscillations, causing high-frequency stripes to

fade toward neutral grey. Bottom row (Encoded Samples): In PE, the per-sample feature bars

change abruptly from one sample to the next in the high-frequency dimensions, encoding phase

noise rather than stable geometry — the hallmark of aliasing. In IPE, the corresponding bars for

high-frequency channels are suppressed, while low-frequency channels remain strong, yielding

anti-aliased, scale-aware features that also encode the segment’s size and, in higher dimensions, its

shape.

1746 Chapter 23. Lecture 23: 3D vision

Results and Ablations

Quantitative performance

The below table reports performance on the multiscale Blender dataset (credit: [30]), comparing

Mip-NeRF to baseline NeRF and several improved NeRF variants. Mip-NeRF achieves the highest

PSNR and SSIM across all scales (Full, 1/2, 1/4, 1/8 resolution), while reducing LPIPS—a perceptual

dissimilarity metric—to the lowest values. The performance gap widens as the resolution decreases,

demonstrating Mip-NeRF’s robustness to scale changes. Notably, removing IPE (w/o IPE) drops

PSNR by up to 6dB at the lowest resolution, confirming its central role in anti-aliasing.

PSNR ↑ SSIM ↑ LPIPS ↓ Avg. ↓ Time (h) #Params

FR 1/2 1/4 1/8 FR 1/2 1/4 1/8 FR 1/2 1/4 1/8

NeRF (Jax Impl.) 31.196 30.647 26.252 22.533 0.9498 0.9560 0.9299 0.8709 0.0546 0.0342 0.0428 0.0750 0.0288 3.05 1,191K

NeRF + Area Loss 27.224 29.578 29.445 25.039 0.9113 0.9394 0.9524 0.9176 0.1041 0.0677 0.0406 0.0469 0.0305 3.03 1,191K

NeRF + Area, Centered Pix. 29.893 32.118 33.399 29.463 0.9376 0.9590 0.9728 0.9620 0.0747 0.0405 0.0245 0.0398 0.0191 3.02 1,191K

NeRF + Area, Center, Misc. 29.900 32.127 33.404 29.470 0.9378 0.9592 0.9730 0.9622 0.0743 0.0402 0.0243 0.0394 0.0190 2.94 1,191K

Mip-NeRF 32.629 34.336 35.471 35.602 0.9579 0.9703 0.9786 0.9833 0.0469 0.0260 0.0168 0.0120 0.0114 2.84 612K

Mip-NeRF w/o Misc. 32.610 34.333 35.497 35.638 0.9577 0.9703 0.9787 0.9834 0.0470 0.0259 0.0167 0.0120 0.0114 2.82 612K

Mip-NeRF w/o Single MLP 32.401 34.131 35.462 35.967 0.9566 0.9693 0.9780 0.9834 0.0479 0.0268 0.0169 0.0116 0.0115 3.40 1,191K

Mip-NeRF w/o Area Loss 33.059 34.280 33.866 30.714 0.9605 0.9704 0.9747 0.9679 0.0427 0.0256 0.0213 0.0308 0.0139 2.82 612K

Mip-NeRF w/o IPE 29.876 32.160 33.679 29.647 0.9384 0.9602 0.9742 0.9633 0.0742 0.0393 0.0226 0.0378 0.0186 2.79 612K

Table 23.9: Quantitative comparison of Mip-NeRF and ablations against NeRF and NeRF variants

on the multiscale Blender dataset. Metrics: PSNR (^), SSIM (^), LPIPS (_). All numbers from

[30].

Qualitative performance

The following figure shows visual comparisons on two Blender scenes across four scales. We crop a

fixed region and display it as an image pyramid; the SSIM for each scale is shown in the lower-right,

with the highest values (most successful SSIM results) highlighted in red. Mip-NeRF consistently

outperforms NeRF and its improved variants both visually (fewer moiré patterns, crisper low-res

textures) and quantitatively. The benefit is most pronounced at extreme downscales (1/8 res), where

NeRF exhibits heavy aliasing but Mip-NeRF maintains smooth, faithful structure.

Figure 23.59: Visual comparison of Mip-NeRF, NeRF, and improved NeRF variants on two mul-

tiscale Blender scenes, cropped and shown at four scales (SSIM at bottom right; highest in red).

Mip-NeRF achieves both higher perceptual quality and stronger metrics across scales. Credit: [30].

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1747

Ablation insights (following table 23.9)

• IPE is essential: Removing IPE reduces PSNR by up to 6dB at 1/8 resolution and greatly

increases LPIPS, confirming it as the core mechanism for anti-aliasing.

• Moment-matching matters: Approximations that do not match the frustum’s true mean/variance

(e.g., naive Gaussian) blur thin structures and lower both SSIM and PSNR.

• Area loss aids stability: Removing the area loss degrades performance at extreme scales,

suggesting it complements IPE by regularizing footprint integration.

• Parameter efficiency: Mip-NeRF achieves superior results with roughly half the parameters

of the baseline NeRF (612K vs 1.19M), aided by its single-scale-aware MLP.

Generalization to unseen scales

In experiments with randomized camera zooms at test time, Mip-NeRF preserves detail and avoids

aliasing even at scales never seen during training. This supports the mipmap analogy: each sample’s

feature vector is already pre-filtered to match its footprint, so no extra post-processing is needed.

Limitations and Downsides

While Mip-NeRF mitigates scale aliasing, it inherits several constraints from the original NeRF:

• Bounded scene assumption: Optimized for forward-facing or spatially bounded scenes,

making it ill-suited for large unbounded environments without further modification.

• View-dependent aliasing: IPE attenuates spatial high frequencies but does not pre-filter rapid

view-dependent effects (e.g., specular highlights, reflections), which can still alias.

• Extra per-sample cost: Computing frustum moments and performing Gaussian integration

introduce modest runtime overhead, although the reduced parameter count partly offsets this.

• Parameter sensitivity: Inaccurate cone-slope estimates or moment approximations can lead

to over-blurring or residual aliasing.

These factors have motivated extensions that adapt IPE to broader settings, improve efficiency,

or integrate it into hybrid scene representations.

Notable Works Building on Mip-NeRF

Mip-NeRF’s conical frustum integration and integrated positional encoding (IPE) have proven to

be broadly reusable primitives. By explicitly encoding the spatial extent of each ray sample, these

techniques offer a general anti-aliasing mechanism that can be slotted into diverse neural scene

representations. As a result, subsequent works have adopted Mip-NeRF’s ideas to tackle new regimes

such as unbounded scenes, high-speed rendering, and multi-modal supervision.

• Mip-NeRF 360 [29]: Extends Mip-NeRF to large, unbounded 360◦ scenes via scene contrac-

tion, a distortion-based sampling loss, and multi-scale proposal networks. Retains the IPE

formulation to prevent aliasing under extreme zoom or wide-FOV capture.

• Zip-NeRF [31]: Improves generalization to novel scenes by combining Mip-NeRF’s IPE with

strong geometry priors and data-driven regularization. Achieves higher quality with fewer

views and reduced overfitting.

• Tri-MipRF [237]: Integrates multi-resolution IPE into a tri-plane radiance field representation,

yielding faster rendering while preserving Mip-NeRF’s anti-aliasing benefits.

• Gaussian Splatting with IPE (e.g., [287], follow-up variants): Adapts Mip-NeRF’s scale-

aware encoding to initialize or filter point/ellipsoid attributes in real-time splatting pipelines,

improving detail retention at varying scales.

1748 Chapter 23. Lecture 23: 3D vision

Enrichment 23.10.7: NeuS: Neural Implicit Surfaces by Volume Rendering

Motivation

Surface reconstruction from multi-view images is a long-standing problem in computer vision.

Classical multi-view stereo (MVS) pipelines such as COLMAP produce dense point clouds and

polygon meshes, but often fail to recover fine details or handle challenging lighting and textureless

regions. Neural scene representations, notably NeRF [429], have recently demonstrated photorealistic

novel view synthesis, but NeRF’s volume rendering formulation inherently represents scenes as

semi-transparent volumes rather than sharp, watertight surfaces. This leads to fuzzy geometry and

small-scale surface artifacts, particularly when extracting explicit meshes.

An alternative is to represent scenes via a signed distance function (SDF), as in methods like

IDR [731], which directly target surface rendering. SDF-based approaches tend to produce cleaner

and more accurate surfaces, but prior work couples SDFs with classical surface rendering equations

that do not model complex light transport along the ray. This makes them susceptible to catastrophic

failures under occlusion: for example, IDR can produce visually plausible but geometrically incorrect

reconstructions that “fill in” occluded spaces with spurious surfaces.

The following figure from the NeuS paper [667] illustrates this trade-off. In the bamboo planter

example, IDR produces a clean-looking but topologically incorrect surface by filling the interior;

NeRF better preserves the hollow geometry but introduces visible surface noise due to volumetric

density smoothness. NeuS aims to combine the strengths of both: the sharp geometry of SDF-based

surfaces and the photometric consistency of volumetric rendering.

To achieve this, NeuS reformulates the volume rendering weights so that they are derived

directly from the SDF, enabling differentiable, unbiased surface localization while retaining the

correct transmittance behavior of volumetric rendering. This addresses a key bias problem in naive

SDF-to-density conversions (see the following figure), where the weight distribution shifts away

from the true surface, leading to systematic depth errors. By aligning the rendering formulation with

the signed distance geometry, NeuS bridges the gap between surface-based and volume-based neural

reconstruction.

Figure 23.60: Surface vs. volume rendering in neural scene reconstruction. (a) Conceptual

differences. (b) Bamboo planter example: IDR fills the interior despite a smooth surface, NeRF

preserves hollowness but exhibits surface noise, NeuS avoids both issues by combining SDF-based

surfaces with volumetric rendering. Image credit: [667].

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1749

Method

Scene representation and rendering objective

NeuS [667] directly learns an implicit Signed Distance Function (SDF) fθ : R3→ R. For any point

x ∈ R
3, fθ (x) is the signed Euclidean distance to the closest point on the scene’s surface, with the

zero level set {x | fθ (x) = 0} defining the surface itself:

fθ (x) =





< 0, x is inside the surface,

= 0, x is on the surface,

> 0, x is outside the surface.

By definition, this covers any number of disconnected or self-occluding surfaces — at each spatial

location we only care about the distance to the nearest one, so a single continuous function fθ can

represent multi-object scenes and thin structures.

Along a camera ray r(t) = o+ t d, it is possible to have two depths t0 < t1 such that

fθ (r(t0)) = fθ (r(t1)),

even though these correspond to entirely different physical surfaces (e.g., a nearer front face and a

farther back face with the same signed distance magnitude). For physically correct rendering, the

nearer point r(t0) should contribute more to the pixel color than the farther one r(t1), since the latter

is occluded by the former. NeuS therefore imposes the occlusion-aware requirement: if ta < tb and

fθ (r(ta)) = fθ (r(tb)), then w(ta)> w(tb), where w(t) is the per-sample weight along the ray.

The pixel color is modeled as a line integral of per-sample radiance contributions:

C(r) =
∫ +∞

0
w(t) c

(
r(t),d

)
dt,

where c(r(t),d) is the view-dependent color at position r(t), and w(t) is a weight we will derive

from the SDF following the paper’s Eqs. (2)–(13). Intuitively,

• w(t) must (i) peak exactly at the zero level set to avoid geometric bias.

• w(t) must respect occlusion so that nearer visible surfaces dominate the pixel color.

From SDF to volume rendering

In the previous discussion we treated the signed distance function fθ as a given geometric primitive.

In NeuS [667], this SDF is not precomputed — it is represented by a trainable multi-layer perceptron

(MLP) that maps any 3D coordinate x = (x,y,z) to its signed distance from the scene surface.

The MLP typically uses positional encoding on x to capture high-frequency detail, residual skip

connections for stable optimization, and smooth activations such as Softplus to make the SDF

differentiable everywhere. Training this network from multi-view images requires coupling the

implicit geometry to a differentiable volume rendering model, so that image-space supervision can

update the 3D SDF parameters.

The central design question is: given an SDF field fθ , how should we convert it into per-ray

weights w(t) for rendering, such that surfaces are accurately located and occlusion is respected?

NeuS approaches this by interpreting the SDF along a ray as defining a probabilistic surface location.

1750 Chapter 23. Lecture 23: 3D vision

Specifically, instead of learning a free-form volume density σ(t) as in the original NeRF, NeuS

derives it directly from the signed distance function fθ so that the density field is geometrically

tied to the zero-level set representing the surface. To do this, NeuS uses the logistic cumulative

distribution function (CDF) and its derivative:

Φs(x) =
1

1+ e−sx
, φs(x) = Φ′s(x) =

se−sx

(
1+ e−sx

)2
,

where s > 0 controls sharpness (spread 1/s) and is learned jointly with the SDF parameters.

Why the logistic family?

• The derivative φs(x) is a smooth, symmetric, unimodal “bump” centered at x = 0, which makes

it well-suited for concentrating density exactly at the surface (fθ (x) = 0) while avoiding the

discontinuities that would make optimization unstable.

• The CDF Φs(x) transitions smoothly from 0 (far inside) to 1 (far outside) across the surface,

providing a continuous and differentiable notion of “inside” vs. “outside” that plugs directly

into the transmittance computation in volume rendering.

• Learning s allows the method to adapt the thickness of the high-density region during training:

early on, a lower s produces a wider band of nonzero density around the surface, which

increases the number of samples along a ray that contribute gradients and thus stabilizes

learning. As training progresses, s increases, narrowing this band to approach the physical

reality of an infinitely thin surface — effectively concentrating the density into a subpixel-scale

layer for sharper geometry and cleaner renderings.

• In contrast, NeRF learns a free-form volume density σ(x) without explicitly enforcing a

geometric zero-level surface. This can lead to inconsistencies between the geometry implied

by the density field and the appearance in rendered images. NeuS’s SDF-driven density

formulation ensures that the geometry and appearance are linked through the same underlying

surface definition.

When applied along a ray r(t), φs(fθ (r(t))) acts as a surface-likelihood profile: it peaks where

the ray intersects the surface and decays smoothly away from it. To produce physically correct

renderings, this profile must be combined with an occlusion-aware transmittance term so that nearer

intersections dominate over farther ones, and it must be constructed to be unbiased — i.e., its

maximum should occur exactly at fθ (r(t)) = 0. The derivation of such an unbiased, occlusion-aware

weight w(t) from Φs and φs is the focus of the next section.

Naïve SDF→density conversion and its bias

A straightforward NeRF-style mapping would define

wnaive(t) = T (t)σ(t), T (t) = exp
(
−
∫ t

0
σ(u)du

)
, σ(t) = φs

(
fθ (r(t))

)
,

where T (t) is the accumulated transmittance and σ(t) is the “density” derived from the SDF. This

form is naturally occlusion-aware due to T (t), but the product T (t)σ(t) tends to peak before the

actual surface intersection fθ (r(t
∗)) = 0, introducing a geometric bias. Intuitively, as σ(t) rises

approaching the surface, T (t) is already decaying, shifting the peak forward along the ray (The

following figure shows exactly that).

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1751

Figure 23.61: Weight bias vs. unbiased construction. (a) Naïve approach: The blue curve

shows the SDF f (t), whose zero-crossing marks the true surface location. The brown curve is the

density σ(t) = φs(fθ (r(t))), which is largest when f (t) is near zero. The green curve is the weight

w(t) = T (t)σ(t). Because the transmittance T (t) has already decayed by the time σ(t) reaches its

peak, the product w(t) achieves its maximum before the blue zero-crossing—producing a biased

surface estimate. (b) NeuS: By redefining the effective density ρ(t) so that T (t) matches the logistic

CDF Φs(f (t)) in the first-order SDF approximation, the decay of T (t) and the growth of ρ(t) are

balanced. This alignment causes the green weight w(t) = T (t)ρ(t) to peak exactly at the blue

zero-crossing of f (t), eliminating bias while retaining occlusion handling. Source: [667].

A direct unbiased weighting that fails occlusion

A seemingly natural way to obtain an unbiased surface-localization weight from the SDF is to

normalize the S-density along the ray:

wdir(t) =
φs

(
f (r(t))

)
∫ +∞

0 φs

(
f (r(u))

)
du

.

Here, the numerator φs(f (r(t))) is maximal exactly when f (r(t)) = 0, i.e., at the true surface

intersection, because φs is a smooth, unimodal density centered at zero. This guarantees that wdir(t)
peaks at the correct location—hence “unbiased.”

However, this construction ignores depth ordering and thus fails to model occlusion. If a

ray encounters multiple surfaces, the SDF f (r(t)) will cross zero at each intersection, producing

multiple peaks in φs(f (r(t))). Since wdir(t) is obtained by global normalization of these peaks, the

contributions from all intersections are rescaled to sum to one and are all blended into the final color.

Crucially, no mechanism here suppresses the influence of farther intersections once a nearer one has

been reached—violating the physical visibility constraint that closer surfaces should occlude those

behind them.

This limitation motivates the NeuS formulation, which retains the precise, unbiased surface

localization of wdir while introducing an occlusion-aware transmittance term so that nearer surfaces

dominate the final rendered pixel.

1752 Chapter 23. Lecture 23: 3D vision

Derivation of the NeuS Weight Function for the Single-Plane Case

We begin with the simplest setting: a single infinite plane intersected by one camera ray.

Step 1: Geometric Setup

Let the ray be parameterized as

p(t) = o+ t v, t ≥ 0, (23.21)

where o ∈ R
3 is the camera origin, v ∈ S

2 is a unit direction vector, and t denotes depth along the

ray. Let t∗ be the depth where the signed distance function (SDF) vanishes:

f (p(t∗)) = 0. (23.22)

Step 2: Normal and Incidence Angle

Let n be the unit outward normal of the plane. The incidence angle θ is defined by

cosθ = v ·n. (23.23)

A perpendicular hit yields |cosθ |= 1, while grazing incidence has |cosθ | ≈ 0.

Step 3: SDF properties (geometry and intuition)

A true signed distance function (SDF) f : R3→ R satisfies, almost everywhere,

∇ f (x) = n(x), ∥∇ f (x)∥2 = 1, (23.24)

where n(x) is the outward unit normal to the surface at the closest point π(x).
• Gradient equals the normal. Consider moving x in a tangent direction t at π(x). The

closest-point distance does not change to first order:

∂ f

∂ t
(x) = 0 for all tangents t at π(x).

In contrast, moving along the normal n(π(x)) increases the signed distance at the maximal

possible rate:

∂ f

∂n
(x) = 1.

The gradient ∇ f (x) is the vector collecting all directional derivatives. The fact that tangent

derivatives are zero and the normal derivative is exactly 1 implies

∇ f (x) = n(π(x)),

i.e., the gradient is not only parallel to the surface normal but identical to it.

• Unit slope. By the definition of distance, taking a small step δ along the outward normal

xδ = π(x)+δ n(π(x))

changes the signed distance by exactly δ :

f (xδ) = f (π(x))+δ = δ .

Therefore,

d

dδ
f (xδ)

∣∣∣
δ=0

= 1

and since this is the derivative in the gradient’s direction, we must have ∥∇ f (x)∥2 = 1.

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1753

Equivalently, a perfect SDF solves the Eikonal equation ∥∇ f∥2 = 1 with f = 0 on the surface,

except on the medial axis where the nearest point is not unique. In learned SDFs, this property

is encouraged by the Eikonal regularizer (∥∇ f∥2−1)2, which ensures correct metric scaling and

underpins the angle-based derivations in Step 4.

Step 4: SDF Evolution Along the Ray

By the chain rule,

d f

dt
= ∇ f (p(t)) · dp

dt
= n ·v = cosθ . (23.25)

With the convention f > 0 outside the surface, f < 0 inside, an entering ray satisfies cosθ < 0:

d f

dt
=−|cosθ |. (23.26)

Step 5: Local linearization near the surface

Let t∗ be the depth at which the ray p(t) = o+ t v intersects the surface, i.e., f (p(t∗)) = 0. From

Step 4 we know that

d f

dt
= ∇ f · dp

dt
= n(p(t)) ·v.

At t = t∗, the gradient equals the outward unit normal, n(p(t∗)), so

d f

dt

∣∣∣
t∗
= n(p(t∗)) ·v =−|cosθ |,

where θ is the incidence angle between the ray and the normal; the minus sign follows from the

convention f > 0 outside the surface.

First-order approximation: Under the tangent-plane assumption near p(t∗), the unit normal n is

constant in this neighborhood. From Step 4, along the ray p(t) we have

d f

dt
= n ·v =−|cosθ | (constant).

This is an ordinary differential equation with constant right-hand side. Integrating both sides with

respect to t from t∗ to t gives

f (p(t))− f (p(t∗)) =−|cosθ |(t− t∗).

Since f (p(t∗)) = 0 (the ray is on the surface at t∗), we obtain

f (p(t)) = −|cosθ |
(
t− t∗

)
. (23.27)

Interpretation:

• t < t∗ ⇒ f > 0: the sample lies outside the surface.

• t = t∗ ⇒ f = 0: the sample lies on the surface.

• t > t∗ ⇒ f < 0: the sample lies inside the surface.

The slope magnitude |cosθ | measures how quickly the signed distance changes along the ray:

grazing rays (θ near 90◦) change f slowly, while near-normal rays (θ near 0◦) change it rapidly. This

angular factor is exactly what Step 6 will remove to construct a per-depth weight that is unbiased

with respect to the ray–surface angle.

1754 Chapter 23. Lecture 23: 3D vision

Step 6: Direct unbiased weight construction

Let Φs be the logistic CDF with sharpness s, and φs = Φ′s its PDF (the S-density). A naive choice,

w(t) = φs

(
f (p(t))

)
, (23.28)

produces a bell-shaped bump centered at the true hit depth t∗, but its area in t-space scales like

1/|cosθ |. Intuition: along the ray, f (p(t)) changes at rate
∣∣d f

dt

∣∣ = |cosθ | (Step 4). Grazing rays

(|cosθ |≪1) sweep through the same range of SDF values more slowly, stretching the bump in

depth; hence, more total weight accumulates in free space before the hit than for a head-on ray.

This angle-dependent “mass inflation” is undesirable: it skews how much a single opaque surface

contributes depending on view angle and can over-emphasize pre-surface samples.

Normalization (single-plane model). To remove this geometric inflation, we normalize by the total

area along the ray:

wdir(t) =
φs

(
f (p(t))

)
∫ +∞

0
φs

(
f (p(u))

)
du

. (23.29)

Under the local planar model of Step 5, f (p(u)) =−|cosθ |(u− t∗) and
d f
du

=−|cosθ |. With the

change of variables x = f (p(u)) (so du =−dx/|cosθ |) we obtain

∫ +∞

0
φs

(
f (p(u))

)
du =

1

|cosθ |

∫ xmax

xmin

φs(x)dx, (23.30)

where xmin =−|cosθ | t∗ and xmax→+∞. In the idealized infinite-depth limit t∗→+∞,

lim
t∗→+∞

∫ +∞

0
φs

(
f (p(u))

)
du =

1

|cosθ |

∫ +∞

−∞
φs(x)dx =

1

|cosθ | . (23.31)

Hence, in this limit, the direct single-plane weight becomes

w(t) = |cosθ |φs

(
f (p(t))

)
. (23.32)

For finite t∗, this expression is an accurate approximation whenever the support of φs lies well inside

the integration domain.

Why normalization removes the bias (formal & intuitive). Let k := |cosθ | and f (p(t)) =
−k (t− t∗) near t∗.

• (i) Unit mass, angle-invariant.

∫ +∞

0
w(t)dt = k

∫ +∞

0
φs

(
f (p(t))

)
dt

x= f
= k

∫ x= f (p(0))

x= f (p(+∞))
φs(x)

−dx

k
≈
∫ +∞

−∞
φs(x)dx = 1,

(23.33)

where the approximation becomes exact as t∗→+∞. Intuition: the bump widens by 1/k for

grazing rays, and the prefactor k exactly scales its height so that the total area remains 1.

• (ii) No pre-surface overweighting. Under the same change of variables, t < t∗ ⇐⇒ x > 0

and t > t∗ ⇐⇒ x < 0. Since φs is symmetric,

∫

t<t∗
w(t)dt =

∫

x>0
φs(x)dx = 1

2
=
∫

x<0
φs(x)dx =

∫

t>t∗
w(t)dt, (23.34)

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1755

again exact in the t∗→+∞ limit (or whenever both tails of φs are contained in the integration

domain). Thus the fraction of weight allocated before the hit is fixed at 1/2—grazing rays

do not gain extra early mass. Moreover, the distribution of (t− t∗) under w is symmetric, so

Ew[t] = t∗: there is no forward shift of the “center of mass.”

• (iii) Peak at the surface (no forward drift). Because φs is unimodal with maximum at x = 0,

w(t) ∝ φs(f (p(t))) attains its maximum at f = 0, i.e., exactly at t = t∗. Hence w(t∗)> w(t)
for all t ̸= t∗.

Step 7: Derivative-of-CDF Identity

From Step 4 we know that along the ray

d f

dt
= n·v = −|cosθ |,

for an entering ray. Applying the chain rule to the cumulative distribution Φs(f (p(t))) gives

d

dt
Φs

(
f (p(t))

)
= φs

(
f (p(t))

) d f

dt
= −|cosθ |φs

(
f (p(t))

)
. (23.35)

Thus the NeuS weight may be expressed as

w(t) = |cosθ |φs(f (p(t))) = − d
dt

Φs(f (p(t))). (23.36)

Step 8: Interpretation as Soft Visibility

The function Φs(f (p(t))) acts as a soft visibility function:

• Outside the surface (f > 0), Φs ≈ 1, meaning the ray is fully visible.

• Deep inside (f < 0), Φs ≈ 0, meaning the ray has been completely occluded.

• Near the zero-level set, Φs smoothly transitions between these values.

The weight w(t) is precisely the negative slope of this transition along depth, concentrating probabil-

ity where the ray crosses the soft band around the surface.

Step 9: Embedding into Volume Rendering

Classical volume rendering defines

w(t) = T (t)ρ(t), T ′(t) =−ρ(t)T (t).

Identifying

T (t) = Φs(f (p(t))), (23.37)

we obtain

ρ(t) =
w(t)

T (t)
=
− d

dt
Φs(f (p(t)))

Φs(f (p(t)))
. (23.38)

Hence the NeuS construction ensures

w(t) = T (t)ρ(t),

so the derivative-of-CDF weight integrates seamlessly into the unbiased volume rendering framework.

1756 Chapter 23. Lecture 23: 3D vision

Multi-Surface Generalization

Up to now we have assumed a single, locally planar zero-level set with a consistent orientation

(entering side only). In realistic 3D scenes, however, a ray may intersect multiple surfaces (e.g., front

and back faces of an object), or may exit a surface region where the signed distance field increases in

the viewing direction (d f/dt > 0). This introduces two problems:

1. The raw expression

ρ(t) = − d

dt
logΦs(f (p(t)))

can become negative when d f/dt > 0, leading to unphysical “negative density”.

2. Without correction, the transmittance T (t) = exp
(
−∫ t

0 ρ(u)du
)

could become increasing,

which contradicts the physical principle that visibility along a ray must monotonically decrease.

Enforcing Physical Validity

NeuS resolves these issues by clipping the density:

ρ(t) = max

(
−

d
dt

Φs(f (p(t)))

Φs(f (p(t)))
, 0

)
. (23.39)

This guarantees that ρ(t)≥ 0, so that transmittance is non-increasing and weights w(t) = T (t)ρ(t)
remain physically consistent.

Intuition

One way to view this is to imagine the ray entering and leaving a “soft surface band”. On the entering

side (d f/dt < 0), the visibility drops and the derivative contributes positive density. On the exiting

side (d f/dt > 0), visibility recovers; the raw derivative would suggest negative density, but NeuS

suppresses this contribution to avoid creating “ghost” surfaces with negative opacity. In effect, NeuS

only accumulates mass where surfaces occlude the ray, never where they re-open.

Weights Construction Summary

In the single-surface case, the NeuS weight

w(t) = |cosθ |φs(f (p(t)))

is unbiased: it integrates to one, splits symmetrically around the true intersection, and peaks exactly

at the surface crossing. The clipping-based generalization ensures that this property extends to

arbitrary, multi-surface geometry, embedding the construction into the physically consistent volume

rendering framework.

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1757

Figure 23.62: Multiple intersections. The NeuS weight assigns probability only on entering

segments (d f/dt < 0); on exiting segments (d f/dt > 0) the derived opaque density is clipped to

zero. This preserves visibility ordering. Image credit: [667].

Discretization

To obtain discrete counterparts of the opacity and weight functions, the authors used the same

approximation scheme as used in NeRF [429]. Specifically, they sample n points along a ray,

pi = o+ tiv, i = 1, . . . ,n, ti < ti+1,

and approximate the pixel color of the ray as

Ĉ =
n

∑
i=1

Ti αi ci, (23.40)

where Ti denotes the discrete accumulated transmittance, defined by

Ti =
i−1

∏
j=1

(1−α j),

and αi represents the discrete opacity given by

αi = 1− exp

(
−
∫ ti+1

ti

ρ(t)dt

)
. (23.41)

Using the NeuS definition of the s-density ρ(t), this integral can be shown to yield

αi = max

(
Φs(f (pi))−Φs(f (pi+1))

Φs(f (pi))
, 0

)
, (23.42)

1758 Chapter 23. Lecture 23: 3D vision

where Φs is the cumulative distribution induced by the sigmoid with sharpness parameter s.

The term ci is obtained by evaluating the radiance branch of the MLP at the point xi and viewing

direction d, giving ci = c(xi,d). Importantly, NeuS does not eliminate the MLP; rather, it changes

its parameterization. Instead of predicting a free density value σ(x) as in NeRF, the network outputs

a signed distance value fθ (x). This is then converted into densities through the sigmoid-based

cumulative distribution Φs(fθ (x)), from which the discrete opacities αi are derived.

The max operator ensures non-negativity by clipping spurious increases of Φs across bins. Thus

the discretization remains faithful to the continuous NeuS rendering equation.

Compared to NeRF, the forward cost is essentially identical—both require evaluating an MLP

for each sample. The key difference lies in representation: NeRF directly predicts densities, while

NeuS predicts an SDF and enforces surface-consistency through its transformation. This change

does not accelerate rendering, but it yields sharper, geometrically consistent surfaces and avoids the

“fuzzy-shell” artifacts common to NeRF.

Training

NeuS is trained without any ground-truth 3D supervision. Instead, it relies on standard 2D image

supervision: observed pixel colors and, if available, binary foreground masks. The goal is to optimize

the signed distance function fθ and color head so that the rendered radiance field explains all training

views consistently.

Pixel sampling. At each iteration, a batch of m image pixels is sampled. For every pixel we collect

its color, optional binary mask, and corresponding camera ray in world space:

P = {Ck, Mk, ok, vk}m
k=1,

where Ck ∈ R
3 is the observed RGB value, Mk ∈ {0,1} is the foreground/background indicator, ok is

the camera origin, and vk the unit ray direction.

Overall objective. For each ray, n points are sampled and rendered through the NeuS volume

rendering equation, producing predicted colors Ĉk and occupancies Ôk. The total training loss is

L = Lcolor +λ Lreg +β Lmask, (23.43)

where each term enforces a different supervision signal.

Color reconstruction. The primary signal is per-pixel color matching:

Lcolor =
1

m

m

∑
k=1

R(Ĉk,Ck), (23.44)

where R is an ℓ1 loss, chosen for robustness to outliers. This term encourages the rendered radiance

field to reproduce the ground-truth images.

Eikonal regularization. To ensure that fθ behaves as a valid signed distance function, NeuS adds

an Eikonal loss [189]:

Lreg =
1

nm
∑
k,i

(
∥∇ f (p̂k,i)∥2−1

)2
, (23.45)

forcing the gradient norm to remain close to 1 almost everywhere.

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1759

Mask supervision. When binary foreground masks are available, NeuS includes an additional

constraint on ray occupancy:

Lmask = BCE(Mk, Ôk), Ôk =
n

∑
i=1

Tk,iαk,i, (23.46)

where Ôk ∈ [0,1] is the predicted probability that ray k intersects the object. If Mk = 0 (background

pixel), the network is penalized for predicting any opacity along that ray. If Mk = 1 (foreground), the

network must explain the pixel with some nonzero occupancy. This mask loss thus provides strong

geometric supervision in cases where silhouettes are known.

Hierarchical sampling. The hierarchical sampling strategy in NeuS is designed to efficiently

localize the surface by focusing computation on regions where the signed distance field (SDF)

indicates high surface likelihood. Importantly, NeuS achieves this with a single MLP, unlike NeRF

which maintains separate coarse and fine networks.

• Stage 1: Uniform sampling with fixed sharpness. Each ray is first discretized into n0

uniformly spaced points (e.g., 64). For these coarse samples, NeuS evaluates the S-density

function

φs(f (x)) = Φs(− f (x)) ·
∣∣∣∣
∂ f

∂x

∣∣∣∣

using a fixed sharpness parameter s. This fixed s is not learned but annealed over iterations

(e.g., s = 32 ·2i in iteration i) so that the sampling distribution becomes progressively more

peaked near potential surface regions. The goal is to obtain a broad but informative estimate

of where surfaces may lie.

• Stage 2: Importance sampling with learned sharpness. Based on the coarse distribution,

NeuS resamples additional n1 points (e.g., 4 iterations of 16 points each). For these fine

samples, the probability density is computed with the learned sharpness parameter s, which is

optimized during training. This adaptive s sharpens over time, concentrating samples more

tightly around the true surface as the SDF becomes well-defined.

Thus, NeuS does not use two separate networks but instead uses two different regimes of the

same S-density function: one with fixed, annealed sharpness for exploration, and one with learned

sharpness for exploitation. This hierarchical approach balances efficiency with precision: the fixed s

ensures coverage so that surfaces are not missed, while the learned s allows the model to progressively

refine and localize surfaces with high fidelity.

Compared to NeRF, where hierarchical sampling requires evaluating two full MLPs (a coarse

and a fine model), NeuS is more efficient: only a single MLP is optimized and queried, with different

sampling distributions guiding where along the ray the network is evaluated. Moreover, since NeuS

is SDF-based, the learned sharpness naturally drives samples toward the zero level set, achieving

more accurate and unbiased surface reconstruction than NeRF’s density-based formulation.

Training stabilization via geometry initialization

Directly training an SDF-based radiance field from random initialization often leads to vanishing

gradients, since no ray finds a valid surface early in optimization. To mitigate this, NeuS biases the

final layer of the SDF network such that its zero-level set initially approximates a coarse sphere

around the scene. This “geometry initialization” ensures that rays intersect meaningful surfaces

at the start of training, stabilizing the optimization process. As learning progresses, the initialized

surface quickly deforms to match the actual scene geometry.

1760 Chapter 23. Lecture 23: 3D vision

Experiments and Ablations

Experimental setup

NeuS is evaluated on the DTU dataset, which provides multi-view images with ground-truth geometry.

Reconstructions are reported both with and without mask supervision. Mask supervision means

that a foreground mask of the object is available during training, ensuring that background pixels

do not bias the reconstruction. Without mask supervision, the method must disentangle object and

background purely from image observations.

Quantitative results

The following table reports Chamfer distance (lower is better) across multiple DTU scans, comparing

NeuS to prior implicit reconstruction methods (IDR [731], UNISURF [455]) and to volumetric

rendering baselines (NeRF [429]) and COLMAP [553]. NeuS consistently achieves the lowest mean

error (0.84), significantly outperforming both NeRF and UNISURF.

ScanID IDR NeRF NeuS COLMAP NeRF (w/o mask) UNISURF NeuS (w/o mask)

24 1.63 1.83 0.83 0.81 1.90 1.32 1.00

37 1.87 2.39 0.98 2.05 1.60 1.36 1.37

40 0.63 1.79 0.56 0.73 1.85 1.72 0.93

55 0.48 0.66 0.37 1.22 0.58 0.44 0.43

63 1.04 1.79 1.13 1.79 2.28 1.35 1.10

65 0.79 1.44 0.59 1.58 1.27 0.79 0.65

69 0.77 1.50 0.60 1.02 1.47 0.80 0.57

83 1.33 1.20 1.45 3.05 1.67 1.49 1.48

97 1.16 1.96 0.95 1.40 2.05 1.37 1.09

105 0.76 1.27 0.78 2.05 1.07 0.89 0.83

106 0.67 1.44 0.52 1.00 0.88 0.59 0.52

110 0.90 2.61 1.43 1.32 2.53 1.47 1.20

114 0.42 1.04 0.36 0.49 1.06 0.46 0.35

118 0.51 1.13 0.45 0.78 1.15 0.59 0.49

122 0.53 0.99 0.45 1.17 0.96 0.62 0.54

Mean 0.90 1.54 0.77 1.36 1.49 1.02 0.84

Table 23.10: Quantitative evaluation on the DTU dataset. NeuS achieves the lowest Chamfer distance

both with and without mask supervision. COLMAP results use trim=0.

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1761

Qualitative comparisons

Figure 23.63: Comparison of surface reconstruction with mask supervision. NeuS generates the

most accurate surfaces. IDR produces smooth but wrong geometry, while NeRF captures geometry

but with many artifacts.

Figure 23.64: Comparison of surface reconstruction without mask supervision. NeuS is robust, while

NeRF introduces artifacts and COLMAP removes parts of the object or hallucinates noise.

1762 Chapter 23. Lecture 23: 3D vision

Ablation studies

The contribution of each component in NeuS is verified via ablation. The following table reports

Chamfer distance and mean absolute error (MAE) between ground-truth and predicted SDF values.

The results highlight the necessity of all components: naive volume rendering (a) and direct SDF su-

pervision (b) fail catastrophically; removing the Eikonal regularization (c) or geometry initialization

(d) significantly degrades performance; only the full model (e) achieves low reconstruction error.

Variant Chamfer Distance MAE

(a) Naive Solution 1.49 1.75

(b) Direct Solution 4.45 44.34

(c) w/o Eikonal 0.64 88.94

(d) w/o Geo-Init. 0.62 6.19

(e) Full Model 0.59 0.93

Table 23.11: Ablation studies on DTU. Removing the Eikonal loss or geometric initialization

substantially harms reconstruction accuracy.

Figure 23.65: Qualitative ablations. NeuS requires all components—S-density, Eikonal regulariza-

tion, and geometry initialization—for faithful reconstruction.

Limitations and Related Work

While NeuS delivers high-quality surface reconstructions via its signed distance field (SDF)–based

volume rendering, it has notable limitations:

• Computational cost: The reliance on per-sample MLP evaluations and SDF-to-density

conversion makes training and inference slower compared to standard NeRF pipelines.

• Mask dependency: Although NeuS works without mask supervision, accurate foreground

masks significantly boost reconstruction fidelity; without them, detail in thin or complex

structures can suffer.

• Topology challenges: Representing highly intricate or open surfaces remains a challenge for

closed-surface SDF models.

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1763

Previous works.

• IDR [731]: Introduced differentiable rendering of implicit surfaces using signed distance

functions (SDFs), supervising geometry through surface normals and photometric consistency.

While conceptually elegant, IDR struggled with complex or open-topology scenes (e.g.,

buckets or vases), where normal-based rendering did not provide stable gradients. NeuS builds

directly on IDR’s use of SDFs but resolves its instability by adopting a volume rendering

formulation, yielding more consistent optimization signals and sharper reconstructions.

Concurrent works.

• VolSDF [732]: Proposed mapping SDF values to densities via a Laplace cumulative dis-

tribution function (CDF), enabling smoother and more stable volume rendering than IDR.

However, VolSDF used a fixed sharpness parameter, which limited its ability to adapt across

varying surface scales. NeuS improved on this by introducing a learnable sharpness, allowing

adaptive localization of surfaces and producing significantly crisper reconstructions, especially

in fine-detail regions.

• UNISURF [455]: Presented a unified framework bridging NeRF and implicit surface rendering.

Unlike NeuS, UNISURF relied more heavily on external mask supervision, which limited

its robustness in unconstrained scenarios. Both works shared the motivation of reconciling

surface-based and volumetric representations, but NeuS advanced the field by learning the

SDF-to-density mapping directly, reducing reliance on explicit segmentation cues.

Later works.

• HF-NeuS [682]: Decomposed the SDF into base and residual frequency components, enabling

reconstruction of thin structures and high-frequency detail (e.g., sharp edges or wires). While

improving fidelity compared to NeuS, it retained the same runtime bottlenecks since both

relied on per-point MLP evaluation.

• PET-NeuS [683]: Replaced dense per-point MLP queries with tri-plane encodings, where

features were stored in structured 2D planes and interpolated during rendering. This design

improved efficiency and detail, addressing NeuS’s computational cost while preserving its

SDF-based accuracy.

• NeUDF [377]: Generalized NeuS-style rendering to unsigned distance functions (UDFs),

removing the assumption of closed surfaces inherent to SDFs. This allowed robust recon-

structions of open and thin structures (e.g., curtains, leaves, or perforated objects) that NeuS

struggled with, thus broadening applicability to more complex real-world geometries.

• KiloNeuS [147]: Partitioned the scene into thousands of small MLP “experts,” drastically

reducing training and inference time. Compared to NeuS, which required hours of optimization,

KiloNeuS achieved near real-time performance while maintaining competitive quality, making

SDF-based rendering far more practical.

• NeuS2 [681]: Extended NeuS with hash-grid encodings and optimized CUDA kernels, reduc-

ing training from hours to minutes per scene. Crucially, NeuS2 also incorporated support for

dynamic scenes, handling time-varying geometry and appearance—a limitation in the original

NeuS. This positioned NeuS2 as a scalable and general successor.

• GSDF [744]: Combined NeuS-style SDF geometry with Gaussian Splatting for appearance

modeling. The motivation was that SDFs excel at representing surfaces but are inefficient

for view-dependent appearance, while Gaussians offer fast rasterization and smooth view

interpolation. By splitting geometry (SDF) and appearance (Gaussians), GSDF improved both

quality and rendering efficiency compared to pure NeuS.

1764 Chapter 23. Lecture 23: 3D vision

Enrichment 23.10.8: Point-NeRF: Point-based Neural Radiance Fields

Point-NeRF [714] introduces a point-based neural radiance field representation that combines the

strengths of explicit point clouds and implicit volumetric rendering. Unlike NeRF [429], which fits a

global MLP per scene, Point-NeRF leverages neural point clouds that encode local geometry and

appearance features, enabling efficient feed-forward initialization and rapid per-scene optimization.

This summary details the motivation, method, architecture, experiments, limitations, and follow-up

work.

Motivation

Classical NeRF methods achieve impressive view synthesis results but suffer from inefficiency: each

scene requires hours or days of optimization, and significant computation is wasted sampling empty

space. Point clouds, by contrast, provide explicit geometric priors but often suffer from holes, noise,

or sparsity when reconstructed using MVS or SfM pipelines (e.g., COLMAP [553]).

Point-NeRF addresses both challenges by:

• Using neural points distributed near surfaces to avoid sampling empty space.

• Enabling direct feed-forward initialization of neural radiance fields via deep MVS prediction.

• Employing point pruning and growing to repair sparse or noisy point clouds.

This hybrid approach leads to reconstructions that surpass NeRF in quality and efficiency,

converging in tens of minutes up to a several hours instead of days.

Figure 23.66: Point-NeRF efficiently reconstructs fine details (e.g., leaf structures) in tens of minutes,

unlike NeRF which requires days of optimization. It can also initialize from raw COLMAP point

clouds and refine them via pruning and growing. Credit: [714].

Method

Overview

Point-NeRF reconstructs a continuous radiance field by augmenting an explicit 3D point set with

neural attributes and rendering it with a lightweight, local MLP. Crucially, the 3D points and their

initial attributes are obtained by scene-independent, feed-forward networks that operate directly on

posed images—so a new scene can be initialized relatively fast without re-training these networks.

Inputs. We are given a calibrated image set

IQ = {(Iq,Φq)}Q
q=1, Φq = (Kq,Rq, tq),

i.e., Q RGB images with known intrinsics/extrinsics.

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1765

Scene-independent initialization (learned across many scenes). Point-NeRF trains two modules

across scenes so they generalize to new inputs and provide a fast, scene-agnostic initialization:

• Geometry/Confidence module Gp,γ (MVSNet-style 3D CNN). For a reference view q with a

small set of neighboring source views N (q) (typically |N (q)|=2), Gp,γ proceeds as follows:

1. Plane-swept cost volume. Build a 3D tensor over (u,v,d) by differentiably warping

source-view feature maps onto fronto-parallel planes placed at discrete depths d∈D in

the reference frustum (plane-induced homographies). At each pixel (u,v) and plane d,

we compute a cost (e.g., channel-wise variance across the warped sources) that measures

multi-view agreement. Intuition: if the hypothesized plane passes through the true

surface seen at (u,v), the warped source features align well and the cost is low; otherwise

they disagree and the cost is high.

2. Regularization and probabilities. A compact 3D CNN regularizes the noisy cost vol-

ume and outputs depth logits Lq(u,v,d); applying a softmax along d gives the depth

probability volume

Pq(u,v,d) =
expLq(u,v,d)

∑d′∈D expLq(u,v,d′)
∈ [0,1], ∑

d∈D
Pq(u,v,d) = 1.

Intuition: the logits are unnormalized scores; after softmax, Pq(u,v, ·) becomes a distri-

bution along the reference ray stating how likely each depth hypothesis explains pixel

(u,v) given all views.

3. Depth regression (soft-argmin). Regress a single expected depth per pixel by the

probability-weighted average

Dq(u,v) = ∑
d∈D

d Pq(u,v,d).

Intuition: Dq(u,v) is the (differentiable) expectation of the per-ray depth distribution.

If Pq(u,v, ·) is sharply peaked at some d⋆, then Dq(u,v)≈d⋆ (like an argmax); if it is

spread over nearby planes, Dq interpolates them, yielding sub-plane precision.

4. Unprojection to 3D points. Using the reference camera parameters Φq = (Kq,Rq, tq),
back-project each pixel (u,v) with depth d = Dq(u,v) into 3D:

xcam = d K−1
q [u,v,1]⊤, p = R⊤q (xcam− tq) ∈ R

3,

producing a per-view point set {p
(q)
i }

Nq

i=1. Intuition: this lifts the 2D depth map Dq into a

cloud of 3D anchors that sit on the most plausible surface along each reference ray.

5. Confidence from Pq. Assign each 3D point a confidence by sampling the depth probability

at its inferred depth:

γ
(q)
i ≈ Pq

(
ui, vi, Dq(ui,vi)

)
∈ [0,1],

using tri-linear interpolation in (u,v,d) to handle non-integer coordinates. Intuition: tri-

linear sampling blends the eight neighboring grid values to evaluate Pq at the continuous

location (ui,vi,di). If Pq(ui,vi, ·) is peaked near di, the pixel’s multi-view evidence

strongly agrees there, so γ
(q)
i is large; if it is flat or multi-modal, the depth is uncertain

and γ
(q)
i is small.

1766 Chapter 23. Lecture 23: 3D vision

Generalization. Trained once across diverse scenes, Gp,γ produces dense geometry and

uncertainty-aware confidences for a new scene with a single forward pass (no per-scene

retraining), yielding a fast and reliable geometric scaffold for Point-NeRF.

• Feature module G f (2D CNN). Independently, G f extracts multi-scale feature maps from

each Iq (shared weights across views). For every 3D point p
(q)
i , we project it into visible

training views and sample the corresponding feature maps; the sampled descriptors are fused

(e.g., concatenation/averaging or a small fusion MLP) to obtain a per-point appearance vector

f
(q)
i . G f is also trained across scenes and reused as-is at inference.

Running Gp,γ and G f for several references yields per-view sets {(p
(q)
i , f

(q)
i ,γ

(q)
i)}. These are

combined (union with light filtering/deduplication) into a single, scene-level neural point cloud

P = {(pi, fi,γi) | i = 1, . . . ,N},
which then drives fast, surface-aware rendering and the subsequent per-scene refinement (with

pruning and growing).

Per-scene refinement (≈ tens of minutes). Given the unified neural point cloud P = {(pi, fi,γi)}N
i=1

(points pi∈R3 with per-point features fi from G f and confidences γi), Point-NeRF renders a novel

view by differentiable ray marching restricted to space near the point cloud. This restriction avoids

wasting samples in empty regions and is implemented by querying, at each shading location, only the

K nearest neural points within a radius R. All radiance and density predictions at shading locations

are regressed from these local neighbors rather than a global MLP.

Ray setup and sampling (as in NeRF)

For a target camera with intrinsics K and extrinsics (R, t) (world→camera), a pixel (u,v) defines a

camera ray with origin at the camera center o =−R⊤t and direction

d =
R⊤K−1[u, v, 1]⊤∥∥R⊤K−1[u, v, 1]⊤

∥∥ .

We sample depths {t j}M
j=1 along this ray (near→far) and form shading locations x j = o+ t jd with

spacings ∆ j = t j+1− t j. The pixel color is accumulated via the standard volume-rendering rule

c =
M

∑
j=1

τ j

(
1− e−σ j∆ j

)
r j, τ j = exp

(
−

j−1

∑
t=1

σt∆t

)
.

Intuition. At each sample x j the density σ j induces an opacity α j = 1− e−σ j∆ j (how much the

sample contributes) and a transmittance τ j (how much light survives from the ray origin up to x j).

The emitted/view-dependent color r j is then weighted by the chance that the ray reaches x j (τ j) and

“stops” there (α j). High σ j increases α j (more contribution, more occlusion downstream); low σ j

passes energy forward.

Local neighbor query (surface-aware shading)

At each ray sample x j we gather only the K nearest anchors within a radius R:

N (x j) =
{
(pi, fi,γi)

∣∣∣ ∥pi− x j∥ ≤ R, K nearest
}
.

Restricting computation to nearby anchors focuses shading near likely surfaces and avoids wasting

samples in empty space. In practice, a uniform voxel grid or hash grid over {pi} accelerates neighbor

lookup so that only cells intersected by the ray are visited.

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1767

Local feature regression (Eq. 3)

Each neighbor (pi, fi,γi) ∈N (x j) is turned into a location-specific descriptor by a small MLP F :

fi,x j
= F

(
fi, x j− pi

)
.

Conditioning on the relative offset x j− pi (with positional encoding in practice) grants translation

invariance and lets each neural point act as a local 3D chart around itself.

Radiance aggregation (Eqs. 4–5)

Location-specific features are blended with inverse-distance weights and confidence modulation:

fx j
=

∑i γi wi fi,x j

∑i wi

, wi =
1

∥x j− pi∥
, r j = R

(
fx j
, d
)
,

where R is a light MLP that also takes the viewing direction d (directional positional encoding).

Intuition: nearby, high-confidence anchors dominate r j, while distant or dubious anchors are

downweighted.

Density aggregation (Eqs. 6–7)

Densities are produced in two stages:

σi = T
(

fi,x j

)
, σ j =

∑i σi γi wi

∑i wi

, wi =
1

∥x j− pi∥
.

Why both wi and γi? wi encodes geometric proximity (even a reliable point should not dominate far

away), while γi encodes reliability (even a nearby point should contribute little if its confidence is

low). Together they yield robust, surface-aware σ j.

Putting the pieces together

For each pixel ray: (i) sample {x j}, (ii) query N (x j), (iii) compute { fi,x j
} via F , (iv) aggregate to

r j and σ j via R and T , and (v) composite with

c =
M

∑
j=1

τ j

(
1− e−σ j∆ j

)
r j, τ j = exp

(
−

j−1

∑
t=1

σt∆t

)
.

End-to-end optimization objective

Rendered colors are supervised by an ℓ2 photometric loss Lrender (optionally plus perceptual terms).

During per-scene refinement, gradients do flow into the neural point cloud attributes and the local

shading MLPs, while the scene-agnostic generators Gp,γ and G f remain frozen (they were pretrained

across scenes to provide fast initialization). Concretely, we update:

• Per-point attributes (fi,γi): fi specializes to the scene’s appearance; γi sharpens so anchors

truly on-surface receive high confidence while outliers are suppressed.

• Local MLPs F,R,T : adapt the mapping from neighbor-conditioned features to (r,σ) for this

scene.

• Topology (discrete edits): instead of moving pi continuously (unstable and unable to close

large holes), we use pruning and growing.

1768 Chapter 23. Lecture 23: 3D vision

The total loss is

Ltotal = Lrender + λsparse Lsparse, Lsparse =
1

|γ|∑i

[
log(γi)+ log(1− γi)

]
,

which (per paper Eq. (10)) polarizes confidences toward {0,1} and makes pruning decisions unam-

biguous.

Topology edits during refinement (per paper)

Pruning. Points with persistently low confidence are removed; specifically, every 10K iterations,

points with γi < 0.1 are pruned (as in the paper), eliminating outliers and reducing neighborhood

clutter.

Growing. To add anchors where geometry is missing, use the current field to propose new points

along training rays. For a sample at x j with density σ j and step ∆ j, define the instantaneous opacity

α j = 1− exp(−σ j∆ j).

Let jg = argmax j α j be the most opaque sample on the ray (paper Eq. (11)). If (i) α jg exceeds an

opacity threshold Topacity (likely surface) and (ii) the distance from x jg to the nearest existing anchor

exceeds Tdist (under-anchored region), insert a new point at pnew = x jg . Initialize its attributes as in

the paper’s pipeline: features fnew from G f by projecting pnew into visible views and fusing sampled

descriptors; confidence γnew with a moderate prior (e.g., 0.3) that will be driven by Lrender+Lsparse.

Merging near-duplicates and updating the neighbor index keeps queries efficient.

Outcome. Because geometry and initial descriptors come from the pretrained, scene-independent

generators (Gp,γ and G f), per-scene training converges in tens of minutes yet achieves quality

competitive with or better than NeRF trained for hours. The confidence- and distance-weighted

aggregation stabilizes learning, while pruning/growing self-organize the anchor set to close holes

and remove outliers, preparing us for the next section on Architecture & Implementation Details.

Architecture and Implementation Details

• Point Generation: Depth maps predicted via a cost-volume 3D CNN Gp,γ , unprojected into

3D points with confidence γi.

• Feature Extraction: 2D CNN G f (VGG-style) produces multi-scale features aligned with

points.

• Radiance/Density MLPs: Small per-point MLPs regress local features, radiance, and density.

• Positional Encoding: Applied to relative positions and view directions.

• Optimization: Loss combines rendering error and sparsity penalty:

Lopt = Lrender +αLsparse,

with pruning/growing every 10k iterations.

Figure 23.67: Point-NeRF optimization: dashed lines indicate gradient updates during initialization

and per-scene finetuning. Credit: [714].

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1769

Experiments and Ablations

Point-NeRF is evaluated on DTU [262], NeRF-Synthetic [429], Tanks&Temples [299], and Scan-

Net [113]. This section reproduces the paper’s reported numbers and highlights the main observa-

tions.

Table 23.12: DTU [262] (novel-view setting of [79]). Subscripts indicate training iterations.

No Per-scene Optimization Per-scene Optimization

PixelNeRF [739] MVSNeRF [79] IBRNet [654] Point-NeRF Point-NeRF1K Point-NeRF10K MVSNeRF10K IBRNet10K NeRF200K [429]

PSNR ↑ 19.31 26.63 26.04 23.89 28.43 30.12 28.50 31.35 27.01

SSIM ↑ 0.789 0.931 0.917 0.874 0.929 0.957 0.933 0.956 0.902

LPIPSVGG ↓ 0.382 0.168 0.190 0.203 0.183 0.117 0.179 0.131 0.263

Time ↓ – – – – 2min 20min 24min 1h 10h

DTU

With 1K iterations (≈ 2 minutes), Point-NeRF already exceeds a NeRF baseline at 200K iterations

(≈ 10 hours) on PSNR/SSIM/LPIPS; at 10K iterations it attains the best SSIM and LPIPS among

the listed methods (Table 1).

Table 23.13: NeRF-Synthetic [429]. Point-NeRF matches NeRF at 20K steps and surpasses it at

200K. “col” denotes initialization from COLMAP [553].

NPBG [9] NeRF [429] IBRNet [654] NSVF [370] Point-NeRFcol
200K

Point-NeRF20K Point-NeRF200K

PSNR ↑ 24.56 31.01 28.14 31.75 31.77 30.71 33.31

SSIM ↑ 0.923 0.947 0.942 0.964 0.973 0.967 0.978

LPIPSVGG ↓ 0.109 0.081 0.072 – 0.062 0.081 0.049

LPIPSAlex ↓ 0.095 – – 0.047 0.040 0.050 0.027

NeRF-Synthetic

At 20K iterations (≈ 40 minutes), Point-NeRF reaches NeRF-level quality; at 200K it surpasses

NeRF on PSNR/SSIM/LPIPS (Table 2), with qualitative advantages on thin structures.

1770 Chapter 23. Lecture 23: 3D vision

Figure 23.68: Qualitative comparisons on NeRF-Synthetic [429]. Subscripts indicate training

iterations. Point-NeRF captures thin structures (e.g., the rope) and converges much faster than NeRF.

Tanks&Temples and ScanNet

On the Tanks&Temples subset of [299] (five scenes: Ignatius, Truck, Barn, Caterpillar, Family),

Point-NeRF reports a mean 29.61 / 0.954 / 0.080 (PSNR / SSIM / LPIPSAlex), which improves over

NSVF’s 28.40 / 0.900 / 0.153 by +1.21 dB PSNR, +0.054 SSIM, and −0.073 LPIPS (lower is

better), indicating higher fidelity and better perceptual quality under larger, real scenes.

For ScanNet [113] (two scenes used by [370]), Point-NeRF achieves 30.32 / 0.909 / 0.220 versus

NSVF’s 25.48 / 0.688 / 0.301, i.e., +4.84 dB PSNR, +0.221 SSIM, and −0.081 LPIPSAlex. These

results follow the evaluation protocol of [370] (depth-image–initialized scenes) and show a consistent

advantage in both accuracy and perceptual metrics on indoor scans.

Initialization from external COLMAP clouds

When starting from COLMAP points [553], pruning and growing (Sec. 23.10.8) substantially

improve geometry and rendering. The following figure shows qualitative effects; The following table

(paper’s numbers) reports gains on Ship and Hotdog.

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1771

Figure 23.69: Pruning & growing (P&G) ablation. Removing outliers and adding anchors in high-

opacity, under-anchored regions improves both geometry and rendering for predicted points and

COLMAP-initialized points.

Table 23.14: Effect of pruning & growing (paper’s Table 4). COLMAP: initialization from [553].

Method Ship (PSNR / SSIM / LPIPSVGG) Hotdog (PSNR / SSIM / LPIPSVGG)

Point-NeRF (No P&G) 25.50 / 0.878 / 0.182 34.91 / 0.983 / 0.067

Point-NeRF (With P&G) 30.97 / 0.942 / 0.124 37.30 / 0.991 / 0.037

COLMAP init (No P&G) 19.35 / 0.905 / 0.167 29.91 / 0.978 / 0.061

COLMAP init (With P&G) 30.18 / 0.941 / 0.134 35.49 / 0.986 / 0.061

Feature-initialization ablation (paper’s Table 5)

Initializing point features with extracted multi-view image features accelerates convergence and

improves final metrics versus random initialization: 20K iters PSNR/SSIM 30.09/0.963 (extracted)

vs. 25.44/0.932 (random); 200K iters 33.00/0.978 (extracted) vs. 32.01/0.972 (random).

Limitations

• Dependence on seed quality. The feed-forward initializer greatly accelerates setup, but

extremely sparse or noisy initial geometry can still cap fidelity. Pruning/growing helps, yet

very large holes or heavy outliers remain challenging to repair quickly.

• Memory and neighborhood queries. High point densities increase memory footprint and the

cost of building/querying spatial indices. At render time, each shaded sample performs a local

KNN aggregation, so throughput is ultimately limited by ray marching and repeated neighbor

lookups.

• Mesh extraction. Even though the representation is anchored by explicit points, producing

watertight, topologically consistent meshes from the learned radiance field is non-trivial, as in

many radiance-field methods.

1772 Chapter 23. Lecture 23: 3D vision

Outlook toward 3D Gaussian Splatting.

These bottlenecks motivate alternative explicit radiance parameterizations that trade local KNN

aggregation and per-sample MLP evaluations for analytic rasterization of continuous primitives. A

prominent next step is 3D Gaussian Splatting [287], which represents the scene with anisotropic

Gaussians carrying color (e.g., spherical-harmonics coefficients), opacity, and covariance. Rendering

then becomes screen-space splatting with differentiable visibility, enabling much higher frame

rates. In the following section, a comparison is drawn between Point-NeRF’s point-anchored, ray-

marched formulation and Gaussian-based splatting, clarifying how the latter alleviates neighbor-query

overhead and amortizes rendering—while introducing its own visibility and ordering considerations.

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1773

Enrichment 23.10.9: 3D Gaussian Splatting: RT Radiance Field Rendering

Motivation and big picture

Context and objective

Radiance fields deliver high-fidelity novel views, but classic NeRF pipelines are costly at train and

render time due to dense ray marching and repeated MLP evaluation. Fast explicit variants (Plenoxels,

DVGO, Instant-NGP, TensoRF, etc.) accelerate this by replacing networks with explicit features

or compact encodings, while Point-NeRF adopts point primitives with differentiable rasterization.

3D Gaussian Splatting (3DGS) [287] represents the scene with anisotropic 3D Gaussians and

renders them using a visibility-aware, differentiable, tile-based software rasterizer. Each 3D ellipsoid

projects to a 2D ellipse whose Gaussian footprint is blended front-to-back, preserving the volumetric

accumulation behavior while enabling real-time rendering once optimized.

Figure 23.70: From triangles to Gaussians Instead of rasterizing mesh triangles, 3DGS renders

many anisotropic 3D Gaussians; in screen space these appear as ellipses (borders shown for clarity).

Illustration adapted from the Hugging Face overview [139].

Key idea

3D Gaussian Splatting (3DGS) renders scenes by forward rasterization instead of backward ray

marching [287]. The scene is a collection of learnable anisotropic 3D Gaussians. Each Gaussian is

projected to a soft 2D ellipse and blended in front-to-back depth order using α-compositing; this

reproduces volumetric visibility while remaining GPU-friendly.

Core terms

A 3D Gaussian is defined by a center µ ∈ R
3 and covariance Σ ∈ R

3×3 with (unnormalized) density

G(x) ∝ exp
(
− 1

2
(x−µ)⊤Σ−1(x−µ)

)
.

If Σ = σ2I the spread is the same in all directions (isotropic); otherwise it is direction-dependent and

the shape is an oriented ellipsoid (anisotropic). 3DGS parameterizes the covariance in a sophisticated

manner allowing simple optimization with minimal constraints.

How 3DGS uses Gaussians

Each Gaussian stores:

• geometry and opacity: (µ, R, S, a).
• appearance: a set of learned spherical harmonics (SH) coefficients for view-dependent color.

All parameters are optimized from posed images via backpropagation (details later).

1774 Chapter 23. Lecture 23: 3D vision

From 3D to 2D footprints

We use the standard pinhole camera to map a 3D point to pixel coordinates. Let a world point be

x ∈ R
3. First apply the extrinsics W = [Rc | tc] (world→camera):

X = W x̃ =




Xc

Yc

Zc


 , x̃ =

[
x

1

]
,

so (Xc,Yc,Zc) are the point’s coordinates in the camera frame and Zc>0 is its depth along the optical

axis. Then apply the intrinsics

K =




fx 0 cx

0 fy cy

0 0 1


 ,

where fx, fy are focal lengths measured in pixels (scaling image-space units along u and v), and

(cx,cy) is the principal point (optical center in pixels). The pinhole projection π : R3→ R
2 is

(u,v) = π(X) =
(

fx
Xc

Zc
+ cx, fy

Yc

Zc
+ cy

)
,

i.e., we form normalized image coordinates (Xc/Zc, Yc/Zc) and then scale/shift by (fx, fy) and

(cx,cy).

Local linearization and the projection Jacobian To obtain a simple, differentiable footprint for each

Gaussian, we linearize the pixel coordinates near its center µ . Let X0 =W µ = (X0,Y0,Z0)
⊤ be the

center in camera space. The projection Jacobian J ∈ R
2×3 is the derivative of pixel coordinates with

respect to camera coordinates at X0:

J =
∂ (u,v)

∂ (Xc,Yc,Zc)

∣∣∣∣
X0

=




fx

Z0

0 − fxX0

Z2
0

0
fy

Z0

− fyY0

Z2
0


 .

Thus a small 3D motion δX near X0 produces a pixel shift δ p≈ J δX : lateral moves (Xc,Yc) shift

pixels by roughly fx,y/Z0 (more at small depth, less when far), while motion along Zc changes scale,

pushing pixels outward as the point approaches the camera.

Induced 2D covariance Gaussian covariances transform under a linear map A as AΣA⊤. Since a

small world-space displacement δx maps to pixels by δ p≈ (JW)δx, the screen-space covariance is

Σ′ = JW ΣW⊤J⊤.

Geometrically, the 3D ellipsoid becomes a 2D ellipse whose orientation and size encode local

perspective (rotation, foreshortening, scale). This Σ′ defines a soft, rapidly decaying footprint over

nearby pixels; farther from the ellipse center, the contribution to the pixel is smaller.

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1775

View-dependent color with spherical harmonics

For a fixed view, each projected ellipse contributes one RGB color; only its per-pixel weight αi(x)
varies across the footprint. That color is a function on directions v̂i = (o−µi)/∥o−µi∥ ∈ S

2 and

is expanded in real spherical harmonics (an orthonormal basis on the unit sphere, analogous to a

Fourier/Taylor basis but for directions):

ci(v̂i) =
L

∑
l=0

l

∑
m=−l

ci,lmYlm(v̂i),

where Ylm are basis functions on S
2 and ci,lm∈R3 are learned per-Gaussian coefficients. Low degrees

L capture smooth, low-frequency view dependence; higher L add directional detail. Training starts

at L=0 (constant color) to stabilize geometry and opacity, then ramps L up (e.g., to a small order) to

introduce view dependence without a large decoder [287].

Rasterize and composite

For each view, 3DGS projects all Gaussians, sorts overlapping footprints front-to-back within image

tiles, and blends them using α-compositing. If αk(x) is the per-pixel opacity of the k-th (depth-sorted)

Gaussian at pixel x, and ck is its view-dependent color, the accumulated color uses the transmittance

Tk−1(x) (remaining visibility before k):

C(x) = ∑
k

Tk−1(x)αk(x)ck, Tk(x) = Tk−1(x)
(
1−αk(x)

)
, T0(x) = 1.

This reproduces the effect of volumetric rendering but operates on 2D ellipses (no per-ray samples).

Why this design is effective

• Quality with compactness Anisotropic Gaussians align to edges and thin structures, achiev-

ing sharp detail with fewer primitives (vs. isotropic point splats or uniformly sampled ray

accumulations).

• Surface alignment and subpixel fidelity Oriented ellipses capture anisotropic image gradients

(edges, ridges), reducing holes and flicker compared with Point-NeRF and classic NeRF.

• Explicit visibility with dense gradients Front-to-back α-compositing gives crisp occlusion

ordering, and the differentiable rasterizer sends gradients to many overlapping splats per pixel,

avoiding k-nearest sparsity and per-ray sample sparsity.

• Efficient view dependence Per-Gaussian spherical harmonics (SH) produce smooth direc-

tional color without a large MLP; degree ramping stabilizes early training. [287].

• Capacity steering in 3D The clone/split/prune schedule adapts both the number and the

shape/orientation of primitives, concentrating dof where reprojection errors are high.

• Real-time rendering 2D rasterization on projected ellipses replaces expensive ray marching.

• Tile-wise global ordering A single radix sort by depth and tile enables coherent front-to-back

blending with early termination once transmittance saturates.

• Stable, fast optimization The covariance parameterization and closed-form projection to

Σ′ yield well-behaved gradients; analytic derivatives for the parameters avoid fragile PSD

constraints and heavy autodiff through eigendecompositions.

In what follows we derive 3DGS step by step, and then then turn to experiments and ablations, and

conclude with limitations and follow-up work.

1776 Chapter 23. Lecture 23: 3D vision

3D Gaussian Splatting stages

Before we dive into the details, we give a high-level walkthrough of the 3DGS pipeline, linking

the core idea—forward rasterization of anisotropic 3D Gaussians—to the concrete steps used for

projection, image formation, optimization, and real-time rendering.

1. Initialization From calibrated multi-view images, run SfM to recover camera poses and a

sparse point cloud. Seed one Gaussian per SfM point with center µ , rotation R (via a unit

quaternion), diagonal scale S = diag(sx,sy,sz), opacity a, and a small set of real spherical-

harmonics (SH) coefficients for view-dependent color. For stability, begin with degree L=0

(constant color) and ramp L upward as geometry and opacity settle.

2. Projection Around each center µ , locally linearize the pinhole camera. With world→camera

transform W and the 2×3 projection Jacobian J at W µ , the 3D covariance Σ = (RS)(RS)⊤

becomes the screen-space covariance

Σ′ = JW ΣW⊤J⊤.

Thus a 3D ellipsoid projects to a soft 2D ellipse (splat) with image mean u = π(W µ). The

camera-space depth Zc of µ will define visibility order.

3. Image formation For pixel x, each overlapping splat contributes a weight (opacity) that

decays with its elliptical distance:

αi(x) ∝ ai exp
(
− 1

2
(x−ui)

⊤Σ′i
−1
(x−ui)

)
.

The splat’s color is evaluated once per view from its SH expansion at the unit view direction

v̂i = (o−µi)/∥o−µi∥:

ci(v̂i) =
L

∑
l=0

l

∑
m=−l

ci,lmYlm(v̂i).

Splat colors are then accumulated using front-to-back α-compositing:

C(x) = ∑
k

Tk−1(x)αk(x)ck, Tk(x) = Tk−1(x)
(
1−αk(x)

)
, T0(x) = 1.

Why front-to-back Gaussians are processed from nearest to farthest (increasing Zc). This

respects occlusions (near splats naturally hide far ones) and enables early termination: once

Tk−1(x) becomes very small (pixel nearly opaque), remaining far splats can be skipped, saving

work without changing the result.

4. Optimization and adaptive densification Optimize all parameters (µ,R,S,a, SH) end-to-

end with Adam under a photometric loss (typically L1 + SSIM). Every few iterations, apply

density control to match detail to error signals: clone small Gaussians in high-gradient regions

(under-reconstruction), split over-large splats into two smaller ones when gradients suggest

unresolved structure, and prune nearly transparent or excessively large Gaussians. The SH

degree L is increased during training so view dependence is learned after geometry stabilizes.

5. Real-time rendering A GPU tile-based differentiable rasterizer frustum-culls Gaussians,

bins them into fixed-size tiles (e.g., 16×16), globally sorts by (tile, depth), and blends per-

pixel in front-to-back order. The visibility-aware order gives correct occlusion and allows

early-out when transmittance saturates; a compact backward pass records only touched splats

for gradients. Together these yield real-time novel-view synthesis once trained.

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1777

Figure 23.71: Optimization pipeline Initialization from a sparse SfM point cloud, followed by inter-

leaved gradient-based optimization and adaptive density control using a fast, tile-based differentiable

renderer. Once trained, the representation supports RT novel-view navigation. Adapted from [287].

Representation and parameterization

From mean–covariance to a renderable primitive

A 3D Gaussian is specified by a mean µ ∈ R
3 and a covariance Σ ∈ R

3×3, with (unnormalized)

density

G(x) ∝ exp
(
− 1

2
(x−µ)⊤Σ−1(x−µ)

)
.

The quadratic form (x−µ)⊤Σ−1(x−µ) acts like a squared distance (the Mahalanobis distance). Let

Σ = QΛQ⊤ be the eigendecomposition, where Q = [e1 e2 e3] has unit, mutually orthogonal columns

(the principal directions) and Λ = diag(λ1,λ2,λ3) with λi ≥ 0 (the principal variances). Then:

• Principal directions ei are unit vectors in R
3 that define the ellipsoid’s axes. They coincide

with the canonical x/y/z axes only if Σ is already diagonal in that basis. In general, ei are

rotated versions of x/y/z.

• Level sets are the sets of points where the density has the same value, equivalently where the

Mahalanobis distance is constant:

{x ∈ R
3 : (x−µ)⊤Σ−1(x−µ) = k} (k > 0).

In 3D these level sets are ellipsoids centered at µ with semi–axis lengths
√

k λi along directions

ei. The constant k simply picks “how far out” the surface is (larger k ⇒ a larger, similar

ellipsoid). Intuitively, you can think of k as selecting a “constant–standard–deviation” contour,

generalized to 3D.

• Isotropy vs. anisotropy If Σ = σ2I, then ei align with x/y/z and all λi = σ2, producing a

sphere (isotropic spread). If the λi differ and/or Q ̸= I, the ellipsoid is stretched and rotated

(anisotropic spread).

In practical terms, increasing a variance (some λi) makes the ellipsoid longer along the corresponding

principal direction ei; introducing covariance (nonzero off–diagonals in Σ) rotates the principal

directions away from x/y/z. After local projection to the image, these adjustments control the width

and orientation of the resulting 2D ellipse (the screen–space footprint).

Initialization and the need for valid, optimizable covariances

3DGS initializes one Gaussian per SfM point to cover the coarse geometry, then continuously

optimizes the set while adding, cloning, splitting, and pruning primitives (densification) as required

by the data [287]. During training, every covariance must remain a valid covariance (symmetric and

positive semidefinite):

Σ = Σ⊤, x⊤Σx≥ 0 ∀x.

1778 Chapter 23. Lecture 23: 3D vision

Naively updating the free entries of Σ can violate these constraints (e.g., negative eigenvalues),

destabilizing learning and yielding non-physical shapes. A parameterization that preserves validity

by construction is therefore essential.

Choosing a geometry parameterization for valid optimization

As directly updating the parameters of the covariance matrix Σ can violate symmetry or positive

semidefiniteness (PSD), which destabilizes learning. 3DGS instead optimizes a decoupled set of

variables and reconstructs Σ from them:

(µ, R, S) with Σ = RSS⊤R⊤,

where

• µ ∈ R
3 is the 3D center (learned by gradient descent).

• R ∈ R
3×3 is a rotation matrix (R⊤R = I, det(R) = 1) obtained from a unit quaternion that is

re-normalized after each update.

• S = diag(sx,sy,sz) holds positive axis scales (enforced via a positivity reparameterization, e.g.,

exp or sigmoid activation).

Because SS⊤ is PSD and R is orthonormal, RSS⊤R⊤ is always symmetric PSD, so validity is

guaranteed throughout training—no eigen-clamping or PSD projection is needed. Equally important,

this form decouples orientation (R) from axis lengths (S), yielding interpretable, well-conditioned

updates; in contrast, editing Σ directly entangles rotation and scale (off-diagonals simultaneously tilt

and shear), making gradients harder to interpret and constrain. The paper also provides closed-form

derivatives w.r.t. the scale and quaternion parameters, avoiding fragile eigendecompositions.

Intuition and practical knobs for R and S

Think of S as the axis lengths and R as the steering wheel that orients those axes in space:

• Vary sx or sy (with R fixed) stretches or shrinks the ellipsoid along the corresponding

rotated axes in world space. After projection the screen-space ellipse widens mainly along the

matching image directions, helping one primitive cover elongated features (e.g., edges) with

fewer neighbors.

• Vary sz (depth thickness) increases extent roughly along the view-normal direction, adding

controllable thickness. This improves coverage of slanted, foreshortened surfaces across

nearby views and reduces holes.

• Rotate R (with S fixed) re-orients the ellipsoid without changing its radii. The projected

ellipse rotates accordingly, letting a single primitive align with wires, leaf stems, fence slats,

or oblique edges—capturing anisotropic detail compactly and reducing flicker.

These independent knobs let 3DGS tilt, stretch, and thicken coverage to match local geometry in 3D

while keeping every covariance valid during optimization.

Opacity as a direct parameter

3DGS replaces NeRF’s ray–integrated density with a per–Gaussian opacity that directly gates the

screen–space footprint. For Gaussian i we keep an unconstrained logit ãi ∈R and map it to a bounded

opacity

ai = σ(ãi) =
1

1+ e−ãi
∈ (0,1),

optionally clamped to ai ∈ [ε, 1− ε] (e.g., ε = 10−3) for numerical stability.

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1779

After projection, the ellipse has center ui and screen–space covariance Σ′i. Its per–pixel alpha

(used in compositing) is the unnormalized Gaussian falloff scaled by ai:

αi(x) = ai exp
(
−1

2
(x−ui)

⊤Σ′i
−1
(x−ui)

)
.

Thus αi(ui) = ai and αi(x)≤ ai < 1 elsewhere. Colors are then blended in front–to–back order using

the transmittance recursion, which both respects occlusion and enables early termination once the

remaining visibility is negligible [287].

Figure 23.72: Spherical–harmonics basis intuition. Each panel shows a real spherical harmonic

Yℓm(θ ,φ) on the unit sphere. Red/blue indicate positive/negative values and white shows nodal sets

(zeros). The degree ℓ controls the number of latitudinal (polar) bands, while |m| controls the number

of longitudinal (azimuthal) oscillations. Changing the sign of m rotates the pattern around the vertical

axis without altering its node counts. Small glyphs on the ℓ= 1 row mark whether variation is with

φ (horizontal, around the equator) or with θ (vertical, pole to equator).

How to read Fig. 23.72 and why SH suit 3DGS. Directions live on the unit sphere S
2, and {Yℓm}

form an orthonormal basis, much like Fourier modes on a circle.

• Degree ℓ: sets angular resolution. Larger ℓ means more bands in θ (north–south).

• Order m: sets azimuthal detail. |m| counts nodal meridians in φ (east–west), while ℓ−|m|
counts nodal circles in θ .

Examples in Fig. 23.72:

• ℓ= 0 (monopole):

– m = 0: constant everywhere, no variation.

• ℓ= 1 (dipoles):

– m =−1: varies left–right with φ , one vertical nodal plane; vanishes at poles.

– m = 0: varies up–down with θ , node at the equator (north pole red, south pole blue).

– m = 1: same as m =−1 but rotated 90◦ around z.

• ℓ= 2 (quadrupoles):

– m = −2: four lobes around the equator, separated by two vertical nodal planes (90◦

apart); zeros at poles.

– m =−1: four lobes alternating across equator and meridian; one vertical plane and one

horizontal circle as nodes.

– m = 0: two polar caps of one sign and an equatorial belt of the opposite sign; nodal

circles at cos2 θ = 1
3
.

– m = 1: same as m =−1 but rotated 90◦ in φ .

– m = 2: same as m =−2 but rotated 90◦ in φ .

1780 Chapter 23. Lecture 23: 3D vision

This basis is ideal for 3D Gaussian Splatting: the view direction v̂ lies on S
2, and a low-order

SH expansion provides a compact, smooth, differentiable way to represent each Gaussian’s view-

dependent color.

Appearance as a directional color field

For a fixed camera, each projected ellipse contributes one RGB that depends on the unit view

direction v̂ = (o−µ)/∥o−µ∥ ∈ S
2. 3DGS models this per channel with a real spherical–harmonics

(SH) expansion

c(r)(v̂) =
L

∑
l=0

l

∑
m=−l

c
(r)
lm Ylm(v̂), c(g)(v̂) =

L

∑
l=0

l

∑
m=−l

c
(g)
lm Ylm(v̂),

c(b)(v̂) =
L

∑
l=0

l

∑
m=−l

c
(b)
lm Ylm(v̂),

so there are (L+1)2 coefficients per channel (e.g., L=2 uses 9 per channel, 27 total). Real SH form

an orthonormal basis on directions.

Practical intuition.

• L=0 (only Y00): view–independent “clay ball” color; good for diffuse walls or matte plastic.

• L≈1–2: broad, smooth directional changes (fabric sheen, brushed metal, soft grazing–angle

brightening).

• L≈2–3: sharper lobes suitable for glossy paint/ceramic and weak specular highlights.

Very mirror–like effects would require still higher L, but 3DGS typically keeps L small for compact-

ness and stability.

Coarse–to–fine SH ramping for stable training. Rather than enable full view dependence from the

start, 3DGS trains with a curriculum [287]:

1. Begin with L=0 (diffuse). Color is direction–independent, so the optimizer must first fit

images via geometry (µ,R,S) and opacity a—reducing “cheating” with spurious view effects

and limiting floaters.

2. Unlock higher L in stages. After geometry/opacity stabilize, enable L=1,2, . . . to add higher

angular frequencies (specular–like lobes, Fresnel–like changes) without destabilizing the

coarse structure. This mirrors frequency annealing used in other neural rendering systems and

yields robust geometry first, then progressively richer view dependence with only a handful of

extra coefficients.

Image formation and compositing

What each splat provides

For a pixel x and for every Gaussian i whose footprint reaches it, we already have:

• Its screen–space mean ui and covariance Σ′i (the ellipse).

• Its per–pixel alpha αi(x) (peak opacity ai modulated by the elliptical falloff; Sec. 23.10.9).

• Its view–dependent RGB ci evaluated once for the current camera using SH.

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1781

Depth ordering for visibility

Occlusion is handled by sorting contributors at x from nearest to farthest using their camera–space

depths Zc,i at the Gaussian centers µi. This establishes a visibility–aware sequence k = 1,2,

Front–to–back transmittance (premultiplied form)

Let Tk−1(x) be the remaining visibility before blending the k-th (already depth–sorted) splat. Using

premultiplied colors,

C(x) = ∑
k

Tk−1(x)αk(x)ck, Tk(x) = Tk−1(x)
(
1−αk(x)

)
, T0(x) = 1.

• Near splats contribute first; farther ones are attenuated by Tk−1(x).
• This mirrors volumetric rendering, but on projected 2D ellipses rather than per–ray samples

(NeRF: T = exp(−∫ σ ds); here α acts as discrete absorption).

Why front–to–back matters now

The transmittance recursion is causal: Tk depends only on earlier alphas. Consequently,

if Tk−1(x)≤ εT ⇒ ∑
j≥k

Tj−1(x)α j(x)∥c j∥ ≤ εT ,

since α j ∈ [0,1] and ∥c j∥ ≤ 1 (normalized colors). Two immediate consequences:

• Occlusion is respected by construction: Near content attenuates or completely hides far content

as T decreases.

• The remaining sum is bounded once T is small: A pixel “pre–finishes", so later terms are

negligible. We will exploit this property when describing early termination in the rasterizer.

Practical footprint (compact support)

Although a Gaussian has infinite support, its tail is negligible beyond a few standard deviations.

Define the elliptical distance

d2
i (x) = (x−ui)

⊤Σ′i
−1
(x−ui),

and restrict evaluation to x inside a level set {d2
i (x)≤ τ } (e.g., τ ∈ [3,5]). This:

• Focuses computation where the splat meaningfully contributes.

• Avoids numerical noise from summing vanishingly small tails.

Where we are headed. The equations above define the image formation the renderer must realize. We

next complete the method—adaptive densification and optimization (losses, gradients)—then return

to the tile–based rasterizer, which enforces depth order and leverages the transmittance pre–finish for

efficiency.

Adaptive densification

Goal and signal

Starting from one Gaussian per SfM point, we adaptively allocate capacity so primitives concentrate

where reprojection error persists. Every K iterations (e.g., a few hundred), we consult view-space

positional gradients ∇µL and simple shape statistics to decide whether to clone, split, or prune.

This keeps the model compact while resolving missing detail [287].

1782 Chapter 23. Lecture 23: 3D vision

Figure 23.73: Adaptive Gaussian densification (illustration following [287]). Top: under-

reconstruction (black outline not well covered)⇒ clone the Gaussian and nudge along the positional

gradient to add coverage. Bottom: over-reconstruction by a single large splat ⇒ split into two

smaller splats to increase spatial resolution.

Clone (add coverage)

If a small splat (e.g., bounded principal axes in S and screen footprint in Σ′) exhibits a large

view-space positional gradient ∥∇µL ∥ over recent iterations, we clone it:

1. Create a copy with the same (R,S,a,SH).
2. Displace the clone’s center by a small step along the aggregated gradient direction (optionally

normalized and scaled).

3. Optionally damp the parent/clone opacities slightly to avoid transient over-coverage.

Cloning increases local sample density where the renderer still fails to match image evidence (thin

structures, high-curvature silhouettes).

Split (resolve detail)

If a splat remains large (e.g., one axis of S above a threshold) while residuals stay high, we split:

1. Replace the parent by two children whose scales are reduced by a factor φ (empirically φ≈1.6)

along all axes.

2. Sample child centers from the parent’s 3D Gaussian (or place them symmetrically along the

principal axis with largest spread).

3. Inherit (R,a,SH), optionally perturb R or S minutely to break symmetry.

Splitting preserves coverage but increases spatial frequency capacity, allowing edges and textures to

be represented with multiple smaller footprints.

Prune (stay compact)

We prune primitives that contribute negligibly or become degenerate:

• Nearly transparent (a below a threshold over a window of iterations).

• Unreasonably large in world space or screen space (guard against splats that try to “cover

everything”).

• Persistently off-frustum or behind the near plane.

Pruning reduces memory and compute and prevents artifacts such as low-contrast haze.

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1783

When and how often

Densification runs periodically and touches only a fraction of splats per pass. Thresholds for gradient

magnitude, size (via S or Σ′ eigenvalues), and opacity are set conservatively; exact values can be

tuned per dataset, but the logic—clone if small & underfit, split if large & underfit, prune if unused

or degenerate—follows [287]. Because gradients propagate through the differentiable rasterizer to

all overlapping splats, these decisions are well informed by multi-view evidence.

Effect on optimization

Interleaving gradient steps with densification yields a coarse-to-fine growth of representation: the

model first captures broad layout, then allocates more, smaller, and better-oriented Gaussians only

where error persists. This shares the spirit of multiresolution strategies in explicit grids, but preserves

the flexibility of an unstructured point-based representation.

Training objective and schedules

Photometric objective

We fit rendered images to ground truth using a convex combination of per-pixel ℓ1 and a differentiable

SSIM-based term:

L (C,C⋆) = (1−λ)∥C−C⋆∥1 + λ D-SSIM(C,C⋆), λ ∈ [0,1],

where C is the rendered image and C⋆ the target. The SSIM component measures luminance, contrast,

and structure agreement in local windows, providing a perceptual anchor that complements the

edge-preserving ℓ1 term.

SSIM, D-SSIM, and the notion of “structure”

For two local patches x,y (e.g., Gaussian-weighted 11×11 windows), SSIM is

SSIM(x,y) =
(2µxµy +C1)(2σxy +C2)

(µ2
x +µ2

y +C1)(σ2
x +σ2

y +C2)
,

where:

• Luminance match (2µxµy+C1)/(µ
2
x +µ2

y +C1) compares local means (exposure/brightness).

• Contrast match (2σxσy +C2)/(σ
2
x +σ2

y +C2) compares local standard deviations (contrast).

• Structure match is essentially the normalized correlation σxy/(σxσy); it rewards the same

pattern of variation even when absolute intensity shifts slightly.

We turn similarity into a loss via D-SSIM(x,y) = (1−SSIM(x,y))/2∈ [0,1], averaged over windows

and channels. In practice, SSIM’s structure term encourages the correct spatial relationships of pixels

(textures, edges, fine detail), while the luminance/contrast terms keep exposure and local energy

consistent. See [26, 453] for practical guidance.

Why not pure MSE/PSNR

Mean squared error (MSE) underlies PSNR (PSNR =−10log10 MSE) but correlates poorly with

human visual perception: it penalizes small spatial shifts of high-frequency content excessively and

often prefers blurry predictions over slightly misaligned sharp ones. In 3DGS, many overlapping

splats jointly explain high-frequency detail; a pure MSE/PSNR objective tends to over-smooth

such detail. The ℓ1+D-SSIM blend better matches HVS (Human Vision System) sensitivity: ℓ1

preserves edges, while SSIM emphasizes local structural fidelity (textures, contrasts) and tolerates

mild brightness drifts.

1784 Chapter 23. Lecture 23: 3D vision

LPIPS vs. SSIM in training

LPIPS [778] compares images in a deep feature space (e.g., VGG/AlexNet), and is strong as an

evaluation metric for perceptual quality. We do not use LPIPS in the 3DGS training loss for several

reasons:

• Photometric faithfulness matters. Supervision comes from posed photos; exact colors and

fine correspondences are crucial for stable geometry/opacity learning. LPIPS has feature

invariances that can tolerate color/brightness shifts, sometimes encouraging “perceptually OK”

but photometrically biased reconstructions.

• Efficiency and memory. LPIPS requires a forward/backward pass through a deep CNN per

image (or patch), adding nontrivial compute and VRAM on top of the differentiable rasterizer.

SSIM is lightweight and fully local.

• Gradient locality and stability. SSIM provides short-range, structure-aligned gradients

that integrate well with splat-based compositing; LPIPS offers non-local gradients that can

destabilize early optimization (especially before geometry has converged).

Empirically, ℓ1+D-SSIM (with a small λ , e.g., 0.2 as in [287]) yields sharp, photometrically faithful

results while keeping training fast and stable. LPIPS remains valuable for reporting perceptual

quality at test time.

Update schedule and stability

We optimize all parameters (µ,R,S,a,SH) with Adam over mini-batches of posed images.

• Learning rates. Slightly larger for (µ,S) early to quickly settle geometry; smaller for rotation

(quaternion) and SH to avoid oscillations.

• SH degree ramping. Keep L=0 (view-independent color) until geometry/opacity stabilize,

then unlock L=1,2, . . . in stages. This coarse-to-fine curriculum first fixes layout and coverage,

then adds higher angular frequencies (specular-like lobes, Fresnel-like variation) without

destabilizing structure [287].

• Opacity hygiene. Clamp a ∈ [ε,1− ε] and optionally apply periodic small resets near the

cameras to discourage persistent semi-transparent “floaters” before pruning.

Differentiable tile–based rasterizer

Goal and inputs

The rasterizer must realize the image–formation equations from Sec. 23.10.9 efficiently on GPU,

while preserving differentiability. For the current view we assume, per Gaussian i, the following are

already available:

• Screen–space mean ui and covariance Σ′i.
• Peak opacity ai and per–pixel alpha definition αi(x).
• View–dependent color ci evaluated once from SH for this camera.

• Camera–space depth Zc,i at the center µi (for visibility ordering).

Stage A: cull and bound

• Frustum–cull Gaussians whose ellipses lie fully outside the image (use a conservative d2
i (x)≤ τ

mask).

• For each remaining Gaussian, compute the tight axis–aligned bounding box of its ellipse level

set {x : d2
i (x)≤ τ} and clip it to the screen.

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1785

Stage B: tile binning

Partition the screen into fixed–size tiles (e.g., 16×16). For each Gaussian i:

• Determine the set of tiles overlapped by its clipped ellipse box.

• Emit a record for each overlapped tile t: a pair (i, t) plus the quantities needed downstream

(e.g., ui, Σ′i
−1

, ai, ci, Zc,i).

Stage C: global sort by (tile, depth)

Construct a 64–bit key per record (i, t) that packs

• The tile id in the most significant bits (groups records by tile).

• A monotone depth key derived from Zc,i in the least significant bits (orders front–to–back).

Globally radix–sort all records by this key; the result is a single array where each tile occupies a

contiguous segment with its Gaussians in front–to–back order.

Stage D: per–tile blending (forward)

Launch one CUDA block per tile; within a block, assign one thread per pixel. For the tile’s ordered

list (i1, . . . , iM):
• Initialize C(x):=0 and T (x):=1 for every pixel x in the tile.

• For m = 1 . . .M:

– Compute the elliptical distance d2
im
(x) and skip if d2

im
(x)> τ (compact support).

– Evaluate αim(x) = aim exp(−1
2
d2

im
(x)).

– Accumulate C(x) += T (x)αim(x)cim .

– Update T (x) ∗= (1−αim(x)).
– Optionally stop if T (x)≤ εT (front–to–back “pre–finish”).

Minimal bookkeeping for backprop. While iterating, each pixel thread appends a compact record for

every touched splat im: store its index, Tm−1(x) (the prefix transmittance just before blending), and

αim(x). This per–pixel visitation list is short due to compact support and pre–finish, and suffices for

an efficient backward pass.

Stage E: per–tile gradients (backward)

Given pixel–wise loss gradients ∂L

∂C(x) ∈ R
3, traverse each pixel’s visitation list in reverse or-

der to accumulate parameter derivatives. Let the k–th visited (depth–sorted) splat at x have

(ik, Tk−1(x), αik(x), cik), and define the suffix “background color” seen behind k (normalized) by the

recurrence

C̄
(K+1)
behind (x) = 0, C̄

(k)
behind(x) = αik(x)cik +

(
1−αik(x)

)
C̄
(k+1)
behind(x).

Then for each k (from back to front):

• Color coefficients (SH) receive

∂L

∂cik

+= Tk−1(x)αik(x)
∂L

∂C(x)
.

• Opacity (per–pixel) receives

∂L

∂αik(x)
+= Tk−1(x)

(
cik − C̄

(k+1)
behind(x)

)
· ∂L

∂C(x)
.

• Chain to geometric parameters via αik(x) = aik exp(−1
2
d2

ik
(x)):

∂L

∂aik

+= exp
(
−1

2
d2

ik
(x)
) ∂L

∂αik(x)
,

∂L

∂d2
ik
(x)

+=−1
2

αik(x)
∂L

∂αik(x)
.

1786 Chapter 23. Lecture 23: 3D vision

• Propagate ∂L

∂d2 to uik and Σ′ik using

d2
ik
(x) = (x−uik)

⊤Σ′ik
−1
(x−uik),

and then further to world–space (µ,R,S) through the Jacobian chain Σ′ = JWΣW⊤J⊤.

Because only touched pairs (x, i) are revisited, the backward pass scales with the effective overlap,

not the total number of Gaussians.

Numerical and implementation notes

• Tile size. 16×16 balances occupancy and shared–memory usage; other sizes are possible.

• Stable alphas. Keep ai ∈ [ε,1− ε] and use τ ∈ [3,5] for compact support (Sec. 23.10.9).

• Recompute vs. store. To minimize memory, store Tk−1 and αik(x); re–evaluate cik from SH

on the fly if needed (one evaluation per splat–pixel).

• Sparse work. Frustum culling, compact support, and pre–finish together bound both forward

work and the size of visitation lists, enabling real–time rendering once trained.

Summary. The rasterizer maps the analytic 2D ellipse footprints to tiles, establishes a per–tile,

front–to–back order with a single global sort, and evaluates the premultiplied α–compositing

recurrence using only local (tile) data. A compact per–pixel record of touched splats permits an

equally local backward pass, with gradients chained to opacity, color (SH), and geometry through

closed–form derivatives. This completes the forward/backward machinery of 3DGS.

Experiments and ablations

Datasets and evaluation protocol

Evaluation is conducted on widely used real and synthetic benchmarks:

• Mip-NeRF360 [29]: real, unbounded 360◦ captures with large baselines and substantial depth

variation (e.g., Bicycle, Garden, Stump, Counter, Room). The official train/test splits are used.

• Tanks&Temples [299]: real outdoor/vehicle scenes with challenging occlusions and scale

changes (commonly Truck, Train) and accurate ground-truth poses.

• Deep Blending [213]: real indoor environments (Playroom, DrJohnson) exhibiting complex

view-dependent effects and clutter, with calibrated multi-view imagery.

• Synthetic NeRF (Blender) [429]: rendered objects with clean geometry and known ground

truth (Chair, Drums, Ficus, Hotdog, Lego, Materials, Mic, Ship) for controlled comparisons.

Unless otherwise noted, images are rendered at each dataset’s standard resolution. Reported

metrics are PSNR (dB; higher is better), SSIM (↑), and LPIPS (↓). Optimization wall-clock time and

novel-view FPS are reported on a single high-end GPU, following the protocol of [287].

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1787

Figure 23.74: Real-time quality vs. training budget (Bike). 3D Gaussian Splatting (3DGS)

achieves real-time rendering with image quality competitive with the best prior method (Mip-

NeRF360 [29]) while requiring training times comparable to the fastest explicit methods (Plenoxels

[160], Instant-NGP [443]). For a training budget similar to Instant-NGP, 3DGS matches its quality;

with a longer budget (e.g., ∼51 min), 3DGS reaches state-of-the-art PSNR, even slightly surpassing

Mip-NeRF360 on this scene. Higher PSNR is better. Adapted from [287].

Quantitative comparison (held-out views)

We summarize cross-dataset results (reformatted into per-dataset tables for readability).

Table 23.15: Mip-NeRF360 (test views). Higher SSIM/PSNR, lower LPIPS are better. Training

time and inference FPS reported as in [287].

Method SSIM ↑ PSNR ↑ LPIPS ↓ Train FPS Mem

Plenoxels 0.626 23.08 0.463 25m49s 6.79 2.1GB

INGP-Base 0.671 25.30 0.371 5m37s 11.7 13MB

INGP-Big 0.699 25.59 0.331 7m30s 9.43 48MB

Mip-NeRF360 0.792† 27.69† 0.237† 48h 0.06 8.6MB

3DGS-7K 0.770 25.60 0.279 6m25s 160 523MB

3DGS-30K 0.815 27.21 0.214 41m33s 134 734MB

Table 23.16: Tanks&Temples (test views). Reported as in [287].

Method SSIM ↑ PSNR ↑ LPIPS ↓ Train FPS Mem

Plenoxels 0.719 21.08 0.379 25m05s 13.0 2.3GB

INGP-Base 0.723 21.72 0.330 5m26s 17.1 13MB

INGP-Big 0.745 21.92 0.305 6m59s 14.4 48MB

Mip-NeRF360 0.759 22.22 0.257 48h 0.14 8.6MB

3DGS-7K 0.767 21.20 0.280 6m55s 197 270MB

3DGS-30K 0.841 23.14 0.183 26m54s 154 411MB

Table 23.17: Deep Blending (test views). Reported as in [287].

Method SSIM ↑ PSNR ↑ LPIPS ↓ Train FPS Mem

Plenoxels 0.795 23.06 0.510 27m49s 11.2 2.7GB

INGP-Base 0.797 23.62 0.423 6m31s 3.26 13MB

INGP-Big 0.817 24.96 0.390 8m00s 2.79 48MB

Mip-NeRF360 0.901 29.40 0.245 48h 0.09 8.6MB

3DGS-7K 0.875 27.78 0.317 4m35s 172 386MB

3DGS-30K 0.903 29.41 0.243 36m02s 137 676MB

1788 Chapter 23. Lecture 23: 3D vision

Qualitative comparisons

Figure 23.75: Visual comparisons on held-out views across Mip-NeRF360 (Bicycle, Garden,

Stump, Counter, Room), Deep Blending (Playroom, DrJohnson) and Tanks&Temples (Truck, Train).

Insets/arrows highlight non-obvious differences. 3DGS matches or exceeds prior methods detail and

stability while rendering in real time. Adapted from [287].

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1789

Training-time vs. quality

Figure 23.76: Quality over training iterations. Top: at 7K iters (∼5–8 min), the Train scene is

already well reconstructed; by 30K iters (∼35 min) background artifacts fade. Bottom: in easier

scenes, 7K is nearly indistinguishable from 30K. Adapted from [287].

Synthetic NeRF (Blender) PSNR

Table 23.18: Synthetic NeRF (PSNR, ↑). 3DGS uses 100K randomly initialized points. Reported as

in [287].

Method Mic Chair Ship Materials Lego Drums Ficus Hotdog Avg.

Plenoxels 33.26 33.98 29.62 29.14 34.10 25.35 31.83 36.81 31.76

INGP-Base 36.22 35.00 31.10 29.78 36.39 26.02 33.51 37.40 33.18

Mip-NeRF 36.51 35.14 30.41 30.71 35.70 25.48 33.29 37.48 33.09

Point-NeRF 35.95 35.40 30.97 29.61 35.04 26.06 36.13 37.30 33.30

3DGS-30K 35.36 35.83 30.80 30.00 35.78 26.15 34.87 37.72 33.32

Ablations

We study design choices via controlled ablations (numbers reproduced from [287]).

Table 23.19: Ablation PSNR (downsampled inputs for stability). Average over

Truck/Garden/Bicycle at 5K/30K iterations.

Setting Truck-5K Garden-5K Bicycle-5K Truck-30K Garden-30K Bicycle-30K Avg-5K Avg-30K

Limited-BW 14.66 22.07 20.77 13.84 22.88 20.87 19.16 19.19

Random Init 16.75 20.90 19.86 18.02 22.19 21.05 19.17 20.42

No-Split 18.31 23.98 22.21 20.59 26.11 25.02 21.50 23.90

No-SH 22.36 25.22 22.88 24.39 26.59 25.08 23.48 25.35

No-Clone 22.29 25.61 22.15 24.82 27.47 25.46 23.35 25.91

Isotropic 22.40 25.49 22.81 23.89 27.00 24.81 23.56 25.23

Full 22.71 25.82 23.18 24.81 27.70 25.65 23.90 26.05

1790 Chapter 23. Lecture 23: 3D vision

Figure 23.77: Densification ablation. Without split: background remains blurred. Without

clone: high-frequency structures (e.g., bike spokes/wheels) artifact. Both operations are needed (cf.

Fig. 23.73). Adapted from [287].

Figure 23.78: Gradient sparsity ablation. Limiting the number of Gaussians that receive gradients

per step severely degrades quality (left); full method (right) benefits from dense, overlapped gradients

through the rasterizer. Adapted from [287].

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1791

Figure 23.79: Initialization matters. Top: random point cloud; bottom: SfM seeding. SfM provides

a much better starting geometry, accelerating and stabilizing training. Adapted from [287].

Figure 23.80: Anisotropy ablation (Ficus, capped at 5k Gaussians). Enabling anisotropic

covariances is critical for fine/filamentary structure; isotropic splats require many more primitives

and still blur edges. Adapted from [287].

Takeaways

• Quality vs. speed: With tens of minutes of training, 3DGS approaches or surpasses Mip-

NeRF360 quality while enabling real-time novel-view rendering (≥100 FPS) on standard

GPUs.

• Representation matters: Anisotropy, view-dependent SH, and densification (clone/split)

each contribute significantly; removing any one harms PSNR/visual fidelity (Table 23.19).

• Initialization helps: SfM seeding outperforms random starts, reducing artifacts and time to

quality (Fig. 23.79).

1792 Chapter 23. Lecture 23: 3D vision

Limitations and future work

Observed failure modes

Figure 23.81: Failure artifacts (Train). Compared to Mip-NeRF360 [29] (left), which can exhibit

“floaters” and grain in poorly constrained regions, 3DGS [287] (right) may render coarse, anisotropic

blobs where multi-view coverage is weak, limiting far-background detail. Adapted from [287].

Figure 23.82: View extrapolation artifacts (DrJohnson). When camera poses have little overlap

with training views, 3DGS [287] can produce artifacts (right). Mip-NeRF360 [29] also degrades

under such extrapolation (left), albeit with different characteristics. Adapted from [287].

Typical limitations include:

• Sparse coverage or weak overlap. With limited multi-view support, Gaussians may overgrow

(coarse blobs) or under-cover (holes), especially at long range [29, 287].

• Extreme view dependence. Very sharp, mirror-like effects exceed low-degree SH; capturing

such specularities robustly requires richer reflectance models [287].

• Memory scaling. Quality grows with the number of Gaussians; very large scenes can stress

memory bandwidth and capacity without compression or streaming [287].

• Static-scene assumption. The base formulation targets rigid, static scenes; handling motion

or changing illumination requires extensions beyond the original 3DGS pipeline [287].

23.10 Enrichment 23.10: NeRF: Acceleration and Representation Revisions 1793

Future work

Recent, highly cited follow-ups suggest concrete avenues beyond the original formulation:

• Dynamics and tracking. Extending splats to time (4D) enables real-time dynamic render-

ing [703], while dense SLAM systems fuse mapping and tracking directly with Gaussians for

online reconstruction [534].

• Richer appearance / inverse rendering. Jointly estimating reflectance and lighting with

Gaussian splats (inverse rendering) improves specularities and relighting fidelity [680]; surfel-

style anisotropic primitives further tighten shading–geometry coupling [286].

• Initialization and scalability. Removing reliance on external SfM (e.g., COLMAP-free

pipelines) widens applicability and can reduce failure cases tied to sparse/biased points [162];

generative priors with Gaussians help regularize learning and scale content creation [607].

• Surfaces and hybrids. Surface-aligned or surface-extractable Gaussian formulations bridge

to mesh-like structure for editing and compression [781], complementing the original unstruc-

tured point representation.

1794 Chapter 23. Lecture 23: 3D vision

Enrichment 23.11: NeRF: Real-World Robustness & Sparse Supervision

NeRFs trained “in the wild” must tolerate sparse viewpoints, photometric variation, and even

unknown poses. These works inject priors or jointly estimate calibration to make NeRFs usable

under realistic capture.

• BARF [352]: Jointly optimizes camera poses and NeRF via coarse-to-fine (frequency) schedul-

ing, reducing local minima in self-calibration.

• NeRF-W [418]: Handles unconstrained photo collections by separating “transient” appearance

(lighting, people) from static scene content.

• IBRNet [654]: A generalizable IBR prior that conditions on a few source views to synthesize

novel views without per-scene MLP overfitting.

• PixelNeRF [739]: Predicts scene radiance directly from one/few images using a CNN encoder,

enabling few-shot generalization.

Further influential works (not expanded): RegNeRF [452] (regularization for sparse inputs), Mega-

NeRF [413] (distributed training at landscape scale).

Enrichment 23.11.1: BARF: Bundle-Adjusting Neural Radiance Fields

Motivation and problem setting

Why this problem matters

Neural Radiance Fields (NeRF) achieve high-fidelity novel-view synthesis only if all training images

come with accurate camera extrinsics. In real captures, however, poses from SfM/SLAM can be

noisy, incomplete, or entirely unavailable (e.g., monocular videos, sparse photo collections). This

dependency limits NeRF in exactly the regimes we care about for robust, real-world deployment:

casual capture, small baselines, texture-poor scenes, or motion that confounds SfM. Removing the

reliance on precomputed poses would unlock NeRF for far broader use.

What makes joint optimization hard

If poses are inaccurate or unknown, training becomes a coupled problem over the scene and the

cameras. Naïvely unfreezing poses in a standard NeRF objective turns the problem highly nonconvex

and initialization-sensitive: the network can explain photometric errors either by moving the cameras

or by hallucinating geometry/appearance. In practice this often yields misregistered trajectories,

distorted geometry, and rendering artifacts instead of self-correction [352]. The core need is to shape

the optimization so that early gradients provide coherent, consistent directions for camera updates.

A lesson from classical image alignment

In classical registration, direct photometric methods optimize geometric parameters and routinely

employ multiscale image pyramids to enlarge the basin of convergence. The strategy is to first

align low-frequency (blurred or downsampled) images to obtain a robust global displacement, and

only then reintroduce higher-frequency detail for refinement. Low-pass residuals yield smoother

objectives and coherent gradients; exposing high frequencies too early makes the landscape rugged

and per-pixel Jacobians oscillatory, impeding convergence. BARF transfers this multiscale idea

from images to neural fields by low-passing the inputs—via a schedule that gates NeRF’s positional-

encoding bands during training—so early pose updates are governed by smooth structure and fine

detail is deferred until registration stabilizes.

23.11 Enrichment 23.11: NeRF: Real-World Robustness & Sparse Supervision 1795

The paper’s idea and contribution

BARF reframes NeRF with unknown poses as dense photometric bundle adjustment and makes it

tractable by controlling frequency content. Concretely, it:

• Jointly optimizes camera poses and the radiance field under the standard rendering loss.

• Applying a smooth coarse-to-fine window over positional-encoding bands that enlarges the

basin for pose recovery and only later restores full representational bandwidth. This simple

mechanism reliably realigns cameras from noisy or identity initializations and preserves

NeRF-level fidelity once all bands are active.

Figure 23.83: Training NeRF requires accurate camera poses. BARF jointly optimizes camera

registration and neural 3D reconstruction, enabling learning from imperfect or unknown poses.

Reproduced from [352].

What we aim to solve and why:

• Goal — Learn a high-fidelity neural scene and accurate camera poses directly from images,

without relying on external SfM/SLAM.

• Challenge — Naïve joint optimization is ill-conditioned: high-frequency encodings inject

rugged gradients that drive poses to poor local minima.

• Approach — Window the frequency bands of positional encoding in a coarse-to-fine schedule

so early pose gradients are stable and globally coherent.

• Impact — Makes NeRF usable with imperfect/unknown poses, recovering trajectories from

scratch and achieving view synthesis competitive with pose-supervised NeRFs [352].

1796 Chapter 23. Lecture 23: 3D vision

High level overview of BARF

Joint objective

Given images {Ii}M
i=1 and a radiance field fθ mapping a 3D location and a view direction to density

and color,

fθ : (x,d) 7→
(
σ(x), c(x,d)

)
,

BARF minimizes a standard photometric synthesis loss while treating both the network parameters

θ and the camera poses {Ti} as variables. For a pixel u in image i, let Ĉi(u;Ti,θ) denote the

differentiably volume–rendered color along the ray defined by u under pose Ti. The objective is

min
θ ,{Ti}

L (θ ,{Ti}) =
M

∑
i=1

∑
u∈Ri

∥∥∥ Ĉi(u;Ti,θ)− Ii(u)
∥∥∥

2

2
, (23.47)

so image residuals can, in principle, correct both scene and camera. We postpone the exact pose

parametrization and update rule to the in–depth derivation, where we show how pose increments are

obtained by backpropagating through volume rendering.

Bandwidth scheduling via windowed positional encoding

Why low frequencies matter first Early pose updates must aggregate gradients from many rays

that hit nearby 3D points while poses are still inaccurate. Low spatial frequencies vary slowly, which

yields:

• Coherent guidance — Neighboring rays see similar residual structure, so their pose gradients

point in similar directions and add constructively.

• Wider linearization radius — Smooth residuals keep the first–order (local linear) model

valid over a larger region, allowing stable steps despite large initial misalignment.

• Higher SNR for registration — Slowly varying structure is less sensitive to pixel-level

noise/specularities, making the global motion signal easier to extract.

In contrast, for the k-th positional-encoding (PE) band (applied coordinate-wise),

γk(x) =
[

cos(2kπ x), sin(2kπ x)
]
,

∂γk

∂x
= 2kπ

[
− sin(2kπ x), cos(2kπ x)

]
.

The spatial period is λk =
1
2k (direction flips every 2−k offset), and the Jacobian norm scales as O(2k)

(steep, rapidly varying gradients). Together these cause (i) directional incoherence across nearby

samples—aggregated pose gradients partially cancel—and (ii) a shrinking trust region for first–order

updates when misalignment is large.

How BARF enforces low→high bandwidth BARF turns PE into a bandwidth knob by

windowing frequency bands with a single progress variable α∈[0,L]. Using the paper’s raised–cosine

ramp, the modified encoding is

γ̃(x;α) =
[

x, w0(α)γ0(x), . . . , wL−1(α)γL−1(x)
]
, wk(α) = 1

2

[
1− cos

(
π sat(α− k)

)]
,

where sat(t) = min{max{t,0},1}. A simple linear ramp α(t) increases from 0 to L over a chosen

iteration window. This acts as a dynamic low-pass filter on coordinates:

∂ (wk(α)γk)

∂x
= wk(α)

∂γk

∂x
.

Early on, wk(α)≈ 0 for large k keeps only low-frequency, slowly varying Jacobians (coherent

aggregation, wide basin) for robust camera updates; as alignment stabilizes, wk(α)→1 progressively

restores high-frequency capacity and full NeRF fidelity—without destabilizing registration.

23.11 Enrichment 23.11: NeRF: Real-World Robustness & Sparse Supervision 1797

Roadmap

• Method and derivations — We write the discretized rendering, pose parameterization in

se(3), and derive the required Jacobians for joint updates.

• Coarse-to-fine PE — We present the exact windowed encoding and schedule, with intuition

relating bandwidth control to the optimization basin.

• Architecture and implementation — We specify MLP design, sampling, optimizers, and

evaluation protocol for faithful reproduction.

• Experiments and ablations — We summarize planar alignment, Blender, and LLFF results,

highlighting why C2F-PE is critical to registration and fidelity.

• Limitations and future work — We discuss schedule sensitivity, efficiency, and assumptions

(static scenes, fixed intrinsics), and outline extensions.

Method and derivations

NeRF with differentiable volume rendering

A radiance field fθ maps a 3D location and a viewing direction to a volume density and an RGB

color,

fθ : (x,d) 7→
(
σ(x), c(x,d)

)
.

For image Ii and pixel u∈Ri, the camera-i ray in camera coordinates is ri(t) = oi + t d̂i(u), with

bounds tn < t < t f . Under the current extrinsics Ti, each sample at parameter t is evaluated at the

corresponding world point x(t), giving the standard emitted-radiance model

Ĉi(u;Ti,θ) =
∫ t f

tn

T (t)σ
(
x(t)

)
c
(
x(t), d̂i(u)

)
dt, T (t) = exp

(
−
∫ t

tn

σ(x(s))ds
)
.

Following NeRF, the integral is approximated with N stratified samples {t j}N
j=1:

Ĉi(u) =
N

∑
j=1

w j c j, w j = Tj α j, α j = 1− exp(−σ j δ j), Tj = ∏
k< j

(1−αk),

with σ j = σ(x j), c j = c(x j, d̂i), x j = x(t j), and δ j = t j+1− t j. This fully differentiable composition

supplies gradients to both fθ and the camera parameters through the sample locations x j.

Joint objective (reference)

The global loss is given in (23.47) of the high-level overview (§23.11.1). The remainder of this

subsection specifies the pose parametrization and the exact derivatives that backpropagate image

residuals to both θ and {Ti}.

From rigid motions to minimal pose updates

A camera pose is a rigid motion: a 3D rotation plus a 3D translation. Using homogeneous coordinates,

Ti =

[
Ri ti

0⊤ 1

]
, Ri ∈ R

3×3, ti ∈ R
3.

A rotation matrix is valid iff R⊤i Ri = I3 and det(Ri) = 1. Naïve gradient steps on the nine entries of

Ri generally violate these constraints. BARF therefore applies minimal 6D pose increments that are

mapped to valid rigid motions via the exponential map and then composed with the current pose.

In the paper’s functional view, this shows up as a rigid warp W (·;pi) applied to 3D points before

evaluating the field fθ and the compositor g; equivalently, the rendered color Ĉi(u;pi,θ) depends

differentiably on pi through the sample locations along the ray.

1798 Chapter 23. Lecture 23: 3D vision

Twist updates via the exponential map

A small camera motion is represented by a 6D twist

ξ i =

[
ω i

vi

]
∈ R

6,

where ω i ∈ R
3 is an axis–angle vector and vi ∈ R

3 is a translation increment. Intuition for ω i: let

θ = ∥ω i∥ and û = ω i/θ (if θ > 0). Then û is the rotation axis (a unit 3D direction left invariant by

the rotation) and θ is the rotation angle in radians; points rotate by angle θ in planes orthogonal to û.

What SE(3), se(3), and the exponential map mean. SE(3) (the special Euclidean group) is

the set of rigid motions

SE(3) =
{ [

R t

0⊤ 1

] ∣∣∣R ∈ SO(3), t ∈R3
}
, SO(3) = {R ∈R3×3 |R⊤R = I3, detR = 1}.

se(3) (the Lie algebra of SE(3)) is the tangent space at the identity:

se(3) =
{ [ω̂ v

0⊤ 0

] ∣∣∣ ω̂
⊤
=−ω̂, v ∈ R

3
}
.

The hat operator (̂·) : R3→R
3×3 encodes the cross product: âb = a×b, i.e.,

ω̂ i =




0 −ωi,3 ωi,2

ωi,3 0 −ωi,1

−ωi,2 ωi,1 0


 .

Embedding the 6D twist into a 4×4 block gives

ξ̂ i =

[
ω̂ i vi

0⊤ 0

]
∈ se(3).

The exponential map exp : se(3)→SE(3) sends a tangent vector at the identity to a finite rigid

motion. Dynamically, it is the time-1 solution of the linear ODE Ṫ(s) = ξ̂ i T(s) with T(0) = I4,

namely T(1) = exp(ξ̂ i).
Matrix exponential: why the series converges and what it yields. For any finite matrix A,

exp(A) =
∞

∑
n=0

An

n!

converges absolutely because
∥∥∑

∞
n=0 An/n!

∥∥≤ ∑
∞
n=0 ∥A∥n/n! = e∥A∥ (submultiplicative norm and

ratio test). Applying the series to ξ̂ i and collecting blocks gives the group exponential

exp(ξ̂ i) =

[
Ri ti

0⊤ 1

]
, Ri = exp(ω̂ i), ti = V(ω i)vi,

with

V(ω i) =
∞

∑
n=0

1

(n+1)!
ω̂

n
i = I3 +

1− cosθ

θ 2
ω̂ i +

θ − sinθ

θ 3
ω̂

2
i , θ = ∥ω i∥.

23.11 Enrichment 23.11: NeRF: Real-World Robustness & Sparse Supervision 1799

Why these closed forms appear: the skew matrix ω̂ satisfies the polynomial identities ω̂
3
=−θ 2ω̂

and ω̂
4
= −θ 2ω̂

2
. Grouping even and odd powers in the series produces the sine/cosine Taylor

series, yielding Rodrigues’ formula for rotation and the companion V for the translation block.

Why exp(ω̂) is a valid rotation. Since ω̂
⊤
=−ω̂ and tr(ω̂) = 0,

R⊤R = exp(ω̂)⊤ exp(ω̂) = exp(−ω̂)exp(ω̂) = I3, det(R) = exp(tr(ω̂)) = 1,

so R ∈ SO(3) by construction.

Closed forms and small-angle limits. Rodrigues’ formula gives

R = I3 +
sinθ

θ
ω̂ +

1− cosθ

θ 2
ω̂

2
, t = V(ω)v.

As θ → 0, R≈ I3 + ω̂ and V(ω)≈ I3 +
1
2
ω̂ , so exp(ξ̂)≈ I4 + ξ̂ . Special cases: ω = 0 gives pure

translation (R = I3, t = v); v = 0 gives pure rotation (exp(ξ̂) = diag(R,1)).
Pose update (left composition) and numerical evaluation. Given the current camera-to-world

transform Ti, the update uses a left increment

Ti ← exp
(
ξ̂ i

)
Ti,

which perturbs the camera in world coordinates (consistent with rays being functions of Ti). Closed

forms are evaluated as

if θ > ε : R = I3 +
sinθ

θ ω̂ + 1−cosθ
θ 2 ω̂

2
, t = V(ω)v; else use the Taylor limits above,

which stabilizes computation near θ = 0. Optimizing the unconstrained vector ξ i ∈ R
6 is therefore

advantageous: each gradient step in R
6 is mapped by exp back to a valid rigid motion, and the

small-step behavior matches the familiar axis–angle and translation increments that yield well-scaled

Jacobians for backpropagation.

How a pose increment moves 3D samples (and affects colors)

For a pixel u in view i, the camera–frame ray is

ri(t) = oi + t d̂i(u), t ∈ [tn, t f],

and the corresponding world point under Ti = [Ri | ti] is

y(t) = Ri

(
oi + t d̂i

)
+ ti.

A small left increment ξ i = [ω⊤i ,v
⊤
i]
⊤ yields the first-order Jacobians

∂y

∂ω i

=−[y]×,
∂y

∂vi

= I3,

where [a]×b = a×b. For the j-th world sample x j = y(t j),

∂x j

∂ξ i

=
[
− [x j]× I3

]
∈ R

3×6.

Backpropagating through the differentiable volume renderer gives the per-pixel pose gradient

∂ Ĉi(u)

∂ξ i

=
N

∑
j=1

∂ Ĉi

∂x j

[
− [x j]× I3

]
,

where ∂ Ĉi

∂x j
is provided by autodiff from the field fθ and the compositing rule.

1800 Chapter 23. Lecture 23: 3D vision

Ray-compositing gradients (decomposition)

With discrete compositing Ĉ = ∑
N
j=1 w j c j and

α j = 1− exp(−σ j δ j), Tj = ∏
k< j

(1−αk), w j = Tj α j,

the pose gradient splits into a weight path and a color path:

∂ Ĉ

∂ξ
=

N

∑
j=1

(∂w j

∂ξ
c j

︸ ︷︷ ︸
weight path

+w j

∂c j

∂ξ︸ ︷︷ ︸
color path

)
,

with

∂c j

∂ξ
=

∂c

∂x

∣∣∣
x j

∂x j

∂ξ
,

∂σ j

∂ξ
=

∂σ

∂x

∣∣∣
x j

∂x j

∂ξ
.

The weights differentiate as

∂w j

∂ξ
=

∂Tj

∂ξ
α j

︸ ︷︷ ︸
upstream densities

+ Tj

∂α j

∂ξ︸ ︷︷ ︸
local density

,
∂α j

∂ξ
= e−σ jδ j δ j

∂σ j

∂ξ
,

and, using 1−αk = exp(−σkδk),

∂Tj

∂ξ
= Tj ∑

k< j

−1

1−αk

∂αk

∂ξ
=−Tj ∑

k< j

δk

∂σk

∂ξ
.

Every term factors through the geometric Jacobian
∂x j

∂ξ
, enabling joint updates of θ and {Ti}.

Why smooth inputs help pose gradients

For a pixel u in view i, the pose gradient aggregates sample-wise contributions

∂ Ĉi(u)

∂ξ i

=
N

∑
j=1

∂ Ĉi

∂x j︸︷︷︸
appearance/density

∂x j

∂ξ i︸︷︷︸
geometry

,
∂ Ĉi

∂x j

=
∂ Ĉi

∂σ j

∂σ

∂x

∣∣∣
x j

+
∂ Ĉi

∂c j

∂c

∂x

∣∣∣
x j

.

The geometry term
∂x j

∂ξ i
is smooth (Sec. 23.11.1); the stability of the sum is therefore governed by

how smoothly ∂σ
∂x

and ∂c
∂x

vary across neighboring samples.

With positional encoding (PE), the field is composed as fθ = f ′θ ◦ γ with input φ = γ(x). By the

chain rule,

∂σ

∂x
=

∂σ

∂φ

∂γ(x)

∂x
,

∂c

∂x
=

∂c

∂φ

∂γ(x)

∂x
.

Hence the spatial variation and magnitude of the PE Jacobian
∂γ
∂x

directly set the smoothness of the

appearance/density factor ∂ Ĉi

∂x j
.

23.11 Enrichment 23.11: NeRF: Real-World Robustness & Sparse Supervision 1801

Effect of high-frequency PE. BARF defines the L-band PE (coordinate-wise) as

γ(x) =
[
x, γ0(x), . . . , γL−1(x)

]
∈ R

3+6L, γk(x) =
[

cos(2kπx), sin(2kπx)
]
∈ R

6,

whose Jacobian is

∂γk(x)

∂x
= 2kπ

[
− sin(2kπx), cos(2kπx)

]
. (23.48)

Equation (23.48) shows two issues for registration at large k: (i) the Jacobian norm scales as O(2k)
(very steep), and (ii) its direction flips with spatial period λk≈2−k (very rapid sign changes). When

high-k bands dominate early, adjacent samples x j and x j+1 frequently lie on opposite sides of a

sine/cosine lobe, so their ∂ Ĉi

∂x j
directions disagree and partially cancel in the sum over j. The net pose

gradient becomes weak/noisy and the first-order update has a small trust region.

Coarse-to-fine positional encoding

Windowed positional encoding

To restore directional coherence early and full fidelity later, BARF modulates each band by a smooth

window wk(α) ∈ [0,1] driven by progress α ∈ [0,L]:

γk(x;α) = wk(α)
[

cos(2kπx), sin(2kπx)
]
, (23.49)

with the raised-cosine schedule

wk(α) =





0 if α < k,

1− cos
(
(α− k)π

)

2
if 0≤ α− k < 1,

1 if α− k ≥ 1.

(23.50)

Differentiating (23.49) yields

∂γk(x;α)

∂x
= wk(α)2kπ

[
− sin(2kπx), cos(2kπx)

]
, (23.51)

i.e., the PE Jacobian’s magnitude and oscillation are attenuated by wk(α).

Curriculum. A simple linear ramp α(t) from 0 to L over a chosen iteration window implements

coarse→fine training: early iterations keep wk(α)≈0 for large k, suppressing the high-frequency,

rapidly flipping factors in (23.51); neighboring ∂ Ĉi

∂x j
then vary slowly and add constructively, enlarging

the trust region for pose updates. As alignment stabilizes, wk(α)→1 for all k, restoring full bandwidth

so the radiance field recovers fine detail without destabilizing registration.

Architecture and implementation details

We follow BARF’s NeRF setup with minor simplifications [352]. Training uses a single MLP (128

hidden units per layer) without hierarchical sampling. Images are resized to 400×400, and 1024

pixel rays are sampled per step. Each ray is discretized into N=128 points; density σ is stabilized

with softplus. Optimization uses Adam for 200K iterations with learning rates decayed from

5×10−4→ 10−4 for the network f and 10−3→ 10−5 for the poses. The coarse→fine positional

encoding (PE) schedule linearly ramps α from iterations 20K→100K, after which all bands up to

L=10 are active.

1802 Chapter 23. Lecture 23: 3D vision

Network and sampling

The network fθ follows NeRF’s design with separate density and color heads, stratified sampling of

N points per ray, and standard α-compositing. Hierarchical sampling is omitted to isolate registration

effects.

Optimization

Parameters θ and {pi} are optimized jointly with Adam. The PE progress α is ramped linearly over

a preset iteration range; once α = L, all bands remain active. Camera intrinsics are assumed known;

poses are updated via the Lie-algebra increments above. Unless otherwise noted, evaluation follows

the paper: Procrustes alignment for pose errors and PSNR/SSIM/LPIPS for synthesis quality.

Experiments and ablations

Datasets and evaluation protocol

Evaluation is conducted on widely used real and synthetic benchmarks. For pose accuracy, optimized

trajectories are first aligned to ground truth via Procrustes on camera centers, after which mean

rotation and translation errors are reported. For view-synthesis quality (PSNR, SSIM, LPIPS), BARF

follows NeRF’s rendering pipeline but includes a brief test-time photometric refinement step to

reduce residual pose errors before reporting metrics. This ensures that differences in image quality

reflect scene modeling rather than leftover misregistration.

Planar image alignment

BARF jointly learns a coordinate-based image and patch warps. Compared to naïve (full) posi-

tional encoding (PE) and no-PE baselines, BARF recovers accurate alignment and a sharper image

representation [352].

Figure 23.84: Planar alignment setup and ground-truth warps. Reproduced from [352].

23.11 Enrichment 23.11: NeRF: Real-World Robustness & Sparse Supervision 1803

Figure 23.85: Qualitative planar alignment: optimized warps (top), patch reconstructions (middle),

and recovered image representation (bottom). BARF attains accurate warps and high-fidelity

reconstruction; full PE misregisters and no-PE blurs. Reproduced from [352].

Positional encoding SL(3) registration error ↓ Patch PSNR (dB) ↑

naïve (full) 0.2949 23.41

without 0.0641 24.72

BARF (coarse-to-fine) 0.0096 35.30

Table 23.20: Planar alignment ablation on positional encoding (values from [352]). Homographies

are estimated by minimizing photometric error and compared to ground truth via the geodesic/log

metric on SL(3), dSL(3)(Hest,Hgt) = ∥ log(HestH
−1
gt)∥F (lower is better). Reconstruction quality is

measured by PSNR on a target patch after warping with Hest (higher is better). Coarse-to-fine PE

yields both the most accurate registration and the best reconstruction.

1804 Chapter 23. Lecture 23: 3D vision

Synthetic NeRF scenes

With synthetic pose noise, BARF realigns cameras and matches the view quality of a pose-supervised

NeRF [352].

Figure 23.86: Initial versus optimized poses on chair (Procrustes aligned). BARF realigns the

trajectory; full PE gets stuck. Reproduced from [352].

Figure 23.87: Synthetic scenes: image synthesis (top row for each image) and expected depth

(bottom row for each image). BARF achieves quality comparable to NeRF trained with perfect poses.

Reproduced from [352].

23.11 Enrichment 23.11: NeRF: Real-World Robustness & Sparse Supervision 1805

Table 23.21: NeRF on synthetic scenes with perturbed poses. BARF optimizes registration while

maintaining synthesis quality near the pose-supervised reference. Numbers from [352].

Scene Rotation (◦)↓ Translation↓ PSNR↑ PSNR (ref.) SSIM↑ SSIM (ref.) LPIPS↓ LPIPS (ref.)

full w/o BARF full w/o BARF full w/o BARF full w/o BARF full w/o BARF

Chair 7.186 0.110 0.096 16.638 0.555 0.428 19.02 30.22 31.16 31.91 0.804 0.942 0.954 0.961 0.223 0.065 0.044 0.036

Drums 3.208 0.057 0.043 3.222 0.255 0.225 20.83 23.56 23.91 23.96 0.840 0.893 0.900 0.902 0.166 0.116 0.099 0.095

Ficus 9.368 0.095 0.085 10.135 0.430 0.474 19.75 25.58 26.26 26.68 0.836 0.922 0.934 0.941 0.182 0.070 0.058 0.051

Hotdog 3.290 0.225 0.248 6.344 1.122 1.308 28.15 34.00 34.54 34.91 0.923 0.967 0.970 0.973 0.083 0.040 0.032 0.032

Lego 3.252 0.108 0.082 4.841 0.391 0.291 24.23 26.37 28.33 29.28 0.876 0.898 0.927 0.942 0.102 0.112 0.050 0.037

Materials 6.971 0.845 1.188 2.287 0.678 0.422 22.45 26.86 27.84 28.92 0.891 0.905 0.940 0.944 0.249 0.068 0.045 0.041

Mic 10.554 0.081 0.071 22.724 0.356 0.301 15.10 19.93 21.18 31.98 0.788 0.968 0.971 0.971 0.334 0.050 0.048 0.044

Ship 5.506 0.095 0.075 7.232 0.354 0.326 22.12 26.78 27.50 28.00 0.755 0.833 0.849 0.858 0.255 0.175 0.132 0.118

Mean 6.167 0.202 0.193 11.303 0.768 0.756 22.12 26.78 27.50 29.40 0.821 0.917 0.930 0.936 0.205 0.087 0.065 0.057

Real LLFF scenes with unknown poses

BARF localizes from identity initialization and achieves synthesis quality comparable to a reference

NeRF trained with SfM poses [352].

Figure 23.88: Real scenes from unknown poses. BARF jointly recovers poses and scene; full PE

diverges. Reproduced from [352].

Table 23.22: LLFF forward-facing scenes from unknown poses. BARF localizes from scratch and

attains high-fidelity synthesis. Numbers from [352].

Scene Rotation (◦)↓ Translation↓ PSNR↑ PSNR (ref.) SSIM↑ SSIM (ref.) LPIPS↓ LPIPS (ref.)

full BARF full BARF full BARF full BARF full BARF

Fern 74.452 0.191 30.167 0.192 9.81 23.79 23.72 0.187 0.710 0.733 0.853 0.311 0.262

Flower 2.525 0.251 2.635 0.224 17.08 23.37 23.24 0.344 0.698 0.668 0.490 0.211 0.244

Fortress 75.094 0.479 33.231 0.364 12.15 29.08 25.97 0.270 0.823 0.786 0.807 0.132 0.185

Horns 58.764 0.304 32.664 0.222 8.89 22.78 20.35 0.158 0.727 0.624 0.805 0.298 0.421

Leaves 88.091 1.272 13.540 0.249 9.64 18.78 15.33 0.067 0.537 0.306 0.782 0.353 0.526

Orchids 37.104 0.627 20.312 0.404 9.42 19.45 17.34 0.085 0.574 0.518 0.806 0.291 0.307

Room 173.811 0.320 66.922 0.270 10.78 31.95 32.48 0.278 0.940 0.948 0.871 0.099 0.083

T-rex 166.231 1.138 53.309 0.720 10.48 22.55 22.12 0.158 0.767 0.739 0.885 0.206 0.244

Mean 84.509 0.573 31.598 0.331 11.03 23.97 22.56 0.193 0.722 0.665 0.787 0.238 0.283

1806 Chapter 23. Lecture 23: 3D vision

Figure 23.89: Optimized poses on fern (Procrustes aligned). BARF closely agrees with SfM.

Reproduced from [352].

Limitations and future work

Limitations

• Schedule sensitivity The coarse→fine bandwidth schedule (α(t), window wk) is hand-set;

poor schedules can under/over-regularize early registration and shrink the convergence basin.

• Compute and sampling Jointly optimizing poses and a volumetric field requires dense

per-ray sampling and long training, so runtime scales with samples per ray and number of

images.

• Scene/model assumptions The formulation assumes static scenes, photometric consistency,

and known intrinsics; motion blur, rolling shutter, illumination/exposure shifts, and unknown

intrinsics are out of scope.

Follow-ups addressing BARF’s limitations

• Pose robustness with sparse/noisy inputs SPARF augments BARF’s photometric objective

with multi-view feature correspondences to jointly refine NeRF and poses from very few, noisy

views, improving pose stability when geometric signal is weak [633].

• Pose-free initialization NoPe-NeRF removes the need for pose priors by jointly recovering

camera poses and the field from raw images, expanding BARF’s setting to completely unknown

extrinsics [44].

• Photometric violations: motion blur BAD-NeRF handles significant motion blur while

bundle-adjusting, coupling a deblurring model with pose refinement so that residuals remain

informative for registration under real camera shake [666].

• Generalization and efficiency DBARF marries BARF-style bundle adjustment with a gener-

alizable NeRF backbone, improving data-efficiency and robustness across scenes while still

refining poses end-to-end [97].

23.11 Enrichment 23.11: NeRF: Real-World Robustness & Sparse Supervision 1807

Enrichment 23.11.2: NeRF-W: NeRF for Unconstrained Photo Collections

Motivation

Vanilla NeRF [429] assumes a static, photometrically consistent scene in which geometry, reflectance,

and illumination are constant across views. In-the-wild photo collections such as Phototourism [577]

break these assumptions due to:

• Substantial photometric shifts (time of day, weather, exposure/white balance, post-processing).

• Transient occluders (people, vehicles, scaffolding).

which, when trained naively, lead NeRF to produce colored fog, ghosting, and biased geometry.

Figure 23.90: Variable illumination control with NeRF-W. (a) Given only an internet photo

collection NeRF-W renders novel views with variable illumination (b) Slices from renderings driven

by appearance embeddings associated with four training images (Phototourism). Photos by Flickr

users dbowie78, vasnic64, punch / CC BY. Credit: [418].

NeRF-W at a glance

NeRF-W [418] extends NeRF to Internet photo collections by keeping a single, shared static

geometry and routing nuisances into two learned, image-specific factors. Before diving into equations,

it helps to fix the data flow and what each part sees and produces:

• Inputs and data flow. Each pixel in image Ii defines a calibrated ray with world-space samples

x and a viewing direction d. The model consumes: position encodings of x for geometry, a

directional encoding of d for view dependence, and two small per-image codes ℓ
(a)
i (appearance)

and ℓ
(τ)
i (transient). Geometry is predicted without any image-specific code; color may depend on

both d and ℓ
(a)
i .

• Trunk and static field. A NeRF-style trunk maps the position-encoded 3D sample x to a static

volume density σ(x) and a learned feature vector z(x). These features summarize local scene

properties beyond coordinates (e.g., geometry/material cues) and are passed to lightweight heads,

while σ(x) is computed without any image-specific latent so that one shared geometry is enforced

across all images.

1808 Chapter 23. Lecture 23: 3D vision

• Appearance embedding ℓ
(a)
i and static color head. Each training image Ii carries a low-

dimensional appearance code ℓ
(a)
i that enters only the color branch. The static color head takes the

geometric features extracted from the basic geometry network, z(x), a directional encoding of d,

and ℓ
(a)
i to produce RGB radiance ci(x,d). Intuition: exposure, white balance, tone mapping, and

illumination differences are absorbed by ℓ
(a)
i , allowing color to adapt while geometry stays fixed.

• Transient embedding ℓ
(τ)
i and transient head. A second per-image code ℓ

(τ)
i drives a transient

head that, from z(x), predicts an image-dependent density σ
(τ)
i (x), a transient color c

(τ)
i (x), and a

per-sample uncertainty signal used during training. Intuition: content that appears only in some

photos (people, cars, flags, scaffolding) is explained by this per-image layer instead of corrupting

the shared static scene.

• Compositing and learning signal. Along each ray, static and transient opacities jointly control

transmittance, and their colors are alpha-composited into a single prediction that is compared to

the observed RGB under a Gaussian negative log-likelihood. The rendered per-ray uncertainty

down-weights unreliable pixels, and an ℓ1 sparsity prior discourages overuse of the transient

density. Intuition: persistent structure must be explained by the static field; ephemeral phenomena

are explained sparingly by the transient field; photometric shifts are handled by ℓ
(a)
i .

• Inference-time behavior. For novel-view synthesis without a reference image, the transient path

is disabled and only the static field is rendered to produce clean, temporally stable views, while

the appearance can be controlled by fixing, averaging, or interpolating ℓ(a) of the scene training

images. For a held-out photo, a small ℓ(a) can be optimized on a subset of its pixels to match its

look, with geometry remaining shared because the static σ(·) never depends on ℓ(a).

Figure 23.91: NeRF-W model architecture. Given a 3D position x, viewing direction d, and

learned per-image embeddings ℓ
(a)
i (appearance) and ℓ

(τ)
i (transient), the network outputs static and

transient colors and densities, along with a training-time uncertainty. Static opacity is produced

before conditioning on appearance, enforcing a single shared geometry across images. Credit: [418].

23.11 Enrichment 23.11: NeRF: Real-World Robustness & Sparse Supervision 1809

Method: Formulation and Derivation

Rendering operator

Let a calibrated ray be r(t) = o+ t d, t ∈ [tn, t f], with samples t1, . . . , tK and steps δk = tk+1− tk. The

discrete volume–rendering operator is

R(r, f , σ) =
K

∑
k=1

T (tk) α
(
σ(tk)δk

)
f (tk), α(x) = 1− e−x. (23.52)

Here T (tk) = ∏
k−1
k′=1 exp(−σ(tk′)δk′) = exp(−∑

k−1
k′=1 σ(tk′)δk′) is the cumulative transmittance to the

start of slab k, and α(σ(tk)δk) = 1− exp(−σ(tk)δk) is the per-interval opacity, i.e., the probability

the first interaction happens inside slab k given survival to its entrance.

What f is in practice and how NeRF-W instantiates R

The operator R is a generic “first-hit expectation” that composites a per-sample quantity f (t) under

the same probabilistic survival/termination process. NeRF-W uses this operator in two concrete

ways: to mix colors from a shared static field and an image-dependent transient field, and to render a

per-ray uncertainty that only affects the training loss.

• Single-field baseline (orientation). With one density σ(x) and one per-sample RGB c(x,d),
taking f = c yields the expected color R(r,c,σ), as in vanilla NeRF’s emission–absorption model.

• Two-field color in NeRF-W. NeRF-W adds an image-dependent transient field with density σ
(τ)
i

and color c
(τ)
i alongside the shared static field (σ ,ci). During training, both densities attenuate the

ray, so survival uses the joint density,

Ti(tk) = exp
(
− ∑

k′<k

[
σ(tk′)+σ

(τ)
i (tk′)

]
δk′

)
.

The expected color is then the sum of two contributions—one from each field—weighted by their

own opacities:

Ĉi(r) =
K

∑
k=1

Ti(tk)
(

α(σ(tk)δk)ci(tk) + α(σ
(τ)
i (tk)δk)c

(τ)
i (tk)

)
. (23.53)

Intuition: Persistent structure is explained by the appearance-conditioned static color, while image-

specific occluders are explained by the transient color; because both densities enter survival, they

compete to explain where the first interaction lies.

• Rendered per-ray uncertainty (definition and why transient-only). The transient head, condi-

tioned on the image-specific code ℓ
(τ)
i , outputs an unconstrained value β̃i(t) per sample, which we

map to a nonnegative scale with a shifted softplus

βi(t) = βmin + log
(
1+ exp(β̃i(t))

)
,

where βmin > 0 avoids zero-variance and prevents the optimizer from entirely ignoring any ray.

We then render a ray-wise uncertainty (standard deviation) by alpha-compositing βi(t) through

the transient opacity:

β̂i(r) =
K

∑
k=1

Ti(tk)α
(
σ
(τ)
i (tk)δk

)
βi(tk), (23.54)

1810 Chapter 23. Lecture 23: 3D vision

with survival Ti computed from the joint density σ +σ
(τ)
i . Routing via σ

(τ)
i is intentional: the

same transient mechanism that boosts opacity for ephemeral content also gates how much βi(t)
contributes to β̂i(r). This ties uncertainty exactly to occluders and photometric outliers explained

by the transient pathway, rather than diluting it over persistent static structure.

• How picture-specific content shows up in the transient/uncertainty path.

– What the transient head drives. The transient branch produces a density σ (τ)(t), a color c(τ)(t),
and an uncertainty carrier β (t). In the color compositor (Eq. (23.53)), σ (τ) enters via its

opacity α(σ (τ)δ). In the uncertainty compositor (Eq. (23.54)), the same opacity gates how

β (t) accumulates into the ray-wise β̂ (r).

– When a ray hits ephemeral content. If a ray passes through an occluder or a photometric outlier,

training can increase σ (τ) on those samples. Two coupled effects follow: (i) α(σ (τ)δ) grows,

so c(τ) gets more weight in Eq. (23.53); (ii) the same α(σ (τ)δ) also increases the contribution

of β (t) to β̂ (r) in Eq. (23.54), making that ray’s supervision softer in the loss.

– When the content is absent. Where no ephemeral content is present, σ (τ)≈0⇒ α(σ (τ)δ)≈0;

both the transient color and the rendered uncertainty vanish, and the ray is supervised normally

by the static pathway.

• Gaussian NLL (training-time reweighting). Notation: dropping image indices. For clarity,

when we write C(r), Ĉ(r), and β̂ (r) without image index, we mean “for the image that r comes

from”. Concretely, if r is sampled from image i,

C(r)≡ Ci(r), Ĉ(r)≡ Ĉi(r) (Eq. (23.53) using ℓ
(a)
i , ℓ

(τ)
i), β̂ (r)≡ β̂i(r) (Eq. (23.54)),

and in the sparsity term σ (τ)(tk)≡ σ
(τ)
i (tk). With this shorthand, we assume isotropic, ray-specific

noise, C(r)∼N
(
Ĉ(r), β̂ (r)2I

)
, giving the per-ray NLL (up to a constant)

L (r) =

∥∥C(r)− Ĉ(r)
∥∥2

2

2 β̂ (r)2

︸ ︷︷ ︸
(a) data fit: down-weight uncertain rays

+ 1
2

log
(
β̂ (r)2

)
︸ ︷︷ ︸

(b) variance regularizer

+ λu

1

K

K

∑
k=1

σ (τ)(tk)

︸ ︷︷ ︸
(c) transient sparsity

.
(23.55)

– (a) Data fit. With e = C− Ĉ, the residual is scaled by 1/β̂ 2: larger predicted uncertainty

⇒ the ray pays less in the loss and contributes weaker gradients. Because β̂ is composited

through transient opacity (Eq. (23.54)), this down-weighting targets rays affected by transient

phenomena.

– (b) Variance regularizer. The 1
2

log β̂ 2 term is the Gaussian normalizer; it prevents the trivial

escape β̂→∞ and calibrates the learned scale. Minimizing (a)+(b) w.r.t. β̂ 2 gives β̂ 2 = ∥e∥2:

intuitively, the model is nudged to predict a per-ray variance commensurate with that ray’s

squared error—big errors (noisy/hard rays) push β̂ up; small errors pull it down. This keeps β̂

neither exploding (penalized by log) nor collapsing to zero (penalized by the data term).

– (c) Transient sparsity. The ℓ1-style penalty on nonnegative σ (τ) discourages using the transient

density to explain persistent structure, preserving a clean static reconstruction.

Training vs. inference. This NLL is used only during training to make supervision robust (via β̂)

and to keep transients sparse. At inference, the transient/uncertainty branches are disabled and we

render only with f = c from the static field, yielding clean, temporally stable views. The dataset-

level objective simply sums L (r) over all sampled training rays (equivalently ∑i ∑r∈Ri
Li(r)).

23.11 Enrichment 23.11: NeRF: Real-World Robustness & Sparse Supervision 1811

Figure 23.92: Training-time composition and uncertainty. NeRF-W separately renders the static

(a) and transient (b) elements of the scene, composites them (c), and compares to the image (d) with

a loss weighted by a rendered uncertainty map (e) that discounts anomalous regions. Photo by Flickr

user vasnic64 / CC BY. Credit: [418].

Architecture & Implementation Details

Cameras. Poses and intrinsics (with radial/tangential distortion) are estimated using COLMAP.

Training. Hierarchical sampling (coarse→fine) as in NeRF; Adam with (β1=0.9,β2=0.999,ε=10−7),
batch size 2048, 300,000 steps on 8 GPUs. Hyperparameters (βmin, λu, n(a), n(τ)) are selected on

Brandenburg Gate and reused across scenes [418]. Evaluation protocol. NeRF–W learns appearance

embeddings only for training images. For a held-out test image, the appearance code is unknown, so

at test time we introduce a new variable ℓ
(a)
test and optimize it while freezing all network weights and

all other latents. Concretely, we minimize the same per-ray color objective used in training, but only

over rays from the left half of the test image:

ℓ
(a)
test ← argmin

ℓ
∑

r∈left-half

L
(
r; ℓ(a)=ℓ

)
,

where L is the Gaussian NLL (or ℓ2 in the coarse pass) evaluated with the frozen fields. After this

brief adaptation, we render with the static field (transient/uncertainty branches disabled) using ℓ
(a)
test

and compute PSNR/SSIM/LPIPS only on the right half (Fig. 23.93).

This split-half protocol prevents information leakage: the pixels used to tune ℓ
(a)
test are dis-

joint from the pixels used to score. It also leverages a key design property of NeRF–W—σ(·) is

appearance-free—so test-time appearance tuning cannot change geometry, only photometric factors

(exposure/white balance/lighting), yielding fair and stable evaluation of novel-view synthesis under

the test image’s appearance.

Figure 23.93: Half-image optimization for test-time appearance. During evaluation, ℓ(a) is

optimized on the left half of the test image; metrics use the right half. Photo by Flickr user

eadaoinflynn / CC BY. Credit: [418].

1812 Chapter 23. Lecture 23: 3D vision

Experiments and Ablations

NeRF-W is evaluated on six Phototourism landmarks and compared against NRW [426], NeRF [429],

and two ablations: NeRF-A (appearance only; no transient) and NeRF-U (uncertainty only; no

appearance). NeRF-W attains the best PSNR and MS-SSIM across all scenes and competitive LPIPS.

Figure 23.94: Qualitative results on the Phototourism dataset. Columns show methods (NRW,

NeRF, NeRF-A, NeRF-U, NeRF-W) and the held-out ground-truth view; rows show scenes: Prague

Old Town (appearance variation), Sacre Coeur (transient occluder: flag), and Taj Mahal (fine

geometric/detail reconstruction). Red/blue insets zoom into regions that highlight the differences.

NeRF-W simultaneously adapts to appearance changes (top), removes image-specific occluders

(middle), and preserves fine details (bottom). More scenes are provided in Fig. 14 (supplementary).

Photos by Flickr users firewave, clintonjeff, leoglenn_g / CC BY. Credit: [418].

Figure 23.95: Depth maps (expected termination). NeRF’s geometry is corrupted by appearance

variation and occluders; NeRF-W is robust and produces accurate reconstructions. Photos by Flickr

users burkeandhare, photogreuhphies / CC BY. Credit: [418].

23.11 Enrichment 23.11: NeRF: Real-World Robustness & Sparse Supervision 1813

Figure 23.96: Appearance-space interpolation. Interpolating between two ℓ(a) produces renderings

where color/illumination vary smoothly while geometry remains fixed. Photos by Flickr users

mightyohm, blatez / CC BY. Credit: [418].

Figure 23.97: Temporal consistency via EPIs. Epipolar plane images (EPI) synthesized from

rendered videos on Brandenburg Gate. NRW exhibits flicker; NeRF shows ghosting; NeRF-W yields

clean, smooth EPIs (high temporal consistency). Credit: [418].

Limitations and Future Work

Failure modes. Despite its robustness to in-the-wild photos, NeRF-W still fails in predictable ways:

• Sparse or weak supervision. Regions that are rarely seen, far from cameras, or only observed at

oblique angles (e.g., large ground/sky areas) are poorly constrained and often reconstruct with

localized blur. The model has too little multi-view evidence to pin down both geometry and

appearance (examples in Fig. 23.98).

• Pose/camera errors from SfM. NeRF-W assumes accurate COLMAP poses/intrinsics. Bad esti-

mates introduce inconsistent rays, which the model cannot reconcile, leading to blur/ghosting or

wrong structure in affected regions; see discussion in [418].

• Appearance outside the training manifold. The per-image appearance code captures global

photometric effects, but extreme illumination/exposure shifts or strong non-Lambertian effects

may not be representable, yielding color mismatches even when geometry is correct.

• Imperfect transient separation. Without labels, the transient branch can under/over-explain clutter:

some truly static details may be treated as transient (causing holes/softening), or transient residue

can remain as faint “fog”.

Future directions.

(i) Joint camera / radiance-field optimization with photometric calibration. Optimizing poses,

intrinsics, exposure, and the field together (a neural analogue of bundle adjustment) could

correct SfM drift and harmonize brightness/white balance across views, reducing blur and

ghosting.

(ii) Stronger disentanglement of illumination vs. exposure/white balance. Factorizing the appear-

ance code into physically meaningful components would enable finer control (e.g., change

lighting without altering exposure) and reduce leakage of photometric variation into geometry.

(iii) Learned priors for transient segmentation and temporal consistency. Incorporating priors

(e.g., semantic or motion cues) could make the static/transient split more reliable and stabilize

renderings across viewpoints, further limiting colored-fog artifacts.

1814 Chapter 23. Lecture 23: 3D vision

(iv) Scaling to very sparse, long-tail photo collections with better uncertainty calibration. Improv-

ing the calibration of per-ray uncertainty (so predicted variances match actual errors) would

help the model down-weight unreliable rays more appropriately, making reconstructions more

accurate when data are scarce or noisy.

Figure 23.98: Limitations on Phototourism. Rarely-seen parts of the scene (ground, left) and

incorrect camera poses (lamp post, right) can result in blur. Credit: [418].

23.11 Enrichment 23.11: NeRF: Real-World Robustness & Sparse Supervision 1815

Enrichment 23.11.3: IBRNet: Learning Multi-View Image-Based Rendering

Motivation

Problem. Given a sparse set of posed source images, synthesize photorealistic novel views of unseen

scenes without any per-scene fine-tuning. A single model should generalize zero-shot to new scenes.

(An optional short per-scene fine-tune can further improve fidelity; see IBRNetft).

Background: What is Image-Based Rendering (IBR)? IBR produces new views by reusing

captured rays from nearby images rather than fitting a global scene-specific field. A representative

classical pipeline (e.g., LLFF [428], which predates and is not based on NeRF) typically contains:

(1) Source selection: choose a small working set of nearby views for the target camera.

(2) Geometric proxy: estimate coarse geometry (e.g., SfM/colmap depths, plane-sweep volumes,

or multi-plane images) to relate target pixels to source pixels/features.

(3) Reprojection/warping: use camera intrinsics/extrinsics to warp source evidence (pixels or

learned features) toward the target viewpoint.

(4) Blending & visibility: combine warped evidence with view-dependent weights (heuristic or

learned). Errors in proxy geometry or weighting often cause ghosting near occlusions and thin

structures.

IBR preserves high-frequency appearance because it copies real image content, but its success hinges

on good proxies and robust visibility reasoning under sparse views.

How NeRF differs (and how IBR can build on it). NeRF [429] represents a single scene as

a continuous radiance+density field parameterized by an MLP, trained per scene by minimizing a

photometric loss under differentiable volume rendering. This yields accurate geometry/appearance

but requires scene-specific optimization. Modern IBR-style methods can reuse NeRF’s rendering

formulation (sampling, transmittance, composition) while replacing the scene-specific field with

mechanisms that aggregate multi-view image evidence on the fly. Thus, IBR can be viewed as

image-conditioned rendering, whereas NeRF is scene-parameterized rendering.

Key idea. IBRNet [654] is trained once, across many diverse scenes, to interpret a small,

pose–proximal set of source images from the current scene and convert them into per-ray volumetric

properties that a standard NeRF-style volume renderer [429] can compose. The learned modules—a

shared per-image CNN, lightweight MLP heads for visibility-aware blending and pooling, and a

single-layer ray transformer that reasons along a ray—do not memorize a particular scene; instead,

they encode transferable priors for fusing multi-view evidence. At test time, these same modules

run in a purely feed-forward manner on the new scene’s images, so no per-scene optimization is

required (a short optional fine-tune, IBRNetft, can further refine thin structures and specular detail

when capture is very sparse) [654].

Method: image-conditioned RGB–σ prediction and NeRF-style rendering

Setup and notation.

Given a target camera ray r(t) = o+ td and a small working set of N nearby source images with

known intrinsics/extrinsics, IBRNet predicts, for each sampled 5D query (x,d) on r, a color c∈ [0,1]3
and a density σ ≥ 0 by aggregating multi-view evidence from the source views and composing

them with the standard differentiable volume renderer [429, 654]. Throughout, Ci and fi denote the

RGB and CNN feature sampled from source view i at the projection of x; di is the source viewing

direction; and ∆di = d−di encodes the relative direction.

1816 Chapter 23. Lecture 23: 3D vision

Pipeline overview (stages).

• Stage 1 — View selection & feature extraction (per selected source view, once). Select

N neighboring source images whose cameras are close to the target pose, whose headings

are similar to d, and whose frusta overlap the target frustum. Each selected image is passed

once through a shared encoder–decoder CNN to produce a dense 2D feature map (at reduced

resolution). Every pixel of this map encodes a local descriptor mixing appearance and coarse

geometric cues (e.g., texture, edges, occlusion hints from context). These learned features are

later sampled (via projection) at arbitrary 3D queries to provide per-view evidence about what

the scene looks like from that camera. We cache, for each view i, its RGB image, its feature

map, and its viewing direction di so they can be reused for all target pixels/rays.

• Stage 2 — Per-ray volumetric prediction (uses all N views at each sampled 3D point). For

each target pixel, cast a ray and sample M points {xk}M
k=1 (near→far). At each sample xk we

use all selected views:

– Multi-view gathering. Project xk into each source view i with the known cameras;

bilinearly read the view’s RGB Ci and feature vector fi at the projected coordinates

(invalid/out-of-frustum projections are skipped or downweighted). Form the relative

viewing direction ∆di = d−di (or an angular encoding).

– Color via learned blending. A small shared MLP takes [fi, ∆di] and outputs a blending

logit αi. Convert logits to weights via a softmax

wc
i =

exp(αi)

∑
N
j=1 exp(α j)

, ∑
i

wc
i = 1,

and compute the sample color as a convex combination

ck =
N

∑
i=1

wc
i Ci.

Why view dependence is preserved: ck is a weighted copy of actual source pixels, so

specularities and other view-dependent effects present in appropriately aligned views

are naturally carried into the synthesized color; ∆di steers weights toward sources with

similar viewing directions [654].

– Density via ray-wise reasoning.

* (i) Density feature by multi-view pooling (per sample; permutation-invariant).

Using the gathered per-view features {fi}N
i=1 at xk, compute global statistics to

expose agreement/disagreement across views:

µ = 1
N

N

∑
i=1

fi, v = 1
N

N

∑
i=1

(fi−µ)⊙2.

For each view i, concatenate local and global cues and pass through a shared

PointNet-like MLP:

[
fi, µ, v

] MLPφ−−−−→
(
f′i, si

)
,

yielding a multi-view–aware feature f′i and a reliability score si. Normalize scores

into visibility-aware weights

wi =
exp(si)

∑
N
j=1 exp(s j)

,

23.11 Enrichment 23.11: NeRF: Real-World Robustness & Sparse Supervision 1817

then form weighted first- and second-order statistics and map them to a compact

density feature:

µw =
N

∑
i=1

wi f′i, vw =
N

∑
i=1

wi (f
′
i−µw)

⊙2, fσ (xk) =MLPψ

(
[µw, vw]

)
∈Rdσ .

This pooling handles a variable number of views, downweights inconsistent/occluded

views, and summarizes multi-view agreement at xk into a fixed-length descriptor

predictive of occupancy [654].

* (ii) Ray transformer for coherent densities (per ray). Collect the near-to-far

sequence {fσ (xk)}M
k=1 for one ray and add depth-wise positional encodings pk (e.g.,

sinusoidal in ray parameter tk):

zk = fσ (xk)+ pk, k = 1, . . . ,M.

A lightweight ray transformer (single multi-head self-attention layer) processes

{zk} so each sample attends to the others along the same ray. Intuitively, strong near-

field evidence can suppress spurious far-field candidates, and clusters of consistent

samples reinforce surfaces. The attended features {ẑk} are passed through a tiny

head to obtain nonnegative densities:

σk = MLPρ

(
ẑk

)
, k = 1, . . . ,M.

Figure 23.99: Density and color prediction at a 5D location (x,d) in IBRNet [654]. Per-view

features {fi} are combined with global statistics (mean/variance) by a PointNet-like MLP to produce

multi-view–aware features and visibility-aware weights; weighted pooling yields a compact density

feature fσ . A ray transformer consumes the sequence {fσ (xk)} on a ray (with positional encodings)

and outputs coherent densities {σk}. For color, a blending head uses [fi,∆di] to predict weights that

form ck as a weighted average of source colors, preserving view-dependent effects.

1818 Chapter 23. Lecture 23: 3D vision

• Stage 3 — NeRF-style volume rendering & training (per pixel). With (ck,σk) at sorted

depths along the ray, let δk denote the spacing between consecutive samples (e.g., δk = tk+1−tk
in ray-parameter units). The transmittance to sample k is

Tk = exp
(
−

k−1

∑
j=1

σ j δ j

)
,

and the rendered pixel color is

C̃(r) =
M

∑
k=1

Tk

(
1− e−σk δk

)
ck.

Training follows the familiar coarse/fine hierarchical sampling and an ℓ2 photometric loss

on both passes. The renderer is unchanged from NeRF [429]; what differs is how (c,σ) are

predicted: here they are inferred on-the-fly from the target scene’s images and features, using

weights learned across many training scenes [654].

Figure 23.100: IBRNet system overview for novel view synthesis [654]. To render a target view

(red dashed frustum), the pipeline: (1) selects N neighboring source images (by pose proximity,

viewing-direction similarity, and frustum overlap) and computes a dense CNN feature map for

each (cached and reused); (2) for each target ray sample (xk,d), projects into all sources to read

colors {Ci} and features {fi}, forms relative directions {∆di}, predicts a view-dependent color ck by

learned blending of {Ci}, and aggregates {fi} with visibility-aware weights into a compact density

feature fσ (xk); (3) feeds the sequence {fσ (xk)}M
k=1 to a lightweight ray transformer to obtain coherent

per-sample densities {σk}, and composes (ck,σk) using the standard NeRF volume renderer with

coarse/fine hierarchical sampling and an ℓ2 reconstruction loss.

Why fast and zero-shot.

Per-source-view features are computed once and reused; per-sample heads are tiny MLPs; the only

attention is a single, lightweight transformer along each ray. Because the scene content resides in the

images and the network merely aggregates them using learned, transferable priors, a new scene needs

no optimization loop—yet the same pipeline admits a brief fine-tune (IBRNetft) when desired to

adapt to extreme sparsity or challenging reflectance, without altering the rendering formulation [654].

23.11 Enrichment 23.11: NeRF: Real-World Robustness & Sparse Supervision 1819

Architecture & Implementation Details

High-level architecture.

IBRNet comprises three lightweight components trained jointly across many scenes [654]:

• Per-image encoder–decoder CNN (shared). A U-Net/ResNet34-style encoder–decoder

(Instance Normalization as replacement of BatchNorm) processes each selected source image

once to produce a dense 2D feature map at reduced resolution (output: 160×120×64).1 These

features are cached and later sampled by projection at arbitrary 3D queries.

• Per-sample MLP heads (shared across views and rays).

– Color head (blending). Given a projected feature fi from view i and the relative viewing

direction ∆di, a small MLP outputs a scalar blending logit whose softmax across views

yields weights {wc
i }. The sample color is ck = ∑i wc

i Ci (a convex blend of actual source

colors), preserving view dependence.

– Density pooling head. For density, a PointNet-like shared MLP maps [fi,µ,v] (local

feature with global across-view mean/variance) to a multi-view–aware feature f′i and a

reliability score si. Softmax-normalized scores provide visibility-aware weights wi ∝

exp(si). Weighted mean/variance over {f′i} are then mapped by a tiny MLP to a compact

density feature fσ (xk)∈Rdσ (e.g., dσ=16).

• Ray transformer (single layer, along-ray self-attention). For one ray, the sequence

{fσ (xk)}M
k=1 (with depth-wise positional encodings) is processed by a single multi-head

self-attention layer (4 heads). The attended features feed a tiny head to produce nonnegative

densities {σk} jointly for all samples, improving depth ordering and occlusion handling.

Feature extraction network.

Input (id: dimension) Layer Output (id: dimension)

0: 640×480×3 7×7 Conv, 64, stride 2 1: 320×240×64

1: 320×240×64 Residual Block 1 2: 160×120×64

2: 160×120×64 Residual Block 2 3: 80×60×128

3: 80×60×128 Residual Block 3 4: 40×30×256

5: 40×30×256 3×3 Upconv, 128, factor 2 6: 80×60×128

[3, 6]: 80×60×256 3×3 Conv, 128 7: 80×60×128

7: 80×60×128 3×3 Upconv, 64, factor 2 8: 160×120×64

[2, 8]: 160×120×128 3×3 Conv, 64 9: 160×120×64

9: 160×120×64 1×1 Conv, 64 Out: 160×120×64

Table 23.24: Feature extraction network architecture [654]. “Conv” denotes conv + ReLU +

InstanceNorm; “Upconv” is bilinear upsampling then a stride-1 conv. The 64-D output map is split

into two 32-D maps for the coarse and fine branches, respectively.

1See Table 23.24 for exact layers and shapes. The 64-D map is split into two 32-D maps for the coarse/fine branches.

1820 Chapter 23. Lecture 23: 3D vision

Network size and compute.

Method #Params #Src.Views #FLOPs PSNR↑ SSIM↑ LPIPS↓
SRN 0.55M – 5M 22.84 0.668 0.378

NeRF [429] 1.19M – 304M 26.50 0.811 0.250

IBRNetft 0.04M 5 29M 25.80 0.828 0.190

IBRNetft 0.04M 8 45M 26.56 0.847 0.176

IBRNetft 0.04M 10 55M 26.73 0.851 0.175

Table 23.25: Complexity vs. quality (Real Forward-Facing) [654]. IBRNet’s per-sample heads

are tiny; FLOPs scale roughly linearly with the number of source views used at inference.

Experiments & Ablations

Datasets and evaluation protocol.

IBRNet is evaluated on three standard benchmarks: Diffuse Synthetic 360◦ (DeepVoxels subset),

Realistic Synthetic 360◦ (NeRF synthetic), and Real Forward-Facing (LLFF forward-facing scenes).

Following the original evaluation, each test view is rendered using N=10 selected source views.

Image quality is reported with PSNR/SSIM (higher is better) and LPIPS (lower is better) [654].

Baselines.

The scene-agnostic (no per-scene tuning) setting is compared to LLFF [428]. The per-scene op-

timization setting is compared to SRN [573], NV (Neural Volumes) [389], and NeRF [429]. An

optional short per-scene fine-tuning variant (IBRNetft) is also reported.

Quantitative comparison (synthetic datasets).

Method Setting Diffuse Synthetic 360◦ Realistic Synthetic 360◦

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
LLFF [428] No per-scene opt. 34.38 0.985 0.048 24.88 0.911 0.114

IBRNet [654] No per-scene opt. 37.17 0.990 0.017 25.49 0.916 0.100

SRN [573] Per-scene opt. 33.20 0.963 0.073 22.26 0.846 0.170

NV [389] Per-scene opt. 29.62 0.929 0.099 26.05 0.893 0.160

NeRF [429] Per-scene opt. 40.15 0.991 0.023 31.01 0.947 0.081

IBRNetft [654] Per-scene opt. 42.93 0.997 0.009 28.14 0.942 0.072

Table 23.26: Synthetic datasets [654]. In the no per-scene regime, IBRNet outperforms LLFF on

both synthetic benchmarks, indicating effective zero-shot generalization from learned multi-view

priors. With per-scene tuning, IBRNetft becomes competitive with state-of-the-art per-scene methods

on the Diffuse set and reduces the gap on the Realistic set.

23.11 Enrichment 23.11: NeRF: Real-World Robustness & Sparse Supervision 1821

Quantitative comparison (Real Forward-Facing).

Method Setting PSNR↑ SSIM↑ LPIPS↓
LLFF [428] No per-scene opt. 24.13 0.798 0.212

IBRNet [654] No per-scene opt. 25.13 0.817 0.205

SRN [573] Per-scene opt. 22.84 0.668 0.378

NeRF [429] Per-scene opt. 26.50 0.811 0.250

IBRNetft [654] Per-scene opt. 26.73 0.851 0.175

Table 23.27: Real Forward-Facing [654]. IBRNet improves over LLFF without per-scene opti-

mization, supporting that image-conditioned blending and along-ray attention transfer across scenes.

Optional fine-tuning (IBRNetft) further sharpens thin structures and reflections, surpassing NeRF on

SSIM/LPIPS and slightly on PSNR.

Ablation studies.

PSNR↑ SSIM↑ LPIPS↓
No ray transformer 21.31 0.675 0.355

No view directions 24.20 0.796 0.243

Direct color regression 24.73 0.810 0.220

Full model (IBRNet) 25.13 0.817 0.205

Table 23.28: Ablations on Real Forward-Facing (pretrained, no per-scene tuning) [654]. Along-

ray self-attention (ray transformer) is critical for resolving occlusions/depth; relative view directions

improve view-dependent appearance; blending observed colors outperforms direct RGB regression.

Sensitivity to source-view density.

Input view sparsity denotes limiting both the number and angular spread of available source images

for rendering. In the IBRNet evaluation protocol [654]:

• Cameras on the upper hemisphere are subsampled by factors {2,4,6,8,10} to simulate pro-

gressively sparser capture.

• Hence, for a given target view, the number of selectable neighbors N and baselines decrease,

reducing parallax and multi-view agreement.

• The rendering pipeline and loss remain unchanged; only the available inputs differ.

Figure 23.101: Sensitivity to input view sparsity [654]. Source views are uniformly subsampled

on the upper hemisphere by factors {2,4,6,8,10} to create varying densities. Results are shown for

the pretrained model (no per-scene tuning) and for a per-scene fine-tuned variant (IBRNetft).

1822 Chapter 23. Lecture 23: 3D vision

What the figure shows and why it matters.

• Observed effect of sparsity (Figure 23.101). As source views become sparser, errors grow near

thin structures, specular regions, and occlusion boundaries. This is consistent with weaker

multi-view consistency and fewer reliable visibility cues.

• Zero-shot robustness. The pretrained (scene-agnostic) model degrades gracefully: despite

reduced inputs, the learned fusion recovers large-scale structure and many details, indicating

effective cross-scene priors.

Per-scene fine-tuning (IBRNetft): how it is done and why it helps.

• Procedure.

– Initialize all network parameters from the scene-agnostic pretrained model (shared

encoder–decoder CNN, per-sample MLP heads for color and density pooling, and the

ray transformer).

– Optimize on the posed images of the target scene using the same NeRF-style objective:

coarse/fine hierarchical sampling of ray points and an ℓ2 photometric loss between

rendered and ground-truth pixel colors [654].

– Keep the rendering pipeline, view selection (N neighbors), sampling strategy, and losses

unchanged; only the weights are updated. In practice, rays are randomly sampled across

training images each iteration, and both coarse and fine branches are trained jointly as in

the pretrained model.

• What is adapted. Fine-tuning specializes the generic, cross-scene priors to the geome-

try/appearance and camera layout of the specific scene by calibrating:

– Visibility-aware pooling. The PointNet-like density-pooling head refines the reliability

scores {si} and resulting weights {wi} so that views inconsistent or occluded at a sample

location receive lower influence when forming the compact density feature fσ (xk).
– Color blending. The color head adjusts how relative viewing directions ∆di and per-

view features fi are mapped to blending weights {wc
i }, improving reproduction of

scene-specific view-dependent effects (e.g., specularities) under the available baselines.

– Along-ray reasoning. The ray transformer adapts its self-attention to the scene’s

depth statistics, helping resolve near–far ordering and occlusions more decisively when

aggregating {fσ (xk)}M
k=1.

– Low-level features. The shared encoder–decoder CNN updates its filters so that the

2D feature maps align with the target scene’s photometric characteristics (exposure,

material cues, texture scale), which strengthens the multi-view consistency signal used

downstream.

• Why it helps under sparsity.

– With few and narrowly spaced source views, the generic priors learned across many

scenes may be insufficient to disambiguate thin structures and complex occlusions.

Fine-tuning reduces this domain gap by aligning the priors to the target scene’s actual

pose/appearance distribution.

– Calibrated visibility weights decrease uncertainty in fσ , steering density toward physi-

cally plausible surfaces and away from “black-hole” artifacts.

– Refined color blending emphasizes the most reliable source rays for each 3D sample,

improving view-dependent appearance without introducing high-frequency regression

artifacts.

– The adapted ray transformer strengthens along-ray suppression of spurious far samples

once a nearer surface is explained, yielding cleaner boundaries and fewer floaters.

23.11 Enrichment 23.11: NeRF: Real-World Robustness & Sparse Supervision 1823

• Empirical takeaway (Figure 23.101).

– As input views are made sparser, IBRNetft consistently degrades more gracefully than

the zero-shot model: edges remain sharper, thin structures persist longer, and occlu-

sion boundaries are cleaner, while the rendering objective and architecture remain

unchanged [654].

Qualitative comparisons.

Figure 23.102: Qualitative comparison on Real Forward-Facing [654]. IBRNet reconstructs

fine geometric and appearance details while avoiding ghosting near boundaries and thin structures

where LLFF struggles; compared to NeRF, it reduces high-frequency artifacts and better preserves

reflections in several scenes.

With/without ray transformer.

Figure 23.103: With vs. without the ray transformer [654]. Each triplet shows (left) the pretrained

model without the ray transformer, (middle) the model with the ray transformer, and (right) the

ground truth. Without along-ray self-attention, densities are predicted from per-sample cues only,

frequently yielding “black-hole” voids and boundary ghosting near occlusions. Adding a single

along-ray self-attention layer (with depth-wise positional encodings) aggregates density features

across all samples on the ray, enforcing coherent near–far ordering and markedly cleaner edges.

1824 Chapter 23. Lecture 23: 3D vision

Geometry and additional results.

Figure 23.104: Proxy geometry and rendering on two scenes (Leaves, Horns) [654]. For

each scene, columns show: left—ground-truth image; middle—pretrained IBRNet (no per-scene

tuning), with synthesized RGB (top) and estimated depth (bottom); right—IBRNet fine-tuned on

the scene (IBRNetft), again with synthesized RGB (top) and depth (bottom). Fine-tuning sharpens

geometry and improves view-dependent appearance, yielding cleaner boundaries and more stable

thin structures.

23.11 Enrichment 23.11: NeRF: Real-World Robustness & Sparse Supervision 1825

Figure 23.105: Realistic Synthetic 360◦ results [654]. High-fidelity renderings are achieved without

per-scene optimization; remaining failures appear under very sparse views and complex geometry,

where additional per-scene adaptation can help.

Limitations and Future Directions

Limitations.

IBRNet can degrade under extremely sparse inputs and complex occlusions; although the ray

transformer mitigates “black holes”, challenging specular/transparent regions may still benefit from

scene-specific adaptation. Quality depends on source-view selection, pose accuracy, and coverage;

thin structures and reflections improve with brief per-scene fine-tuning (IBRNetft) [654].

1826 Chapter 23. Lecture 23: 3D vision

Concurrent and prior generalizable radiance-field methods.

Several highly cited works contemporaneous with (or preceding) IBRNet pursue generalizable novel

view synthesis with related but distinct designs:

• pixelNeRF [739] (CVPR 2021): conditions a NeRF directly on image-aligned features from

one/few inputs and regresses color/density. Unlike IBRNet’s explicit color blending and

along-ray transformer, pixelNeRF relies on a fully convolutional conditioning pipeline for

feed-forward generalization.

• GRF [632] (ICCV 2021; arXiv 2020): learns a general radiance field by projecting pixel

features to 3D and aggregating across views (with attention). Compared to IBRNet, GRF

eschews pixel copying/blending and focuses on implicit field regression conditioned on inputs.

• MVSNeRF [79] (ICCV 2021): imports plane-sweep cost volumes and 3D CNNs from MVS

for geometry-aware aggregation. In contrast to IBRNet’s PointNet-style pooling plus a ray

transformer, MVSNeRF leverages explicit multi-plane geometry priors to guide density/color

regression and supports fast feed-forward reconstruction with optional per-scene fine-tune.

Subsequent follow-ups building on IBRNet’s goals.

A line of work pursues the same objective—high-quality novel views from sparse inputs with little or

no per-scene optimization—by relocating where priors and visibility reasoning live in the pipeline:

• NeuRay [382] (CVPR 2022): augments feature aggregation with an explicit, learned per-

view visibility field. For each 3D query, the method predicts how visible it is from every

source camera and downweights occluded/inconsistent evidence before color/density predic-

tion. Compared to IBRNet’s implicit, score-based pooling, NeuRay disentangles visibility

estimation from appearance blending.

• GeoNeRF [267] (CVPR 2022): injects stronger geometry by constructing multi-scale cost

volumes (plane-sweep style) and fusing them with a Transformer. This emphasizes epipo-

lar consistency and depth reasoning more explicitly than IBRNet’s PointNet-like pooling,

improving few-view robustness and occlusion handling.

• Point-NeRF [714] (CVPR 2022): anchors features on a neural point cloud and renders

through point-based volume rendering. In contrast to IBRNet’s pixel-aligned (per-view)

feature sampling, Point-NeRF shifts to a scene-adaptive, point-anchored representation that

can be efficient and accurate when reliable points are available.

• RegNeRF [452] (CVPR 2022): remains per-scene but targets the same sparse-input failure

modes via strong regularization (e.g., unseen-view patch losses, sampling annealing). While

not cross-scene like IBRNet, it offers complementary loss/regularization ideas that can inspire

priors for generalizable renderers.

Key design axes highlighted by these follow-ups.

• Conditioning mechanism: pixel-aligned sampling (IBRNet) vs. cost-volume aggregation

(GeoNeRF) vs. point-anchored features (Point-NeRF).

• Visibility modeling: implicit reliability pooling + along-ray attention (IBRNet) vs. explicit

per-view visibility fields (NeuRay) vs. geometry-constrained matching in volumes (GeoNeRF).

• Training regime: cross-scene, feed-forward generalization (IBRNet, NeuRay, often GeoNeRF

variants) vs. per-scene but robustly regularized optimization (RegNeRF).

• Trade-offs: stronger geometry priors tend to improve occlusions and thin structures under

extreme sparsity, while pixel/feature-conditioned designs often yield higher throughput and

simpler deployment across scenes.

23.11 Enrichment 23.11: NeRF: Real-World Robustness & Sparse Supervision 1827

Enrichment 23.11.4: pixelNeRF: Neural Radiance Fields from One or Few Images

Motivation

Neural Radiance Fields (NeRF) [429] achieve impressive photorealism in novel view synthesis but

require dense multi-view supervision and time-intensive per-scene optimization. This limitation

makes them unsuitable for scenarios with only one or few input views. PixelNeRF [739] addresses

this shortcoming by learning a scene prior across multiple objects and categories, enabling feed-

forward prediction of radiance fields conditioned on sparse input images. The key insight is to

incorporate pixel-aligned image features into NeRF’s volumetric formulation, thereby leveraging

visual evidence for generalization across scenes.

Figure 23.106: NeRF from one or few images. PixelNeRF predicts neural radiance fields from

a single (top) or few posed images (bottom). Unlike NeRF, which requires dense views to work,

PixelNeRF generalizes across scenes and performs robustly even with sparse views [739].

Method

PixelNeRF modifies the classical NeRF formulation by conditioning the radiance field on features

extracted from input images. This conditioning transforms NeRF from a per-scene optimization

problem into a feed-forward prediction pipeline that can generalize to unseen objects and scenes.

Radiance field prediction

As in NeRF, the radiance field is a continuous function

f (x,d) = (σ ,c),

that maps a 3D point x ∈ R
3 and viewing direction d ∈ R

3 to a density σ and color c. In NeRF, this

mapping is optimized independently for each scene. PixelNeRF instead conditions f on features

aligned with the input pixels.

Feature encoding and alignment

An encoder E (a ResNet-34 backbone pretrained on ImageNet) processes each input image I into a

pixel-aligned feature grid W = E(I). Given a query point x in the camera space of an input image,

PixelNeRF projects x onto the image plane:

π(x) = K[R | t]x,
where K are the camera intrinsics and [R|t] are extrinsics. The local image feature is then sampled

via bilinear interpolation:

w =W (π(x)).

1828 Chapter 23. Lecture 23: 3D vision

This feature encodes appearance cues and geometric context at the projection of x.

Feature-conditioned NeRF

The NeRF network f receives the positional encoding γ(x), the viewing direction d, and the

interpolated feature w:

f (γ(x),d;w) = (σ ,c).

Instead of concatenating w to the input, PixelNeRF injects it as a residual modulation at each layer

of the MLP, inspired by style transfer methods such as AdaIN and SPADE. This design improves

stability and ensures features influence the radiance field consistently across depths.

Volume rendering loss

Rendered colors are computed as in NeRF:

Ĉ(r) =
∫ t f

tn

T (t)σ(t)c(t)dt, T (t) = exp
(
−
∫ t

tn

σ(s)ds
)
.

Training minimizes pixel-wise squared error:

L = ∑
r∈R(P)

∥Ĉ(r)−C(r)∥2
2.

Why view-space conditioning

Most reconstruction frameworks define radiance fields in a canonical object-centered frame, requiring

all instances to share alignment. PixelNeRF instead operates in view space, i.e., the coordinate frame

of each input camera. This removes the need for a canonical alignment, improving generalization to

unseen categories, multiple-object scenes, and real-world captures where canonical orientation does

not exist.

Multi-view extension

For multiple input images {I(i)}n
i=1 with poses P(i) = [R(i)|t(i)], query points are transformed into

each view:

x(i) = P(i)x, d(i) = R(i)d.

Each view provides intermediate features:

V (i) = f1(γ(x
(i)),d(i);W (i)(π(x(i)))).

These are pooled using an order-independent operator ψ (average pooling) and passed to a final

network f2:

(σ ,c) = f2(ψ(V (1), . . . ,V (n))).

This architecture allows variable numbers of input images at test time without retraining.

23.11 Enrichment 23.11: NeRF: Real-World Robustness & Sparse Supervision 1829

Intuition and significance

PixelNeRF can be understood as embedding a strong inductive bias into NeRF: each query point

consults features sampled from projected 2D observations. This design provides two critical benefits:

(1) appearance grounding, since colors derive from aligned image evidence; and (2) geometric

priors, since features across views encode spatial structure. Consequently, PixelNeRF learns to

hallucinate plausible completions when input views are sparse, a task impossible for vanilla NeRF.

Figure 23.107: PixelNeRF pipeline in the single-view case. Query features are sampled from

image-encoded feature volumes and combined with spatial coordinates before passing through the

NeRF network [739].

Architecture and Implementation

PixelNeRF uses a ResNet-34 encoder with a feature pyramid to capture local and global cues. Fea-

tures from multiple scales are upsampled and concatenated, resulting in 512-dimensional descriptors

aligned with image pixels. The NeRF network f is implemented as a residual MLP. Instead of

concatenating features directly, linear layers map each feature vector into per-block residuals added

within ResNet blocks. This design stabilizes training and enables feature modulation across layers.

Figure 23.108: Multi-view PixelNeRF architecture. Separate encoders produce feature grids per

view, which are transformed, pooled, and aggregated through f1 and f2 [739].

1830 Chapter 23. Lecture 23: 3D vision

Experiments and Ablations

PixelNeRF is evaluated across category-specific (chairs, cars), category-agnostic (13 ShapeNet

classes), unseen categories, multi-object scenes, and real-world datasets (Stanford Cars; DTU MVS),

demonstrating consistent gains over SRN [573] and DVR [451]. Ablations confirm the necessity of

pixel-aligned local features and view-direction inputs.

Category-specific single-view reconstruction

A separate PixelNeRF is trained per category using multi-view 2D supervision; qualitative examples

include a chair, sofa, van, and police car.

Figure 23.109: Category-specific single-view reconstruction benchmark. Separate models for

cars and chairs; qualitative comparison with SRN [573]. Credit: [739].

Category-specific two-view reconstruction

Two input images are encoded; two novel renderings are shown per example for chairs and cars.

Figure 23.110: Category-specific 2-view reconstruction benchmark. Credit: [739].

23.11 Enrichment 23.11: NeRF: Real-World Robustness & Sparse Supervision 1831

Method 1-view 2-view

PSNR↑ SSIM↑ PSNR↑ SSIM↑
Chairs

GRF [632] 21.25 0.86 22.65 0.88

TCO∗ [610] 21.27 0.88 21.33 0.88

dGQN [146] 21.59 0.87 22.36 0.89

ENR∗ [137] 22.83 – – –

SRN [573] 22.89 0.89 24.48 0.92

PixelNeRF∗ [739] 23.72 0.91 26.20 0.94

Cars

SRN [573] 22.25 0.89 24.84 0.92

ENR∗ [137] 22.26 – – –

PixelNeRF∗ [739] 23.17 0.90 25.66 0.94

Table 23.29: Category-specific 1- and 2-view reconstruction. Methods marked ∗ do not require

canonical poses at test time. One model per category is evaluated in both settings. Values match the

original paper’s Table 2.

Ablation on local features and view directions

Goal This ablation on ShapeNet chairs isolates the contributions of two architectural choices

in PixelNeRF [739]: pixel-aligned local features and explicit view directions. The objective is to

determine how each component affects few-shot reconstruction quality in single-view and two-view

settings within PixelNeRF’s viewer-centric, feed-forward formulation.

Design of the variants

• Full The complete PixelNeRF model conditions the radiance field on fine-grained, pixel-

aligned image features and includes the NeRF-style viewing direction input d to capture

view-dependent appearance.

• � Local Replaces pixel-aligned features with a single global image code. This removes

spatially precise conditioning at projected locations π(x), testing whether per-pixel alignment

is essential for shape/detail recovery.

• � Dirs Removes the explicit direction input d to test the importance of view-dependent

effects (e.g., specularities) under sparse supervision.

Mechanism and expected effects PixelNeRF uses a ResNet-34 encoder to produce a multi-

scale feature pyramid that is upsampled and concatenated into ∼512-D descriptors aligned to

input pixels. For a 3D query point x, the point is projected to each input image, and a bilinearly

interpolated feature w =W (π(x)) modulates the NeRF MLP through residual injections at block

entrances. This pixel-level conditioning supplies localized appearance and geometry cues tied to x’s

projections. Removing local features (� Local) collapses this spatially precise conditioning to a

global code, reducing fidelity in thin structures and high-frequency textures. Removing directions (�

Dirs) suppresses view-dependent modeling, impairing consistency under large baselines or glossy

surfaces.

Findings The following table shows that both components are important. Relative to Full,

� Local exhibits noticeable drops in PSNR/SSIM and worse LPIPS, indicating that pixel-aligned

evidence is helpful for accurate shape and texture reconstruction from few views. � Dirs also

degrades all metrics, confirming the choice of using explicit viewing direction inputs for high-fidelity,

view-dependent rendering. The Full model achieves the best performance in both 1-view and 2-view

settings.

1832 Chapter 23. Lecture 23: 3D vision

Variant 1-view 2-view

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
– Local 20.39 0.848 0.196 21.17 0.865 0.175

– Dirs 21.93 0.885 0.139 23.50 0.909 0.121

Full 23.43 0.911 0.104 25.95 0.939 0.071

Table 23.30: Ablation on ShapeNet chairs. Pixel-aligned local features and explicit view directions

are both essential for few-shot quality; the Full PixelNeRF model attains the best PSNR/SSIM and

lowest LPIPS in 1-view and 2-view regimes (matches Table 3 in [739]).

Category-agnostic single-view reconstruction

A single PixelNeRF trained jointly on the 13 largest ShapeNet categories preserves thin structures

and small textures, while outperforming baselines quantitatively (exactly as reported).

Figure 23.111: Category-agnostic single-view reconstruction. PixelNeRF is trained as a single

model across 13 ShapeNet categories, without category-specific specialization. The results show

superior recovery of fine structures such as chair legs, monitors, and tabletop textures compared

to methods that compress the scene into a single latent vector. Competing baselines such as SRN

struggle in this setting, with degraded reconstructions and unreliable test-time latent inversion.

Unseen categories and multi-object scenes

Training only on plane, car, chair, PixelNeRF generalizes to 10 unseen categories and handles

composed scenes of multiple chairs by predicting in view space.

Figure 23.112: Generalization to unseen categories. A model trained only on plane, car, and

chair generalizes to 10 unseen ShapeNet categories. Despite not being exposed to these categories

during training, PixelNeRF produces structurally reasonable and visually coherent reconstructions,

demonstrating strong cross-category priors. Credit: [739].

23.11 Enrichment 23.11: NeRF: Real-World Robustness & Sparse Supervision 1833

Figure 23.113: 360◦ view prediction with multiple objects. PixelNeRF naturally handles multi-

object scenes, such as multiple ShapeNet chairs, because its prediction is conditioned in view space.

In contrast, canonical-space models like SRN struggle with alignment when multiple objects are

present. Credit: [739].

Unseen category Multiple chairs

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
DVR [451] 17.72 0.716 0.240 – – –

SRN [573] 18.71 0.684 0.280 14.67 0.664 0.431

PixelNeRF [739] 22.71 0.825 0.182 23.40 0.832 0.207

Table 23.32: Challenging ShapeNet tasks. Left: zero-shot generalization to 10 unseen categories

using a model trained on only three classes (plane, car, chair). Right: two-view reconstruction

of scenes with multiple chairs. PixelNeRF clearly surpasses baselines in both settings, showcasing

robustness to unseen object types and multi-object compositions. Matches Table 5 in [739].

Real images: Stanford Cars and DTU MVS

A car model transfers to Stanford Cars after background removal with PointRend; on DTU, feed-

forward wide-baseline synthesis is demonstrated from three posed inputs; PSNR quantiles versus

per-scene NeRF are reported in the paper.

Figure 23.114: Results on real car photos. PixelNeRF trained on ShapeNet cars is directly applied

to the Stanford Cars dataset [303]. Backgrounds are removed using PointRend [295]. The model

generates plausible view rotations about the vertical axis without any fine-tuning, demonstrating

cross-dataset transfer. Credit: [739].

1834 Chapter 23. Lecture 23: 3D vision

Figure 23.115: Wide-baseline novel view synthesis on DTU. On the DTU MVS dataset [262],

PixelNeRF synthesizes novel views from as few as three posed input images. Notably, the training

and test sets share no scenes, yet reconstructions remain consistent, highlighting the generalization

ability of learned priors under wide-baseline, real-scene conditions. Credit: [739].

Figure 23.116: Few-shot reconstruction performance on DTU. PSNR quantiles across scenes

with 1, 3, 6, or 9 input views. PixelNeRF uses a single trained model with 3-view conditioning,

while NeRF is retrained per scene and per view count. PixelNeRF maintains competitive or superior

performance without test-time optimization. Matches Figure 9 in [739].

Limitations and Future Work

Limitations

• Rendering speed. PixelNeRF inherits NeRF’s slow volumetric rendering, with runtime

scaling linearly with the number of input views. This makes interactive applications infeasible.

• Positional encoding scale. The choice of frequency bands in γ(·) and manually tuned ray

sampling bounds limit scale invariance. PixelNeRF struggles when scenes deviate strongly in

scale or depth range.

• Dataset constraints. Training and evaluation rely on ShapeNet and DTU, which are synthetic

or controlled. Generalization to in-the-wild 360◦ captures is still limited.

23.11 Enrichment 23.11: NeRF: Real-World Robustness & Sparse Supervision 1835

Future work and influence

PixelNeRF inspired numerous follow-ups addressing its limitations:

• IBRNet [654] improved multi-view aggregation with attention-based pooling, enhancing

generalization across unseen scenes.

• MVSNeRF [79] introduced cost-volume features to better exploit geometric consistency under

sparse views.

• PixelNeRF++ and other variants investigated scaling the approach to more complex outdoor

or dynamic settings.

• Vision transformers for NeRF priors (e.g., [267, 382]) replaced CNN encoders with trans-

formers for improved visibility reasoning and global context.

These directions show how PixelNeRF provided the first bridge between feed-forward image-

conditioned priors and NeRF-based volumetric rendering, catalyzing a wave of methods tackling

sparse-view reconstruction and real-world generalization.

1836 Chapter 23. Lecture 23: 3D vision

Enrichment 23.12: NeRF: Unbounded, Dynamic, Large-Scale Scenes

Scaling beyond tabletop scenes requires anti-aliasing across scales, compositional scene structure,

and deformation fields for motion.

• Block-NeRF [602]: Composes geographic “blocks” to model city-scale environments with

streaming and modular training.

• Mip-NeRF 360 [29]: Tackles unbounded 360◦ scenes with integrated positional encoding and

anti-aliased cones.

• Nerfies [469]: Learns continuous deformation fields from casual handheld videos for non-rigid,

dynamic scenes.

• D-NeRF [488]: Extends NeRF with time as an input for explicit scene dynamics.

Further influential works (not expanded): HyperNeRF [468] (handles topological changes in

dynamic scenes), Mega-NeRF [413] (city-to-landscape scale).

Enrichment 23.12.1: Block-NeRF: Scalable Large Scene Neural View Synthesis

Motivation

Neural Radiance Fields (NeRF) and its multiscale extension mip-NeRF (see 23.10.6) have demon-

strated remarkable performance on small-scale, object-centric, or single-building scenes. However,

scaling such methods to city-sized environments introduces severe bottlenecks: limited model

capacity, memory constraints, and inconsistent appearance due to data collected across different

days, times, and weather conditions. For practical applications in mapping and autonomous driving,

the ability to reconstruct neighborhoods with temporal consistency and update regions without

retraining the full model is crucial. Block-NeRF [602] introduces a decomposition strategy that

splits the environment into compact, geographically bounded NeRFs (blocks). Each block is trained

independently and later merged at inference to produce seamless renderings, decoupling rendering

cost from the overall environment size.

Figure 23.117: City-scale reconstruction with Block-NeRF. The Alamo Square neighborhood

in San Francisco reconstructed using multiple Block-NeRFs trained on data from three months.

Updates can be applied locally (e.g., construction area on the right) without retraining the entire

model. Credit: [29].

23.12 Enrichment 23.12: NeRF: Unbounded, Dynamic, Large-Scale Scenes 1837

Method

High-level overview

Block-NeRF [602] scales neural view synthesis to neighborhoods by structuring the scene geograph-

ically and decoupling capacity and rendering from global extent. The pipeline proceeds in four

stages:

• Geographic tiling of the street network into overlapping blocks using priors such as intersec-

tion coordinates and segment lengths (from maps or HD-road graphs).

• Per-block training of compact mip-NeRFs (see 23.10.6) on geographically filtered images,

with appearance embeddings, exposure conditioning, and pose refinement to absorb long-term

capture variability.

• Visibility-driven selection of only the few blocks that actually see the current view, using a

small visibility network to cull irrelevant blocks.

• Cross-block compositing and appearance alignment to merge rendered images smoothly

and reconcile style differences across time, weather, and cameras.

Block partitioning and structure

The partitioning strategy employed by Block-NeRF is designed to make large-scale reconstruction,

such as multi-block urban scenes, tractable by dividing the environment into smaller, manageable

sub-regions. Instead of training one monolithic NeRF for an entire city—which would exceed

memory and compute limits—Block-NeRF constructs a structured grid of compact NeRFs that can

be trained and updated independently.

Why overlapping sub-regions? Each Block-NeRF is defined to overlap about 50% with its

neighbors. This deliberate redundancy serves two roles:

• Geometric continuity: Overlap ensures that street geometry and building façades crossing

block boundaries are represented consistently by at least two models, reducing visible seams

during rendering.

• Appearance alignment: Because training images are captured under different conditions

(day/night, clear/cloudy, varied camera exposure), overlap provides shared pixels where

neighboring blocks can align their appearance embeddings. Without overlap, blocks could

converge to inconsistent colors or lighting, producing sharp discontinuities.

During inference, this overlap also supports seamless compositing when multiple blocks contribute

to a target view, avoiding visual jumps at block boundaries.

Why place origins at intersections? Block origins are typically anchored at road intersections.

Intersections serve as natural hubs in city topology: they connect multiple streets, maximize shared

visibility across trajectories, and ensure that blocks cover semantically meaningful spatial units.

Placing block centers at intersections also yields a regular, interpretable tiling of the urban grid. In

practice, a block covers its local intersection and extends along adjacent streets.

How are partitions built? From these origins, each block’s coverage extends roughly 75%

of the way to neighboring intersections. This produces the desired ∼ 50% overlap across adjacent

blocks. Building the partitions proceeds as follows:

1. Geographic initialization: Block origins are selected at intersections or uniformly along long

street segments, using map priors such as OpenStreetMap or HD-road graphs.

2. Coverage definition: Each block is defined as a sphere or radius around the origin, extending

most of the way toward neighbors to enforce overlap.

1838 Chapter 23. Lecture 23: 3D vision

3. Geographic filtering of training data: Each training image is assigned to blocks based on

whether its camera frustum intersects the block’s coverage region. This ensures that each

Block-NeRF only sees the data relevant to its intended sub-region.

4. Independent training: Blocks are trained independently in parallel, producing a modular set of

models. This modularity allows retraining only the affected blocks when local changes occur

(e.g., construction on one street), rather than reoptimizing the entire city.

This decomposition yields a scalable representation: a city becomes a grid of compact NeRFs

with intentional redundancy at boundaries. The overlap is key not only for geometric continuity but

also for appearance alignment, enabling Block-NeRF to harmonize heterogeneous data collected

across days, weather conditions, and camera settings.

Architectural design choices

Each Block-NeRF extends mip-NeRF with three critical augmentations:

• Appearance embeddings (per-image latent codes) absorb day-to-day or seasonal shifts in

illumination and weather, ensuring that lighting changes are captured photometrically rather

than as spurious geometry.

• Exposure conditioning encodes camera exposure values (e.g., shutter speed × gain) with a

sinusoidal positional encoding, stabilizing training under brightness fluctuations and enabling

interpretable exposure control at inference.

• Pose refinement introduces small, regularized SE(3) offsets per driving segment to correct

residual odometry drift, mitigating ghosting and duplication artifacts at block boundaries.

In addition, a lightweight visibility network fv is trained to predict whether a spatial sample would

be visible from a given camera viewpoint. Unlike computing transmittance T directly from each

block’s density field (which requires full ray marching), fv is a cheap learned proxy supervised

by training-time transmittance. This decoupled approximation plays two roles in the Block-NeRF

pipeline: (i) block selection at inference, where it prevents unnecessary evaluation of irrelevant or

occluded blocks, and (ii) appearance matching, where it identifies reliable overlap regions between

neighboring blocks for cross-block alignment.

Figure 23.118: Block-NeRF architecture. Built on mip-NeRF (see 23.10.6). The density MLP fσ

outputs σ and features; the color MLP fc consumes features, view direction, exposure encoding, and

appearance embedding to predict RGB; the visibility MLP fv regresses training-time transmittance,

supporting block selection and overlap-based appearance alignment. Credit: [29].

23.12 Enrichment 23.12: NeRF: Unbounded, Dynamic, Large-Scale Scenes 1839

How fv integrates into the pipeline

During training. For every training ray, Block-NeRF already computes sample weights

Ti = exp
(
−∑

j<i

σ jδ j

)
,

the transmittance at depth ti. These values supervise fv(xi,d) at sampled points, teaching the auxiliary

network to approximate visibility directly from (x,d) without performing volume accumulation.

Thus fv becomes a fast surrogate of NeRF’s own visibility reasoning.

During inference. Given a novel camera:

1. Candidate selection: Gather blocks within radius Rselect of the camera center c.

2. Visibility pruning: For each candidate, probe fv at a sparse set of sample points/rays from

c and average predictions. Blocks with low mean visibility are culled. Typically only 1–3

remain, preventing compute waste on blocks that are occluded or irrelevant.

3. Rendering: Surviving blocks are fully rendered with mip-NeRF ray marching.

4. Compositing: Per-block images Ii are combined with inverse-distance weights, producing a

seamless output. Distance-based blending is temporally stable, avoiding flicker in flythroughs.

5. Appearance alignment: To harmonize across different lighting conditions, fv also identifies

high-visibility overlap between neighboring blocks. In these regions, adjacent blocks adjust

their latent appearance codes so that colors match the reference block, yielding globally

consistent appearance (time-of-day, weather, white balance).

Figure 23.119: Visibility-guided compositing. Candidate blocks near the camera are scored by fv.

Blocks with low predicted visibility (bottom) are culled. The remaining per-block renderings are

blended in image space with distance-based weights, producing seamless transitions across block

boundaries while avoiding seams from irrelevant blocks. Credit: [29].

1840 Chapter 23. Lecture 23: 3D vision

Why fv is essential

Without fv, Block-NeRF would need to partially render all nearby blocks to check visibility. This is

computationally intractable for hundreds of blocks. fv serves as a fast scout: trained once during

supervision, then deployed at inference to prune irrelevant blocks and guide alignment. This makes

city-scale rendering practical while preserving seamless transitions across block boundaries.

Compositing across blocks

After visibility pruning, the surviving blocks are rendered with mip-NeRF’s volumetric ray marching

(Sec. 23.10.6). Their outputs Ii are then blended in raster space using inverse-distance weights

relative to the camera:

wi ∝ ∥c− xi∥−p, ∑
i

wi = 1,

with p controlling the sharpness of transitions. This global weighting strategy is simple to compute,

avoids per-pixel overhead, and—most importantly—yields temporally stable results for long fly-

throughs. In practice, distance-based blending reliably hides seams in overlap regions; more complex

schemes (e.g., depth- or visibility-based blending) can sharpen stills but often introduce flicker over

time.

Appearance control and cross-block alignment

A remaining challenge is that independently trained blocks do not share a common appearance

embedding space: the same latent index can correspond to different global looks (e.g., sunny in one

block, cloudy in another). When blended directly, such inconsistencies manifest as visible seams. To

harmonize the output, Block-NeRF performs appearance matching across overlaps:

1. Fix a reference block with a chosen appearance code ℓref.

2. For each neighboring block j, use fv to identify overlap regions that are simultaneously visible.

3. Optimize only ℓ j, keeping network weights frozen, to minimize color differences over the

shared patch:

min
ℓ j

∑
p∈P

∥∥Iref(p; ℓref)− I j(p; ℓ j)
∥∥2
.

4. Propagate alignment outward across the block graph.

This process aligns low-frequency appearance factors such as illumination, weather, and time-

of-day, producing a globally coherent style while preserving local geometry. Once aligned, the

entire city-scale environment can be rendered consistently under any desired appearance (e.g., dusk

everywhere).

Figure 23.120: Appearance embeddings Per-image latents represent weather/illumination diversity

(day/night, clear/cloudy), preventing geometry corruption and enabling controllable appearance

during inference. Credit: [29].

23.12 Enrichment 23.12: NeRF: Unbounded, Dynamic, Large-Scale Scenes 1841

Figure 23.121: Exposure conditioning Conditioning on exposure stabilizes training across bright-

ness variation and provides an interpretable control knob at render time (e.g., brighten/darken without

altering geometry). Credit: [29].

Figure 23.122: Cross-block appearance matching A fixed target appearance (left) is propagated to

neighbors by optimizing only their appearance codes on overlapping, high-visibility regions, yielding

a consistent global style (e.g., coherent night appearance) across blocks. Credit: [29].

Why this design works

Geographic tiling concentrates capacity where needed and enables local updates. Visibility-driven

selection avoids wasting compute and prevents seam artifacts from blocks that cannot explain the

view. Distance-based blending is temporally stable and simple. Appearance embeddings + exposure

conditioning disentangle nuisance factors (time, weather, camera settings) from scene structure, while

appearance matching reconciles independently trained blocks into a coherent city-scale radiance

field.

Experiments and Ablations

Ablations on Alamo Square

Appearance embeddings, exposure conditioning, and pose refinement all contribute significantly

to fidelity. Removing appearance embeddings forces the model to encode weather variations as

geometry, introducing artifacts. Disabling pose refinement produces blur and duplication from

misalignment. Removing exposure slightly lowers accuracy but eliminates exposure control.

1842 Chapter 23. Lecture 23: 3D vision

Model PSNR↑ SSIM↑ LPIPS↓
mip-NeRF [30] 17.86 0.563 0.509

-Block-NeRF (no appearance) 20.13 0.611 0.458

-Block-NeRF (no exposure) 23.55 0.649 0.418

-Block-NeRF (no pose opt.) 23.05 0.625 0.442

Full Block-NeRF 23.60 0.649 0.417

Table 23.33: Ablation study on Alamo Square. Each architectural component contributes: appear-

ance embeddings mitigate geometry hallucinations; pose refinement sharpens alignment; exposure

conditioning improves stability and control.

Figure 23.123: Qualitative ablations. Without appearance embeddings, cloudy geometry is intro-

duced. Without pose optimization, ghosting occurs (e.g., duplicated telephone pole in the first row).

Exposure conditioning provides modest improvements in fidelity and crucial control at inference.

Credit: [29].

Block granularity on Mission Bay

Splitting into finer blocks improves accuracy even when the total parameter count is fixed. With

smaller block sizes, each block specializes to local geometry and appearance, and only a few blocks

are active per frame, keeping inference efficient.

Blocks Weights / Total Block size Compute PSNR↑ SSIM↑ LPIPS↓
1 0.25M / 0.25M 544 m 1× 23.83 0.825 0.381

4 0.25M / 1.00M 271 m 2× 25.55 0.868 0.318

8 0.25M / 2.00M 116 m 2× 26.59 0.890 0.278

16 0.25M / 4.00M 54 m 2× 27.40 0.907 0.242

1 1.00M / 1.00M 544 m 1× 24.90 0.852 0.340

4 0.25M / 1.00M 271 m 0.5× 25.55 0.868 0.318

8 0.13M / 1.00M 116 m 0.25× 25.92 0.875 0.306

16 0.07M / 1.00M 54 m 0.125× 25.98 0.877 0.305

Table 23.34: Effect of block granularity on Mission Bay. More blocks yield higher reconstruction

fidelity. Even with fixed total parameters (bottom), splitting capacity into multiple small blocks

improves accuracy and reduces per-frame compute since only a subset of blocks is active. Credit:

[29].

23.12 Enrichment 23.12: NeRF: Unbounded, Dynamic, Large-Scale Scenes 1843

Limitations and Future Work

Block-NeRF inherits Mip-NeRF’s high rendering cost and struggles with unmasked dynamic content.

Transient objects leave artifacts such as shadows; vegetation and seasonal changes lead to blurred

trees; construction requires retraining of affected blocks. Distant structures are under-sampled,

producing lower fidelity. Future directions to combat these and improve results include:

• Dynamic radiance fields for explicitly modeling moving objects.

• Unbounded representations (e.g., NeRF++ [772], mip-NeRF 360 [29]) for sharper distant

reconstructions.

• Acceleration techniques such as voxel caching [370, 740] or hash encodings [443] for

real-time rendering and faster training.

Enrichment 23.12.2: Mip-NeRF 360: Unbounded Anti-Aliased NeRF

Motivation

Real-world unbounded scenes (full 360° rotations, sky and horizons, distant buildings) reveal

persistent weaknesses in NeRF-style pipelines: distant regions render blurry, scaling capacity

becomes costly, and ambiguity induces artifacts such as semi-transparent floaters and background

collapse. Readers are referred to the prior subsection on mip-NeRF for anti-aliasing via integrated

positional encoding (IPE) over conical-frustum Gaussians (§23.10.6) [30]. MipNeRF360 [29] builds

on that foundation to make 360° unbounded scenes numerically well-posed, sample-efficient, and

less ambiguous.

Challenges in unbounded 360° scenes

• Global parameterization. Fitting an unbounded world into a fixed near/far box squeezes

very distant geometry into a tiny coordinate range, so equal steps in model space correspond

to huge steps in world space at the far field, leaving too few effective intervals for the entire

background and causing blur despite intra-interval anti-aliasing [29, 30].

• Sampling geometry. Uniform steps in metric depth t devote many samples to nearby content

(large pixel footprint) but too few to distant content (tiny footprint), which yields aliasing and

loss of detail in horizons and skies for fully 360° captures [29].

• Capacity vs. efficiency. Large, real scenes mix extremely near and far structure; making a

single mip-NeRF MLP sufficiently large and supervising it at multiple scales is expensive, so

capacity is constrained by training cost [30].

• Ambiguity and artifacts. The inverse problem is underconstrained at scale; optimization can

explain pixels via semi-transparent blobs (floaters) or by dragging distant matter toward the

camera (background collapse). Noise injection and multi-scale supervision help but neither

controls how mass is arranged along a ray nor fixes the global parameterization mismatch [30,

429].

1844 Chapter 23. Lecture 23: 3D vision

MipNeRF360 solutions to unbounded scenes challenges

1. Nonlinear scene reparameterization. A smooth contraction maps R3 into an isotropic ball

of radius 2 while leaving the unit ball around the camera unchanged. Preserving the unit ball

keeps local metric geometry faithful where pixels are most sensitive (foreground parallax and

high-frequency detail). Compressing the exterior into the shell 1→2 makes “infinity” finite

and numerically well-behaved, and the extra radius beyond 1 provides dynamic range so far

depths do not collapse onto a single boundary. The spherical target avoids axis/corner biases

of a cube, treating all directions symmetrically. Paired with disparity-linear spacing along

rays, equal steps in the contracted coordinate correspond more closely to equal changes in

image footprint at long range, restoring a well-conditioned sampling geometry for unbounded

scenes.

2. Proposal-driven hierarchical sampling. Each camera ray is divided into contiguous segments

(intervals) in a normalized coordinate s ∈ [0,1], yielding a 1D histogram with a nonnegative

weight per interval that reflects its contribution to the pixel after volumetric compositing.

What changes versus mip-NeRF is the division of labor: rather than repeatedly querying

and supervising the same MLP at multiple scales, MipNeRF360 [29] decouples where to

sample from what to predict. A small proposal MLP is evaluated on a coarse, roughly uniform

partition (in the contracted, disparity-linear coordinate) to produce a coarse weight profile that

guides where the ray should be refined; the ray is then re-partitioned so intervals concentrate

around the predicted peaks (optionally repeating this proposal step once more). Only after

this final, content-focused partition has been built is the high-capacity NeRF MLP run—once

per ray at a single stage, namely on the final set of intervals—by querying it at each final

interval to predict densities and colors for the actual rendering. To make the proposal reliable

without adding another image loss, a lightweight histogram-consistency objective trains the

proposal to cover the support that the NeRF MLP ultimately uses (gradients flow only into the

proposal in this term), ensuring the sampler does not overlook mass that the renderer needs. In

short, mip-NeRF’s multi-scale rendering is replaced by a cheap sampler (proposal MLP) plus

a single high-fidelity renderer (NeRF MLP), concentrating expensive computation exactly

where it matters most [29].

Why this improves things:

• The proposal amortizes search, so the final intervals rapidly cluster near actual surfaces

instead of being wasted in empty space.

• The NeRF MLP avoids redundant coarse-and-fine rendering passes, enabling higher

capacity without prohibitive training cost.

• The consistency term keeps proposals conservative (they must cover what NeRF uses),

reducing missed surfaces and aliasing in unbounded scenes.

3. Distortion regularization. Like mip-NeRF, each interval is a conical frustum approximated

by a 3D Gaussian and is anti-aliased within the interval via integrated positional encoding;

what those methods do not control is how the total weight is distributed across intervals

along the ray. In unbounded scenes this longitudinal ambiguity is a major failure mode: the

optimization can explain a pixel by spreading small weights over many separated intervals

(yielding semi-transparent floaters), or by shifting mass into near intervals to shorten optical

paths (background collapse). MipNeRF360 [29] adds a distortion loss that penalizes spread of

the per-ray weight histogram in the normalized coordinate s (via pairwise distances between

interval midpoints plus a width term).

23.12 Enrichment 23.12: NeRF: Unbounded, Dynamic, Large-Scale Scenes 1845

High level: the loss softly prefers compact, near-unimodal allocations across intervals when

consistent with the images, steering the solution toward “a surface here” rather than many faint

lobes along the line of sight. This complements the within-interval anti-aliasing (unchanged)

and, together with the proposal-guided sampling and contraction, reduces floaters, discourages

background collapse, and yields sharper, more plausible geometry in 360° environments [29].

Figure 23.124: Comparison to mip-NeRF. (a) Though mip-NeRF is able to produce accurate

renderings of objects, for unbounded scenes it often generates blurry backgrounds and low-detail

foregrounds. (b) MipNeRF360 produces detailed realistic renderings of these unbounded scenes, as

evidenced by the renderings (top) and depth maps (bottom) from both models. See the supplemental

video for additional results. Credit: [29].

Method

MipNeRF360 extends mip-NeRF (§23.10.6) to unbounded 360° scenes with three coupled compo-

nents: a smooth nonlinear scene reparameterization that makes “infinity” finite while preserving

near-camera geometry; a proposal-driven hierarchical sampling scheme that decouples where

to sample from what to predict via online histogram consistency; and a distortion regularizer that

shapes per-ray weight distributions to suppress floaters and discourage background collapse [29].

Preliminaries: mip-NeRF

For a ray r(t) = o+ td with distances t = {ti}N
i=0 partitioning intervals Ti = [ti, ti+1), mip-NeRF

approximates each conical frustum by a 3D Gaussian with mean µ and covariance Σ and featurizes

it with integrated positional encoding (IPE):

γ(µ,Σ) =

{[
sin(2ℓµ) exp

(
−22ℓ−1 diag(Σ)

)

cos(2ℓµ) exp
(
−22ℓ−1 diag(Σ)

)
]}L−1

ℓ=0

(23.56)

These features drive an MLP (NeRF MLP) to produce density τi and color ci:

(τi,ci) = MLP
(
γ(r(Ti));ΘNeRF

)
(23.57)

1846 Chapter 23. Lecture 23: 3D vision

Pixel color is rendered by volumetric compositing:

C(r, t) = ∑
i

wi ci, (23.58)

wi =
(
1− e−τi (ti+1−ti)

)
exp
(
−∑

i′<i

τi′(ti′+1− ti′)
)

(23.59)

Coarse intervals are sampled uniformly in [tn, t f]:

tc ∼U [tn, t f], tc = sort({tc}) (23.60)

then refined via inverse-transform sampling from the coarse histogram:

tf ∼ hist
(
tc,wc

)
, tf = sort({tf}) (23.61)

Training minimizes a weighted sum of coarse/fine reconstruction losses:

∑
r∈R

1

10
Lrecon

(
C(r, tc),C∗(r)

)
+ Lrecon

(
C(r, tf),C∗(r)

)
(23.62)

See §23.10.6 for details [30].

Scene and ray parameterization

Context and goal. In mip-NeRF, each ray interval (a conical frustum) is approximated by a

3D Gaussian with mean µ and covariance Σ, and features are computed directly in Euclidean

coordinates via integrated positional encoding (IPE). For truly unbounded 360° scenes, this Euclidean

parameterization becomes ill-conditioned at long range. MipNeRF360 changes where those features

are computed: it first reparameterizes the scene by a smooth warp f : R3→R
3 that makes infinity

finite, and only then encodes the frustum-Gaussians. This has two consequences. First, the Gaussian

must be pushed through the nonlinear f so that both its center and its spatial extent are correctly

warped. Second, ray distances must be reparameterized to align sample placement with the new

geometry. Together, these steps define MipNeRF360’s scene and ray parameterization [29].

Pushing Gaussians through a smooth warp (Eq. 9). Because f is nonlinear, the image of a

Gaussian is not Gaussian in closed form. MipNeRF360 therefore adopts the standard first–order

(Extended Kalman Filter–style) approximation: linearize f at the mean and propagate mean and

covariance through that local linear map,

f (x)≈ f (µ)+ J f (µ)(x−µ), f (µ,Σ) =
(

f (µ), J f (µ)ΣJ f (µ)
⊤
)
. (23.63)

Here J f (µ) is the 3×3 Jacobian of f at µ , capturing the local stretch/rotation induced by f . This

“Kalman-like” pushforward is essential: it preserves not only the warped position f (µ) but also

the warped extent and orientation J f ΣJ⊤f of the frustum. Without updating the covariance, far-

field frustums—often highly anisotropic—would be misrepresented after warping, undermining

mip-NeRF’s anti-aliasing.

Choosing the warp: contraction (Eq. 10). In MipNeRF360 the scene warp f is a smooth

contraction that maps all of R3 into a closed ball of radius 2 while leaving the unit ball unchanged:

f (x) = contract(x) =





x, ∥x∥ ≤ 1,
(

2− 1

∥x∥
) x

∥x∥ , ∥x∥> 1.
(23.64)

23.12 Enrichment 23.12: NeRF: Unbounded, Dynamic, Large-Scale Scenes 1847

Why keep ∥x∥≤1 unchanged, and why a shell [1,2] for the far field? The unit ball fixes a normalized

near-field scale around the camera where small metric errors drive perceived sharpness (parallax,

fine texture). Keeping f (x) = x there preserves exact Euclidean geometry and the anti-aliasing

behavior inherited from mip-NeRF. Mapping everything beyond the unit sphere into the finite shell

1→2 preserves dynamic range for large depths: depths just beyond 1 map near 1, while depths

∥x∥→∞ map smoothly toward 2—so “far” and “very far” remain separable after warping, instead

of collapsing onto a single boundary. Because the target is spherical, all directions are treated

symmetrically.

Why this reduces common failure modes (mechanism, not just outcome):

• Background blur. In Euclidean t, a fixed number of intervals must span an enormous depth

range, so each far interval covers a huge swath of world space; its Gaussian/IPE averages many

distinct background colors, appearing blurry. After contraction paired with disparity-linear

spacing (explained below), the far field occupies a finite, uniformly coverable band in the

warped coordinate. Intervals become approximately equal-sized in the contracted radius, so

the background is represented by many small, distinct bins rather than a few massive ones.

Less averaging⇒ sharper backgrounds.

• Background collapse. With poor far-field resolution, optimization can “cheat” by pulling

density toward the camera: shorter paths can reproduce colors with fewer samples, so mass

drifts forward. In the contracted domain, moving density from the far shell toward the near

region causes large displacements in the warped coordinate (and hence stronger reconstruction

penalties), while the far band itself now has sufficient resolution to place density where images

demand it. The optimization no longer gains an easy advantage by collapsing the background

forward.

After pushing the frustum-Gaussian (µ,Σ) through f via the linearization in Eq. (23.63), features

are computed from the contracted Gaussian

γ
(

contract(µ,Σ)
)
,

so within-interval anti-aliasing is preserved but now in a bounded, well-conditioned coordinate

system [29].

Off-axis IPE—where it fits and why it matters After the scene is contracted and each frustum-

Gaussian (µ,Σ) is pushed through the warp using the EKF-style update in Eq. (23.63), MipNeRF360

computes features in the contracted space with Integrated Positional Encoding (IPE). IPE is mip-

NeRF’s anti-aliasing mechanism: instead of encoding a single point, it encodes the expected

sine/cosine responses under the Gaussian, so pixel footprint and frustum extent are baked into the

features. In the original, axis-aligned version, these sinusoids are taken along the coordinate axes,

which means only the diagonal of Σ (per-axis variance) can modulate the features.

The contraction plus the Kalman-like pushforward typically yields full, rotated covariances in

the warped space—far-field frustums are elongated and oriented off-axis—so restricting IPE to axis

directions discards the very orientation cues that distinguish different Gaussians. MipNeRF360

therefore adopts off-axis IPE (Appendix of [29]): it projects the Gaussian onto a fixed bank of non-

axis-aligned unit directions (the vertices of a twice-tessellated icosahedron), allowing off-diagonal

covariance to influence the features. Intuitively, two Gaussians can share the same per-axis spreads

yet differ in orientation; axis-aligned IPE conflates them, while off-axis IPE keeps them separate.

The result is a richer, orientation-sensitive encoding of elongated, distant frustums, which improves

discrimination and stability in the far field [29].

1848 Chapter 23. Lecture 23: 3D vision

Reparameterizing the ray: disparity-linear coordinate (Eq. 11). The contraction makes the

space finite; the ray parameter determines how samples populate that space. MipNeRF360 maps

Euclidean distance t∈ [tn, t f] to a normalized coordinate s∈ [0,1] via an invertible g:

s =
g(t)−g(tn)

g(t f)−g(tn)
, t = g−1

(
sg(t f)+(1− s)g(tn)

)
, (23.65)

and sets g(x) = 1/x so bins are uniform in inverse depth (disparity). Why s (disparity) behaves better

than t (metric depth):

• Matches image sensitivity. In a pinhole camera, a fronto-parallel patch at depth z projects

with scale ∝ 1/z; small image changes are roughly proportional to changes in disparity d = 1/z

(since ∂ image/∂d stays more nearly depth-invariant than ∂ image/∂ z). Uniform steps in

s therefore allocate samples in proportion to perceptual/photometric change along the ray,

especially at long range, improving coverage of sky and distant objects.

• Pairs with contraction. For a camera at the origin, the contraction radius along a ray is r′(t) =
2− 1

t
. Uniform steps in s with g(t) = 1/t (i.e., uniform disparity) produce approximately

uniform steps in r′ across the outer shell. Thus, a fixed sample budget yields near-uniform

spatial coverage in the warped domain, which is the domain where features are computed.

• Numerical stability and consistency. Normalizing every ray to s∈ [0,1] makes histograms,

losses (proposal consistency, distortion), and resampling ray-agnostic: bin sizes, gradients,

and learning rates do not depend on unknown scene scales or ad-hoc near/far ranges. The

mapping in Eq. (23.65) recovers t only where metric distances are required (e.g., transmittance

factors), avoiding depth-scale–dependent conditioning in the rest of the pipeline.

Together, Eq. (10) makes “infinity” finite with preserved depth resolution, and Eq. (11) distributes a

fixed number of samples where the image is most sensitive—yielding sharper backgrounds, fewer

collapse incentives, and more stable optimization in unbounded 360° scenes [29].

Figure 23.125: Scene reparameterization visualization. A 2D visualization of the scene param-

eterization. The operator contract(·) (Eq. (10), arrows) maps coordinates onto a ball of radius 2

(orange), leaving points within radius 1 (blue) unchanged. This contraction is applied to mip-NeRF

Gaussians in Euclidean 3D (gray ellipses) similarly to a Kalman filter to produce contracted Gaus-

sians (red ellipses), whose centers lie within radius 2. The design of contract(·), combined with

linear-in-disparity ray spacing, yields equidistant intervals in the orange region for rays cast from the

origin. Credit: [29].

23.12 Enrichment 23.12: NeRF: Unbounded, Dynamic, Large-Scale Scenes 1849

Coarse-to-fine online distillation

Where this fits in the pipeline. Having reparameterized the scene with the contraction f and the ray

with the disparity-linear coordinate s (Sec. 23.12.2), MipNeRF360 must still decide where along

s ∈ [0,1] to place computation. Rather than supervising a single MLP at multiple scales (mip-NeRF),

MipNeRF360 separates where to sample from what to predict: a lightweight network proposes

sampling distributions along the ray, and a high-capacity network predicts densities and colors [29].

Two-MLP cascade. The model uses (i) a small proposal MLP that outputs only densities (hence

interval weights, no colors), and (ii) a large NeRF MLP that outputs both density and color. Work

proceeds along the normalized coordinate s:

• Coarse partition and proposal histogram. Start by partitioning s ∈ [0,1] into contiguous

bins with endpoints t̂ = {t̂0, . . . , t̂M} (paper notation uses t for bin edges; here t̂ indicates the

proposal partition; t/t̂ can be read as any monotone ray coordinate, e.g., s). Evaluate the

proposal MLP at these bins and convert predicted densities to a proposal weight histogram

(t̂, ŵ) using the standard volumetric compositing weights (cf. NeRF/mip-NeRF; see Eq. (23.59)

in the previous subsection).

• Importance resampling. Treat ŵ as a distribution over the ray and resample to form a finer

partition that concentrates bins where ŵ is large (near likely surfaces). The paper uses one or

two proposal stages, each producing its own (t̂, ŵ) and a refined partition.

• Final rendering pass. Only after the final, content-focused partition is constructed, evaluate

the high-capacity NeRF MLP once per ray at a single stage: query it at each final interval to

predict density and color, and composite to the pixel. This avoids redundant coarse-and-fine

renderings of the same ray while still guiding samples to informative regions.

Figure 23.126: Architecture vs. mip-NeRF. mip-NeRF reuses one MLP across scales and supervises

all scales. MipNeRF360 replaces early image-supervised passes with a proposal MLP that emits

weights (no color) to guide resampling, and a single final NeRF MLP that outputs weights and colors

for supervision. The proposal MLP is trained so its weights ŵ are consistent with the NeRF MLP’s

final weights w. A small proposal MLP plus a large NeRF MLP yields high capacity while remaining

tractable. Credit: [29].

1850 Chapter 23. Lecture 23: 3D vision

From proposal to final histogram. Building on the two–MLP cascade, each ray is processed in

two stages: (i) one or two proposal passes produce a coarse, then refined sampling partition together

with a coarse weight histogram; (ii) a single final pass evaluates the high-capacity NeRF MLP on

the last, content-focused partition to obtain the weights and colors used for rendering. The proposal

is trained to safely guide the final pass via a one-sided consistency loss; the NeRF MLP is trained

by the usual image reconstruction (and later, distortion) losses. Crucially, the consistency loss uses

stop-gradient on the NeRF outputs so that NeRF “leads” and the proposal “follows”, preventing the

two networks from colluding by making NeRF artificially easier to cover [29].

Notation and partitions (one ray). Along a ray we keep a 1D histogram: a strictly increasing

list of bin edges and one nonnegative weight per bin that sums to 1. During the proposal stage

the small network is evaluated on a coarse partition, yielding a proposal histogram with edges

t̂ = {t̂ j}M̂
j=0 and weights ŵ = {ŵ j}M̂

j=1 (weights computed from proposal densities via standard NeRF

compositing). After importance resampling around peaks of ŵ, we obtain a refined partition on

which the NeRF MLP is run once to produce the final histogram (t,w) with edges t = {ti}M
i=0 and

weights w = {wi}M
i=1. Typically M̂<M and proposal bins are wider. This is an intended difference

in bin counts/widths that we denote as different “step size”. Because the refined edges are created

from the coarse proposal via resampling, the two partitions need not align; they are allowed to be

misaligned by design.

About coordinates. The paper actually samples and resamples in the disparity-linear coordinate

s∈ [0,1]. For notational continuity we write edges as t, but you can read t as “whatever monotone

ray coordinate is used to lay out edges” (in practice, t ≡ s here). This choice does not affect the

consistency machinery: the check asks whether a final interval Ti = [ti, ti+1) is covered by the

coarse proposal, which we test by summing proposal weights over all proposal bins that overlap Ti.

Summing over overlaps depends only on which portions of the ray are covered, not on how those

portions are parametrized, so it remains valid even when the two histograms have different edge

locations, widths, or numbers of bins.

Histogram-consistency bound (Eqs. 12–13). The proposal is trained with a one-sided don’t-

miss-mass constraint so that importance resampling can always find regions the final pass relies on.

Let the final bins be Ti = [ti, ti+1) and the proposal bins be T̂j = [t̂ j, t̂ j+1). Define the overlap-based

bound for any interval T :

bound(t̂, ŵ,T) = ∑
j:T∩T̂j ̸= /0

ŵ j. (23.66)

Consistency requires wi ≤ bound(t̂, ŵ,Ti) for all i. Any excess final mass above this bound is

penalized:

Lprop(t,w, t̂, ŵ) = ∑
i

1

wi

max
(

0, wi−bound(t̂, ŵ,Ti)
)2

, (23.67)

with stop-gradient on (t,w) so that only the proposal MLP is updated.

Intuition.

• Coarse may over-cover, must not under-cover. A coarse proposal can safely spread mass

broadly—resampling will zoom into its peaks—but it must not omit mass where the final

pass concentrates; otherwise, that region could never be discovered. The bound in Eq. (23.66)

encodes exactly this asymmetry by demanding that every final-bin weight be “explainable” by

overlapping proposal mass.

23.12 Enrichment 23.12: NeRF: Unbounded, Dynamic, Large-Scale Scenes 1851

• Independent of bin layout and size. Because the bound sums proposal mass over overlaps,

it tolerates different bin counts and widths and does not assume aligned edges. Merging or

splitting proposal bins while conserving mass does not change whether a region is covered.

• Loss roles at a glance. The NeRF MLP optimizes image reconstruction (and, later, distortion)

on the final partition, while the proposal MLP optimizes Lprop to learn a conservative cover

around NeRF’s weight distribution. This division of labor lets the small network amortize

“where to look” and the large network focus capacity on “what to predict”, improving both

speed and accuracy in unbounded scenes.

Figure 23.127: Histogram evolution over training. For a single ray in bicycle, the NeRF histogram

(t,w) (black) and two proposal histograms (t̂, ŵ) (yellow, orange) across training. Early weights are

near-uniform; later, NeRF concentrates at a surface while proposals adapt to cover it, enabling robust

resampling. Credit: [29].

Sampling refinements: what they do and why they help.

• Annealing. Before drawing fine samples from ŵ, raise weights with a Schlick-biased schedule

over step n∈ [0,N],

ŵn ∝ ŵ
bn/N

(b−1)n/N+1 , b = 10.

Early in training, this flattens the distribution (exploration across the ray); as training proceeds,

it sharpens back to ŵ (exploitation near predicted surfaces). This avoids premature lock-in to

spurious peaks.

• Dilation. Convert the histogram to a density p̂i = ŵi/(t̂i+1− t̂i), replace p̂ by a local maximum

over s± εk with

εk =
a

∏
k−1
k′=1 nk′

+b, a = 0.5, b = 0.0025,

where nk is the number of fine samples drawn at proposal level k, then integrate back and

renormalize. This creates a small, scale-aware safety margin around peaks so that minor

pose/view changes do not cause the proposal to miss a thin surface (reduces rotational aliasing).

1852 Chapter 23. Lecture 23: 3D vision

• Midpoint resampling. Draw n+1 sorted samples from the coarse histogram and use midpoints

of adjacent samples (including reflected endpoints) as the new bin edges. Using raw samples

as edges erodes peaks and creates irregular gaps; midpoints preserve modes and yield more

even, low-alias partitions.

Figure 23.128: Motivation behind Lprop. If two histograms could arise from the same underlying

distribution, the bound induced by (t̂, ŵ) upper-bounds (t,w) and the loss is zero; otherwise, any

surplus final mass (red) is penalized, teaching the proposal to cover regions NeRF actually uses.

Credit: [29].

Figure 23.129: Midpoint resampling. Using sampled points as endpoints (blue) erodes coarse

modes and spans gaps asymmetrically; midpoints between sorted samples (red) yield more regular

refinements and reduce aliasing. Credit: [29].

23.12 Enrichment 23.12: NeRF: Unbounded, Dynamic, Large-Scale Scenes 1853

Regularization for interval-based models

Even with contraction and proposal guidance, the inverse problem remains ambiguous along the ray:

colors can be matched by distributing small weights across many separated intervals (floaters) or by

shifting mass toward the camera (background collapse). MipNeRF360 therefore adds a distortion

loss on the per-ray step function ws(·) = ∑i wi 1[si,si+1)(·) over s∈ [0,1]:

Ldist(s,w) =
∫ ∫

ws(u)ws(v) |u− v|dudv. (23.68)

Evaluated on piecewise-constant histograms, this yields the efficient discrete form

Ldist(s,w) = ∑
i, j

wiw j

∣∣∣∣
si + si+1

2
− s j + s j+1

2

∣∣∣∣+
1

3
∑

i

w2
i (si+1− si). (23.69)

The pairwise-midpoint term penalizes spreading weight across distant intervals, while the width

term penalizes placing large mass in wide bins. Minimizing Ldist thus favors compact, minimally

fragmented weight layouts consistent with the image evidence, which suppresses floaters and reduces

the incentive for background collapse. Gradients of this loss naturally pull nearby weighted intervals

together, shrink overly wide bins, and drive weights to zero when a ray is empty [29].

Figure 23.130: Effect of Ldist. The regularizer suppresses floaters and prevents background collapse

more effectively than density-noise injection [429], which can also reduce reconstruction detail.

Credit: [29].

1854 Chapter 23. Lecture 23: 3D vision

Figure 23.131: Gradients of Ldist. Visualization of ∇Ldist on a toy step function: it shrinks interval

widths, pulls distant intervals together, consolidates mass into a small number of nearby intervals,

and drives all weights to zero when the ray is empty. Credit: [29].

Optimization and training recipe

Network sizes and sampling. The proposal MLP uses 4 layers with 256 hidden units; the NeRF

MLP uses 8 layers with 1024 units; ReLU internals and softplus density. Two proposal stages are

evaluated (each with 64 samples) to produce (ŝ(0), ŵ(0)) and (ŝ(1), ŵ(1)), followed by one NeRF stage

with 32 samples to produce (s,w) [29].

Loss. The overall objective is

L = Lrecon(C(t),C∗)+λ Ldist(s,w)+
1

∑
k=0

Lprop

(
s,w, ŝ(k), ŵ(k)

)
, λ = 0.01 (23.70)

with stop-grad on (s,w) inside Lprop. Lrecon uses the Charbonnier loss
√

(x− x∗)2 + ε2 with

ε = 10−3.

Schedule and stabilization. Train for 250k iterations, batch size 214 rays, Adam with (β1,β2,ε)=
(0.9,0.999,10−6), log-linear LR from 2×10−3 to 2×10−5 with 512-step warm-up, gradient clipping

to norm 10−3. Random RGB backgrounds during training encourage opaque backgrounds; at test

time use (0.5,0.5,0.5) [29].

Implementation notes. Apply the Jacobian efficiently via autodiff linearize/JVP primitives

without explicitly forming J f . When a full covariance is computed, off-axis IPE (Appendix; fixed

non-axis-aligned basis P from a twice-tessellated icosahedron) leverages anisotropy information that

axis-aligned IPE discards.

23.12 Enrichment 23.12: NeRF: Unbounded, Dynamic, Large-Scale Scenes 1855

Results and Ablations

Quantitative evaluation

MipNeRF360 is evaluated on the new 360° unbounded dataset introduced in the paper, as well as on

prior benchmarks. On the synthetic Tanks and Temples and LLFF datasets, it achieves state-of-the-art

results, substantially improving PSNR, SSIM, and LPIPS compared to NeRF and Mip-NeRF. The

distortion loss is particularly important in suppressing floaters and stabilizing reconstructions in

unbounded scenes [29].

Qualitative comparison

Figures in the paper show that MipNeRF360 produces sharper details, cleaner geometry, and more

consistent background rendering compared to both NeRF and Mip-NeRF. Floaters that plague earlier

methods are effectively eliminated, and distant backgrounds are reconstructed without collapse.

Ablations

The authors conduct extensive ablation studies:

• Proposal guidance. Removing the proposal MLP stages and sampling only from the fi-

nal network leads to degraded quality and visible floaters, confirming the necessity of the

histogram-consistency training.

• Distortion loss. Disabling Ldist produces fragmented weight distributions along rays, resulting

in floaters and background collapse. Compared to density-noise injection, Ldist yields superior

suppression of artifacts without sacrificing fine detail.

• IPE vs. standard PE. Replacing integrated positional encoding with ordinary positional

encoding reduces performance in unbounded scenes, especially where anti-aliasing is critical.

Off-axis IPE further improves handling of anisotropic footprints.

• Single vs. multi-proposal. Using two proposal stages instead of one refines the sampling

distribution more reliably, especially in challenging rays with both near and far content.

Generalization across datasets

Ablations also demonstrate that the combination of contraction, histogram consistency, and distortion

regularization is robust across different scene scales.

Limitations

Despite its advances, MipNeRF360 has limitations:

• Training cost. The multi-stage proposal guidance and large NeRF MLP make training

computationally demanding compared to lightweight or grid-based alternatives.

• Rendering speed. At test time, inference is slower than real-time systems such as PlenOctrees

or Instant-NGP, since MipNeRF360 still relies on MLP queries along rays.

• Over-regularization. In some cases, the distortion loss can oversimplify weight distributions,

slightly reducing fine detail in favor of compactness.

• Scene priors. While contraction handles unbounded domains, scenes with extreme depth

ranges or severe occlusion patterns may still exhibit artifacts or require many proposal samples

to converge.

Outlook

These limitations motivate subsequent work on accelerating unbounded NeRF training and inference

(e.g., via hash encodings or tensor decompositions) and on refining regularizers to balance artifact

suppression with fine detail preservation.

1856 Chapter 23. Lecture 23: 3D vision

Enrichment 23.12.3: D-NeRF: Neural Radiance Fields for Dynamic Scenes

Motivation

Rendering novel views of a scene from a sparse set of images is a fundamental challenge in computer

vision and graphics, with applications in augmented reality, virtual reality, and film production.

Neural Radiance Fields (NeRF) [429] demonstrated that a static 3D scene can be encoded as a

continuous volumetric radiance field, enabling photo-realistic novel view synthesis. However, the

core assumption of NeRF is staticity: every spatial location corresponds to a fixed geometry and

appearance across all observations. This assumption breaks down in the presence of dynamic,

non-rigid motion, such as humans moving, articulated objects deforming, or shadows shifting with

time. Directly extending NeRF by adding a time parameter fails, as temporal redundancy and

correspondences across frames are not effectively exploited.

D-NeRF, introduced by Pumarola et al. [488], addresses this limitation by explicitly modeling

temporal dynamics. The key idea is to represent dynamic scenes via a canonical configuration and

learn a deformation field that maps any observed state of the scene back to this canonical space.

This canonical anchor allows the model to share information across different time instants and learn

consistent geometry and appearance, despite each temporal state being seen from only a single

viewpoint.

Figure 23.132: Dynamic scene synthesis with D-NeRF. The authors propose a method to render

novel views at arbitrary time instants for dynamic scenes with complex non-rigid geometry. Results

include a dinosaur skeleton moving over time (top) and a construction worker changing poses

(bottom). Each frame is synthesized from sparse monocular input without requiring ground-truth

geometry or multi-view capture [488].

Problem Setup

The problem considered by D-NeRF is illustrated in the below figure. Given a sparse set of images

of a non-rigid dynamic scene captured by a moving monocular camera, the objective is to implicitly

encode the scene such that novel views at arbitrary times can be synthesized. Formally, the model

must learn a mapping

M : (x,d, t) 7→ (c,σ),

where x ∈ R
3 is a 3D point, d is the viewing direction, t is a time parameter, c ∈ R

3 is the emitted

color, and σ ∈ R≥0 is the volume density.

23.12 Enrichment 23.12: NeRF: Unbounded, Dynamic, Large-Scale Scenes 1857

Figure 23.133: Problem setup of D-NeRF. From a sparse set of monocular frames of a non-rigid

dynamic scene, paired with camera parameters, D-NeRF learns an implicit scene representation. The

model synthesizes novel views at arbitrary time instants, as shown on the right [488].

Challenges of direct spatio-temporal regression.

A straightforward idea might be to extend NeRF by regressing color and density directly from both

space and time,

M : (x,d, t) 7→ (c,σ).

Yet this formulation quickly breaks down: a surface point that moves or deforms across frames

is assigned different coordinates at each time t, and the model has no way of knowing that these

correspond to the same physical entity. As a result, temporal redundancy is ignored, leading to

blurred reconstructions and unstable geometry.

To address this, D-NeRF introduces an intermediate canonical configuration that serves as a

shared reference for all time instants. Instead of relearning radiance for every frame, the model

learns a deformation field that warps observed points back to the canonical space. Radiance and

density are then predicted only once in this space, ensuring that appearance remains consistent over

time.

This decomposition has clear benefits:

• Temporal consistency. Consider the tip of a moving finger: without alignment, the network

must memorize its material properties at every position along its trajectory. With the canonical

anchor, the finger tip maps to a single coordinate, preserving sharp detail.

• Separation of dynamics from statics. Static background points (e.g., walls) map trivially

to themselves, while dynamic objects (e.g., a bouncing ball) are displaced by the learned

deformation. The canonical network can thus specialize in view-dependent appearance, while

motion complexity is isolated in the deformation field.

This design reflects how humans perceive motion: despite deformations, objects are recognized as

consistent entities by mentally aligning them to an internal reference. Analogously, D-NeRF aligns

all observations to its canonical configuration, laying the foundation for the method described next.

Method

The D-NeRF method generalizes NeRF to handle dynamic, non-rigid scenes by decomposing the

mapping

M : (x,d, t) 7→ (c,σ)

into two learnable modules:

• a deformation network Ψt , which aligns points observed at time t with a canonical space,

• a canonical network Ψx, which predicts density and radiance in the canonical configuration.

1858 Chapter 23. Lecture 23: 3D vision

The resulting architecture, as can be seen in the following figure, learns how geometry changes over

time via Ψt while maintaining appearance consistency through Ψx.

Figure 23.134: Model architecture of D-NeRF. The deformation network Ψt maps points observed

at time t to a canonical space. The canonical network Ψx assigns volume density and view-dependent

radiance in this canonical configuration [488].

Canonical network

The canonical network Ψx learns to represent the scene at a fixed reference state, chosen as t = 0. It

predicts color c and density σ for each canonical point and viewing direction:

Ψx : (x+∆x,d) 7→ (c,σ).

This canonical anchor integrates information from all time instants, so that missing or occluded

details in one frame can be inferred from others. Intuitively, Ψx functions as a static NeRF defined in

canonical space, ensuring that geometry and appearance remain temporally consistent.

Deformation network

The deformation network Ψt estimates a displacement field that maps points observed at time t into

the canonical configuration:

Ψt : (x, t) 7→ ∆x,

so that the canonical coordinate is given by x+∆x. Formally, the network is constrained as

Ψt(x,0) = 0,

ensuring that the canonical state coincides with the scene at t = 0. Dynamic regions (such as

moving limbs or bouncing balls) receive non-zero displacements, while static background points

map (hopefully) to themselves. This separation of deformation from radiance allows the canonical

network to remain agnostic to motion.

Volume rendering with deformations

To render an image, D-NeRF adapts the NeRF volume rendering equation to account for canonical

warping. Given a ray defined by origin o and direction d, a 3D point along the ray is x(h) = o+hd.

The color of a pixel p at time t is computed as

C(p, t) =
∫ h f

hn

T (h, t)σ(p(h, t))c(p(h, t),d)dh, (23.71)

23.12 Enrichment 23.12: NeRF: Unbounded, Dynamic, Large-Scale Scenes 1859

where

p(h, t) = x(h)+Ψt(x(h), t), (23.72)

[c(p(h, t),d), σ(p(h, t))] = Ψx(p(h, t),d), (23.73)

T (h, t) = exp

(
−
∫ h

hn

σ(p(s, t))ds

)
. (23.74)

Here p(h, t) is the warped canonical point corresponding to x(h), and T (h, t) is the accumulated

transmittance probability along the ray. Equations 23.71–23.74 mirror NeRF’s rendering formulation,

but crucially, density and radiance are queried in canonical space.

For practical training, the integrals are approximated using stratified quadrature with N samples

along each ray. The discrete approximation is

C′(p, t) =
N

∑
n=1

T ′(hn, t)α(hn, t,δn)c(p(hn, t),d), (23.75)

with

α(h, t,δ) = 1− exp(−σ(p(h, t))δ) , (23.76)

T ′(hn, t) = exp

(
−

n−1

∑
m=1

σ(p(hm, t))δm

)
, (23.77)

where δn = hn+1−hn is the distance between samples.

Learning objective

The networks Ψx and Ψt are trained jointly by minimizing the mean squared error between rendered

pixels and ground-truth images:

L =
1

Ns

Ns

∑
i=1

∥∥Ĉ(pi, t)−C′(pi, t)
∥∥2

2
, (23.78)

where Ns rays are sampled per batch, Ĉ denotes the ground-truth pixel colors, and C′ is the predicted

color from Eq. 23.75. This supervision requires only monocular images with known camera poses,

without multi-view consistency or 3D ground truth.

Architecture and Implementation Details

Network design

Both the canonical network Ψx and the deformation network Ψt are implemented as multilayer

perceptrons (MLPs) with eight fully connected layers of 256 units each and ReLU activations.

The canonical network outputs color c and density σ with a final sigmoid activation to constrain

values to valid ranges, while the deformation network outputs displacement vectors ∆x with no

final non-linearity. This separation ensures that the canonical branch specializes in appearance and

geometry, while the deformation branch is free to model continuous spatial displacements.

1860 Chapter 23. Lecture 23: 3D vision

Positional encoding

As in NeRF [429], D-NeRF does not feed raw coordinates and viewing directions directly into the

networks. Instead, each scalar input p is mapped to a higher-dimensional Fourier feature space:

γ(p) =
(
sin(20π p),cos(20π p), . . . ,sin(2Lπ p),cos(2Lπ p)

)
.

This positional encoding enables the MLPs to represent highly oscillatory functions, which is crucial

for capturing fine geometric detail and sharp appearance boundaries.

D-NeRF applies the encoding separately to spatial coordinates x, viewing directions d, and time t,

but with different frequency depths L. Spatial coordinates require high-frequency capacity to model

detailed surfaces and textures, so L = 10 is used. By contrast, time and viewing direction are more

smoothly varying quantities—motions are continuous and shading changes gradually—so a smaller

frequency budget (L = 4) suffices. This allocation balances expressivity and stability, ensuring the

model can capture fine spatial details without overfitting to noise in temporal or directional variation.

Canonical reference frame

The canonical configuration serves as a temporal anchor for the entire dynamic scene. Without loss

of generality, D-NeRF defines the frame at t = 0 as canonical, imposing the constraint

Ψt(x,0) = 0.

This choice is practical: one reference frame must be selected, and picking the first observed frame

avoids ambiguity while ensuring that the deformation network only learns displacements for t ̸= 0.

Anchoring to t = 0 guarantees that all temporal states are consistently mapped to a single geometry,

so that the canonical network Ψx always operates in a stable coordinate system.

Curriculum strategy

Training D-NeRF directly on the full temporal range is challenging, since large deformations between

distant time instants make optimization unstable. To mitigate this, the authors introduce a curriculum

learning strategy: input frames are ordered chronologically and introduced gradually, starting from

those close to the canonical frame and progressively extending to more distant time instants. This

approach allows the networks to first master small deformations, then progressively handle larger

ones. The effect is similar to learning a language by starting with simple phrases before moving to

complex sentences—by staging the difficulty, convergence is improved and the learned deformation

fields remain smoother and more coherent.

Optimization details

Training is conducted on 400× 400 images for 800k iterations. Each batch samples Ns = 4096

rays, with 64 samples per ray. The Adam optimizer [293] is used with initial learning rate 5×10−4,

exponential decay to 5×10−5, and momentum parameters β1 = 0.9, β2 = 0.999. On a single Nvidia

GTX 1080 GPU, training takes approximately two days.

23.12 Enrichment 23.12: NeRF: Unbounded, Dynamic, Large-Scale Scenes 1861

Experiments and Ablations

D-NeRF is evaluated on a dataset of eight synthetic dynamic scenes rendered with complex motions

and non-Lambertian materials. Each sequence contains between 100 and 200 frames at 800×
800 resolution, with ground-truth train/validation/test splits. The experiments aim to dissect the

contributions of the canonical and deformation networks, and to compare D-NeRF against two

alternatives:

• NeRF [429], which assumes static scenes and therefore cannot handle motion.

• T-NeRF, a temporal baseline that directly regresses

(x,d, t) 7→ (c,σ),

without using a canonical space or deformation field. T-NeRF highlights the shortcomings of

naive temporal modeling: while it can capture coarse changes over time, it treats the same

physical point at different instants as unrelated, leading to blurred details and inconsistent

geometry. Importantly, T-NeRF is not D-NeRF without curriculum learning, but rather the

simplest 6D extension of NeRF used as a baseline.

Learned canonical scene and displacement fields

D-NeRF successfully learns a displacement field ∆x that aligns all observations to a sharp canonical

space. The following figure illustrates this mapping: dynamic inputs at different time instants are

warped into the canonical configuration, where geometry and appearance remain stable. The figure

shows radiance rendering, density mesh, depth map, and color-coded correspondences. Matching

colors across canonical and deformed meshes demonstrate that temporal correspondences are

preserved, even though each deformation state is only seen from a single viewpoint.

Figure 23.135: Visualization of the learned canonical scene. A dynamic scene at time t is

mapped into a canonical configuration via the learned displacement field ∆x. From left to right:

rendered radiance, density mesh, depth map, and color-coded correspondences between canonical

and deformed meshes. Consistent colors indicate correct alignment across time [488].

1862 Chapter 23. Lecture 23: 3D vision

Shading and appearance consistency

A key challenge is handling shading effects and appearance changes over time. The following figure

shows a scene with three balls made of plastic (green), translucent glass (blue), and metal (red).

Although shadows and highlights move across the floor as objects deform, D-NeRF encodes these

changes by warping the canonical configuration. For instance, shadows cast by the red ball at t = 0.5
and t = 1 are aligned to different canonical regions, yet the network synthesizes them consistently.

This demonstrates that D-NeRF can separate geometry from shading variation, producing coherent

results without explicitly modeling illumination.

Figure 23.136: Analyzing shading effects. Correspondences between canonical space and observed

scenes at t = 0.5 and t = 1 for three balls of different materials. Shading changes, such as floor shad-

ows, are synthesized by warping the canonical configuration, preserving temporal coherence [488].

Quantitative and qualitative comparisons

D-NeRF is compared against two baselines:

• NeRF [429], which assumes static scenes.

• T-NeRF, a 6D extension that directly regresses (x,d, t) 7→ (c,σ) without canonical warping.

As shown in the following table, D-NeRF consistently outperforms both baselines across metrics

including MSE, PSNR, SSIM, and LPIPS. Qualitatively, NeRF collapses to blurry averages of

motion, while T-NeRF captures coarse dynamics but fails on high-frequency details such as textures

and fine structures. D-NeRF preserves sharpness and reproduces fine detail, despite each time instant

being observed from only a single camera.

Hell Warrior Mutant Hook Bouncing Balls

Method MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓
NeRF [429] 44e-3 13.52 0.81 0.25 9e-4 20.31 0.91 0.09 21e-3 16.65 0.84 0.19 1e-2 18.28 0.88 0.23

T-NeRF (temporal baseline) 47e-4 23.19 0.93 0.08 8e-4 30.56 0.96 0.04 18e-4 27.21 0.94 0.06 6e-4 32.01 0.97 0.04

D-NeRF [488] 31e-4 25.02 0.95 0.06 7e-4 31.29 0.97 0.02 11e-4 29.25 0.96 0.11 5e-4 32.80 0.98 0.03

Lego T-Rex Stand Up Jumping Jacks

Method MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓
NeRF [429] 9e-4 20.30 0.79 0.23 3e-3 24.49 0.93 0.13 1e-2 18.19 0.89 0.14 1e-2 18.28 0.88 0.23

T-NeRF (temporal baseline) 3e-4 23.82 0.90 0.15 9e-4 30.19 0.96 0.13 7e-4 31.24 0.97 0.02 6e-4 32.01 0.97 0.03

D-NeRF [488] 6e-4 21.64 0.83 0.16 6e-4 31.75 0.97 0.03 5e-4 32.79 0.98 0.02 5e-4 32.80 0.98 0.03

Table 23.35: Quantitative comparison MSE/LPIPS (lower is better) and PSNR/SSIM (higher is

better) across eight dynamic scenes.

23.12 Enrichment 23.12: NeRF: Unbounded, Dynamic, Large-Scale Scenes 1863

Figure 23.137: Qualitative comparisons. Novel view synthesis at arbitrary time instants for

dynamic scenes. Close-ups show ground truth, NeRF, T-NeRF, and D-NeRF. NeRF fails to represent

motion, T-NeRF captures dynamics but loses high-frequency detail, while D-NeRF produces sharp

reconstructions [488].

1864 Chapter 23. Lecture 23: 3D vision

Time and view conditioning

Finally, D-NeRF demonstrates robust novel-view synthesis across both space and time. The following

figure shows renderings of diverse dynamic scenes from novel viewpoints at multiple time instants.

The first column displays the canonical configuration, while subsequent columns show warped

renderings across time. The model generalizes to articulated human motion, asynchronous object

motion, and complex deformations. Interestingly, even when the canonical space appears slightly

blurry (as in the Jumping Jacks scene), the warped renderings remain sharp, indicating that the

deformation field compensates to maximize rendering quality.

Figure 23.138: Time and view conditioning. Novel renderings from two unseen viewpoints across

time. Scenes include articulated motion (Tractor), human motion (Jumping Jacks, Warrior), and

asynchronous dynamics (Bouncing Balls). Canonical spaces (first column) serve as anchors for

consistent geometry [488].

23.12 Enrichment 23.12: NeRF: Unbounded, Dynamic, Large-Scale Scenes 1865

Limitations

Although D-NeRF represents an important step beyond static NeRF by explicitly modeling dynamics

through a canonical scene representation and a time-conditioned deformation network, it still exhibits

several notable limitations:

• Training cost. Like NeRF, D-NeRF relies on volumetric rendering that requires querying

MLPs hundreds of times per ray. The addition of a deformation network compounds this cost,

making training slow and memory-intensive (on the order of days on a single GPU).

• Synthetic focus. D-NeRF’s evaluation is confined to clean, synthetic sequences with known

camera parameters and dense coverage. Its performance on real-world captures—with noise,

sparse viewpoints, and imperfect calibration—remains unexplored.

• Deformation capacity. The deformation field is assumed to be smooth and bijective, mapping

each observation into the canonical space. While effective for simple motions, this assumption

struggles with complex dynamics such as large occlusions, self-contact, or true topological

changes (e.g., an object splitting or a mouth opening/closing).

• Canonical anchoring. D-NeRF typically fixes the canonical frame at t = 0, which is arbitrary.

If the first frame is occluded or atypical, this choice can bias correspondences across time and

destabilize optimization.

Future directions

These limitations motivated a wave of follow-up research that sought to make dynamic NeRFs more

practical and robust:

• From synthetic to real-world capture. Extending canonical–deformation frameworks to

unconstrained mobile videos requires handling photometric inconsistency, calibration errors,

and drifting backgrounds.

• From weak to stronger priors. Beyond smoothness assumptions, deformation fields benefit

from geometric regularizers that bias them toward locally rigid or cycle-consistent warps,

preventing collapse into degenerate solutions.

• From arbitrary to flexible canonicalization. Conditioning deformations purely on time

anchors the canonical space too rigidly; more adaptive conditioning strategies are needed to

capture variations across diverse observations.

• From expensive to efficient training. Reducing the heavy computational footprint of dynamic

NeRFs—without sacrificing fidelity—remains a central challenge, inspiring later work on

acceleration and hybrid representations.

In summary, D-NeRF established the usefulness of canonicalization for dynamic scene recon-

struction but remained limited by its computational demands, reliance on synthetic settings, and

difficulty with complex deformations. The next method we examine, Nerfies, was developed pre-

cisely to address these shortcomings, adapting the canonical–deformation formulation to casually

captured real-world videos.

1866 Chapter 23. Lecture 23: 3D vision

Enrichment 23.12.4: Nerfies: Deformable Neural Radiance Fields

Motivation

Dynamic NeRFs such as D-NeRF [488] demonstrated that a canonical radiance field plus a defor-

mation mechanism can reconstruct non-rigid scenes; however, D-NeRF was validated primarily

on synthetic data with known calibration and dense coverage. Nerfies [469] adapts this canoni-

cal–deformation paradigm to casual, real-world captures (handheld mobile selfies), introducing

design choices to handle photometric inconsistency, large yet locally rigid motion, and under-

constrained optimization. The goal of the work is photorealistic, free-viewpoint renderings of people

and everyday scenes captured outside controlled rigs.

Figure 23.139: Results from Nerfies. Photo-realistic reconstructions from handheld mobile captures:

casual waving sequences (a) and selfie photos/videos (b) are turned into free-viewpoint renderings

(c) with accurate geometry (d). Source: [469].

Method

Nerfies retains a canonical radiance field but replaces time-conditioned displacements with per-image

latent–conditioned SE(3) deformation fields, stabilized by elastic regularization and a coarse-to-fine

(c2f) schedule on positional encodings. Compared to D-NeRF’s (x, t) 7→ ∆x, this design introduces

the following key shifts:

• Decoupling from absolute time: Conditioning deformations on a per-image latent code

ωi instead of the scalar time index t removes an arbitrary temporal anchor (e.g., t=0) and

improves flexibility for casually captured sequences with irregular motion

• Locally rigid motion modeling: Using dense SE(3) transforms allows compact, coherent

representation of rotations and translations across space, addressing ambiguity that displace-

ment fields face when mimicking rotation via spatially varying translations

• Bias toward plausible deformations: Elastic regularization on the deformation Jacobian

and a c2f frequency-annealing schedule guide optimization away from degenerate warps in

under-constrained settings

Motivation relative to D-NeRF

While D-NeRF established the value of canonicalization for dynamic scenes, its reliance on syn-

thetic data and time-conditioned displacements limited applicability to real-world captures. Nerfies

adapts the same blueprint to unconstrained videos, focusing on robustness to casual data collec-

tion, realistic motion modeling, and training stability. In doing so, it addresses D-NeRF’s key

weaknesses—pose anchoring, rotational ambiguity, and fragile optimization—while preserving the

benefits of a canonical template

23.12 Enrichment 23.12: NeRF: Unbounded, Dynamic, Large-Scale Scenes 1867

Canonical radiance field

A canonical NeRF

F : (x′,d,ψi) 7→ (c,σ)

maps canonical 3D position x′, view direction d, and an appearance latent ψi to color and density. The

use of per-image appearance latents follows the idea introduced in NeRF-W (see Enrichment 23.11.2),

where such codes compensate for photometric variations across casually captured images (e.g.,

exposure, white balance, or tone mapping). This differs from D-NeRF, where the canonical template

is tied to the frame at t=0, effectively anchoring the scene to an arbitrary temporal reference. In

Nerfies, the canonical radiance field instead represents a learned, temporally invariant template

of the subject, disentangled from both time and observation-specific appearance. The canonical

configuration is not selected from a single frame but is optimized jointly during training so that all

deformed observations can be consistently mapped into it.

Observation-to-canonical deformation

Each input image i is associated with two learned latents: an appearance code ψi (as in NeRF-W;

see Enrichment 23.11.2) that absorbs photometric variations, and a deformation code ωi that indexes

a per-image deformation field. For a sample x on a camera ray in the observation frame,

T : (x,ωi) 7→ x′ , G(x,d,ψi,ωi) = F
(
T (x,ωi), d, ψi

)
.

Rendering proceeds by sampling along the ray in the observation frame, mapping samples to the

canonical frame via T , querying the canonical field F , and volumetrically integrating as in NeRF.

Relation to D-NeRF. D-NeRF ties deformation to an explicit time index t, which implicitly

anchors the canonical to a particular frame and encourages frame-tracking warps. Nerfies instead

replaces t with per-image deformation indices ωi and learns the canonical jointly with F and T . This

shift has several practical consequences:

• Removal of arbitrary anchoring: Deformations are no longer tied to t=0, avoiding bias

toward whichever frame was chosen as the reference.

• Observation-based indexing: States are referenced by observation identity rather than clock

time, allowing out-of-order or irregular captures to be modeled consistently.

• Interpolatable state space: The latent deformation codes live in a continuous space, so

smooth synthesis of intermediate states is possible by interpolating between codes.

Inference for new views (same scene). During training, each input image is assigned two codes:

a deformation code ωi (capturing the pose or state of the scene in that frame) and an appearance

code ψi (capturing its photometric style, e.g., exposure). Once training is complete, we can render

the scene from any new camera without retraining:

• Novel view of a training frame. Suppose we want to see frame i (same body pose, same

facial expression, etc.) but from a new camera angle. We simply reuse its learned codes

(ωi,ψi). Rays are cast from the new camera, warped into canonical space by T (x,ωi), and

rendered through the canonical NeRF F . No new optimization is required.

• Novel view of an in-between frame. If we want to synthesize a pose that was not captured

exactly, we can interpolate between nearby deformation codes. For instance,

ω(α) = (1−α)ωi +α ω j, α ∈ [0,1],

smoothly blends the deformations of frames i and j. This produces a plausible intermediate

motion that can then be rendered from any viewpoint.

1868 Chapter 23. Lecture 23: 3D vision

• Appearance. The appearance code ψi can be reused from a particular frame (to match its

look), or set to a certain training image value or an interpolation between such codes, as shown

with the deformation code.

In short, Nerfies inference works by treating each frame’s latent codes as a handle on the scene’s

configuration. By reusing or interpolating these codes, the model can render captured or novel states

from arbitrary viewpoints, and with arbitrary appearance settings, something that time-anchored

methods like D-NeRF cannot easily achieve.

Figure 23.140: Architecture overview. Each image has a deformation code ω and an appearance

code ψ . Samples are traced in the observation frame, mapped to the canonical frame by a deformation

field (an MLP conditioned on ω), then the canonical NeRF is queried and integrated. Source: [469].

Why dense SE(3) fields

A naive displacement field writes x′ = x+V (x,ωi). While universal in principle, it is cumbersome

for coherent rotations: a single rigid rotation must be approximated by spatially varying translations

whose magnitudes grow with distance from the axis. This entangles motion type and spatial location,

making the mapping hard to learn consistently and prone to shear-like artifacts.

Nerfies instead predicts a dense SE(3) transform at each location, using a screw-axis parame-

terization S = (r;v) ∈ R
6 (the Lie algebra se(3)). Intuitively, r encodes the local rotation axis and

angle, and v encodes the accompanying translation consistent with that rotation (a “twist”). Let

θ = ∥r∥ be the rotation angle, and let [r]× denote the 3×3 skew-symmetric matrix for cross products.

The exponential map yields the rigid transform

er = I +
sinθ

θ
[r]× +

1− cosθ

θ 2
[r]2×, G = I +

1− cosθ

θ 2
[r]× +

θ − sinθ

θ 3
[r]2×,

x′ = eSx = erx + Gv.

Intuition. The term er rotates x by angle θ around axis r/θ . The matrix G converts the “velocity” v in

the Lie algebra into a translation that is compatible with the rotation (so that rotation and translation

form a single rigid motion). When θ → 0, the series reduce to er≈ I + [r]× and G≈ I + 1
2
[r]×,

smoothly recovering pure translations and infinitesimal rotations. This parameterization lets the

MLP express rotations coherently (one angle shared over a region) rather than reconstructing them

as inconsistent, location-dependent shifts.

The deformation network W : (x,ωi) 7→ (r,v) is initialized near identity (small outputs for r,v),

so that eS≈ I at the start of training. This stabilizes optimization: the model learns residual motion

away from no-warp, while additional priors (elastic/background regularization and the coarse-to-fine

schedule) bias solutions toward plausible, near-rigid deformations where supervision is weak.

23.12 Enrichment 23.12: NeRF: Unbounded, Dynamic, Large-Scale Scenes 1869

Figure 23.141: SE(3) vs. translation fields. To represent a simple rigid rotation of the star, a

translation field must assign different displacement vectors depending on location: a faraway point

requires a long translation t1, while a point closer to the center requires a shorter one t2. This spatially

varying pattern complicates learning, since the network must coordinate many different magnitudes

and directions just to encode one global rotation. In contrast, an SE(3) field expresses the same

motion with a single rotation angle θ applied consistently across space. The network only needs

to learn one compact parameterization of the rigid transform, making optimization easier and the

resulting deformations more coherent. Source: [469].

Observation vs. canonical frames

The central idea of Nerfies is to disentangle appearance from motion by mapping every observed

image into a common reference. Each input frame is an observation frame—the subject in its actual

pose, expression, or transient configuration at capture time. The network jointly learns a static

canonical frame—a pose-agnostic 3D template—along with a deformation field that warps each

observation back to this shared canonical space. The displacement vectors encode how geometry

must be shifted (e.g., sideways or front–back) so that all observations reconcile into a single,

consistent template.

Figure 23.142: Observation vs. canonical frames. The observation frame (left) shows the raw

geometry as captured in a specific image, here with the head turned and displaced. The canonical

frame (right) shows the learned static template in a standardized pose. Insets highlight displacements

(sideways or front–back shifts) that the learned deformation field applies to map observed points

into the canonical configuration. Source: [469].

1870 Chapter 23. Lecture 23: 3D vision

Elastic regularization (why, what, how)

Why. Jointly fitting the canonical radiance field F and the deformation T from only photometric

supervision is under–constrained: many different (F,T) pairs can reproduce the same pixels. In

practice, the optimizer may “explain” motion by letting T shrink, stretch, or shear space (degenerate

but photometrically cheap), rather than by learning the intended near–rigid motion. Plain smoothness

penalties (as in D-NeRF) do not directly discourage such volume changes.

What. Nerfies therefore adds an as-rigid-as-possible prior: locally, a small neighborhood should

behave like a rigid body (rotation + translation), i.e., preserve lengths/areas/volumes. This explicitly

targets “shrink/grow” modes.

How. Let JT (x) = ∂T (x,ωi)/∂x be the Jacobian of the deformation at a sample x. With the

SVD JT = UΣV⊤ and singular values {σk}, rigidity corresponds to Σ = I (no local scaling). We

penalize deviation from this condition using the log-scale error

Lelastic(x) =
∥∥ logΣ

∥∥2

F
,

where logΣ = diag(logσ1, logσ2, logσ3). Using log makes expansion and contraction symmetric

(e.g., σ=2 and σ=0.5 incur equal cost in magnitude). For robustness to truly non-rigid regions and

occasional outliers, Nerfies applies a Geman–McClure penalty to the log-scale magnitude,

Lelastic-r(x) = ρ
(∥∥ logΣ

∥∥
F
, c
)
,

and weights the term by ray transmittance so that empty space (which should be free to warp to

account for foreground motion against a static background) is not over-regularized.

Intuition in one sentence. The loss tells the network: “prefer deformations that look locally

rigid (rotate/translate) and only scale when necessary,” which steers optimization away from pho-

tometrically convenient but geometrically implausible solutions that simple smoothness cannot

prevent.

Figure 23.143: Elastic regularization effect. Under-constrained captures (few, biased views) are

prone to distortion; the elastic prior substantially reduces such artifacts. Source: [469].

Background regularization

Static points (e.g., from SfM) are softly encouraged to remain fixed in canonical space to prevent

background drift:

Lbg =
1

K

K

∑
k=1

∥∥T (xk,ωi)−xk

∥∥2

2
.

23.12 Enrichment 23.12: NeRF: Unbounded, Dynamic, Large-Scale Scenes 1871

Coarse-to-fine optimization (why, what, how)

Why. If the deformation network can express high spatial frequencies from the start, it may overfit

tiny appearance cues and settle in poor local minima before the large, global motion is discovered.

What. We therefore curriculum the capacity of the deformation MLP: begin with only low-

frequency (smooth) warps, then gradually admit higher frequencies so the model first aligns the big

motion and only later refines fine detail.

How. Let γ(x) denote the positional encoding of coordinates used by the deformation network

T . Its j-th frequency band is multiplied by a Hann window weight

w j(α) =
1− cos

(
π clamp(α− j, 0, 1)

)

2
, α(t) =

mt

N
,

where m is the maximum number of bands and t ∈ [0,N] indexes training. Early on α ≈ 0, so

w j(α)≈0 for all high j and only the lowest bands are active (smooth warps). As t increases, the

window slides to the right, smoothly turning on higher bands until, at α = m, all are fully active.

Effect. The network first solves the easy, low-frequency alignment (rigid/large motions), then

safely adds high-frequency corrections (facial wrinkles, cloth folds, small non-rigid motion). This

schedule consistently avoids bad minima while preserving the ability to model fine motion by the

end of training.

Figure 23.144: Effect of coarse-to-fine optimization. Comparison of three training strategies for

dynamic scenes (head turn, smile). gt: Ground-truth reference frame. m=4: Training with only

a few low-frequency positional-encoding bands produces overly smooth results—large motions

are captured but fine details (e.g., cheek deformation in a smile) are blurred. m=8: Allowing

all frequency bands from the start destabilizes training: the network overfits local details before

learning the global motion, leading to severe artifacts (e.g., head turn collapse). c2f: The proposed

coarse-to-fine schedule gradually introduces higher frequencies. This curriculum lets the model first

align global motion and later refine fine-scale details, yielding sharp and accurate reconstructions

closely matching the ground truth. Source: [469].

1872 Chapter 23. Lecture 23: 3D vision

Latent-code interpolation

Per-image conditioning means each training frame i carries two learned embeddings: an appearance

code ψi and a deformation code ωi. Because ωi indexes the scene state (pose/deformation) indepen-

dently of camera, we can synthesize intermediate states by interpolating in the deformation-latent

space while rendering from any camera:

ω(α) = (1−α)ωstart +α ωend, α ∈ [0,1].

Holding ψ fixed (or blending it similarly) produces smooth motion with consistent geometry and

appearance in novel views.

Figure 23.145: Latent-code interpolation from a novel viewpoint. Start/end frames (cyan/pink

borders) from BADMINTON define two observed states. The middle columns are synthetic frames

rendered from a novel camera by linearly interpolating the corresponding deformation codes ω and

evaluating F(T (·,ω(α)),·,ψ). Top row: RGB; bottom row: depth. The racquet sweeps smoothly

and depth varies coherently, illustrating that per-image deformation latents form a state space that

supports continuous interpolation. Source: [469].

Architecture and implementation details

Canonical field. A NeRF-style MLP F : (x′,d,ψi) 7→ (c,σ) with sinusoidal positional encodings

predicts color and density in a canonical space; density uses a Softplus activation to ensure valid

densities.

Deformation network. An MLP W predicts a dense SE(3) field via screw parameters (r,v)
from encoded observation-space points and a per-image deformation code:

W : (x,ωi) 7→(r,v), T (x,ωi) = e(r;v)x.

Per-image latents. Appearance latents {ψi} absorb photometric variation (exposure/white

balance). Deformation latents {ωi} index the non-rigid state for each observation and enable state

interpolation.

23.12 Enrichment 23.12: NeRF: Unbounded, Dynamic, Large-Scale Scenes 1873

Experiments and Ablations

Evaluation uses synchronized dual-phone captures to obtain validation views of the same dy-

namic state. Baselines include NeRF, NeRF+latent, Neural Volumes, NSFF†, and a D-NeRF–style

γ(t)+Translation†. Qualitative results show recovery of fine structures (e.g., hair strands) and full-

body details; quantitative comparisons (PSNR/LPIPS) and ablations validate the contributions of

SE(3) deformations, elastic regularization, background constraints, and c2f.

Figure 23.146: Thin hair strands. Adjusting the far plane allows rendering against a flat background,

highlighting fine geometry. Source: [469].

Figure 23.147: Full-body reconstructions. High-quality details such as fabric wrinkles and

eyeglasses are captured from casual recordings. Source: [469].

1874 Chapter 23. Lecture 23: 3D vision

Figure 23.148: Dynamic scenes comparison. Side-by-side baselines with PSNR/LPIPS (best high-

lighted in red) illustrate that numerical gains do not always reflect perceptual quality. Source: [469].

23.12 Enrichment 23.12: NeRF: Unbounded, Dynamic, Large-Scale Scenes 1875

Figure 23.149: Quasi-static scenes comparison. Similar trends appear on mostly static captures;

perceptual quality correlates imperfectly with PSNR. Source: [469].

1876 Chapter 23. Lecture 23: 3D vision

Table 23.36: Quasi-static captures from [469]. Each entry is PSNR/LPIPS (dB/unitless). Bold

marks the best value per column for each metric (higher PSNR, lower LPIPS).

Method
Glasses

PSNR/LPIPS
Beanie

PSNR/LPIPS
Curls

PSNR/LPIPS
Kitchen

PSNR/LPIPS
Lamp

PSNR/LPIPS
Toby Sit

PSNR/LPIPS
Mean

PSNR/LPIPS

NeRF [429] 18.10/0.474 16.80/0.583 14.40/0.616 19.10/0.434 17.40/0.444 22.80/0.463 18.10/0.502

NeRF + latent 19.50/0.463 19.50/0.535 17.30/0.539 20.10/0.403 18.90/0.386 19.40/0.385 19.10/0.452

Neural Volumes [389] 15.40/0.616 15.70/0.595 15.20/0.588 16.20/0.569 13.80/0.533 13.70/0.473 15.10/0.562

NSFF† [349] 19.60/0.407 21.50/0.402 18.00/0.432 21.40/0.317 20.50/0.239 26.90/0.208 21.30/0.334

γ(t) + Trans† [488] 22.20/0.354 20.80/0.471 20.07/0.426 22.50/0.344 21.90/0.283 25.30/0.420 22.20/0.383

Nerfies (λ=0.01) 23.40/0.305 22.20/0.391 24.60/0.319 23.90/0.280 23.60/0.232 22.90/0.159 23.40/0.281

Nerfies (λ=0.001) 24.20/0.307 23.20/0.391 24.90/0.312 23.50/0.279 23.70/0.230 22.80/0.174 23.70/0.282

No elastic 23.10/0.317 24.20/0.382 24.10/0.322 22.90/0.290 23.70/0.230 23.00/0.257 23.50/0.300

No coarse-to-fine 23.80/0.312 21.90/0.408 24.50/0.321 24.00/0.277 22.80/0.242 22.70/0.244 23.30/0.301

No SE3 23.50/0.314 21.90/0.401 24.50/0.317 23.70/0.282 22.70/0.235 22.90/0.206 23.20/0.293

Nerfies (base) 24.00/0.319 20.90/0.466 23.50/0.345 22.40/0.323 22.10/0.254 22.70/0.184 22.60/0.314

No BG Loss 22.30/0.317 21.50/0.395 20.10/0.371 22.50/0.290 20.03/0.260 22.30/0.145 21.50/0.296

Table 23.37: Dynamic captures from [469]. Each entry is PSNR/LPIPS (dB/unitless). Bold marks

the best value per column for each metric (higher PSNR, lower LPIPS).

Method
Drinking

PSNR/LPIPS
Tail

PSNR/LPIPS
Badminton

PSNR/LPIPS
Broom

PSNR/LPIPS
Mean

PSNR/LPIPS

NeRF [429] 18.60/0.397 23.00/0.571 18.80/0.392 21.00/0.667 20.30/0.506

NeRF + latent 21.90/0.233 24.90/0.404 20.00/0.308 21.90/0.576 22.20/0.380

Neural Volumes [389] 16.20/0.198 18.50/0.559 13.10/0.516 16.10/0.544 16.00/0.454

NSFF† [349] 27.70/0.080 30.60/0.245 21.70/0.205 28.20/0.202 27.10/0.183

γ(t) + Trans† [488] 23.70/0.151 27.20/0.391 22.90/0.221 23.40/0.627 24.30/0.347

Nerfies (λ=0.01) 22.40/0.087 23.90/0.161 22.40/0.130 21.50/0.245 22.50/0.156

Nerfies (λ=0.001) 21.80/0.096 23.60/0.175 22.10/0.132 21.00/0.270 22.10/0.168

No elastic 22.20/0.086 23.70/0.174 22.00/0.132 20.90/0.287 22.20/0.170

No coarse-to-fine 22.30/0.096 24.30/0.257 21.80/0.151 21.90/0.406 22.60/0.228

No SE3 22.40/0.086 23.50/0.191 21.20/0.156 20.90/0.276 22.60/0.228

Nerfies (base) 22.60/0.127 24.30/0.298 21.10/0.173 22.10/0.503 22.50/0.275

No BG Loss 22.30/0.085 23.50/0.210 20.40/0.161 20.90/0.330 21.80/0.196

Limitations and Future Work

Like other diffeomorphic-warp dynamic NeRFs, Nerfies faces difficulty with genuine topology

changes (e.g., mouth opening/closing) and very rapid motion, where geometry can become inconsis-

tent despite plausible colors. This is a great limitation and a focus for future works to improve.

Figure 23.150: Topological limitations. Color renderings may remain plausible while geometry

degrades under topology changes or rapid motion. Source: [469].

23.12 Enrichment 23.12: NeRF: Unbounded, Dynamic, Large-Scale Scenes 1877

Enrichment 23.13: NeRF: Editing, Controllability & Semantic Manipulation

Decoupling geometry, appearance, and semantics enables targeted edits, retrieval, and instruction

following.

• LERF [288]: Language-embedded radiance fields support text queries and localized edits

grounded in semantics.

• Instruct-NeRF2NeRF [202]: Uses instruction-following priors to edit existing NeRFs while

preserving scene identity and structure.

Further influential works (not expanded): NeRF-Editing [165] (factorized edits via differentiable

decompositions). We note broader text-guided approaches, but keep focus on language-driven

interfaces directly usable for scene editing.

Enrichment 23.13.1: Language Embedded Radiance Fields (LERF)

Motivation

Neural Radiance Fields (NeRFs) [429] reconstruct scenes as continuous volumetric functions,

producing photorealistic novel views. Yet despite this visual fidelity, the representation itself is

semantically opaque: the field encodes only colors and densities, without grounding in human-

interpretable concepts. This opacity restricts interaction and control—for example, one cannot

simply ask where the “utensils” are in a kitchen or identify objects based on abstract properties and

affordances.

In contrast, 2D open-vocabulary methods such as LSeg [326] and OWL-ViT [433] enable

language-driven reasoning about images. However, they often depend on region proposals or

supervision from curated segmentation datasets, which biases generalization toward in-distribution

categories and weakens expressivity for rare or long-tail queries.

Figure 23.151: Language Embedded Radiance Fields (LERF). CLIP representations are distilled

into a dense, multi-scale 3D field that can be reconstructed from a hand-held phone capture in under

45 minutes. Once trained, LERF supports real-time natural-language queries, producing relevancy

maps for prompts ranging from abstract concepts to fine-grained attributes and even scene text.

Source: [288].

1878 Chapter 23. Lecture 23: 3D vision

High-level overview

Language Embedded Radiance Fields (LERF) [288] close the semantics gap by grounding raw

CLIP [498] embeddings in a dense, multi-scale 3D field that is optimized alongside a NeRF backbone.

Unlike proposal- or dataset-driven 2D pipelines, LERF does not fine-tune CLIP and does not rely

on segmentation masks. The key idea is to make language supervision volumetric and scale-aware:

instead of supervising infinitesimal points (ill-posed for patch-based CLIP), LERF learns a view-

independent language field:

Flang(x,s) ∈ R
d

that outputs a CLIP vector for a 3D cube centered at x with physical side length s. Supervision

comes from a precomputed multi-scale pyramid of CLIP embeddings derived from image crops

of training views. During rendering, NeRF’s density weights integrate these features along rays to

produce pixel-aligned, view-consistent relevancy maps for arbitrary text prompts.

How it works at a glance

• 1) Capture and NeRF: Optimize a NeRF backbone for geometry and appearance from a

casual hand-held sequence.

• 2) CLIP supervision pyramid: Precompute a multi-scale feature pyramid of CLIP embed-

dings from image crops between smin and smax.

• 3) Language field over volumes: Train Flang(x,s) to match the (interpolated) CLIP embedding

of the crop corresponding to the projected physical volume, keeping it view-independent.

• 4) Volumetric language rendering: Along a ray r(t), evaluate Flang(x(t),s(t)) and integrate

with NeRF’s density-based weights to obtain a per-pixel language embedding.

• 5) Relevancy maps for text prompts: Embed the query text with CLIP and score cosine

similarity against rendered language embeddings to obtain a 3D-consistent heatmap.

Why this suits open-vocabulary 3D queries

LERF transforms a static NeRF reconstruction into a semantic 3D interface that can be queried

directly with natural text. Its design provides three key advantages:

• 3D consistency: NeRF’s volumetric rendering fuses information across views; LERF ties

language to geometry at each 3D location and scale, eliminating per-view inconsistencies

common in 2D detectors. This ensures that queries like “yellow” highlight the same regions

from all viewpoints.

• Open-vocabulary generality in 3D Both LERF and OWL-ViT inherit CLIP’s open vocabu-

lary, but LERF avoids 2D detection biases (per-view boxes/masks) by learning a volumetric

semantic field. This improves long-tail and abstract queries in practice—for instance “elec-

tricity” activates outlets and cords jointly, and rare entities like “Waldo” localize coherently

within the 3D scene.

• Hierarchical semantics via scale: The explicit physical scale s allows the same 3D location

to carry different meanings depending on context (e.g., “utensils” at a coarse scale versus

“wooden spoon” at a fine scale). This also extends naturally to scene text, such as localizing

the printed word “Boops” on a mug.

In practice, these capabilities can be realized from a casual hand-held capture: a scene is

reconstructed in under one hour, after which relevancy maps for arbitrary text prompts can be

generated interactively in real time.

23.13 Enrichment 23.13: NeRF: Editing, Controllability & Semantic Manipulation1879

Method

The central contribution of LERF [288] is to extend the NeRF framework with a language field that

grounds natural language in 3D space. Below, we detail the method from the field definition and

supervision to volumetric rendering and regularization.

Language field definition

Standard NeRF parameterizes a continuous volumetric function

F(x,d) 7→ (σ ,c),

where each 3D sample x and viewing direction d yield a density σ and view-dependent color

c. This encodes only geometry and appearance, with no semantics. LERF augments this with a

view-independent language field computed from a shared semantic backbone Efeat:

h(x) = Efeat(x), Flang

(
h(x),s

)
∈ R

512.

Unlike NeRF’s infinitesimal point queries, Flang is defined over volumes: for a cube centered at x

with side length s, the output is a CLIP feature vector describing that region’s semantics. The explicit

physical scale s is essential: large s aggregates broad context (e.g., “utensils” across a drawer), while

small s isolates fine parts (e.g., a “wooden spoon”). Flang is view-independent, so multiple views of

the same 3D region reinforce a single semantic embedding.

Supervision via CLIP pyramid

CLIP produces semantics for image patches with context, while NeRF samples 3D points. LERF

supervises a world-space volume (x,s) using the CLIP embedding of the image patch onto which it

projects. The pipeline: (i) precompute, for each training image, a multi-scale “textbook” of CLIP

features in image coordinates; (ii) during training, project (x,s) into a view and read the matching

embedding via interpolation.

Part 1 — Precomputation: building the image-space textbook

1. Choose image scales: Define discrete square crop sizes {s(k)img} in pixels between smin and

smax (often log-spaced).

2. Slide and embed: For each training image and each s
(k)
img, slide a square window on a regular

grid with overlap (∼ 50%), resize to CLIP’s input, and encode with the frozen CLIP image

encoder to obtain

ϕCLIP(u,v,s
(k)
img) ∈ R

512,

stored at crop center (u,v) for that scale.

3. Form the multi-scale feature pyramid: Stack the per-scale grids to obtain, per image, a

pyramid indexed by (u,v) and s
(k)
img (large crops→ scene/objects; small crops→ parts/text).

1880 Chapter 23. Lecture 23: 3D vision

Part 2 — Training: supervising a world-space volume with an image-space patch

1. Pick a pixel and a CLIP scale: Choose a training pixel (u,v) and a pyramid scale simg

(crop size, in pixels). Cast the camera ray r(t) through (u,v) and sample depths {ti} with

camera-frame depths zi.

2. Backbone features and scale in world space: For each sample xi = r(ti), compute backbone

features

h(xi) = Efeat(xi),

and set a world-space receptive field that projects to the chosen image crop:

s(ti) =
zi

f
simg,

where f is the focal length in pixels. This makes farther samples use a larger physical support

so that all samples along the ray correspond to the same image receptive field simg.

3. Query the language head and volume-render: Evaluate the language head per sample and

aggregate with the standard NeRF weights wi = Tiαi:

ϕ̂ lang(u,v;simg) = ∑
i

wi Flang

(
h(xi), s(ti)

)
, ̂̂ϕ lang =

ϕ̂ lang∥∥ϕ̂ lang

∥∥
2

.

This yields a rendered per-pixel language embedding aligned with scene geometry.

4. Retrieve the CLIP target (image space): Trilinearly interpolate the precomputed CLIP

pyramid at (u,v,simg) (bilinear over (u,v) and linear over adjacent scales) to get

ϕCLIP
target(u,v,simg) ∈ R

512, ϕ̂
CLIP
target =

ϕCLIP
target∥∥ϕCLIP

target

∥∥
2

.

5. Align rendered prediction to CLIP target: Use cosine similarity on unit-normalized vectors:

Llang = 1− cos
(
̂̂ϕ lang(u,v;simg), ϕ̂

CLIP
target(u,v,simg)

)
.

Notes on correctness and design

• What is h(x)? It is the shared, multi-resolution hashgrid feature produced by Efeat at 3D

position x; both semantic heads read these same features.

• Where is the “cube”? The cube is implicit in the scale argument s(ti) of Flang: it specifies the

physical support in 3D over which the language head aggregates semantics at each sample.

No explicit 3D voxelization or 2D rasterization of a cube is required.

• Why render before supervising? CLIP targets live at image patches. By volume-rendering

Flang along the ray with NeRF’s transmittance weights, the predicted embedding becomes a

geometry-aware, per-pixel descriptor that is commensurate with the image-space CLIP patch,

making the supervision well-posed.

• Faithful scale coupling: The mapping s(ti) = (zi/ f)simg preserves a fixed image receptive

field while adapting the world receptive field by depth, ensuring consistent coarse-to-fine

behavior across views.

23.13 Enrichment 23.13: NeRF: Editing, Controllability & Semantic Manipulation1881

Volumetric language rendering

The NeRF scene is trained photometrically to predict (σ ,c); this backbone is unchanged. LERF adds

a parallel, view-independent semantic layer rendered with the same sampler and transmittance. Along

r(t) = o+ td with step size δi, opacity αi = 1− exp(−σi δi), and transmittance Ti = ∏ j<i(1−α j),

ϕ̂lang(u,v;s) = ∑
i

wi Flang

(
h(r(ti)), s(ti)

)
, wi = Ti αi,

followed by ℓ2 normalization. The depth-dependent s(t) mirrors the projective coupling used in

supervision. Given a text query, the CLIP text encoder yields ϕtext; cosine similarity with ϕ̂lang

produces a view-consistent relevancy map. During training,

Llang = 1− cos
(

ϕ̂lang, ϕCLIP
target

)
,

where ϕCLIP
target is retrieved from the pyramid at the projected location and scale.

Figure 23.152: LERF optimization Left: a language field over 3D volumes (x,s) is sampled

along rays and aggregated with NeRF transmittance weights. Right: supervision comes from a

precomputed multi-scale CLIP pyramid; features are interpolated at the projected location and scale.

Source: [288].

Regularization with DINO

LERF augments the CLIP-driven language supervision with a second, structural head that reads the

same latent features but not the scale:

Fdino

(
h(x)

)
∈ R

ddino .

Precomputation (DINO). Each training image is passed once through a frozen DINO ViT, producing

dense, pixel-aligned descriptors

ϕDINO(u,v) ∈ R
ddino .

Unlike CLIP, which supplies a multi-scale pyramid of patch embeddings to supervise scale-aware

semantics, DINO descriptors are already dense at the native image resolution and require no pyramid

or scale interpolation. They provide local, category-agnostic cues (smooth within objects, sharp at

boundaries).

1882 Chapter 23. Lecture 23: 3D vision

Volumetric rendering and loss. Using the same transmittance weights wi as RGB and the CLIP

head,

ϕ̂dino(u,v) = ∑
i

wi Fdino

(
h(r(ti))

)
, Ldino =

∥∥ϕ̂dino(u,v)−ϕDINO(u,v)
∥∥2

2
.

Both Llang (patch-based, multi-scale CLIP) and Ldino (dense, pixel-aligned DINO) backpropagate

through their heads and into the shared backbone Efeat, shaping h(x) to be smooth on object interiors

and to change sharply at boundaries. This regularizes the latent space that the CLIP head consumes,

yielding crisper, less patchy semantics at inference—despite the DINO head never being matched to

text at test time.

Inference: scale selection and heatmap rendering

At inference time, LERF produces a text-driven heatmap indicating where a natural-language query

is likely to be grounded in the 3D scene. Importantly, only the CLIP head and the NeRF rendering

pipeline are used; the DINO head serves only as a training-time regularizer and is not involved at

test time.

Scale selection (global per query). The CLIP head is conditioned on a physical scale parameter

s, which ties a 3D neighborhood in world coordinates to the patch sizes that CLIP was trained on.

Because the optimal scale depends on the query (“kitchen” spans meters, while “wooden spoon”

spans centimeters), LERF sweeps over a discrete set of candidate scales:

1. Render the CLIP feature field ϕ̂lang(u,v;s) for each candidate s (e.g., ∼ 30 uniformly spaced

values in [0,2] m).

2. For each s, compute a relevancy map by comparing rendered features to the text embedding

(see below).

3. Reduce each map to a scalar activation (e.g., the mean similarity of the top-k pixels).

4. Select the scale s with the highest activation and keep its relevancy map for visualization.

This procedure balances global and local queries: scene-level concepts favor larger s, while fine-

grained part queries favor smaller s. Fixing a single global s per query stabilizes the visualization,

though it assumes objects of interest are roughly consistent in size.

Text embeddings. For a user-specified query (e.g., “wooden spoon”), a frozen CLIP text encoder

produces a unit-normalized embedding vector

ϕtext ∈ R
512.

This serves as the reference against which all rendered CLIP features are compared.

Relevancy computation (CLIP + NeRF aggregation). Given a viewpoint and the chosen scale s,

each pixel (u,v) accumulates semantic features along its camera ray:

ϕ̂lang(u,v;s) = ∑
i

wi Flang

(
h(r(ti)), s(ti)

)
,

where r(t) is the ray, h(·) the shared latent features, and

wi = Tiαi, αi = 1− exp(−σiδi), Ti = ∏
j<i

(1−α j).

23.13 Enrichment 23.13: NeRF: Editing, Controllability & Semantic Manipulation1883

These weights are identical to those used in NeRF’s RGB rendering, ensuring that semantic aggrega-

tion is geometry- and opacity-aware. The per-pixel relevancy score is then the cosine similarity:

score(u,v) = cos
(
ϕ̂lang(u,v;s), ϕtext

)
.

Refinements. Two additional steps sharpen the resulting heatmap:

• Null phrase calibration: The mean similarity to generic prompts (“object”, “things”, “stuff”,

“texture”) is subtracted to suppress spurious activations that are semantically uninformative.

• Visibility and opacity filtering: Pixels with low accumulated opacity are discarded, and only

rays with sufficient multi-view support (e.g., visible in ≥ 5 training images) are retained,

suppressing background clutter and artifacts.

Intuition. This inference process ensures that:

• CLIP supervision remains faithful to its training context (patch-level embeddings), thanks to

explicit scale coupling.

• NeRF’s volumetric rendering guarantees view-consistency and geometry alignment in the

heatmaps.

• Post-processing steps mitigate noise, producing sharp, interpretable visualizations that localize

natural-language queries in 3D scenes.

Architecture and factorization (overview, sharing, and why DINO helps). LERF is trained

end-to-end with three cooperating modules: (1) a NeRF backbone (σ ,c) for appearance/geometry

that receives only Lrgb; (2) a shared feature backbone Efeat (multi-resolution hashgrid) that outputs

h(x); and (3) two disjoint semantic heads that both read h(x):

Flang

(
h(x), s

)
︸ ︷︷ ︸

CLIP head

∈ R
512, Fdino

(
h(x)

)
︸ ︷︷ ︸

DINO head

∈ R
ddino .

Because Llang and Ldino both update Efeat, DINO’s dense, pixel-aligned supervision sculpts the

shared latent space into geometry-aware features that directly benefit the CLIP head at inference.

Why DINO (and not SAM or detector/segmenter baselines).

• Dense, label-free, pixel-aligned targets: DINO preserves open-vocabulary zero-shot behavior

without prompts or class lists.

• Continuous supervision matches volumetric training: DINO’s smooth-within / sharp-at-

boundary behavior fits differentiable volumetric ℓ2 regression; hard masks (e.g., SAM) in-

troduce discrete topology, prompt dependence, and dataset biases ill-suited to continuous

multi-view rendering.

• Regularizing the shared latent space: Since both heads read h(x), DINO improves the

very features the CLIP head uses; mask pipelines would require non-differentiable steps

(masking/reprojection) and would not densify the latent space end-to-end.

• Practicality: A single frozen DINO pass per image yields cheap regression targets; mask

generators add runtime/brittleness and risk constraining open-vocabulary behavior.

Thus, DINO acts as an effective training-time structural regularizer on the shared backbone, while

CLIP remains the sole driver of text matching at inference.

1884 Chapter 23. Lecture 23: 3D vision

Training objective. LERF trains all of its components end-to-end from scratch on the target scene.

The CLIP and DINO encoders that provide semantic supervision are frozen, but both the NeRF

branch (σ ,c) and the semantic backbone Efeat are actively optimized. The total loss is

L = Lrgb + λlang Llang + λdino Ldino .

• Lrgb (photometric). The NeRF branch is trained in the standard way: for each ray r, the

rendered color Ĉ(r) is matched to the ground-truth pixel C∗(r) using MSE,

Lrgb = 1
|R| ∑

r∈R
∥Ĉ(r)−C∗(r)∥2

2.

This is necessary because NeRFs are not “once-for-all” pretrained models; they must be

optimized per scene. A NeRF trained on Scene A carries no useful weights for Scene B.

Without this photometric loss, the geometry and appearance of the new scene would never be

recovered.

• Llang (language). Cosine similarity between the rendered, unit-normalized CLIP embedding

ϕ̂lang and the interpolated CLIP target from the multi-scale crop pyramid. This updates the

shared semantic backbone and the CLIP head.

• Ldino (structure). ℓ2 regression between the rendered DINO embedding ϕ̂dino and frozen

per-pixel descriptors ϕDINO(u,v). This updates the shared backbone and the DINO head.

Why train jointly? If we were to freeze a separately trained NeRF and only add semantics afterwards,

the semantic heads would be forced to sit on top of whatever ambiguities or artifacts the NeRF

geometry contains (e.g., smoky volumes in textureless regions). By co-optimizing Lrgb, Llang, and

Ldino together, the geometry and semantics co-adapt: RGB loss guarantees photometric fidelity,

while the semantic losses push the backbone to place sharper boundaries and consistent features

at object borders. The result is a decoupled but synergistic training process: geometry is accurate,

semantics are consistent, and the final heatmaps are crisp and view-consistent.

23.13 Enrichment 23.13: NeRF: Editing, Controllability & Semantic Manipulation1885

Results and Ablations

Qualitative results

LERF enables open-vocabulary, language-driven exploration of reconstructed 3D scenes. Given a text

query (e.g., “coffee mug”), the model renders a relevancy heatmap that highlights the corresponding

3D region across novel views, acting as a soft segmentation without predefined categories or manual

masks. Representative results show robust localization across: objects (“eggs”, “shoes”), parts

(“hand”, “fingers”), attributes/materials (“wooden”, “glass”), abstract categories (“cartoon”, “bath

toy”), long-tail named entities (“waldo”, “jake from adventure time”), and even text strings on book

spines (“the cookie bible”). These maps remain view-consistent due to volumetric aggregation and

the shared 3D geometry. (Adapted from [288].)

Figure 23.153: Qualitative results across diverse scenes. LERF grounds free-form queries in

3D for in-the-wild captures (ramen, hand object, figurines, bookstore, shoe rack). Queries span

categories (“cartoon”), attributes (“glass of water”), parts (“fingers”), long-tail entities (“waldo”,

“jake from adventure time”), brands (“vans”), and book titles (“the cookie bible”). Heatmaps are

view-consistent and multi-scale. Source: [288].

1886 Chapter 23. Lecture 23: 3D vision

2D CLIP vs. volumetric LERF

A direct 2D baseline interpolates similarity over patchwise CLIP embeddings in image space, which

ignores multi-view geometry. In contrast, LERF renders language features volumetrically using

NeRF transmittance, improving alignment with 3D structure.

Figure 23.154: 2D CLIP interpolation vs. LERF. Per-image 2D CLIP heatmaps (middle) are

blob-like and inconsistent, while LERF (right) produces crisp, geometry-aligned activations for

prompts such as “lily”, “vase”, and “wooden spoon”. Source: [288].

23.13 Enrichment 23.13: NeRF: Editing, Controllability & Semantic Manipulation1887

Localization against LSeg (3D) and OWL-ViT

LERF is further compared to baselines that rely on 2D vision-language models projected into 3D.

Results show stronger localization for long-tail concepts from novel views.

Figure 23.155: Localization comparison in novel views. LERF correctly localizes long-tail targets

such as “cookbooks” and “olive oil” where LSeg(3D) and OWL-ViT often fail. Source: [288].

Figure 23.156: Comparison to LSeg(3D). LSeg succeeds on in-distribution labels (e.g., “glass of

water”) but struggles with out-of-distribution queries (e.g., “egg”); LERF handles both via open-

vocabulary volumetric grounding. Source: [288].

Test Scene LSeg (3D) OWL-ViT LERF

waldo kitchen 13.0% 42.6% 81.5%

bouquet 50.0% 66.7% 91.7%

ramen 15.0% 92.5% 62.5%

teatime 28.1% 75.0% 93.8%

figurines 8.9% 38.5% 79.5%

Overall 18.0% 54.8% 80.3%

Table 23.38: Localization accuracy. Comparison between LSeg(3D), OWL-ViT, and LERF across

scenes. LERF substantially improves performance on long-tail queries. Source: [288].

1888 Chapter 23. Lecture 23: 3D vision

3D existence: precision–recall

The task evaluates whether a queried concept exists anywhere in a scene, independently of precise

localization. For each {scene, query} pair:

• Rendering and calibration

– Render the volumetric language map by integrating the language field along camera rays

with NeRF transmittance weights:

ϕ̂lang(u,v;s) = ∑
i

wi Flang

(
h(r(ti)), s(ti)

)
, wi = Tiαi, αi = 1− e−σiδi .

– Compute per-pixel relevancy scores via cosine similarity to the text query embedding

from the frozen CLIP text encoder, ϕtext, and apply null-phrase calibration by subtracting

the mean similarity to generic phrases (“object”, “things”, “stuff”, “texture”).

– Apply visibility/opacity masking: discard pixels with low accumulated opacity and

suppress samples observed by fewer than ∼ 5 training views to reduce noise in poorly

constrained regions.

• Score aggregation to a scene-level value

– Aggregate per-pixel scores within each view using top-k pooling (over high-confidence

pixels).

– Aggregate across views (e.g., max or mean) to produce a single scene-level score

indicating the strongest evidence of the concept anywhere in the scene.

• Precision–recall computation

– Sweep a threshold over the scene-level score to trace out the PR curve; positives/negatives

derive from human annotations.

– Report results on two query sets:

* COCO-like: frequent, closed-vocabulary-style labels where baselines are compara-

tively strong.

* Long-tail: in-the-wild labels (brands, book titles, parts, attributes) that stress open-

vocabulary generalization.

Figure 23.157: Precision–recall on 3D existence queries. LERF (orange) dominates 3D LSeg

(purple) across operating points. On COCO-like labels (left), both methods reach high precision

at low recall, but LERF sustains better recall as thresholds relax. On the long-tail set (right),

LSeg collapses while LERF maintains a wide, high-precision regime, reflecting the advantages of

volumetric rendering, multi-scale supervision, and open-vocabulary text alignment. Source: [288].

23.13 Enrichment 23.13: NeRF: Editing, Controllability & Semantic Manipulation1889

Ablation studies

The contribution of DINO regularization and multi-scale CLIP supervision can be isolated through

ablations. Removing DINO weakens object-level grouping and boundary sharpness, producing

patchy features that bleed into the background, particularly in sparsely observed areas. Training

without the CLIP pyramid (single-scale) harms both coarse context and fine parts: large objects lose

global coherence and small items lose discriminative detail. Together these components regularize

the shared semantic backbone and stabilize the language field across scales.

Figure 23.158: Ablations. Top: Without DINO, activations become diffuse and off-surface, bleeding

across object boundaries; with DINO, crisp object-aligned maps are recovered (e.g., hand/fingers,

blue dish soap). Bottom: Without multi-scale supervision, both large concepts (“espresso machine”)

and tiny details (“creamer pods”) are missed; full multi-scale training restores correct localization at

the appropriate scale. DINO acts only as a training-time regularizer; inference uses the CLIP head.

Source: [288].

1890 Chapter 23. Lecture 23: 3D vision

Failure cases and ambiguities

Typical errors stem from (i) fine-grained category proximity in CLIP space (e.g., “zucchini” vs. other

long green vegetables), (ii) visual look-alikes or texture priors (“leaf” firing on green plastic), and

(iii) global context gaps where volumetric aggregation over thin structures favors edges (“table”).

These issues reflect both biases in the teacher model and geometric ambiguities in under-constrained

regions.

Figure 23.159: Common failure modes. (Top) Long-tail mix-ups under similar appearance (“zuc-

chini” activating on cucumbers/corn). (Bottom) Texture and shape confusions (“leaf” on green

plastics) and weak global reasoning (“table” edges dominate). Source: [288].

Figure 23.160: CLIP-driven ambiguities. Errors often trace to the frozen teacher: (left) grocery

queries where visually similar produce cluster in feature space (“bell peppers” vs. jalapeños); (right)

metallic context around “portafilter”; and absent queries (“kiwis”) that nevertheless elicit responses.

Source: [288].

23.13 Enrichment 23.13: NeRF: Editing, Controllability & Semantic Manipulation1891

Prompt sensitivity (prompt tuning)

Because CLIP embeddings are highly sensitive to text phrasing, LERF inherits this prompt sensitivity.

Adding discriminative modifiers (color, material, container type) reduces ambiguity and improves

accuracy, particularly when geometry is ambiguous or coverage is sparse.

Figure 23.161: Prompt specificity matters. Refined queries (“blue dish soap” vs. “dish soap”;

“tea in a transparent glass” vs. “tea”) suppress distractors and sharpen activations, highlighting the

sensitivity of the system to linguistic detail. Source: [288].

CLIP bag-of-words behavior

Supervision from frozen CLIP also introduces token-level quirks: compositional structure may be

underweighted and nouns can dominate parts or attributes unless explicitly disambiguated. Typos

that remain close in token space may also mislead supervision.

Figure 23.162: Bag-of-words effects in CLIP. Query phrasing reveals CLIP’s tendency toward

bag-of-words behavior. A single-word query like “blueberry” correctly isolates the blueberry donuts,

but the seemingly more specific phrase “blueberry donuts” instead highlights all donuts, dominated

by the noun. Similarly, part-level queries such as “handle” produce diffuse activations, while “mug

handle” strengthens the focus near the handle yet still covers most of the mug. These effects illustrate

the limits of CLIP’s compositional reasoning. Source: [288].

1892 Chapter 23. Lecture 23: 3D vision

Efficiency analysis

Training overhead relative to a vanilla NeRF is modest: CLIP crop pyramids and dense DINO

descriptors are precomputed once per image, and training reduces to fast lookups and ℓ2 regression

to frozen targets. At inference, rendering language maps reuses the same rays and transmittance

weights as RGB; the DINO head is inactive. Overall runtime and scaling remain comparable to

standard NeRF pipelines while providing richer, open-vocabulary semantics.

Summary of findings

Experimental analyses identify three design choices as critical:

1. Volumetric, scale-aware supervision that couples world-space volumes to multi-scale CLIP

patch embeddings.

2. Auxiliary DINO regularization that imposes within-object smoothness and sharp inter-object

boundaries on the shared semantic backbone.

3. Factorized architecture that decouples geometry (trained only by Lrgb) from semantics

(trained by Llang/Ldino), preventing geometric drift.

Together these elements yield view-consistent, open-vocabulary 3D semantic maps that answer

existence queries robustly and localize fine-grained concepts across novel viewpoints.

23.13 Enrichment 23.13: NeRF: Editing, Controllability & Semantic Manipulation1893

Enrichment 23.13.2: InstructNeRF2NeRF: Editing 3D Scenes with Instructions

Motivation

Editing implicit 3D representations is nontrivial: traditional 3D tools presuppose explicit geometry

and expert workflows, whereas neural radiance fields provide no direct handles for intuitive ma-

nipulation. CLIP-guided or physics-based approaches have enabled stylization or property tweaks

but often struggle with localized, instruction-driven edits that remain consistent across viewpoints.

InstructNeRF2NeRF [202] proposes a language-based interface for NeRF editing by harnessing an

instruction-following 2D diffusion prior and consolidating those edits into a coherent 3D scene via

iterative retraining.

Figure 23.163: Editing 3D scenes with instructions. InstructNeRF2NeRF performs diverse global

and local edits on a reconstructed NeRF using only natural language. Shown prompts include: “Give

him a cowboy hat”, “Give him a mustache”, “Make him bald”, “Turn him into a clown”, “As a

bronze bust”, etc., demonstrating the abilities of this work. Source: [202].

Background on InstructPix2Pix

The InstructNeRF2NeRF (I2N2) framework enables intuitive, language-based 3D scene editing

by leveraging InstructPix2Pix (IP2P) [57], a diffusion model trained specifically for instruction-

following image editing. I2N2 employs IP2P to iteratively modify the multi-view images that

supervise a NeRF, thereby nudging the underlying 3D scene toward the desired text instruction. For

diffusion fundamentals and classifier-free guidance, see Ch. 20, §20.9.1 and §20.9.4.

Core idea of InstructPix2Pix

IP2P differs from text-to-image models by conditioning on both an input image cI (to ground the

edit) and a natural-language instruction cT (to specify the change). Editing is performed in the

latent domain by progressively denoising a noisy latent zt toward an edited latent z0. The denoising

network εθ predicts the injected noise,

ε̂ = εθ (zt ; t, cI, cT) ,

from which the edited latent is obtained and decoded to pixels. This single-pass, dual-conditioned

formulation avoids per-example inversion or fine-tuning while enabling localized, instruction-aligned

edits.

1894 Chapter 23. Lecture 23: 3D vision

Crucial controls: dual guidance scales

IP2P extends classifier-free guidance with two independent scales that balance fidelity and edit

strength:

• Image guidance sI controls similarity to the conditioning image cI (content preservation)

• Instruction guidance sT controls adherence to the instruction cT (edit strength)

Tuning (sI,sT) is essential for multi-view consistency when IP2P is used to edit the many camera

views that supervise a 3D scene.

Figure 23.164: InstructPix2Pix examples. Given an image and a text instruction, IP2P applies the

appropriate edit in a single forward pass without per-example inversion or fine-tuning. For instance:

“Swap sunflowers with roses” (top left), “Add fireworks to the sky” (top row, middle), and “Make his

jacket out of leather” (bottom right). Source: [57].

How InstructPix2Pix is trained and why Prompt-to-Prompt alone is insufficient

IP2P is trained on a large-scale instruction–edit dataset constructed synthetically [57]. Instead of

hand-drawn masks, structural consistency between “original” and “edited” images is enforced at

data-generation time using Prompt-to-Prompt 20.11.5.1 with Stable Diffusion 20.11.4: the same

random seed and cross-attention structure are reused so pose, layout, and background align, and only

the instructed change varies. The pipeline is:

• Instruction and caption generation A finetuned GPT–3 proposes an initial caption, an

instruction, and a corresponding edited caption.

• Consistent image pair synthesis Stable Diffusion with Prompt-to-Prompt generates the

original and edited images with shared seeds and attention maps to preserve structure.

• Triplet assembly at scale Over ∼450,000 triplets are collected: (original image, instruction,

edited image).

• Diffusion training A diffusion model is trained on these triplets to perform instruction-

following edits on arbitrary input images.

At inference, IP2P edits real images by directly conditioning on (cI,cT) and controlling (sI,sT).
This capability is precisely what Prompt-to-Prompt (P2P) lacks: P2P is an inference-time technique

for editing images as they are generated from text, requiring the source and target prompts and access

to the generation trajectory. It cannot edit arbitrary photographs because those internal states are

absent. IP2P, trained on P2P-aligned pairs, learns the general skill of editing any given image from

an instruction.

23.13 Enrichment 23.13: NeRF: Editing, Controllability & Semantic Manipulation1895

Figure 23.165: Training pipeline of InstructPix2Pix. (a) Finetuned GPT-3 generates instructions

and edited captions; (b) Stable Diffusion with Prompt-to-Prompt produces aligned original/edited

image pairs; (c) over 450k training triplets are assembled; (d) a diffusion model is trained to follow

instructions for image editing. At inference, the model edits real images using natural instructions.

Source: [57].

What IP2P brings beyond text-to-image diffusion and Prompt-to-Prompt

• Real-image editing from instructions Unlike text-to-image models, IP2P accepts an existing

image cI and modifies it according to cT , rather than synthesizing a new scene from scratch.

• Grounded edits with controllable fidelity Image conditioning and the sI scale preserve.

identity, layout, and fine details; sT controls edit strength, enabling cross-view consistency

when editing NeRF training images.

• Generalization to arbitrary inputs Training on many aligned before–after pairs teaches the

model to apply edits to photographs without access to diffusion internals, which P2P requires.

Connection to InstructNeRF2NeRF

Text-only diffusion priors struggle on reconstructed scenes because each view would need a perfectly

faithful textual description, often causing blur or divergence. InstructNeRF2NeRF (I2N2) resolves

this by embedding InstructPix2Pix (IP2P) inside an Iterative Dataset Update loop that edits

supervision images in the Stable-Diffusion–style latent space and then retrains the NeRF. At a high

level, each cycle consists of:

• Original capture anchoring: Use the unedited capture I0
v as conditioning to preserve scene

identity, viewpoint geometry, and fine detail.

• Latent-space editing: Edit the current NeRF render Ii
v in the latent domain using the

instruction cT and guidance scales (sI,sT).
• Dataset refinement: Replace the edited images in the training set and fine-tune the NeRF

on this partially updated dataset.

Repetition consolidates potentially inconsistent per-view edits into a single, 3D-consistent

solution.

1896 Chapter 23. Lecture 23: 3D vision

Method

The core mechanism is an Iterative Dataset Update (Iterative DU) that alternates between latent-

space editing of training views with InstructPix2Pix (IP2P) and NeRF optimization on the evolving

dataset. Rather than modifying the NeRF loss directly with diffusion gradients, as in Score Dis-

tillation Sampling (SDS), edits are injected indirectly by refreshing the supervision images. This

design retains the stability of conventional NeRF optimization while leveraging the semantic power

of diffusion models.

Editing a single dataset image

Given a calibrated view v with original capture I0
v , current render Ii

v from the evolving NeRF, and a

global instruction cT , IP2P outputs an updated image

Ii+1
v ← Uθ

(
Ii
v, t; I0

v , cT

)
,

where Uθ denotes the latent-domain editing pipeline:

zI,0 = E (I0
v) (encode original capture for image conditioning cI),

z0 = E (Ii
v) (encode current NeRF render),

zt = ForwardDiffuse(z0, t) (add noise in latent space),

ε̂ = εθ (zt ; t, cI=zI,0, cT) (IP2P U-Net noise prediction with dual conditioning),

z̃0 = Denoise(zt , ε̂,sI,sT) (classifier-free guidance with sI,sT),

Ii+1
v = D(z̃0) (decode edited latent to RGB).

The noise level t ∈ [tmin, tmax] trades off structure preservation (lower t) versus stronger edits (higher

t).

Iterative Dataset Update

At each outer iteration, the following sequence is performed:

• Render One or more views are rendered from the current NeRF

• Edit in latent space Each rendering is edited by IP2P using the original-capture latent

cI = E (I0
v) and instruction cT

• Decode and replace Edited latents are decoded to RGB and replace the corresponding

training images

• Retrain NeRF Standard NeRF optimization is run on rays sampled from the full, partially

edited dataset

Anchoring edits with I0
v prevents drift across iterations, while guidance scales (sI,sT) balance fidelity

and edit strength. Repeated alternation reconciles per-view edits into a consistent 3D radiance field.

Training objective and relation to SDS

The NeRF is trained with a conventional photometric reconstruction loss:

LNeRF = ∑
r∈R

∥∥Cθ (r)−Ĉ(r)
∥∥2

2
,

where Cθ (r) is the color predicted by the NeRF for ray r, and Ĉ(r) is the RGB from the current

dataset image after any IP2P updates.

23.13 Enrichment 23.13: NeRF: Editing, Controllability & Semantic Manipulation1897

This contrasts with methods that use Score Distillation Sampling (SDS), where the diffusion

model provides a gradient directly on NeRF-rendered images to guide optimization toward the text

prompt. While SDS can align NeRF to a description without paired data, it often yields blurry

density or divergence when applied to real captures, because each camera view would require a

perfectly accurate textual description.

InstructNeRF2NeRF avoids this instability by letting IP2P generate updated images that already

satisfy the textual instruction. The NeRF is then trained only on image-level supervision, preserving

the stability and geometric grounding of the reconstruction while still inheriting the semantic

flexibility of diffusion editing.

Figure 23.166: Overview. InstructNeRF2NeRF alternates between rendering, instruction-based 2D

editing (InstructPix2Pix), dataset replacement, and continued NeRF training to gradually realize the

edit in 3D. Source: [202].

Figure 23.167: Dataset evolution. Early edited views can be inconsistent; alternating IP2P updates

with NeRF optimization consolidates them into a 3D-consistent scene. Source: [202].

1898 Chapter 23. Lecture 23: 3D vision

Architecture and Implementation Details

Implementation follows nerfacto in Nerfstudio. Latent noise levels are sampled from [tmin, tmax] =
[0.02,0.98]; IP2P runs for 20 denoising steps per update. Classifier-free guidance typically uses

sI = 1.5 and sT = 7.5. Each outer cycle updates one image (d = 1) and performs n = 10 NeRF opti-

mization steps. Training proceeds up to 30k iterations on a single Titan RTX GPU. Hyperparameters

such as edit scheduling and ray sampling strategies follow the InstructNeRF2NeRF paper [202].

Figure 23.168: Guidance scale. Varying the image guidance controls resemblance to the original

scene; text guidance controls adherence to the instruction. Renderings are from the edited 3D scenes.

Source: [202].

Experiments and Ablation

Qualitative edits span global scene changes (time of day, weather, material and style) and localized

object or identity modifications while maintaining cross-view consistency across novel viewpoints.

Figure 23.169: Qualitative results. Diverse contextual and localized edits on real scenes, including

environmental changes (e.g., time of day, weather) and object-specific modifications. These are

renderings from the edited 3D scenes produced by InstructNeRF2NeRF. Source: [202].

23.13 Enrichment 23.13: NeRF: Editing, Controllability & Semantic Manipulation1899

Figure 23.170: Viewpoint consistency. Vertical slice montage along a camera path. Top: original

NeRF. Middle: InstructNeRF2NeRF with the instruction “turn him into a clown” produces consistent

appearance across viewpoints. Bottom: per-frame InstructPix2Pix edits on renderings lead to

inconsistencies such as changing hair and shirt colors. Source: [202].

Baselines and iterative update importance

The ablation suite isolates the impact of image conditioning and the iterative dataset update:

• Per-frame IP2P on novel-path renderings: Applying InstructPix2Pix independently to

each rendered frame yields strong single-frame edits but significant view-to-view variance,

breaking 3D consistency.

• One-time dataset update: Editing every training image once and training to convergence

depends heavily on initial 2D consistency; typical outcomes are blurry, artifact-prone 3D

scenes.

• DreamFusion-style SDS with text-only diffusion: Using SDS with a text-only Stable

Diffusion prior on a real scene tends to diverge because each view would require an exact

textual description of the entire scene.

• SDS with InstructPix2Pix: Image conditioning prevents divergence, yet optimization that

samples only from a few full images yields unreliable supervision and more artifacts.

• IN2N + Stable Diffusion: Replacing IP2P with text-only Stable Diffusion inside the iterative

loop produces blurry, incoherent density due to the lack of image conditioning.

1900 Chapter 23. Lecture 23: 3D vision

Figure 23.171: Baselines and ablations. Left to right in each block: Original NeRF, IN2N + Stable

Diffusion (no image conditioning), SDS + IP2P, One-time dataset update, and InstructNeRF2NeRF

(full method with Iterative DU and IP2P). The full method best preserves geometry while producing

coherent semantic edits across views. Source: [202].

Quantitative evaluation

Following the paper, two CLIP-space metrics are reported across 10 edits on two scenes: Text–image

direction similarity (edit alignment) and Consistency across frames along a novel path. Results

show that InstructNeRF2NeRF matches the edit strength of per-frame IP2P while achieving the best

multi-view consistency.

Method CLIP Direction Similarity ↑ Consistency ↑

Per-frame IP2P [57] 0.1603 0.8185

One-time DU 0.1157 0.8823

SDS + IP2P [57] 0.0266 0.9160

InstructNeRF2NeRF 0.1600 0.9191

Table 23.39: Quantitative metrics. Alignment with the textual edit and inter-frame consistency

in CLIP space. InstructNeRF2NeRF preserves edit strength comparable to per-frame IP2P while

achieving the best consistency. Source: [202].

23.13 Enrichment 23.13: NeRF: Editing, Controllability & Semantic Manipulation1901

Limitations and Future Work

Performance inherits the strengths and weaknesses of the 2D editor. When InstructPix2Pix fails to

carry out the desired instruction or yields inconsistent 2D updates, consolidation into a clean 3D

edit can fail. Challenging cases include large structural rearrangements, difficult removals, or subtle

material edits that are under-specified.

Figure 23.172: Limitations. Top: instruction “Delete the bear statue” results in weak or inconsistent

inpainting from the 2D editor, limiting 3D removal. Bottom: instruction “Give him a checkered

jacket” is applied weakly and inconsistently in 2D, and the effect washes out after NeRF training.

Source: [202].

Observed failure modes

• Editor failure or ambiguity: Certain instructions are not faithfully executed by Instruct-

Pix2Pix, leading to missing or incorrect edits in the supervision images.

• Inconsistent 2D updates: View-dependent differences in edited details can be irreconcilable

during volumetric optimization, producing blur or artifacts.

• Large geometric changes: Edits that imply topological change or wide-scale geometry

rearrangement remain challenging under image-conditioned editing.

Future directions

• Stronger 3D priors during editing: Incorporate multi-view or depth-aware constraints into

the editing stage to reduce cross-view variance.

• Structure-aware regularization: Encourage locality and geometric plausibility (e.g.,

semantic masks or learned attention priors without manual annotation).

• Interactive guidance: Human-in-the-loop strategies to refine ambiguous instructions or

correct inconsistent edits during Iterative DU.

1902 Chapter 23. Lecture 23: 3D vision

Enrichment 23.14: NeRF: Generative & Cross-Modal Foundations

Linking NeRFs with large pretrained priors (diffusion, language) enables text-to-3D and cross-modal

supervision, a step toward 3D foundation models.

• DreamFusion [487]: Distills a 2D text-to-image diffusion model into a NeRF for text-to-3D

synthesis via score distillation.

• Latent-NeRF / DreamFields [427, 606]: Trains radiance fields in latent spaces or with strong

2D guidance to boost fidelity and efficiency.

Further influential works (not expanded): Magic3D [353], Fantasia3D [85] (two-stage, high-res

pipelines). Mentioned for context; emphasis remains on NeRF-centric generation and cross-modal

supervision.

Enrichment 23.14.1: DreamFusion: Text-to-3D with Score Distillation Sampling

DreamFusion [487] tackles the ambitious goal of generating a valid 3D NeRF model directly

from text, without relying on paired 3D supervision. The method’s central innovation is Score

Distillation Sampling (SDS), which couples a frozen 2D diffusion model to a differentiable renderer:

the diffusion prior acts as a semantic critic that supplies image-space gradients, and these are

backpropagated into a NeRF to sculpt a 3D scene consistent with the text prompt.

Motivation

The aim is to produce a valid, view-consistent 3D NeRF from a single text caption, i.e., without any

paired multi-view images. This problem is deeply underconstrained: many different 3D scenes can

render to images that look plausible to an image-level critic at a single viewpoint. Naively optimizing

photometric appearance is therefore not enough to guarantee correct geometry.

Why “many valid 2D views” need not imply valid 3D

Even if each individual view looks correct, the training signal in text-to-3D is typically per-step,

single-view and unpaired across time. This creates several loopholes:

• No cross-view correspondence. In supervised NeRF, the same real scene must simultaneously

satisfy dozens of fixed cameras; pixels across views are tied by projective geometry, leaving

little room for degenerate solutions. In DreamFusion-like setups, each step samples a new

random camera and a fresh critic; there is no explicit constraint that a pixel explaining the

“nose” in one view must correspond to the same 3D locus explaining the nose in later views.

• View-dependent radiance enables per-view “explanations”. A classical NeRF uses c(x,d):
color may change with viewing direction d. With only a single camera per step, a network can

satisfy the critic by repainting appearance per view while keeping density nearly flat, yielding

billboards/multi-faced artifacts.

• Ill-posedness and missing parts. A single projection collapses depth; occluded/back-facing

regions are unobserved. Even with multiple independently sampled views over training,

nothing forces the model to make those views arise from one coherent shape rather than a

union of per-view “sheets.”

• Scale and transmittance trade-offs. Volume rendering allows different combinations of

density and color to produce similar pixel intensities; without geometric signals, optimization

may settle on thin, view-specific, semi-opaque structures that look right but encode poor shape.

23.14 Enrichment 23.14: NeRF: Generative & Cross-Modal Foundations 1903

Intuition (the “fog sheets” thought experiment): Think of the NeRF as controlling a cube of fog. At

the start there is no object at all—the model must somehow conjure a cat from a caption. At training

step t, the diffusion critic looks from the front and asks for a cat. The simplest trick is to condense a

thin fog sheet and paint on a flat image of a cat’s face. From the front this looks fine. At step t+1,

the critic moves to the side and again asks for a cat. Nothing forces the network to keep the same cat

consistent across views: it can just create a new perpendicular fog sheet with a different painted cat

profile. Each request is satisfied—the critic always sees “a cat” from its current angle—but the fog

volume now contains multiple inconsistent 2D cats stitched together, not a single coherent 3D cat.

How DreamFusion closes the loophole

The root problem is that many distinct 3D explanations can project to equally valid 2D images. To

avoid this “per-view repainting”, DreamFusion changes the rules of rendering. Instead of allowing

arbitrary view-dependent color, it splits appearance into albedo (intrinsic, view-independent surface

color) and shading (appearance derived from surface normals and lighting). With this setup, the

only way to make the same cat look correct from different angles is to actually form a stable 3D

shape whose shading and albedo explain the critic’s feedback. Randomized camera viewpoints

and lightweight view prompts bind these perspectives together, while the diffusion prior supplies

semantics and realism. The result is that 2D guidance becomes not just image supervision, but

a force that sculpts consistent geometry across views—even though no ground-truth 3D scene is

available as in classical NeRF training.

Figure 23.173: DreamFusion training loop overview. A NeRF parameterized by weights θ predicts

two intrinsic fields: density τ(x), which encodes geometry, and albedo ρ(x), the view-independent

base color. Surface normals from −∇µτ combined with randomized point lighting yield shaded

renders, while volume rendering integrates along rays from randomly sampled cameras to produce 2D

images. These images are noised to form zt , then passed with the text prompt y into a frozen text-to-

image diffusion prior (Imagen). The diffusion model predicts the added noise ε̂φ (zt |y, t); comparing

against the true noise ε defines the Score Distillation Sampling (SDS) loss. The residual w(t)(ε̂φ −ε)
provides a low-variance update direction that is backpropagated through the differentiable renderer,

adjusting NeRF parameters θ . Iterating this loop with randomized cameras and lighting gradually

sculpts the fog-like NeRF volume into a coherent, view-consistent 3D object faithful to the caption.

Credit: DreamFusion [487].

1904 Chapter 23. Lecture 23: 3D vision

Method

High-level optimization loop

At each training step DreamFusion renders an image from the current 3D field, queries a frozen

diffusion prior for an image-space correction, and backpropagates that correction into the field’s

parameters. The loop is:

1. Sample view and light: a random camera and a nearby point light are chosen; the caption is

augmented with lightweight view tokens (front/side/overhead) to match the sampled viewpoint.

2. Select a render mode: one of albedo, shaded, or textureless shaded is chosen (described

below).

3. Render: a differentiable volume renderer integrates density τ and albedo ρ , with shading tied

to surface normals from −∇τ .

4. SDS guidance: the rendered image is noised to zt , the frozen diffusion prior predicts ε̂φ (zt |y, t),
and the residual with the injected noise ε is formed.

5. Update: the residual is backpropagated through the renderer and used to update NeRF

parameters θ .

Foreground–background separation

A single NeRF that tries to explain both the object and the environment tends to take an easy shortcut:

it smears low density across space or “repaints” colors per view, satisfying a 2D critic without

sculpting a compact 3D shape. DreamFusion avoids this by giving the object and the environment

different jobs:

• Foreground object field. Inside a bounded sphere, an MLP fθ : x 7→ (τ(x), ρ(x)) predicts

volumetric density τ (shape) and view-independent albedo ρ (base color). Because ρ does

not depend on view direction, variability across viewpoints must come from geometry and

lighting, not from re-painting appearance.

• Directional background. A lightweight function b(r̂) of ray direction supplies the distant

backdrop (a “skybox”). It cannot produce density or geometry—only colors—so it cannot be

used to explain images by adding fog in 3D.

The renderer combines the two with standard alpha compositing:

Cimg = Cfg +(1−A)b(r̂), Cfg = ∑
i

wi ci, A = ∑
i

wi.

If the object along the ray is opaque (A≈1), the background is hidden; if the ray is empty (A≈0),

the background shows through. Trained end-to-end with SDS, the object field learns compact shape

and albedo, while the background head explains the environment without inviting density “spill”.

For purely scenic prompts (e.g., “a sunset”), the object field can remain nearly transparent and the

background carries the content; for object-centric prompts, they cooperate naturally.

From density to orientation: making shape visible

Once foreground and background are disentangled, the next step is to make the object’s geometry

perceptible from a single rendered view. In images, 3D shape is revealed primarily through shading,

which depends on how surfaces are oriented relative to light. To compute shading, DreamFusion

derives surface orientation directly from the NeRF’s density field.

23.14 Enrichment 23.14: NeRF: Generative & Cross-Modal Foundations 1905

The volumetric density τ(x) is a scalar field: low in empty space, high inside the object. Its

gradient ∇xτ points toward the direction of steepest increase, i.e., into the solid. Flipping the sign

yields an outward-pointing vector aligned with the local surface normal:

n(x) ∝ −∇xτ(x), n̂ =
∑i wi ni

∑i wi

,

where the ray-normal n̂ is an opacity-weighted average of sample-level normals. This construction

provides the critic with orientation cues even though the NeRF never predicts normals explicitly.

With normals available, DreamFusion can introduce randomized lighting. A point light direction

l̂, ambient term ℓa, and diffuse color ℓρ define a Lambertian shading factor:

si = ℓa + ℓρ ·max{0, ⟨ni, l̂⟩}.

This factor modulates albedo ρi at each sample to yield intensity variations that depend on surface

curvature.

By alternating whether albedo is included, modulated, or removed, DreamFusion creates com-

plementary renderings that expose different signals about appearance and shape. These become the

three render modes described next, each designed to steer the critic’s gradients toward the right part

of the scene representation.

Render modes: complementary recipes for supervision

The object head always outputs the same raw ingredients at each 3D point: volumetric density τ(x)
(which sculpts shape) and albedo ρ(x) (the base, unlit color). From τ we also derive a surface normal

via −∇τ , and with a randomized light we compute a shading factor s. The three render modes are

not extra networks, but three different recipes for combining these ingredients into a 2D image. By

showing the critic different combinations, DreamFusion exposes both texture and geometry.

• Albedo (color only).

calb
i = ρi.

This mode shows the critic just the raw pigment without any lighting. It ensures that caption

semantics (e.g. “a red apple”) anchor to the right places in the 3D volume. Gradients flow

mainly into albedo ρ , with weaker updates to density τ through transmittance. On its own,

however, this admits the “billboard” shortcut: painting a flat plane with the right texture.

• Shaded (color + light).

cshaded
i = ρi⊙ si, si = ℓa + ℓρ max{0,⟨ni, l̂⟩}, ni ∝−∇xτ(xi).

Here the albedo is modulated by diffuse shading. Because si depends on surface normals, and

normals depend on ∇τ , feedback now flows through the density field as well as the albedo.

This couples appearance to geometry: the critic’s judgment of brightness directly sharpens the

shape.

• Textureless shaded (shape only).

ctexless
i = si (ρ ≡ 1).

By setting albedo to white, the only variations in the rendered image come from light and

surface orientation. The critic can no longer be satisfied by painting details onto flat surfaces:

the only way to improve is to refine geometry so that shading patterns look realistic. Gradients

thus flow almost exclusively into τ .

1906 Chapter 23. Lecture 23: 3D vision

Why alternate between all three? Each mode alone is insufficient. Albedo anchors colors but ignores

shape; textureless shading enforces shape but discards semantics; shaded rendering mixes both but

can be ambiguous about whether an error is due to color or geometry. By cycling among them,

DreamFusion forces the critic’s gradients to supervise both appearance and geometry, closing off

shortcuts and gradually sculpting a coherent 3D object.

This sets up the final ingredient: a way to turn the critic’s judgment into gradients. The critic is

a frozen text-to-image diffusion model, and the mechanism is Score Distillation Sampling (SDS),

described next.

Score Distillation Sampling: turning a 2D prior into 3D updates

Goal. Use a frozen 2D diffusion model as a critic to guide a 3D NeRF. The critic never trains; only

the NeRF parameters θ are updated.

Rendering and forward noising. For a sampled camera, light, and render mode m∈{alb,shaded, texless},
render

x(m)(θ) ∈ R
H×W×3.

Draw timestep t and add VP noise:

zt = αt x(m)(θ)+σt ε, ε ∼N (0, I), α2
t +σ2

t = 1.

Frozen critic (diffusion prior). The diffusion network predicts the injected noise

ε̂φ = ε̂φ (zt |y, t)

(with CFG inside the call). If the render already lies on the prompt manifold, ε̂φ ≈ ε; otherwise the

difference (ε̂φ − ε) is a pixel-space correction.

SDS gradient (definition and derivation). DreamFusion defines the update via the critic’s score,

chained through the renderer:

∇θ LSDS(θ) = Et,ε

[
w(t)

(
ε̂φ (zt |y, t)− ε

) ∂x(m)

∂θ

]
.

Diffusion theory gives ∇zt
log pφ (zt |y) ∝ −(ε̂φ − ε)/σt , so the term

(
ε̂φ − ε

)
is an image-space

residual direction. No gradient flows through ε̂φ ; all learning happens by multiplying this residual

with the renderer Jacobian ∂x(m)/∂θ .

How the image residual becomes NeRF updates. Let G
.
= w(t)(ε̂φ − ε) ∈ R

H×W×3. Then

∇θ LSDS =

〈
G,

∂x(m)

∂θ

〉
= ∑

pixels p

G⊤p
∂x

(m)
p

∂θ
.

For a pixel p with ray samples {xi}N
i=1,

C =
N

∑
i=1

wi ci, A =
N

∑
i=1

wi, wi = Ti αi, Ti = ∏
j<i

(1−α j), αi = 1− e−τi δi .

23.14 Enrichment 23.14: NeRF: Generative & Cross-Modal Foundations 1907

Useful partials:

∂αi

∂τi

= δi e−τiδi = δi(1−αi),
∂C

∂ρi

= wi I3.

We keep the standard NeRF transmittance pathway symbolic via ∂C
∂αi

, which accounts for how

changing opacity at any sample modulates all farther contributions through Tk (k ≥ i).

Mode-specific decompositions. The render mode m sets ci and therefore which parameters receive

strong gradients.

Albedo (unlit): appearance-centric updates

calb
i = ρi.

Chain rule:

∂xalb

∂θ
= ∑

i

∂C

∂ρi︸︷︷︸
wi

∂ρi

∂θ
+ ∑

i

∂C

∂αi︸︷︷︸
via T, w

∂αi

∂τi︸︷︷︸
δi(1−αi)

∂τi

∂θ
.

Effect. The first sum (strong) refines ρ (textures/colors). The second (weaker) adjusts τ only through

transmittance—insufficient to robustly sculpt geometry on its own.

Shaded color (lit): coupled appearance→geometry updates

cshaded
i = ρi⊙ si, si = ℓa + ℓρ ·max{0,⟨ni, l̂⟩}, ni ∝−∇xτ(xi).

Chain rule (grouping terms):

∂xshaded

∂θ
= ∑

i

∂C

∂ρi

∂ (ρi⊙ si)

∂ρi

∂ρi

∂θ
︸ ︷︷ ︸

appearance (as in albedo)

+ ∑
i

∂C

∂ci

∂ (ρi⊙ si)

∂ni

∂ni

∂τi

∂τi

∂θ
︸ ︷︷ ︸

geometry via normals

+ ∑
i

∂C

∂αi

∂αi

∂τi

∂τi

∂θ
︸ ︷︷ ︸

geometry via transmittance

.

Effect. Two geometry channels appear: (i) via normals (ni ∝ −∇τ , which introduces derivatives

of ∇τ w.r.t. θ ; autodiff handles these), and (ii) via α . Shaded mode therefore sculpts τ while still

refining ρ .

Textureless shaded (lit, no texture): pure geometry updates

ctexless
i = si (ρ ≡ 1).

Chain rule:

∂xtexless

∂θ
= ∑

i

∂C

∂ci

∂ si

∂ni

∂ni

∂τi

∂τi

∂θ
︸ ︷︷ ︸

geometry via normals

+ ∑
i

∂C

∂αi

∂αi

∂τi

∂τi

∂θ
︸ ︷︷ ︸

geometry via transmittance

.

Effect. With ρ removed, all signal flows into τ . The only way to please the critic is to improve

geometry (normals/curvature and occupancy).

Intuition. SDS provides a pixel-space “correction image”. The renderer’s Jacobian routes that

correction into ρ in albedo mode, and into τ (via normals and opacity) in shaded/textureless modes.

Cycling the three modes resolves the classic ambiguity: albedo learns caption-faithful appearance;

shaded couples appearance to curvature; textureless removes the paintbrush entirely, hardening

geometry. High CFG increases realism of the supervising direction but may reduce diversity; w(t)
balances contribution across noise levels.

1908 Chapter 23. Lecture 23: 3D vision

View sampling and view-aware prompting

Each iteration samples a random camera (azimuth, elevation, distance, focal multiplier) and a point

light near the camera. Captions are augmented with lightweight view tokens (front/side/overhead)

to align the diffusion prior’s expectations with the current viewpoint. Because albedo ρ is view-

independent, variation across views must be accounted for by geometry and lighting, encouraging

one coherent 3D asset rather than per-view repainting.

Figure 23.174: Sampling an image vs. sculpting a 3D field. Left (ancestral diffusion): a standard

diffusion model synthesizes a 2D image by denoising zT→ z0 directly in pixel space. Right (SDS

in DreamFusion): the diffusion model is used as a critic. A NeRF render x = g(θ) is noised to

zt = αtx+σtε ; the model predicts ε̂φ , and the residual (ε̂φ − ε) becomes an image-space update that

is backpropagated through the differentiable renderer to adjust the NeRF parameters θ . Thus, SDS

does not generate pixels; it provides gradients that sculpt the 3D field. Credit: DreamFusion [487].

Putting the loop together

Each iteration interleaves appearance- and geometry-focused signals so that SDS sculpts both ρ and

τ:

1. Sample view and light. Draw a random camera and a point light; add view tokens (front, side,

overhead, etc.) to the caption.

2. Pick a render mode. Alternate among albedo (anchors color semantics), shaded (injects

curvature/normal cues), and textureless shaded (removes texture shortcuts to force geometry).

3. Render and diffuse. Render x(m)(θ) at low resolution; sample t and form zt = αtx
(m)+σtε .

4. Apply SDS. Evaluate ε̂φ (zt |y, t); form gt =w(t)(ε̂φ−ε); backpropagate gt through the renderer

to update θ .

Albedo steps maintain caption-faithful appearance; shaded steps sharpen geometry via normal-

dependent shading; textureless steps consolidate shape by eliminating albedo as a degree of freedom.

View-aware prompting stabilizes semantics across viewpoints, randomized lighting diversifies

geometric cues, and background factorization prevents degenerate density fills—together converting

2D diffusion feedback into reliable, 3D-consistent supervision.

Implementation Details

Frozen diffusion prior

DreamFusion employs the base Imagen model at 64×64 with classifier-free guidance and a strong

language encoder (e.g., T5-XXL). Larger guidance typically improves realism at the cost of diversity.

Foreground–background composition

The object field is confined to a bounded sphere to discourage diffuse density spread. The background

head provides direction-conditioned colors and is alpha-composited via transmittance, yielding

object-centric assets without fog.

23.14 Enrichment 23.14: NeRF: Generative & Cross-Modal Foundations 1909

Experiments and Ablation

Qualitative gallery and comparisons

DreamFusion produces diverse, compositionally rich assets with multi-view consistency and clean

geometry.

Figure 23.175: DreamFusion gallery of text-to-3D assets. Each cell shows results for one text

prompt (examples include “a raccoon astronaut holding his helmet”, “a baby bunny sitting on top

of a stack of pancakes”, “a sliced loaf of fresh bread”, and “Sydney Opera House, aerial view”).

For every prompt, two novel viewpoints demonstrate multi-view consistency of the learned 3D

NeRF. Insets provide disentangled visualizations: textureless shading reveals the learned geometry

independent of albedo, while normal maps expose smooth surfaces and curvature. The collection

highlights DreamFusion’s ability to (i) synthesize creative and compositional scenes (e.g., a robot

and dinosaur playing chess), (ii) generate faithful geometry and detailed textures across diverse

categories (animals, food, vehicles, architecture), and (iii) disentangle shape from appearance by

supervising both albedo and geometry. Prompt modifiers (∗, †, ‡) correspond to stylistic cues

improving realism. Videos and interactive results available at dreamfusion3d.github.io. Credit:

DreamFusion [487].

1910 Chapter 23. Lecture 23: 3D vision

Figure 23.176: Qualitative comparison of text-to-3D methods. Each column corresponds to the

same text prompt (e.g., “a matte painting of a castle made of cheesecake surrounded by a moat made

of ice cream”, “a vase with pink flowers”, “a hamburger”); The figure compares between Dream

Fields (original), Dream Fields (reimplementation) [258], CLIP-Mesh [548], and DreamFusion.

Dream Fields often produces amorphous, low-detail shapes with color patterns loosely matching the

text. CLIP-Mesh improves geometric definition (e.g., a recognizable vase or castle) but introduces

noisy, unrealistic textures typical of CLIP-guided optimization. DreamFusion, guided by a diffusion

prior via SDS, produces coherent 3D structures with clean silhouettes, semantically faithful details,

and plausible textures across views. Credit: DreamFusion [487].

Caption–image coherence via CLIP retrieval

Goal. To test whether generated 3D assets truly match their captions, DreamFusion evaluates

caption–image coherence using CLIP retrieval, following the protocol in [487]. CLIP serves as a

frozen “judge” that compares rendered images against text captions.

Metric (R-Precision). The evaluation is framed as a retrieval task:

• Render an image from the 3D model (two views per asset).

• Present CLIP with this image and its correct caption, alongside 40 random distractor captions.

• Count success if CLIP assigns the highest similarity to the correct caption.

23.14 Enrichment 23.14: NeRF: Generative & Cross-Modal Foundations 1911

R-Precision is the fraction of correct matches. Higher values indicate stronger text–image alignment.

Encoders. Results are reported across three CLIP backbones: B/32, B/16, and L/14. This ensures

robustness across different embedding granularities.

Two evaluation modes. To disentangle appearance from geometry, renders are produced under two

conditions:

• Color renders: full shaded images that test joint shape and texture alignment.

• Textureless renders (“Geo”): albedo removed, leaving only shading from geometry. This

isolates whether the 3D shape alone matches the caption, eliminating texture-only shortcuts.

Caveat. Baselines like Dream Fields and CLIP-Mesh are trained directly with CLIP supervision.

Their scores may be optimistic when evaluated with the same CLIP family, while DreamFusion

relies on a diffusion prior (Imagen) and therefore does not benefit from this alignment.

Table 23.40: CLIP R-Precision (%) on object-centric COCO. “Geo” uses textureless shaded

renders (albedo removed) to test geometry–text alignment. † evaluated with one seed. Baseline

numbers in parentheses may be inflated when training and evaluation share the same CLIP model.

Method CLIP B/32 CLIP B/16 CLIP L/14

Color Geo Color Geo Color Geo

GT Images 77.1 – 79.1 – – –

Dream Fields (reimpl.) [258] 68.3 – 74.2 – – –

CLIP-Mesh [548] 67.8 – 75.8 – 74.5† –

DreamFusion 75.1 42.5 77.5 46.6 79.7 58.5

Findings.

• Color renders. DreamFusion matches or surpasses prior work across all CLIP backbones,

confirming strong caption–appearance coherence. Generated models are not only textured

plausibly but also semantically faithful to prompts.

• Textureless renders. DreamFusion achieves much higher R-Precision than baselines. This

shows that even without texture, the geometry itself is aligned with the caption. By contrast,

CLIP-supervised methods often rely on painting textures onto weak shapes.

• Mechanism. These gains come from DreamFusion’s design: view-independent albedo,

shading-based supervision, and Score Distillation Sampling. Together, they prevent degen-

erate “billboard” solutions and force the model to sculpt volumetric geometry that remains

recognizable even when stripped of texture.

In summary, CLIP retrieval confirms that DreamFusion succeeds not just at painting caption-faithful

textures but also at learning consistent 3D geometry that aligns with the text prompt.

1912 Chapter 23. Lecture 23: 3D vision

Ablations: what unlocks geometry?

What we test. Starting from a minimal setup, components are added one at a time to see which

choices turn 2D supervision into reliable 3D shape:

• View-aware prompting. Append tokens that match the sampled camera (e.g., front, side,

back, overhead) so the text prior “expects” the current viewpoint.

• View-independent reflectance (with normals). Replace a view-dependent RGB head with an

object field that outputs density τ and view-independent albedo ρ; compute surface normals

from the density gradient (n∝−∇τ) and use them for shading.

• Randomized diffuse lighting. Sample a point light (typically near the camera) every step so

different parts of the surface are illuminated over training.

• Textureless shaded passes. Interleave renders where albedo is removed (ρ ≡ 1) so the image

depends only on geometry through shading.

Why they matter.

• View tokens⇒ single identity across views. Without them, the critic judges each view in

isolation; the model can learn Janus artifacts (multi-faced subjects) and flat, view-specific

fixes. Aligning the caption to the camera ties all views to the same object.

• View-independent ρ + normals⇒ “paint” no longer helps. When color cannot vary with

view, appearance changes must come from lighting on geometry. Normals derived from −∇τ

route supervision into τ , improving curvature and smoothness rather than re-painting per view.

• Random lighting⇒ all bumps get seen. A fixed light can hide geometry on the dark side.

Varying light direction exposes different surface patches across steps, yielding denser, less

biased geometric gradients.

• Textureless passes⇒ unambiguous shape signal. Removing albedo eliminates the “texture

shortcut”. The only way to satisfy the critic is to sculpt τ so shading alone explains the image.

Trade-off: overuse can encourage carving high-contrast texture edges into geometry, so these

passes are interleaved rather than used exclusively.

Empirical takeaway. In the ablation (see the below figure), improvements are smallest on

albedo evaluations and largest on shaded/textureless evaluations—precisely where geometry matters.

The progression

1. base (no view tokens),

2. + view-aware prompting,

3. + lighting/shaded renders,

4. + textureless shaded passes

monotonically increases geometry-sensitive R-Precision and visually turns multi-faced, flat subjects

into smooth, volumetric shapes with cleaner silhouettes.

23.14 Enrichment 23.14: NeRF: Generative & Cross-Modal Foundations 1913

Figure 23.177: Ablation: components that improve geometry. Left: CLIP L/14 R-Precision

measured on three evaluation renders (Albedo, Shaded, Textureless) as components are added. Gains

are largest for geometry-sensitive evaluations (Shaded/Textureless). Right: Prompt “A bulldog is

wearing a black pirate hat”. Progression shows: base→ +view tokens→ +lighting→ +textureless

shading. Tokens stabilize semantics; lighting exposes curvature; textureless passes remove the

billboard shortcut and yield more volumetric geometry. Credit: DreamFusion [487].

Iterative refinement and compositional editing

Editing protocol. DreamFusion allows continued optimization from intermediate checkpoints. A

single NeRF is retained while the caption is modified, and SDS fine-tuning resumes on the updated

text. This means new content is composed onto the existing asset rather than starting over.

What this enables.

• Start from a base object (e.g., “a squirrel”).

• Add attributes sequentially: “wearing a leather jacket”, then “riding a motorcycle”. Each

edit accumulates without breaking identity or view consistency.

• Branch into creative variants: the same squirrel can be edited to be “carved out of wood”, or

placed in new environments like “on a road made of ice” vs. “through a field of lava”.

Figure 23.178: Iterative refinement with compositional editing. From a base model, optimization

continues as the text is edited (attributes, style, background). Top rows show two novel views

per edit; strips give additional viewpoints. Because a single NeRF is optimized throughout, new

attributes are layered onto the same geometry rather than regenerated from scratch, maintaining view

consistency and identity while enabling interactive scene building. Credit: DreamFusion [487].

1914 Chapter 23. Lecture 23: 3D vision

Limitations and Future Work

While DreamFusion establishes a powerful pipeline for text-to-3D generation, several limitations

remain:

• Diversity vs. guidance. Extremely strong classifier-free guidance (CFG) is required to achieve

high-fidelity supervision. This often induces mode seeking, reducing sample diversity across

random seeds and causing repeated “canonical” solutions for a given prompt.

• Material and lighting realism. The use of diffuse Lambertian shading simplifies training

but underrepresents specular highlights, translucency, and complex BRDF effects. As a result,

generated assets often appear matte or plasticky rather than photorealistic.

• Scene complexity. DreamFusion is fundamentally object-centric: it assumes a single fore-

ground object within a bounded volume and a separate background. This restricts its ability to

model multi-object interactions, cluttered layouts, or spatially structured environments.

• Compute bottleneck. The most significant drawback is efficiency. SDS guidance requires

repeatedly rendering full-resolution images from the NeRF and passing them through the

frozen diffusion prior. This is slow and memory-intensive, limiting scalability and making

interactive use challenging.

These limitations motivated subsequent methods that trade DreamFusion’s image-space guidance

for more efficient latent-space guidance. Approaches such as LatentNeRF [427], Fantasia3D [85],

and Magic3D [353] directly distill supervision from latent diffusion models (e.g., Stable Diffusion)

rather than pixel-space denoisers. This substantially reduces computational cost while preserving

geometric consistency. In addition, Fantasia3D explores disentangled control over geometry and

appearance, addressing the shading/material realism issue, while Magic3D introduces a coarse-to-

fine optimization pipeline that improves both detail and efficiency.

Looking forward, promising directions include:

• Diversity-aware guidance, balancing CFG fidelity with variability.

• Richer reflectance models, capturing specularities and complex light transport.

• Scene-level modeling, extending beyond single objects to structured, multi-object environ-

ments.

• Hybrid pipelines, combining DreamFusion’s explicit geometry supervision with latent diffu-

sion efficiency, as seen in later works.

In the next part, we examine LatentNeRF, a direct response to DreamFusion’s computational

bottlenecks, which achieves faster optimization by shifting SDS guidance from image-space to

latent-space, while also keeping/improving the resultant image quality.

23.14 Enrichment 23.14: NeRF: Generative & Cross-Modal Foundations 1915

Enrichment 23.14.2: Latent-NeRF for Shape-Guided 3D Generation

Motivation

From DreamFusion to Latent-NeRF

DreamFusion 23.14.1 established that a powerful 2D text-to-image diffusion model can supervise

a 3D NeRF via Score Distillation Sampling (SDS), but it operates in RGB space and originally

relied on a heavy, proprietary backbone (Imagen). Latent-NeRF adopts the same SDS principle yet

relocates supervision and rendering into Stable Diffusion’s VAE latent space Z, thereby reducing

computational load while maintaining multi-view consistency through NeRF’s volumetric rendering.

Beyond efficiency, the central goal is controllability: text-only guidance is underconstrained in 3D,

so the paper introduces Sketch-Shape geometry guidance and Latent-Paint for texturing explicit

meshes.

Figure 23.179: Latent-NeRF’s three text-guided modes. Left: Latent-NeRF (text-only text-to-3D).

Middle: Sketch-Shape for coarse shape control. Right: Latent-Paint for text-guided texture on

explicit shapes. The top row shows inputs. Examples include: “A stack of pancakes covered in

maple syrup”, “A highly detailed sandcastle”, “A German Shepherd”, and “A fish with leopard spots”.

Source: [427].

Why latent supervision

Volumetric rendering is fundamentally a linear operation that blends feature vectors along rays. The

convolutional encoder used in the VAE ensures that each latent vector at coordinate (u,v) encodes a

localized patch of pixels, often called a super-pixel. These super-pixels preserve spatial coherence,

so interpolating them along a ray produces meaningful blends in latent space. Empirically, decoding

linear combinations of latents results in plausible local textures and structures, just as decoding

linearly blended RGB colors yields plausible photometric mixtures. This property justifies treating

Z (typically 64×64×4) as a continuous radiance field suitable for NeRF-style volume rendering,

even though its channels are abstract features rather than raw RGB.

In effect, the latent radiance field serves as a dense 3D representation in which NeRF’s differ-

entiable rendering can be applied directly, producing latent images that are natively compatible

with Stable Diffusion’s denoiser. This eliminates the bottleneck of pixel-to-latent encoding at each

iteration and allows gradients from the diffusion model to flow efficiently into the NeRF.

1916 Chapter 23. Lecture 23: 3D vision

Method

Overview and connection to DreamFusion

Latent-NeRF builds directly on the Score Distillation Sampling (SDS) framework introduced in

DreamFusion, but shifts the entire process into the latent space. Whereas DreamFusion renders

RGB images from NeRF and then re-encodes them into latents for diffusion guidance, Latent-NeRF

trains a NeRF whose outputs are already latents. This simple yet powerful modification removes

redundant encoding steps and ensures consistency between the NeRF’s output domain and the Stable

Diffusion denoiser.

Concretely, the NeRF MLP maps a 5D input—3D position plus 2D viewing direction—to a

volume density σ and a 4-dimensional latent feature vector c ∈ R
4. Standard volumetric rendering

integrates these outputs along each ray, yielding a latent image

z ∈ R
64×64×4.

At each training step, Latent-NeRF applies SDS in latent space:

1. A random diffusion time t is sampled.

2. Gaussian noise ε is added to the rendered latent z, producing xt =
√

αtz+
√

1−αtε .

3. The frozen Stable Diffusion denoiser εφ (xt ,T, t) predicts the noise, conditioned on the text

prompt T .

4. The SDS gradient is computed from the residual (εφ − ε), which backpropagates through the

rendering process to update the NeRF parameters θ .

This procedure is structurally analogous to DreamFusion, but by performing all operations in the

latent domain, Latent-NeRF achieves both efficiency and training stability. Subsequent refinement

stages can optionally decode the latent radiance field back into RGB using the VAE decoder, enabling

high-fidelity visualization while retaining the computational benefits of latent-space supervision.

Figure 23.180: Overview of latent-space SDS for Latent-NeRF. A rendered latent map z is noised

at time t and denoised by Stable Diffusion; the difference between predicted and injected noise yields

gradients that update the NeRF in latent space. Inference decodes z to RGB via the VAE decoder.

Source: [427].

23.14 Enrichment 23.14: NeRF: Generative & Cross-Modal Foundations 1917

NeRF in Stable Diffusion latent space

Given a point x and view direction, the MLP outputs (c1,c2,c3,c4) and density σ . Standard

volumetric rendering aggregates these along the ray to yield z. This retains the multi-view coupling

of NeRF while aligning supervision to the latent domain where the teacher denoiser operates.

SDS in latent space

At each step, with ε∼N (0, I) and schedule constant ᾱt ,

xt =
√

ᾱt x +
√

1− ᾱt ε, (23.79)

and the per-pixel SDS gradient is

∇xLSDS = w(t)
(

εφ (xt , t,T) − ε
)
, (23.80)

where εφ denotes the denoiser, T is the prompt, and w(t) depends on the noise schedule. Latent-NeRF

minimizes

L = λSDS LSDS + λsparse Lsparse, (23.81)

with Lsparse = BE(wblend) to suppress floaters/background fog.

Step-by-step training loop

1 # Pretrained Stable Diffusion: encoder E, decoder D, UNet eps_phi

2 # Radiance field f_theta: (x, y, z, d) -> (c1..c4, sigma)

3

4 for step in range(num_steps):

5 # 1) Random camera pose; render latent z via volumetric rendering

6 z = render_latent(f_theta, sample_camera())

7

8 # 2) Pick diffusion time t and add noise

9 t = sample_t()

10 eps = torch.randn_like(z)

11 x_t = sqrt(alpha_bar[t]) * z + sqrt(1 - alpha_bar[t]) * eps

12

13 # 3) Denoise with text T and form SDS gradient wrt z

14 eps_pred = eps_phi(x_t, t, T) # Stable Diffusion UNet

15 g_sds = w(t) * (eps_pred - eps)

16

17 # 4) Backprop through rendering to update theta

18 loss_main = (g_sds.detach() * z).sum() # autograd handles chain rule

19 loss_sparse = binary_entropy(w_blend(z))

20 loss = lambda_sds*loss_main + lambda_sparse*loss_sparse

21 loss.backward(); optimizer.step(); optimizer.zero_grad()

1918 Chapter 23. Lecture 23: 3D vision

Rendering and latent image formation

Let {xi}N
i=1 be the stratified samples along a camera ray with spacings ∆i. The field outputs

(ci,σi) = fθ (xi,d) where ci ∈ R
4 are Stable-Diffusion VAE latents and σi ≥ 0 are densities. Using

standard alpha compositing:

αi = 1− exp(−σi∆i), Ti = ∏
j<i

(1−α j), (23.82)

wi = Ti αi, z(u,v) =
N

∑
i=1

wi ci ∈ R
4, (23.83)

so the rendered latent image z ∈ R
64×64×4 is obtained by evaluating (23.83) per pixel (u,v).

Diffusion guidance in latent space (SDS)

For a randomly drawn diffusion step t and Gaussian noise ε∼N (0, I), the forward noising is

xt =
√

ᾱt z +
√

1− ᾱt ε, (23.84)

and the per-pixel SDS gradient applied to z is

∇zLSDS = w(t)
(

εφ (xt , t,T) − ε
)
, (23.85)

where εφ is the frozen Stable Diffusion denoiser and w(t) follows the noise schedule (scaling can

absorb the
√

1− ᾱt factor used in some SDS variants). Gradients backpropagate through (23.83)

and (23.82) into θ .

Classifier-free guidance (CFG) in latent SDS

When using CFG, the denoiser is queried twice (with/without the text):

ε̂cfg = (1+ s)εφ (xt , t,T) − sεφ (xt , t,∅), s≥ 0, (23.86)

and εφ in (23.85) is replaced by ε̂cfg. This preserves the SDS form while strengthening text adherence.

Sparsity / anti-fog regularization

A well-known failure mode in NeRF optimization is the tendency to produce “floaters” (detached

blobs of density) or a diffuse “fog” spread throughout the volume. Both artifacts can satisfy the

supervision signal (e.g., SDS) from certain views, but they yield incoherent or implausible 3D

structure. To combat this, Latent-NeRF introduces a sparsity prior on the ray termination probability.

Let wi denote the volumetric weight at sample i along a ray, and define the ray’s termination

probability as

wterm = ∑
i

wi = 1−TN+1,

where TN+1 is the residual transmittance at the end of the ray. Intuitively, wterm measures whether

the ray “hit something” (value close to 1) or passed entirely through empty space (value close to 0).

The sparsity penalty applies the binary entropy function:

Lsparse = − wterm logwterm− (1−wterm) log(1−wterm). (23.87)

23.14 Enrichment 23.14: NeRF: Generative & Cross-Modal Foundations 1919

Why this works.

• The binary entropy function is minimized at wterm = 0 or 1, meaning the ray makes a confident,

binary decision: either no surface was encountered, or a solid surface terminated the ray.

• The function peaks at wterm = 0.5, corresponding to maximum ambiguity. This case occurs

when the model spreads low opacity across many samples, effectively creating fog. The loss

strongly penalizes this outcome.

Effect on geometry. Minimizing Lsparse discourages semi-transparent mass and pushes density

into compact, surface-like structures. This leads to:

1. Suppression of floaters: small blobs of density that contribute minor opacity become disfavored,

since they push wterm away from 0 or 1.

2. Crisp object boundaries: instead of a gradual haze, rays either fully terminate on an object

(opacity near 1) or pass cleanly through empty space (opacity near 0).

Relation to other regularizers. This objective serves the same purpose as the “opacity penalty”

in DreamFusion and resembles distortion-based losses in Mip-NeRF 360, which also discourage

opacity from being spread diffusely along rays. The key distinction here is its simplicity: the binary

entropy prior directly penalizes uncertainty in ray termination, providing a lightweight yet effective

“anti-fog” constraint that integrates seamlessly with SDS.

Total objective (normal/text-only mode)

Combining latent SDS with sparsity yields:

Ltotal = λSDS LSDS + λsparse Lsparse, (23.88)

with LSDS applied by integrating (23.85) over all pixels of z for the current camera. Typical

implementation details include:

• Camera sampling. Uniform azimuth/elevation around the object with radius jitter; FoV drawn

from a range to expose multiple scales.

• t-sampling. Uniform or cosine-weighted over diffusion steps; w(t) chosen to balance early/late

noise levels.

• Gradient stabilization. Stop-gradient on ε̂cfg (teacher) and optional gradient clipping on

∇zLSDS before backpropagating through volume rendering.

1920 Chapter 23. Lecture 23: 3D vision

Sketch-Shape guidance: Rationale and Mechanism

Why it is needed. Text-to-3D generation guided only by natural language is often underspecified:

prompts such as “a wooden chair” or “a German Shepherd” describe appearance but rarely pin down

a unique geometry. This lack of geometric priors can produce ambiguous or unstable reconstructions

(e.g., Janus-like multiple faces, inconsistent body proportions). To mitigate this, Latent-NeRF

introduces Sketch-Shape guidance, which supplies a coarse 3D proxy (e.g., composed of primitive

shapes or a rough mesh) that defines global structure and pose. The text prompt then refines this

scaffold by providing details, texture, and style. This decoupling of geometry (from the Sketch-Shape)

and appearance (from text guidance) yields controllable, stable synthesis.

Figure 23.181: Sketch-Shape results under different prompts. One simple animal-like mesh

guides distinct objects (deer, German Shepherd, pig); four views per result demonstrate 3D consis-

tency. Source: [427].

How it works. The coarse shape is converted into a binary occupancy function, αGT(p) ∈ {0,1},
which marks whether a sampled point p along a camera ray lies inside or outside the proxy. The

NeRF MLP is not replaced by a separate network; rather, the same radiance field MLP outputs its

usual density σ and opacity αNeRF(p). A distance-weighted cross-entropy loss then encourages

αNeRF to match αGT:

LSketch-Shape = CE
(
αNeRF(p), αGT(p)

)
·
(

1− e
− d2

2σ2
S

)
, (23.89)

where d is the distance from p to the Sketch-Shape surface, and σS controls the softness of the

constraint.

23.14 Enrichment 23.14: NeRF: Generative & Cross-Modal Foundations 1921

Interpretation of the weighting. The exponential term modulates how strictly the constraint is

enforced:

• Far from the surface (large d), the weight→ 1, so the NeRF is strongly penalized if its

occupancy diverges from the proxy. This preserves the global volume.

• Near the surface (d≈0), the weight→0, relaxing the constraint. Here, the NeRF is free to

deviate from the coarse proxy and follow gradients from the text-conditioned SDS loss. This

enables addition of fine details (fur, ornaments, textures) without being locked into the proxy’s

crude geometry.

The parameter σS tunes this tradeoff: small values enforce tight adherence to the proxy, while larger

values allow more stylistic freedom.

Integration. The Sketch-Shape loss is evaluated on the same set of ray samples already used

for volumetric rendering, so no additional forward passes are needed. The NeRF MLP remains the

sole predictor of densities and latents; the proxy only contributes distance and occupancy values for

loss computation. This design makes Sketch-Shape guidance a lightweight addition that integrates

seamlessly with the main SDS optimization, combining coarse geometric supervision with text-driven

refinement.

Effect of the leniency parameter σS

Increasing σS relaxes the constraint, enabling the NeRF geometry to deviate more from the input

shape under textual pressure.

Figure 23.182: Ablation over σS in Eq. 23.89. Larger σS yields more lenient alignment and greater

geometric evolution. Source: [427].

1922 Chapter 23. Lecture 23: 3D vision

Latent-Paint for explicit meshes

When an explicit mesh with known UV coordinates is available, Latent-Paint enables texture

optimization directly in the Stable Diffusion latent space.

UV coordinates. UVs are a standard graphics convention for mapping points on a 3D surface to

positions in a 2D texture image. Each vertex on the mesh is assigned a (u,v) coordinate in [0,1]2, so

that a 2D image can be “wrapped” around the 3D surface. If a mesh does not come with UVs, they

can be automatically computed with algorithms such as XAtlas, which unfold the surface into a set

of non-overlapping charts.

Mechanism. Latent-Paint defines a latent texture image Θ ∈ R
H×W×4 in the same 4-channel

space as Stable Diffusion’s VAE. Differentiable rasterization maps each triangle of the mesh to

the corresponding latent pixels of Θ, producing a rendered latent image from a given camera

viewpoint. This image is then supervised by the same latent SDS rule used in Latent-NeRF: it is

noised, denoised by the Stable Diffusion UNet, and the residual between predicted and injected noise

provides gradients. These gradients backpropagate through the differentiable renderer to update the

pixels of Θ.

After convergence, a single decode of Θ with the VAE decoder produces a high-resolution RGB

texture image. The benefit of this approach is that it avoids per-pixel optimization in RGB space

and instead leverages Stable Diffusion’s compact latent representation to guide texture generation

efficiently.

Figure 23.183: Latent-Paint pipeline. A 128×128×4 latent texture is optimized by latent SDS

through a differentiable renderer; a single VAE decode yields the final RGB texture. Source: [427].

23.14 Enrichment 23.14: NeRF: Generative & Cross-Modal Foundations 1923

RGB refinement with a learnable linear adapter

Although latent-space training is efficient, many applications (visualization, export, rendering)

require a NeRF that emits RGB directly. To bridge this gap, Latent-NeRF adds a small linear adapter

on top of the NeRF’s four latent output channels (c1, . . . ,c4). This adapter maps the latent channels

to approximate RGB (r̂, ĝ, b̂) using a 3×4 matrix, initialized to a hand-fit linearization of the Stable

Diffusion VAE decoder:




r̂

ĝ

b̂


=




0.298 0.187 −0.158 −0.184

0.207 0.286 0.189 −0.271

0.208 0.173 0.264 −0.473







c1

c2

c3

c4


 . (23.90)

This initialization is only a starting point; the matrix is made trainable and updated during refinement.

What parameters are trained.

• NeRF MLP weights (geometry and latent features): the network that outputs densities σ and

latent channels (c1, . . . ,c4) continues to be optimized.

• Adapter weights (the 3×4 matrix): this layer learns a better mapping from the four latent

channels to RGB.

Both components co-adapt: the NeRF learns to emit latent features that decode to better colors, and

the adapter learns how to colorize those features effectively.

How RGB participates in the loss.

• The NeRF with the adapter renders an RGB image ÎRGB (via volumetric compositing of (r̂, ĝ, b̂)
and σ).

• ÎRGB is passed through the (frozen) VAE encoder to obtain a latent code z′.
• Score Distillation Sampling (SDS) is applied in latent space on z′ using the text-conditioned

denoiser; this yields gradients.

• Gradients backpropagate through the encoder (no updates), then through the RGB image,

adapter, volume renderer, and into the NeRF MLP.

Thus, even though the supervision remains in Z, the RGB pathway matters: the only way to make z′

align with the text-conditioned score is to render RGB that, when re-encoded, produces better latents.

This couples pixel-space fidelity to the latent-space objective.

Why this matrix and how it improves.

• Initialization: the matrix in Eq. 23.90 approximates the VAE decoder’s local colorization,

providing coherent initial RGB previews rather than arbitrary colors.

• Learning signal: there is no ground-truth RGB. Improvement is measured by how well the

re-encoded latents z′ satisfy SDS. Lower SDS loss implies better alignment; gradients adjust

both the adapter matrix and NeRF MLP accordingly.

• Why not decode with the full VAE decoder D each step? Inserting a deep CNN into every

volumetric rendering iteration would be prohibitively slow, and SDS still requires returning

to Z. The adapter achieves a fast, differentiable RGB bridge without dragging D through the

ray-marching loop.

Why refinement helps.

• Latent-only training captures semantics but can under-express pixel-space sharpness due to

decoder limitations.

• The refinement loop biases the field toward RGB detail: the NeRF learns to place and modulate

high-frequency color directly, while SDS—applied after re-encoding—keeps the result text-

faithful and multi-view consistent.

1924 Chapter 23. Lecture 23: 3D vision

Figure 23.184: RGB fine-tuning strategy. Starting from a Latent-NeRF trained in latent space,

a trainable matrix adapter maps the four latent channels to RGB to obtain an RGB preview. The

system then continues optimization with supervision in RGB: render an RGB view, re-encode it with

the VAE encoder to Z, and apply the same SDS guidance. Gradients update both the NeRF MLP

and the adapter, improving high-frequency color/detail while retaining the robustness of latent-space

supervision. Source: [427].

Architecture and Implementation Details

Backbones

Stable Diffusion v1-4 (HuggingFace Diffusers) provides the VAE (E,D) and UNet denoiser εφ ;

Instant-NGP serves as the NeRF backbone for efficiency. Latent rendering uses 64×64×4 maps;

Latent-Paint uses H=W =128 latent textures by default.

Schedules and regularizers

SDS uses Eq. 23.84–23.85 with w(t) tied to the diffusion schedule. A binary-entropy sparsity term

BE(wblend) suppresses floaters and encourages strict object/background blending. Sketch-Shape uses

Eq. 23.89 over the point set already sampled for volumetric rendering.

Experiments and Ablations

Text-only generation and multi-view consistency

Latent-NeRF produces coherent 3D assets under text-only guidance; view sweeps confirm stable

geometry and appearance.

Figure 23.185: Results from different viewpoints. Examples include “A photo of a giraffe”, “A

photo of a vase with sunflowers”, and “A photo of a basket with fruits”, rendered from multiple

views to demonstrate 3D consistency. Source: [427].

23.14 Enrichment 23.14: NeRF: Generative & Cross-Modal Foundations 1925

Qualitative comparison

Against DreamFields, CLIPMesh, and DreamFusion, Latent-NeRF typically shows sharper textures

and more plausible geometry for identical prompts.

Figure 23.186: Qualitative comparison. Rows: DreamFields/reimpl., CLIPMesh, DreamFusion,

Latent-NeRF. Columns: prompts such as castle, vase, hamburger. Latent-NeRF yields detailed and

prompt-faithful geometry and materials. Source: [427].

1926 Chapter 23. Lecture 23: 3D vision

RGB refinement improvements

Refinement enhances high-frequency detail (textures, material cues) beyond what the VAE decoder

alone produces.

Figure 23.187: RGB refinement results. Improvements are shown for latent text-to-3D (ice cream,

temple) and Sketch-Shape (lego, car); per-pixel normals visualize geometry. Source: [427].

23.14 Enrichment 23.14: NeRF: Generative & Cross-Modal Foundations 1927

Controllability via Sketch-Shape

Using identical prompts with and without shape guidance reveals strong benefits for geometric

coherence.

Figure 23.188: Ablation on shape guidance. With vs. without Sketch-Shape under identical prompts

(robot hand, lego man) shows the role of geometric priors in eliminating wispy, incoherent structures.

Source: [427].

More Sketch-Shape results

A simple house prior can be styled in multiple ways; further examples span hands, toys, and vehicles.

Figure 23.189: House prior under multiple styles. Lego, gingerbread, gothic, and candy; RGB

refinement is applied for detail. Source: [427].

1928 Chapter 23. Lecture 23: 3D vision

Figure 23.190: Additional Sketch-Shape examples. Robot hand, teddy bear in a tuxedo, lego man

demonstrate cross-category controllability. Source: [427].

23.14 Enrichment 23.14: NeRF: Generative & Cross-Modal Foundations 1929

Latent-Paint on generic meshes

Text-driven textures can be applied to shapes without UVs (computed on-the-fly) or with precomputed

UVs.

Figure 23.191: Latent-Paint on ModelNet40 meshes. UVs absent in inputs; XAtlas is used.

Variation across seeds is shown on NASCAR; material/style shifts illustrated on cabinet, piano, and

gnome. Source: [427].

Figure 23.192: Latent-Paint with precomputed UVs. A single fish mesh textured as piranha,

leopard-spotted fish, and goldfish. Source: [427].

1930 Chapter 23. Lecture 23: 3D vision

Texturing comparison on a common mesh

Latent-Paint produces textures that are more realistic and prompt-faithful than CLIP-guided baselines.

Figure 23.193: Boot texturing comparison. Rows: Tango, CLIPMesh, Latent-Paint. Columns:

black boot, blue Converse All-Star, UGG boot. Latent-Paint captures correct materials and iconic

details. Source: [427].

23.14 Enrichment 23.14: NeRF: Generative & Cross-Modal Foundations 1931

Personalization via Textual Inversion

Latent-NeRF inherits the ability to use learned tokens for novel objects/styles, enabling faithful

reconstruction and creative composition.

Figure 23.194: Textual Inversion. A token learned from few images enables generating “a *

sculpture” and composing “a backpack that looks like *”. Source: [427].

Limitations and Future Work

View ambiguity and Janus artifacts

Because Latent-NeRF relies on a 2D prior, supervision for unseen views is weak. This often causes

Janus artifacts, such as multi-faced geometry (e.g., a squirrel with two faces), where the denoiser

defaults to canonical front views rather than plausible backs.

Figure 23.195: Janus artifact. A “squirrel” generated with Latent-NeRF shows two faces from

different views, caused by the 2D diffusion prior failing on unseen backs. Source: [427].

Controllability and future directions

Controllability remains limited: results vary with seed, and prompts can be ambiguous. The

paper mitigates this with shape priors (Sketch-Shape), explicit texturing (Latent-Paint), and opacity

regularization, but these do not fully solve view inconsistency. Future directions include integrating

other, possibly stronger, 3D priors (depth or normal cues), exploring 3D-native diffusion backbones,

and extending beyond UV textures to richer material models such as BRDFs.

