23.1 Introduction to 3D Perception from 2D Images

In this part of the course we explore how deep neural networks can process and predict 3D information
from various inputs, particularly focusing on inferring three-dimensional structures from two-
dimensional images. Unlike classical computer vision tasks that operate strictly in 2D, 3D vision
tasks aim to reconstruct or understand the three-dimensional structure of the world. These tasks are

essential in applications ranging from autonomous navigation to augmented reality.

Focus on Two Problems today
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Figure 23.1: Left: Inferring 3D shape (voxel grid) from a single 2D image. Right: Classifying an

object from its 3D representation.
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Core Tasks in 3D Vision
In this chapter, our main focus will be on two core 3D vision tasks:

1. 3D Shape Prediction: Given a single 2D image (e.g., of an armchair), the model predicts a
corresponding 3D structure, such as a voxel grid that represents the shape of the object. This
task is inherently ill-posed due to the loss of depth information in the 2D projection.

2. 3D-Based Classification: Given a 3D representation (e.g., a voxel grid), the model predicts
the semantic class of the object (e.g., “armchair”), showing understanding from structural
geometry.

Beyond these core problems, 3D vision encompasses a broad range of challenges such as motion
estimation from depth, simultaneous localization and mapping (SLAM), multi-view reconstruction,
and more. Importantly, due to the strong geometric structure of the 3D world, many classical
vision algorithms (e.g., stereo triangulation) remain highly relevant and are often integrated with or
benchmarked against learning-based methods.

3D Representations

A variety of representations can capture the geometry of 3D objects. While differing in format, all
serve the common goal of describing shape and structure in three dimensions:
* Depth Map: A 2D grid where each pixel stores the distance (in meters) from the camera to
the nearest surface point along the ray passing through that pixel. Captured by RGB-D sensors
(e.g., Microsoft Kinect), these are often called 2.5D images since they only encode visible
surfaces, not occluded regions.
* Voxel Grid: A 3D array of binary or real-valued occupancies representing whether a volume
element (voxel) is occupied.
* Point Cloud: A sparse set of 3D points capturing surface geometry.
* Mesh: A polygonal surface composed of vertices, edges, and faces—typically used in graphics.
* Implicit Surface: A continuous function (e.g., signed distance function) where the zero-level
set defines the surface of the object.
Despite differing computational properties and storage formats, all these representations aim to
capture the same underlying 3D structure.

Predicting Depth Maps fromm RGB Images

One of the most accessible and widely studied 3D vision tasks is estimating a dense depth map from
a single RGB image. This process, known as monocular depth estimation, aims to assign a depth
value to each pixel, producing a 2.5D representation of scene geometry from a monocular input. The
task is fundamentally ill-posed, as multiple 3D scenes can correspond to the same 2D projection,
making monocular depth estimation a challenging problem that requires strong visual priors.

A common and effective architectural design for this task is the fully convolutional encoder-
decoder network, which is well-suited to dense prediction tasks. These models process an input
image through an encoder to extract semantically rich features and subsequently reconstruct a
dense depth map via a decoder that upsamples these features to the input resolution. The fully
convolutional nature of this pipeline ensures that the spatial correspondence between input pixels
and output predictions is preserved, enabling pixel-aligned depth estimation.
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Figure 23.2: Naive approach to monocular depth prediction using a fully convolutional encoder-
decoder network with pixelwise ¢, loss.

The encoder typically consists of a convolutional backbone (e.g., ResNet) pretrained on large-
scale classification datasets like ImageNet. Through successive layers of strided convolutions, the
encoder compresses the spatial resolution of the input while increasing the semantic abstraction and
receptive field. This enables the network to aggregate both local texture and global scene layout,
capturing information necessary for reasoning about object scale, occlusion, and perspective.

The decoder reverses this spatial compression, gradually upsampling the feature maps to predict
a dense depth map. In U-Net-style architectures, skip connections are employed to concatenate
feature maps from early encoder layers with corresponding decoder stages, facilitating the recovery
of fine-grained details such as object boundaries and thin structures. This coarse-to-fine decoding
strategy is particularly effective in reconciling global context with local spatial accuracy.

Several influential models build upon this framework:

» MiDaS [511] emphasizes generalization across diverse datasets. Later versions of MiDaS re-
place convolutional encoders with Vision Transformers (ViTs), leveraging global self-attention
to capture long-range dependencies and scene-level structure. This shift enables more coherent
depth maps, particularly in unfamiliar environments.

* BTS (From Big to Small) [320] enhances the decoder with local planar guidance (LPG)
modules. These modules predict local plane parameters at multiple resolutions, guiding the
reconstruction of depth maps by assuming piecewise planar geometry—a useful trait we can
use for scenes with man-made structures or flat surfaces.

¢ DPT (Dense Prediction Transformer) [510] combines a ViT encoder with a convolutional
decoder, explicitly designed for dense prediction tasks. DPT treats the image as a sequence
of patches from the outset, enabling early global context aggregation. The decoder then
reconstructs high-resolution outputs while retaining global consistency, resulting in state-of-
the-art depth estimation performance on several benchmarks (at the time of publication).

While the architectural choices vary across models, the core principles remain consistent:
extract semantically meaningful, globally aware features with the encoder; restore spatial detail and
pixelwise correspondence with the decoder. These systems have made monocular depth estimation
viable for real-time applications such as AR, robotics, and autonomous navigation, where dense 3D
understanding from a single image is both efficient and essential.
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Loss Function and the Limitations of Absolute Depth Regression
A foundational approach to monocular depth estimation is to directly regress the ground truth depth
using a pixel-wise £, loss:

1 N
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where d; denotes the ground truth depth and d; is the predicted depth at pixel i, for a total of N
pixels. This objective treats depth estimation as a supervised regression task, optimizing the per-pixel
distance between prediction and annotation.

Scale-Depth Ambiguity and the Need for Invariant Losses

Despite its simplicity, the ¢; loss fails to account for a fundamental limitation in monocular depth
estimation: scale-depth ambiguity. Given only a single RGB image, there exist infinitely many 3D
scenes that could yield the same 2D projection. For example, a small object placed close to the
camera may appear identical in the image to a larger object situated farther away. This ambiguity
makes the estimation of absolute scale from monocular input fundamentally ill-posed.
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Figure 23.3: Scale-depth ambiguity in monocular images: a nearby small toy cat and a distant real
cat can produce indistinguishable 2D projections.

While cues such as object size priors, vanishing points, or scene layout may offer some informa-
tion, the absolute scale remains ambiguous without auxiliary data. Consequently, modern methods
replace or augment the naive ¢, objective with loss functions that are invariant to scale and shift and
that emphasize relative structure.
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Scale-Invariant Log-Depth Loss
Monocular depth estimation suffers from scale-depth ambiguity: an image alone does not reveal
whether a small object is nearby or a large object is far away. This ambiguity renders absolute
depth supervision fundamentally ill-posed without geometric cues. To address this, [141] proposed a
scale-invariant loss that focuses on preserving relative scene structure while remaining agnostic to
global depth scale.

Let d; and d; denote the predicted and ground truth depth at pixel i, respectively. Define the
log-space residual at each pixel as

. d;
0; = logd; —logd; = log (dl> :

1

This transforms multiplicative depth errors—such as those caused by an overall scaling mistake—into
additive biases in log space. For example, if all predictions are off by a constant factor s, then
0; = logs for all i.

The scale-invariant loss is given by:
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The first term penalizes pixelwise errors in log-depth, while the second term subtracts the squared
mean residual. This centering step ensures that uniform log-space errors—i.e., global scaling
shifts—do not contribute to the loss. In the case where cf, =s-d; for all i, we have §; = logs and the
two terms cancel exactly, yielding zero loss.

Pairwise Interpretation
An equivalent expression of the same loss emphasizes its structural nature:
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o=~ Y [(logd, ~logd;) — (logd; —logd;)] .
ij

Here, the loss is computed over all pixel pairs, enforcing that the difference in predicted log-depth
between any two pixels matches the difference in ground truth log-depth. This pairwise comparison
naturally preserves the relative depth ordering and ratios across the image, which define the 3D
scene structure up to scale.

Weighted Loss for Training
In practice, [141] used a weighted variant of the loss to trade off scale sensitivity and structure
preservation. The training objective is:

2
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where A € [0, 1] determines how strongly the loss penalizes global scale errors. Setting A = 0 recovers
the standard log-MSE, while A = 1 gives the fully scale-invariant loss. The authors found A = 0.5
to offer a good balance—preserving global scale roughly while improving structural coherence and
visual quality of the depth maps.
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Why a Single Global Scale Correction Suffices

Monocular images lack metric information, so networks often make consistent global depth er-
rors—predicting all depths as uniformly too large or too small. This happens because, without
geometric supervision, the model can recover scene structure (e.g., which objects are closer) but not
absolute scale.

Importantly, such scale errors are not local: the network does not typically stretch some parts
of the scene while shrinking others. Instead, the entire scene is scaled by a single factor s, yielding
predictions d; = s -d; for all pixels i. For instance, if a model interprets a real cat as a small nearby
toy, it will likely interpret a real car as a small toy car—misestimating scale consistently across
objects and spatial regions.

This uniformity arises because the only available supervision—the ground truth depth—reveals
the correct scale globally. Thus, if the network makes a pure scaling mistake, it will affect all depths
equally, and a single correction factor suffices to align prediction with ground truth:
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The scale-invariant loss captures this by canceling out any constant log-depth offset across the image.
It ensures the network is trained to preserve relative structure, while ignoring inevitable global scale
ambiguity in monocular input.

Scale and Shift-Invariant Losses in MiDaS and DPT

Training monocular depth models on diverse datasets poses a core challenge: different datasets often
encode depth with varying units, unknown camera baselines, or arbitrary scale and shift. For example,
structure-from-motion yields depths up to scale, while stereo systems may produce disparities with
dataset-specific offsets. Comparing predictions directly to such ground truth is ill-defined.

To address this, MiDaS [511] and DPT [510] adopt a scale and shift invariant objective that
aligns predictions to ground truth before measuring error. Specifically, they operate in inverse
depth (disparity) space—numerically stable and compatible with diverse sources—and fit an affine
transformation to the predicted disparity d € RY to match the ground truth 4 € RY. The aligned
prediction is given by:

Cialigned = aJ+ ba
where a € R (scale) and b € R (shift) are computed via closed-form least-squares.

Robust Trimmed MAE and Multi-Scale Gradient Losses
Once aligned, the model minimizes two complementary objectives that address distinct challenges
in real-world training data:

1. Trimmed Mean Absolute Error (tMAE). Rather than computing loss over all pixels, MiDaS
and DPT discard the highest residuals—typically the top 20%—and compute the L1 error over the
remaining high-confidence set .# C {1,...,N}:

1 n
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This trimmed loss improves robustness in two ways. First, the use of L1 error prevents extreme
residuals from dominating the loss—unlike L2, which excessively penalizes large errors. Second,
trimming ensures that corrupted or misaligned pixels (e.g., due to missing depth, motion blur, or
sensor artifacts) do not influence training. In effect, it converts noisy datasets into reliable training
signals by emphasizing clean, consistent regions first, and gradually incorporating harder cases as
the model improves.

2. Multi-Scale Gradient Matching. While the trimmed MAE loss ensures accuracy on reliable
pixels, it does not capture how depth changes across space—that is, it ignores the local geometry of
surfaces. To remedy this, MiDaS and DPT incorporate a multi-scale gradient loss that encourages
the predicted depth map to exhibit the same structural transitions and surface boundaries as the
ground truth.

The depth gradient at a pixel refers to the rate of change in depth with respect to its horizontal
and vertical neighbors. In flat, smooth regions (e.g., walls, floors), depth changes slowly and the
gradient is small. At object boundaries or depth discontinuities (e.g., the edge of a chair or the
silhouette of a person), depth shifts abruptly and the gradient is large. Thus, gradients serve as a
proxy for geometry: they capture where and how the scene bends, steps, or ends.

Mathematically, the spatial gradient Vd; is computed using finite differences in the x and y
directions—typically as:

Vd; = (diys — di, divy—d;),
where & and y denote offsets to right and bottom neighbors. This simple local operation reveals the
slope of the depth surface around each pixel.

The multi-scale gradient loss compares these gradients between prediction and ground truth at
various spatial resolutions:

dA(s 5)
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The use of an L1 norm ensures robustness to local mismatches. The summation over scales s

(e.g., full, half, quarter resolution) allows the model to reason about both coarse structure (e.g.,

floor-to-wall transitions) and fine details (e.g., edges of thin objects).

Why it works: Traditional pixel-wise losses tend to average out sharp transitions, producing
overly smooth or blurry depth maps. Gradient supervision counteracts this by explicitly penalizing
structural mismatches. It teaches the model not only to match depth values, but to replicate the
contours and discontinuities that define the geometry of the scene.

In effect, this loss forces the network to answer: Where do depth changes occur? How sharply?
Do they match real-world object boundaries? The result is depth predictions with sharper edges,
more accurate occlusions, and higher geometric fidelity—particularly important in zero-shot transfer
settings where structure is more reliable than absolute scale.

Summary

While pixel-wise ¢, loss offers a straightforward entry point to monocular depth estimation, it fails
to resolve the ill-posed nature of global scale recovery. Modern approaches instead adopt scale- and
shift-invariant losses in log-depth or inverse-depth space, often augmented with gradient structure
terms. These advances—combined with diverse training data and stronger architectures—have led
to state-of-the-art results in monocular depth estimation across benchmarks such as KITTI, NYUv2,
and ETH3D.
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Surface Normals as a 3D Representation

In addition to depth maps, another powerful per-pixel 3D representation is that of surface normals.
For each pixel in the input image, the goal is to estimate a 3D unit vector that represents the
orientation of the local surface at that point in the scene. Surface normals are tightly linked to the
underlying geometry of the object and provide a complementary view to depth.

Unlike depth, which encodes the distance between the camera and scene points, surface normals
capture orientation, offering critical cues for understanding shape, curvature, and object boundaries.

Visualizing Normals

Since each surface normal is a unit vector in R?, they can be visualized as RGB images by mapping
the x, y, and z components of each normal vector to the red, green, and blue color channels,
respectively. This visualization provides intuitive insight into the orientation of different surfaces.

Ground-truth Normals:

Predicting Normals IxHXW

A Per-Pixel Loss:
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Figure 23.4: Visualizing surface normals: blue indicates upward-facing normals (e.g., floor, bed
top), red and green indicate horizontal orientations. Mixed colors reflect diagonal or mixed-direction
normals.

Learning Surface Normals

Similar to depth prediction, surface normal estimation can be framed as a dense regression task using
a fully convolutional network. The network predicts a unit vector fi; € R for each pixel i, and the
objective is to align it with the corresponding ground truth normal n; € R3. Since the predicted and
ground truth vectors should have the same direction regardless of scale, a natural loss function is the
cosine similarity loss:

1 ¥ n;-n;
7 1 = 37 (1 - All>
o Ni; 1812 - lmil|2 )~

where - denotes the dot product and || - ||, is the Euclidean norm. Note that since ground truth
normals are unit vectors, predicted vectors are often explicitly normalized before loss computation.
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Multi-Task Learning

In practice, tasks like dense segmentation and surface normal prediction are often trained jointly in a
multi-task setup, sharing the same encoder but having separate decoders. This setup encourages the
model to learn a richer and more consistent geometric understanding of the scene.

Limitations

While both depth and surface normals provide dense and informative representations of the visible
geometry in an image, they share a critical limitation: they are inherently restricted to visible surfaces.
Occluded regions, hidden backsides, and self-occlusions are not represented, leading to incomplete
scene understanding. To address this, more global 3D representations such as voxels, point clouds,
or meshes are necessary, as they model complete volumetric structure beyond the image plane.

Voxel Grids

To model 3D geometry beyond visible surfaces, one of the most intuitive volumetric representations
is the voxel grid. A voxel grid discretizes 3D space into a cubic lattice of resolution V x V x V, where
each voxel encodes occupancy information—typically as a binary value: 1 if the voxel is occupied
by an object, and 0 otherwise. This can be viewed as the 3D analog of a 2D binary segmentation
mask, but extended to volumetric space.

Voxel grids offer a conceptually simple and regular structure, making them attractive for early
3D learning pipelines. The representation is reminiscent of how objects are composed in voxel-based
environments such as Minecraft, where entire scenes are built from discrete blocks.

3D Shape Representations: Voxels

* Represent a shape with a V x V x V grid of occupancies

* Just like segmentation masks in Mask R-CNN, but in 3D!
* (+) Conceptually simple: just a 3D grid!

* (-) Need high spatial resolution to capture fine structures
* (-) Scaling to high resolutions is nontrivial!
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Figure 23.5: Voxel grids: Pros and cons. Left: regular grid and simplicity of representation. Right:
loss of detail in high-frequency regions such as armrests of the sofa, due to limited resolution.

Advantages

The voxel grid format enables straightforward adaptation of classical CNN-based architectures to 3D
data by replacing 2D convolutions with 3D convolutions. Since the voxel grid is regular and aligned
to a grid structure, operations like pooling, upsampling, and convolution generalize naturally from
2D to 3D.
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Limitations

A critical downside of voxel-based representations is their poor scalability with resolution. The
memory and computational cost of processing a voxel grid scales cubically with resolution: storing
a grid of resolution V requires O(V?3) space. This rapidly becomes intractable for high-resolution
scenes or objects, and fine details are lost at coarse voxel resolutions.

3D Convolutional Processing

Similar to 2D convolution, a 3D convolution applies a local filter over spatial neighborhoods in the
voxel grid. The kernel is a 3D volume of shape k x k x k (typically k = 3 or 5), and it slides across
the grid to compute local features:

y(lajvk) = Z x(i+u,j—|—v,k+w)-w(u,v,w),

u,y,w

where x is the input voxel grid or feature map, w is the learned 3D kernel, and y is the resulting
activation map. These operations can be stacked in deep 3D convolutional networks to perform
classification, segmentation, or shape completion.

Processing Voxel Inputs: 3D Convolution
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Figure 23.6: Processing voxel inputs using 3D convolutions for shape classification. The input
is a 30 x 30 x 30 occupancy grid representing the 3D shape. The network applies successive 3D
convolutions: a 6 x 6 x 6 kernel producing a 48 x 13 x 13 x 13 feature volume, followed by a
5 x5 x 5 kernel yielding 160 x 5 x 5 x 5, and a 4 x 4 x 4 kernel producing 512 x 2 x 2 x 2. A fully
connected layer maps the final volume to class scores. Adapted from Wu et al. [705].

Application Example: Image-to-Voxel Prediction

A representative application of voxel-based shape representation is 3D reconstruction from a single
RGB image. In this example, an image of an armchair is processed by a 2D convolutional neural
network to extract high-level visual features. These features are then projected into a latent 3D space
and refined through a sequence of 3D convolutional layers, ultimately producing a predicted voxel
occupancy grid.
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The pipeline begins with a 3 x 112 x 112 input image, which is passed through a 2D CNN
backbone to generate a compressed feature representation. This feature tensor is reshaped or lifted
into a 3D voxel grid of shape 1 x V x V x V (e.g., 32°). The lifted volume is then processed by 3D
convolutional filters that reason about the spatial structure of the object in three dimensions.

The final output is a binary or probabilistic voxel grid indicating which regions of 3D space
are likely to be occupied by the object. In our example, the network successfully reconstructs the
volumetric shape of an armchair directly from a single view.

Generating Voxel Shapes: 3D Convolution
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Figure 23.7: Image-to-voxel inference pipeline. A 3 x 112 x 112 RGB image is processed by a 2D
CNN to extract features, which are lifted into a latent 3D voxel grid and refined by 3D convolutions.
The output is an occupancy grid representing the shape of the object—in this case, an armchair.

This architecture exemplifies how convolutional models can bridge 2D visual perception and 3D
spatial reasoning. The voxel grid serves as an interpretable intermediate representation, enabling
volumetric reasoning for tasks such as shape completion, reconstruction, etc.

Storing 10243 voxel grid
takes 4GB of memory!

Voxel Problems: Memory Usage
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Figure 23.8: Voxel representation memory usage scales cubically with resolution. AV xV xV
grid storing 32-bit floats grows rapidly: a 256% grid requires roughly 64 MB, while a 1024 grid
exceeds 4 GB. This cubic growth severely limits the feasibility of high-resolution volumetric models,
motivating the exploration of more memory-efficient 3D representations.
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As can be seen in figure 23.8, due to the cubic growth of memory and compute with resolution,
voxel-based methods are constrained in practice, motivating alternative representations such as point
clouds, triangle meshes, and neural implicit fields for higher-fidelity modeling. One thing we can do
though, is try to scale voxels based on Oct-Trees.

Scaling Voxel Grids with Octrees

Standard voxel grids suffer from a key limitation: memory and computation grow cubically with
resolution. For instance, going from a 323 to 1283 grid multiplies storage cost by a factor of 4° = 64.
At high resolutions, this becomes intractable—even though most of the grid is typically empty or
homogeneous. This makes dense voxelization wasteful and limits its ability to capture fine geometric
detail.

To overcome this inefficiency, Tatarchenko et al. introduced the Octree Generating Network
(OGN) [609], which replaces dense grids with a sparse hierarchical structure called an octree.

Octrees: Intuition and Structure
An octree is a tree-based representation that adaptively subdivides 3D space. Starting from a
single cube that covers the full scene (the root), each cube is recursively split into eight subcubes
(octants)—but only when that region contains surface detail. Empty or homogeneous regions remain
unrefined.

» Uniform regions (e.g., open air or flat walls) are stored as large, coarse octree nodes.

* Detailed regions (e.g., object boundaries or thin parts) are recursively subdivided to finer

scales.
This adaptive spatial resolution means memory is focused where it matters: on the surface.

From Dense to Adaptive
To illustrate the impact, consider representing a car at different voxel resolutions:
* A dense 1283 grid would allocate over two million voxels, even for empty space.
* In contrast, an octree might use only thousands of voxels—concentrated near the car’s surface.
This reduces overall memory complexity from O(n?) to approximately O(n?), since the object’s
surface is a 2D manifold embedded in 3D space.

Octree Generating Networks (OGNSs)
OGN is a convolutional architecture that generates high-resolution 3D shapes in octree format. It
starts with a coarse prediction of shape (e.g., 8% or 16%) and recursively refines it. The model learns
to predict:

* which voxels should be subdivided (occupancy probabilities),

» and what features to pass to each child octant (learned latent codes).

At each refinement level, the network only expands voxels flagged as informative. This enables
high-fidelity 3D shape generation—without wasting memory on empty regions.

Surface-Driven Efficiency

The advantage of octrees becomes clearest at high resolutions. Rather than processing millions of
voxels uniformly, OGNs focus computation where object geometry is complex. For example, flat car
doors are left coarse, while wheels or window edges are subdivided further.
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Scaling Voxels: Oct-Trees

Use voxel grids with heterogenous resclution!

Figure 23.9: Octree-based shape reconstruction from OGN [609]. Left: initial coarse level (323,
blue) captures the basic structure of the car. Middle: refinement to level 2 (64°, green) improves
resolution near surfaces such as wheels and front grill. Right: full octree refinement to level 3 (1283,
brown) adds fine details and completes the car’s geometry while avoiding redundant subdivisions in
empty space.

Why and How Octrees Work
Octrees address storage inefficiency by adaptively refining the voxel grid only where necessary,
enabling surface-focused representations with far less memory.
How it works: The octree starts with a coarse resolution (e.g., 323) and maintains a tree where
each node represents a voxel. Each node can be classified as:
* empty: the voxel contains no surface and is not refined further;
* filled: the voxel lies entirely inside the object and needs no further subdivision;
* mixed: the voxel intersects a surface and is therefore recursively subdivided into 8 children.
The key challenge is determining which voxels to refine.

Predicting Subdivision with Neural Networks

At each level of refinement, the octree maintains a sparse set of active leaf voxels. For each such
voxel, the network predicts:

1. A feature vector for the current voxel (using sparse 3D convolutions on the octree structure).

2. An occupancy classification score for the voxel itself.

3. A set of 8 binary flags, one for each potential child voxel. indicating whether that subregion
should be refined.

The voxel is only subdivided if at least one child is predicted as filled or mixed—that is, likely
to be part of the object’s interior or intersect the surface. These predictions are made using a split
prediction head that branches off the decoder.
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Training with Supervised Supervision
OGN:s are trained end-to-end using ground truth voxel occupancy grids, from datasets like ShapeNet.
The training process proceeds in a coarse-to-fine manner:

* Atlevel [ (e.g., 32%): The network processes the current octree level and predicts occupancy
and subdivision flags for each voxel.

* Ground truth comparison: The predicted occupancy labels and subdivision decisions are
supervised using binary cross-entropy losses against a precomputed ground truth octree. These
labels are derived by voxelizing the 3D CAD mesh and marking voxels as filled, empty, or
mixed.

* Subsequent levels: Only voxels marked for refinement are subdivided. Their children become
the active set for the next finer resolution level (e.g., 643, then 1283, etc.).

This recursive supervision continues until the desired maximum resolution is reached. The result

is a hierarchical, sparsely populated voxel grid that concentrates resolution along object surfaces,
drastically reducing memory and computation.

Why It Works

* Focuses computation: By refining only ambiguous voxels, the model avoids spending
resources on empty space or flat interiors.

* Learns detail adaptively: The network learns where detail is needed from data, rather than
relying on hand-crafted refinement rules.

* Enables higher resolutions: Because only a subset of voxels are represented at each level,
OGNS can generate outputs at resolutions like 2563 or 512% with the memory footprint of a
much smaller dense grid.

This learned coarse-to-fine generation strategy allows octree-based models to efficiently capture

complex geometry while remaining scalable, making them highly effective for high-resolution 3D
shape prediction tasks.

Limitations and Motivation for Point-Based Methods

Despite their efficiency, octrees still discretize space into axis-aligned cubes, which limits their
ability to model very fine surface curvature or sharp boundaries without deep subdivisions. Moreover,
generating and traversing octree hierarchies can introduce implementation complexity and latency in
practice.

These limitations motivate an alternative family of 3D representations: point clouds. Unlike
voxel grids or octrees, point clouds represent surfaces directly via sampled points in R3, bypassing
the need to discretize space altogether. Although voxel representation is pretty common in practice,
and point-based methods do not benefit from the grid structure useful in convolutional networks,
they are intriguing as they offer greater flexibility and memory efficiency, especially for capturing
fine-grained surface geometry.

In the following part, we explore point cloud representations and the neural architectures designed
to process them effectively.
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Point Clouds
A point cloud is a flexible, sparse, and surface-centric representation of 3D geometry. It models an
object as a set of P points in R?, each corresponding to a sampled position on the visible surface:

P ={p,eR?|i=1,...,P}

Unlike voxel grids, which discretize the 3D space uniformly and incur cubic memory costs, point
clouds only represent surface points, yielding a compact and efficient encoding. This representation
aligns naturally with real-world sensor data, such as LiDAR in autonomous vehicles.

3D Shape Representations: Point Cloud

* Represent shape as a set of P points in 3D space
* (+) Can represent fine structures without huge numbers of points

= {-) Doesn't explicitly represent the surface of the shape: extracting a mesh
for rendering or other applications requires post-processing

Justin Johnson 25 April 11, 2022

Figure 23.10: Airplane represented as a point cloud, from [152]. Fine structures such as wings and
tail are densely sampled, while coarse regions like the fuselage use fewer points.

Advantages

Point clouds allow for high-resolution geometric modeling without the cubic scaling of voxel-based
methods. They efficiently capture fine details such as airplane wings or chair slats using a relatively
small number of points (as shown in figure 23.10), while coarser regions like planar surfaces can be
represented sparsely.

Limitations

Point clouds do not encode surface connectivity or topology. This limits their utility for downstream
applications such as mesh rendering or physics simulation, which rely on explicit surface structure.
Additionally, point clouds are unordered and irregularly sampled, requiring specialized neural
architectures for effective processing.

Rendering

Since mathematical points are infinitesimal, visualizations inflate each point into a finite-radius
sphere. This creates the illusion of a continuous surface but does not resolve the lack of connectivity.
To use point clouds for graphics or simulation, surface reconstruction via meshing algorithms is
often necessary.
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Applications

Point clouds are a core representation in 3D perception and are widely used in robotics, AR/VR,
and autonomous driving. In particular, LiDAR sensors deployed on self-driving vehicles emit laser
pulses to scan the environment and return a dense set of 3D points corresponding to surfaces in the
scene. This raw point cloud data forms the foundation for several high-level tasks:

* Obstacle detection and tracking: Dynamic objects such as vehicles, pedestrians, and cyclists
are localized and tracked in 3D space, enabling collision avoidance and motion planning.

* Semantic scene understanding: Each point in the cloud can be semantically labeled as road,
building, vegetation, etc., supporting downstream reasoning about the environment.

* Mapping and localization: Aggregated LiDAR scans are used to construct high-definition
(HD) maps for accurate self-localization and route planning. These maps include fine-grained
structures such as lane boundaries, curbs, and traffic signs.

* Multi-sensor fusion: Point clouds are often fused with camera and radar inputs to improve
robustness under challenging conditions, such as poor lighting or weather, where single
modalities may fail.

By capturing precise geometric structure independent of appearance, point clouds enable spatial

reasoning and metric-scale perception, making them indispensable for autonomous systems operating
in complex, dynamic environments.

Point Cloud Generation from a Single Image

Fan et al. [152] introduce a landmark framework for reconstructing 3D shapes as point sets directly
from a single RGB image. Unlike voxel grids or multi-view representations, point clouds are
efficient, resolution-independent, and naturally suited to surface-level geometry. The model predicts
an unordered set of 3D points

& o \PI+H'W'P 3
S={ihia " U CR,
which approximates the visible object surface.

Architecture Overview
The model follows an encoder—decoder structure with a dual-branch output head designed to capture
both global object structure and fine surface detail.

* The encoder is a convolutional neural network that maps the input image I € R¥>*#>*W o a
latent feature tensor F € REH W' This feature map encodes rich spatial information about
the input’s underlying 3D geometry.

* The decoder splits into two complementary branches:

— Fully-Connected (Global) Branch: The feature map F is flattened and passed through
a multi-layer perceptron (MLP) to produce a fixed set of P; 3D points:

& A P
§e={9%}1, C R

The output dimensionality is predetermined—e.g., a final layer with 3 - P units reshaped
into a P; x 3 matrix. This branch captures the global structure, pose, and coarse silhouette
of the object. The hyperparameter P; is typically chosen to balance expressiveness and
efficiency, and remains fixed during training and inference.
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— Convolutional (Local) Branch: Rather than collapsing spatial dimensions, this branch
operates directly over the H' x W' grid of the encoded feature map. At each spatial
location (i, j), a shared MLP (implemented as 1 x 1 convolution) predicts P, 3D points:

§'= {ﬁi,j,k }{ilﬁl?:l - R,
Each point is generated relative to a canonical 2D grid anchor, allowing the network to
model high-frequency surface detail. The weight-sharing mechanism enforces translation-
equivariant behavior across the image, which is particularly effective for capturing fine
geometry such as edges, contours, and thin structures. Because it preserves spatial layout,
this branch provides dense, localized surface coverage.
The final output is the union of both branches:

S=88us' with |S|=P +HW'P,.

This architecture enables the model to combine a globally consistent shape prior (via the FC
branch) with spatially grounded local refinement (via the convolutional branch), yielding geometri-
cally faithful point cloud reconstructions with efficient capacity allocation.

Generating Pointcloud Outputs

Fully connected
branch

Image Points:
Input Image: .
ng H x \.5 Features: (P,x3) x H x W’ Pointcloud:
CxH xW . (P1+ HIW!PZ)X 3
Convolutional
Farr el al, 7 Paint Set Generation Metwork lor 30 Okject branch

Rescanstraction from e Single Irrage”, OVPR 2017

Justin Johnson 27 April 11, 2022

Figure 23.11: Dual-branch point cloud generation network of Fan et al. [152]. A 2D CNN encodes
the input image into spatial features. The fully-connected branch (red) predicts P; global points,
while the convolutional branch (blue) predicts P> points per spatial location, yielding H'W'P, local
points. Their union forms the final output S.

Architectural Motivation
This dual-path architecture reflects a coarse-to-fine design philosophy:

* The global branch supplies a stable structural prior, capturing the object’s pose, orientation,
and rough geometry.

* The local branch attends to spatially localized visual cues, enriching the surface detail with
high-frequency geometric structure—particularly beneficial for recovering thin parts and sharp
edges.

Together, they allow the network to generate accurate and detailed 3D reconstructions while keeping
output size and model complexity manageable.
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Loss Function: Chamfer Distance
When predicting 3D point clouds, we aim to generate a set of points that matches a ground-truth
shape surface. Crucially, both the predicted and target sets are unordered—permuting point indices
does not change the represented shape. This calls for a set-based loss function that is invariant to
point ordering and flexible to varying cardinality.

Fan et al. address this with the Chamfer Distance (CD), a symmetric, differentiable measure of
dissimilarity between two point sets:

* §; C R3: predicted point cloud (previously S)

* S, C R3: ground-truth point cloud (previously S)

The Chamfer Distance is defined as:

dep(S1,5:) = Y min[x—y[3+ Y min|lx—y|3.
XES) XES|

Each term plays a complementary role:
» The forward term ensures that every predicted point x € S has a close match in the target set
. This promotes accurate surface fitting and penalizes extraneous predictions.

* The backward term guarantees that every target point is approximated by at least one
predicted point x € S1. This ensures full coverage of the ground-truth surface, even when the
model predicts fewer points than the reference.

The bidirectional structure is key: even if |S;| # |Sz], the loss still compares them fairly by
asking how well each set "explains" the other through nearest-neighbor matching. The use of
minimum distances makes the loss permutation-invariant, and its differentiability (almost everywhere)
enables end-to-end gradient-based optimization. Efficient computation is facilitated via KD-trees or
approximate nearest neighbor search. The only situation in which the loss will be 0 is when the two
sets are the same (each point in one is exactly on a point in the other), which is what we wanted to
achieve.

Predicting Point Clouds: Loss Function

We need a (differentiable) way to compare pointclouds as sets!

Chamfer distance is the sum of L2 ) . 2
distance to each point’s nearest dep(S1,52) = z min|lx — v|I3
neighbor in the other set XESy

p
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Figure 23.12: Chamfer distance (forward term): for each predicted point x € S, find its nearest
ground-truth match
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Predicting Point Clouds: Loss Function
We need a (differentiable) way to compare pointclouds as sets!

min|[x — v|13

Chamfer distance is the sum of L2 Z
XES;

distance to each point’s nearest dcp(51,5,) =
neighbor in the other set
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Figure 23.13: Chamfer distance (backward term): for each ground-truth point , find the nearest
predicted point x € S} to ensure coverage.

Intuition and Impact

The Chamfer Distance aligns naturally with the set-based nature of point clouds. By evaluating how
well two sets approximate each other through nearest neighbors, it handles variable point counts and
spatial distributions with ease. This makes it ideal for training neural networks to generate dense
3D surfaces from sparse supervision. Fan et al.’s use of Chamfer loss, coupled with a dual-branch
decoder and CNN encoder, marked the first end-to-end framework to lift 2D images into 3D point sets
with high geometric fidelity—Ilaying the groundwork for many subsequent advances in point-based
and implicit shape reconstruction.

Learning on Point Clouds: PointNet and Variants

Unlike images or voxels, point clouds are unordered and lack an inherent grid structure. This makes
standard convolutional architectures unsuitable for directly processing them. PointNet [489] intro-
duces a neural network architecture specifically designed to handle raw point sets while respecting
their permutation invariance.

Core Design: Set-Invariance via Shared MLP and Symmetric Pooling
Let the input be a point cloud & = {p;}!_, C IR?, represented as a tensor RP*3. PointNet processes
this set in a permutation-invariant fashion using the following components:

1. Shared MLP: Apply the same MLP to each point independently:
MLP(p;) eRP, i=1,...,P

yielding a per-point feature matrix in R”*P. Shared weights ensure permutation invariance
across the set.
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2. Symmetric Aggregation: Collapse the point cloud into a global descriptor using a permutation-
invariant operator (e.g., max-pooling):

P
hglobal = 1’}’1:211)( MLP(pl) S RP.

The result is independent of input order and size.
3. Prediction Head:
e Classification: Pass hgjgpa through fully-connected layers to produce output scores in
RC.
* Segmentation: Concatenate hgjopa back to each per-point feature, then apply another
shared MLP to predict per-point labels.

Classificarion Network
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Segmentation Network

Figure 23.14: PointNet architecture (Qi et al., 2017). The classification network (left) takes n points,
applies input and feature transformations, aggregates via max-pooling, and outputs class scores for
k categories. The segmentation network (right) extends this by concatenating per-point and global
features to predict labels at each point. MLP layer sizes are shown in brackets; BatchNorm+ReLU is
used at each layer, and Dropout appears in the final FC layer for classification.

Pose Normalization via T-Net Modules

To improve invariance to arbitrary spatial transformations, PointNet incorporates two optional
Transformation Networks (T-Nets) that learn to align both the input point cloud and its intermediate
feature representations to canonical frames.

« Input T-Net: This module predicts a spatial alignment for the raw coordinates & € RP*3 Tt
follows the PointNet architecture—shared MLPs, max-pooling, and fully connected layers—to
regress a 3 x 3 transformation matrix, which is then applied directly to the input points.
This normalization step removes global rotation and translation ambiguity, ensuring that the
downstream network processes consistently oriented data.

* Feature T-Net: A second T-Net operates on the intermediate per-point feature vectors (e.g.,
after the first shared MLP), predicting a D x D transformation matrix to align feature embed-
dings in the latent space. This matrix is applied before aggregation, improving the stability
and semantic consistency of learned features across different object poses and variations.
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* Regularization: To ensure that the predicted feature transformation is approximately orthogo-
nal (i.e., preserves information), a regularization loss of the form

b=

is added to the training objective, where A € RP*P is the predicted transformation matrix and
|| - || denotes the Frobenius norm.
By learning to normalize both geometric and feature-level representations, these T-Net mod-
ules enhance the model’s robustness to pose variation and improve the reliability of downstream
classification or segmentation predictions.

Hierarchical Reasoning via Iterative Refinement
Beyond the basic structure, subsequent variants of PointNet can perform multi-stage feature fusion:
e After the first max-pooling yields Agobal € RP, it is concatenated with each point feature to
form RP*2P,
* A shared MLP processes these enriched per-point vectors.
* A second max-pooling generates a refined global descriptor.
* This sequence—concat, MLP, pooling—can be repeated multiple times, allowing the network
to capture hierarchical, higher-order shape attributes.
This iterative deep set reasoning retains permutation invariance while progressively enhancing the
model’s expressive power.

Legacy and Evolution

PointNet demonstrated that symmetry-aware, set-based architectures can rival or surpass volumetric
CNNss in classification and segmentation—while using significantly less memory and supporting
higher-resolution geometry. Its simple yet powerful design has led to a series of influential extensions
that form the backbone of modern 3D deep learning pipelines.

PointNet++: Hierarchical Feature Learning on Point Clouds

While PointNet [489] introduced a powerful set-based paradigm for point cloud processing, it suffers
from a key limitation: the inability to explicitly model local geometric structures. Because PointNet
aggregates all point features globally in a single pooling operation, it lacks sensitivity to fine-grained
local patterns—much like trying to classify a shape without noticing its edges or corners.

PointNet++ [490] addresses this limitation by introducing a hierarchical architecture that
recursively applies PointNet within spatially localized regions. This structure enables the model
to learn point-wise features at progressively larger contextual scales, akin to how CNNs build up
representations from local patches to full-image semantics.

The core architectural unit in PointNet++ is the Set Abstraction (SA) module, which consists of
three main stages:

1. Sampling: From the full point set, a representative subset is selected as centroids of local
regions. This is typically performed using Farthest Point Sampling (FPS), which ensures even
spatial coverage of the point cloud by selecting points that are maximally distant from one
another. This avoids clustering in high-density areas and helps capture the object’s full spatial
extent.
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2. Grouping: For each sampled centroid, a local neighborhood is defined. The standard method is
a ball query, which includes all points within a fixed radius. This spatially bounded grouping
ensures that the local features extracted are consistent and scale-aware. (Alternatively, k-
nearest neighbors can be used, though ball queries preserve fixed spatial context).

3. PointNet Encoding: Within each local neighborhood, a mini-PointNet is applied—mapping
the points into a local reference frame (relative to the centroid) and computing a feature vector
via shared MLPs and symmetric max-pooling. This step captures local geometric properties
such as curvature, edges, or flatness.

By stacking multiple SA modules, PointNet++ constructs a deep hierarchy of features—from
local patches to global shape descriptors—allowing robust recognition of both coarse and detailed
structure.
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Figure 23.15: Hierarchical feature abstraction in PointNet++ [490]. Local regions are formed via
sampling and grouping, then encoded by mini-PointNets. Higher abstraction levels operate on
increasingly larger receptive fields.

Density-Adapfive Grouping and Robustness

A major challenge in real-world point clouds—such as those acquired via LiDAR or RGB-D
sensors—is the presence of non-uniform sampling density. Nearby surfaces often result in dense
clusters of points, while distant or occluded areas may be sparsely sampled. If a network uses
a fixed-radius neighborhood (as in single-scale grouping), it may gather too few points in sparse
regions (leading to unstable features), or be unnecessarily redundant in dense regions (wasting
computation).

To address this, PointNet++ [490] introduces two density-adaptive grouping strategies that

allow feature learning to adapt across varying sampling densities:

* Multi-Scale Grouping (MSG): For each centroid in the set abstraction layer, MSG performs
multiple ball queries of increasing radii (e.g., small, medium, large), forming concentric local
neighborhoods of different scales. Each group is processed by a separate mini-PointNet, and
the resulting feature vectors are concatenated into a unified multi-scale representation.
Intuition: In dense regions, small-radius neighborhoods suffice to capture fine detail; in sparse
regions, larger-radius neighborhoods ensure geometric coverage. MSG makes the model
robust to such density variations at the cost of increased computation due to multiple parallel
branches.
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* Multi-Resolution Grouping (MRG): As a more efficient alternative, MRG leverages the
hierarchical nature of PointNet++. At each level L;, the feature for a local region is computed
by concatenating:

— a low-resolution feature from the previous level L; |, summarizing a large, sparse
context;
— a high-resolution feature from a mini-PointNet applied to the raw points in the local
region at level L;.
This dual-path design allows the network to dynamically emphasize coarse or fine structure
depending on local point density.
Intuition: When a region is well-sampled, detailed features from the current level dominate;
when sparse, the network falls back on coarse summaries inherited from deeper layers.

concat
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Figure 23.16: Multi-scale and multi-resolution grouping strategies from PointNet++ [490]. (a)
Multi-Scale Grouping (MSG): for each centroid, multiple neighborhoods at different radii are
constructed and processed by parallel mini-PointNets; their features are concatenated to form a
scale-robust representation. (b) Multi-Resolution Grouping (MRG): combines coarse features
propagated from previous abstraction levels with fine features extracted from raw points at the
current level, allowing efficient adaptation to non-uniform sampling densities.

Random Input Dropout: During training, PointNet++ further improves robustness by randomly
dropping input points. This encourages the model to generalize across incomplete or sparsely
sampled inputs—a common scenario in real-world 3D capture.

Feature Propagation for Dense Prediction
For tasks like semantic segmentation—where per-point predictions are required—PointNet++ uses
a feature propagation module to interpolate and upsample coarse features back to the original
resolution. This is achieved via:

* Distance-weighted interpolation from nearby subsampled points.

* Skip connections from earlier levels in the hierarchy.
This ensures that each point benefits from both its raw input and the abstracted global features
accumulated through the hierarchy.
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Summary and Impact

PointNet++ marks a major evolution in point cloud learning. By extending PointNet with hierarchical
spatial reasoning, local neighborhood modeling, and density-aware design, it achieved state-of-the-
art performance across classification, segmentation, and 3D object detection benchmarks at its time
of publication. The hierarchical Set Abstraction modules provide a powerful and general-purpose
building block for modern geometric deep learning pipelines.

Extensions and Improvements
Numerous architectures have extended the PointNet++ paradigm to enhance expressiveness, effi-
ciency, and scalability:
* PointNeXt [491] revisits PointNet++ with modern training techniques, simplified blocks, and
residual connections for improved accuracy.
* DGCNN [684] introduces dynamic edge convolutions over local graphs, capturing fine-grained
geometric relations across neighboring points.
* Point Transformers [702, 789] apply attention mechanisms to model long-range interactions
in the point set, enabling context-aware reasoning.
These models now underpin many 3D perception systems, spanning applications in classification,
segmentation, shape generation, and scene understanding.

Toward Structured Representations

While point clouds offer an efficient and flexible surface representation, they lack explicit connectivity.
This motivates the transition toward structured outputs such as triangle meshes and implicit surfaces,
which support physically grounded operations like rendering, simulation, and editing.
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Triangle Meshes for 3D Shape Modeling

Triangle meshes are among the most widely used representations for 3D shapes in computer graphics,
simulation, and geometric learning. A triangle mesh explicitly defines the surface of a 3D object
using a finite set of vertices and faces. Let ¥ = {v; € R? | i=1,...,V} denote the set of 3D vertex
coordinates, and let .# = {(i, j,k) | i, j,k € [1,V]} denote the set of triangular faces, each indexed
by three vertices.

This representation defines a piecewise-linear manifold embedded in 3D, enabling efficient
rendering and geometric reasoning. Each face defines a planar triangle bounded by edges, and the
entire mesh approximates a continuous surface.

Advantages of Triangle Meshes
Triangle meshes are the standard in real-time and offline 3D applications due to several key properties:
* Surface explicitness: Meshes represent the actual 2D surface geometry embedded in 3D,
facilitating accurate surface-based computations such as rendering, shading, and physical
simulation.
* Adaptive resolution: Large triangles can be used in smooth regions, while dense subdivisions
can capture high-curvature or detailed regions, yielding compact yet expressive representations.
* Rich annotations: Meshes can carry per-vertex attributes such as surface normals, color, and
texture coordinates, which are interpolated over the mesh faces for shading and alignment.

Figure 23.17: Left: A schematic triangle mesh with explicit vertices and faces. Right: A dolphin
mesh reconstructed from real-world geometry. Adapted from lecture slides.

Despite their efficiency, predicting triangle meshes from raw data (e.g., RGB images or point
clouds) presents significant challenges: the output structure is non-Euclidean, connectivity must be
preserved, and operations such as upsampling or interpolation are nontrivial. The next subsection
introduces a model that addresses these challenges through learned graph-based mesh deformation.
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Pixel2Mesh: Predicting Triangle Meshes

Pixel2Mesh [665] is a landmark method for generating 3D triangle meshes directly from a single
RGB image. Unlike voxel-based approaches—which scale cubically in memory—or point cloud
methods—which lack surface connectivity and require post-processing to extract usable geome-
try—Pixel2Mesh predicts structured mesh outputs: surfaces defined by vertices, edges, and faces.
This makes it particularly suitable for applications that require explicit topology, such as simulation,
CAD, or rendering.

Pre-Pixel2Mesh Landscape
Prior to mesh-based methods, 3D learning architectures primarily explored two output formats:

* Voxel grids: Compatible with 3D convolutions and spatial reasoning, but constrained by high
memory usage. Even modest resolutions (e.g., 64°) require hundreds of thousands of cells,
limiting detail.

* Point clouds: More efficient and flexible, but inherently unstructured. Without connectivity,
they cannot express surface geometry directly, making downstream tasks such as meshing or
simulation error-prone.

Core Proposition

Pixel2Mesh offers a structurally informed alternative by modeling 3D shape as a deformable mesh
graph. Starting from a fixed-topology, genus-0 template (typically an ellipsoid), the network learns
to iteratively deform vertex positions to match the object depicted in the image. This progressive
refinement approach reframes the task: instead of generating structure from scratch, the model
predicts residual displacements—small, local adjustments to an existing shape. This both simplifies
learning and naturally preserves manifold topology, as the mesh’s connectivity remains unchanged
across deformations.

Key Innovations
Pixel2Mesh introduced a number of interlinked architectural ideas that made this formulation
tractable:

* Coarse-to-Fine Refinement: The model deforms the mesh over multiple stages. After
each deformation step, the mesh is upsampled—that is, each face is subdivided to increase
resolution—enabling the network to model fine-grained surface detail while maintaining
stability early on.

* Graph Convolution on Meshes: Deformations are computed using graph convolutional
networks (GCNs), which aggregate information across neighboring vertices based on mesh
connectivity. This allows localized, topology-aware reasoning.

* Vertex-Aligned Features: To connect 2D image content with the 3D mesh, the model projects
each vertex onto the image plane and samples CNN features at the corresponding location.
These features are passed to the GCN to guide deformation, grounding mesh updates in visual
evidence.

* Chamfer Distance for Mesh Supervision: Pixel2Mesh supervises mesh prediction by
comparing the predicted vertex set ¥ C R? to a ground-truth point cloud ot using the
symmetric Chamfer Distance:

Lonamter = 3, min [x—y[3+ Y, minx—yll3

xey Y u =
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Although simple and differentiable, this loss only supervises vertex positions and ignores the
interiors of mesh faces—potentially allowing distortions like sagging or warping between
correctly placed vertices.

Later work, such as GEOMetrics [574], improves on this by comparing point clouds sampled
from the entire predicted surface, offering finer surface-level supervision.

High-Level Pipeline
Pixel2Mesh transforms a single RGB image into a 3D triangle mesh through a progressive mesh
deformation pipeline that unifies convolutional image features and geometric mesh reasoning. The
method begins with two inputs: a 2D image and a coarse, genus-0 mesh template (typically an
ellipsoid centered in front of the camera). This template serves as the canonical starting point for all
reconstructions and encodes strong priors on manifoldness and mesh topology.

The network refines this initial mesh in three stages, each consisting of deformation, unpooling,
and feature update modules. The process is structured as follows:

1. Image Feature Extraction: A 2D convolutional backbone (e.g., VGG-16) processes the
input RGB image to extract multi-scale feature maps from intermediate layers (e.g., conv3_3,
convé4_3, conv5_3). These maps encode both low-level textures and high-level semantic
patterns, offering a rich perceptual signal that guides the 3D reconstruction process.

2. Vertex-to-Image Feature Pooling: Each mesh vertex is projected onto the image plane using
known camera intrinsics. At the projected 2D coordinates, features are bilinearly sampled
from the image’s multi-level CNN maps and concatenated to the vertex’s current geometric
descriptor. This projection-based pooling serves as the only available cue during inference,
anchoring the 3D reconstruction to image evidence. It provides the graph network with
localized appearance information, helping it decide where and how to displace each vertex
and add detail.

3. Graph Convolution for Deformation: The mesh is represented as a graph, with vertices
as nodes and edges defined by mesh connectivity. A Graph Convolutional Network (GCN)
processes this structure, updating each vertex’s feature vector by aggregating information from
its neighbors. The GCN is composed of multiple layers, expanding each vertex’s receptive
field and enabling contextual reasoning across the surface. Crucially, the image-aligned
features from the pooling step guide the GCN’s residual predictions—telling the network how
to deform the shape in 3D to better match the visual evidence.

4. Graph Unpooling for Resolution Increase: To increase geometric detail, the mesh is
upsampled after each deformation stage using edge-based unpooling. New vertices are inserted
at the midpoints of edges, and connectivity is updated to preserve the mesh’s manifold structure.
The positions and features of new vertices are initialized by averaging their endpoints, allowing
the network to seamlessly enrich surface detail without altering global shape or topology.

5. Iterative Refinement: The refined mesh is passed through multiple deformation stages, each
repeating the cycle of vertex-to-image feature pooling (Step 2), GCN-based displacement
prediction (Step 3), and graph unpooling (Step 4). This iterative coarse-to-fine strategy
begins with a low-resolution mesh that captures global structure—benefiting from short
graph diameters and large effective receptive fields—and progressively increases resolution to
recover fine surface details. As the mesh converges toward the target shape, vertex projections
align more accurately with relevant regions in the image, enhancing the quality of sampled
features and enabling increasingly precise geometric corrections at each stage.
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Predicting Meshes: Pixel2Mesh

Key ideas:
Iterative Refinement

Input: Single RGB Graph Convolution Output: Triangle

Image of an object Vertex Aligned-Features  mesh for the object
Chamfer Loss Function

Ellipscid Mesh 156 vertices 628 vertices

Wang et al, "Pixel2Mesh: Generating 30 Mesh Models from Single RGB Images”, ECCY 2018

Justin Johnsan April 11, 2022

Figure 23.18: Pixel2Mesh architecture overview. Starting from a coarse ellipsoid mesh, the model
applies a sequence of mesh deformation blocks, each guided by per vertex extracted 2D image-aligned
features and processed via graph convolutions. Between deformation blocks, graph unpooling
operations increase mesh resolution by inserting new vertices at edge midpoints, preserving surface
shape while enabling finer geometric detail in subsequent refinements. As the mesh evolves, vertex
projections better align with informative regions in the image, improving both feature sampling and
deformation accuracy.

This multi-stage architecture offers a powerful compromise between efficiency and fidelity. The low-
resolution mesh allows efficient global shape reasoning in early layers, while unpooling introduces
degrees of freedom necessary for high-resolution surface detail. By integrating 2D image cues at
every stage and learning deformation through graph-based reasoning, Pixel2Mesh generates detailed,
topologically consistent 3D meshes from a single image.

Graph-Based Feature Learning
A core challenge in learning from 3D meshes is that they are non-Euclidean structures. Unlike
images or voxels, which lie on regular grids with fixed-size neighborhoods and translation-invariant
kernels, triangle meshes consist of irregularly connected vertices with no global coordinate frame.
To apply learning methods to this setting, Pixel2Mesh treats the mesh as a graph ¥ = (¥, &), where:
* Nodes (7) are mesh vertices. Each vertex i € 7 is assigned a feature vector f; € R, initialized
using its 3D coordinates v; € R, and later enriched through graph-based message passing.
* Edges (&) encode mesh connectivity. Two nodes i and j share an edge if their corresponding
vertices are adjacent on a triangle face. This forms the local neighborhood .4 (i) around each
vertex.



23.6 Triangle Meshes for 3D Shape Modeling 1655

Predicting Triangle Meshes: Graph Convolution
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Figure 23.19: Graph convolution on meshes: each vertex aggregates features from its 1-ring
neighbors using shared learnable weights.

To extend the receptive field across the mesh and support complex shape reasoning, Pixel2Mesh
stacks multiple such layers into a 14-layer Graph Convolutional ResNet (G-ResNet). The inclusion
of residual (skip) connections helps stabilize optimization, facilitates deeper architectures, and allows
low-level geometry to be preserved and reused throughout the network. As features propagate
through the GCN, each vertex gains access to increasingly broader geometric context—essential for
learning coherent deformations informed by both local surface cues and global object structure.

This graph-based feature hierarchy ultimately enables each vertex to predict a residual 3D
displacement vector Av;, which updates its position without altering mesh connectivity. Subsequent
parts detail how these features are fused with 2D image evidence and used to deform the mesh
toward the target shape.

To increase the expressive capacity of the network, Pixel2Mesh stacks 14 such layers into a deep
Graph Convolutional ResNet (G-ResNet). This depth enables each vertex to aggregate information
from increasingly distant nodes, expanding its receptive field over the graph. Unlike grids, graphs
can have highly irregular connectivity, and so reaching distant vertices may require many layers of
message passing. Skip connections—added between GCN layers—help mitigate this by stabilizing
gradient flow during training and facilitating feature reuse. In the context of mesh deformation, these
residual paths are particularly useful: they allow the network to retain low-level spatial signals (e.g.,
coarse geometry or symmetric structures) while progressively layering on fine-grained, high-level
shape refinements.

Predicting Vertex Positions via Graph Projection
At the end of each mesh deformation block, the G-ResNet outputs a refined feature vector f; € R?
for each vertex i. These features encode both geometric structure (through message passing over the
mesh) and semantic cues (through vertex-aligned image features). To convert these features into
updated vertex coordinates, Pixel2Mesh applies a simple yet crucial operation: a final linear layer
referred to as the graph projection layer.

Formally, the new 3D position of each vertex is predicted as:

V?ew = Wproj f,',

where Wyoj € R%*3 is a learnable weight matrix shared across all vertices. This transformation maps
the high-dimensional vertex features directly into absolute 3D space.
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Importantly, this step does not compute or apply a residual displacement. The network predicts
the final 3D position outright. Although this may seem counterintuitive—many deformation-based
models favor residual updates for stability—the Pixel2Mesh architecture learns this coordinate
regression implicitly, leveraging the structured feature learning of the G-ResNet. The underlying
mesh structure and feature propagation already encode strong geometric priors, making direct
position regression viable and effective.

Throughout this process, the mesh’s topology remains fixed: only vertex positions are updated,
not their connectivity. This allows each deformation block to operate over a stable graph structure
while progressively refining the mesh surface. After this coarse shape is aligned with the image,
graph unpooling increases mesh resolution by inserting new vertices at edge midpoints. Subsequent
deformation blocks then focus on finer-scale geometry, aided by a denser mesh and more localized
2D image alignment.

Edge-Based Graph Unpooling for Mesh Resolution Refinement
After each stage of coarse deformation, Pixel2Mesh increases the mesh resolution to allow more
fine-grained geometric refinement. This is achieved via a carefully designed graph unpooling
operation that avoids the artifacts common in naive subdivision schemes. Instead of inserting new
vertices at triangle centroids (which creates low-degree, poorly connected nodes), Pixel2Mesh uses
an edge-based unpooling strategy inspired by classical mesh subdivision methods.

The unpooling procedure is as follows:

* A new vertex is inserted at the midpoint of each edge in the mesh.

* This new vertex is connected to the two endpoints of the edge.

* For every triangle in the original mesh, the three mid-edge vertices are connected to form a

new inner triangle.

This process subdivides each original triangle into four smaller triangles and preserves regularity
in vertex degree and local topology. To initialize the features of the new mid-edge vertices, the
network simply averages the features of the parent vertices:

1
fnew — E(fl +fj),

where i and j are the endpoints of the edge. This yields smooth and stable feature transitions for
subsequent GCN layers.

Initial Mesh Face-based

Edge-based

{a) Graph Unpoolingl (b) Comparison between face-based and edge-based unpooling

Figure 23.20: Graph unpooling in Pixel2Mesh (adapted from [665]): (a) New vertices (black) are
inserted at edge midpoints and connected via dashed edges. (b) Face-based unpooling leads to
irregular vertex degrees and topological imbalance, while edge-based unpooling preserves mesh
regularity and uniform structure.
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This coarse-to-fine unpooling scheme allows Pixel2Mesh to expand its receptive field and pre-
diction granularity in tandem. The three-stage pipeline uses meshes with 156, 628, and finally 2466
vertices—an architecture that mirrors the increasing complexity of the shape being reconstructed.
Early blocks handle the “big picture,” while later blocks focus on refining sharp contours, smooth
curvatures, and small geometric details.

Image-fo-Mesh Feature Alignment

A key innovation in Pixel2Mesh is its ability to guide 3D mesh deformation using 2D visual cues
extracted from the input image. This involves bridging two fundamentally different data domains: the
regular, grid-aligned structure of 2D images and the irregular, graph-based structure of 3D meshes.
Pixel2Mesh realizes this connection through a Perceptual Feature Pooling module, which aligns
each mesh vertex with semantically relevant image features and dynamically refines that alignment
at each deformation stage.

The process begins with a pretrained VGG-16 network (frozen during training), used to extract
multi-scale image features from the input RGB image. Features are taken from three intermediate
layers—conv3_3, conv4_3, and conv5_3—which together capture both fine textures and abstract
semantics. These layers yield feature maps at decreasing spatial resolutions and increasing channel
dimensionality.

For each vertex i in the current mesh, the following steps are performed:

1. Projection to the Image Plane: The 3D vertex position v; = (x;,y;,z;) € R? is projected to
2D image coordinates using known perspective camera intrinsics:

Sxi Syyi
(ui,vi):< +oyp, 2 +cy ).

Zi Zi

This maps the 3D point to the location on the image where it is expected to appear.

2. Bilinear Feature Sampling: At each projected coordinate (u;,v;), bilinear interpolation is
applied to the VGG feature maps to retrieve image-aligned descriptors. This interpolation
ensures that features can be sampled at subpixel resolution and maintains differentiability
throughout the pipeline.
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Figure 23.21: Bilinear interpolation retrieves CNN features at non-integer projected positions. This
mechanism resembles RolAlign and allows smooth vertex-to-image alignment.
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3. Multi-Scale Feature Fusion: The sampled feature vectors from conv3_3, conv4_3, and
conv5_3 are concatenated to form a unified descriptor f;"¢ € R!289 (e.g., 256 + 512 + 512
channels). This vector encodes both local appearance and high-level semantics around the
vertex projection. .

4. Fusion with Graph Features: The perceptual feature f}mg is concatenated with the vertex’s
geometric feature f; € R?, as computed by previous graph convolution layers. The resulting
fused descriptor is then passed to the next G-ResNet deformation block to guide shape
refinement.

Image
Features

Input Image

Figure 23.22: Image feature alignment: each mesh vertex is projected onto the input image and
associated with interpolated CNN features. These features are fused with graph features and passed
to the GCN.

Importantly, this perceptual pooling process is not static—it is repeated at the beginning of every
mesh deformation block using the current mesh geometry. This creates a dynamic feedback loop:

* In the first stage, vertex projections from the initial ellipsoid are poorly aligned with the object,

so pooled features are coarse and ambiguous.

* After the first deformation block updates vertex positions, the mesh becomes better aligned

with the image.

* When pooling is reapplied in the next stage, projections land on more semantically meaningful

image regions, yielding more informative features.

* This cycle continues, with improved mesh geometry enabling better feature alignment, which

in turn enables more precise deformations.

This iterative loop—deform — reproject — repool—is central to Pixel2Mesh’s effectiveness.
Rather than relying on static image features, the model continuously refines its 2D-3D correspon-
dence, allowing later stages to make sharper, semantically aware deformations based on increasingly
accurate visual cues. The tight coupling of image perception and geometric reasoning enables the
network to generate high-fidelity 3D surfaces even from a single image input.
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Loss Function for Mesh Prediction in Pixel2Mesh

To guide the deformation of a coarse mesh into a high-quality 3D reconstruction, Pixel2Mesh
employs a composite loss function that balances geometric accuracy, surface regularity, and structural
plausibility. The loss is applied not only to the final output but also at each intermediate stage in the
coarse-to-fine refinement pipeline.

Primary Objective: Chamfer Distance (Vertex-to-Vertex)
The central supervision signal is the symmetric Chamfer Distance between the predicted mesh
vertices Vpreq and a set of ground-truth vertices Vi, both sampled from respective meshes:

gChamfer: Z IIG‘I%/I]HV—M”%—F Z g‘l/in HM_VH%

VEVpred &t u€Vy pred

This term ensures that each predicted vertex lies close to some part of the ground-truth surface,
and vice versa. While originally designed for unordered point sets, this metric is used here as a
surrogate for surface similarity. It is efficient and differentiable, but has limitations—it evaluates
only the positions of vertices and not the geometry of faces.

Laplacian Smoothness Loss

To enforce local geometric coherence and prevent unrealistic surface artifacts, Pixel2Mesh introduces
a Laplacian regularization term that encourages smooth vertex deformations. This loss penalizes
deviations in the Laplacian coordinates of each vertex before and after deformation. The Laplacian
coordinate of vertex i is defined as the offset between its position and the average of its immediate
neighbors:

1
i =Vi— 7o Z vj
Ol
After a deformation block updates the mesh to new vertex positions v}, the updated Laplacian
coordinate is denoted ;. The Laplacian loss penalizes the change in these coordinates:

i = Y18 - 5

This loss serves a dual purpose depending on the stage of mesh refinement. In early stages, when
the mesh is still close to the initial ellipsoid, the Laplacian coordinates are small and uniform; the loss
encourages smooth, globally consistent deformations, helping prevent tangled or self-intersecting
geometry. In later stages, once the mesh has learned a plausible coarse shape, the Laplacian
coordinates reflect learned local structure. Penalizing changes to these coordinates helps preserve
previously learned surface details, ensuring that finer deformations do not overwrite or distort earlier
predictions.

Intuitively, this loss encourages vertices to move together with their neighbors, discouraging
isolated spikes, noisy fluctuations, or jagged artifacts—especially in high-curvature or thin regions.
As such, it acts as a learned shape stabilizer throughout the deformation pipeline.
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Edge Length Regularization

As the mesh undergoes progressive refinement through unpooling, Pixel2Mesh introduces additional
vertices and edges to increase spatial resolution. While this enables finer geometric detail, it
also introduces new degrees of freedom that can destabilize the mesh—especially during early
training or coarse-to-fine transitions. Without proper constraints, vertices may drift far from their
neighbors, forming “flying vertices” connected by abnormally long edges. To suppress such artifacts,
Pixel2Mesh applies an edge length regularization term, defined as:

D%dge: Z Hvi_VjH%a
i yee

where & is the set of all mesh edges at the current refinement stage. This loss penalizes the
absolute squared length of each edge, thereby encouraging spatial coherence among neighboring
vertices.

While this formulation is unnormalized in the original paper, its contribution to the overall loss
is controlled via a fixed hyperparameter A, ensuring stability across deformation stages despite
increasing edge count. Importantly, this term does not compare edge lengths to their prior values or
enforce a canonical length. Instead, it acts as a dynamic local tether, discouraging over-extension
without constraining the mesh to a rigid template.

This regularizer is especially critical immediately after graph unpooling. Newly added ver-
tices—typically initialized at edge midpoints—are still trainable and unconstrained by prior geometry.
The edge length loss ensures that their deformations remain consistent with the surrounding structure,
preventing unstable stretching and promoting uniform vertex spacing.

Together with the Laplacian and normal consistency terms, this loss helps maintain the integrity
of the mesh during deformation, guiding the network toward smooth, coherent, and physically
plausible reconstructions.

Normal Consistency Loss
To enhance visual quality and ensure correct surface orientation, a normal loss penalizes misalignment
between predicted edges and ground-truth normals:

ZLhormal = Z Z <Vi —Vj n‘l>2

i jen(i

Here, n, is the normal at the closest point g on the ground-truth mesh to vertex v;. This loss
encourages edges to lie tangent to the surface, improving shading behavior and geometric realism. It
captures higher-order consistency beyond just vertex positions.

Total Loss
The final loss combines all components with fixed scalar weights:

zotal = gChamfer + )VI gnormal + 2chLap + 2f3«=£/pedge

Pixel2Mesh uses A; = 1.6 x 1074, A, = 0.3, and A3 = 0.1. These weights were selected em-
pirically to ensure that geometric fidelity is prioritized while still promoting mesh regularity and
perceptual realism.
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Limitations and Future Directions
While this loss formulation is effective, it has several shortcomings:
* Vertex-Only Supervision: The Chamfer loss evaluates only discrete vertex positions, not the
full surface defined by mesh faces.
» Sagging Faces: Large triangles may sag or bulge between correctly placed corner vertices
without incurring loss, as interior deviations are unobserved.
* Oversmoothing Risk: The combination of Laplacian and edge constraints may suppress
sharp features or fine details if not balanced carefully.
* Triangulation Bias: Matching based on vertex positions can penalize geometrically similar
surfaces with differing connectivity.
Later methods such as GEOMetrics address these issues by introducing surface-based sampling
and differentiable point sampling from triangle interiors, allowing more accurate and complete loss
computation over the full mesh surface.

Surface-to-Surface Comparison with Differentiable Sampling
A central innovation in GEOMetrics is its replacement of vertex-based supervision with full surface-
level comparison. Pixel2Mesh constrains only mesh vertex positions using a Chamfer loss against a
fixed ground-truth point cloud, ignoring the geometry of the mesh faces that connect them. As a
result, large triangles can sag or bulge without penalty as long as their corner vertices remain close
to the sampled ground truth—Ileading to visible artifacts.

To resolve this, GEOMetrics computes a symmetric distance between dense point clouds sampled
from the entire surface of both meshes. The primary loss during early training is the Point-to-Point
Chamfer Distance:

Zow=), min[lp—g|5+ Y, min [lg—p|3
pESpred S gt qug[ pe pred

Here, Spred and Sg are point clouds sampled online from the predicted and ground-truth meshes,
respectively. This loss encourages every sampled point on one surface to be close to some point on
the other, and vice versa—ensuring both coverage and correspondence. The symmetric form (sum of
minimum distances in both directions) avoids degenerate solutions like mode collapse, where one
shape covers the other but not vice versa.

Because sampling is performed over triangle interiors rather than vertex sets, -Zpp is invariant to
vertex count, mesh tessellation, or triangulation pattern—making it a true surface-level supervision
signal.

Point-to-Surface Loss and Fine-Tuning

While %pp is efficient and effective early in training, it remains an approximation: it compares
discrete samples rather than true surfaces. During fine-tuning—the later stage of training when
coarse structure has converged—GEOMetrics switches to the more precise Point-to-Surface loss:

Los =Y, min Dist(p,f)*+ Y. min Dist(q, )’

T e
Pespredfejgt qesgl € pred

This loss computes the squared distance from each sampled point to the nearest triangle face on the
opposing mesh, rather than to another sampled point.
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This leads to a more geometrically faithful signal, especially in regions where faces are large or
sparsely sampled—e.g., flat areas or sharp edges. By comparing to the continuous mesh surface (via
face planes), Zpis avoids underestimating distances due to poor sampling density, making it better
suited for high-precision surface alignment during final optimization.

Differentiable Surface Sampling via Reparameterization
To ensure end-to-end differentiability, GEOMetrics samples surface points from the predicted mesh
using a two-stage stochastic procedure:
* Area-weighted face selection: Each triangle is selected with probability proportional to its
area, ensuring uniform sampling over the surface.
* Barycentric sampling: For a triangle with vertices v;, v, V3, a sample point r is drawn using:

r= (1= +vu(l=wva+Vawvs,  ww~%(0,1)

This formula produces points uniformly distributed over triangle interiors. Crucially, r is a smooth
function of the triangle vertices and the sampled random variables u,w. Through the reparameteri-
zation trick—where u, w are held fixed during backpropagation—gradients from the loss propagate
cleanly to the vertex positions. This makes it possible for the model to learn mesh geometry from
supervision applied directly to its surface.

In practice, thousands of points (typically 3k—10k) are sampled per mesh per iteration, enabling
fine-grained geometric feedback across the full predicted surface. This helps eliminate artifacts such
as sagging triangles or curvature mismatches that would go unnoticed under vertex-only supervision.

Predicting Meshes: Loss Function
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Figure 23.23: Differentiable surface-aware Chamfer loss in GEOMetrics. Thousands of points
are sampled online from predicted and ground-truth mesh surfaces using area-weighted triangle
selection and barycentric coordinates. The resulting loss provides uniform supervision across the
entire surface and allows gradients to flow through the reparameterized sampling process.

Complete Loss Formulation in GEOMetrics
Beyond surface alignment, GEOMetrics incorporates two additional regularizers for mesh quality:
* Edge Length Regularization % 4..: discourages stretched edges and flying vertices.
* Laplacian Regularization .Z},,: promotes local smoothness by minimizing differences
between a vertex and the average of its neighbors.
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The complete training objective is:
Liotal = W1Lpis + WZa%edge + W3ﬁap +wsLatent

where Laent 1S a perceptual loss that encourages global structural consistency using an auxiliary
mesh-to-voxel autoencoder. Weights w; are fixed scalars tuned for empirical balance.

Adaptive Mesh Refinement via Face Splitfing
Perhaps even more impactful than its loss function is GEOMetrics’ ability to adaptively modify
mesh topology. Unlike Pixel2Mesh, which deforms a mesh with fixed vertex count and connectivity,
GEOMetrics dynamically adds new vertices and faces during training. It identifies high-curvature or
high-error regions and splits faces accordingly—concentrating resolution where it is needed most.
This allows GEOMetrics to capture sharp details and fine contours without overloading flat regions
with unnecessary vertices, leading to more efficient and expressive meshes.

This synergy between:

* accurate surface-level supervision.

* adaptive geometric capacity.
is what enables GEOMetrics to surpass previous models like Pixel2Mesh-++ in reconstruction fidelity.

Advantages Over Vertex-Based Supervision
Unlike Pixel2Mesh’s vertex-to-point Chamfer loss, GEOMetrics’ point-to-point surface loss:
* Supervises the entire surface, including triangle interiors.
* Handles varying mesh resolutions, as supervision is decoupled from vertex count.
* Respects valid geometric variation, allowing alternative triangulations of the same surface
to be treated equally.
* Provides dense feedback, improving training stability and reconstruction fidelity.
Combined with adaptive face splitting, this loss enables GEOMetrics to produce smoother, more
accurate, and topologically robust 3D shapes—closely matching the true surface geometry and not
just sparse surface samples.

Limitations of Pixel2Mesh and the Motivation for Successor Models

While Pixel2Mesh introduced a landmark approach to deforming 3D meshes from a single RGB
image using graph-based convolutions, several fundamental limitations restrict its generality and
reconstruction quality. These include limited supervision, fixed-topology constraints, and reliance
on single-view input. Each of these weaknesses directly motivated the development of successor
models such as Pixel2Mesh++ [689] and Mesh R-CNN [177].

Single-View Ambiguity and 2.5D Reconstruction

Pixel2Mesh is designed for single-view reconstruction. As a result, it struggles to infer geometry for
regions not visible in the input image—such as the back of a chair or the underside of a car—because
no direct pixel-level evidence is available. The model must hallucinate plausible completions from
learned priors, often leading to reconstructions that appear reasonable from the input view but
become implausible from novel viewpoints. This limitation manifests as a 2.5D facade, where only
the visible surfaces are accurate.

Pixel2Mesh++ [689] addresses this challenge by introducing a multi-view deformation network,
which jointly optimizes mesh refinements over multiple input images with known camera poses.
This enforces cross-view consistency, improves alignment across viewpoints, and reduces ambiguity
from occluded regions—ultimately producing shapes that are globally correct, not just front-facing.
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Topological Rigidity and the Genus-0 Constraint

Because Pixel2Mesh deforms a fixed ellipsoid mesh, it inherits a genus-0 topology by design.
The graph unpooling operations add vertices and increase resolution, but never alter the global
connectivity. As such, the model cannot represent structures with holes, handles, or disconnected
components (e.g., mugs, chairs, or lamps).

This motivated the development of Mesh R-CNN [177], which replaces template deformation
with a two-stage voxel-to-mesh pipeline. A coarse voxel occupancy grid is first predicted and then
converted into a mesh using a differentiable surface extraction method. This allows the resulting
mesh to assume arbitrary topology—including high-genus structures—removing the restrictive
genus-0 bottleneck entirely.

Surface-Level Supervision and Over-Smoothing Limitations

Pixel2Mesh originally supervised mesh deformation by applying the symmetric Chamfer Distance
between predicted vertex positions and a pre-sampled ground-truth point cloud. While effective
for guiding coarse shape, this vertex-only supervision ignores the faces connecting the vertices. As
a result, the model can produce meshes where the corners of triangles are well-aligned, yet the
interiors may sag or bulge—creating visibly inaccurate geometry that incurs no loss penalty.

This deficiency is exacerbated by the use of strong regularizers—such as Laplacian and edge
length losses—which encourage smooth deformations. Combined with the inherently diffusive
nature of graph convolutions, these constraints often lead to over-smoothed reconstructions that lack
sharp creases, high-frequency detail, or geometric precision in sparsely sampled regions.

Pixel2Mesh++ [689] directly addresses this issue by incorporating a resampled surface-level
Chamfer loss. Instead of comparing vertex coordinates, it samples dense point clouds from the
predicted mesh surface using area-weighted barycentric sampling and computes the Chamfer loss
against the ground-truth surface. This resampling improves gradient coverage over the full mesh and
provides more reliable supervision in regions with irregular tessellation or thin structures.

GEOMetrics [574] builds further on this idea by introducing fully differentiable sampling
operations and designing losses that explicitly evaluate surface-to-surface geometry. Its Point-to-
Point (PtP) loss compares dense sampled point clouds, while the more refined Point-to-Surface (PtS)
loss measures exact distances from predicted points to ground-truth triangle faces—yielding higher
fidelity and stronger surface alignment. These losses not only address sagging artifacts, but also
resolve ambiguities due to vertex layout or triangulation mismatches.

While both Pixel2Mesh++ and GEOMetrics move beyond vertex-based loss functions, the key
distinction lies in formulation. Pixel2Mesh++ retains the Chamfer framework but improves its
application via surface sampling; GEOMetrics reformulates the loss to reflect the mesh’s implicit
surface, enabling direct point-to-face supervision.

Domain Shift and Real-World Generalization
Trained primarily on synthetic datasets like ShapeNet, Pixel2Mesh suffers from a domain gap when
tested on real-world imagery. Lighting variation, clutter, occlusion, and camera calibration errors
can all destabilize the vertex-to-image feature alignment step. This leads to inconsistent updates and
poor reconstruction quality in natural scenes.

Mesh R-CNN [177] takes a different route: by grounding its pipeline in instance detection via
Mask R-CNN, it gains robustness to diverse, real-world input. Mesh generation is conditioned on
high-confidence 2D detections, improving generalization to cluttered, multi-object scenes.



23.6 Triangle Meshes for 3D Shape Modeling 1665

Summary and Takeaways

Pixel2Mesh introduced a foundational framework for 3D mesh reconstruction from single RGB
images, combining graph-based deformation, vertex—image alignment, and progressive refinement.
However, key limitations—including its reliance on single-view input, fixed genus-0 template topol-
ogy, and vertex-only supervision—highlighted the need for more flexible and accurate approaches.

The first evolution in this direction was Pixel2Mesh++ [689], which enriched the original
framework without discarding its template-based foundations. By incorporating multi-view image
input and surface-aware losses via differentiable mesh sampling, it improved geometric fidelity
and alleviated ambiguity from occlusion and limited field-of-view—yet still operated under a fixed-
topology deformation regime.

More structurally transformative approaches soon followed:

* GEOMetrics [574] enhanced surface-level supervision through dense differentiable sampling
and adaptive face splitting. This resolved vertex sparsity and sagging-face artifacts while
enabling targeted geometric refinement—but remained limited to low-genus templates.

* Mesh R-CNN [177] broke free from the fixed-topology constraint altogether. By predicting
voxel-based occupancy maps followed by mesh extraction and refinement, it enabled the
generation of arbitrary topology—including holes, handles, and disconnected parts—marking
a major departure from template-based reconstruction.

Together, these successor models reflect a progression: from enriching Pixel2Mesh with multi-
view cues and improved losses, to redefining the reconstruction pipeline entirely. As we now
transition to Mesh R-CNN, we will see how voxel-driven, detection-aware pipelines offer a powerful
alternative for general-purpose, topology-flexible 3D mesh reconstruction.
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Mesh R-CNN: Topology-Aware Mesh Reconstruction from Real-World Images
Mofivation and Key Ideas

Traditional mesh reconstruction pipelines, such as Pixel2Mesh (Section 23.6.1), deform a fixed-
topology template mesh (typically genus-0), which fundamentally limits their capacity to represent
real-world objects with topological complexity—such as holes, multiple parts, or disconnected
components.

Mesh R-CNN [177] introduces a hybrid reconstruction paradigm that overcomes this limitation
by integrating two complementary representations:

* A voxel-based prediction branch first estimates a coarse 3D shape from the input image.
Since voxel grids are regular and topology-agnostic, this stage can represent arbitrary structures,
including objects with holes or non-manifold parts.

* A mesh refinement branch then converts the voxel output into a triangular mesh and applies
graph-based neural operations to improve surface fidelity and geometric detail.

While voxel grids offer topological flexibility, they suffer from low resolution and quantization
artifacts due to memory constraints. Mesh R-CNN resolves this by converting the voxel output into
a surface mesh using the cubify operation, and then refining the mesh using a graph convolutional
network (GCN). This two-stage process combines the strengths of volumetric and surface-based
approaches: arbitrary topology from voxels, and high-resolution detail from meshes.

The entire system is trained end-to-end using paired RGB images and watertight 3D meshes,
enabling amodal 3D shape prediction even in the presence of occlusion.

3D Shape Prediction: Mesh R-CNN

Mask R-CNN: Mesh R-CNN:
2D Image -> 2D shapes 2D Image -> Triangle Meshes

He, Gkiowari, Dollar, and &
Girshick, “Mask R-CNN", =
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Figure 23.24: Mesh R-CNN augments Mask R-CNN [209] to move from 2D instance segmentation
to 3D shape prediction. The pipeline proceeds from 2D object detection to voxel prediction and
finally to mesh refinement.
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Mask R-CNN as Backbone for 2D Instance Segmentation
Mesh R-CNN builds on the Mask R-CNN architecture introduced in Section 15.5.1, which performs
2D object detection and instance segmentation by augmenting Faster R-CNN with a pixel-level
segmentation head. Given an input image, Mask R-CNN produces:

* Bounding box proposals for object instances.

* Rol-aligned feature maps for each proposal.

* Binary segmentation masks and class labels for each instance.

Mesh R-CNN inherits these components and reuses Rol-aligned features to bootstrap 3D shape
prediction in the following stages.

The Mesh Prediction Head: A Hybrid Voxel-to-Mesh Strategy
With Mask R-CNN as its 2D perception backbone (Section 15.5.1), Mesh R-CNN augments this
architecture with a dedicated 3D shape prediction branch, called the mesh head. This component
reconstructs a full 3D mesh for each detected object instance and is designed to balance topological
flexibility with geometric precision.

The key architectural insight is to decompose the reconstruction task into two complementary
and end-to-end trainable stages:

1. Voxel Prediction: For each object detected by Mask R-CNN, a coarse 3D occupancy grid
is predicted from Rol-aligned image features. This voxel grid serves as a topology-agnostic
representation that can naturally encode complex structures—including holes, thin parts, and
disconnected components—without being constrained by mesh connectivity or genus. Because
voxel occupancy is defined per grid cell, this stage supports per-instance reconstructions with
arbitrary and varying topology.

2. Mesh Refinement: The predicted voxel grid is converted into a watertight triangle mesh using
a dedicated cubify operation, which replaces each occupied voxel with a triangulated cuboid,
merges shared vertices and edges, and removes interior faces. This produces an initial mesh
whose topology directly mirrors the voxelized shape. To improve geometric fidelity, the mesh
is then refined by a sequence of graph convolutional layers that deform vertex positions while
preserving the established connectivity.

This voxel-to-mesh pipeline addresses a major limitation of prior methods like Pixel2Mesh,
which were constrained to deforming a single genus-0 template mesh and thus unable to represent
objects with complex topologies. By deferring mesh construction until after a coarse shape has been
predicted, Mesh R-CNN avoids prematurely committing to a fixed topology and instead enables the
reconstruction of multiple, topologically diverse meshes—one per detected instance—even from a
single input image.

Crucially, the voxel and mesh branches are trained jointly within a fully differentiable framework.
The voxel grid is supervised via a binary occupancy loss, while the mesh is optimized using
surface-level objectives such as Chamfer distance, normal consistency, and edge regularization (all
seen previously with Pixel2Mesh). This tight integration enables the system to learn both what to
reconstruct (via voxels) and how to reconstruct it accurately (via mesh refinement), resulting in
high-quality 3D predictions that generalize across diverse object categories and scene configurations.
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Figure 23.25: System overview of Mesh R-CNN. The architecture extends Mask R-CNN by adding
a 3D shape prediction head. For each detected object, the voxel branch first predicts a coarse
3D occupancy grid aligned with the camera frustum. This voxel scaffold is then converted into
a watertight mesh via the cubify operation and refined through a cascade of graph-based mesh
deformation stages (similarly to 23.6.1). Each refinement step incorporates both 3D geometry and
2D image features. Figure reproduced from Gkioxari et al. [177].

The Voxel Branch for Topological Flexibility

The first stage of the mesh head in Mesh R-CNN is the voxel prediction branch, which estimates
a coarse 3D shape for each detected object as a voxel occupancy grid. Voxel representations are
topology-agnostic by construction: they impose no constraints on surface connectivity and can
naturally represent complex geometric structures—including holes, disconnected components, and
non-manifold parts—without requiring a mesh template. This stands in contrast to methods like
Pixel2Mesh (Section 23.6.1), which deform a fixed-topology genus-0 sphere and thus cannot model
diverse shape topologies.

In Mesh R-CNN, the voxel branch uses Rol-aligned features from the Mask R-CNN backbone to
predict occupancy probabilities over a grid of shape G x G x G, where G = 24 or 48 depending on
the dataset. Specifically, G = 48 is used for synthetic datasets like ShapeNet, while G = 24 is used
for real-image datasets like Pix3D to manage memory constraints. Each voxel (i, j, k) receives a
scalar logit, which is transformed via a sigmoid activation into an occupancy probability p?;,fd €[0,1].
This probabilistic grid forms a coarse but flexible volumetric scaffold that directly determines the
topology of the output mesh in the next stage.

Perspective-Aware Voxel Grid via Camera Frustum Alignment

To ensure metric grounding and spatial consistency, Mesh R-CNN defines its voxel grid within a
camera-aligned 3D frustum. This volume is constructed using the predicted 2D bounding box
and known camera intrinsics K, anchoring the 3D grid in true physical coordinates rather than in an
arbitrary canonical frame. The process consists of two phases: constructing the 3D voxel volume,
and populating it with 2D-aligned features.
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Phase 1: Constructing the Frustum-Aligned Voxel Grid

Step 1: Defining the Frustum Volume. Given a Region of Interest (Rol) bounding box
B = (umina Vmin, Umax, Vmax)v

and a known camera intrinsics matrix K, Mesh R-CNN constructs a perspective frustum in 3D
by back-projecting the four image-plane corners of % using K~!. Each back-projected ray
originates at the camera center and passes through a bounding box corner, defining the edges of
the viewing frustum.

To bound the depth extent of the object, these rays are truncated between near and far depth
planes, zpear and zg,, Which define the front and back clipping planes of the frustum. These
values are not fixed in the paper but are dataset-dependent; for example, values like 0.5m to
2.5m may be used for indoor objects, while normalized scales are often applied for datasets like
ShapeNet. The key point is that the frustum adapts to the Rol and camera parameters, ensuring
that the predicted voxel grid aligns with the object’s visible volume in camera coordinates.

World Space Prediction Space

]

1
1
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Figure 23.26: Frustum-aligned prediction space in Mesh R-CNN. Rather than predicting occu-
pancy in a uniform world-aligned cube, Mesh R-CNN defines voxel predictions in a space aligned
with the image plane. This is achieved by applying the camera intrinsics matrix K during voxel
warping; applying K~! transforms the voxel coordinates back into 3D world space. The result
is a truncated frustum bounded by near and far depth planes (Zpear, Zfar), centered on the detected
object. This frustum-aware grid mirrors the actual viewing volume of the camera, ensuring that voxel
resolution is higher for nearby regions and coarser at greater depths—naturally encoding perspective
and spatial priors. For background on camera intrinsics and perspective projection, see [568]. Figure
adapted from Gkioxari et al. [177].

Step 2: Canonical Grid Initialization. A logical voxel grid 4 € [—1,1]? is instantiated with shape
G x G x G. This canonical cube serves as a resolution-independent coordinate frame for voxel
predictions. Each voxel index (i, j, k) is mapped to a normalized position (x,y,z) € [—1,1]3,

where:
* x = —1 denotes the leftmost extent and x = 1 the rightmost.
* y = —1 denotes the bottom and y = 1 the top.
* 7= —1 corresponds to the front of the volume (near plane), and z = 1 to the back (far

plane).
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Step 3:

Perspective-Aware Warping. To map ¥ into the physical frustum, each normalized coordinate
(x,y,z) is transformed into a 3D point (X,Y,Z) using a homography induced by the camera
intrinsics and frustum geometry. This transformation ensures:

* Voxels near the camera are tightly packed and represent small metric volumes.

* Voxels deeper in the frustum span larger volumes, mimicking perspective scaling.
This warping is applied before voxel prediction begins, allowing the 3D CNN to operate over a
regular grid while producing perspective-consistent outputs.

Phase 2: Lifting 2D Features into 3D

Intuition. Rather than explicitly constructing a 3D feature volume, Mesh R-CNN leverages a fully-
convolutional 2D network to infer 3D shape by predicting vertical voxel columns directly from
Rol-aligned image features.

Step 4:

Step 5:

Step 6:

Rol Feature Extraction. The Mask R-CNN backbone provides Rol-aligned feature maps
F € RE*G*G for each object proposal, where G denotes the spatial resolution of the voxel grid
along the horizontal and vertical image axes.

2D Fully-Convolutional Prediction. A small 2D fully-convolutional network—analogous in
structure to the Mask R-CNN mask head—is applied to F' to produce an output tensor of shape
G X G x G. Here, each pixel location in the G x G grid corresponds to a column of G occupancy
logits along the depth axis of the voxel grid.

Voxel Probability Estimation. A sigmoid activation is applied to the output logits to obtain
voxel-wise probabilities:

Pl =0(ty) forall (i,jk) € [0,G)*,

where /; ji is the logit corresponding to voxel (i, j, k). The result is a perspective-aware, topology-
flexible volumetric prediction aligned with the camera frustum.

Phase 3: Voxel Supervision and Mesh Conversion

Intuition. Starting from a voxel-aligned feature volume, we now convert the predicted occupancy
grid into a coarse surface mesh. The cubify step transforms this discrete structure into a watertight
mesh suitable for graph-based refinement.

Step 7:

Voxel-Wise Binary Cross-Entropy. The voxel prediction head outputs a probability grid
pPred € [0,1]6%6*G representing the likelihood of occupancy at each voxel location.

This is trained against a binary ground-truth volume p#' € {0,1}¢*%*C using voxel-wise binary
cross-entropy:

1 d gt
gvoxel = E Z;CBCE(]?F;; ; p[gjk)
l7.]',‘

This encourages the network to produce a volumetric shape estimate that captures object
structure and supports topological variation.
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Step 8: Thresholding the Occupancy Grid. At inference time, the predicted voxel probabilities are
binarized using a fixed threshold 7 = 0.2, as used in the original Mesh R-CNN experiments on
ShapeNet and Pix3D:

d
Vi =Wply" > 1.

This produces a binary voxel occupancy grid V € {0,1}9*6*0 that defines the object’s coarse
3D shape. Note: The threshold 7 can be adjusted per dataset to balance recall and precision,
though 0.2 was found to work well empirically in the original evaluations [177].

Step 9: Cubify: Voxel Grid to Watertight Mesh. The cubify operator [177] transforms the binary
voxel volume V into a triangle mesh .# = (¥',.%) using the following procedure:

Step 9:a. Cube Placement. For each occupied voxel V;j; = 1, a unit cube is placed at grid location
(i, J,k), consisting of 8 vertices and 12 triangle faces.

Step 9:b. Face Culling. If a neighboring voxel in any of the six axial directions is also occupied,
the shared face between cubes is removed. This avoids redundant geometry and ensures
watertightness.

Step 9:c. Vertex Merging. Once all cube faces are placed and pruned, duplicate vertices and edges are
merged, yielding a coherent mesh with consistent connectivity and arbitrary topology.

Vectorized Cubify for Efficient Execution. A naive implementation of cubify would loop
over all G? voxel cells, checking and processing each one. To make this practical for end-to-end
training, Mesh R-CNN implements a fully vectorized version:
* The binary occupancy grid is convolved with small 3D kernels that detect voxel boundaries
and interior faces.
* Face presence masks are computed in parallel across the grid.
* A custom CUDA kernel emits all vertices and triangles in a batched, GPU-accelerated
fashion.
This reduces cubification time from over 300 ms to roughly 30 ms per batch (N = 32, G = 32),
making it feasible to include mesh conversion directly within the training loop.

Summary and Advantages
The perspective-aware voxel branch enables Mesh R-CNN to predict topologically diverse 3D shapes
directly from image features while preserving metric accuracy and view consistency. By warping
a canonical voxel grid into the camera frustum and anchoring each voxel to a pixel-aligned image
location, this design provides:
* Topological flexibility: Arbitrary shapes with holes, disconnected parts, etc.
* Metric grounding: Voxel predictions are made in camera space, aligned with the object’s
true scale and depth.
* Learning efficiency: The network operates over a regular cube, while projection and warping
handle geometry and alignment.
This voxel branch forms the foundation for Mesh R-CNN’s full 3D mesh reconstruction pipeline.
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Mesh Refinement Branch: Image-Guided Graph Deformation

The voxel branch provides a coarse, topology-flexible mesh extracted via cubify, but the resulting
geometry is blocky and lacks high-fidelity surface detail. The mesh refinement branch addresses
this by iteratively displacing the vertices of the cubified mesh using image-guided graph convolutions,
producing a final shape aligned with both 2D appearance and 3D structure.

Fixed-Topology Refinement Pipeline

Let .#) = (¥,&,.7) denote the triangle mesh output by cubification. This mesh has fixed topol-
ogy and vertex count determined entirely by the voxel resolution (e.g., 24°). Unlike Pixel2Mesh
(Section 23.6.1), Mesh R-CNN performs no graph unpooling or vertex subdivision. Instead, the re-
finement branch updates vertex positions across three deformation stages s = 1,2, 3, each comprising
several stages.

(a) VertAlign [177]: Each vertex Vgsfl) € R? is projected onto the image plane via the camera
intrinsics K. A Rol-aligned CNN feature map is bilinearly sampled at this projected location,
yielding an image feature vector. This feature is concatenated with the vertex’s current latent

feature vector ffsil), enriching it with 2D appearance context.

(b) Graph Convolutional Layers: Several residual GCN layers propagate and transform vertex
features based on the mesh’s fixed edge structure &. These operations aggregate information
from neighboring vertices while preserving geometric and topological coherence.

(c) Vertex Displacement Prediction: A linear MLP head predicts a 3D displacement Avfs) € R3 for

each vertex. The updated position is computed via residual addition:
VE‘Y) = VE‘PU +tanh(Av§S)),

where the tanh activation stabilizes training by bounding displacement magnitude.

This pipeline produces progressively refined meshes .# W ®, 4O, each with the same
vertex connectivity as . (%), but improved geometric fidelity.

Loss Functions

Voxel Supervision Loss. The voxel branch predicts a coarse 3D occupancy grid pPd € [0, 1]9% GG,

supervised by binary cross-entropy against a ground-truth volume p& € {0, 1}¢*6*C:

1 ShapeNet
pred o p
ﬁ/oxel = A'voxel G3 I%BCE ( ,jk ) P,jk> )/voxel = {3 Pix3D

This term encourages the model to predict a coarse but topologically valid structure that serves
as the scaffold for mesh generation.

Mesh Refinement Loss. At each refinement stage s = 1,2, 3, the model samples 5,000 points from
the predicted mesh P*) and the ground-truth mesh Q and evaluates three differentiable geometric
losses:

* Chamfer Distance:

Y min|p—ql5+— Y min 1 [lg = plI3.
pEP()q |Q| qEQ

cham — | |
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* Normal Consistency:

gt
L=y (1=
F] Iyl - [In

* Edge Length Regularization:

. 1
L= L Ivi=vill:
(i,j)eE

This term plays a crucial role in maintaining mesh integrity by discouraging very short edges
that can lead to self-intersections and degenerate faces. While its formulation mathematically
penalizes longer edges more heavily due to its squared length structure, its functional effect during
training—especially in conjunction with shape- and normal-alignment terms—is to prevent vertex
collapse. Extremely short edges often arise when adjacent vertices are pulled too close together,
causing local triangle degeneracy and overlapping surfaces. By imposing a soft constraint on edge
length, this loss nudges the mesh toward a more regular, uniformly tessellated structure, helping
eliminate artifacts like face folding, wrinkling, and self-intersections.

Empirical ablations in the paper confirm that removing this term leads to "degenerate predicted
meshes with many overlapping faces" [177], while including it significantly improves mesh quality
by preserving geometric plausibility.

Each stage’s refinement loss is:

s N A % ! 23‘, z°
20 = Avcham'iﬂc(him + )Lnormgn(ozm + Acdge e(dfie’ mesh = 3 N
s=1

Training Variants. To balance quantitative accuracy and visual quality, Mesh R-CNN defines the
following loss weight settings:

Variant ‘ Acham  Anorm )Ledge
Best (ShapeNet, Pix3D) | 1.0 0 0

Pretty (ShapeNet) 1.0 0 0.2
Pretty (Pix3D) 1.0 0.1 1.0

The “Best” variant optimizes Chamfer distance exclusively for quantitative benchmarks. The
“Pretty” variant adds smoothness terms: on ShapeNet, a moderate edge weight promotes mesh
regularity; on Pix3D, both edge and normal terms are boosted to improve robustness on real images.

Summary. The voxel loss captures coarse topological structure, while the mesh losses refine
geometry by aligning surfaces (Chamfer), smoothing normals, and avoiding degenerate edges. This
multi-stage supervision enables Mesh R-CNN to produce meshes that are both structurally sound
and visually plausible from single RGB images.

Summary

Mesh R-CNN'’s refinement branch combines fixed-topology triangle meshes from voxel predictions
with per-vertex 2D image features to produce detailed, amodal 3D shapes. Unlike Pixel2Mesh,
which deforms and subdivides a template mesh, Mesh R-CNN freezes mesh connectivity after
voxelization and performs all refinement through graph-based vertex displacements. This avoids
topological restrictions, maintains geometric consistency, and enables scalable, instance-specific
mesh generation in real-world scenes.



1674 Chapter 23. Lecture 23: 3D vision

Experiments and Ablations

Mesh R-CNN undergoes comprehensive empirical evaluation on both synthetic and real-world
data, focusing on its ability to predict accurate and topologically diverse 3D meshes from single
images. The experiments evaluate detection, reconstruction, robustness to occlusion, and the effects
of various architectural choices.

Datasets
Two benchmark datasets are used:
* ShapeNet [76]: Used for validating the mesh prediction module. It contains clean renderings
of CAD objects with known camera parameters.
* Pix3D [593]: A real-world dataset pairing 2D images with aligned 3D shapes, including
cluttered scenes and occlusions. Mesh R-CNN is the first system to tackle joint detection and
shape inference on this dataset.

Evaluation Metrics
The system is evaluated using:
* Chamfer Distance (CD): Measures point-wise distance between predicted and ground-truth
surfaces.
* Normal Consistency (NC): Penalizes misaligned surface normals.
* F1; Score: Harmonic mean of precision and recall over distance threshold .
* APpesn: For Pix3D, combines 2D detection and 3D reconstruction quality. A prediction is
correct if its class is correct, it is not a duplicate, and its Flg 3 score exceeds 0.5.

* APyoxs APnask: Standard COCO-style detection and segmentation metrics, also reported on
Pix3D.

Key Results on ShapeNet

Mesh R-CNN significantly outperforms prior work including Pixel2Mesh+, 3D-R2N2, and PSG. Its
“Best” variant achieves a Chamfer distance of 0.306 and F1; of 74.84 on the standard test set. On
the “Holes Test Set”—a curated subset of 534 objects with visible holes—Mesh R-CNN far exceeds
template-based methods like Pixel2Mesh+, which are limited by their fixed-topology assumptions.

Mesh R-CNN: ShapeNet Results
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Figure 23.27: Qualitative ShapeNet comparisons. While Pixel2Mesh+ fails to represent holes due
to spherical initialization, Mesh R-CNN produces topologically faithful reconstructions for chairs,
tables, and other perforated objects (Adapted from ICCV 2019 talk).
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Key Results on Pix3D

On real-world scenes, Mesh R-CNN outperforms all baselines (Voxel-Only, Sphere-Init, Pixel2Mesh+)
in APpeqn across nearly all object categories. Performance gains are especially notable for topologi-
cally complex classes like bookcases (+21.6%), tables (+16.7%), and chairs (+7.3%).

Mesh R-CNN: Pix3D Results

lustin Johnson

Figure 23.28: Qualitative Pix3D reconstructions. Mesh R-CNN successfully captures complex scene
structures including desks, tables, and bookshelves.

Amodal Completion

Mesh R-CNN is capable of completing occluded object geometry. As shown in the following figure,
it reconstructs sofas occluded by dogs and chairs, enabled by volumetric reasoning and perceptual
feature alignment.

Mesh R-CNN: Pix3D Results Amodal completion: predict

occluded parts of objects

hesn Predictions

April 11, 2022

Figure 23.29: Amodal shape completion: Mesh R-CNN reconstructs full geometry despite occlusion
(e.g., sofa behind dog and chair).
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Failure Modes
Errors in the 2D segmentation stage can propagate to 3D mesh prediction. The following figure
shows a bookshelf with missing compartments due to segmentation holes in the input mask.

Segmentation failures

MeSh R'CNN P|X3D RESUH:S propagate to meshes
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Figure 23.30: Failure case: segmentation noise in 2D leads to missing geometry in the 3D mesh.

Ablation Studies

The performance of Mesh R-CNN is validated through ablation studies that isolate the impact of each
architectural and supervisory component. These experiments, conducted on ShapeNet and Pix3D,
quantitatively and qualitatively demonstrate why voxel-based initialization, iterative refinement, and
geometric regularization are all essential for high-fidelity mesh prediction.

* Voxel-Only: In this setting, the mesh refinement branch is removed and the final mesh
is directly obtained via cubify on the voxel occupancy grid. While this preserves coarse
topology, the resulting meshes are blocky and lack fine detail. On ShapeNet, the voxel-only
model yields a Chamfer distance of 0.916 and an F1@0.3 score of 33.1%, significantly worse
than the full model’s 0.133 Chamfer and 86.6% F1@0.3 [177, Table 2]. Similarly, on Pix3D,
voxel-only achieves an APy of only 5.3% vs. 51.1% for the full system (Stage 1, COCO
pretraining). These results confirm that the voxel branch alone is insufficient for detailed
surface recovery; mesh refinement is indispensable.

* Pixel2Mesh+ and Sphere-Init: These baselines deform a fixed-topology template mesh
(typically a genus-0 sphere) using GCN layers. While adequate for simple shapes, they
cannot represent objects with holes or disconnected parts. On ShapeNet’s “Holes Test Set,”
Pixel2Mesh+ achieves a Chamfer distance of 0.137 and F1@0.3 of 85.5%, underperforming
Mesh R-CNN'’s 0.130 and 86.7% respectively [177, Table 2]. The performance gap is espe-
cially pronounced on Pix3D, where Mesh R-CNN achieves an APy, of 48.2% on chairs and
70.2% on bookcases in Stage 1, compared to 26.7% and 34.1% respectively for Pixel2Mesh+,
yielding substantial improvements of +21.5% and +36.1%. These results underscore the
limitations of fixed-topology deformation approaches and demonstrate the superiority of
Mesh R-CNN’s voxel-initialized pipeline, which enables prediction of meshes with arbitrary
topology, better aligned to the structural diversity present in real-world images.
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* Refinement Stages: Mesh R-CNN performs mesh refinement in three sequential stages,
each consisting of vertex-image alignment, graph convolution, and vertex updates. This
coarse-to-fine process allows the model to progressively capture global structure and fine
surface detail. While the ShapeNet Chamfer distance for the full model with three stages is
0.133 [177, Table 2], the paper does not report direct Chamfer values for single- or two-stage
variants on ShapeNet. However, a related ablation on Pix3D reveals that reducing from three
to one refinement step degrades AP from 51.1% to 48.6% [177, Table 4]. This validates
the benefit of iterative refinement. Although Mesh R-CNN does not visualize per-stage
refinement qualitatively, earlier works like Pixel2Mesh show clear improvements in surface
smoothness and structure across multiple GCN blocks [665, Figure 6], supporting the intuition
that repeated refinement is essential for accurate and detailed reconstructions.

* Loss Term Importance: The edge length regularization loss Zqge plays a crucial role in
ensuring mesh plausibility and geometric stability. While minimizing Chamfer distance
alone may improve quantitative alignment, it can produce structurally degenerate results.
Mesh R-CNN explicitly demonstrates this tradeoff: removing edge regularization (i.e., setting
Aedge = 0) yields a lower Chamfer distance of 0.133 for the “Best” model on ShapeNet,
whereas including it with ledge = 0.2 in the “Pretty” model increases Chamfer distance to
0.171 [177, Table 2]. However, this quantitative gain comes at the cost of mesh quality.
As visually shown in Figure 5, the absence of edge regularization leads to self-intersecting,
overlapping faces and triangle clumping [177, Figure 5]. On Pix3D, the “Pretty” model uses a
stronger regularization weight Acqge = 1.0, which helps preserve surface coherence and avoid
mesh collapse in cluttered scenes. These results, along with similar findings in prior work such
as Wang et al. [665, Figure 5], confirm that while edge regularization may reduce agreement
with point-based metrics, it is essential for producing visually plausible and topologically
stable meshes.

Conclusion

These experiments demonstrate that Mesh R-CNN overcomes the limitations of fixed-topology
methods by enabling variable-topology meshes, robust 3D inference from cluttered scenes, and
end-to-end optimization of 2D and 3D objectives.
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Implicit Surface Representations

From Discrete to Continuous Geometry

Traditional 3D shape representations—such as voxel grids, point clouds, or triangle meshes—explicitly
enumerate spatial elements. In contrast, implicit surface representations define a shape as the level
set of a continuous function f : R? — 0, 1. Given any spatial coordinate x € R, the function f(x)
determines whether the point lies inside, outside, or on the object’s surface. The surface is then
implicitly defined as the set {x | f(x) = 7}, where 7 is a fixed threshold—typically T = O for signed
distance fields or 7 = 0.5 for occupancy fields.

Occupancy Fields vs. Signed Distance Functions
Two widely used formulations of f are:

* Occupancy Function: Models the probability that a point is inside the object. The function
f(x) € [0,1] outputs a probability, and the surface is implicitly defined by the decision
boundary {x | f(x) =0.5}.

* Signed Distance Function (SDF): Outputs the signed Euclidean distance from point x to the
nearest surface. The sign indicates whether the point is inside (negative) or outside (positive),
and the surface is given by the zero-level set {x | f(x) =0}.

3D Shape Representations: Implicit Functions

Learn a function to classify arbitrary 3D o: RS —y {0’ 1}

points as inside / outside the shape

The surface of the 3D object is the level set {X : o(x) = %g}

Same idea: signed
distance function
(SDF) gives the
Euclidean distance to
the surface of the
shape; sign gives
inside / outside

Implicit function Explicit Shape

lustin Johnson Lecture 23 - 68 April 11, 2022

Figure 23.31: Left: explicit triangle mesh. Right: corresponding implicit field where the decision
boundary f(x) = 0.5 defines the surface.

Neural Implicit Models

Modern methods represent the function f using a small multi-layer perceptron (MLP), which maps
3D coordinates x € R to scalar values indicating occupancy or distance. This neural network can
be evaluated at arbitrary resolutions and enables high-fidelity shape representation with a compact
memory footprint. Notable examples include Occupancy Networks [425] and DeepSDF [467], both
of which learn shape fields by regressing values pointwise.
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Why Surface Extraction Is Required

Although neural implicit models are continuous and memory-efficient, they do not produce an
explicit mesh directly. Most downstream tasks—such as rendering, simulation, or surface loss
computation—require a triangulated mesh as output. This motivates dedicated extraction procedures
that convert the learned function f into an explicit surface. The next subsection introduces one
such method: Multi-Scale Iso-surface Extraction (MISE), which constructs a mesh by progressively
refining a voxel grid where the level set f(x) = 7 intersects.

Multi-Scale IsoSurface Extraction (MISE)

Occupancy Networks represent 3D geometry not as explicit meshes or voxels, but as the decision
boundary of a learned implicit function fo(p,x). Here, p € R3 is a spatial query point, and x is a
conditioning input (e.g., an image or latent vector). The function predicts whether p lies inside the
object depicted by x, typically using a threshold 7 = 0.5 to define the surface. To extract an explicit
mesh from this continuous field, Occupancy Networks use the Multiresolution IsoSurface Extraction
(MISE) algorithm [425], which adaptively refines a voxel grid around the surface and outputs a
high-resolution mesh.

Step 1 Coarse Grid Initialization: To locate the surface approximately, MISE first defines a coarse
3D voxel grid (e.g., 32%) that spans the object’s bounding box. The occupancy network f(p,x)
is evaluated at each corner of the grid. Voxels whose corners straddle the threshold 7—i.e.,
some values are above and some below—are marked active, since the surface likely intersects
them. This step efficiently identifies the region of interest without exhaustively evaluating the
entire volume.

Step 2 Octree Subdivision: Instead of densely refining the whole grid, MISE recursively subdivides
only the active voxels into eight subvoxels (octree refinement). New corner points introduced
by the subdivision are evaluated by fy, and voxels are again checked for surface crossings.
This process is repeated for N levels. The result is a spatial hierarchy that is fine near the
implicit surface and coarse elsewhere, reducing computation and memory without sacrificing
detail.

Step 3 Marching Cubes Extraction: Once the highest refinement level is reached, the Marching
Cubes algorithm [391] is applied to the final voxel grid. Each voxel’s eight occupancy values
define a binary pattern (inside vs. outside), used to index a precomputed triangulation lookup
table. Triangles are placed within the voxel by interpolating along edges where occupancy
transitions across 7. Assembled over the full grid, this produces a watertight, manifold mesh
approximating the surface.

Step 4 Mesh Refinement via Gradient Descent: The initial mesh may lie slightly off the true surface
due to grid discretization. To correct this, each vertex v € ¥ is optimized using gradient
descent to minimize the loss

galign = Z (f@ (V7X> - T)z .
vey

The gradient Vy fy(v,x) guides each vertex toward the level set fy = T, effectively “snapping”
the mesh onto the continuous surface. This removes stair-step artifacts and enhances surface
fidelity.
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Each step in MISE builds upon the last: the coarse grid identifies candidate surface regions; octree
subdivision focuses resolution near the surface; Marching Cubes generates an explicit triangle mesh;
and gradient refinement polishes the mesh using the implicit signal. The result is a high-resolution,
watertight mesh faithful to the learned 3D shape.

3D Shape Representations: Implicit Functions
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Figure 23.32: Multi-resolution surface extraction in Occupancy Networks [425]. The function is
queried across a hierarchical voxel grid, refined at boundaries, and meshed via Marching Cubes.

Implicit Surface Advantages & Limitations
Advantages
Implicit surface representations offer several key benefits:
* Resolution Independence: Surfaces can be reconstructed at arbitrary resolution with no cubic
memory growth.
* Topological Flexibility: No constraints on the number of components, holes, or genus of the
reconstructed surface.
* Differentiability: Enables accurate normals, gradient-based surface optimization, and differ-
entiable rendering.

Limitations
Despite their flexibility, implicit methods have drawbacks:
* Post-Processing Required: Explicit mesh output demands surface extraction, often involving
non-differentiable Marching Cubes or costly optimization.
* Slow Evaluation: Each point query requires a forward pass through the network; querying
millions of points is expensive.
* Supervision Demands: High-quality training requires accurate surface-level supervision,
often obtained from watertight CAD models.

Relation to Ocfrees and Voxel Refinement

As in Octree Generating Networks (OGNs), implicit representations benefit from adaptive sub-
division. Unlike OGNSs, however, implicit models do not need to explicitly store voxel con-
tents—pointwise evaluation suffices. This makes them ideal for continuous or parametric 3D
learning pipelines.
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General 3D Topics

This section outlines three foundational aspects relevant across most 3D reconstruction pipelines:
metrics for shape comparison, the choice of coordinate systems, and the major datasets used for
training and evaluation. Understanding these design decisions is critical for interpreting model
performance and selecting the right tools for the task at hand.

Shape Comparison Metrics
Voxel loU: Intuitive but Limited
In 2D image tasks, metrics like Intersection-over-Union (IoU) for bounding boxes and segmentation
masks are widely used. A natural idea is to extend IoU to 3D by voxelizing the shape and comparing
binary occupancy grids. However, this introduces several issues, as discussed by Tatarchenko et al.
[611]:
* Loss of fine structures: Thin parts (e.g., table legs or airplane wings) may disappear when
voxelized at coarse resolutions.
* Representation mismatch: Point clouds and meshes must be rasterized to voxels, introducing
approximation error.
* Metric collapse: At low overlap, IoU scores saturate near zero and fail to distinguish plausible
from implausible reconstructions.

Shape Comparison Metrics: Intersection over Union

In 2D, we evaluate boxes and In 3D: Voxel loU
segmentation masks with Problem: Cannot capture thin structures
intersection over union {loU}: Problem: Cannot be applied to pointclouds

Problem: For meshes, need to voxelize or sample

Problem: Not very meaningful at low values!
Somee .40

ﬂ.@
a8 gb oo

Figure zradit: & axarder Kirilloe Figure credit: Tatarchenka et al, "What Do Single-wiew 30 Reconstruction Metworss Learn®, CVPR 2015

Justin Johnson

Figure 23.33: Limitations of 3D IoU: (Left) Summary of common pitfalls. (Right) Visualization of
the metric failing to capture geometry differences in a kite example.

Chamfer Distance: Simple and Effective
A widely adopted alternative is the Chamfer distance (CD), which compares two point clouds by
computing nearest-neighbor distances in both directions:

P,Q ||p qll3+ mln||61 pll3-
|P| Z IQ\ )3

pep 9€ qc0?

CD works well for arbitrary 3D representations and is differentiable, making it a common loss
function. However, it is highly sensitive to outliers due to its reliance on squared ¢, distances.
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Shape Comparison Metrics: Chamfer Distance

We've already seen another
shape comparison metric:
Chamfer distance

1. Convert your prediction {w {f\__—.
o =

and ground-truth into
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2. Compare with Chamfer
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Figure 23.34: Comparison of Chamfer Distance (CD) against a ground-truth table. Both predicted
shapes are structurally similar chairs that share the same flat seat base as the table, differing primarily
in their back support. The chair with shorter back support (right) receives a lower CD of 0.15, as
its geometry more closely matches the table. The chair with taller back support (left) receives a
higher CD of 0.21, despite the backrest being the only mismatch. This illustrates CD’s sensitivity to
peripheral outliers: small localized differences—far from the main shape—can disproportionately
inflate the score.

F1 Score: Thresholded Surface Accuracy
To address CD’s sensitivity, we can compute precision and recall over thresholded nearest-neighbor
distances:

* Precision@:: Fraction of predicted points within distance ¢ of the ground-truth surface.

* Recall@t¢: Fraction of ground-truth points within distance ¢ of the prediction.
2 - Precision@t - Recall@¢

Precision@¢ + Recall @¢

¢ F1@¢: Harmonic mean:

Shape Comparison Metrics: F_J_l_§gpre

B DO B3
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and the ground-truth A
i i ”
. &
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truth point v—
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points within t of some predicted
point

Precision@t « Recall@e Prec --_J t 3/4
FPrecision@t +Recall@t Recall@t = 2;3

Fl@t = 0.70

Fl@t=2*
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Figure 23.35: F1 score-based shape evaluation: More robust to outliers and informative across
different geometric scales.
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Threshold Sensitivity
F1@t is only meaningful at the right spatial scale. Too small a ¢ penalizes fine misalignments; too
large a t washes out detail. Therefore, it is standard practice to report F1@¢ for multiple values of ¢.

Shape Comparison Metrics: Summary

Intersection over Union: -

Doesn’t capture fine structure, " @
not meaningful at low values \#
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o

Justin Johnson Lecture 17 - 75 November 4, 2020

Figure 23.36: Comparative behavior of shape metrics across thresholds. F1 curves often reveal
performance differences that CD and IoU miss.

23.8.2 Camera Coordinates: Canonical vs. View-Aligned

Cameras: Canonical vs View Coordinates
Canonical View
target target
Canonical Coordinates: Predict 3D 1T =TT
shape in a canonical coordinate 1A “”

Input

| -
system (e.g. front of chair is +z) " n -=*|]
regardless of the viewpoint of the ‘ ! I
input image Tree
View Coordinates: Predict 3D shape \.!H y HI
aligned to the viewpoint of the \--i ﬁ }i"j'
camera |

Many papers predict in canonical b
coordinates — easier to load data - I N
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Figure 23.37: Canonical (mid column) vs view-aligned (last column) coordinate systems for chair
reconstruction. The latter preserves direct alignment with the input image (first column).

Canonical Coordinates

Many 3D pipelines predict objects in a canonical orientation (e.g., front of chair = +z), which
simplifies training and dataset organization. However, this introduces a disconnect between the input
viewpoint and the output geometry, forcing the model to learn pose estimation as a side task.
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View Coordinates

Alternatively, we can predict shapes aligned with the input camera pose. This simplifies feature
alignment and improves generalization. The 2018 CVPR study by Shin et al. [565] demonstrates
that view-coordinates lead to better results on novel objects and unseen categories.

Cameras: Canonical vs View Coordinates
Canonical View

Input
P target target
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Figure 23.38: Feature alignment: View coordinates maintain spatial consistency between input
features and predicted geometry.

Cameras: Canonical vs View Coordinates
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Figure 23.39: Generalization gap: Canonical prediction overfits to training shapes. View-aligned
models perform better on novel objects and categories.

Conclusion
Unless a downstream task requires a fixed coordinate frame (e.g., assembly simulation), predicting
in view coordinates is preferred due to its alignment benefits and superior generalization.
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23.8.3 3D Datasets
Core Benchmarks for Single-View Reconstruction
3D reconstruction methods typically train and evaluate on a handful of publicly available datasets.

The two most influential are ShapeNet and Pix3D, which together define the synthetic-to-real
spectrum of object-level benchmarks.

ShapeNet
ShapeNet [76] is the dominant synthetic dataset for learning object geometry from images. It
provides clean, manifold CAD meshes with consistent alignment and dense annotations.
* Scale: Over 50,000 3D models across 55 categories. The Core v2 split uses 13 categories for
benchmarking.
» Images: Each object is rendered from 20-25 uniformly sampled viewpoints on a hemisphere.
* Advantages: Large scale, watertight geometry, and complete surface supervision.
* Limitations: Synthetic only; lacks real lighting, texture variation, or background context.
Category distribution is skewed (e.g., chairs dominate).

Pix3D
Pix3D [593] bridges synthetic geometry with real-world scenes. It aligns 3D furniture CAD models
with natural RGB images of the same object instances, captured in real environments.
* Scale: 219 unique 3D models and 17,000 real images across 9 furniture categories.
* Advantages: Contains lighting variation, clutter, and occlusion; includes ground-truth pose,
segmentation, and mesh alignment.
* Limitations: Small object coverage; only one labeled object per image; annotations are
sometimes incomplete or noisy.

3D Datasets: Object-Centric
ShapeNet

Ve
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chair chair ' b
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Many papers show results here qualitative results here, but use ground-truth
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Figure 23.40: Comparison of ShapeNet (left) and Pix3D (right). ShapeNet offers synthetic scale and
geometric cleanliness; Pix3D provides real-world variation and appearance realism.
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Training Strategy
A common pipeline is to pretrain on ShapeNet for geometry learning and fine-tune or evaluate
qualitatively on Pix3D to test robustness to clutter, occlusion, and real-world image statistics.

However, as 3D learning expands, modern benchmarks increasingly push beyond these datasets in
scale, realism, and diversity.

CO3D: Common Objects in 3D
CO3D [521] comprises internet-scale videos of common objects (e.g., bottles, toys, shoes) captured
using handheld phones. It includes camera poses and multi-view image sequences.

* Scale: Over 1.5 million frames from 50 categories; hundreds of object instances per class.

* Use Case: Training category-specific NeRFs and multi-view consistent models.

* Strengths: Real-world occlusion and lighting; dense image-based supervision.

Objaverse and Objaverse-XL
Objaverse [117] is a web-scale dataset of Creative Commons-licensed 3D assets, released to support
foundational 3D vision models and text-3D learning.
* Scale: 10M+ meshes across a wide spectrum of categories; many include textures and captions.
» Use Case: Pretraining CLIP-style vision—language—geometry models.
* Strengths: Unprecedented diversity and licensing openness; extensible for 3D GenAl.
* Challenges: Inconsistent mesh quality and scaling; preprocessing required.

ScanNet
ScanNet [113] provides RGB-D video scans of real-world indoor scenes with semantic and instance
segmentation labels.

e Scale: 1,500 scans and over 2.5 million RGB-D frames.

» Use Case: Scene-level 3D understanding, SLAM, and real-world domain generalization.

» Strengths: Photorealism, full-scene context, dense camera trajectories.

* Limitations: No watertight ground-truth meshes; reconstructed via noisy TSDF fusion.

Supplementary Datasets
While most reconstruction benchmarks focus on visual realism, other datasets support tasks like
analytic surface modeling or object detection.
* ABC Dataset [300]: 1M parametric CAD models in STEP format, designed for curvature
estimation and surface fitting. Rich in metadata but lacks textures and everyday context.
* ModelNet [705]: 12k CAD meshes across 10 or 40 categories. Still common in point cloud
classification; now largely superseded by ShapeNet.
* PartNet [439]: Over 26k 3D models with fine-grained, hierarchical part annotations—useful
for segmentation and affordance tasks.
* Objectron [3]: Short AR videos with annotated 3D bounding boxes for 15 object categories.
Captures real-world scale and motion but only provides sparse 3D annotations.

Summary

ShapeNet and Pix3D remain the standard benchmarks for mesh-level shape prediction. Newer
datasets like CO3D and Objaverse expand the task to multi-view learning and massive-scale general-
ization. Scene-level datasets like ScanNet and industrial corpora like ABC enable new frontiers in
physical realism, structure, and simulation fidelity. A robust training curriculum typically begins
with synthetic pretraining and proceeds to real-world fine-tuning.
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Neural Radiance Fields (NeRF)

Problem Setup: Novel View Synthesis with Known Cameras

What Is Novel View Synthesis?

Imagine taking several photos of a scene—say, a Lego bulldozer—from different known positions.
Now imagine rendering a new image of that same scene from a viewpoint you never captured.
This task is called novel view synthesis: the goal is to generate realistic images of a scene as it
would appear from arbitrary camera positions, given only a sparse set of observed images and their
corresponding camera poses. This problem sits at the intersection of geometry, appearance modeling,
and rendering—and is central to applications in virtual reality, 3D reconstruction, and photorealistic
simulation.

View Synthesis

Input: Many images of the same scene Output: Images showing the
(with known camera parameters) scene from novel viewpoints

."__ ey }“;‘_ ;‘; e

lustin Johnson

Figure 23.41: NeRF performs novel view synthesis: given images from known viewpoints, it renders
unseen views (example: Lego bulldozer).

Limitations of Traditional Novel View Synthesis Pipelines
Classical novel view synthesis systems follow a brittle, multi-stage pipeline rooted in explicit 3D
reconstruction [553, 558, 785]:
* Structure-from-Motion (SfM). Estimates camera intrinsics and extrinsics by matching 2D
features across views and triangulating sparse 3D keypoints.
* Multi-View Stereo (MVS). Densifies the sparse point cloud using stereo correspondence and
depth estimation across calibrated views.
* Surface reconstruction and texturing. Generates a mesh or voxel grid and back-projects
color information from input images to produce a renderable surface.
This pipeline is highly sensitive to noise. The explicit geometry produced in early stages
must support all downstream tasks; any errors in pose estimation, depth prediction, or surface
reconstruction propagate without correction.
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In practice, these systems frequently fail due to several structural limitations:

* Limited view coverage. Geometry is only recovered where multiple views overlap. Occluded
or unobserved regions remain incomplete or hallucinated [558].

* Photometric assumptions. Most SfTM-MVS methods assume Lambertian surfaces and
brightness constancy. Real-world effects such as specularities, translucency, and variable
illumination violate these assumptions, corrupting correspondence and depth estimates [779].

* Sparse inputs and wide baselines. With few input images or large viewpoint shifts, feature
correspondences become unreliable, degrading both pose and geometry [2].

* Textureless or repetitive regions. Surfaces lacking distinctive features—e.g., white walls—or
containing repeated patterns confuse matching algorithms, leading to holes or incorrect
geometry [785].

* Error accumulation and memory cost. Small mismatches, pose drift, and meshing artifacts
accumulate through the pipeline. High-resolution volumetric grids also incur steep memory
and computational costs [558].

Moreover, traditional methods commit to a single explicit surface. Modeling view-dependent
phenomena (e.g., reflections, specular highlights) requires hand-designed reflectance functions (e.g.,
BRDFs) that are difficult to estimate and rarely generalize across real-world conditions.

Neural Radiance Fields (NeRF) [369, 429] were introduced to overcome these fragilities. Rather
than reconstructing a discrete surface, NeRF learns a continuous, view-conditioned radiance field
from posed images. Novel views are rendered directly by integrating this field along camera rays via
differentiable volume rendering—yielding sharper, more consistent results even under challenging
visibility, appearance, and lighting conditions.

A New Paradigm: Neural Fields

Neural Radiance Fields (NeRF) [429] exemplify a transformative shift in view synthesis: from
pipelines that reconstruct explicit 3D geometry to models that learn neural fields, also known as
implicit neural representations. Rather than discretizing scenes into meshes or voxel grids, neural
fields represent continuous volumetric functions using the parameters of a multilayer perceptron
(MLP). These functions take spatial coordinates—optionally conditioned on direction—and output
physical scene properties such as radiance, density, or occupancy.

Scene Representation
In NeRF, the scene is defined by a function

F@ : (x7y>Z797¢) = (O',C) S RZO X [07 1]37

where (x,y,z) € R? denotes a location in world coordinates and (8, ¢) specify the viewing direction
using spherical coordinates. The output consists of:
* Volume density o: a scalar indicating the probability of light terminating (i.e., hitting material)
at the queried point.
 Radiance c: an RGB value specifying the color emitted from that point in direction (6, ¢).
This directional dependence enables the model to capture view-dependent phenomena like specular
highlights or reflections.
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Why Only Direction Matters

Notably, NeRF conditions on the viewing direction rather than the full camera pose. This is because
the color emitted at a given location depends only on the relative angle between the viewing ray and
the local surface normal—not on the absolute camera orientation. The roll angle (in-plane camera
rotation) does not affect light interaction and is therefore omitted from the input.

Training Supervision: From Images to Rays

NeRF is trained on a set of images with known camera intrinsics and extrinsics. For each pixel, a
corresponding 3D ray is defined using the camera model, and the radiance field is queried along that
ray. The goal is to learn ® such that the predicted color along each ray matches the observed pixel
value. This requires accurate knowledge of the camera parameters associated with each image in the
dataset.

Camera Parameters as a Prerequisite

For NeRF to model and render a scene accurately, it must first understand the relationship between
each 2D input image and the shared 3D world coordinate system. This requires, for every image, a
complete specification of the camera’s parameters—both internal and external. These parameters
form the geometric scaffolding that enables NeRF to associate each pixel with a corresponding 3D
ray.
* Intrinsics define the internal projection geometry of the camera and are typically encoded by
a 3 x 3 calibration matrix K for image k. This matrix specifies the focal lengths ( fy, f,) and
the principal point (cy, cy), which together determine how 3D points in camera coordinates are
projected onto the 2D image plane:

fi 0 ¢
Ki=10 f, ¢
0 0 1

Optional intrinsics may also include lens distortion parameters, though these are typically
omitted or corrected in NeRF datasets.

» Extrinsics define the pose of the camera with respect to a global world coordinate frame. They

consist of a rotation matrix Ry and a translation vector t; for image k, which together specify
a camera-to-world transformation [Ry | t;] € SE(3). This mapping is essential for expressing
3D locations consistently across all views.

These parameters are crucial because NeRF learns a function over 3D world coordinates. To
supervise this function using 2D image pixels, the model must be able to trace each pixel’s ray
through the scene—originating from the camera’s position and passing in the direction that pixel
subtends in space. Without accurate intrinsics and extrinsics, this mapping from pixel to 3D ray
cannot be defined, and the network cannot learn a consistent radiance field.

In practice, these camera parameters are not usually provided with the dataset and must be
estimated from the images themselves. Their accuracy is critical: small errors in estimated poses
result in misaligned rays, which in turn degrade the consistency of supervision across views. This
often leads to blurred reconstructions or ghosting artifacts in rendered images, especially in regions
of fine structure or high frequency detail.

Accordingly, before training NeRF, a robust geometric calibration step must be performed to
recover per-image intrinsics and extrinsics. The standard approach is to estimate these parameters
from the image set itself using classical techniques based on multi-view geometry.
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Recovering Camera Parameters via StV
As previously mentioned, in most real-world datasets, explicit camera parameters are not available.
To bridge this gap, NeRF typically relies on classical Structure-from-Motion (SfM) [553] pipelines
to estimate both intrinsic and extrinsic parameters directly from the image collection. This process
aligns the entire dataset into a unified 3D coordinate frame and enables ray construction for NeRF
training.

StM recovers this calibration through the following multi-stage optimization:

1. Feature correspondence: Local image features (e.g., SIFT) are detected and matched across
image pairs to establish 2D correspondences—keypoints that observe the same 3D point across
views.

2. Triangulation: Using matched keypoints and camera projection geometry, 3D point locations
are triangulated, resulting in a sparse point cloud that defines the underlying scene structure.

3. Bundle adjustment: A global nonlinear optimization jointly refines all estimated camera
parameters and 3D points by minimizing reprojection error. This adjusts the intrinsics,
extrinsics, and 3D structure to best explain the observed 2D matches across the dataset.

The result is a calibrated camera model for each image, typically consisting of a pose & =
(R, t;) € SE(3) and an intrinsics matrix K. Together, these determine the origin and direction of
every ray traced from pixel to world, anchoring the supervision of NeRF’s radiance field.

However, SfM is not infallible. Challenging image regions—such as occlusions, textureless
surfaces, or large baselines—can lead to pose drift and imperfect alignments. These miscalibrations
cause ray inconsistencies across views and may lead to visual artifacts such as ghosting or blur. To
address this, many NeRF variants treat the poses as learnable parameters and jointly optimize them
alongside the radiance field, refining camera geometry in tandem with appearance modeling.

With camera calibration complete, each pixel in each training image defines a 3D ray in world
space. The next stage is to evaluate the neural radiance field along these rays using differentiable
volume rendering.
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Volume Rendering: From Rays to Pixels

Once calibrated rays are constructed from the camera intrinsics and extrinsics, the NeRF pipeline
proceeds to synthesize pixel colors by simulating how light accumulates along each ray. This is
achieved through a process known as volume rendering, a classical technique from graphics that
models a ray traversing a semi-transparent scene.

Volume Rendering

Abstract away light sources, objects.
For each point in space, need to know:

(1) How much light does it emit? Point ovedr:
(2) How opaque is it? o € [0,1] (1) Emits red light in
hemisphere
O {2) Complete opaque
Point in empty space: c=1
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transparent ¢ = 0 - . .
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Figure 23.42: Volume rendering setup from the pinhole camera model. Light reflects off surfaces in
the scene and enters the camera through a pinhole, projecting onto a virtual image plane. The key
questions at each sampled 3D point are: (1) how much light does it emit? and (2) how opaque is it?
Points on the object (e.g., car) emit colored light and are opaque (¢ = 1), while empty space emits
no light and is fully transparent (o = 0).

To determine the color of a single pixel, NeRF casts a ray from the camera’s optical center into the
3D scene, simulating how light accumulates along that path. Under the pinhole camera model, every
ray originates from a single 3D point—the camera center—and passes through a specific location on
the image plane. This ray is parameterized as:

r(t)=o0+1td, 1€ [ty tf],

where:
» 0 € R? is the ray origin in world coordinates. It corresponds to the physical center of

projection—the point through which all rays pass—and is computed for image k from its
extrinsics:

0 = —R,—{rtk.

This expression inverts the camera pose transformation [Ry | t;], yielding the camera’s location
in the global coordinate frame.

* d € S? is the unit direction vector that points from the camera center o through the center
of pixel (u,v) on the image plane. It is carefully constructed so that the ray intersects the
sub-pixel center of the target pixel, ensuring accurate alignment and avoiding aliasing artifacts.
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To compute d, NeRF inverts the pinhole projection model in three steps:

1. Target the pixel center: Pixels are indexed by integer raster coordinates (u,v) € Z?, which
reference their top-left corners. To model light paths more precisely, NeRF offsets these
coordinates by +%, aiming the ray through the center of the square pixel:

u—&—%
Ppix = V+%
1

This homogeneous 2D point lies on the image plane and acts as the projected target for the ray.
2. Unproject to camera space: The camera intrinsics matrix K € R3*3,

fi 0 ¢
K=10 f5 ¢f,
0 0 1

encodes the focal lengths and principal point. Applying the inverse intrinsics yields a direction
vector in the camera’s local 3D frame:

deam = Kﬁlppix-

This vector points from the camera origin through the pixel center, intersecting the virtual
image plane at depth z = 1.

3. Transform to world space and normalize: To express the ray direction in global coordinates,
we rotate the camera-frame direction using the inverse rotation:

dyorld = RTdcama d= M-

||dworld HZ

The resulting ray r(z) = o+ td travels through two key points: the camera center o and the 3D
location that maps—via projection—to the center of pixel (u,v). This construction ensures that each
pixel defines a unique 3D ray that is both photometrically accurate and geometrically aligned.

* t € [ty,tf] is the depth parameter along the ray. Each value of ¢ specifies a point r(¢) in 3D
space. The interval bounds the segment of the ray used for rendering: ¢, avoids camera-adjacent
voids, and 7, limits traversal to a relevant portion of the scene.

This setup defines the geometric foundation for NeRF’s differentiable volume rendering pipeline:
each pixel gives rise to a calibrated 3D ray that queries the scene via learned color and density
functions, enabling accurate supervision from multiview imagery.

The color of a pixel is modeled as a continuous accumulation of radiance along its viewing ray:
ty
“o)= [ T0) o) clr().d)dr.
tn ~—~ ——— ——~
transmittance  density radiance

This integral aggregates light contributions from all points r(z) along the ray segment between a near
bound 7, and far bound 7. At each infinitesimal location, the integrand quantifies how much light is
emitted, how much material is present, and how likely that light is to reach the camera unoccluded.
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* The volume density o(r(t)) € [0,1] acts as a soft occupancy field—higher values indicate
denser or more opaque regions, while ¢ = 0 corresponds to empty space.
s The radiance c(r(t),d) € [0,1] gives the RGB color emitted from point r(z) in viewing
direction d.
* The transmittance T(t) € |0, 1] denotes the survival probability of light traveling from the
camera to depth ¢, without being blocked by foreground matter.
Why an integral? Because the scene is modeled as a continuous volumetric field, there is no single
surface to sample. Instead, light can originate from anywhere along the ray. Each point emits some
color, attenuated by the surrounding medium, and contributes only a tiny amount. The integral sums
up these infinitesimal contributions from all depths ¢ € [t,,,¢], forming a composite pixel color. This
approach mirrors how light propagates through translucent media in physics and allows smooth
transitions, semi-transparent edges, and view-dependent blending.

More precisely, o - cdt represents the amount of light emitted by a small segment dr around r(¢),
and T (¢) scales this emission based on how much of it survives traversal through the density field in
front of it. The closer the point is to the camera, the less likely it is to be occluded, making early
segments contribute more strongly. Distant points can only affect the pixel color if transmittance
remains high—i.e., if the path before them is transparent.

The transmittance term is computed as an exponential of the accumulated density:

T(t) = exp (- /t tG(r(s))ds) .

This expression is a solution to the radiative transfer equation under absorption-only conditions and
follows the Beer—Lambert law. It encodes the idea that every unit of density along the path slightly
diminishes light transmission. The more material encountered before 7, the smaller 7' (¢) becomes.
Thus, occlusion emerges naturally from integration—no hard surfaces or visibility heuristics are
needed.

This continuous, differentiable formulation enables NeRF to produce photorealistic renderings with
accurate soft shadows, translucency, and gradual occlusion. It replaces discrete surface modeling
with an elegant volumetric framework in which geometry and appearance emerge implicitly from
learned density and radiance fields.

Discretizing the Rendering Equation: Stratified Sampling and Aloha Composifing
Evaluating the continuous integral is analytically intractable for neural fields. NeRF approximates it
by sampling N depths 71, ...,y uniformly or via hierarchical importance sampling along the ray. At
each sampled point r(z;), the MLP predicts:

o, :=o(r(t)), ¢ :=c(r(y;),d).
Assuming that density is constant over the small interval [;,;11], we define:
O ==t 1—t, a; =1 —exp(—0;5;),

where ¢; approximates the opacity—the probability that the ray terminates inside segment i.
The discrete transmittance 7; up to segment i is thus:

i—1 i—1
T; = H(l — 0j) =exp (‘ Z 6161> ’
j=1

j=1
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the probability that light successfully traverses all prior segments without being absorbed.
With these components, the rendered pixel color is approximated as:

N
Cf(r) = ZY}-a,--ci.
i=1

This rule is mathematically equivalent to front-to-back alpha compositing, where each semi-
transparent segment contributes its color, modulated by its own opacity and the transparency of

everything in front.

Color observed by the camera given

Volume Rendering by volume rendering equation:
Abstract away light sources, objects. tr L )
For each point in space, need to know: ) = T(¢) c(r(t), d)dt

t

(1) How much light does it emit? n

(2) How opaque isit? o € [0,1]

Ray origin -
O
Current point: t

——— O o
Near point: t,
Transmittance: How much light from the

Far point: t;

p?ran'!emr'ze aach ray 3% orisin plos current point will reach the camera?

direction: r(t) = 0 + td . P
Volume Density is o(p) € [0,1] : How opaque is the current point?
Color that a point p emits in direction d Color: What color does the current pl:lil"lt emit
isc(p,d) € [0,1]® along the direction toward the camera?

lustin Johnson

Figure 23.43: Discrete volume rendering along ray r(r) = o +td. The network predicts density
o; and color ¢; at N points sampled along the ray. Each segment’s contribution is attenuated by

accumulated transmittance 7; and its own opacity o;.

Neural Radiance Fields (NeRF)
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direction: r(t) = o + td C(r) = Z T;(1 — exp(—0;:6,)) c;
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i ite i i i Mildenhall et al, "Representin,
f.‘ulor thata pOII‘IT_iD emits in direction d T; = exp (— Z gj é}) Seenes as Neural na;mnce Fi:lk
isc(p,d) € [0,1] for Viiew Synthesis’, ECCV 2020

lustin Johnson

Figure 23.44: Discrete approximation of volume rendering along a ray r(¢) = 0 +rd. The network
samples N = 4 points at depths 1,1, 3,14 within the interval [t,,/], spaced by intervals &; = t;;1 — ;.
For each point r(7;), the MLP predicts a density o; and view-dependent color ¢;. These are combined
via alpha compositing to produce an estimated pixel color Cf(r), which is supervised (i.e., compared
to % (r)) to match the ground truth image color via ¢, loss.



23.9 Neural Radiance Fields (NeRF) 1695

From Pixel Color to Supervised 3D Sampling

Once aray r(t) = o+rd is constructed for pixel (u,v), NeRF must supervise the unknown 3D scene
based solely on the pixel’s ground-truth color €' (r) € [0, 1]3. There is no direct annotation for which
points along the ray contain surfaces or emit light; supervision is available only at the endpoint of
the entire rendering process. The core insight of NeRF is that even this sparse signal is sufficient: if
a radiance field is to match all observed views, it must explain how light accumulates along each ray
to produce the correct color.

To turn this sparse supervision into dense learning signal, NeRF samples N 3D points along the ray.
Although these points differ in location r(z;), they all share the same viewing direction d, which
defines how color should vary based on perspective. Each point is passed to a neural network fj,
yielding:

(] G(l'(l‘l')), C; = C(l’(ti),d),

where o; € R is the predicted volume density and ¢; € [0, 1]? is the view-dependent color.
These are combined via front-to-back alpha compositing to produce an estimated pixel color:
R N i—1
(f(l’) :ZT,"O!,"CI‘, o = l—exp(—GiSi), T,'ZH(I—OCJ'),
i=1 j=1
where §; = t;,1 — t; is the spacing between samples.

This entire pipeline is fully differentiable. NeRF defines an ¢, reconstruction loss between the
rendered color and ground truth:

zecon = H%A(r) —Cg(r)H§7

and uses backpropagation to update the MLP weights 8. Each pixel thus supervises not just a
point sample, but an entire ray of 3D locations, encouraging the network to learn a coherent global
representation.

Hierarchical Sampling: Coarse-fo-Fine Supervision and Loss

To allocate computation effectively along each ray, NeRF employs a coarse-to-fine sampling strategy
using two separate but jointly trained MLPs. The first stage explores the ray with uniform coverage,
while the second concentrates on promising regions—typically those with higher predicted opacity.
Both networks are optimized with ground-truth pixel color supervision, allowing the model to learn
geometry and appearance jointly.

* Coarse stage (exploration): NeRF begins by drawing N, samples along the ray r(¢) = o +1rd
using stratified sampling. The interval [t,,,7¢] is divided into equal-width bins, and one depth
value is jittered uniformly within each:

i—1 i

ti~U tr—t I§
i Nc(f n)+naNc

(tf_tn)+tn .

Each corresponding 3D location r(z;) is passed through the coarse MLP, which predicts
density o; and radiance ¢;. These are composited into an initial pixel color estimate Gcoarse (T),
supervised by the known ground-truth color %’(r) from the training image:

cgcoarse = H(g\coarse(r) - %(r) Hi :
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* Fine stage (refinement): The coarse compositing weights
wi=T;- o

define a piecewise PDF over the ray that emphasizes surface-adjacent regions. From this
distribution, Ny additional samples {t}} are drawn. These fine samples are merged with the
coarse ones, and the union is passed to a second fine MLP, which outputs improved density
and color estimates. These are composited into a higher-resolution prediction Cffme(r), also
supervised via a reconstruction loss:

5 2
fﬁne = Hcfﬁne(l‘) — ‘K(r) H2
The final training objective combines both stages:

zotal = o%:oarse + gﬁne'

This coarse-to-fine architecture allows the coarse MLP to guide sampling adaptively—allocating
more effort where surfaces are likely to be.

Why This Works: Learning Geometry from Pixel Colors

At a glance, NeRF’s approach seems almost paradoxical: the model has no knowledge of surfaces,
yet learns to infer geometry purely from pixel-level color supervision. This works because each
pixel’s color constrains the entire ray beneath it. By rendering sampled 3D points into a single
prediction ?(r), NeRF creates a differentiable bridge between thousands of possible 3D explanations
and a single observed RGB triplet.

* Supervision Distribution: Although we supervise only one color per ray, gradients flow
through all points that contributed to the composited prediction—distributing signal to every
sample r(z;).

* Emergent Surfaces: The only way to consistently satisfy these ray-level constraints across all
views is to assign high density o to points where many rays agree on a visual transition—i.e.,
surfaces.

* Efficient Focus: Hierarchical sampling ensures that fine-level computation is concentrated
around informative regions, reducing noise and improving convergence.

Together, this architecture allows NeRF to transform sparse RGB supervision into a globally consis-
tent volumetric reconstruction. It replaces dense 3D supervision with a powerful ray-based training
signal that not only enables photorealism, but also implicitly discovers geometry.

A Differentiable Rendering Engine for View Synthesis
The NeRF rendering pipeline is fully differentiable: all operations—depth sampling, MLP querying,
and the computation of per-sample density o;, color ¢;, opacity o, transmittance 7;, and accumulated
pixel color—are smooth and continuous. This enables the system to be trained end-to-end via
gradient descent, minimizing a reconstruction loss between predicted colors 4 (r) and ground-truth
image values € (r).

At inference time, this same mechanism enables photorealistic novel view synthesis: given an
unseen camera pose, rays are cast through each pixel and evaluated against the learned radiance field
to render new, realistic images of the scene.
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To support such high-fidelity synthesis, the underlying model must capture detailed scene
geometry and appearance, including fine spatial structure and subtle view-dependent effects. NeRF
achieves this by modeling the radiance field as a continuous function parameterized by a compact
Multi-Layer Perceptron (MLP), which maps each sampled 5D coordinate (x,d) to a scalar volume
density ¢ and a direction-conditioned color c.

In practice, this modeling approach must be paired with careful input parameterization and
architectural choices to ensure stable optimization and accurate reconstruction. The next subsection
introduces the key components—starting with how raw input coordinates are encoded and how the
radiance field network is structured to support expressive, high-quality view synthesis.

Practical Implementation Details

To realize photorealistic view synthesis in practice, Neural Radiance Fields (NeRF) rely on careful
architectural design choices and encoding strategies that address the limitations of standard neural
networks in representing fine spatial and angular detail. We begin by discussing the core technique
that enables high-frequency reconstruction—positional encoding—and then present the structure of
the neural network used to model the radiance field.

Positional Encoding for High-Frequency Detail

A key challenge in training Multi-Layer Perceptrons (MLPs) to represent complex 3D scenes is their
inherent spectral bias—a tendency to learn and prioritize low-frequency (smooth) functions during
optimization [502]. This empirically common phenomenon limits an MLP’s ability to accurately
reconstruct fine geometric detail or rapidly varying texture when operating directly on raw spatial or
angular coordinates.

In the context of NeRF, this bias manifests as blurry surfaces, oversmoothed edges, and a
general failure to capture high-frequency content such as thin structures, sharp contours, or specular
highlights. Though MLPs are universal function approximators, their convergence rate for high-
frequency components is significantly slower [506]. This results in poor early representations
and long training times for high-resolution detail, with the network often getting stuck in smooth
approximations of the scene.

This limitation stems from the inductive properties of MLPs: small changes in the input—such
as a slight shift in spatial location or viewing angle—tend to produce small changes in the output,
especially when the input space is unstructured and low-dimensional. As shown in Fourier-domain
analyses of coordinate-based MLPs, deeper or wider networks alone do not resolve this issue [502,
506]. High-frequency functions require precise, localized output variations, which are difficult
to express using standard activation dynamics and gradient descent unless the input is carefully
encoded.

To address this, NeRF introduces a simple yet powerful solution: positional encoding. Instead
of feeding raw 3D coordinates x € R? and 2D viewing directions d € S? directly into the MLP,
each scalar input value p is transformed by a fixed encoding function y(p), which projects it into a
high-dimensional space of sinusoids at exponentially increasing frequencies:

v(p) = (sin(2077:p),cos(207tp), .. .,sin(ZL_lnp),cos(ZL_lnp)) .

This transformation is applied independently to each component of x and d, resulting in a total
input dimensionality of 3(2L+ 1) 4+ 3(2L' + 1) when using L frequency bands for position and L’ for
direction.



1698 Chapter 23. Lecture 23: 3D vision

The motivation behind this transformation is grounded in Fourier analysis. Positional encoding
effectively “injects” a spectrum of basis functions into the input space, allowing the network
to represent high-frequency signals through linear combinations of these sinusoids in the first
layer. Rather than forcing the MLP to learn such frequency structure through deep nonlinear
compositions—which is inefficient and prone to convergence issues—this encoding enables the
model to access high-frequency expressivity from the start.

Empirical results confirm the importance of this technique: models trained without positional
encoding exhibit significantly reduced visual fidelity, slower convergence, and inability to recover
fine detail. In contrast, networks using positional encoding successfully reconstruct sharp surfaces,
reflective materials, and detailed textures [429]. Subsequent theoretical analysis shows that positional
encoding modifies the neural tangent kernel (NTK) of the MLP to increase its bandwidth and flatten
its spectrum, improving gradient flow and allowing more balanced learning of low- and high-
frequency components [604].

Intuition Behind Positional Encoding

To grasp the role of positional encoding in NeRF, it helps to consider how an MLP "sees" space.
When fed raw spatial or angular coordinates, the network operates in a smooth, low-frequency
regime: small changes in input tend to produce only small changes in output. While this behavior is
appropriate for modeling gradual variations, it becomes a liability when the scene contains sharp
edges, fine textures, or high-frequency lighting effects. In such cases, the desired output—radiance
or density—may change rapidly over very small spatial intervals. Standard MLPs struggle to express
such localized variation due to their spectral bias toward smooth functions.

This limitation arises because MLPs must synthesize high-frequency behavior through deep
compositions of nonlinearities, which is both inefficient and slow to converge. As a result, renderings
trained on raw coordinates tend to exhibit blurred contours and oversmoothed detail—especially
near thin structures or specular surfaces.

Positional encoding addresses this problem by enriching each scalar input with a fixed set of
sinusoidal functions at multiple frequencies:

yY(p) = (sin(2oﬂp),cos(207rp), . .,sin(2L717rp),cos(2L*17rp)) .

This mapping transforms the input space such that small changes in position or direction can
produce large, expressive shifts in the encoded representation—especially in the higher-frequency
components. Crucially, this does not destabilize the network; rather, it gives the MLP access to a
spectrum of variation that it can combine linearly in the first layer, allowing it to model both smooth
regions and sharp transitions with ease.

An intuitive analogy is that of a painter. Feeding raw coordinates into an MLP is like giving an
artist only broad brushes: suitable for outlining large shapes, but incapable of capturing intricate
structure. Positional encoding equips the model with a complete set of tools—from coarse rollers
to ultra-fine brushes—so it can render both global layout and detailed texture. The high-frequency
“ink” is already embedded in the input; the MLP need only learn how to blend it.

Importantly, positional encoding does not increase the model’s depth or parameter count. Instead,
it reformulates the input representation to align with the underlying complexity of the radiance field.
By embedding frequency structure directly into the input space, it enables the network to express
high-detail content from the very beginning of training—accelerating convergence and dramatically
improving reconstruction fidelity.
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Network Architecture and Functional Mapping

The NeRF network is a fully-connected MLP with ReL U activations. Its design reflects a structural
separation between geometric and appearance representations, achieved via a two-stage processing
pipeline.

The input 3D location x, encoded via y(x), is passed through a series of 8 layers, each with 256
units and ReLU activations. A skip connection concatenates the original positional encoding y(x) to
the output of the 4th layer. This first stage outputs two quantities:

* A scalar volume density o, representing how likely the ray is to terminate at that location.

* A learned feature vector h € R?>% representing local geometry and appearance context.

To model view-dependent effects, the encoded viewing direction y(d) is concatenated with
h, and passed through an additional 1-hidden-layer MLP (with 128 units) to predict RGB color
cc 0,1

This separation allows the network to maintain consistent density across all directions while
permitting directional variation in emitted color, enabling the modeling of non-Lambertian surfaces
such as specular highlights and reflections.

Neural Radiance Fields (NeRF): Network Architecture

Fully-connected network: Input
position x and direction d, and output
volume density and RGB color

i)

+ o
i)
o —» 236 —»> 256 —» 2o6 —» 256 —»> 250 —» 256 —» 256 —> 236 256 —» 128 ---» RGR
+
Rather than pass raw xyz values to network, )

instead use positional encodings: -

y(p) = (sin(2°mp), cos(2%mp), ..., sin(24 1mp), cos(2t"1mp))

Mildenhall et al, “Representing Scenes as Neural Radiance Fields for View Synthesis”, ECCV 2020

lustin Johnson Lecture 23 - 98 April 11, 2022

Figure 23.45: NeRF network architecture. Positional encodings are applied to both position and
viewing direction inputs. The MLP first predicts volume density and intermediate features from
position, then conditions RGB color on the viewing direction.

Together, the positional encoding and network design allow NeRF to map input rays to realistic
colors with high accuracy.
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Training vs. Inference: Pixel-Level Supervision and Scene Reconstruction

Although NeRF is trained using a loss defined at the level of individual image pixels, its learned rep-
resentation is fundamentally volumetric: a continuous 5D field that maps 3D spatial locations and 2D
viewing directions to color and density. A natural question arises—how can independent pixelwise
comparisons to ground-truth RGB values yield a globally consistent 3D scene representation?

The key insight is that each pixel, while evaluated in isolation during training, arises from a
unique ray that passes through the shared 3D environment. As the model is optimized to match
the color seen along each ray, it must learn a radiance field whose volumetric structure explains
not just isolated pixels but the appearance of entire scenes across multiple views. If the model
were to hallucinate geometry or color in one ray that contradicts observations in another, the
accumulated error across views would remain high. Thus, consistency across views serves as a
powerful regularizer: even though supervision is pixel-local, the shared volumetric MLP must
reconcile all views into a coherent underlying scene.

Training Procedure

NeRF is trained on a dataset of posed RGB images {Ik}kK: 1» Where each image I; is accompanied by
known camera intrinsics and extrinsics. For each scene, a dedicated neural radiance field is trained
from scratch using all available views—unlike models trained across multiple scenes, NeRF does
not require train/validation/test image splits for learning. Instead, novel view synthesis is evaluated
on held-out camera poses after scene reconstruction is complete.

At each iteration, a batch of camera rays r = 0 + td is randomly sampled from the set of all
training pixels across all images. Each ray is then evaluated using a two-stage hierarchical sampling
scheme. In the first pass, N, coarse depth samples {#;} are drawn along the ray via stratified sampling,
and the corresponding 3D points r(#;) are passed through the MLP to predict volume densities o; and
view-dependent colors ¢;. The coarse rendering Cfc(r) is computed using discrete volume rendering.

These weights are then used to inform a second round of importance sampling, focusing on
regions of high density. An additional Ny fine samples are drawn along each ray and passed through
a separate MLP (or the same MLP reused) to produce the final rendering ‘ff(r). Both renderings are
supervised against the ground-truth pixel color % (r) using an ¢, loss:

ﬁrain = Z [H%\c(r) _Cg(r)Hi + ‘

rec#

Gr) 23]

where 4 is the minibatch of rays. This loss is minimized via gradient descent, with gradients back-
propagated through the entire rendering pipeline—including MLP evaluations, opacity computation,
and alpha compositing. Over time, this process encourages the network to discover a coherent 3D
radiance field that explains all views simultaneously.

Although the training signal is defined at the pixel level, the MLP must synthesize a global
function that satisfies all camera rays across the scene.
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Inference Procedure
At inference time, NeRF renders novel views from previously unseen camera poses. Given new
camera intrinsics and extrinsics—either provided as ground truth or estimated via structure-from-
motion tools like COLMAP—a ray is cast through the center of each pixel in the desired output
image resolution. For each ray r(¢) = o+ td, NeRF applies the same stratified and hierarchical
sampling strategy used during training.

Sampled 3D points along the ray are passed through the trained MLP to predict volume densities
o; and view-dependent colors ¢;. These are combined via discrete volume rendering:

N
(5(1’) = ZT,"O!,"CI‘,
i=1

where o; and 7; represent the segment opacity and transmittance, respectively. This process is
repeated independently for every ray—effectively synthesizing the image pixel by pixel using only
forward passes through the network.

Inference is parallelizable across rays and pixels, making it well-suited for GPU execution.
However, it remains computationally intensive: each output frame requires evaluating hundreds of
MLP queries per pixel. This results in high-fidelity but slow rendering, with original NeRF models
taking tens of seconds per image on modern GPUs for small scenes up to days for more complex
and high-resolution one on weaker GPUs.

Why Pixel-Level Supervision Works

Although NeRF is trained with per-pixel supervision, it does not learn isolated 2D mappings for each
image. Instead, the volumetric rendering process couples every pixel to a ray that traverses the 3D
scene, and these rays intersect and overlap across views. As a result, the color of each pixel depends
on the shared radiance field that defines density and appearance throughout space.

This coupling turns local pixel errors into global constraints: an incorrect prediction at any
point along a ray affects not just one pixel, but all others whose rays pass through the same region.
Minimizing the total photometric loss across all training images therefore requires the model to
discover a single, consistent radiance field that simultaneously explains all views. In this sense,
NeRF performs multi-view 3D reconstruction not through explicit geometry, but through radiance
field alignment guided by view-dependent color integration.

The shared MLP must assign densities and colors that are jointly plausible across view-
points—encoding accurate 3D structure, coherent surface geometry, and realistic appearance effects
such as specularities or occlusions. Crucially, this global consistency acts as an implicit regularizer:
if a sharp edge or fine surface detail is modeled inconsistently across views, the resulting rendering
error remains high and drives the network to correct it. This prevents the network from overfitting to
individual images and enforces smooth, physically plausible reconstructions.

Outlook

The training and inference procedures outlined above empower NeRF to produce photorealistic
images from novel viewpoints, relying on learned volumetric representations encoded within a neural
network. However, this expressivity comes at a significant computational cost: each frame requires
casting thousands of rays and performing hundreds of MLP evaluations per pixel, both during
optimization and at test time. In the parts that follow, we examine NeRF’s empirical performance
through experiments and ablations, before turning to its limitations and the growing body of work
aimed at improving efficiency, scalability, and generalization.
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Experiments and Ablation Studies

To validate the NeRF architecture, Mildenhall et al. [429] conducted extensive experiments on both
synthetic and real-world datasets. These included comparisons with prior methods and ablation
studies to isolate the contributions of key design components.

Quantitative and Qualitative Evaluation
To assess the effectiveness of NeRF, Mildenhall et al. [429] evaluated their model on two distinct
datasets:

* Realistic Synthetic 360°: A custom Blender-rendered dataset of eight scenes, each containing
complex geometry and non-Lambertian materials. Each scene provides 100 training views
and 200 held-out test views at a resolution of 800 x 800 pixels.

* Real Forward-Facing: A real-world dataset derived from handheld captures of eight in-
door/outdoor scenes. These images were processed with COLMAP to extract camera poses,
and 1/8 of the views were held out for evaluation.

Evaluation used the following standard image quality metrics:

* PSNR (Peak Signal-to-Noise Ratio): A log-domain pixel-wise fidelity metric, expressed in
decibels. Higher values indicate better reconstruction accuracy.

* SSIM (Structural Similarity Index Measure): A perceptual metric capturing local luminance,
contrast, and structure similarity. Ranges from O to 1; higher is better.

* LPIPS (Learned Perceptual Image Patch Similarity): Measures perceptual similarity using
deep features. Lower values indicate better perceptual fidelity.

Method PSNR+ SSIMt LPIPS |
SRN [573] 2226 0846  0.170
Neural Volumes (NV) [389]  26.05  0.893  0.160
LLFF [428] 2488 0911  0.114
NeRF [429] 31.01 0947  0.081

Table 23.1: Quantitative comparison on the Realistic Synthetic 360° dataset [429]. NeRF achieves the
highest performance across all metrics, demonstrating superior geometric reconstruction, perceptual
realism, and high-frequency detail.

These results highlight NeRF’s significant improvement over prior methods. Compared to SRN and
LLFF, NeRF improves PSNR by more than 6 dB, increases structural similarity, and cuts LPIPS
perceptual error nearly in half.
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Materials

Ground Truth NeRF (ours) LLFF [28] SRN [42] NV [24]

Figure 23.46: Qualitative comparisons on held-out views from the Realistic Synthetic 360°
dataset [429]. NeRF recovers intricate structures and materials (e.g., Lego gears, Microphone
grille) and captures non-Lambertian effects. In contrast, LLFF exhibits ghosting and aliasing, while
SRN and NV yield blurred or distorted geometry.

Ablation Studies

To understand which components most influence NeRF’s performance, the authors conducted a series
of ablations on the Realistic Synthetic 360° dataset. The study evaluated the effects of disabling
positional encoding (PE), view-dependence (VD), and hierarchical sampling (H), as well as reducing
the number of input views and adjusting frequency hyperparameters.
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Table

Row Configuration L #mg (N:,N;) PSNR
1 NoPE,VD,H - 100 (256,-) 26.67
2 No Positional Encoding - 100 (64, 128) 28.77
3 No View Dependence 10 100 (64, 128) 27.66
4 No Hierarchical Sampling 10 100  (256,—)  30.06
5 Far fewer images 10 25 (64, 128) 27.78
6 Fewer images 10 50 (64,128) 29.79
7 Lower frequency (L =5) 5 100 (64,128) 30.59
8 Higher frequency (L=15) 15 100 (64,128) 30.81
9 Full Model (baseline) 10 100 (64,128) 31.01

23.2: Ablation study from [429]. Each row disables or modifies one component of the full

model. PE = Positional Encoding, VD = View Dependence, H = Hierarchical Sampling. All metrics
averaged across 8 scenes.

Key observations:

Positional Encoding (PE) is indispensable for capturing high-frequency details such as edges,
textures, and specular boundaries. Disabling PE (Row 2) reduces PSNR from 31.01 to 28.77,
a 2.24 dB drop. This confirms that raw 3D inputs (xyz) are insufficient due to the spectral bias
of MLPs, which favor learning smooth, low-frequency functions. PE provides the network
with high-frequency sine and cosine basis functions, significantly improving representation
capacity.

View Dependence (VD) enables NeRF to model view-dependent effects like specular high-
lights and non-Lambertian reflectance. Removing view direction inputs (Row 3) yields a
PSNR of 27.66, a 3.35 dB drop from the full model. Visually, surfaces appear matte and
unrealistically static across viewpoints. This component is essential for photorealism and
dynamic lighting effects.

Hierarchical Sampling (H) improves both accuracy and training efficiency by allocating
more samples to high-opacity regions. Disabling it (Row 4) leads to a moderate drop of 0.95
dB (PSNR 30.06 vs. 31.01) and increases training cost. While the rendering quality remains
competitive, the uniform sampling strategy is computationally inefficient, often allocating
samples to empty space, causing more noisy predictions.

Number of Input Views directly affects reconstruction quality. Reducing the number of input
images from 100 (Row 9) to 50 (Row 6) or 25 (Row 5) lowers PSNR to 29.79 and 27.78,
respectively. Notably, even with only 25 views, NeRF still outperforms all prior baselines
evaluated on 100 views, demonstrating robustness. However, performance declines in occluded
or textureless regions, especially under extreme sparsity.

Frequency Parameter L controls the number of sine/cosine frequency bands in PE. Lowering
L to 5 (Row 7) leads to underfitting, decreasing PSNR to 30.59. Increasing L to 15 (Row 8)
slightly reduces performance (30.81), likely due to overfitting or gradient instability. Thus,
L =10 (Row 9) offers a well-balanced tradeoff between expressivity and stability.
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Figure 23.47: Ablation visualization from [429]. Without view dependence, specular highlights
disappear, e.g., on the bulldozer tread. Without positional encoding, the model fails to recover
high-frequency geometry and textures, leading to blurred reconstructions.

These experiments validate the necessity of all three architectural innovations—Fourier-based
input encoding, view-dependent radiance modeling, and hierarchical sampling—for achieving
NeRF’s high-fidelity results. Removing any one of these leads to degraded reconstructions and/or
reduced realism, and sometimes even to slower convergence.

Limitations of the Original NeRF Architecture

Despite the seminal impact of NeRF on 3D view synthesis, the original architecture introduced
by [429] exhibits several foundational limitations that have since motivated a wave of follow-up
research. These limitations are not isolated flaws but rather systemic consequences of NeRF’s core
design—a monolithic, scene-specific MLP that implicitly encodes geometry and radiance in millions
of uninterpretable parameters. This subsection outlines six key bottlenecks, each of which inspired
entire subfields of NeRF variants and accelerations.

1. Computational Inefficiency: Prohibitive Training and Inference Time

The most immediate drawback of NeRF is its extreme computational cost. Training a single scene
typically requires tens to hundreds of GPU-hours, rendering it impractical for real-time or interactive
use. Even inference is slow: to render a single image, NeRF must trace thousands of rays and query
the MLP hundreds of times per ray, leading to total long runtimes per frame. This high latency renders
applications such as virtual walkthroughs, VR/AR environments, or online editing infeasible without
significant acceleration strategies. As we will see in subsequent parts, this limitation motivated a
wave of speed-focused methods including Plenoxels [160], Instant-NGP [443], and TensoRF [80].

2. Data Hungriness and Pose Sensitivity

NeRF requires dense and accurate supervision: typically 100 or more posed input images for each
scene. With sparse views, the model tends to overfit, memorizing training pixels and producing
incorrect geometry with “floaters”—hallucinated density blobs in empty space. Moreover, NeRF
assumes externally provided camera poses, often estimated via SfM pipelines such as COLMAP.
Pose errors—especially in large or low-texture scenes—can severely degrade reconstruction quality,
introducing ghosting and multi-exposure artifacts. These dependencies make NeRF fragile in
real-world settings, where pose estimation and dense capture are often unavailable or noisy.
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3. Static Scene Assumption

The original NeRF architecture assumes the scene is completely static during capture. Even minor
motion—e.g., waving trees, moving pedestrians, changing shadows—violates this assumption. Since
the MLP must learn a consistent radiance field, it fails to reconcile inconsistencies in dynamic scenes,
leading to ghosting, blur, or averaged-out artifacts. Consequently, NeRF cannot model temporal
phenomena or non-rigid deformation without significant modification. This limitation gave rise to
dynamic variants such as D-NeRF [488] and subsequent temporally aware architectures.

4. Poor Scalability to Large or Unbounded Scenes

The architectural choice to encode an entire scene in a single MLP imposes a severe scalability
bottleneck. As the physical extent of the scene increases—e.g., modeling a building, city block, or
360° landscape—the network’s finite capacity becomes insufficient. The result is coarse geometry
and low-frequency, blurry reconstructions. Additionally, the fixed near and far depth bounds
used in NeRF’s ray sampling mechanism are ill-suited for outdoor, forward-facing, or horizon-
spanning scenes. These challenges spurred modular representations such as Block-NeRF [602],
which decompose large scenes into a grid of smaller NeRFs with overlapping coverage and shared
appearance embeddings.

5. Inadequate Robustness to Real-World Imaging Conditions

Most NeRF experiments are performed on sanitized datasets of clean, low dynamic range (LDR),
well-lit images. In contrast, real-world imagery often suffers from HDR saturation, sensor noise,
motion blur, lens artifacts, and non-uniform exposure. The original NeRF, trained on LDR values,
fails to reconstruct true radiance under such conditions. Moreover, it lacks mechanisms for denoising
or compensating for exposure variation. Recent works like RawNeRF [430] address this by operating
on raw sensor data directly, enabling robust HDR synthesis and improved fidelity under challenging
lighting.

6. Non-Editable and Opaque Representation

Finally, NeRF’s learned radiance field is entirely implicit—stored in millions of weights of an MLP.
This makes downstream operations such as object editing, segmentation, relighting, or geometry
manipulation extremely difficult. In traditional 3D representations (e.g., meshes or voxels), editing
corresponds to direct manipulation of structures with semantic meaning. In NeRF, by contrast, even
deleting an object or changing its appearance would require retraining the model or resorting to
finetuning tricks. This “black-box” nature remains a key challenge and an active area of research.
Later approaches like Control-NeRF [315] and NeRFShop [260] aim to bridge this gap by decoupling
editable features from rendering logic.

Summary

The limitations of the original NeRF—its slowness, data hungriness, fragility, and lack of editabil-
ity—are all downstream consequences of its monolithic, implicit MLP-based design. Recognizing
this, researchers have shifted towards more modular, explicit, and hybrid representations. As we
will see in upcoming parts, these improvements not only alleviate NeRF’s bottlenecks but also
expand its capabilities to dynamic scenes, outdoor environments, real-time applications, and creative
workflows.
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Enrichment 23.10: NeRF: Acceleration and Representation Revisions

While the original NeRF architecture achieved groundbreaking results in novel view synthesis, it
suffered from severe computational bottlenecks and restrictive design choices. This limitation gave
rise to two key research directions:
» Making NeRFs faster: by improving both scene representation and the rendering pipeline;
* Rethinking representation itself: by exploring whether implicit MLPs are the optimal
abstraction for radiance fields.
This subsection surveys the most prominent families of acceleration techniques and scene represen-
tation variants—each representing a distinct research trajectory in the evolving landscape of neural
rendering.

Explicit Voxel and Point Grid Representations

A fundamental insight that motivated the first wave of NeRF accelerations is that the full power
of an MLP may not be necessary to represent a static radiance field. In the original NeRF, each
query along a ray—at a specific 3D point and viewing direction—requires a forward pass through
a deep, overparameterized network. This becomes prohibitively slow when hundreds of queries
must be processed per pixel in the image. If instead one could cache the radiance field explicitly in
space, the model could avoid MLP evaluation altogether and retrieve color and density via simple,
differentiable lookups.

This leads to a powerful tradeoff: speed versus memory. By storing radiance and density in
spatial grids—either dense or sparsely populated—methods can dramatically reduce inference time
and enable real-time rendering. The price is cubic memory growth with resolution, requiring careful
grid design or pruning to scale. The following two methods exemplify this family of approaches.

Enrichment 23.10.1: Plenoxels: Sparse Voxel Grids with Spherical Harmonics

Plenoxels [160] introduce a fully explicit scene representation that removes neural networks from
the NeRF rendering pipeline. Instead of approximating the radiance field using a continuous MLP
fo(x,d), Plenoxels define a sparse 3D voxel grid in which each voxel corner—corresponding to a
3D coordinate in space—stores:
* A scalar volume density o € R, analogous to NeRF, encoding how much matter is present
at that spatial location.
* Spherical harmonics (SH) coefficients for view-dependent RGB color. For SH degree [/, each
corner stores (I + 1)? coefficients per color channel (e.g., 9 per channel for [ = 2):

l {
C(X;d) = Z Z A Yfm(d)’
(=0m=—1

where ¥;,,(d) is the SH basis evaluated at viewing direction d, and ay,, € R? are the learnable
RGB coefficients.
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Figure 23.48: Overview of the Plenoxel model, adapted from [160]. (a) A sparse voxel grid stores SH
coefficients and densities at each corner. (b) Sampled points along rays interpolate these values. (c)
Volume rendering integrates color and opacity. (d) Grid parameters are optimized via a reconstruction
loss and regularization.

Inference and Volume Rendering.
For each ray r(¢) = 0+ td, Plenoxels sample a set of points r(#;) within the interval [t,,#/], as in
NeRF. For each point:
* The trilinear interpolation of densities and SH coefficients is computed from the eight corners
of the voxel enclosing r(;).
* The interpolated SH coefficients are combined with the viewing direction d via SH basis
functions to compute the radiance ¢; € [0,1]>.
* These values (0;,¢;) are integrated along the ray using the same differentiable alpha composit-

ing rule as NeRF:
N i—1
r):ZTi-ai-c,-, o; =1 —exp(—o; Ti=|[|(1-0o).
i=1 j=1

This process is far more efficient than evaluating an MLP for each query point.

Training via Reconstruction Loss.
Plenoxels are trained using the same loss as NeRF. For a ray with known ground-truth color € (r),
the predicted color % (r) is supervised by:

A

Zecon — ‘ cg(r) —%€(r

I>-

To ensure smoothness and avoid artifacts, the authors also apply a total variation regularization term
to both the SH coefficients and densities.

Why Spherical Harmonics?

Spherical harmonics are a compact, differentiable basis for modeling smooth directional variation.
At each spatial point, SHs allow the color to change with viewpoint (e.g., capturing specularities),
while still being efficient to store and evaluate. Importantly, their basis functions ¥y, (d) are fixed
and directional—so the only learnable parameters are the SH coefficients per corner.
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Figure 23.49: Training comparison between NeRF and Plenoxels [160]. Plenoxels reconstruct
meaningful geometry within a minute, while NeRF requires tens of minutes for similar fidelity.

Fast Convergence via Coarse-to-Fine Refinement.

The voxel grid is initialized at a low resolution (e.g., 128°), with voxels that have low opacity pruned
early. As training progresses, high-opacity regions (likely to contain object surfaces) are adaptively
subdivided into finer voxels. This hierarchical approach allows Plenoxels to focus memory and
resolution only where detail is required.

Core Insight and Tradeoffs.

Plenoxels’ design replaces learned neural scene functions with a sparse, explicit grid of radiance
information. The grid is fully differentiable, fast to query, and optimized directly—avoiding the
need for costly MLP forward passes. However, this performance comes at the cost of memory:
voxel-based representations scale cubically with resolution, and require pruning and sparsity to
remain tractable.

Key insight: By combining spherical harmonics with sparse voxel grids, Plenoxels offer a radiance
field representation that is fast to optimize and evaluate, enabling high-quality novel view synthesis
in minutes rather than hours.
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Enrichment 23.10.2: DVGO: Direct Optimization on Dense Voxel Grids

Direct Voxel Grid Optimization (DVGO) [591] accelerates novel view synthesis by replacing NeRF’s
implicit MLP with a fully explicit scene representation: a dense voxel grid storing volume densities
and appearance features. This design allows DVGO to train up to two orders of magnitude faster
than NeRF while retaining differentiable volumetric rendering.

A dense grid refers to a regular axis-aligned 3D array covering a bounded scene volume, where
every voxel is allocated and updated during training—unlike sparse grids, which store only occupied
regions. This simplifies memory layout and interpolation, but requires careful bounding and coarse-
to-fine scheduling to manage memory usage.
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Figure 23.50: DVGO framework overview, adapted from [591]. A ray is cast and sampled at 3D
points. Trilinear interpolation retrieves density and appearance features from a dense voxel grid. A
lightweight MLP decodes RGB values. Differentiable volume rendering is used for supervision.

Rendering Pipeline
DVGO preserves the volumetric rendering framework of NeRF but replaces the implicit MLP with
an explicit, grid-based representation. The rendering process is composed of the following steps:
* 1. Ray Sampling: For each pixel, a ray is cast as r(r) = 0 +td, where o is the camera origin
and d is the viewing direction. The ray is sampled at depths {z;}¥ i1 yielding 3D sample points
x; =r(t).
* 2. Grid Query via Trilinear Interpolation: Each point x; is mapped into the dense voxel
grid. DVGO retrieves the interpolated density o(x;) € R and a learned appearance feature
f(x;) € R using trilinear interpolation from the eight surrounding voxels.
* 3. Color Decoding: To produce RGB color, DVGO offers two options:
— Direct RGB: The feature f is directly interpreted as an RGB vector—this is the fastest
and view-independent mode.
— Tiny MLP: A shallow two-layer MLP with the viewing direction d as input decodes the
color as ¢; = MLP(f,d). This captures simple view-dependent effects at minimal cost.
* 4. Volume Rendering: Colors ¢; and opacities o; = 1 —exp(—0;9;) are combined using alpha
compositing:

i—1

L=[l0-a), %)=

Jj=1 1

=

T;- 0 - c;.
1
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The model is trained to minimize the reconstruction loss:
A 2
L =€) —¢r)|-

Coarse-to-Fine Upsampling and Fine Detail Reconstruction
DVGO'’s training proceeds in a progressive manner: it begins with a coarse voxel grid (e.g., 128%)
and upsamples it at fixed iteration checkpoints (e.g., after 2k and 4k steps) to finer resolutions
(e.g., 2563, 5123). Each upsampling operation uses trilinear interpolation to initialize the finer
grid from the coarser one. Crucially, nonlinear activations (e.g., ReLU or softplus) are applied
after interpolation—this post-activation strategy enhances sharp surface modeling and reduces
high-resolution artifacts.

This multi-resolution training schedule enables the model to:

* Quickly capture global geometry with minimal compute at low resolution,

* Preserve continuity and prior learning when upsampling,

* Refine high-frequency details and textures in later training phases without restarting optimiza-

tion.
During inference, only the final high-resolution grid is used.

Foreground-Background Decomposition

To support both bounded and unbounded scenes, DVGO introduces a two-grid decomposition. The
foreground region is represented with a dense voxel grid aligned to a tight bounding box. For
unbounded backgrounds (e.g., skies or distant terrain), DVGO uses a secondary cylindrical grid in
log-depth space. Rays first accumulate color and opacity from the foreground; if the transmittance
remains nonzero, they continue into the background grid.

DVGOV2 Improvements
DVGOvV2 [591] builds on DVGO with several technical enhancements that improve both training
efficiency and rendering fidelity:
* Distortion-Aware Loss: A fast implementation of the distortion regularization from mip-
NeRF 360 [29], reducing complexity from &'(N?) to &(N).
* Adaptive Learning Rate: Voxels observed from fewer views are assigned lower learning
rates to reduce overfitting to sparse observations.
* Low-Opacity Initialization: The density grid is initialized to near-zero opacity to avoid
redundant clouds in empty regions.
* Cuboid Grid Parameterization: Supports unbounded scenes via a contracted cuboid grid
inspired by mip-NeRF 360.
These changes lead to faster convergence, better generalization, and improved visual quality,
especially in complex or forward-facing scenes.

Comparison to Plenoxels and NeRF

* NeRF: Relies on a deep MLP to model density and color, requiring multiple hours of training
per scene. DVGO eliminates the MLP for geometry and uses only a shallow decoder for color,
yielding up to 100 x faster training.

* Plenoxels: Employs sparse voxel grids with spherical harmonics (SH) for view-dependent
color. While more memory-efficient, SH can introduce ringing artifacts and requires custom
CUDA kernels. DVGO, in contrast, uses dense grids and is implemented in pure PyTorch,
making it easier to adopt and extend.
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Efficiency and Tradeoffs
Quantitative benchmarks on the LLFF dataset highlight the tradeoffs:
* Training Time: DVGOvV2 converges in ~10.9 minutes vs. 24.2 minutes for Plenoxels.
* Quality: DVGOvV?2 achieves slightly better PSNR (26.34 vs. 26.29) and lower LPIPS (0.197
vs. 0.210).
* Inference Time: DVGOV?2 is slightly slower (0.07-0.36 s per image) than Plenoxels (~0.0667
s), due to its dense grid.

DVGO is ideal for rapid prototyping, differentiable pipelines, and simpler research codebases.
Plenoxels remains competitive in memory-constrained or real-time settings. The choice depends on
application constraints: DVGO favors training speed and modularity; Plenoxels favors compactness
and high-speed inference.

Performance Across Scene Types

DVGO and its improved variant DVGOV2 [592] deliver strong rendering quality across diverse
benchmarks while significantly accelerating training. DVGOV2 incorporates distortion-aware loss,
low-opacity initialization, and adaptive learning rates for enhanced convergence, especially in
real-world or unbounded settings.

Method Train Time PSNRT SSIM{ LPIPS|]
Synthetic-NeRF (8 scenes)

DVGO 14.2m 31.95 0.957 0.053

Plenoxels 11.1m 31.71 0.958 0.049

Instant-NGP 5.0m 33.18 - -

TensoRF (L) 17.6m 33.14 0.963 0.047

DVGOvV2 (L) 6.8m 32.76 0.962 0.046

Table 23.3: Results on Synthetic-NeRF [429].

Method Train Time PSNRT SSIM7T LPIPS|
LLFF (forward-facing)
NeRF [429] ~1440m 26.50 0.811 0.250
Plenoxels 24.2m 26.29 0.839 0.210
TensoRF (S) 19.7m 26.51 0.832 0.217
TensoRF (L) 25.7m 26.73 0.839 0.204
DVGOV2 w/o Zyise 13.9m 26.24 0.833 0.204
DVGOv2 10.9m 26.34 0.838 0.197

Table 23.4: LLFF benchmark results. DVGOV2 achieves strong accuracy with fast training and
compact grids.
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Method Train Time PSNRT SSIM?T LPIPS|
Tanks&Temples (unbounded)

NeRF++ hours 20.49 0.648 0.478

Plenoxels 27.3m 20.40 0.696 0.420

DVGOV2 w/o List 22.1m 20.08 0.649 0.495

DVGOv2 16.0m 20.10 0.653 0.477

Table 23.5: Results on unbounded inward-facing Tanks&Temples dataset.

Method Train Time PSNRT SSIM?T LPIPS|
mip-NeRF 360 (unbounded)
NeRF hours 24.85 0.659 0.426
NeRF++ hours 26.21 0.729 0.348
mip-NeRF 360 hours 28.94 0.837 0.208
DVGOV2 w/o Zyist 16.4m 24.73 0.663 0.465
DVGOV2 (p =2) 13.2m 24.80 0.659 0.468
DVGOV2 (p = ) 14.0m 25.24 0.680 0.446

DVGOV2 (p = o0)* 15.6m 2542 0.695 0.429

Table 23.6: Results on mip-NeRF 360 dataset. (*) denotes longer schedule with cuboid contraction.

Final Remarks

DVGO and DVGOV2 establish voxel-based grids as powerful alternatives to neural radiance fields.
By combining dense 3D grids, post-activation interpolation, and shallow decoders, they offer rapid
convergence with minimal architectural complexity. DVGOvV2 further enhances training stability and
scalability for real-world and unbounded scenes—making it a highly competitive baseline for fast
and differentiable view synthesis.

Hash-Based Feature Grid Representations

While voxel-based methods accelerate NeRF by caching scene representations in spatial grids, they
suffer from cubic memory growth as resolution increases. To overcome this bottleneck, a new family
of approaches—starting with Instant-NGP—replaces dense voxel grids with compact multiresolution
hash encodings. These techniques map 3D points to feature vectors via hash tables that sparsely
index multiscale grids. The result is a flexible and memory-efficient representation that supports fast
training, real-time rendering, and high fidelity.

Core Tradeoff. Hash-based grids strike a balance between speed and quality, avoiding the
memory overhead of dense voxel fields while adapting to scene complexity. However, they introduce
stochasticity due to hash collisions—multiple spatial locations may share a feature if they fall into
the same hash bucket—potentially adding noise to reconstructions. Despite this, hash encodings
have proven remarkably robust and scalable across datasets.
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Instant-NGP [443] revolutionized radiance field rendering by achieving real-time training and
inference through a novel multi-resolution hash encoding and a fully optimized GPU pipeline.
The method decouples scene resolution from memory usage by mapping 3D positions to compact,
trainable feature vectors via hash tables. These features, concatenated across multiple spatial scales,
are passed to a small neural decoder to predict density and color.

Multiscale Hash Encoding

Instant-NGP replaces dense voxel grids with a compact, adaptive alternative: a multiresolution
hash grid encoding. The key idea is to approximate the benefits of a high-resolution voxel grid
without paying its cubic memory cost. Instead of explicitly allocating every voxel, the method
uses a hierarchy of virtual grids combined with spatial hashing and trilinear interpolation to extract
meaningful features at arbitrary 3D positions.

Ateach level £ € {1,...,L}, the scene is conceptually divided into a 2¢ x 2¢ x 2¢ regular grid.
For a given point x € R3, Instant-NGP performs the following steps at level ¢:

1. Voxel identification: Scale x to the grid resolution and identify the indices of the 8 surrounding
voxel corners.
2. Hash lookup: Each corner index is passed through a fixed spatial hash function:

h(x,y,2) = ((x-p1) ® (y- p2) ® (z- p3)) mod T,

where pi, p2, p3 are large primes, & denotes bitwise XOR, and T is the fixed hash table size.
3. Feature interpolation: Each hash index retrieves a trainable feature vector from a table
specific to level £. These 8 vectors are then interpolated using trilinear interpolation, weighted
by the relative position of x within the voxel, to obtain a level-specific embedding f,(x) € RF".

This process is repeated independently at all L levels. The resulting embeddings are concatenated:

L
f(x) = Pfi(x) e R“".
(=1
Motivation and Benefits
This design achieves fine-grained spatial adaptivity using constant memory per level. At coarse
levels, the grid size is typically smaller than 7', so the hash function provides a near one-to-one
mapping. At fine levels, where the number of grid points exceeds T', multiple spatial positions map
to the same slot—creating collisions. These collisions are tolerated and implicitly resolved through
training: the feature vectors stored in each hash slot are optimized via backpropagation, and the
network learns to disambiguate overlapping mappings by adjusting gradients according to relevance.
This approach yields several key benefits:
* Compactness: Each hash table is small and fixed-size, yet the total system covers extremely
high spatial resolution.
* Continuity: Trilinear interpolation smooths transitions between nearby points.
* Adaptivity: Regions with high-frequency detail attract stronger gradients, naturally concen-
trating representational capacity.
 Efficiency: All hash lookups and interpolations are lightweight and fully parallelizable on
modern GPUs.
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Hash Function and Learning Dynamics

Instant-NGP encodes 3D positions using a multiresolution hierarchy of spatial hash tables. Each
level £ € {1,...,L} maintains a separate hash table: an array of T learnable feature vectors in R .
The table does not store voxels explicitly. Instead, a fixed spatial hash function maps integer voxel
indices to table slots:

h(x,y,2) = ((x-p1) © (y-p2) @ (z- p3)) mod T,

where p1, p2, p3 are large primes, and & denotes bitwise XOR. The table size 7T is fixed (typically
T € [214,219)).

Given a query point x € R3, the encoding proceeds as follows:

1. Multiscale voxelization: For each level /, x is scaled to the level’s virtual grid and enclosed
voxel cell. The 8 surrounding integer voxel corners {¢;} C Z? are identified.

2. Hash-based lookup: Each corner ¢; = (x;,;,z;) is hashed to index h(x;,y;,z;), retrieving a
feature vector v; € RF from the level’s table.

3. Interpolation: The 8 vectors {v;} are trilinearly interpolated using x’s relative position in the
voxel to obtain f;(x) € RF".

The results from all L levels are concatenated to form the full encoding:

L

f(x) = Pfi(x) e R*,

(=1
which is passed to a lightweight MLP to predict volume density o and emitted color c.

The only trainable parameters in this encoding stage are the feature vectors {v;} in the hash
tables. These are initialized randomly and updated during training. Although the hash function
and voxel coordinates are fixed and non-differentiable, the downstream operations—interpolation,
concatenation, and the MLP—are differentiable. This allows gradients from the output loss to
backpropagate to the retrieved vectors:

loss — MLP — f(x) — f;(x) — weights — {v;}.

Since trilinear interpolation is a linear operation, gradients are distributed proportionally to the
interpolation weights. Each feature vector v; receives a meaningful update via gradient descent,
despite being accessed through a non-differentiable hash index.

This design decouples the spatial access mechanism from learning. The hash function defines a
fast, fixed indexing scheme; the MLP never sees raw coordinates X, only the feature-based encoding
f(x). Learning proceeds entirely by adjusting the content of the hash tables to minimize prediction
erTor.

To decorrelate nearby spatial positions, the hash function applies two transformations: each
coordinate is multiplied by a large prime to stretch the input space, then the results are combined
using bitwise XOR to mix their bits. This ensures that adjacent voxel indices—such as (x,y,z)
and (x,y,z+ 1)—produce distant hash indices, scattering neighboring points across the table and
reducing local redundancy.
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Since the hash table size T is fixed and shared across all levels, collisions are resolution-
dependent. At coarse levels, the number of possible voxel corners is small relative to T, so collisions
are rare. At fine levels, however, the voxel grid grows cubically, quickly exceeding T and making
collisions inevitable—i.e., distinct locations mapping to the same feature vector.

Instant-NGP does not resolve these collisions structurally. Instead, it relies on implicit resolution
through gradient-based optimization. During training, multiple points may share a feature vector,
but their contributions differ: voxels near high-frequency structures (e.g., edges or textured surfaces)
produce stronger gradients, which dominate the updates. Voxels in smooth or empty regions
contribute weak gradients and have little effect. This causes the optimizer to adaptively reallocate
memory: important areas receive sharper, more expressive encodings, while uninformative regions
are compressed.

The multiresolution hierarchy further mitigates the effects of collisions. Even if two points collide
at one level, they are unlikely to do so across all L levels. Since the final encoding f(x) = @%_, f,(x)
aggregates interpolated features across resolutions, most spatial positions retain a nearly unique
representation. This enables the MLP to distinguish between distinct locations reliably, despite heavy
parameter sharing.

This collision-tolerant design enables Instant-NGP to maintain high fidelity with a compact
memory budget: a fixed-size hash table per level suffices to encode large scenes efficiently, while
multiscale encoding and gradient-driven adaptivity ensure representational capacity is focused where
it matters most.

Fast MLP Decoder and View Conditfioning
The final concatenated multiscale embedding f(x), along with an encoding of the viewing direction
d, is passed to a lightweight MLP decoder:

(67(:) = fo (f(X), d)

This MLP typically has 2-3 layers and is implemented with the tiny-cuda-nn library, which fuses
matrix multiplication and activation layers into a single CUDA kernel. This reduces memory traffic
and enables the entire forward/backward computation to execute in microseconds.

The network outputs:

* A scalar density o € R, controlling opacity along the ray.

 An RGB color vector ¢ € [0, 1]3, which can depend on the view direction via d.
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Figure 23.51: Instant-NGP architecture. Input points are encoded with multi-resolution hash grids,
passed to a fused MLP along with viewing direction, and output density and color are used for
volume rendering.
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This architecture supports real-time training and rendering by combining a compact, hash-based
spatial encoding with an extremely efficient neural decoder.

Occupancy Grid Acceleration

To reduce the number of MLP evaluations in empty space, Instant-NGP employs a coarse occupancy
grid that accelerates volume rendering by identifying which regions of the scene are likely to contain
nonzero density. This grid is dynamically updated during training and acts as a binary mask that
allows rays to skip regions deemed empty, leading to speedups of 10x to 100X in large scenes.

The grid is a 3D bitfield over a coarse voxelization of the scene’s bounding volume. For any
sample point along a camera ray, the renderer first checks the occupancy bit of the voxel containing
the point. If the bit is unset (i.e., the region is marked as empty), the sample is skipped and the MLP
is not queried. This drastically reduces redundant computation in free space and occluded volumes.

The occupancy grid is not static; it is updated periodically based on the current predictions of
the model. Specifically, Instant-NGP maintains a separate floating-point density grid (not visible to
the renderer) to accumulate raw density values over time. Every N training steps (e.g., N = 16), the
system performs the following update:

1. A set of candidate grid cells is selected for update, using a combination of uniform sampling
and rejection sampling near occupied regions.

2. For each selected cell, a random 3D point x within the cell is chosen.

3. The MLP is queried at x to obtain its predicted volume density o(Xx).

4. The cell’s accumulated density value is updated by taking the maximum of the existing value
and o (x).

5. The final occupancy bit is set if this value exceeds a threshold &; otherwise, the cell remains
marked as empty.

Importantly, the MLP is not evaluated at the eight corners of each voxel for this purpose. Instead,
it is evaluated at a single random point within the cell, which is sufficient to detect occupied space
due to the smoothness of the learned density field. This process ensures that the occupancy grid
reflects the evolving geometry of the scene, pruning away empty regions while preserving regions
with fine detail.

At rendering time, this grid enables efficient ray marching: rays are advanced in larger steps
through empty regions and subdivided only when approaching occupied space. Combined with
Instant-NGP’s compact encoding, this mechanism enables high-fidelity novel view synthesis at
interactive frame rates.

Training and Inference

Training follows the same NeRF paradigm: rays are sampled, feature vectors are encoded from hash
tables, densities and colors are predicted, and volume rendering integrates them into pixel colors.
The MSE loss is backpropagated through the entire system, including the hash table entries (which
are learnable) and the MLP. During inference, the process is purely feed-forward and supports 100+
FPS rendering on modern GPUs.
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Advantages and Limitations

» Speed and Efficiency: Instant-NGP achieves dramatic acceleration over prior NeRF methods.

With hash-based encoding and optimized CUDA kernels, it reaches high-quality reconstruc-
tions in just seconds. For example, on the LEGO scene, Instant-NGP matches or surpasses
NeRF’s performance (32.54 PSNR) in under 15 seconds of training (see the below table).
Real-time rendering is also enabled at over 60 FPS.

Quality and Convergence: Despite its speed, Instant-NGP does not sacrifice fidelity. After
just 1 minute of training, it consistently outperforms NeRF [429] and NSVF [370], and
achieves results competitive with or exceeding mip-NeRF [30]. Notably, the hash-encoded
model reaches 33.18 average PSNR in 5 minutes—higher than all baselines.

Compactness: The hash encoding decouples memory consumption from scene resolution.
Each level uses a fixed-size table of T feature vectors, yielding predictable memory use (e.g.,
2 — 8 MB), regardless of spatial complexity.

Adaptivity: Collisions in the hash tables are not explicitly resolved. Instead, gradient-based
optimization allocates representational capacity where needed: voxels near surfaces or textures
produce stronger gradients and dominate updates to shared entries. This enables the model to

prioritize detail-rich regions while ignoring redundant space.

¢ Limitations:

— Requires custom CUDA kernels and optimized memory layouts, limiting ease of deploy-

ment across platforms.

— Primarily suited for dense photometric supervision; extensions to sparse-view or semantic

tasks are nontrivial.

— Hash collisions may introduce subtle artifacts in high-frequency regions.

Table 23.7: PSNR comparison on the eight synthetic scenes from the NeRF dataset. Instant-NGP
(Hash) achieves top quality within seconds to minutes, outperforming NeRF [429] and NSVF [370],
and approaching or exceeding mip-NeRF [30]. Data from [443].

Method Mic Ficus Chair Hotdog Materials Drums Ship Lego ‘ Avg.
Instant-NGP (Hash, 1s)  26.09 21.30 21.55 21.63 22.07 17.76  20.38 18.83|21.20
Instant-NGP (Hash, 5s) 32.60 30.35 30.77 33.42 26.60  23.84 26.38 30.13]29.26
Instant-NGP (Hash, 15s) 34.76 32.26 3295 35.56 28.25 2523 28.56 33.68|31.41
Instant-NGP (Hash, 1m)  35.92 33.05 34.34 36.78 29.33  25.82 30.20 35.63|32.64
Instant-NGP (Hash, 5Sm) 36.22 33.51 35.00 37.40 29.78  26.02 31.10 36.39|33.18
mip-NeRF (hours) 36.51 3329 35.14 37.48 30.71 2548 30.41 35.70|33.09
NSVF (hours) 34.27 31.23 33.19 37.14 32.68  25.18 27.93 32.29|31.74
NeRF (hours) 3291 30.13 33.00 36.18 29.62  25.01 28.65 32.54|31.01
Instant-NGP (Freq., Im)  26.62 24.72 28.51 32.61 2636 21.33 24.32 28.88|26.67
Instant-NGP (Freq., 5Sm)  31.89 28.74 31.02 34.86 28.93  24.18 28.06 32.77|30.06

Key insight: By replacing dense voxel grids with multiresolution hash encodings and using a fully
fused MLP, Instant-NGP transforms NeRF into a memory-efficient and GPU-optimal rendering
system capable of real-time operation.
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Nerfacto [605] generalizes the Instant-NGP architecture into a more robust and modular neural
rendering pipeline. It retains the core speed advantages of multiresolution hash encodings, but
integrates a range of techniques from more expressive NeRF variants—including Mip-NeRF 360,
NeRF-W, and Ref-NeRF—to support complex, real-world data. Developed within the Nerfstudio
framework, Nerfacto prioritizes flexibility, semantic extensibility, and practical usability over raw
speed alone.

At the core, Nerfacto still uses a hash-encoded MLP to map each sampled 3D point x € R? and
view direction d € S? to a predicted color and density. Like Instant-NGP, it queries a multiresolution
hash grid to produce a high-frequency encoding f(x), which is fed to a compact decoder network.

However, Nerfacto departs from Instant-NGP in three major ways:

* Proposal Network Sampling: Nerfacto improves ray efficiency by using a hierarchy of
lightweight proposal networks—small hash-encoded MLPs—that predict coarse density dis-
tributions. These guide sample placement toward regions of likely scene content, reducing
wasted queries and enhancing edge sharpness. This replaces the occupancy grid with a more
learned, view-adaptive sampling strategy, similar to mip-NeRF 360.

* Hybrid Feature Fusion: In addition to 3D hash features, Nerfacto optionally fuses image-
space features from 2D convolutional encoders. These image features can inject view-specific
cues, aiding the model in tasks like relighting, semantic rendering, or pose correction. The
final input to the MLP decoder is a concatenation of 3D features, view direction encodings,
and (optionally) per-image appearance embeddings or 2D descriptors.

* Extended Output and Losses: Unlike Instant-NGP—which focuses solely on color and
density prediction—Nerfacto supports multi-head outputs and diverse losses, including surface
normals, depth supervision, semantic labels, or photometric consistency across views. This
makes it suitable for real-world, unbounded scenes captured with noisy camera poses and
lighting variation.

Appearance Embedding
Proposal Sampler

Ray (xy.z) )
Bundle Piecewice > | el I y Density
— o | dir i Density | i Density : — ! Nerfacto | —>
Sampler ——p Field | | Field dir Field | RG8 P =»RGB
r Pose Refinement P Volumetric Renderer

Figure 23.52: Nerfacto pipeline [605]. Hash-encoded 3D features and auxiliary 2D features are
fused before MLP decoding. The network is trained using RGB, geometric, and semantic losses.

By combining fast hash-based encoding with modular losses, proposal sampling, and auxiliary
inputs, Nerfacto enables real-time training and visualization even in messy, in-the-wild datasets.
While Instant-NGP is best suited for clean, object-centric scenes with pre-registered cameras,
Nerfacto handles general scenes with pose noise, dynamic lighting, and semantic supervision. It
offers a practical middle ground between research flexibility and production deployment.
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Figure 23.53: Volume rendering output of Nerfacto [605]. Despite real-time training, the model
recovers sharp surfaces and textures.

Applications and Design Goals

Nerfacto is engineered not only for high-quality novel view synthesis, but also as a general-purpose
backbone for a wide range of NeRF-style applications. Its modular design, efficient encoding, and
support for auxiliary supervision make it suitable for both academic experimentation and real-world
deployment. Key goals include:

* Reusability: Nerfacto supports downstream tasks such as relighting, surface extraction, and
semantic segmentation. Fine-tuning is straightforward, enabling rapid adaptation to new
scenes or objectives.

* Speed: By retaining Instant-NGP’s hash-based encoding and efficient volumetric render-
ing, Nerfacto preserves real-time training and inference speeds—despite additional model
components and loss terms.

* Robustness: Nerfacto is designed to operate under imperfect capture conditions, including
sparse viewpoints, noisy poses, and variable lighting. It generalizes well with minimal
hyperparameter tuning and works effectively across both bounded and unbounded scenes.

Compared to Instant-NGP—which focuses on maximal efficiency for object-centric datasets

with known poses—Nerfacto emphasizes extensibility and supervision-rich learning. Its architecture
accommodates semantic objectives, auxiliary features, and dynamic inputs without sacrificing
rendering quality or speed.

Core Insight and Tradeoffs

Nerfacto’s core insight is that fast hash-based scene encoding can be extended into a flexible,
semantically-aware rendering framework. The multiresolution hash grid compresses spatial variation
across scales, while learned decoders map fused 3D and 2D features to rich volumetric outputs. This
allows the model to achieve high fidelity with a compact parameter budget.

Although hash collisions are unavoidable at fine resolutions, their impact is mitigated by the
multilevel encoding: even if two spatial positions collide at one resolution, they are unlikely to collide
across all levels. This ensures that the final encoding f(x) remains discriminative and expressive,
preserving sharp detail and accurate color prediction, just like in Instant-NGP.

Key insight: Nerfacto demonstrates that real-time neural rendering does not require sacrificing flexi-
bility or supervision. By combining Instant-NGP’s memory efficiency with neural field modularity,
it bridges efficient graphics pipelines and modern learning-based scene understanding.
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TensoRF [80] proposes a compact and interpretable alternative to MLP-based NeRF-style radiance
field models. The scene is still represented as a continuous 5D function

F(x,d) = (0,¢),

mapping a 3D location x € R? and a viewing direction d € S? to a scalar volume density ¢ € R and
a view-dependent RGB color ¢ € R?.

Overview
Vanilla NeRF computes features by feeding spatial coordinates into a coordinate-based MLP, which
is queried at every sampled point along a ray. TensoRF replaces this with an explicit, low-rank
tensor representation that stores features in a structured form and can be queried directly via
interpolation. This change shifts most computation from deep networks to simple lookups and
lightweight decoding, reducing both memory and runtime while preserving compatibility with
NeRF’s differentiable volume rendering framework. Conceptually, the model consists of:
* A 4D spatial feature tensor .7 ¢ RX*Y*2*C storing a feature vector of dimension C at each
spatial location x = (x,y,2);
* A lightweight decoder S that maps features and a view direction d to the density ¢ and RGB
color c.

Radiance Field Decomposition via Tensor Approximation
The latent feature field .7 is decomposed into:

*+ Geometry tensor .7, € R¥*¥*2xCo _ features used for density estimation.

» Appearance tensor .7, ¢ R¥*Y*2xCc __ features used for predicting view-dependent color.
These combine as .7 = [T | ;] with C = Cs +C,.

Rather than store .7 densely, TensoRF learns a small number R = Rs + R, of axis-aligned
vector-matrix (VM) factors, acting as compressed tensor components. For any point x € [0, 1]3:

* Geometry features are reconstructed by summing Ry geometry VM components.

* Appearance features are reconstructed by summing R, appearance VM components.

* These are passed to density and color heads to compute o (x) and ¢(x,d), respectively.

This factorization reduces storage complexity from ¢'(N>C) for a dense voxel grid to &(N’RC),
enabling high-resolution reconstructions without prohibitive memory costs.

Vector-Matrix (VM) Decomposition

Each tensor field in TensoRF—whether the geometry tensor .7 or the appearance tensor .7,—is
not stored as a dense 4D grid. Instead, it is approximated using a sum of R low-rank vector-matrix
(VM) components. For any continuous 3D query point X = (x,y,z) € [0, 1]*, each rank-r component
evaluates as:

A,x) = v () - M (3,2) +92 (0) - MED (x,2) 40 () - M5 (x, ),

where:

. vgi)(-) € RY is a learnable 1D vector defined along axis i € {x,y,z}, evaluated via linear

interpolation.
« MUY (-,-) € RNi*Ne g a learnable 2D matrix over the orthogonal plane (j, k), evaluated via

bilinear interpolation.
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Each term behaves like a 3D slab: a vector modulates variation along one axis while the
matrix textures the perpendicular plane. This makes VM components far more expressive than
CP decomposition’s fully separable outer products, enabling detailed structures such as diagonal
surfaces or 2D textures with fewer components.

Interpolation: From Discrete Grids to Continuous Coordinates

TensoRF learns vector and matrix values at discrete grid locations (e.g., Ny = 128 entries along the
x-axis), but rendering requires evaluating them at continuous 3D coordinates. This is achieved by
differentiable interpolation:

1. Normalization. All 3D sample points are first mapped from world coordinates into the
normalized unit cube [0, 1]3 that encloses the scene. If a ray exits this cube, integration stops and no
further queries are made.

2. Linear interpolation (1D vectors). For a coordinate x € [0, 1] and vector vgx) € RN we:
u=x-(Ny—1), i=|ul, oo=u—i,

W) = (1= o) W]+ i+ 1]

This blends the two neighboring entries based on the fractional offset . If x aligns with a grid cell
center (e.g., & = 0), it degenerates to a direct lookup.

3. Bilinear interpolation (2D matrices). For a matrix Mr(y’z) € RM*N: and normalized coordi-
nates (y,z) € [0,1]?:

u:y'(Nyil)a V:Z'(szl)’

i=ul, j=), a=u—i, B=v-j,

MY (y,2) = (1—a)(1—B)-M[i, j] + (1 — B)-M[i + 1, ]
+(1—a)B-Mli,j+1]+af -M[i+1,j+1].

Example. Suppose x = 0.5, and N, = 128. Then u = 63.5, so we interpolate between vﬁ") [63]

and v\ [64] with equal weights. If y = 0.7, z = 0.2, and N, = N, = 128, we blend the four matrix
entries around cell (89,25) according to the local offsets o, f3.

Differentiability and Training Efficiency

Since linear and bilinear interpolation are piecewise-linear functions of X, gradients propagate
through them during backpropagation. This enables end-to-end training of all vector and matrix
values using volume rendering loss, just like weights in a neural network.

VM decomposition thus achieves a balance between expressiveness and efficiency. Each axis-
aligned component requires only a small number of memory lookups (2 for vectors, 4 for matrices),
and scales quadratically in spatial resolution rather than cubically like voxel grids. This makes
TensoRF compact, fast, and differentiable, with no need for deep MLPs at inference time.
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Geometry: View-Independent Density Estimation
To compute the scalar volume density at a query point x € [0, 1]?, TensoRF evaluates all geometry
VM components and linearly combines them using learned scalar weights wgo). This sum is then

passed through a shifted Softplus activation:

o(x) =log <1 +exp <§ wi® Ag (x) +B>> ,

r=1

where 8 € R is a learned bias.
This decoder-free formulation directly outputs a non-negative scalar density without using a
neural network. The Softplus function, defined as

Softplus(z) = log(1+exp(z)),

smoothly approximates the ReL.U function and ensures that the predicted density is always positive.
The shifted variant Softplus(z+ ) improves training stability and expressiveness.

Appearance: View-Dependent Color Prediction

To model view-dependent color, TensoRF uses a separate set of VM components. Each component
re{l,...,R.} contributes a 3D appearance feature vector at point X, constructed by concatenating
the outputs from its three axis—plane interactions:

(00 = M 02, WO 02, @M ().

The full appearance descriptor is then computed by summing over all such components:
£.(x)=) £ (x) e RE.

This feature vector is projected using a learned matrix B € R”*¢_ where P is the number of
latent appearance channels used by the color decoder. The projected feature is combined with a
frequency-encoded view direction s(d), and passed to a lightweight decoder S:

c(x,d) =S(B-f.(x), s(d)).

The decoder S is typically a two-layer MLP or a small set of spherical harmonic (SH) basis
functions. This architecture enables efficient modeling of view-dependent lighting and appearance
while maintaining fast inference.

Comparison to CP Decomposition
TensoRF also explores a CP (CANDECOMP/PARAFAC) decomposition of the form:

R
7 (x32) = Y @) 0) v ),
r=1
where each rank-r term is the outer product of three 1D vectors defined along the spatial axes.
This formulation is highly compact, requiring only &'(NR) memory for resolution N, but suffers
from a strong separability constraint: each component captures only rank-1 correlations across
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the three dimensions. As a result, it lacks the capacity to model complex structures such as depth
discontinuities, slanted edges, or fine textures, unless the rank R is increased substantially.

In contrast, the vector—matrix (VM) decomposition adopted in TensoRF breaks this constraint
by coupling two spatial axes per term. Each component Ar(x) includes bilinear interaction over
a 2D matrix (e.g., y-z) modulated by variation along the third axis (e.g., x). This allows a single
VM component to encode high-frequency planar details or axis-aligned surface patterns that would
require many CP terms to approximate.

Mathematically, the VM decomposition relaxes the strict separability constraint of CP by
modeling 2D spatial interactions explicitly through matrix components. This increases the expressive
power of each rank-r term while preserving a tractable memory footprint of &'(N>R), significantly
more scalable than dense voxel grids yet more flexible than rank-1 CP.

Empirically, this design enables TensoRF-VM to achieve superior tradeoffs between accuracy,
efficiency, and compactness. The model converges rapidly—typically within a few to tens of
minutes—while attaining higher PSNR than both CP-based variants and dense-grid baselines.
Furthermore, its compact factorized representation yields scene models as small as 30-75MB that
match or exceed the visual fidelity of MLP-based NeRFs, with real-time rendering performance and
substantially reduced parameter count.

Summary

TensoRF’s VM decomposition reframes 3D scene representation as a problem in efficient multilinear
algebra. It enables fast, continuous queries, low memory usage, and real-time rendering without
relying on deep MLPs. The combination of geometry and appearance factorization into interpretable,
axis-aligned vector—matrix components provides both practical acceleration and theoretical insight
into compact neural field design.

= Il E-g.tl}
J\d Rendering loss

Ray Distance

Figure 23.54: TensoRF VM architecture [80]. Each 3D point x is reconstructed from axis-aligned
vector—-matrix components. Density is predicted additively; color is produced from appearance
features and view direction using a shallow decoder.

Quantitative Comparison

TensoRF achieves excellent reconstruction quality while offering faster training and reduced memory.
The following table compares TensoRF against major baselines on standard NeRF benchmarks,
including Synthetic-NeRF, NSVF, and Tanks & Temples:
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Table 23.8: Quantitative results from [80]. TensoRF (VM-192) achieves strong PSNR and SSIM
with orders-of-magnitude faster training and smaller model size than most voxel-based methods.

Method Time Size (MB) Synthetic-NeRF NSVF Tanks & Temples
PSNR?T SSIM?T PSNRT SSIMT PSNR{ SSIMT
NeRF [429] 35h 5.0 31.01 0947 30.81 0952 2578 0.864
NSVF [370] >48h - 31.75 0953 35.18 0979 2848 0.901
Plenoxels [160] 11.4m  778.1 31.71  0.958 - - 2743  0.906
DVGO [591] 15.0m  612.1 3195 0957 3508 0975 2841 0911

TensoRF (VM-192) 17.4m  71.8 33.14 0963 36.52 0982 28.56 0.920

Qualitative Results

As shown in the below figure, TensoRF produces sharp, photorealistic reconstructions with accurate
geometry and appearance. Notably, it recovers fine details such as the floor and shadows in synthetic
scenes more faithfully than NeRF or Plenoxels, and exhibits fewer aliasing artifacts.
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Figure 23.55: Qualitative results from [80]. TensoRF (VM-192) recovers finer geometric and
appearance details compared to NeRF [429], Plenoxels [160], DVGO [591], and NSVF [370].

Key insight: TensoRF shows that tensor decomposition offers a memory-efficient and accurate
alternative to MLP-heavy or voxel-based radiance field models. By factorizing spatial variation into
1D and 2D components, it achieves state-of-the-art results with significantly reduced overhead.

Enrichment 23.10.6: Mip-NeRF: Anti-Aliased Radiance Fields

Motivation: scale ambiguity and aliasing
In standard NeRF [429], each pixel is modeled as a single, infinitesimally thin ray, even though in
reality a pixel sees a finite footprint in the scene. This footprint corresponds to a cone-shaped region
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of space whose size grows with depth. When training with mixed-scale imagery (both close-up and
distant views), NeRF’s point-sampled positional encoding ignores the footprint size entirely, forcing
the network to reconcile incompatible signals.

Without scale awareness, two characteristic artifacts appear:

» Aliasing in distant views: A faraway pixel’s footprint may intersect fine geometry that is
smaller than the pixel can resolve. Sampling only at its center captures spurious high-frequency
detail, producing jagged edges or temporal shimmer.

* Over-smoothing in close-up views: To remain consistent with coarse, distant observations,
the model suppresses fine detail in close-ups, leading to blurriness and loss of texture.

While supersampling (casting multiple rays per pixel) can reduce both problems by averaging over
the footprint, it does not guarantee perfect removal of aliasing and is prohibitively expensive — each
extra ray multiplies the number of MLP evaluations.

Full Resolution

1/s Resolution

0.751
(a) NeRF, Single  (b) NeRE, Multi  (c) Mip-NeRF | (d) Ground Truth

Figure 23.56: Aliasing in NeRF [30]. (a) NeRF trained on high-res images suffers aliasing at lower
resolutions or when zooming. (b) Multi-scale training with NeRF only partially fixes this. (c)
Mip-NeRF yields less aliasing in its renderings across all scales. (d) Ground truth.

From pixels to cones

In a real pinhole camera, a pixel does not capture light from a single infinitesimal ray, but from a
continuous bundle of rays passing through its finite footprint on the image plane. These rays form
a cone whose apex is at the camera center and whose axis points through the pixel center. The
further we travel along this cone into the scene, the larger its cross-section becomes — so the same
pixel may correspond to a tiny region on a nearby surface but a much larger region on a distant one.
To model a pixel’s contribution faithfully, we therefore need to account for how both the position
and the spatial extent of the region it covers change with depth, setting the stage for a depth-wise
decomposition of the cone.
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Why cones are divided into frustums
In volumetric rendering, the color of a pixel is obtained by integrating scene density and radiance
along the corresponding camera ray. For a cone-shaped pixel footprint, doing this integration over
the entire cone in one step is both impractical and physically inaccurate:
* Depth variation: The scene’s density and emitted color change continuously with depth.
* Occlusion: Objects at different distances can block each other, so visibility changes along the
viewing direction.
» Light transport: The transmittance — the fraction of light that reaches the camera — must
be updated incrementally as we progress through space.
If we treated the entire cone as a single unit, these effects would be averaged together indiscriminately,
erasing important depth-dependent structure.
The remedy is to discretize the cone into a sequence of depth intervals

[to,11], [t1,12], .-,

each forming a frustum — the portion of the cone between two depth planes. This is conceptually
similar to NeRF’s point sampling along a ray, but instead of single points, each sample now represents
a finite 3D region with a nonzero cross-section. By working with frustums, we can:
* Associate each segment with its own spatial footprint size, enabling scale-aware encoding.
» Capture how density, color, and visibility change between consecutive depth ranges.
* Incrementally update transmittance and accumulate contributions in a physically consistent
manner.

Figure 23.57: Volume coverage ambiguity [30]. NeRF samples points along rays (dots), which can
alias across resolutions. Mip-NeRF casts cones and integrates over the entire volume seen by a pixel
(trapezoids), resolving ambiguity and encoding scale.
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From frustums to a pixel’s color

Once the cone is split into frustums, the rendering process accumulates their contributions to produce
the final pixel value. For the k-th frustum, the network predicts a mean density oy and a mean color
¢ that represent the frustum’s aggregated appearance. These are then combined using the standard
volume rendering equation:

N
Cpixel = Z Ty o Cr,
k=1

where:

* oy = 1 —exp(—0y Aty ) is the frustum’s opacity given its depth thickness Az,

e T = H’;;} (1 — ;) is the transmittance — the fraction of light that reaches frustum k without

being blocked by earlier segments.

This discrete summation mirrors NeRF’s point-based accumulation but replaces points with scale-
aware volumetric regions.

Crucially, unlike the original NeRF [429], which applies positional encoding to a single 3D point
along each ray sample, Mip-NeRF instead asks:

What is the average positional encoding of all points within this frustum?

Here, “positional encoding” refers to the same Fourier feature mapping used in NeRF to represent
high-frequency variation in color and density. Averaging these features over the frustum volume acts
as a principled low-pass filter: sub-frustum spatial variation is integrated out, while coarser structure
is preserved. This transforms each sample into a scale-aware volumetric descriptor rather than a
potentially aliased point measurement.

From pixels to cones
In the pinhole camera model, a pixel corresponds not to a single infinitesimal ray, but to the set of
rays passing through its finite footprint on the image plane. These rays form a cone with apex at the
camera center o € R? and central axis along the unit ray direction d € R? through the pixel center.
At a depth ¢ along d, the cone’s cross-section is the back-projection of the pixel’s footprint into
3D space. If the pixel is square with width w (in world-space units at the image plane) and the
camera has focal length f (same units), similar triangles show that this cross-section is a square
whose side length—the physical distance between two opposite edges—is:

S(t) = %t.

At unit depth (r = 1), this reduces to S = ”7”, the side length of the footprint in world units when
projected to 1 meter from the camera. '

Approximating the foofprint as a disk

To simplify later analytic derivations, Mip-NeRF replaces the square cross-section at each depth
with a rotationally symmetric disk of radius r(¢), producing a right circular cone. If we simply
took r(t) = S(r)/2 so the disk matched the square’s width, the two shapes would differ in their
second moments (spatial variances), meaning they would have different frequency responses and
thus different effective blur sizes.
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To ensure the disk has the same spatial spread as the square, Mip-NeRF uses variance matching.
For a shape centered at the origin, the marginal variance along one axis is:
2 R2

Varsquare = E? Vargisx = Z?

where S is the square’s side length and R is the disk’s radius. Equating these variances:

2 R g S
12 4 V3
Thus the matched disk radius at depth ¢ is:
S(t
r(t) = St _ _w_ t,
V3 fV3
so the radius grows linearly with depth with slope
W
e

representing the disk radius per unit depth.

Why variance matching? Variance measures the average squared distance of footprint points
from its center, directly controlling the degree of spatial smoothing. Matching variances ensures
that the simplified disk and the true square blur high-frequency detail in the same way, while the
disk’s rotational symmetry allows later analytic treatment of frustums. This makes it possible for
Mip-NeRF to replace costly Monte Carlo integration with closed-form Gaussian-based anti-aliasing
in subsequent steps.

Frustum geometry and indicator function
To formalize this region of space, Mip-NeRF defines an indicator function

F(X707d7’;7t07t1)7

which returns 1 if a 3D point x € R? lies inside the conical frustum defined by origin o, axis d, slope
7, and depth bounds #y, 1, and 0 otherwise:

F(X,O,d,r’,to,tl)zﬂ‘{<to<(m_o)<t1>/\< d’(x—o) > ! )2>}. (23.1)

d]3 Il [lx—ol2 = \/1+ (7/]d]]

This condition performs two geometric checks:
* Depth check: The term

d'(x—o)

jap <)

measures how far along the ray axis the projection of x lies. Here:
— x — o is the displacement from the ray origin.
— The dot product d " (x — o) gives the scalar projection of this displacement onto d.
— Division by ||d||> converts this projection into a true depth value even if d is not unit
length.



1730 Chapter 23. Lecture 23: 3D vision

The inequality enforces that the point lies between the near and far depth planes of the frustum.
» Angular check: This condition tests whether the point x lies inside the angular aperture of the

cone defined by the pixel footprint.

First, recall that the vector d is the central ray direction of the cone, and x — o is the vector

from the camera origin to the point x. The angle between these two vectors is:

0 =/(d,x—o),
whose cosine can be computed via the dot product:

d'(x—o)

)= ———~ .
<os(6) = [alx—o]

The cone’s half-angle o is the angular radius of its cross-section as seen from the apex. From
the slope definition 7 (radius per unit depth), we have:

7
tan((x) = W,

and therefore:

1
) = A
The check:
d'(x—o) 1

>
][ [[x— o 1+ (7/]|d][)2
is equivalent to testing:
cos(0) > cos(a).

Since cos(60) decreases monotonically with 6 over the range [0, 7], the inequality cos(6) >
cos(a) means:

0 <.

In words: the angular deviation of x from the cone axis is smaller than the cone’s half-angle,

so x lies within the cone’s aperture rather than outside it.

Why this matters: The frustum is defined not only by near and far depth limits along the axis,

but also by the cone’s angular extent. Even if a point lies between g and #; in depth, it must

also pass this angular check to ensure it projects back to the same pixel footprint on the image

plane. Without this test, the frustum definition would include points that are too far off-axis to

be observed through the pixel.

Together, these checks precisely describe the 3D frustum volume subtended by a pixel over

a given depth range. With this exact region defined, Mip-NeRF can next express the expected
positional encoding over the frustum as a normalized volume integral—providing the starting point
for the derivation that follows.
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Expected positional encoding over a frustum
Given the frustum region described by the indicator function F from (23.1), Mip-NeRF defines the
expected positional encoding as the mean of the NeRF positional encoding y(x) over all 3D points x
lying within the frustum.

Formally, let X be a random point drawn uniformly from the frustum volume

R={x € R’ |F(x,0,d,i,0,0) = 1}.

The uniform density on R is

1

PO = oy e VoI(R) = /R () dx.

The expectation of y(X) under p is therefore

E[Y(X)] = [ x)p(x)dx = Vof(R> [ rax

Substituting the frustum indicator F for ¥ gives

fR3 '}/(X) F(X7 07d7 i'vt()atl ) dx

23.2
Jr3F(x,0,d,7,10,11) dx ( )

’y*(oadvht()atl) =

Here:
* The denominator is the frustum’s volume — the total measure of all 3D points that project to
the given pixel between depths #p and ¢;.
* The numerator integrates the encoded feature vector y(x) over exactly the same set of points.
Their ratio is thus the uniform average of y(x) over the frustum.

Intuition
The expected positional encoding in (23.2) is the uniform average of y(x) over the frustum R.
Formally, if x ~ Uniform(R), then

Bl = g 70 dx

In the discrete case, this would be approximated as

1
N :

1

Y(xi), X Y Uniform(R),

M=

I
_

and taking N — oo recovers the continuous form above. The denominator in (23.2) normalizes the
numerator, converting it from a fotal sum over space into a mean per unit volume.

In the original NeRF formulation, each pixel is represented by a single infinitesimally narrow
ray, so Y(x) is evaluated only along that 1D path. This ignores the fact that a real pixel integrates
light over a finite footprint on the image plane, corresponding to a continuum of rays forming a
conical frustum in 3D space. Mip-NeRF instead averages y(x) over this entire frustum, embedding
the pixel’s full visual support directly into its feature vector.
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This volumetric averaging acts as a built-in low-pass filter. If the wavelength of a sinusoidal
component in y(x) is smaller than the frustum’s cross-section, its oscillations average out, attenuating
high-frequency terms that would otherwise cause aliasing when rendering at resolutions or viewing
distances different from training. Frequencies with wavelengths larger than the frustum remain
unaffected, preserving resolvable detail. The result is scale consistency: textures that are smooth at a
distance will not develop spurious high-frequency artifacts up close, and fine details will naturally
fade with distance rather than alias into incorrect patterns.

A straightforward way to compute the average in (23.2) is to approximate it via Monte Carlo
sampling: draw points uniformly inside the frustum and average their encodings. While conceptually
simple, this approach is inefficient in practice:

* High variance: Monte Carlo estimates fluctuate due to sampling noise, especially for the

high-frequency sinusoidal terms in y(x).

* Computational cost: Achieving stable, low-variance estimates requires many samples per

pixel, inflating training and rendering time.

* Missed structure: The positional encoding y(x) is composed of sinusoidal basis functions,

whose integrals over certain geometric shapes can be computed exactly.

To avoid stochastic approximation entirely, Mip-NeRF replaces each frustum segment with a
moment-matched Gaussian distribution ./ (u,X) that has the same first and second moments as the
true frustum. This substitution retains the key spatial statistics while making the expected positional
encoding E[y(X)] analytically tractable. With this Gaussian model in place, the integral in (23.2)
reduces to closed-form expressions for the mean and covariance of X.

Moment-mafched Gaussian approximation

To enable closed-form evaluation of (23.2), Mip-NeRF replaces the uniform distribution over a
frustum segment with a Gaussian .4/ (l,X) having the same first and second moments. The idea
is that the frustum is a truncated cone whose geometry is simple enough that we can compute
these moments analytically, and then replace the frustum with a Gaussian of matching mean and
covariance.

Frustum-centric coordinates We first align our coordinate system so that the ray direction is
the z-axis:
A d A
dzm, x(t,u) =0+rd+u,
where:
* t € [to, 1] is the depth along the ray,
* 0 € R? is the ray origin,
* u € R? is a vector perpendicular to d.
The frustum’s circular cross-section at depth ¢ has radius

r(t) =rt,

where 7 is the cone’s angular radius in world units (essentially the pixel footprint’s half-width
projected into 3D space).
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Marginal depth distribution p(t)
A key step in Mip-NeRF’s Gaussian frustum approximation is to characterize the depth distribution
of points within a pixel’s 3D footprint. For a given pixel, this footprint is modeled as a right circular
cone originating at the camera center o and extending along the viewing ray. The cone has slope 7
(radius per unit depth), chosen to match the pixel’s footprint on the image plane.

At a distance ¢ from o along the ray, the cone’s cross—section is a disk of radius

r(t) =rt,

and therefore exact area
At) =n[r())? = r (i1)%

A thin slab between depths ¢ and 7 + dt has volume element
dv(t) =A(t)dr = m (i) dr.

The uniform-in-volume assumption means that the probability of sampling a point in a slab is
proportional to its volume. Deeper slabs have larger cross—sections and therefore more 3D volume
per unit depth. Taking the unnormalized marginal depth density to be the actual slice area gives

punnorm(t) - 7r<f)2t2; IS [t07tl]7

where f( and #; are the near and far bounds of the frustum segment.
To convert pynnorm () into a probability density, we divide by its total mass over [ty,#]:

t n(7)?1? 2
p(l) _ tlpunnorm( ) - (r)

= 7 .
/ Punnorm (T) dT / 717(}")2 2 dt / 2dt
o o

fo

The geometric constants 7 and (#)? cancel exactly, so no arbitrary constant C must be introduced.
Evaluating the remaining denominator:

" B0 B3
/ ?dr=|—| =12
) 3 3

To

yields the closed form

32

el t € [to,11].

pt) =

This density is the correct marginal for uniform-in-volume sampling, and is later used to compute

the mean depth p; and depth variance o7 of the Gaussian frustum. By contrast, weighting by 1/A(t)

would correspond to sampling uniformly along the axis, giving each depth slice equal probability
regardless of its volume—an assumption inconsistent with volumetric pixel modeling.
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Mean depth y,
In probability theory, the mean (expected) value of a continuous random variable ¢ with probability
density function (PDF) p(t) is

w = Eft] = /t”tp(t)dt. (23.3)

In our frustum setting, the marginal depth density p(¢) is proportional to the cross-sectional area at
depth ¢, which grows as ¢ for a cone. Normalizing over [to,#;] yields

32

m, e [to,tl].

p(t) =

Substituting into Eq. 23.3:

30, 3 [H"

= | Pdt=—-"— |- 234

w= e, rf—ngm @34
3¢t -1t

:7(‘3 2). (23.5)
41 —13)

Why not the midpoint? If p(¢) were uniform, the mean would be (ty +1,)/2. Here, p(t) o< t*
upweights deeper slices because they occupy more volume, shifting u, toward ¢;.

Stable reparameterization of y,
When 1| =~ 1y, Eq. 23.5 can suffer from catastrophic cancellation. To avoid this, define
fo+1 =1
ty = 7 Is = 5
so that #g =1, —ts and t; = t;, +15. Using the binomial expansions

(tu+15) — (tu —t5)° = 61515+ 213,

(tu+1ts5)" — (tu —t5)* =815 t5 + 81,13,

Eq. 23.5 simplifies to

ty + 2115 (23.6)
=1y PYCER .
35 + 15
which is exactly the mean formula in the Mip-NeRF paper.
Axial variance o?
The variance along the ray is
o = E[*] -7, (23.7)
where the second moment is
3 3 [A]"
E[’] = 3_ 3 / r*dr = 3_ 3 {] (23.8)
tl - tO to ti - to 5 t()
3(6 -1
_ 3l =h) (23.9)

S —15)
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Stable reparameterization of c?
Substitute 7,75 and use

(tu+15)° — (tu —t5)° = 10t 15+ 201, 13 + 213,
along with the cubic difference above, to obtain

E[tz] _ 3 (tﬁ +2tli t(% + %té)
- 2
317 +15

Similarly, squaring Eq. 23.6 gives

e (3t +3tut3)?
R St
(3t +13)?

Substituting into Eq. 23.7 yields the closed form

12 4k (122 — 12
of =20 K 5 (125 52) : (23.10)
315032 +12)

which matches the formulation in the Mip-NeRF paper and remains numerically stable for small 75.

Radial (perpendicular) variance c?
Alongside the axial statistics (i, 6°), the Gaussian frustum approximation also needs to capture the
spread of points perpendicular to the ray axis. If the axial variance o7 describes how far points are
distributed along the beam (depth uncertainty), then 6 quantifies how far they spread sideways at a
given depth.
Flashlight analogy. Imagine shining a flashlight in a dark room. The light beam widens as it travels
away from the source, creating a circular spot that grows with distance. The axial variance tells us
how long the illuminated region is along the beam; the radial variance tells us how wide it is at each
depth. Both are needed to fully describe the shape of the illuminated volume.
Role in completion. Together, 6 and ¢ form the two orthogonal variance components of the
frustum:

* o7: spread parallel to the ray — measures the frustum’s thickness in depth.

s o?2: spread perpendicular to the ray — measures the frustum’s width in either orthogonal

direction.

Combining them into a covariance matrix yields a full 3D Gaussian that moment-matches the
frustum, enabling Integrated Positional Encoding to adjust high-frequency features according to both
depth uncertainty and footprint size.

Step 1: Conditional second moment at fixed depth At a given depth ¢, the cross-section of
the frustum is a disk of radius

Rl‘ - r(t) == rt,

where 7 is the cone slope (radius per unit depth). We want the per-axis radial variance at this depth
— i.e., the variance of the x-coordinate (or y-coordinate) of points uniformly distributed inside this
disk.
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Why an area integral? The definition of the conditional second moment of the radial distance is:

p?dA
Elp? |1] = .
dA
disk
where:
e p = /x%2+y?is the Euclidean distance from the axis in the perpendicular plane.
* dA is an infinitesimal area element.
* The denominator normalizes by the total cross-sectional area, ensuring the result is the mean
of p? over the disk.
Switching to polar coordinates. In polar coordinates (p, 6), the area element is dA = p dp d6 and
the disk is parameterized by:

0<p<R, 0<6<2m

Substituting into the definition gives:
2% R,
/ p%-pdpdb
IE[p2 |f] = 2020 (definition of mean over the disk) (23.11)

21 rR;
/ pdpdo
0 0

21 R,
/ p3dpde
0

0
= . 23.12
s (23.12)

Evaluating the integrals. The angular integration yields 27, so:
2n /R, sy 2 p:R’_Ri
nR? Jo P p_RtZ 41, 27

From radial to per-axis variance. Because the distribution is rotationally symmetric, the variance
splits evenly between the x and y axes:

Elp? |1] =

Elp*|7] R?
2 47

ElX’ |1 = Ep? |1] = (23.13)
This per-axis quantity is what will later be averaged over ¢ to obtain the unconditional radial variance
o?.

Step 2: Averaging over depth The unconditional per-axis radial variance is the expectation of
Eq. 23.13 over the marginal depth density p(¢) from the frustum geometry:

o2 =E[x*] = "R (t)dt (23.14)
r - t 4 p ’
4 ~2t2 3l2 3 2 1
_ r—-ﬁdt:%/ 4 dr. (23.15)
o 5 -1 4t —13) Joo
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Evaluating the remaining polynomial integral:

t
[tar= [’5] i
o 5 5

fo

Thus:

3(6—13)
2_ 2217l
of =7 ———=, t € |to,t1]. 23.16
g 20(13 — 1) ro.11] ( :
Numerical stability via midpoint-half-width parameterization. As in the axial variance case,
direct evaluation of Eq. 23.16 can suffer from catastrophic cancellation when #; ~ 5. To mitigate
this, Mip-NeRF reparameterizes:

h+1 11—t
u= 7 Is = 5

so that
fo=ty—ts, 1 =ty+Iis.
The difference-of-powers terms in Eq. 23.16 then become:
1= (tu+1s5) — (tu—t5)> = 6115+ 215 = 25 (315 +13) ,

B =15 = (ty+15)° — (tu —15)° = 101,15 + 200513 + 213 = 25 (5t + 101515+ 13) .

Substituting into Eq. 23.16 and simplifying yields:

223 25 (5t + 100515 +13) 2. Sty + 106503 + 13
’ 20 25 (312 +13) 10 (31% +13)

Finally, polynomial division gives the paper’s stable form:

2 2 4
t St 4¢
S 5 s
o) = -4 = —-— . 23.17

’ r(4 12 15(3rﬁ+z§)> (317

Moment-Matched Gaussian in World Space

Given the frustum’s axial statistics (i, 6) and radial variance > from the previous derivation, we
can represent its full 3D extent with a Gaussian whose mean and covariance match those of the true
uniform distribution inside the frustum. The mean lies along the ray at depth u,, while the covariance
separates into:

* an axial term o dd", encoding uncertainty along the ray direction d;
. T . . .
s aradial term G ( — %), encoding isotropic spread in the plane orthogonal to d.
2

This moment-matched Gaussian,

23d7 & o2 dd’
Ao+ wd, o7dd’ + o7 I_W ,
2
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compactly captures both the location and shape of the frustum segment in world space. The next
steps detail how this form arises from decomposing points into axial and radial components and
applying the corresponding projection operators.

Step 1: Decomposition into Axial and Radial Components. Any 3D point x inside the conical
frustum segment can be written as

X = 0+td+u,

where:
* 0 € R? is the ray origin.
+ d € R? is the (possibly unnormalized) ray direction.
* t € [tp,11] is the axial depth coordinate along the ray, with mean E[f] = i, and variance
Var(t) = 7.
* u € R? is the radial offset from the central ray to the actual point, lying in the plane perpendic-
ular to d.
The vector u appears naturally because the frustum’s cross-section at depth  is a filled circle rather
than a single point. Sampling uniformly from the frustum means sampling both along the axis (via
t) and within the in-plane disk (via u). Rotational symmetry ensures that u is isotropic within the
perpendicular plane and has no component along d.

Step 2: Projectors onto Axial and Radial Subspaces. Any 3D vector can be decomposed into
a component parallel to the ray direction d and a component perpendicular to it. The orthogonal
projection matrix onto the ray direction is

da’
PH = d 27
d]12
which takes any vector v and returns its shadow along d. The complementary projection matrix
PL=1-P|

removes the axial component, leaving only the part lying in the plane orthogonal to d. Because the
frustum’s cross-section is circular, radial offsets are:

E[u] =0, Cov(u)=0c>P,, Cov(t,u)=0,

meaning they have zero mean, are isotropic in the orthogonal plane, and are independent of depth.
Step 3: Mean in World Space. The expected position inside the frustum is obtained by averaging
over ¢ and u. Since u has zero mean, only the axial displacement contributes:

u=Ex]=0+E[rf]d=o0+y,d.

This places the Gaussian’s mean along the ray at depth L.

Step 4: Covariance in World Space. The total covariance X comes from two independent sources
of variation:

* Axial variance from the spread of ¢ along the ray: Cov(td) = c°dd".

* Radial variance from the circular footprint: Cov(u) = 62 P, .
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Independence means their contributions simply add:
Y=o02(dd")+c’P,.

Thus, we have isolated the uncertainty along the ray from the uncertainty in the orthogonal plane.

Step 5: Explicit World-Space Formula. Substituting the definition of P, into the covariance
expression gives:

H=o0+ud,
ddT) (23.18)

Z: Gtz (ddT)—l_G}(I_Hde
2

This formula is the direct result of Steps 3—4: the mean comes from the depth centroid, and the
covariance comes from the sum of axial and radial contributions.

Rewriting positional encoding as Fourier features

Having expressed the frustum segment as a Gaussian .4 (i, X) in world coordinates, the next step
is to evaluate the expected positional encoding of a random point x drawn from this Gaussian.
Recall that in the original NeRF formulation [429], each 3D coordinate x € R? is mapped to a
high-dimensional feature vector via a sinusoidal encoding:

y(x) = [sin(Zoﬂxl), cos(2°mxy), ..., sin(2L " mx3), cos(2L*1ﬂx3)]T,

where L denotes the number of frequency bands.

Motivation for the rewrite. Directly taking the expectation Ey._y(, 5)[Y(x)] is cumbersome if we
treat each sin and cos term independently. However, note that each channel of y(x) is a sine or cosine
of a linear form in x, i.e. sin(p 'x) or cos(p ' x) for some frequency vector p € R3. This suggests a
more compact matrix Fourier form in which all frequencies are collected into a single matrix.

Fourier matrix formulation
We collect all per-axis frequency scales into a single frequency matrix P € R3*3L whose columns
come in triples (for x,y,z) at each band 2*:

220 028 0 0 ... 2" 0 0
P=[252'K - 25 =10 22 0 0 20 0 ... 0O 2! 0
o 0220 02" ... 0o o 241

Each block 2*I; provides the scale 2% applied independently to x,y,z (no cross-axis mixing).
With this notation, NeRF’s positional encoding can be written compactly as

B sin(PTx)
vix) = cos(PTx)]’

where sin and cos act elementwise on the 3L-vector P'x.
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Why this helps. With the frustum segment modeled as
x~ A (1, E),

the Fourier form of y(x) applies only a linear projection P before evaluating sines and cosines. By
the affine transformation property of Gaussian random vectors,

y=Ax+b = y~._#(Au+b, AZA"),
setting A =P ' and b = 0 yields
u,=P'u,  $,=P'EP.

Eachrow p' of P' corresponds to a specific frequency probe; its associated variance in Y, directly
measures how much that frequency varies across the frustum.

Closed-form expectations. For one frequency probe p', the encoding channel is sin(p'x) or
cos(p'x) with

z=p'x~ N (U,02), p=p'p, ol=p'Ip.

Here, , is the projected mean of the frustum, and crz2 its variance along p—small values indicate a
stable frequency, large values signal rapid oscillations and potential aliasing.

Using the complex exponential trick. The expectations E[sin(z)] and E[cos(z)] can be computed
in closed form using the identity

sin(z) = 3(e%),  cos(z) = R(e9),
and the known result for the characteristic function of a Gaussian:
. . 1.2
E[e”] = et e™2%.

This follows from the moment-generating function of a normal variable, where the factor e 207
comes from integrating the quadratic term in the exponent.

Taking real and imaginary parts yields:
E[sin(z)] = sin(u;) e 2% E[cos(z)] = cos(;) e 2%

Interpretation and anti-aliasing effect. The factor ¢~2% attenuates each frequency according to
its variance over the frustum:

* High variance: GZZ > 0 = strong attenuation of high-frequency oscillations that cannot be

reliably represented at the frustum’s scale.

* Low variance: GZZ ~ (0 = little to no attenuation for low-frequency components.
This provides a principled, scale-aware low-pass filtering that suppresses alias-prone frequencies
while preserving stable ones—precisely the anti-aliasing behaviour missing from vanilla NeRF.

In vector form, this closed-form computation replaces the costly Monte Carlo integration of
the positional encoding over the frustum with a single evaluation per channel, directly yielding the
integrated positional encoding used in Mip-NeRF’s forward pass.
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From scalar attenuation to full IPE. For a single channel, we have shown that
Efsin(z)] = sin(i) e 2%,  Elcos(z)] = cos(p:) e 2%.
Stacking all frequency probes (rows of P") into vector form gives the integrated positional encoding:

_ [sin(p,) oexp(—4 diag(Zy))
Y(u,X) = COS(I.L:,) oexp(—z% diag(Ey))

I

where o denotes elementwise multiplication, j1, = P'u, and ry= P"XP. Only the diagonal of Xy
is needed because y(x) factorizes over channels: each sine or cosine depends only on its own 1D
projection variance.

Efficient diagonal computation. To evaluate the integrated positional encoding, we need the
variance of each 1D projected coordinate

T
=P X XN‘/V(:LL’Z)a

for every positional encoding channel. In matrix form, these variances are the diagonal entries of
Y, =PIP’,

where each row of P corresponds to a frequency vector in the positional encoding basis.

Forming X, € RGL*GL) explicitly is costly when L (the number of frequency bands) is large,
because it requires a full matrix product and storage of all frequency—frequency covariances. For-
tunately, we never need the full matrix: the expectation of sin(z) or cos(z) depends only on the
marginal variance O'Z2 for that channel. Since positional encoding applies each frequency inde-
pendently to each spatial dimension, off-diagonal terms in X, are irrelevant, and only diag(X,) is
required.

Frequency scaling. If the base frequency vector p has variance p' Xp, then multiplying p by 2*
scales this variance by (2¢)> = 4*. Each positional encoding band is exactly such a scaled copy of
the base frequency, so the diagonal entries can be written compactly as

diag(Xy) = [diag(X), 4diag(%), ..., 4/~ diag(T)] ’

This reduces the entire problem to computing diag(X) € R?, the per-axis variance of the 3D Gaussian
frustum in world coordinates.

Frustum covariance diagonal. The covariance X of the frustum segment encodes both depthwise
and cross-sectional spread of points within that volume. It naturally decomposes into:

* an axial component 6/ along the ray direction d,

* a radial component 6> orthogonal to d.
Projecting the axial variance into (x,y,z) components requires the squared direction vector (dod).
The radial component must be distributed equally in all directions orthogonal to d, which is achieved
by projecting with

dod
a5’

whose diagonal entries are 1 — (dod)/|/d|[3.
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Combining these gives the per-axis variances:

dod
diag(%) = 62 (dod) + 62 (1 - ”d°”2> .
2

Here:
s o7 is the variance of depth values ¢ along the ray, scaled per coordinate axis.
» o7 is the variance of points in the circular cross-section at each depth, spread uniformly in the
orthogonal plane.
* The projection terms ensure that the decomposition cleanly separates along-ray and cross-ray
uncertainty.

This diagonal-only computation is what makes Mip-NeRF’s IPE practical: instead of a full covari-
ance in the positional encoding basis, we only evaluate three variances in world space and scale them
by known frequency factors. These variances directly control the exponential attenuation e 20
for each channel, suppressing high-frequency features that cannot be resolved within the frustum’s
extent and thereby providing principled, scale-aware anti-aliasing.

Architecture & Implementation Details

Cone tracing and inferval IPE feafures

Aside from cone tracing and IPE, Mip-NeRF follows the NeRF pipeline. For each pixel, we cast a
cone from the camera center o along the view direction d (rather than a single infinitesimal ray). We
then sample a sorted set of n+1 depths

hh<fh<---<ty

between near and far planes and form n conical frustum segments [ty,t;+1]. For each segment we:

1. moment-match the segment with a world-space Gaussian .4 (;,Xy) using Eq. (8),
2. compute its integrated positional encoding (IPE) by the closed forms in Eqgs. (13)—(16).

These IPE features (optionally concatenated with the view-direction encoding as in NeRF) are fed to
the network to produce a density 7 and color ¢; per segment. Volume rendering then proceeds as in
NeRF, using the transmittance weights induced by {7} over the segments {[tx, fx+1]}.

Single multiscale MLP with hierarchical sampling

NeRF uses two distinct MLPs (“coarse” and “fine”) because PE encodes a single implicit scale. In
contrast, Mip-NeRF’s IPE is scale-aware: the inputs explicitly carry segment size/shape, allowing
a single MLP to model multiple scales. We therefore use one MLP with parameters ® and still
perform hierarchical sampling:

* Coarse pass: draw n intervals by stratified sampling on [fnear, far], compute IPE per interval,
render color C(r;®,7¢) and weights {wy}.

* Fine pass: construct a resampling PDF from smoothed weights (see Eq. (18) below), draw
another n intervals by inverse transform sampling, compute IPE per interval, and render
C(r;0,t/).

Using one network halves the parameter count, simplifies training, and empirically improves accuracy
while keeping total MLP evaluations comparable to NeRF.
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Training objective
Let Z be the set of rays and C*(r) the ground-truth pixel color. With a single MLP, we balance
coarse and fine terms by a scalar A:

min Y (4] € (1) = C(x:0,0)|; + [[C* (1) — C(r:0.07)]3). (23.19)

re#
In the paper, the authors set A = 0.1 in experiments.

Smoothed importance sampling for the fine pass

In NeRF and Mip-NeRF, the coarse pass determines where along the ray the scene is likely to have
important structure (surfaces, edges, textures). This information is encoded in the alpha compositing
weights {wi}i_,:

wry = T (1 —eiTkAtk),

where T} is the transmittance up to segment k (probability that the ray has not terminated before #;),
Ty 1s the predicted density, and Aty = ;.11 — # is the segment length. Intuitively, wy is the fraction of
the ray’s total contribution to the final pixel color coming from segment k. Segments intersecting
visible surfaces will have large wy.

Why these weights are used for sampling. We use {w;} as a discrete probability density function
(PDF) to guide sampling in the fine pass:

* Large w; = high chance of resampling that region for finer detail.

* Small wy = low chance, unless we deliberately force exploration.
Given a PDF over the n coarse segments, we can draw new sample depths via inverse transform
sampling: construct the cumulative distribution function (CDF) from {wy }, draw uniform random
numbers u € [0, 1], and find the depth bin whose CDF interval contains u.

Why stabilization is needed. Raw {wy} can be:

* Sparse: most weights are near zero, concentrating probability on very few bins, which can

lead to missing geometry slightly outside those bins.

* Noisy: small prediction fluctuations create spiky PDFs, producing unstable fine-pass samples.
This is especially problematic in Mip-NeRF because the coarse and fine passes query the same MLP
(rather than two separate ones as in NeRF), so bad fine-pass samples can directly harm the shared
network’s learning.

Smoothing with max and blur filters. To make the PDF more robust, Mip-NeRF replaces each wy
with a smoothed envelope wy:

1. 2-tap max filter: For each k, take the maximum weight among (wy_1,wy) and (wg, wi1), then
average the two maxima:
_ max(wg_1, wg) +max(wg, Wi 1)

my = ) .

This widens peaks so that high-probability regions extend to their immediate neighbors (helps
catch slightly misaligned samples).

2. 2-tap blur filter: Apply a local average to my, which softens sharp spikes and spreads probabil-
ity mass across nearby bins.
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This sequence—max pooling followed by average pooling—is known in computer vision as a
blurpool filter [776].

Forcing exploration. After smoothing, a small constant ¢ is added to each bin:
W,,{ = myi+ .

This ensures that even “empty” regions of the ray still have a nonzero probability of being resampled,
avoiding blind spots. The paper sets & = 0.01. Finally, {w}} is renormalized to sum to 1 before
building the fine-pass CDF.

Wy = E(max(wk,l,wk) +max(wg,wii1)) + @, renormalize {w}} to sum to 1. (23.20)

Effect: Compared to NeRF’s approach of merging coarse and fine samples into one sorted list,
Mip-NeRF’s smoothed-PDF resampling:

* Reduces sample collapse into overly narrow regions.

» Guarantees some coverage of empty space.

* Produces more stable fine-pass updates for the shared MLP.

Implementation Details. Mip-NeRF is built on JaxNeRF, a JAX reimplementation of NeRF.
Training follows NeRF’s schedule: Adam for 1x 10° iterations with batch size 4096 and a logarithmic
learning-rate decay from 5-10~* to 5- 107%. The only substantive architectural changes are:

* Cone tracing with interval IPE.

* A single multiscale MLP.

* Smoothed PDF resampling for the fine pass.

Benefits over NeRF
Encoding interval size/shape into the inputs:
» Halves model size (one MLP instead of two).
* Improves multiscale accuracy (coarse+fine are gueries at different sampling budgets, not
different networks).
* Improves runtime a bit (with the same parity, meaning the same total number of per-ray
evaluations).
* Eliminates the need to hand-tune the maximum PE frequency: high frequencies beyond a
segment’s resolvable bandwidth are attenuated automatically by IPE.
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Figure 23.58: Toy 1D visualizations of the positional encoding (PE) used by NeRF (left) and the
integrated positional encoding (IPE) used by Mip-NeRF (right), based on the original figure in [30].
Top row (Samples): In standard PE, each green dot marks a single infinitesimal sample location
along the axis x; in IPE, each green blob represents a Gaussian footprint covering a finite ray segment.
Middle row (Encodings): Each horizontal stripe is a sin or cos channel at a given frequency, with
red/blue denoting positive/negative values. In the PE panel, high-frequency channels (upper stripes)
oscillate much faster than the spacing between sample points, so the vertical black lines cut through
seemingly unrelated phases of the oscillation — a visual sign of aliasing. In IPE, the Gaussian
integration (curved [ markers) averages over these oscillations, causing high-frequency stripes to
fade toward neutral grey. Bottom row (Encoded Samples): In PE, the per-sample feature bars
change abruptly from one sample to the next in the high-frequency dimensions, encoding phase
noise rather than stable geometry — the hallmark of aliasing. In IPE, the corresponding bars for
high-frequency channels are suppressed, while low-frequency channels remain strong, yielding
anti-aliased, scale-aware features that also encode the segment’s size and, in higher dimensions, its
shape.
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Results and Ablations

Quantitative performance

The below table reports performance on the multiscale Blender dataset (credit: [30]), comparing
Mip-NeRF to baseline NeRF and several improved NeRF variants. Mip-NeRF achieves the highest
PSNR and SSIM across all scales (Full, 1/2, 1/4, 1/8 resolution), while reducing LPIPS—a perceptual
dissimilarity metric—to the lowest values. The performance gap widens as the resolution decreases,
demonstrating Mip-NeRF’s robustness to scale changes. Notably, removing IPE (w/o IPE) drops
PSNR by up to 6dB at the lowest resolution, confirming its central role in anti-aliasing.

PSNR 1 SSIM + LPIPS | Avg. | Time (h) #Params
FR 12 1/4 1/8 FR 12 1/4 1/8 FR 12 1/4 1/8

NeRF (Jax Impl.) 31.196 30.647 26.252 22.533 0.9498 0.9560 0.9299 0.8709 0.0546 0.0342 0.0428 0.0750 0.0288  3.05 1,191K
NeRF + Area Loss 27.224 29.578 29.445 25.039 0.9113 0.9394 0.9524 0.9176 0.1041 0.0677 0.0406 0.0469 0.0305 3.03 1,191K
NeRF + Area, Centered Pix. 29.893 32.118 33.399 29.463 0.9376 0.9590 0.9728 0.9620 0.0747 0.0405 0.0245 0.0398 0.0191  3.02 1,191K
NeRF + Area, Center, Misc. 29.900 32.127 33.404 29.470 0.9378 0.9592 0.9730 0.9622 0.0743 0.0402 0.0243 0.0394 0.0190 2.94 1,191K
Mip-NeRF 32.629 34.336 35.471 35.602 0.9579 0.9703 0.9786 0.9833 0.0469 0.0260 0.0168 0.0120 0.0114 2.84 612K
Mip-NeRF w/o Misc. 32.610 34.333 35.497 35.638 0.9577 0.9703 0.9787 0.9834 0.0470 0.0259 0.0167 0.0120 0.0114  2.82 612K

Mip-NeRF w/o Single MLP 32.401 34.131 35.462 35.967 0.9566 0.9693 0.9780 0.9834 0.0479 0.0268 0.0169 0.0116 0.0115  3.40 1,191K
Mip-NeRF w/o Area Loss ~ 33.059 34.280 33.866 30.714 0.9605 0.9704 0.9747 0.9679 0.0427 0.0256 0.0213 0.0308 0.0139  2.82 612K
Mip-NeRF w/o IPE 29.876 32.160 33.679 29.647 0.9384 0.9602 0.9742 0.9633 0.0742 0.0393 0.0226 0.0378 0.0186  2.79 612K

Table 23.9: Quantitative comparison of Mip-NeRF and ablations against NeRF and NeRF variants
on the multiscale Blender dataset. Metrics: PSNR (1), SSIM (1), LPIPS (}). All numbers from
[30].

Qualitative performance

The following figure shows visual comparisons on two Blender scenes across four scales. We crop a
fixed region and display it as an image pyramid; the SSIM for each scale is shown in the lower-right,
with the highest values (most successful SSIM results) highlighted in red. Mip-NeRF consistently
outperforms NeRF and its improved variants both visually (fewer moiré patterns, crisper low-res
textures) and quantitatively. The benefit is most pronounced at extreme downscales (1/8 res), where
NeRF exhibits heavy aliasing but Mip-NeRF maintains smooth, faithful structure.

4
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0.906
0.448

Ground-Truth NeRF NeRF + Area, Center, Misc

0.861

Figure 23.59: Visual comparison of Mip-NeRF, NeRF, and improved NeRF variants on two mul-
tiscale Blender scenes, cropped and shown at four scales (SSIM at bottom right; highest in red).
Mip-NeRF achieves both higher perceptual quality and stronger metrics across scales. Credit: [30].
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Ablation insights (following table 23.9)

* IPE is essential: Removing IPE reduces PSNR by up to 6dB at 1/8 resolution and greatly
increases LPIPS, confirming it as the core mechanism for anti-aliasing.

* Moment-matching matters: Approximations that do not match the frustum’s true mean/variance
(e.g., naive Gaussian) blur thin structures and lower both SSIM and PSNR.

» Area loss aids stability: Removing the area loss degrades performance at extreme scales,
suggesting it complements IPE by regularizing footprint integration.

* Parameter efficiency: Mip-NeRF achieves superior results with roughly half the parameters
of the baseline NeRF (612K vs 1.19M), aided by its single-scale-aware MLP.

Generalization to unseen scales

In experiments with randomized camera zooms at test time, Mip-NeRF preserves detail and avoids
aliasing even at scales never seen during training. This supports the mipmap analogy: each sample’s
feature vector is already pre-filtered to match its footprint, so no extra post-processing is needed.

Limitations and Downsides
While Mip-NeRF mitigates scale aliasing, it inherits several constraints from the original NeRF:
* Bounded scene assumption: Optimized for forward-facing or spatially bounded scenes,
making it ill-suited for large unbounded environments without further modification.
* View-dependent aliasing: IPE attenuates spatial high frequencies but does not pre-filter rapid
view-dependent effects (e.g., specular highlights, reflections), which can still alias.
* Extra per-sample cost: Computing frustum moments and performing Gaussian integration
introduce modest runtime overhead, although the reduced parameter count partly offsets this.
» Parameter sensitivity: Inaccurate cone-slope estimates or moment approximations can lead
to over-blurring or residual aliasing.
These factors have motivated extensions that adapt IPE to broader settings, improve efficiency,
or integrate it into hybrid scene representations.

Notable Works Building on Mip-NeRF

Mip-NeRF’s conical frustum integration and integrated positional encoding (IPE) have proven to
be broadly reusable primitives. By explicitly encoding the spatial extent of each ray sample, these
techniques offer a general anti-aliasing mechanism that can be slotted into diverse neural scene
representations. As a result, subsequent works have adopted Mip-NeRF’s ideas to tackle new regimes
such as unbounded scenes, high-speed rendering, and multi-modal supervision.

* Mip-NeRF 360 [29]: Extends Mip-NeRF to large, unbounded 360° scenes via scene contrac-
tion, a distortion-based sampling loss, and multi-scale proposal networks. Retains the IPE
formulation to prevent aliasing under extreme zoom or wide-FOV capture.

» Zip-NeRF [31]: Improves generalization to novel scenes by combining Mip-NeRF’s IPE with
strong geometry priors and data-driven regularization. Achieves higher quality with fewer
views and reduced overfitting.

* Tri-MipRF [237]: Integrates multi-resolution IPE into a tri-plane radiance field representation,
yielding faster rendering while preserving Mip-NeRF’s anti-aliasing benefits.

* Gaussian Splatting with IPE (e.g., [287], follow-up variants): Adapts Mip-NeRF’s scale-
aware encoding to initialize or filter point/ellipsoid attributes in real-time splatting pipelines,
improving detail retention at varying scales.
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Enrichment 23.10.7: NeuS: Neural Implicit Surfaces by Volume Rendering

Motivation

Surface reconstruction from multi-view images is a long-standing problem in computer vision.
Classical multi-view stereo (MVS) pipelines such as COLMAP produce dense point clouds and
polygon meshes, but often fail to recover fine details or handle challenging lighting and textureless
regions. Neural scene representations, notably NeRF [429], have recently demonstrated photorealistic
novel view synthesis, but NeRF’s volume rendering formulation inherently represents scenes as
semi-transparent volumes rather than sharp, watertight surfaces. This leads to fuzzy geometry and
small-scale surface artifacts, particularly when extracting explicit meshes.

An alternative is to represent scenes via a signed distance function (SDF), as in methods like
IDR [731], which directly target surface rendering. SDF-based approaches tend to produce cleaner
and more accurate surfaces, but prior work couples SDFs with classical surface rendering equations
that do not model complex light transport along the ray. This makes them susceptible to catastrophic
failures under occlusion: for example, IDR can produce visually plausible but geometrically incorrect
reconstructions that “fill in” occluded spaces with spurious surfaces.

The following figure from the NeuS paper [667] illustrates this trade-off. In the bamboo planter
example, IDR produces a clean-looking but topologically incorrect surface by filling the interior;
NeREF better preserves the hollow geometry but introduces visible surface noise due to volumetric
density smoothness. NeuS aims to combine the strengths of both: the sharp geometry of SDF-based
surfaces and the photometric consistency of volumetric rendering.

To achieve this, NeuS reformulates the volume rendering weights so that they are derived
directly from the SDF, enabling differentiable, unbiased surface localization while retaining the
correct transmittance behavior of volumetric rendering. This addresses a key bias problem in naive
SDF-to-density conversions (see the following figure), where the weight distribution shifts away
from the true surface, leading to systematic depth errors. By aligning the rendering formulation with
the signed distance geometry, NeuS bridges the gap between surface-based and volume-based neural
reconstruction.

. surface

v

surface rendering

sampled points E
‘ X EERXEED

Reference Image IDR NeRF Ours

volume rendering

(a) lustration (b) Example

Figure 23.60: Surface vs. volume rendering in neural scene reconstruction. (a) Conceptual
differences. (b) Bamboo planter example: IDR fills the interior despite a smooth surface, NeRF
preserves hollowness but exhibits surface noise, NeuS avoids both issues by combining SDF-based
surfaces with volumetric rendering. Image credit: [667].
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Method

Scene representation and rendering objective

NeuS [667] directly learns an implicit Signed Distance Function (SDF) fg : R? — R. For any point
x € R3, fp(x) is the signed Euclidean distance to the closest point on the scene’s surface, with the
zero level set {x | fo(x) = 0} defining the surface itself:

< 0, xisinside the surface,
fo(x) =< =0, xison the surface,

>0, xis outside the surface.

By definition, this covers any number of disconnected or self-occluding surfaces — at each spatial
location we only care about the distance to the nearest one, so a single continuous function fg can
represent multi-object scenes and thin structures.

Along a camera ray r(f) = 0+1d, it is possible to have two depths 7y < #; such that

fo(r(1)) = fo(r(t1)),

even though these correspond to entirely different physical surfaces (e.g., a nearer front face and a
farther back face with the same signed distance magnitude). For physically correct rendering, the
nearer point r(zp) should contribute more to the pixel color than the farther one r(#;), since the latter
is occluded by the former. NeuS therefore imposes the occlusion-aware requirement: if ¢, < f, and
fo(r(t,)) = fo(r(tp)), then w(z,) > w(tp), where w(t) is the per-sample weight along the ray.

The pixel color is modeled as a line integral of per-sample radiance contributions:

C(r) = /O T (t) e(r(e), ) dr,

where c(r(z),d) is the view-dependent color at position r(¢), and w(t) is a weight we will derive
from the SDF following the paper’s Eqs. (2)—(13). Intuitively,

* w(t) must (i) peak exactly at the zero level set to avoid geometric bias.

* w(t) must respect occlusion so that nearer visible surfaces dominate the pixel color.

From SDF to volume rendering
In the previous discussion we treated the signed distance function fy as a given geometric primitive.
In NeusS [667], this SDF is not precomputed — it is represented by a trainable multi-layer perceptron
(MLP) that maps any 3D coordinate x = (x,y,z) to its signed distance from the scene surface.
The MLP typically uses positional encoding on x to capture high-frequency detail, residual skip
connections for stable optimization, and smooth activations such as Softplus to make the SDF
differentiable everywhere. Training this network from multi-view images requires coupling the
implicit geometry to a differentiable volume rendering model, so that image-space supervision can
update the 3D SDF parameters.

The central design question is: given an SDF field fg, how should we convert it into per-ray
weights w(t) for rendering, such that surfaces are accurately located and occlusion is respected?
NeusS approaches this by interpreting the SDF along a ray as defining a probabilistic surface location.
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Specifically, instead of learning a free-form volume density o (¢) as in the original NeRF, NeuS
derives it directly from the signed distance function fg so that the density field is geometrically
tied to the zero-level set representing the surface. To do this, NeuS uses the logistic cumulative
distribution function (CDF) and its derivative:

1 , se ¥

q)s(x):m7 (ps(x):q)s(x):m’

where s > 0 controls sharpness (spread 1/s) and is learned jointly with the SDF parameters.
Why the logistic family?

* The derivative ¢ (x) is a smooth, symmetric, unimodal “bump” centered at x = 0, which makes
it well-suited for concentrating density exactly at the surface (fp(x) = 0) while avoiding the
discontinuities that would make optimization unstable.

* The CDF &(x) transitions smoothly from O (far inside) to 1 (far outside) across the surface,
providing a continuous and differentiable notion of “inside” vs. “outside” that plugs directly
into the transmittance computation in volume rendering.

* Learning s allows the method to adapt the thickness of the high-density region during training:
early on, a lower s produces a wider band of nonzero density around the surface, which
increases the number of samples along a ray that contribute gradients and thus stabilizes
learning. As training progresses, s increases, narrowing this band to approach the physical
reality of an infinitely thin surface — effectively concentrating the density into a subpixel-scale
layer for sharper geometry and cleaner renderings.

* In contrast, NeRF learns a free-form volume density ¢ (x) without explicitly enforcing a
geometric zero-level surface. This can lead to inconsistencies between the geometry implied
by the density field and the appearance in rendered images. NeuS’s SDF-driven density
formulation ensures that the geometry and appearance are linked through the same underlying
surface definition.

When applied along a ray r(t), ¢s(fo(r(z))) acts as a surface-likelihood profile: it peaks where
the ray intersects the surface and decays smoothly away from it. To produce physically correct
renderings, this profile must be combined with an occlusion-aware transmittance term so that nearer
intersections dominate over farther ones, and it must be constructed to be unbiased — i.e., its
maximum should occur exactly at fy(r(z)) = 0. The derivation of such an unbiased, occlusion-aware
weight w(t) from @, and ¢ is the focus of the next section.

Naive SDF—density conversion and its bias
A straightforward NeRF-style mapping would define

wnaive(1) = T(1) 0 (1), T(r) =exp( — /0 tG(u)du), (1) = 9 (fa(r(1))),

where 7' (¢) is the accumulated transmittance and o (¢) is the “density” derived from the SDF. This
form is naturally occlusion-aware due to T'(¢), but the product T (¢) 6(¢) tends to peak before the
actual surface intersection fp(r(t*)) = 0, introducing a geometric bias. Intuitively, as o (¢) rises
approaching the surface, 7'(¢) is already decaying, shifting the peak forward along the ray (The
following figure shows exactly that).
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Figure 23.61: Weight bias vs. unbiased construction. (a) Naive approach: The blue curve
shows the SDF f(¢), whose zero-crossing marks the true surface location. The brown curve is the
density 6 (1) = ¢(fo(r(r))), which is largest when f(r) is near zero. The green curve is the weight
w(t) = T(t) o(t). Because the transmittance 7'(¢) has already decayed by the time o() reaches its
peak, the product w(r) achieves its maximum before the blue zero-crossing—producing a biased
surface estimate. (b) NeuS: By redefining the effective density p(¢) so that T'(z) matches the logistic
CDF &,(f(t)) in the first-order SDF approximation, the decay of T'(r) and the growth of p(¢) are
balanced. This alignment causes the green weight w(r) = T'(¢) p(¢) to peak exactly at the blue
zero-crossing of f(¢), eliminating bias while retaining occlusion handling. Source: [667].

A direct unbiased weighting that fails occlusion
A seemingly natural way to obtain an unbiased surface-localization weight from the SDF is to
normalize the S-density along the ray:

R GCO)
Ji = 0. (£ (x(u))) du

Here, the numerator @s(f(r(7))) is maximal exactly when f(r(¢)) = 0, i.e., at the true surface
intersection, because ¢, is a smooth, unimodal density centered at zero. This guarantees that wg;(7)
peaks at the correct location—hence “unbiased.”

However, this construction ignores depth ordering and thus fails to model occlusion. If a
ray encounters multiple surfaces, the SDF f(r(z)) will cross zero at each intersection, producing
multiple peaks in ¢;(f(r(r))). Since wqir(f) is obtained by global normalization of these peaks, the
contributions from all intersections are rescaled to sum to one and are all blended into the final color.
Crucially, no mechanism here suppresses the influence of farther intersections once a nearer one has
been reached—violating the physical visibility constraint that closer surfaces should occlude those
behind them.

This limitation motivates the NeuS formulation, which retains the precise, unbiased surface
localization of wg;, while introducing an occlusion-aware transmittance term so that nearer surfaces
dominate the final rendered pixel.

Wair ()
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Derivation of the NeuS Weight Function for the Single-Plane Case
We begin with the simplest setting: a single infinite plane intersected by one camera ray.

Step 1. Geometric Setup
Let the ray be parameterized as

p(t)=o0+tv, >0, (23.21)

where o € R? is the camera origin, v € S? is a unit direction vector, and ¢ denotes depth along the
ray. Let ¢* be the depth where the signed distance function (SDF) vanishes:

Fp() =0, (23.22)

Step 2: Normal and Incidence Angle
Let n be the unit outward normal of the plane. The incidence angle 0 is defined by

cosO =v-n. (23.23)
A perpendicular hit yields |cos 6| = 1, while grazing incidence has |cos 8| ~ 0.

Step 3: SDF properties (geometry and intuition)
A true signed distance function (SDF) f : R® — R satisfies, almost everywhere,

Vix) =n(x), [[V/X)[2=1, (23.24)

where n(x) is the outward unit normal to the surface at the closest point 7(x).
* Gradient equals the normal. Consider moving X in a tangent direction t at w(x). The
closest-point distance does not change to first order:

of

Ea
In contrast, moving along the normal n(7(x)) increases the signed distance at the maximal
possible rate:

(x) =0 for all tangents t at 7(x).

The gradient V f(x) is the vector collecting all directional derivatives. The fact that tangent
derivatives are zero and the normal derivative is exactly 1 implies

Vf(x) =n(zn(x)),
i.e., the gradient is not only parallel to the surface normal but identical to it.
* Unit slope. By the definition of distance, taking a small step § along the outward normal
x5 = 7t(x) +on(m(x))
changes the signed distance by exactly &:

f(xs) = f(n(x))+6=46.
Therefore,

d

%f (x5)

6=0 -
and since this is the derivative in the gradient’s direction, we must have ||V f(x)|. = 1.
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Equivalently, a perfect SDF solves the Eikonal equation ||V f||» = 1 with f = 0 on the surface,
except on the medial axis where the nearest point is not unique. In learned SDFs, this property
is encouraged by the Eikonal regularizer (||V | — 1), which ensures correct metric scaling and
underpins the angle-based derivations in Step 4.

Step 4: SDF Evolution Along the Ray

By the chain rule,
d d
d—{:Vf(p(t))-d—l;:n-V:cose. (23.25)
With the convention f > 0 outside the surface, f < 0 inside, an entering ray satisfies cos 8 < 0:
df
A 0|. 23.26
.~ |cos6)| (23.26)

Step 5. Local linearization near the surface
Let t* be the depth at which the ray p(f) = o+ v intersects the surface, i.e., f(p(¢*)) = 0. From
Step 4 we know that

af _
dt
Atr =1*, the gradient equals the outward unit normal, n(p(¢¥)), so
af
dt I

where 0 is the incidence angle between the ray and the normal; the minus sign follows from the
convention f > 0 outside the surface.

VP )y

=n(p(t")) - v=—|cos |,

First-order approximation: Under the tangent-plane assumption near p(¢*), the unit normal n is
constant in this neighborhood. From Step 4, along the ray p(z) we have

df

dar
This is an ordinary differential equation with constant right-hand side. Integrating both sides with
respect to ¢ from ¢* to ¢ gives

fp@) = f(p(t*)) = —[cos O] (1 —17).

Since f(p(t*)) = O (the ray is on the surface at t*), we obtain

f(p(r) = —|cosb|(t—1"). (23.27)

n-v=—|cosf| (constant).

Interpretation:

* t <t* = f>0: the sample lies outside the surface.

* t =t" = f=0: the sample lies on the surface.

* t>1t* = f <O0: the sample lies inside the surface.
The slope magnitude |cos 6| measures how quickly the signed distance changes along the ray:
grazing rays (6 near 90°) change f slowly, while near-normal rays (6 near 0°) change it rapidly. This
angular factor is exactly what Step 6 will remove to construct a per-depth weight that is unbiased
with respect to the ray—surface angle.
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Step 6: Direct unbiased weight consfruction
Let ®; be the logistic CDF with sharpness s, and ¢; = @', its PDF (the S-density). A naive choice,

w(t) = ¢s(f(p(2))), (23.28)

produces a bell-shaped bump centered at the true hit depth ¢*, but its area in t-space scales like
1/|cos 8|. Intuition: along the ray, f(p(r)) changes at rate ’fl—}:‘ = |cos 0| (Step 4). Grazing rays
(|cos 0| < 1) sweep through the same range of SDF values more slowly, stretching the bump in
depth; hence, more total weight accumulates in free space before the hit than for a head-on ray.
This angle-dependent “mass inflation” is undesirable: it skews how much a single opaque surface
contributes depending on view angle and can over-emphasize pre-surface samples.

Normalization (single-plane model). To remove this geometric inflation, we normalize by the total
area along the ray:

0(fe(0)
| o) du

wair(t) = (23.29)

Under the local planar model of Step 5, f(p(u)) = —|cos 8| (u—1t*) and % = — |cos 0]. With the
change of variables x = f(p(u)) (so du = —dx/|cos 6|) we obtain

| o) du = |Cols o | otodx (23.30)
where xyin = — |cos 0]¢* and xpax — +o0. In the idealized infinite-depth limit r* — oo,
+oo 1 Foo 1
z*l—if-rrloo 0 ¢s(f(p(u))) du = |cos O] J o Os(x) dx = |cosB|’ 23.31)
Hence, in this limit, the direct single-plane weight becomes
w(t) = |cos 0| g(f(p(1))). (23.32)

For finite ¢*, this expression is an accurate approximation whenever the support of ¢; lies well inside
the integration domain.

Why normalization removes the bias (formal & intuitive). Let k := [cos0]| and f(p(7)) =
—k(t —t*) near r*.
* (i) Unit mass, angle-invariant.

+oo Y x=f (=T ®0) —dx [t _
f o= k[ almena el a0~ [ e =1,

(23.33)
where the approximation becomes exact as t* — +oo. Intuition: the bump widens by 1/k for
grazing rays, and the prefactor k exactly scales its height so that the total area remains 1.

* (ii) No pre-surface overweighting. Under the same change of variables, t < t* <= x>0
andr > t* <= x < 0. Since ¢ is symmetric,

/ w(t)dt = Ps(x)dx = 3 = Os(x)dx = / w(t)dt, (23.34)
t<t* x>0 x<0 t>t*
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again exact in the t* — +oo limit (or whenever both tails of ¢ are contained in the integration
domain). Thus the fraction of weight allocated before the hit is fixed at 1/2—grazing rays
do not gain extra early mass. Moreover, the distribution of (¢ —¢*) under w is symmetric, so
E,[t] = ¢*: there is no forward shift of the “center of mass.”

* (iii) Peak at the surface (no forward drift). Because ¢, is unimodal with maximum at x = 0,
w(t) o< ¢5(f(p(z))) attains its maximum at f =0, i.e., exactly at r = ¢*. Hence w(t*) > w(r)
for all r # t*.

Step 7. Derivative-of-CDF Identity
From Step 4 we know that along the ray

af _

=nv = —|cos@
dt | |7

for an entering ray. Applying the chain rule to the cumulative distribution ®,(f(p(¢))) gives

S a(f(p(0) = 0(F0(1) %L = ~[cos 6] 0,(£(p(1)). 2335)

Thus the NeuS weight may be expressed as

w(r) = |cosB]gs(f(p(r)) = — & Ps(f(p(1))). (23.36)

Step 8: Interpretation as Soft Visibility
The function ®,(f(p(¢))) acts as a soft visibility function:
* Outside the surface (f > 0), ®; ~ 1, meaning the ray is fully visible.
* Deep inside (f < 0), d; ~ 0, meaning the ray has been completely occluded.
* Near the zero-level set, @, smoothly transitions between these values.
The weight w(t) is precisely the negative slope of this transition along depth, concentrating probabil-
ity where the ray crosses the soft band around the surface.

Step 9: Embedding into Volume Rendering
Classical volume rendering defines

Identifying
T(r) = @5(f(p(r))), (23.37)
we obtain
Cow(t)  —&o(f(p()))
PO = 70 T e ew) (2339)

Hence the NeuS construction ensures

w(t) = T()p(t),

so the derivative-of-CDF weight integrates seamlessly into the unbiased volume rendering framework.
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Multi-Surface Generalization

Up to now we have assumed a single, locally planar zero-level set with a consistent orientation
(entering side only). In realistic 3D scenes, however, a ray may intersect multiple surfaces (e.g., front
and back faces of an object), or may exit a surface region where the signed distance field increases in
the viewing direction (df/dt > 0). This introduces two problems:

1. The raw expression

p) = — & loge,((p(1)

can become negative when d f /dt > 0, leading to unphysical “negative density”.
2. Without correction, the transmittance T (1) = exp(— [; p(u)du) could become increasing,
which contradicts the physical principle that visibility along a ray must monotonically decrease.

Enforcing Physical Validity
NeusS resolves these issues by clipping the density:

d
p(t) = max <— m, 0) . (23.39)

~

This guarantees that p(¢) > 0, so that transmittance is non-increasing and weights w(z) = T (¢)p ()
remain physically consistent.

Intuition

One way to view this is to imagine the ray entering and leaving a “soft surface band”. On the entering
side (df/dt < 0), the visibility drops and the derivative contributes positive density. On the exiting
side (df/dt > 0), visibility recovers; the raw derivative would suggest negative density, but NeuS
suppresses this contribution to avoid creating “ghost” surfaces with negative opacity. In effect, NeuS
only accumulates mass where surfaces occlude the ray, never where they re-open.

Weights Construction Summary
In the single-surface case, the NeuS weight

w(t) =[cos 0 9s(f(p(1)))

is unbiased: it integrates to one, splits symmetrically around the true intersection, and peaks exactly
at the surface crossing. The clipping-based generalization ensures that this property extends to
arbitrary, multi-surface geometry, embedding the construction into the physically consistent volume
rendering framework.
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Figure 23.62: Multiple intersections. The NeuS weight assigns probability only on entering
segments (df/dt < 0); on exiting segments (df/dt > 0) the derived opaque density is clipped to

zero. This preserves visibility ordering. Image credit: [667].

Discretization

To obtain discrete counterparts of the opacity and weight functions, the authors used the same
approximation scheme as used in NeRF [429]. Specifically, they sample » points along a ray,

pi=o+tv, i=1,....n, t; <tiy1,
and approximate the pixel color of the ray as

A

C=) Toc,

-

i=1

where 7; denotes the discrete accumulated transmittance, defined by

i—1

L=T]01-a),

j=1
and o; represents the discrete opacity given by

lit1

o =1 —exp<— p(t)dt).

1

Using the NeuS definition of the s-density p(¢), this integral can be shown to yield

D,(f(pi)) — Ps(f(Pi+1)) O>
@,(f(pi)) )

Q; = max<

(23.40)

(23.41)

(23.42)
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where ®; is the cumulative distribution induced by the sigmoid with sharpness parameter s.
The term c; is obtained by evaluating the radiance branch of the MLP at the point X; and viewing
direction d, giving ¢; = ¢(x;,d). Importantly, NeuS does not eliminate the MLP; rather, it changes
its parameterization. Instead of predicting a free density value o(x) as in NeRF, the network outputs
a signed distance value fp(x). This is then converted into densities through the sigmoid-based
cumulative distribution ®;( fg(x)), from which the discrete opacities o; are derived.

The max operator ensures non-negativity by clipping spurious increases of ®; across bins. Thus
the discretization remains faithful to the continuous NeuS rendering equation.

Compared to NeRF, the forward cost is essentially identical—both require evaluating an MLP
for each sample. The key difference lies in representation: NeRF directly predicts densities, while
NeuS predicts an SDF and enforces surface-consistency through its transformation. This change
does not accelerate rendering, but it yields sharper, geometrically consistent surfaces and avoids the
“fuzzy-shell” artifacts common to NeRF.

Training

NeusS is trained without any ground-truth 3D supervision. Instead, it relies on standard 2D image
supervision: observed pixel colors and, if available, binary foreground masks. The goal is to optimize
the signed distance function fy and color head so that the rendered radiance field explains all training
views consistently.

Pixel sampling. At each iteration, a batch of m image pixels is sampled. For every pixel we collect
its color, optional binary mask, and corresponding camera ray in world space:

P= {Ck7 Mka O, Vk};cnzlv
where C; € R? is the observed RGB value, M € {0, 1} is the foreground/background indicator, oy is
the camera origin, and vy, the unit ray direction.

Overall objective. For each ray, n points are sampled and rendered through the NeuS volume
rendering equation, producing predicted colors C; and occupancies Oy. The total training loss is

L = Leolor + A Zeg + B ZLinask (23.43)

where each term enforces a different supervision signal.

Color reconstruction. The primary signal is per-pixel color matching:

Lreotor = — Y. Z(Cy,Cr), (23.44)

1
mi=
where Z is an {; loss, chosen for robustness to outliers. This term encourages the rendered radiance
field to reproduce the ground-truth images.

Eikonal regularization. To ensure that fy behaves as a valid signed distance function, NeuS adds
an Eikonal loss [189]:

1
Lreg = %Z(va(ﬁk,i)nl —1)%, (23.45)

ki

forcing the gradient norm to remain close to 1 almost everywhere.
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Mask supervision. When binary foreground masks are available, NeuS includes an additional
constraint on ray occupancy:

n
Lmask = BCE(My, Oy), O =Y Tiion,, (23.46)
i=1
where Oy € [0,1] is the predicted probability that ray k intersects the object. If My = 0 (background
pixel), the network is penalized for predicting any opacity along that ray. If M; = 1 (foreground), the
network must explain the pixel with some nonzero occupancy. This mask loss thus provides strong
geometric supervision in cases where silhouettes are known.

Hierarchical sampling. The hierarchical sampling strategy in NeuS is designed to efficiently
localize the surface by focusing computation on regions where the signed distance field (SDF)
indicates high surface likelihood. Importantly, NeuS achieves this with a single MLP, unlike NeRF
which maintains separate coarse and fine networks.
* Stage 1: Uniform sampling with fixed sharpness. Each ray is first discretized into ng
uniformly spaced points (e.g., 64). For these coarse samples, NeuS evaluates the S-density
function

0.1 () = () |2

using a fixed sharpness parameter s. This fixed s is not learned but annealed over iterations
(e.g., s = 322/ in iteration i) so that the sampling distribution becomes progressively more
peaked near potential surface regions. The goal is to obtain a broad but informative estimate
of where surfaces may lie.

» Stage 2: Importance sampling with learned sharpness. Based on the coarse distribution,
NeuS resamples additional n; points (e.g., 4 iterations of 16 points each). For these fine
samples, the probability density is computed with the learned sharpness parameter s, which is
optimized during training. This adaptive s sharpens over time, concentrating samples more
tightly around the true surface as the SDF becomes well-defined.

Thus, NeuS does not use two separate networks but instead uses two different regimes of the
same S-density function: one with fixed, annealed sharpness for exploration, and one with learned
sharpness for exploitation. This hierarchical approach balances efficiency with precision: the fixed s
ensures coverage so that surfaces are not missed, while the learned s allows the model to progressively
refine and localize surfaces with high fidelity.

Compared to NeRF, where hierarchical sampling requires evaluating two full MLPs (a coarse
and a fine model), NeuS is more efficient: only a single MLP is optimized and queried, with different
sampling distributions guiding where along the ray the network is evaluated. Moreover, since NeuS
is SDF-based, the learned sharpness naturally drives samples toward the zero level set, achieving
more accurate and unbiased surface reconstruction than NeRF’s density-based formulation.

Training stabilization via geometry initialization

Directly training an SDF-based radiance field from random initialization often leads to vanishing
gradients, since no ray finds a valid surface early in optimization. To mitigate this, NeuS biases the
final layer of the SDF network such that its zero-level set initially approximates a coarse sphere
around the scene. This “geometry initialization” ensures that rays intersect meaningful surfaces
at the start of training, stabilizing the optimization process. As learning progresses, the initialized
surface quickly deforms to match the actual scene geometry.
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Experiments and Ablations

Experimental setup

NeusS is evaluated on the DTU dataset, which provides multi-view images with ground-truth geometry.
Reconstructions are reported both with and without mask supervision. Mask supervision means
that a foreground mask of the object is available during training, ensuring that background pixels
do not bias the reconstruction. Without mask supervision, the method must disentangle object and
background purely from image observations.

Quantitative results

The following table reports Chamfer distance (lower is better) across multiple DTU scans, comparing
NeusS to prior implicit reconstruction methods (IDR [731], UNISURF [455]) and to volumetric
rendering baselines (NeRF [429]) and COLMAP [553]. NeusS consistently achieves the lowest mean
error (0.84), significantly outperforming both NeRF and UNISURF.

ScanID | IDR NeRF NeuS COLMAP | NeRF (w/o mask) UNISURF NeuS (w/o mask)
24 1.63 1.83 0.83 0.81 1.90 1.32 1.00
37 1.87 239 098 2.05 1.60 1.36 1.37
40 0.63 179 0.56 0.73 1.85 1.72 0.93
55 048 066 037 1.22 0.58 0.44 0.43
63 1.04 179 1.13 1.79 2.28 1.35 1.10
65 0.79 144 0.59 1.58 1.27 0.79 0.65
69 0.77 150 0.60 1.02 1.47 0.80 0.57
83 1.33 120 1.45 3.05 1.67 1.49 1.48
97 1.16 196 0.95 1.40 2.05 1.37 1.09
105 076 127 0.78 2.05 1.07 0.89 0.83
106 0.67 144 0.52 1.00 0.88 0.59 0.52
110 0.90 2.61 1.43 1.32 2.53 1.47 1.20
114 042 1.04 0.36 0.49 1.06 0.46 0.35
118 0.51 1.13 045 0.78 1.15 0.59 0.49
122 0.53 099 045 1.17 0.96 0.62 0.54

Mean | 090 1.54 0.77 1.36 1.49 1.02 0.84

Table 23.10: Quantitative evaluation on the DTU dataset. NeuS achieves the lowest Chamfer distance
both with and without mask supervision. COLMAP results use trim=0.
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Qualitative comparisons

Scan 37 Scan 24
(DTU) (DTU)

Dog
(BlendedMVS)

Stone
(BlendedMVS)

o e
Reference Image

" NeRF

Figure 23.63: Comparison of surface reconstruction with mask supervision. NeuS generates the
most accurate surfaces. IDR produces smooth but wrong geometry, while NeRF captures geometry
but with many artifacts.

Sculpture Clock Scan 69
(BlendedMVS) (BlendedMVS) (DTU)

Bear
(BlendedMVS)

Reference Image Qurs NeRl COLMAP

Figure 23.64: Comparison of surface reconstruction without mask supervision. NeusS is robust, while
NeRF introduces artifacts and COLMAP removes parts of the object or hallucinates noise.
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Ablation studies

The contribution of each component in NeusS is verified via ablation. The following table reports
Chamfer distance and mean absolute error (MAE) between ground-truth and predicted SDF values.
The results highlight the necessity of all components: naive volume rendering (a) and direct SDF su-
pervision (b) fail catastrophically; removing the Eikonal regularization (c) or geometry initialization
(d) significantly degrades performance; only the full model (e) achieves low reconstruction error.

Variant Chamfer Distance | MAE

(a) Naive Solution 1.49 1.75
(b) Direct Solution 4.45 44.34
(c) w/o Eikonal 0.64 88.94
(d) w/o Geo-Init. 0.62 6.19
(e) Full Model 0.59 0.93

Table 23.11: Ablation studies on DTU. Removing the Eikonal loss or geometric initialization
substantially harms reconstruction accuracy.

(a) Maive Solution (b) Direct Solution (¢) w/o Eikonal  (d) w/e Geo-Init. (e} Full Model Reference Image
1.49 445 0.64 0.62 0.59 Chamfer Distance
1.75 44.34 88.94 6.19 0.93 MAE

Figure 23.65: Qualitative ablations. NeuS requires all components—S-density, Eikonal regulariza-
tion, and geometry initialization—for faithful reconstruction.

Limitations and Related Work
While NeuS delivers high-quality surface reconstructions via its signed distance field (SDF)-based
volume rendering, it has notable limitations:

* Computational cost: The reliance on per-sample MLP evaluations and SDF-to-density
conversion makes training and inference slower compared to standard NeRF pipelines.

* Mask dependency: Although NeuS works without mask supervision, accurate foreground
masks significantly boost reconstruction fidelity; without them, detail in thin or complex
structures can suffer.

* Topology challenges: Representing highly intricate or open surfaces remains a challenge for
closed-surface SDF models.
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Previous works.

IDR [731]: Introduced differentiable rendering of implicit surfaces using signed distance
functions (SDFs), supervising geometry through surface normals and photometric consistency.
While conceptually elegant, IDR struggled with complex or open-topology scenes (e.g.,
buckets or vases), where normal-based rendering did not provide stable gradients. NeuS builds
directly on IDR’s use of SDFs but resolves its instability by adopting a volume rendering
formulation, yielding more consistent optimization signals and sharper reconstructions.

Concurrent works.

VoISDF [732]: Proposed mapping SDF values to densities via a Laplace cumulative dis-
tribution function (CDF), enabling smoother and more stable volume rendering than IDR.
However, VoISDF used a fixed sharpness parameter, which limited its ability to adapt across
varying surface scales. NeuS improved on this by introducing a learnable sharpness, allowing
adaptive localization of surfaces and producing significantly crisper reconstructions, especially
in fine-detail regions.

UNISUREF [455]: Presented a unified framework bridging NeRF and implicit surface rendering.
Unlike NeuS, UNISURF relied more heavily on external mask supervision, which limited
its robustness in unconstrained scenarios. Both works shared the motivation of reconciling
surface-based and volumetric representations, but NeuS advanced the field by learning the
SDF-to-density mapping directly, reducing reliance on explicit segmentation cues.

Later works.

HF-NeusS [682]: Decomposed the SDF into base and residual frequency components, enabling
reconstruction of thin structures and high-frequency detail (e.g., sharp edges or wires). While
improving fidelity compared to NeuS, it retained the same runtime bottlenecks since both
relied on per-point MLP evaluation.

PET-NeuS [683]: Replaced dense per-point MLP queries with tri-plane encodings, where
features were stored in structured 2D planes and interpolated during rendering. This design
improved efficiency and detail, addressing NeuS’s computational cost while preserving its
SDF-based accuracy.

NeUDF [377]: Generalized NeuS-style rendering to unsigned distance functions (UDFs),
removing the assumption of closed surfaces inherent to SDFs. This allowed robust recon-
structions of open and thin structures (e.g., curtains, leaves, or perforated objects) that NeuS
struggled with, thus broadening applicability to more complex real-world geometries.
KiloNeusS [147]: Partitioned the scene into thousands of small MLP “experts,” drastically
reducing training and inference time. Compared to NeuS, which required hours of optimization,
KiloNeuS achieved near real-time performance while maintaining competitive quality, making
SDF-based rendering far more practical.

NeuS2 [681]: Extended NeuS with hash-grid encodings and optimized CUDA kernels, reduc-
ing training from hours to minutes per scene. Crucially, NeuS2 also incorporated support for
dynamic scenes, handling time-varying geometry and appearance—a limitation in the original
NeusS. This positioned NeuS2 as a scalable and general successor.

GSDF [744]: Combined NeuS-style SDF geometry with Gaussian Splatting for appearance
modeling. The motivation was that SDFs excel at representing surfaces but are inefficient
for view-dependent appearance, while Gaussians offer fast rasterization and smooth view
interpolation. By splitting geometry (SDF) and appearance (Gaussians), GSDF improved both
quality and rendering efficiency compared to pure NeuS.
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Enrichment 23.10.8: Point-NeRF: Point-based Neural Radiance Fields

Point-NeRF [714] introduces a point-based neural radiance field representation that combines the
strengths of explicit point clouds and implicit volumetric rendering. Unlike NeRF [429], which fits a
global MLP per scene, Point-NeRF leverages neural point clouds that encode local geometry and
appearance features, enabling efficient feed-forward initialization and rapid per-scene optimization.
This summary details the motivation, method, architecture, experiments, limitations, and follow-up
work.

Motivation
Classical NeRF methods achieve impressive view synthesis results but suffer from inefficiency: each
scene requires hours or days of optimization, and significant computation is wasted sampling empty
space. Point clouds, by contrast, provide explicit geometric priors but often suffer from holes, noise,
or sparsity when reconstructed using MVS or SfM pipelines (e.g., COLMAP [553]).

Point-NeRF addresses both challenges by:

» Using neural points distributed near surfaces to avoid sampling empty space.

* Enabling direct feed-forward initialization of neural radiance fields via deep MVS prediction.

* Employing point pruning and growing to repair sparse or noisy point clouds.

This hybrid approach leads to reconstructions that surpass NeRF in quality and efficiency,
converging in tens of minutes up to a several hours instead of days.

Qur neural points after
.. pruning & growing
Y i

Our generated  Ours at 10K steps Ours at 200K steps NeRF al 500K steps COLMAP point Qur rendering resull
neural points  (21min), PSNR 31.05 (4.5h), PSNR 36.13 (2days), PSNR 30.13 cloud as input after pruning & growing

Figure 23.66: Point-NeRF efficiently reconstructs fine details (e.g., leaf structures) in tens of minutes,
unlike NeRF which requires days of optimization. It can also initialize from raw COLMAP point
clouds and refine them via pruning and growing. Credit: [714].

Method

Overview

Point-NeRF reconstructs a continuous radiance field by augmenting an explicit 3D point set with
neural attributes and rendering it with a lightweight, local MLP. Crucially, the 3D points and their
initial attributes are obtained by scene-independent, feed-forward networks that operate directly on
posed images—so0 a new scene can be initialized relatively fast without re-training these networks.

Inputs. We are given a calibrated image set

Jo= {(quq)q)}qQ:p D, = (Kg;Rg:19),

i.e., O RGB images with known intrinsics/extrinsics.
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Scene-independent initialization (learned across many scenes). Point-NeRF trains two modules

across scenes so they generalize to new inputs and provide a fast, scene-agnostic initialization:
* Geometry/Confidence module G, , (MVSNet-style 3D CNN). For a reference view g with a
small set of neighboring source views .4 (q) (typically |.4"(q)|=2), G, y proceeds as follows:

1. Plane-swept cost volume. Build a 3D tensor over (u,v,d) by differentiably warping
source-view feature maps onto fronto-parallel planes placed at discrete depths d € Z in
the reference frustum (plane-induced homographies). At each pixel (u,v) and plane d,
we compute a cost (e.g., channel-wise variance across the warped sources) that measures
multi-view agreement. Intuition: if the hypothesized plane passes through the true
surface seen at (u,v), the warped source features align well and the cost is low; otherwise
they disagree and the cost is high.

2. Regularization and probabilities. A compact 3D CNN regularizes the noisy cost vol-
ume and outputs depth logits L,(u,v,d); applying a softmax along d gives the depth

probability volume
expLy(u,v,d)
P, (u,v,d) = € [0,1], P,(u,v,d) = 1.
q( ) Zd'e@eXqu(uvvﬂd,) [ ] deZW ! )

Intuition: the logits are unnormalized scores; after softmax, P, (u,v,-) becomes a distri-
bution along the reference ray stating how likely each depth hypothesis explains pixel
(u,v) given all views.

3. Depth regression (soft-argmin). Regress a single expected depth per pixel by the
probability-weighted average

Dy(u,v) = Z dPy(u,v,d).
de?

Intuition: Dy(u,v) is the (differentiable) expectation of the per-ray depth distribution.
If P,(u,v,-) is sharply peaked at some d*, then D,(u,v) ~d* (like an argmax); if it is
spread over nearby planes, D, interpolates them, yielding sub-plane precision.

4. Unprojection to 3D points. Using the reference camera parameters ®, = (K;,Ry,1,),
back-project each pixel (u,v) with depth d = D, (u,v) into 3D:

Yeam = dK; [u, 1T, p=R] (veam — 1) € R,

producing a per-view point set { pE")}fQI. Intuition: this lifts the 2D depth map D, into a
cloud of 3D anchors that sit on the most plausible surface along each reference ray.

5. Confidence from P,. Assign each 3D point a confidence by sampling the depth probability
at its inferred depth:

,yl((]) ~ Pq(uia Vi, Dq(ui,v,-)) < [07 1]7

using tri-linear interpolation in (u,v,d) to handle non-integer coordinates. Intuition: tri-
linear sampling blends the eight neighboring grid values to evaluate P, at the continuous

location (u;,v;,d;). If Py(u;,vi,-) is peaked near d;, the pixel’s multi-view evidence

strongly agrees there, so yi(q)

and ,},I(Q)

is large; if it is flat or multi-modal, the depth is uncertain

is small.
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Generalization. Trained once across diverse scenes, G, , produces dense geometry and
uncertainty-aware confidences for a new scene with a single forward pass (no per-scene
retraining), yielding a fast and reliable geometric scaffold for Point-NeRF.

* Feature module G, (2D CNN). Independently, G extracts multi-scale feature maps from

each I, (shared weights across views). For every 3D point pl(q) , We project it into visible

training views and sample the corresponding feature maps; the sampled descriptors are fused
(e.g., concatenation/averaging or a small fusion MLP) to obtain a per-point appearance vector
fl-(q). Gy is also trained across scenes and reused as-is at inference.

Running G,y and G for several references yields per-view sets { (p(q), fl.(CI),yi(q))}. These are

combined (union with light filtering/deduplication) into a single, scene-level neural point cloud

P=A{(pi.fi ) li=1,....N},

which then drives fast, surface-aware rendering and the subsequent per-scene refinement (with
pruning and growing).

Per-scene refinement (= tens of minutes). Given the unified neural point cloud P = {(p;, f;, i) }I_,
(points p; € R? with per-point features f; from G and confidences 7;), Point-NeRF renders a novel
view by differentiable ray marching restricted to space near the point cloud. This restriction avoids
wasting samples in empty regions and is implemented by querying, at each shading location, only the
K nearest neural points within a radius R. All radiance and density predictions at shading locations
are regressed from these local neighbors rather than a global MLP.

Ray setup and sampling (as in NeRF)
For a target camera with intrinsics K and extrinsics (R,) (world—camera), a pixel (u,v) defines a

camera ray with origin at the camera center 0 = —R' ¢ and direction
J— R'K u,v, 1]7
|RTK = u, v, 1]T ||

We sample depths {z J}’J‘/’: | along this ray (near—far) and form shading locations x; = o +1;d with
spacings A; =t;,1 —t;. The pixel color is accumulated via the standard volume-rendering rule

M j—1
c = ij(l—eiajAJ‘) rj, T = 6Xp(—ZGtAt>.
Jj=1 t=1

Intuition. At each sample x; the density o; induces an opacity aj =1 — e~%% (how much the
sample contributes) and a transmittance T; (how much light survives from the ray origin up to x;).
The emitted/view-dependent color r; is then weighted by the chance that the ray reaches x; (7;) and
“stops” there (). High o; increases o¢; (more contribution, more occlusion downstream); low o;
passes energy forward.

Local neighbor query (surface-aware shading)
At each ray sample x; we gather only the K nearest anchors within a radius R:

A 5) = { (i fisw) | Ipi=x)ll R, K nearest].

Restricting computation to nearby anchors focuses shading near likely surfaces and avoids wasting
samples in empty space. In practice, a uniform voxel grid or hash grid over {p;} accelerates neighbor
lookup so that only cells intersected by the ray are visited.
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Local feature regression (Eq. 3)
Each neighbor (p;, fi, %) € -4 (x;) is turned into a location-specific descriptor by a small MLP F:

fi,xj = F(flv xj_pl)

Conditioning on the relative offset x; — p; (with positional encoding in practice) grants translation
invariance and lets each neural point act as a local 3D chart around itself.

Radiance aggregation (Eqgs. 4-5)
Location-specific features are blended with inverse-distance weights and confidence modulation:

_ Zi%wiﬁ,Xj Wi — 1
riwi = pll
where R is a light MLP that also takes the viewing direction d (directional positional encoding).

Intuition: nearby, high-confidence anchors dominate r;, while distant or dubious anchors are
downweighted.

ij rj = R(ija d)>

Density aggregation (Egs. 6-7)
Densities are produced in two stages:

o, — LiGiNWi _ 1

o, = T(fix, = = _
1 (ﬁ7x_/)7 J Zl Wl 9 1 ||x] o le

Why both w; and v;? w; encodes geometric proximity (even a reliable point should not dominate far
away), while y; encodes reliability (even a nearby point should contribute little if its confidence is
low). Together they yield robust, surface-aware o;.

Putting the pieces together
For each pixel ray: (i) sample {x;}, (i) query .4 (x;), (iii) compute {fi, } via F, (iv) aggregate to
rjand 0; via R and T, and (v) composite with

j—1
Tj(lfe_o-"Aj) rj, Tj = exp(—ZG,A,).
t=1

I
™M=

Il
—_

J

End-to-end optimization objective
Rendered colors are supervised by an ¢, photometric 10ss Lyender (Optionally plus perceptual terms).
During per-scene refinement, gradients do flow into the neural point cloud attributes and the local
shading MLPs, while the scene-agnostic generators G, , and G remain frozen (they were pretrained
across scenes to provide fast initialization). Concretely, we update:
* Per-point attributes (f;, %): f; specializes to the scene’s appearance; ¥ sharpens so anchors
truly on-surface receive high confidence while outliers are suppressed.
* Local MLPs F,R, T adapt the mapping from neighbor-conditioned features to (r, o) for this
scene.
» Topology (discrete edits): instead of moving p; continuously (unstable and unable to close
large holes), we use pruning and growing.
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The total loss is

1
Ltotal = Lrender + )Lsparse Lsparsey Lsparse = m Z [lOg(’}/,) + log(l - %)] )

which (per paper Eq. (10)) polarizes confidences toward {0, 1} and makes pruning decisions unam-
biguous.

Topology edits during refinement (per paper)

Pruning. Points with persistently low confidence are removed; specifically, every 10K iterations,
points with y; < 0.1 are pruned (as in the paper), eliminating outliers and reducing neighborhood
clutter.

Growing. To add anchors where geometry is missing, use the current field to propose new points
along training rays. For a sample at x; with density o; and step A;, define the instantaneous opacity

aj = 1 —exp(—0jA)).

Let j, = argmax; o;; be the most opaque sample on the ray (paper Eq. (11)). If (i) ;, exceeds an
opacity threshold Top,city (likely surface) and (ii) the distance from x j, to the nearest existing anchor
exceeds Tgise (under-anchored region), insert a new point at ppew = x;,. Initialize its attributes as in
the paper’s pipeline: features few from G by projecting pyew into visible views and fusing sampled
descriptors; confidence ¥pew With a moderate prior (e.g., 0.3) that will be driven by Lienger+Lsparse-
Merging near-duplicates and updating the neighbor index keeps queries efficient.

Outcome. Because geometry and initial descriptors come from the pretrained, scene-independent
generators (G, y and Gy), per-scene training converges in fens of minutes yet achieves quality
competitive with or better than NeRF trained for hours. The confidence- and distance-weighted
aggregation stabilizes learning, while pruning/growing self-organize the anchor set to close holes
and remove outliers, preparing us for the next section on Architecture & Implementation Details.

Architecture and Implementation Details

* Point Generation: Depth maps predicted via a cost-volume 3D CNN G, , unprojected into
3D points with confidence 7;.

* Feature Extraction: 2D CNN G (VGG-style) produces multi-scale features aligned with
points.

* Radiance/Density MLPs: Small per-point MLPs regress local features, radiance, and density.

* Positional Encoding: Applied to relative positions and view directions.

* Optimization: Loss combines rendering error and sparsity penalty:

Lopt = Lyender + OCLsparsep

with pruning/growing every 10k iterations.

_~{ Neural point generation Point-based volume rendering

W c..().6;0) s, FO.R0).T() QQ‘
IIV.'I.uIti-view images caan:::zl P;int Cloud Rendering loss

Figure 23.67: Point-NeRF optimization: dashed lines indicate gradient updates during initialization
and per-scene finetuning. Credit: [714].
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Experiments and Ablations
Point-NeRF is evaluated on DTU [262], NeRF-Synthetic [429], Tanks&Temples [299], and Scan-
Net [113]. This section reproduces the paper’s reported numbers and highlights the main observa-

tions.

Table 23.12: DTU [262] (novel-view setting of [79]). Subscripts indicate training iterations.

Per-scene Optimization

No Per-scene Optimization

PixeINeRF [739] MVSNeRF [79] IBRNet [654] Point-NeRF‘Poim—NeRFlK Point-NeRFjox  MVSNeRFox IBRNetjox NeRFoyk [429]

PSNR 1 19.31 26.63 26.04 23.89 28.43 30.12 28.50 31.35 27.01
SSIM 1 0.789 0.931 0.917 0.874 0.929 0.957 0.933 0.956 0.902
LPIPSvGe | 0.382 0.168 0.190 0.203 0.183 0.117 0.179 0.131 0.263
Time | - - - - 2min 20min 24min 1h 10h
DTU

With 1K iterations (= 2 minutes), Point-NeRF already exceeds a NeRF baseline at 200K iterations
(= 10 hours) on PSNR/SSIM/LPIPS; at 10K iterations it attains the best SSIM and LPIPS among

the listed methods (Table 1).

Table 23.13: NeRF-Synthetic [429]. Point-NeRF matches NeRF at 20K steps and surpasses it at
200K. “col” denotes initialization from COLMAP [553].

NPBG [9] NeRF [429] IBRNet[654] NSVF [370] Point-NeRFfS(l)K
Point-NeRFoxk  Point-NeRFgok
PSNR 1 24.56 31.01 28.14 31.75 31.77 30.71 33.31
SSIM 0.923 0.947 0.942 0.964 0.973 0967 0.978
LPIPSyge | 0.109 0.081 0.072 - 0.062 0.081 0.049
LPIPS Alex 4 0.095 - - 0.047 0.040 0.050 0.027
NeRF-Synthetic

At 20K iterations (= 40 minutes), Point-NeRF reaches NeRF-level quality; at 200K it surpasses
NeRF on PSNR/SSIM/LPIPS (Table 2), with qualitative advantages on thin structures.
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NP Bé NeRF Ourszax IBERNet NSVF Ourszom Referenc;

Figure 23.68: Qualitative comparisons on NeRF-Synthetic [429]. Subscripts indicate training
iterations. Point-NeRF captures thin structures (e.g., the rope) and converges much faster than NeRF.

Tanks&Temples and ScanNet

On the Tanks&Temples subset of [299] (five scenes: Ignatius, Truck, Barn, Caterpillar, Family),
Point-NeRF reports a mean 29.61 / 0.954 / 0.080 (PSNR / SSIM / LPIPS p1ex), Which improves over
NSVF’s 28.40 / 0.900 / 0.153 by +1.21 dB PSNR, +0.054 SSIM, and —0.073 LPIPS (lower is
better), indicating higher fidelity and better perceptual quality under larger, real scenes.

For ScanNet [113] (two scenes used by [370]), Point-NeRF achieves 30.32 /0.909 / 0.220 versus
NSVF’s 25.48 /0.688 /0.301, i.e., +4.84 dB PSNR, +0.221 SSIM, and —0.081 LPIPS zjex. These
results follow the evaluation protocol of [370] (depth-image—initialized scenes) and show a consistent
advantage in both accuracy and perceptual metrics on indoor scans.

Initialization from external COLMAP clouds

When starting from COLMAP points [553], pruning and growing (Sec. 23.10.8) substantially
improve geometry and rendering. The following figure shows qualitative effects; The following table
(paper’s numbers) reports gains on Ship and Hotdog.
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COLMAP point generation
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Figure 23.69: Pruning & growing (P&G) ablation. Removing outliers and adding anchors in high-
opacity, under-anchored regions improves both geometry and rendering for predicted points and
COLMAP-initialized points.

Table 23.14: Effect of pruning & growing (paper’s Table 4). COLMAP: initialization from [553].

Method Ship (PSNR/SSIM /LPIPSygg) Hotdog (PSNR/SSIM /LPIPSvGg)
Point-NeRF (No P&G) 25.50/0.878/0.182 34.91/0.983/0.067
Point-NeRF (With P&G) 30.97/0.942/ 0.124 37.30/0.991/0.037
COLMAP init (No P&G) 19.35/0.905/0.167 29.91/70.978 /0.061
COLMAP init (With P&G) 30.18/0.941/0.134 35.49/0.986 / 0.061

Feature-initialization ablation (paper’s Table 5)

Initializing point features with extracted multi-view image features accelerates convergence and
improves final metrics versus random initialization: 20K iters PSNR/SSIM 30.09/0.963 (extracted)
vs. 25.44/0.932 (random); 200K iters 33.00/0.978 (extracted) vs. 32.01/0.972 (random).

Limitations

* Dependence on seed quality. The feed-forward initializer greatly accelerates setup, but
extremely sparse or noisy initial geometry can still cap fidelity. Pruning/growing helps, yet
very large holes or heavy outliers remain challenging to repair quickly.

* Memory and neighborhood queries. High point densities increase memory footprint and the
cost of building/querying spatial indices. At render time, each shaded sample performs a local
KNN aggregation, so throughput is ultimately limited by ray marching and repeated neighbor
lookups.

* Mesh extraction. Even though the representation is anchored by explicit points, producing
watertight, topologically consistent meshes from the learned radiance field is non-trivial, as in
many radiance-field methods.
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Outlook toward 3D Gaussian Splatting.

These bottlenecks motivate alternative explicit radiance parameterizations that trade local KNN
aggregation and per-sample MLP evaluations for analytic rasterization of continuous primitives. A
prominent next step is 3D Gaussian Splatting [287], which represents the scene with anisotropic
Gaussians carrying color (e.g., spherical-harmonics coefficients), opacity, and covariance. Rendering
then becomes screen-space splatting with differentiable visibility, enabling much higher frame
rates. In the following section, a comparison is drawn between Point-NeRF’s point-anchored, ray-
marched formulation and Gaussian-based splatting, clarifying how the latter alleviates neighbor-query
overhead and amortizes rendering—while introducing its own visibility and ordering considerations.
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Enrichment 23.10.9: 3D Gaussian Splatting: RT Radiance Field Rendering

Motivation and big picture

Context and objective

Radiance fields deliver high-fidelity novel views, but classic NeRF pipelines are costly at train and
render time due to dense ray marching and repeated MLP evaluation. Fast explicit variants (Plenoxels,
DVGO, Instant-NGP, TensoREF, etc.) accelerate this by replacing networks with explicit features
or compact encodings, while Point-NeRF adopts point primitives with differentiable rasterization.
3D Gaussian Splatting (3DGS) [287] represents the scene with anisotropic 3D Gaussians and
renders them using a visibility-aware, differentiable, tile-based software rasterizer. Each 3D ellipsoid
projects to a 2D ellipse whose Gaussian footprint is blended front-to-back, preserving the volumetric
accumulation behavior while enabling real-time rendering once optimized.

Figure 23.70: From triangles to Gaussians Instead of rasterizing mesh triangles, 3DGS renders
many anisotropic 3D Gaussians; in screen space these appear as ellipses (borders shown for clarity).
Ilustration adapted from the Hugging Face overview [139].

Key idea

3D Gaussian Splatting (3DGS) renders scenes by forward rasterization instead of backward ray
marching [287]. The scene is a collection of learnable anisotropic 3D Gaussians. Each Gaussian is
projected to a soft 2D ellipse and blended in front-to-back depth order using ¢-compositing; this
reproduces volumetric visibility while remaining GPU-friendly.

Core terms
A 3D Gaussian is defined by a center u € R? and covariance ¥ € R3*3 with (unnormalized) density

Glx) o exp(— 3 (x =)= (x— p)).

If ¥ = o1 the spread is the same in all directions (isotropic); otherwise it is direction-dependent and
the shape is an oriented ellipsoid (anisotropic). 3DGS parameterizes the covariance in a sophisticated
manner allowing simple optimization with minimal constraints.

How 3DGS uses Gaussians
Each Gaussian stores:

* geometry and opacity: (U, R, S, a).

* appearance: a set of learned spherical harmonics (SH) coefficients for view-dependent color.
All parameters are optimized from posed images via backpropagation (details later).
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From 3D to 2D footprints
We use the standard pinhole camera to map a 3D point to pixel coordinates. Let a world point be
x € R3. First apply the extrinsics W = [R, |t.] (world—camera):

X, .
X =wi=|Y]|, i:H,
Z:

so (X, Y.,Z.) are the point’s coordinates in the camera frame and Z.>0 is its depth along the optical
axis. Then apply the intrinsics

fi 0 o
K=10 f ¢,
0 0 1

where f, f, are focal lengths measured in pixels (scaling image-space units along u and v), and
(cx,cy) is the principal point (optical center in pixels). The pinhole projection 7 : R3 = R?is

(u,v) = ﬂ(X) = <fx%+cxa fy%""cy)a

i.e., we form normalized image coordinates (X./Z.,Y./Z.) and then scale/shift by (fi, f,) and
(cx,cy).

Local linearization and the projection Jacobian To obtain a simple, differentiable footprint for each
Gaussian, we linearize the pixel coordinates near its center i. Let Xo = W u = (Xo,Y9,Zo) " be the
center in camera space. The projection Jacobian J € R**3 is the derivative of pixel coordinates with
respect to camera coordinates at Xy:

I 0 JxXo

7 )

jo A | |7 Z
XY Z)y, |9 S SN
Zo z3

Thus a small 3D motion X near X, produces a pixel shift §p ~ J §X: lateral moves (X.,Y.) shift
pixels by roughly f, ,/Zo (more at small depth, less when far), while motion along Z. changes scale,
pushing pixels outward as the point approaches the camera.

Induced 2D covariance Gaussian covariances transform under a linear map A as AXA'. Since a
small world-space displacement dx maps to pixels by dp ~ (JW) dx, the screen-space covariance is

Y = JgwIw'JTl.

Geometrically, the 3D ellipsoid becomes a 2D ellipse whose orientation and size encode local
perspective (rotation, foreshortening, scale). This ¥’ defines a soft, rapidly decaying footprint over
nearby pixels; farther from the ellipse center, the contribution to the pixel is smaller.
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View-dependent color with spherical harmonics

For a fixed view, each projected ellipse contributes one RGB color; only its per-pixel weight o (x)
varies across the footprint. That color is a function on directions ¥; = (0 — ;) /|0 — || € S* and
is expanded in real spherical harmonics (an orthonormal basis on the unit sphere, analogous to a
Fourier/Taylor basis but for directions):

L !

C[(f’,‘) = Z Z ci7lelm(€'i)a

1=0m=-1

where Y}, are basis functions on S? and Ciim € R3 are learned per-Gaussian coefficients. Low degrees
L capture smooth, low-frequency view dependence; higher L add directional detail. Training starts
at L=0 (constant color) to stabilize geometry and opacity, then ramps L up (e.g., to a small order) to
introduce view dependence without a large decoder [287].

Rasterize and composite

For each view, 3DGS projects all Gaussians, sorts overlapping footprints front-to-back within image
tiles, and blends them using a-compositing. If oy (x) is the per-pixel opacity of the k-th (depth-sorted)
Gaussian at pixel x, and ¢y is its view-dependent color, the accumulated color uses the transmittance
T—1(x) (remaining visibility before k):

C(x) = ZTk_l(x) OCk(x) Ck, Tk(x) = Tk_l(x) (1 — (Xk(x)), T()(x) =1.
k

This reproduces the effect of volumetric rendering but operates on 2D ellipses (no per-ray samples).

Why this design is effective

* Quality with compactness Anisotropic Gaussians align to edges and thin structures, achiev-
ing sharp detail with fewer primitives (vs. isotropic point splats or uniformly sampled ray
accumulations).

* Surface alignment and subpixel fidelity Oriented ellipses capture anisotropic image gradients
(edges, ridges), reducing holes and flicker compared with Point-NeRF and classic NeRF.

» Explicit visibility with dense gradients Front-to-back ¢-compositing gives crisp occlusion
ordering, and the differentiable rasterizer sends gradients to many overlapping splats per pixel,
avoiding k-nearest sparsity and per-ray sample sparsity.

* Efficient view dependence Per-Gaussian spherical harmonics (SH) produce smooth direc-
tional color without a large MLP; degree ramping stabilizes early training. [287].

* Capacity steering in 3D The clone/split/prune schedule adapts both the number and the
shape/orientation of primitives, concentrating dof where reprojection errors are high.

* Real-time rendering 2D rasterization on projected ellipses replaces expensive ray marching.

* Tile-wise global ordering A single radix sort by depth and tile enables coherent front-to-back
blending with early termination once transmittance saturates.

* Stable, fast optimization The covariance parameterization and closed-form projection to
Y/ yield well-behaved gradients; analytic derivatives for the parameters avoid fragile PSD
constraints and heavy autodiff through eigendecompositions.

In what follows we derive 3DGS step by step, and then then turn to experiments and ablations, and
conclude with limitations and follow-up work.
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3D Gaussian Splatting stages

Before we dive into the details, we give a high-level walkthrough of the 3DGS pipeline, linking
the core idea—forward rasterization of anisotropic 3D Gaussians—to the concrete steps used for
projection, image formation, optimization, and real-time rendering.

1. Inmitialization From calibrated multi-view images, run SfM to recover camera poses and a
sparse point cloud. Seed one Gaussian per SfM point with center u, rotation R (via a unit
quaternion), diagonal scale S = diag(s,, sy, s;), opacity a, and a small set of real spherical-
harmonics (SH) coefficients for view-dependent color. For stability, begin with degree L=0
(constant color) and ramp L upward as geometry and opacity settle.

2. Projection Around each center i, locally linearize the pinhole camera. With world—camera
transform W and the 2x3 projection Jacobian J at W u, the 3D covariance £ = (RS)(RS)"
becomes the screen-space covariance

Y = Jgwiw'yTh.

Thus a 3D ellipsoid projects to a soft 2D ellipse (splat) with image mean u = T(Wu). The
camera-space depth Z, of u will define visibility order.

3. Image formation For pixel x, each overlapping splat contributes a weight (opacity) that
decays with its elliptical distance:

0;(x) =< a; exp(— T(x— u) T (x— u,))

The splat’s color is evaluated once per view from its SH expansion at the unit view direction
i = (o= )/ lo— il

L1
i) =Y, Y CiimYim(¥).
i

=0m=-1

Splat colors are then accumulated using front-to-back a-compositing:

C(x) = ZTk—l(x) oy (x) cx, Ti(x) = Tk_l(x)(l—ak(x)), To(x) = 1.
3

Why front-to-back Gaussians are processed from nearest to farthest (increasing Z.). This
respects occlusions (near splats naturally hide far ones) and enables early termination: once
Ti—1(x) becomes very small (pixel nearly opaque), remaining far splats can be skipped, saving
work without changing the result.

4. Optimization and adaptive densification Optimize all parameters (u,R,S,a, SH) end-to-
end with Adam under a photometric loss (typically L1 + SSIM). Every few iterations, apply
density control to match detail to error signals: clone small Gaussians in high-gradient regions
(under-reconstruction), split over-large splats into two smaller ones when gradients suggest
unresolved structure, and prune nearly transparent or excessively large Gaussians. The SH
degree L is increased during training so view dependence is learned after geometry stabilizes.

5. Real-time rendering A GPU tile-based differentiable rasterizer frustum-culls Gaussians,
bins them into fixed-size tiles (e.g., 16x16), globally sorts by (tile, depth), and blends per-
pixel in front-to-back order. The visibility-aware order gives correct occlusion and allows
early-out when transmittance saturates; a compact backward pass records only touched splats
for gradients. Together these yield real-time novel-view synthesis once trained.
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Figure 23.71: Optimization pipeline Initialization from a sparse SfM point cloud, followed by inter-
leaved gradient-based optimization and adaptive density control using a fast, tile-based differentiable
renderer. Once trained, the representation supports RT novel-view navigation. Adapted from [287].

Representation and parameterization

From mean-covariance to a renderable primitive

A 3D Gaussian is specified by a mean p € R? and a covariance ¥ € R**3, with (unnormalized)
density

Glx) o exp( — b(r—p) T (x—p)).

The quadratic form (x — u) "E~!(x — u) acts like a squared distance (the Mahalanobis distance). Let
Y = QAQ" be the eigendecomposition, where Q = [e] e, e3] has unit, mutually orthogonal columns
(the principal directions) and A = diag(A;,A2,A3) with A; > 0 (the principal variances). Then:

« Principal directions ¢; are unit vectors in R that define the ellipsoid’s axes. They coincide
with the canonical x/y/z axes only if ¥ is already diagonal in that basis. In general, e; are
rotated versions of x/y/z.

* Level sets are the sets of points where the density has the same value, equivalently where the
Mahalanobis distance is constant:

(xeR: (x—p) "= (x—p) =k} (k> 0).

In 3D these level sets are ellipsoids centered at y with semi—axis lengths v/k A; along directions
e;. The constant k simply picks “how far out” the surface is (larger k = a larger, similar
ellipsoid). Intuitively, you can think of k as selecting a “constant—standard—deviation” contour,
generalized to 3D.

« Isotropy vs. anisotropy If £ = o2/, then e; align with x/y/z and all A; = 62, producing a
sphere (isotropic spread). If the A; differ and/or Q # I, the ellipsoid is stretched and rotated
(anisotropic spread).

In practical terms, increasing a variance (some A;) makes the ellipsoid longer along the corresponding
principal direction e;; introducing covariance (nonzero off—diagonals in X) rotates the principal
directions away from x/y/z. After local projection to the image, these adjustments control the width
and orientation of the resulting 2D ellipse (the screen—space footprint).

Initialization and the need for valid, optimizable covariances

3DGS initializes one Gaussian per SfM point to cover the coarse geometry, then continuously
optimizes the set while adding, cloning, splitting, and pruning primitives (densification) as required
by the data [287]. During training, every covariance must remain a valid covariance (symmetric and
positive semidefinite):

r=x",  x'Zx>0 Vx
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Naively updating the free entries of X can violate these constraints (e.g., negative eigenvalues),
destabilizing learning and yielding non-physical shapes. A parameterization that preserves validity
by construction is therefore essential.

Choosing a geometry parameterization for valid optimization

As directly updating the parameters of the covariance matrix ¥ can violate symmetry or positive
semidefiniteness (PSD), which destabilizes learning. 3DGS instead optimizes a decoupled set of
variables and reconstructs X from them:

(u,R,S) with £ = RSS'R',

where
 u € R3 is the 3D center (learned by gradient descent).
¢ R € R¥3 is arotation matrix (R"R = I, det(R) = 1) obtained from a unit quaternion that is
re-normalized after each update.
* § = diag(sy, sy, s;) holds positive axis scales (enforced via a positivity reparameterization, e.g.,
exp or sigmoid activation).
Because SS' is PSD and R is orthonormal, RSS'R' is always symmetric PSD, so validity is
guaranteed throughout training—no eigen-clamping or PSD projection is needed. Equally important,
this form decouples orientation (R) from axis lengths (S), yielding interpretable, well-conditioned
updates; in contrast, editing ¥ directly entangles rotation and scale (off-diagonals simultaneously tilt
and shear), making gradients harder to interpret and constrain. The paper also provides closed-form
derivatives w.r.t. the scale and quaternion parameters, avoiding fragile eigendecompositions.

Intuition and practical knobs for R and S
Think of S as the axis lengths and R as the steering wheel that orients those axes in space:

* Vary s, or s, (with R fixed) stretches or shrinks the ellipsoid along the corresponding
rotated axes in world space. After projection the screen-space ellipse widens mainly along the
matching image directions, helping one primitive cover elongated features (e.g., edges) with
fewer neighbors.

* Vary s, (depth thickness) increases extent roughly along the view-normal direction, adding
controllable thickness. This improves coverage of slanted, foreshortened surfaces across
nearby views and reduces holes.

* Rotate R (with S fixed) re-orients the ellipsoid without changing its radii. The projected
ellipse rotates accordingly, letting a single primitive align with wires, leaf stems, fence slats,
or oblique edges—capturing anisotropic detail compactly and reducing flicker.

These independent knobs let 3DGS tilt, stretch, and thicken coverage to match local geometry in 3D
while keeping every covariance valid during optimization.

Opacity as a direct parameter

3DGS replaces NeRF’s ray—integrated density with a per—Gaussian opacity that directly gates the
screen—space footprint. For Gaussian i we keep an unconstrained logit d; € R and map it to a bounded
opacity

1
14ed

a; = O'(fll‘) =

€ (0,1),

optionally clamped to a; € [¢, 1 — €] (e.g., € = 10~?) for numerical stability.
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After projection, the ellipse has center u; and screen—space covariance L. Its per—pixel alpha
(used in compositing) is the unnormalized Gaussian falloff scaled by a;:

o;(x) = a; exp(—%(x—u,-)TZg_l(x—ui)).

Thus o;(4;) = a; and ;(x) < a; < 1 elsewhere. Colors are then blended in front—to—back order using
the transmittance recursion, which both respects occlusion and enables early termination once the
remaining visibility is negligible [287].

[ ) b (T )
@ W - > v I

Figure 23.72: Spherical-harmonics basis intuition. Each panel shows a real spherical harmonic
Yim(6,¢) on the unit sphere. Red/blue indicate positive/negative values and white shows nodal sets
(zeros). The degree ¢ controls the number of latitudinal (polar) bands, while |m| controls the number
of longitudinal (azimuthal) oscillations. Changing the sign of m rotates the pattern around the vertical
axis without altering its node counts. Small glyphs on the £ = 1 row mark whether variation is with
¢ (horizontal, around the equator) or with 6 (vertical, pole to equator).

How to read Fig. 23.72 and why SH suit 3DGS. Directions live on the unit sphere S, and {¥;,,}
form an orthonormal basis, much like Fourier modes on a circle.

* Degree /: sets angular resolution. Larger £ means more bands in 6 (north—south).

* Order m: sets azimuthal detail. |m| counts nodal meridians in ¢ (east-west), while £ — |m|

counts nodal circles in 6.
Examples in Fig. 23.72:
* ¢ =0 (monopole):
— m = 0: constant everywhere, no variation.
» { =1 (dipoles):

— m = —1: varies left-right with ¢, one vertical nodal plane; vanishes at poles.
— m = 0: varies up—down with 6, node at the equator (north pole red, south pole blue).
— m=1: same as m = —1 but rotated 90° around z.
* { =2 (quadrupoles):
— m = —2: four lobes around the equator, separated by two vertical nodal planes (90°
apart); zeros at poles.
— m = —1: four lobes alternating across equator and meridian; one vertical plane and one

horizontal circle as nodes.

— m = 0: two polar caps of one sign and an equatorial belt of the opposite sign; nodal
circles at cos? 6 = %

— m = 1: same as m = —1 but rotated 90° in ¢.

— m = 2: same as m = —2 but rotated 90° in ¢.
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This basis is ideal for 3D Gaussian Splatting: the view direction ¥ lies on S?, and a low-order
SH expansion provides a compact, smooth, differentiable way to represent each Gaussian’s view-
dependent color.

Appearance as a directional color field

For a fixed camera, each projected ellipse contributes one RGB that depends on the unit view
direction ¥ = (0 — ) /||o — u|| € S*. 3DGS models this per channel with a real spherical-harmonics
(SH) expansion

Z Z Clelm V Z Z Clm Ylm

=0m=-1 =0m=-—1

Z Z Clelm‘Al

=0m=-—1

so there are (L+1)? coefficients per channel (e.g., L=2 uses 9 per channel, 27 total). Real SH form
an orthonormal basis on directions.
Practical intuition.
* L=0 (only Yy): view—independent “clay ball” color; good for diffuse walls or matte plastic.
* L~1-2: broad, smooth directional changes (fabric sheen, brushed metal, soft grazing—angle
brightening).
» [~2-3: sharper lobes suitable for glossy paint/ceramic and weak specular highlights.
Very mirror-like effects would require still higher L, but 3DGS typically keeps L small for compact-
ness and stability.
Coarse—to—fine SH ramping for stable training. Rather than enable full view dependence from the
start, 3DGS trains with a curriculum [287]:

1. Begin with L=0 (diffuse). Color is direction—-independent, so the optimizer must first fit
images via geometry (U, R,S) and opacity a—reducing “cheating” with spurious view effects
and limiting floaters.

2. Unlock higher L in stages. After geometry/opacity stabilize, enable L=1,2,... to add higher
angular frequencies (specular—like lobes, Fresnel-like changes) without destabilizing the
coarse structure. This mirrors frequency annealing used in other neural rendering systems and
yields robust geometry first, then progressively richer view dependence with only a handful of
extra coefficients.

Image formation and compositing

What each splat provides

For a pixel x and for every Gaussian i whose footprint reaches it, we already have:
» Its screen—space mean ; and covariance X/ (the ellipse).
* Its per—pixel alpha o (x) (peak opacity a; modulated by the elliptical falloff; Sec. 23.10.9).
* Its view—dependent RGB c¢; evaluated once for the current camera using SH.
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Depth ordering for visibility
Occlusion is handled by sorting contributors at x from nearest to farthest using their camera—space
depths Z.; at the Gaussian centers ;. This establishes a visibility—aware sequence k = 1,2,....

Front-to-back transmittance (premulfiplied form)
Let T;—1(x) be the remaining visibility before blending the k-th (already depth—sorted) splat. Using
premultiplied colors,

C(x) = ZTk_](x) OCk(x)Ck, Tk(x) = Tk_l(x)(l—ak(x)), To(x) =1.
k

* Near splats contribute first; farther ones are attenuated by 7j_1(x).
* This mirrors volumetric rendering, but on projected 2D ellipses rather than per—ray samples
(NeRF: T = exp(— [ ods); here o acts as discrete absorption).

Why front-to-back matters now
The transmittance recursion is causal: Tj depends only on earlier alphas. Consequently,

if iei(x) <er = Y Tj1(x)o(x) llej|| < er,
=k

since ; € [0,1] and ||c;|| < 1 (normalized colors). Two immediate consequences:
* Occlusion is respected by construction: Near content attenuates or completely hides far content
as T decreases.
* The remaining sum is bounded once T is small: A pixel “pre—finishes", so later terms are
negligible. We will exploit this property when describing early termination in the rasterizer.

Practical footprint (compact support)
Although a Gaussian has infinite support, its tail is negligible beyond a few standard deviations.
Define the elliptical distance

dF(x) = (x—u) T (e —up),

and restrict evaluation to x inside a level set { d?(x) < T} (e.g., T € [3,5]). This:
* Focuses computation where the splat meaningfully contributes.
* Avoids numerical noise from summing vanishingly small tails.

Where we are headed. The equations above define the image formation the renderer must realize. We
next complete the method—adaptive densification and optimization (losses, gradients)—then return
to the tile—based rasterizer, which enforces depth order and leverages the transmittance pre—finish for
efficiency.

Adaptive densification

Goal and signal

Starting from one Gaussian per SfM point, we adaptively allocate capacity so primitives concentrate
where reprojection error persists. Every K iterations (e.g., a few hundred), we consult view-space
positional gradients V.2 and simple shape statistics to decide whether to clone, split, or prune.
This keeps the model compact while resolving missing detail [287].



1782 Chapter 23. Lecture 23: 3D vision

e
Optimization
Continues
Continues

Figure 23.73: Adaptive Gaussian densification (illustration following [287]). Top: under-
reconstruction (black outline not well covered) = clone the Gaussian and nudge along the positional
gradient to add coverage. Bottom: over-reconstruction by a single large splat = split into two
smaller splats to increase spatial resolution.

—>

Clone

Under
Reconstruction

Over;
Reconstruction

Clone (add coverage)
If a small splat (e.g., bounded principal axes in S and screen footprint in X’) exhibits a large
view-space positional gradient ||V,.Z|| over recent iterations, we clone it:

1. Create a copy with the same (R, S,a, SH).

2. Displace the clone’s center by a small step along the aggregated gradient direction (optionally
normalized and scaled).

3. Optionally damp the parent/clone opacities slightly to avoid transient over-coverage.

Cloning increases local sample density where the renderer still fails to match image evidence (thin
structures, high-curvature silhouettes).

Split (resolve detail)
If a splat remains large (e.g., one axis of S above a threshold) while residuals stay high, we split:

1. Replace the parent by two children whose scales are reduced by a factor ¢ (empirically ¢~1.6)
along all axes.

2. Sample child centers from the parent’s 3D Gaussian (or place them symmetrically along the
principal axis with largest spread).

3. Inherit (R,a,SH), optionally perturb R or S minutely to break symmetry.

Splitting preserves coverage but increases spatial frequency capacity, allowing edges and textures to
be represented with multiple smaller footprints.

Prune (stay compact)
We prune primitives that contribute negligibly or become degenerate:
* Nearly transparent (a below a threshold over a window of iterations).
* Unreasonably large in world space or screen space (guard against splats that try to “cover
everything”).
* Persistently off-frustum or behind the near plane.
Pruning reduces memory and compute and prevents artifacts such as low-contrast haze.
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When and how often

Densification runs periodically and touches only a fraction of splats per pass. Thresholds for gradient
magnitude, size (via S or ¥’ eigenvalues), and opacity are set conservatively; exact values can be
tuned per dataset, but the logic—clone if small & underfit, split if large & underfit, prune if unused
or degenerate—follows [287]. Because gradients propagate through the differentiable rasterizer to
all overlapping splats, these decisions are well informed by multi-view evidence.

Effect on opftimization

Interleaving gradient steps with densification yields a coarse-to-fine growth of representation: the
model first captures broad layout, then allocates more, smaller, and better-oriented Gaussians only
where error persists. This shares the spirit of multiresolution strategies in explicit grids, but preserves
the flexibility of an unstructured point-based representation.

Training objective and schedules
Photometric objective

We fit rendered images to ground truth using a convex combination of per-pixel £; and a differentiable
SSIM-based term:

Z(C,C*) = (1-14)||C—C*||; + AD-SSIM(C,C*), A €[0,1],

where C is the rendered image and C* the target. The SSIM component measures luminance, contrast,
and structure agreement in local windows, providing a perceptual anchor that complements the
edge-preserving ¢; term.

SSIM, D-SSIM, and the notion of “structure”
For two local patches x,y (e.g., Gaussian-weighted 11 x 11 windows), SSIM is

(21:pty +C1) (205 +C)
(ME+u5+Cr) (o +o07+Ca)’

SSIM(x,y) =

where:
* Luminance match (21,11, +Cy) /(w7 + 1 +Cy) compares local means (exposure/brightness).
« Contrast match (20,0, +C>) /(02 + Gy2 + C,) compares local standard deviations (contrast).
* Structure match is essentially the normalized correlation o,,/(0,0y); it rewards the same
pattern of variation even when absolute intensity shifts slightly.
We turn similarity into a loss via D-SSIM(x,y) = (1 — SSIM(x,y))/2 € [0, 1], averaged over windows
and channels. In practice, SSIM’s structure term encourages the correct spatial relationships of pixels
(textures, edges, fine detail), while the luminance/contrast terms keep exposure and local energy
consistent. See [26, 453] for practical guidance.

Why not pure MSE/PSNR

Mean squared error (MSE) underlies PSNR (PSNR = —10log,, MSE) but correlates poorly with
human visual perception: it penalizes small spatial shifts of high-frequency content excessively and
often prefers blurry predictions over slightly misaligned sharp ones. In 3DGS, many overlapping
splats jointly explain high-frequency detail; a pure MSE/PSNR objective tends to over-smooth
such detail. The ¢;+D-SSIM blend better matches HVS (Human Vision System) sensitivity: ¢
preserves edges, while SSIM emphasizes local structural fidelity (textures, contrasts) and tolerates
mild brightness drifts.
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LPIPS vs. SSIM in training

LPIPS [778] compares images in a deep feature space (e.g., VGG/AlexNet), and is strong as an
evaluation metric for perceptual quality. We do not use LPIPS in the 3DGS training loss for several
reasons:

* Photometric faithfulness matters. Supervision comes from posed photos; exact colors and
fine correspondences are crucial for stable geometry/opacity learning. LPIPS has feature
invariances that can tolerate color/brightness shifts, sometimes encouraging “perceptually OK”
but photometrically biased reconstructions.

* Efficiency and memory. LPIPS requires a forward/backward pass through a deep CNN per
image (or patch), adding nontrivial compute and VRAM on top of the differentiable rasterizer.
SSIM is lightweight and fully local.

* Gradient locality and stability. SSIM provides short-range, structure-aligned gradients
that integrate well with splat-based compositing; LPIPS offers non-local gradients that can
destabilize early optimization (especially before geometry has converged).

Empirically, ¢;+D-SSIM (with a small A, e.g., 0.2 as in [287]) yields sharp, photometrically faithful
results while keeping training fast and stable. LPIPS remains valuable for reporting perceptual
quality at test time.

Update schedule and stability
We optimize all parameters (U, R,S,a,SH) with Adam over mini-batches of posed images.

* Learning rates. Slightly larger for (u,S) early to quickly settle geometry; smaller for rotation
(quaternion) and SH to avoid oscillations.

* SH degree ramping. Keep L=0 (view-independent color) until geometry/opacity stabilize,
then unlock L=1,2, ... in stages. This coarse-to-fine curriculum first fixes layout and coverage,
then adds higher angular frequencies (specular-like lobes, Fresnel-like variation) without
destabilizing structure [287].

* Opacity hygiene. Clamp a € [g,1 — €] and optionally apply periodic small resets near the
cameras to discourage persistent semi-transparent “floaters” before pruning.

Differentiable tile-based rasterizer
Goal and inputs
The rasterizer must realize the image—formation equations from Sec. 23.10.9 efficiently on GPU,
while preserving differentiability. For the current view we assume, per Gaussian i, the following are
already available:

* Screen—space mean u; and covariance Zl’..

* Peak opacity a; and per—pixel alpha definition ¢ (x).

* View—dependent color c; evaluated once from SH for this camera.

» Camera—space depth Z,; at the center y; (for visibility ordering).

Stage A: cull and bound
* Frustum—cull Gaussians whose ellipses lie fully outside the image (use a conservative d?(x) < T
mask).
* For each remaining Gaussian, compute the tight axis—aligned bounding box of its ellipse level
set {x: d?(x) < t} and clip it to the screen.
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Stage B: tile binning
Partition the screen into fixed—size tiles (e.g., 16x16). For each Gaussian i:
* Determine the set of tiles overlapped by its clipped ellipse box.
* Emit a record for each overlapped tile : a pair (i,7) plus the quantities needed downstream
(e.g., Ui, Zg_l , aj, Ci, ZC_’,').

Stage C: global sort by (tile, depth)
Construct a 64-bit key per record (i,) that packs

* The tile id in the most significant bits (groups records by tile).

* A monotone depth key derived from Z ; in the least significant bits (orders front—to—back).
Globally radix—sort all records by this key; the result is a single array where each tile occupies a
contiguous segment with its Gaussians in front—to—back order.

Stage D: per-tile blending (forward)
Launch one CUDA block per tile; within a block, assign one thread per pixel. For the tile’s ordered
list (i1,...,im):
* Initialize C(x):=0 and 7' (x):=1 for every pixel x in the tile.
e Form=1...M:
— Compute the elliptical distance dl-zm (x) and skip if d,-zm (x) > 7 (compact support).
- Evaluate o, (x) = a;, exp(—%dizm (x)).
- Accumulate C(x) += T (x) a;,, (x) ¢,
- Update T'(x) = (1 — o, (x)).
— Optionally stop if 7'(x) < er (front—to—back “pre—finish”).
Minimal bookkeeping for backprop. While iterating, each pixel thread appends a compact record for
every touched splat iy,: store its index, T;,_;(x) (the prefix transmittance just before blending), and
o;, (x). This per—pixel visitation list is short due to compact support and pre—finish, and suffices for
an efficient backward pass.

Stage E: per-tile gradients (backward)

Given pixel-wise loss gradients % € R3, traverse each pixel’s visitation list in reverse or-
der to accumulate parameter derivatives. Let the k—th visited (depth—sorted) splat at x have
(i, Te—1(x), 0, (x), ¢, ), and define the suffix “background color” seen behind k (normalized) by the

recurrence
~(K+1 ~(k ~(k+1
Clieh?n(i) (x) =0, Clgezlind (x) = 0, (x) Cip + (1 — o (X)) Clgelfiné ()C)

Then for each k (from back to front):
¢ Color coefficients (SH) receive

0L 0L
Je +=Ti—1(x) 06, (x) aCk)”
* Opacity (per—pixel) receives
0L B _ ~(k+1) 0L
aaik (X) +=Tj-1 (X) (Clk - Cbehind(x)> 8C(x) :
* Chain to geometric parameters via o;, (x) = a;, exp(— %di (x)):
07 |0 0 02 ¥
aaik += CXp( Zdik ()C)) 30% (X) ) adlzk (X) += 2 alk (x) 30% (X) .
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* Propagate % to u;, and ng using
-1
di (x) = (x—uz) 'E T (x— ),

and then further to world—space (i, R, S) through the Jacobian chain ¥’ = JWEW "J .
Because only fouched pairs (x,i) are revisited, the backward pass scales with the effective overlap,
not the total number of Gaussians.

Numerical and implementation notes
* Tile size. 1616 balances occupancy and shared—memory usage; other sizes are possible.
» Stable alphas. Keep a; € [€,1 — €] and use T € [3,5] for compact support (Sec. 23.10.9).
* Recompute vs. store. To minimize memory, store 7;_; and ¢, (x); re—evaluate c;, from SH
on the fly if needed (one evaluation per splat—pixel).
* Sparse work. Frustum culling, compact support, and pre—finish together bound both forward
work and the size of visitation lists, enabling real-time rendering once trained.

Summary. The rasterizer maps the analytic 2D ellipse footprints to tiles, establishes a per—tile,
front—to—back order with a single global sort, and evaluates the premultiplied a—compositing
recurrence using only local (tile) data. A compact per—pixel record of touched splats permits an
equally local backward pass, with gradients chained to opacity, color (SH), and geometry through
closed—form derivatives. This completes the forward/backward machinery of 3DGS.

Experiments and ablations
Datasets and evaluation protocol
Evaluation is conducted on widely used real and synthetic benchmarks:
* Mip-NeRF360 [29]: real, unbounded 360° captures with large baselines and substantial depth
variation (e.g., Bicycle, Garden, Stump, Counter, Room). The official train/test splits are used.
* Tanks&Temples [299]: real outdoor/vehicle scenes with challenging occlusions and scale
changes (commonly Truck, Train) and accurate ground-truth poses.
* Deep Blending [213]: real indoor environments (Playroom, DrJohnson) exhibiting complex
view-dependent effects and clutter, with calibrated multi-view imagery.
* Synthetic NeRF (Blender) [429]: rendered objects with clean geometry and known ground
truth (Chair, Drums, Ficus, Hotdog, Lego, Materials, Mic, Ship) for controlled comparisons.
Unless otherwise noted, images are rendered at each dataset’s standard resolution. Reported
metrics are PSNR (dB; higher is better), SSIM (1), and LPIPS ({). Optimization wall-clock time and
novel-view FPS are reported on a single high-end GPU, following the protocol of [287].
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Ground Truth

Figure 23.74: Real-time quality vs. training budget (Bike). 3D Gaussian Splatting (3DGS)
achieves real-time rendering with image quality competitive with the best prior method (Mip-
NeRF360 [29]) while requiring training times comparable to the fastest explicit methods (Plenoxels
[160], Instant-NGP [443]). For a training budget similar to Instant-NGP, 3DGS matches its quality;
with a longer budget (e.g., ~51 min), 3DGS reaches state-of-the-art PSNR, even slightly surpassing
Mip-NeRF360 on this scene. Higher PSNR is better. Adapted from [287].

Quantitative comparison (held-out views)
We summarize cross-dataset results (reformatted into per-dataset tables for readability).

Table 23.15: Mip-NeRF360 (test views). Higher SSIM/PSNR, lower LPIPS are better. Training
time and inference FPS reported as in [287].

Method SSIM1T PSNR T LPIPS | Train FPS Mem

Plenoxels 0.626 23.08 0.463 25m49s  6.79 2.1GB
INGP-Base 0.671 25.30 0.371 5m37s 11.7 13MB
INGP-Big 0.699 25.59 0.331 7m30s 9.43 48MB
Mip-NeRF360 0.792F 27.69° 0.2377 48h 0.06 8.6MB
3DGS-7K 0.770 25.60 0.279 6m25s 160 523MB
3DGS-30K 0.815 27.21 0.214 41m33s 134 734MB

Table 23.16: Tanks&Temples (test views). Reported as in [287].

Method SSIM{ PSNRt LPIPS| Train FPS  Mem

Plenoxels 0.719 21.08 0.379 25m05s  13.0 2.3GB
INGP-Base 0.723 21.72 0.330 5Sm26s 17.1 13MB
INGP-Big 0.745 21.92 0.305 6m59s 144  48MB
Mip-NeRF360  0.759 2222 0.257 48h 0.14 8.6MB
3DGS-7K 0.767 21.20 0.280 6m55s 197 270MB
3DGS-30K 0.841 23.14 0.183 26m54s 154 411MB

Table 23.17: Deep Blending (test views). Reported as in [287].

Method SSIMt PSNRT LPIPS|  Train FPS Mem

Plenoxels 0.795 23.06 0.510 27m49s 112 2.7GB
INGP-Base 0.797 23.62 0.423 6m3ls 3.26 13MB
INGP-Big 0.817 24.96 0.390 8m00s 2.79 48MB
Mip-NeRF360  0.901 29.40 0.245 48h 0.09 8.6MB
3DGS-7K 0.875 27.78 0.317 4m35s 172 386MB

3DGS-30K 0.903 29.41 0.243  36m02s 137 676MB
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Qualitative comparisons

Ground Truth Mip-NeRF360 InstantNGP Plenoxels

Figure 23.75: Visual comparisons on held-out views across Mip-NeRF360 (Bicycle, Garden,
Stump, Counter, Room), Deep Blending (Playroom, DrJohnson) and Tanks& Temples (Truck, Train).
Insets/arrows highlight non-obvious differences. 3DGS matches or exceeds prior methods detail and
stability while rendering in real time. Adapted from [287].
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Training-time vs. quality

~ i I
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Figure 23.76: Quality over training iterations. Top: at 7K iters (~5-8 min), the Train scene is
already well reconstructed; by 30K iters (~35 min) background artifacts fade. Bottom: in easier
scenes, 7K is nearly indistinguishable from 30K. Adapted from [287].

Synthetic NeRF (Blender) PSNR

Table 23.18: Synthetic NeRF (PSNR, 7). 3DGS uses 100K randomly initialized points. Reported as
in [287].

Method Mic  Chair Ship Materials Lego Drums Ficus Hotdog  Avg.

Plenoxels 3326 3398 29.62 29.14 3410 2535 31.83 36.81 31.76
INGP-Base  36.22 35.00 31.10 29.78 36.39 2602 3351 3740 33.18
Mip-NeRF  36.51 35.14 3041 30.71 35770 2548 3329 3748  33.09
Point-NeRF 3595 3540 30.97 29.61 35.04 2606 36.13 3730 3330
3DGS-30K  35.36  35.83 30.80 30.00 3578 26.15 3487 3772 3332

Ablations
We study design choices via controlled ablations (numbers reproduced from [287]).

Table 23.19: Ablation PSNR (downsampled inputs for stability). Average over
Truck/Garden/Bicycle at 5K/30K iterations.

Setting Truck-5K  Garden-5K  Bicycle-5K  Truck-30K  Garden-30K  Bicycle-30K  Avg-5K  Avg-30K
Limited-BW 14.66 22.07 20.77 13.84 22.88 20.87 19.16 19.19
Random Init 16.75 20.90 19.86 18.02 22.19 21.05 19.17 20.42
No-Split 18.31 23.98 22.21 20.59 26.11 25.02 21.50 23.90
No-SH 22.36 25.22 22.88 24.39 26.59 25.08 23.48 25.35
No-Clone 22.29 25.61 22.15 24.82 27.47 25.46 23.35 2591
Isotropic 22.40 25.49 22.81 23.89 27.00 2481 23.56 25.23

Full 22.71 25.82 23.18 24.81 27.70 25.65 23.90 26.05
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No Clone- 5

Figure 23.77: Densification ablation. Without split: background remains blurred. Without
clone: high-frequency structures (e.g., bike spokes/wheels) artifact. Both operations are needed (cf.
Fig. 23.73). Adapted from [287].

Figure 23.78: Gradient sparsity ablation. Limiting the number of Gaussians that receive gradients
per step severely degrades quality (left); full method (right) benefits from dense, overlapped gradients
through the rasterizer. Adapted from [287].
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Figure 23.79: Initialization matters. Top: random point cloud; bottom: SfM seeding. SfM provides
a much better starting geometry, accelerating and stabilizing training. Adapted from [287].

Figure 23.80: Anisotropy ablation (Ficus, capped at Sk Gaussians). Enabling anisotropic
covariances is critical for fine/filamentary structure; isotropic splats require many more primitives
and still blur edges. Adapted from [287].

Takeaways

* Quality vs. speed: With tens of minutes of training, 3DGS approaches or surpasses Mip-
NeRF360 quality while enabling real-time novel-view rendering (> 100 FPS) on standard
GPUs.

* Representation matters: Anisotropy, view-dependent SH, and densification (clone/split)
each contribute significantly; removing any one harms PSNR/visual fidelity (Table 23.19).

* Initialization helps: SfM seeding outperforms random starts, reducing artifacts and time to
quality (Fig. 23.79).
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Limitations and future work
Observed failure modes

Figure 23.81: Failure artifacts (Train). Compared to Mip-NeRF360 [29] (left), which can exhibit
“floaters” and grain in poorly constrained regions, 3DGS [287] (right) may render coarse, anisotropic
blobs where multi-view coverage is weak, limiting far-background detail. Adapted from [287].

Figure 23.82: View extrapolation artifacts (DrJohnson). When camera poses have little overlap
with training views, 3DGS [287] can produce artifacts (right). Mip-NeRF360 [29] also degrades
under such extrapolation (left), albeit with different characteristics. Adapted from [287].

Typical limitations include:

* Sparse coverage or weak overlap. With limited multi-view support, Gaussians may overgrow
(coarse blobs) or under-cover (holes), especially at long range [29, 287].

* Extreme view dependence. Very sharp, mirror-like effects exceed low-degree SH; capturing
such specularities robustly requires richer reflectance models [287].

* Memory scaling. Quality grows with the number of Gaussians; very large scenes can stress
memory bandwidth and capacity without compression or streaming [287].

 Static-scene assumption. The base formulation targets rigid, static scenes; handling motion
or changing illumination requires extensions beyond the original 3DGS pipeline [287].
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Future work
Recent, highly cited follow-ups suggest concrete avenues beyond the original formulation:

* Dynamics and tracking. Extending splats to time (4D) enables real-time dynamic render-
ing [703], while dense SLAM systems fuse mapping and tracking directly with Gaussians for
online reconstruction [534].

* Richer appearance / inverse rendering. Jointly estimating reflectance and lighting with
Gaussian splats (inverse rendering) improves specularities and relighting fidelity [680]; surfel-
style anisotropic primitives further tighten shading—geometry coupling [286].

* Initialization and scalability. Removing reliance on external SfM (e.g., COLMAP-free
pipelines) widens applicability and can reduce failure cases tied to sparse/biased points [162];
generative priors with Gaussians help regularize learning and scale content creation [607].

* Surfaces and hybrids. Surface-aligned or surface-extractable Gaussian formulations bridge
to mesh-like structure for editing and compression [781], complementing the original unstruc-
tured point representation.
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Enrichment 23.11: NeRF: Real-World Robustness & Sparse Supervision

NeRFs trained “in the wild” must tolerate sparse viewpoints, photometric variation, and even
unknown poses. These works inject priors or jointly estimate calibration to make NeRFs usable
under realistic capture.
* BARF [352]: Jointly optimizes camera poses and NeRF via coarse-to-fine (frequency) schedul-
ing, reducing local minima in self-calibration.
* NeRF-W [418]: Handles unconstrained photo collections by separating “transient” appearance
(lighting, people) from static scene content.
* IBRNet [654]: A generalizable IBR prior that conditions on a few source views to synthesize
novel views without per-scene MLP overfitting.
* PixelNeRF [739]: Predicts scene radiance directly from one/few images using a CNN encoder,
enabling few-shot generalization.
Further influential works (not expanded): RegNeRF [452] (regularization for sparse inputs), Mega-
NeRF [413] (distributed training at landscape scale).

Enrichment 23.11.1: BARF: Bundle-Adjusting Neural Radiance Fields

Motivation and problem setting

Why this problem matters

Neural Radiance Fields (NeRF) achieve high-fidelity novel-view synthesis only if all training images
come with accurate camera extrinsics. In real captures, however, poses from SfM/SLAM can be
noisy, incomplete, or entirely unavailable (e.g., monocular videos, sparse photo collections). This
dependency limits NeRF in exactly the regimes we care about for robust, real-world deployment:
casual capture, small baselines, texture-poor scenes, or motion that confounds SfTM. Removing the
reliance on precomputed poses would unlock NeRF for far broader use.

What makes joint optimization hard

If poses are inaccurate or unknown, training becomes a coupled problem over the scene and the
cameras. Naively unfreezing poses in a standard NeRF objective turns the problem highly nonconvex
and initialization-sensitive: the network can explain photometric errors either by moving the cameras
or by hallucinating geometry/appearance. In practice this often yields misregistered trajectories,
distorted geometry, and rendering artifacts instead of self-correction [352]. The core need is to shape
the optimization so that early gradients provide coherent, consistent directions for camera updates.

A lesson from classical image alignment

In classical registration, direct photometric methods optimize geometric parameters and routinely
employ multiscale image pyramids to enlarge the basin of convergence. The strategy is to first
align low-frequency (blurred or downsampled) images to obtain a robust global displacement, and
only then reintroduce higher-frequency detail for refinement. Low-pass residuals yield smoother
objectives and coherent gradients; exposing high frequencies too early makes the landscape rugged
and per-pixel Jacobians oscillatory, impeding convergence. BARF transfers this multiscale idea
from images to neural fields by low-passing the inputs—via a schedule that gates NeRF’s positional-
encoding bands during training—so early pose updates are governed by smooth structure and fine
detail is deferred until registration stabilizes.
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The paper’s idea and confribution
BAREF reframes NeRF with unknown poses as dense photometric bundle adjustment and makes it
tractable by controlling frequency content. Concretely, it:

* Jointly optimizes camera poses and the radiance field under the standard rendering loss.

* Applying a smooth coarse-to-fine window over positional-encoding bands that enlarges the
basin for pose recovery and only later restores full representational bandwidth. This simple
mechanism reliably realigns cameras from noisy or identity initializations and preserves
NeRF-level fidelity once all bands are active.

NeRF BARF

3D scene representation

3D scene representation 5
+ registered camera poses

Figure 23.83: Training NeRF requires accurate camera poses. BARF jointly optimizes camera
registration and neural 3D reconstruction, enabling learning from imperfect or unknown poses.
Reproduced from [352].

What we aim to solve and why:

* Goal — Learn a high-fidelity neural scene and accurate camera poses directly from images,
without relying on external STM/SLAM.

* Challenge — Naive joint optimization is ill-conditioned: high-frequency encodings inject
rugged gradients that drive poses to poor local minima.

» Approach — Window the frequency bands of positional encoding in a coarse-to-fine schedule
so early pose gradients are stable and globally coherent.

* Impact — Makes NeRF usable with imperfect/unknown poses, recovering trajectories from
scratch and achieving view synthesis competitive with pose-supervised NeRFs [352].
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High level overview of BARF

Joint objective

Given images {/;}, and a radiance field fy mapping a 3D location and a view direction to density
and color,

fo: (x,d) — (o(x),c(x,d)),

BARF minimizes a standard photometric synthesis loss while treating both the network parameters
0 and the camera poses {T;} as variables. For a pixel u in image i, let C;(u;T;, 6) denote the
differentiably volume-rendered color along the ray defined by u under pose T;. The objective is

M

min} 20T} =) )

—~ 2
|Ci(ws,0) ~ hiw)|| (23.47)
0T i=lue,

2

so image residuals can, in principle, correct both scene and camera. We postpone the exact pose
parametrization and update rule to the in—depth derivation, where we show how pose increments are
obtained by backpropagating through volume rendering.

Bandwidth scheduling via windowed positional encoding
Why low frequencies matter first Early pose updates must aggregate gradients from many rays
that hit nearby 3D points while poses are still inaccurate. Low spatial frequencies vary slowly, which
yields:
* Coherent guidance — Neighboring rays see similar residual structure, so their pose gradients
point in similar directions and add constructively.
* Wider linearization radius — Smooth residuals keep the first—order (local linear) model
valid over a larger region, allowing stable steps despite large initial misalignment.
* Higher SNR for registration — Slowly varying structure is less sensitive to pixel-level
noise/specularities, making the global motion signal easier to extract.
In contrast, for the k-th positional-encoding (PE) band (applied coordinate-wise),

M _
ox
The spatial period is A, = % (direction flips every 2% offset), and the Jacobian norm scales as O(2*)
(steep, rapidly varying gradients). Together these cause (i) directional incoherence across nearby
samples—aggregated pose gradients partially cancel—and (ii) a shrinking trust region for first—order
updates when misalignment is large.

How BARF enforces low—high bandwidth BARF turns PE into a bandwidth knob by
windowing frequency bands with a single progress variable a € [0, L]. Using the paper’s raised—cosine
ramp, the modified encoding is

T (x) = [cos(anx), sin(2kn’x)}, 2kn [— sin(2*7x), cos(2k7rx)}.

7(x;a) = [x, wo(@)W(X), ..., wi—1()y-1(x)],  wi(@) =% [1—cos(msat(a—k))],

where sat(r) = min{max{#,0},1}. A simple linear ramp o(¢) increases from 0 to L over a chosen
iteration window. This acts as a dynamic low-pass filter on coordinates:

9 (wi (o) %) 9%
ox (@) ox
Early on, wi(ot) =0 for large k keeps only low-frequency, slowly varying Jacobians (coherent

aggregation, wide basin) for robust camera updates; as alignment stabilizes, wi (o) — 1 progressively
restores high-frequency capacity and full NeRF fidelity—without destabilizing registration.
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Roadmap

* Method and derivations — We write the discretized rendering, pose parameterization in
se(3), and derive the required Jacobians for joint updates.

* Coarse-to-fine PE — We present the exact windowed encoding and schedule, with intuition
relating bandwidth control to the optimization basin.

* Architecture and implementation — We specify MLP design, sampling, optimizers, and
evaluation protocol for faithful reproduction.

» Experiments and ablations — We summarize planar alignment, Blender, and LLFF results,
highlighting why C2F-PE is critical to registration and fidelity.

* Limitations and future work — We discuss schedule sensitivity, efficiency, and assumptions
(static scenes, fixed intrinsics), and outline extensions.

Method and derivations

NeRF with differentiable volume rendering

A radiance field fy maps a 3D location and a viewing direction to a volume density and an RGB
color,

fo: (x,d) — (G(X), c(x,d)).

For image I; and pixel u € %;, the camera-i ray in camera coordinates is r;(f) = o; +d;(u), with
bounds #, <t < ty. Under the current extrinsics T;, each sample at parameter ¢ is evaluated at the
corresponding world point x(¢), giving the standard emitted-radiance model

C.(u:T,,0) /”T )) e(x(2), d(w)) i, T(t)zexp(—/ttc(x(s))ds).

n

Following NeRF, the integral is approximated with N stratified samples {t‘,-}?’:1

N
C,-(u):ijcj, Wj:TjOCj, OCjZI—CXp(—Gj5j), Tj:H(l_ak)7
j=1 k<j
with 6, = 0(x;), ¢; = ¢(x;,d;), X; = X(t;), and §; = t; | —¢;. This fully differentiable composition
supplies gradients to both fg and the camera parameters through the sample locations x;.

Joint objective (reference)
The global loss is given in (23.47) of the high-level overview (§23.11.1). The remainder of this
subsection specifies the pose parametrization and the exact derivatives that backpropagate image
residuals to both 6 and {T;}.

From rigid motions to minimal pose updates
A camera pose is a rigid motion: a 3D rotation plus a 3D translation. Using homogeneous coordinates,

T, = [(l}" tl] , R; e R¥3 t;, e R,
A rotation matrix is valid iff RiTR,- =I5 and det(R;) = 1. Naive gradient steps on the nine entries of
R; generally violate these constraints. BARF therefore applies minimal 6D pose increments that are
mapped to valid rigid motions via the exponential map and then composed with the current pose.
In the paper’s functional view, this shows up as a rigid warp W (-; p;) applied to 3D points before
evaluating the field fp and the compositor g; equivalently, the rendered color éi(u; pi, 0) depends
differentiably on p; through the sample locations along the ray.
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Twist updates via the exponential map
A small camera motion is represented by a 6D twist

where ®; € R? is an axis—angle vector and v; € R3 is a translation increment. Intuition for w;: let
0 = ||w;|| and & = w;/6 (if 6 > 0). Then 1 is the rotation axis (a unit 3D direction left invariant by
the rotation) and 0 is the rotation angle in radians; points rotate by angle 6 in planes orthogonal to 1.

What SE(3), se(3), and the exponential map mean. SE(3) (the special Euclidean group) is
the set of rigid motions

SE(3):{ [(}{T I] ‘ReSO(3),teR3}, SO(3) = {ReR¥3 |[R'R =1L, detR = 1}.

se(3) (the Lie algebra of SE(3)) is the tangent space at the identity:
. o v ~T o 3}
5e(3)—{[0T OM(D =—0, veR’ ;.

The hat operator (-) : R? —R3*3 encodes the cross product: ab =a x b, i.e.,

0 -—-w3 o
0; = | 03 0 —w,
—Wip @ 0

Embedding the 6D twist into a 4 x 4 block gives

E,. = [(()T)T’ ‘(I)’] € se(3).

The exponential map exp : s¢(3) — SE(3) sends a tangent vector at the identity to a finite rigid
motion. Dynamically, it is the time-1 solution of the linear ODE T(s) = EiT(s) with T(0) = L4,
namely T(1) = exp(gi).

Matrix exponential: why the series converges and what it yields. For any finite matrix A,

exp(A) = ¥

n=

converges absolutely because || Yoo A" /n!|| < X [|A]"/n! = elAl (submultiplicative norm and

ratio test). Applying the series to &; and collecting blocks gives the group exponential

- Ri t,' ~
ew@) = o 3] R=e0@) v - Vieow,

with

= 1 ~n l1—cosB .. 6—sinb .,
V(o) =), O = I3+Twi+Twiv 6 = [l
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Why these closed forms appear: the skew matrix @ satisfies the polynomial identities & = —02@®

and & = —02@%°. Grouping even and odd powers in the series produces the sine/cosine Taylor

series, yielding Rodrigues’ formula for rotation and the companion V for the translation block.
Why exp(®) is a valid rotation. Since @' = —® and tr(®) =0,

R'R =exp(®) exp(®) = exp(—d)exp(®) = I, det(R) = exp(tr(@)) = 1,
so R € SO(3) by construction.
Closed forms and small-angle limits. Rodrigues’ formula gives

in@ . 1—cos6 .
R:I3+Slg o+ gfs @ t=V(o)v.

As6 —0,R~I3+®and V(o) ~ I3+ 1@, so exp(g) ~Iy+ E Special cases: ® = 0 gives pure
translation (R = I3, t = v); v = 0 gives pure rotation (exp(§) = diag(R, 1)).
Pose update (left composition) and numerical evaluation. Given the current camera-to-world

transform T;, the update uses a left increment

~

T,' — exp(éi) Ti7

which perturbs the camera in world coordinates (consistent with rays being functions of T;). Closed
forms are evaluated as

if 0 >e: R=I3+ 380 4 =59 @, t=V(o)v; else use the Taylor limits above,

which stabilizes computation near 6 = 0. Optimizing the unconstrained vector §; € IR® is therefore
advantageous: each gradient step in R® is mapped by exp back to a valid rigid motion, and the
small-step behavior matches the familiar axis—angle and translation increments that yield well-scaled
Jacobians for backpropagation.

How a pose increment moves 3D samples (and affects colors)
For a pixel u in view i, the camera—frame ray is
ri(t) = 0;+1d;(u), 1€ [t,1f],
and the corresponding world point under T; = [R; | t;] is
y(1) = Ri(0; +1d;) +t;.
-

A small left increment &, = [@,",v,']" yields the first-order Jacobians

dy
awi__[y]x7 avi

where [a] b = a x b. For the j-th world sample x; = y(;),

:I37

ox i [
98,
Backpropagating through the differentiable volume renderer gives the per-pixel pose gradient
9Ci(m) & 9C;
= - [X ] I,
0 éi Pt axj [ JIx ]

—[x;)x T3] € R,

where gg’ is provided by autodiff from the field fy and the compositing rule.
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Ray-compositing grod/enfs (decomposition)
With discrete compositing C= Yy j—1wjcjand

oj=1—exp(—0;6;), T=[](1-o), wi=Tjay,
k<j

the pose gradient splits into a weight path and a color path:

aC Y aw, de;
E ;( YiTgE )
——
Welght path  color path
with
dej _de| 9% 99 9oy X,
0E  Oxlx; dE”’ 0&E  oxlx; 9E°
The weights differentiate as
aWj . 8Tj 306] 80@ 761 i 861
&= W o e e
SN—— SN——

upstream densities  local density
and, using 1 — oy = exp(—0y k),
1 80ék

jZl—(Xk 85

k<j

nya s

k<j
Every term factors through the geometric Jacobian %—?, enabling joint updates of 6 and {T;}.

Why smoofth inputs help pose gradients
For a pixel u in view i, the pose gradient aggregates sample-wise contributions

T g oy 3G e s

appearance/density geometry

The geometry term 3—2{ is smooth (Sec. 23.11.1); the stability of the sum is therefore governed by
how smoothly %—;’ and % vary across neighboring samples.
With positional encoding (PE), the field is composed as fg = fj o ¥ with input ¢ = y(x). By the
chain rule,
do  do Jy(x) de  de Jy(x)
ox d¢ oJx ’ ox d¢ oIx

Hence the spatial variation and magnitude of the PE Jacobian % directly set the smoothness of the
8C
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Effect of high-frequency PE. BARF defines the L-band PE (coordinate-wise) as
Y(x) =[x, W(x), ..., n-1(x)] € R3TOL i (x) = [cos(2k7rx), sin(2k7rx)] €R®,

whose Jacobian is

I (x)
ox

Equation (23.48) shows two issues for registration at large k: (i) the Jacobian norm scales as O(2¥)
(very steep), and (ii) its direction flips with spatial period A ~27¥ (very rapid sign changes). When
high-k bands dominate early, adjacent samples X; and x;; | frequently lie on opposite sides of a

sine/cosine lobe, so their ggf directions disagree and partially cancel in the sum over j. The net pose

=2kx [— sin(2¥7x), cos(anx)] . (23.48)

gradient becomes weak/noisy and the first-order update has a small trust region.

Coarse-to-fine positional encoding

Windowed positional encoding

To restore directional coherence early and full fidelity later, BARF modulates each band by a smooth
window wi(a) € [0,1] driven by progress o € [0,L]:

%(x;a) = wi(a) [cos(2k7tx), sin(2k7rx)], (23.49)

with the raised-cosine schedule

0 if o < k,
1— oa—k)rw

we(a) = COS((Z %) o<a k<, (23.50)
1 fa—k> 1.

Differentiating (23.49) yields

ay"g;a) = we(@) 27 [ — sin(27x), cos(247x)], (23.51)

i.e., the PE Jacobian’s magnitude and oscillation are attenuated by wyi ().

Curriculum. A simple linear ramp () from 0 to L over a chosen iteration window implements
coarse—fine training: early iterations keep wy ()~ 0 for large k, suppressing the high-frequency,

rapidly flipping factors in (23.51); neighboring ggf then vary slowly and add constructively, enlarging
J

the trust region for pose updates. As alignment stabilizes, wi () — 1 for all k, restoring full bandwidth
so the radiance field recovers fine detail without destabilizing registration.

Architecture and implementation details

We follow BARF’s NeRF setup with minor simplifications [352]. Training uses a single MLP (128
hidden units per layer) without hierarchical sampling. Images are resized to 400x400, and 1024
pixel rays are sampled per step. Each ray is discretized into N=128 points; density o is stabilized
with softplus. Optimization uses Adam for 200K iterations with learning rates decayed from
5x107*—10~* for the network f and 1073 — 10~ for the poses. The coarse—fine positional
encoding (PE) schedule linearly ramps o from iterations 20K — 100K, after which all bands up to
L=10 are active.
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Network and sampling

The network fy follows NeRF’s design with separate density and color heads, stratified sampling of
N points per ray, and standard a-compositing. Hierarchical sampling is omitted to isolate registration
effects.

Optimization

Parameters 6 and {p;} are optimized jointly with Adam. The PE progress « is ramped linearly over
a preset iteration range; once ¢¢ = L, all bands remain active. Camera intrinsics are assumed known;
poses are updated via the Lie-algebra increments above. Unless otherwise noted, evaluation follows
the paper: Procrustes alignment for pose errors and PSNR/SSIM/LPIPS for synthesis quality.

Experiments and ablations

Datasets and evaluation protocol

Evaluation is conducted on widely used real and synthetic benchmarks. For pose accuracy, optimized
trajectories are first aligned to ground truth via Procrustes on camera centers, after which mean
rotation and translation errors are reported. For view-synthesis quality (PSNR, SSIM, LPIPS), BARF
follows NeRF’s rendering pipeline but includes a brief test-time photometric refinement step to
reduce residual pose errors before reporting metrics. This ensures that differences in image quality
reflect scene modeling rather than leftover misregistration.

Planar image alignment

BAREF jointly learns a coordinate-based image and patch warps. Compared to naive (full) posi-
tional encoding (PE) and no-PE baselines, BARF recovers accurate alignment and a sharper image
representation [352].

(b) initialization -I (c) ground truth warps '

Figure 23.84: Planar alignment setup and ground-truth warps. Reproduced from [352].
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et

' (a) nl'v c-u‘ enc. ' (b) w/o pos. enc.

Figure 23.85: Qualitative planar alignment: optimized warps (top), patch reconstructions (middle),
and recovered image representation (bottom). BARF attains accurate warps and high-fidelity
reconstruction; full PE misregisters and no-PE blurs. Reproduced from [352].

Positional encoding SL(3) registration error | Patch PSNR (dB) 1

naive (full) 0.2949 23.41
without 0.0641 24.72
BAREF (coarse-to-fine) 0.0096 35.30

Table 23.20: Planar alignment ablation on positional encoding (values from [352]). Homographies
are estimated by minimizing photometric error and compared to ground truth via the geodesic/log
metric on SL(3), dsy(3)(Hest, Hgt) = || 10g(HestHy Y|lF (lower is better). Reconstruction quality is
measured by PSNR on a target patch after warping with Heg (higher is better). Coarse-to-fine PE
yields both the most accurate registration and the best reconstruction.
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Synthetic NeRF scenes
With synthetic pose noise, BARF realigns cameras and matches the view quality of a pose-supervised

NeRF [352].

@ perturbed/optimized

camera poses
@ ground-truth
camera poses

= translational error

/

s 5 e

(b) full positional encodin (c) BARF (ours)

Figure 23.86: Initial versus optimized poses on chair (Procrustes aligned). BARF realigns the
trajectory; full PE gets stuck. Reproduced from [352].

ground truth full pos. enc. W/ POs. enc. BARF (ours) reference NeRF

Figure 23.87: Synthetic scenes: image synthesis (top row for each image) and expected depth
(bottom row for each image). BARF achieves quality comparable to NeRF trained with perfect poses.
Reproduced from [352].
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Table 23.21: NeRF on synthetic scenes with perturbed poses. BARF optimizes registration while
maintaining synthesis quality near the pose-supervised reference. Numbers from [352].

LPIPS| LPIPS (ref.)

full  w/o BARF

Scene Rotation (°)] Translation| PSNR?T PSNR (ref.)
full  w/o BARF

full w/o BARF| full w/o BARFH full  w/o BARF

SSIM1 ‘ SSIM (ref.)

Drums 3208 0.057 0.043 | 3222 0255 0.225 || 20.83 23.56 23.91 23.96 0.840 0.893 0.900 0.902 0.166 0.116 0.099 0.095

Chair 7.186 0.110 0.096 | 16.638 0.555 0.428 || 19.02 30.22 31.16 31.91 0.804 0.942 0.954 0.961 0.223 0.065 0.044 0.036
Ficus 9.368 0.095 0.085 | 10.135 0.430 0.474 || 19.75 25.58 26.26 26.68 0.836 0922 0.934 0.941 0.182 0.070 0.058 0.051
Hotdog 3.290 0.225 0.248 | 6.344 1.122 1.308 || 28.15 34.00 34.54 3491 0.923 0.967 0.970 0.973 0.083 0.040 0.032 0.032
Lego 3.252 0.108 0.082 | 4.841 0.391 0.291 || 24.23 26.37 28.33 29.28 0.876 0.898 0.927 0.942 0.102 0.112  0.050 0.037
Materials || 6.971 0.845 1.188 | 2.287 0.678 0.422 ||22.45 26.86 27.84 28.92 0.891 0.905 0.940 0.944 0.249 0.068 0.045 0.041
Mic 10.554 0.081 0.071 | 22.724 0.356 0.301 || 15.10 19.93 21.18 31.98 0.788 0.968 0.971 0.971 0.334 0.050 0.048 0.044
Ship 5506 0.095 0.075 | 7.232 0.354 0.326 || 22.12 26.78 27.50 28.00 0.755 0.833 0.849 0.858 0255 0.175 0.132 0.118

Mean | 6.167 0202 0.193 | 11.303 0.768 0.756 ||22.12 26.78 27.50 | 2940 [0.821 0917 0930 | 0936 |0.205 0.087 0.065 | 0.057

Real LLFF scenes with unknown poses

BAREF localizes from identity initialization and achieves synthesis quality comparable to a reference
NeRF trained with SfM poses [352].

=1
5
B
o
5
a
&

reference NcRF

Image depth depih depth

Figure 23.88: Real scenes from unknown poses. BARF jointly recovers poses and scene; full PE
diverges. Reproduced from [352].

Table 23.22: LLFF forward-facing scenes from unknown poses. BARF localizes from scratch and
attains high-fidelity synthesis. Numbers from [352].

Scene Rotation (°)] | Translation| PSNR?T PSNR (ref.) SSIM T SSIM (ref.) LPIPS| LPIPS (ref.)
full BARF| full BARF|| full BARF full BARF full BARF

Fern 74.452  0.191 | 30.167 0.192 || 9.81 23.79 23.72 0.187 0.710 0.733 0.853 0.311 0.262
Flower 2525 0.251 | 2.635 0.224 || 17.08 23.37 23.24 0.344  0.698 0.668 0.490 0.211 0.244
Fortress || 75.094  0.479 | 33.231 0.364 || 12.15 29.08 25.97 0.270 0.823 0.786 0.807 0.132 0.185
Horns 58.764 0.304 | 32.664 0.222 || 8.89 22.78 20.35 0.158 0.727 0.624 0.805 0.298 0.421
Leaves || 88.091 1.272 | 13.540 0.249 || 9.64 18.78 15.33 0.067 0.537 0.306 0.782 0.353 0.526
Orchids || 37.104  0.627 [20.312 0.404 || 9.42 19.45 17.34 0.085 0.574 0.518 0.806 0.291 0.307
Room || 173.811 0.320 | 66.922 0.270 || 10.78 31.95 32.48 0.278 0.940 0.948 0.871 0.099 0.083
T-rex 166.231 1.138 |53.309 0.720 || 10.48 22.55 22.12 0.158 0.767 0.739 0.885 0.206 0.244

Mean || 84509 0.573 |31.598 0.331 || 11.03 2397 2256 |0.193 0.722| 0.665 |0.787 0.238 0.283
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frontal-facing view & COLMAP (SM)
Va EJ NeRF / BARF

(a) full pos. enc. (b) BARF (ours)
Figure 23.89: Optimized poses on fern (Procrustes aligned). BAREF closely agrees with SfM.
Reproduced from [352].

Limitations and future work
Limitations
* Schedule sensitivity The coarse—fine bandwidth schedule (a(¢), window wy) is hand-set;
poor schedules can under/over-regularize early registration and shrink the convergence basin.
* Compute and sampling Jointly optimizing poses and a volumetric field requires dense
per-ray sampling and long training, so runtime scales with samples per ray and number of
images.
* Scene/model assumptions The formulation assumes static scenes, photometric consistency,
and known intrinsics; motion blur, rolling shutter, illumination/exposure shifts, and unknown
intrinsics are out of scope.

Follow-ups addressing BARF’s limitations

* Pose robustness with sparse/noisy inputs SPARF augments BARF’s photometric objective
with multi-view feature correspondences to jointly refine NeRF and poses from very few, noisy
views, improving pose stability when geometric signal is weak [633].

* Pose-free initialization NoPe-NeRF removes the need for pose priors by jointly recovering
camera poses and the field from raw images, expanding BARF’s setting to completely unknown
extrinsics [44].

* Photometric violations: motion blur BAD-NeRF handles significant motion blur while
bundle-adjusting, coupling a deblurring model with pose refinement so that residuals remain
informative for registration under real camera shake [666].

* Generalization and efficiency DBARF marries BARF-style bundle adjustment with a gener-
alizable NeRF backbone, improving data-efficiency and robustness across scenes while still
refining poses end-to-end [97].
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Enrichment 23.11.2: NeRF-W: NeRF for Unconstrained Photo Collections

Motivation
Vanilla NeRF [429] assumes a static, photometrically consistent scene in which geometry, reflectance,
and illumination are constant across views. In-the-wild photo collections such as Phototourism [577]
break these assumptions due to:
 Substantial photometric shifts (time of day, weather, exposure/white balance, post-processing).
* Transient occluders (people, vehicles, scaffolding).
which, when trained naively, lead NeRF to produce colored fog, ghosting, and biased geometry.

w

(a) Photos (b) Renderings

Figure 23.90: Variable illumination control with NeRF-W. (a) Given only an internet photo
collection NeRF-W renders novel views with variable illumination (b) Slices from renderings driven
by appearance embeddings associated with four training images (Phototourism). Photos by Flickr
users dbowie78, vasnic64, punch / CC BY. Credit: [418].

NeRF-W at a glance

NeRF-W [418] extends NeRF to Internet photo collections by keeping a single, shared static

geometry and routing nuisances into two learned, image-specific factors. Before diving into equations,

it helps to fix the data flow and what each part sees and produces:

* Inputs and data flow. Each pixel in image I; defines a calibrated ray with world-space samples
x and a viewing direction d. The model consumes: position encodings of x for geometry, a
directional encoding of d for view dependence, and two small per-image codes El(a) (appearance)
and EET) (transient). Geometry is predicted without any image-specific code; color may depend on
both d and ¢,

* Trunk and static field. A NeRF-style trunk maps the position-encoded 3D sample x to a static
volume density o(x) and a learned feature vector z(x). These features summarize local scene
properties beyond coordinates (e.g., geometry/material cues) and are passed to lightweight heads,
while o (x) is computed without any image-specific latent so that one shared geometry is enforced
across all images.
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(@)

. and static color head. Each training image I; carries a low-

dimensional appearance code Z,@ that enters only the color branch. The static color head takes the

geometric features extracted from the basic geometry network, z(x), a directional encoding of d,

* Appearance embedding /¢

and El@ to produce RGB radiance ¢;(x,d). Intuition: exposure, white balance, tone mapping, and
(@)

., allowing color to adapt while geometry stays fixed.

(7)

i

illumination differences are absorbed by ¢
(7)

. and transient head. A second per-image code ¢; ’ drives a transient

head that, from z(x), predicts an image-dependent density Gl.(r) (x), a transient color clm (x), and a
per-sample uncertainty signal used during training. Intuition: content that appears only in some
photos (people, cars, flags, scaffolding) is explained by this per-image layer instead of corrupting

the shared static scene.

* Transient embedding ¢

» Compositing and learning signal. Along each ray, static and transient opacities jointly control
transmittance, and their colors are alpha-composited into a single prediction that is compared to
the observed RGB under a Gaussian negative log-likelihood. The rendered per-ray uncertainty
down-weights unreliable pixels, and an ¢ sparsity prior discourages overuse of the transient

density. Intuition: persistent structure must be explained by the static field; ephemeral phenomena
(a)

are explained sparingly by the transient field; photometric shifts are handled by ¢,
* Inference-time behavior. For novel-view synthesis without a reference image, the transient path
is disabled and only the static field is rendered to produce clean, temporally stable views, while
the appearance can be controlled by fixing, averaging, or interpolating /(%) of the scene training
images. For a held-out photo, a small 0@ can be optimized on a subset of its pixels to match its

look, with geometry remaining shared because the static &(-) never depends on £(%).

/la)
appearance ———— »
embedding
up
viewing
direction RGB
. ! color &
XYZ ——— ) 5
o
—»
position density
. — B
uncertainty
¢(7)
transient =1
embedding g
7]
s
density ~

Figure 23.91: NeRF-W model architecture. Given a 3D position x, viewing direction d, and
learned per-image embeddings Kl@ (appearance) and El(r) (transient), the network outputs static and
transient colors and densities, along with a training-time uncertainty. Static opacity is produced
before conditioning on appearance, enforcing a single shared geometry across images. Credit: [418].
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Method: Formulation and Derivation

Rendering operator

Let a calibrated ray be r(t) =0 +1d, t € [t,,17], with samples #,. ..tk and steps O = tx41 — . The
discrete volume—rendering operator is

K
Z o(te) &) f(t), ax)=1—e*. (23.52)

Here T (1) = [15_ exp(—0 () 8) = exp(— L, 0(tw) 8) is the cumulative transmittance to the
start of slab k, and o (o (#)8) = 1 —exp(—0 () &) is the per-interval opacity, i.e., the probability
the first interaction happens inside slab k given survival to its entrance.

What f is in practice and how NeRF-W instantiates R

The operator R is a generic “first-hit expectation” that composites a per-sample quantity f(¢) under

the same probabilistic survival/termination process. NeRF-W uses this operator in two concrete

ways: to mix colors from a shared static field and an image-dependent transient field, and to render a

per-ray uncertainty that only affects the training loss.

* Single-field baseline (orientation). With one density o(x) and one per-sample RGB ¢(x,d),
taking f = ¢ yields the expected color R(r,¢,0), as in vanilla NeRF’s emission—absorption model.

» Two-field color in NeRF-W. NeRF-W adds an image-dependent transient field with density Gl.(f)
and color cl@ alongside the shared static field (o, ¢;). During training, both densities attenuate the

ray, so survival uses the joint density,

Tin) = exp( = ¥ [o(t) + 07 ()] 6.

k'<k

The expected color is then the sum of two contributions—one from each field—weighted by their
own opacities:

K
Z ( o (t)d) ci(t) + alo <>(tk)5k)c§f>(tk)). (23.53)

Intuition: Persistent structure is explained by the appearance-conditioned static color, while image-
specific occluders are explained by the transient color; because both densities enter survival, they

compete to explain where the first interaction lies.
* Rendered per-ray uncertainty (definition and why transient-only). The transient head, condi-
tioned on the image-specific code KET), outputs an unconstrained value f3;(z) per sample, which we

map to a nonnegative scale with a shifted softplus

ﬁi(t) = Brnin + log(l+exp(ﬁ~i(t)))v

where Brin > 0 avoids zero-variance and prevents the optimizer from entirely ignoring any ray.
We then render a ray-wise uncertainty (standard deviation) by alpha-compositing f3;(¢) through
the transient opacity:

K
Z 1) &) Bite), (23.54)
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with survival T; computed from the joint density ¢ + Gi(f). Routing via Gi(f) is intentional: the
same transient mechanism that boosts opacity for ephemeral content also gates how much f;(¢)
contributes to f;(r). This ties uncertainty exactly to occluders and photometric outliers explained

by the transient pathway, rather than diluting it over persistent static structure.

* How picture-specific content shows up in the transient/uncertainty path.

— What the transient head drives. The transient branch produces a density 6 (1), a color ¢(?)(¢),
and an uncertainty carrier B(¢). In the color compositor (Eq. (23.53)), 6(*) enters via its
opacity a(c(?§). In the uncertainty compositor (Eq. (23.54)), the same opacity gates how
B (t) accumulates into the ray-wise f3(r).

— When a ray hits ephemeral content. If a ray passes through an occluder or a photometric outlier,
training can increase ¢(?) on those samples. Two coupled effects follow: (i) a(6<f)5 ) grows,
so ¢(? gets more weight in Eq. (23.53); (ii) the same Ot(cr(T)B ) also increases the contribution
of B(t) to ﬁ(r) in Eq. (23.54), making that ray’s supervision softer in the loss.

— When the content is absent. Where no ephemeral content is present, 6(%) ~0 = a(c(f) 0)~0;
both the transient color and the rendered uncertainty vanish, and the ray is supervised normally
by the static pathway.

* Gaussian NLL (training-time reweighting). Notation: dropping image indices. For clarity,
when we write C(r), C(r), and (r) without image index, we mean “for the image that r comes
from”. Concretely, if r is sampled from image i,

C(r)=Ci(r), €(r)=Cy(r) (Eq. (23.53) using £V, 0\7),  B(r) = Bi(r) (Eq. (23.54)),

and in the sparsity term ¢(?) () = Gl-(r) (#x). With this shorthand, we assume isotropic, ray-specific
noise, C(r) ~ A" (C(r), f(r)*I), giving the per-ray NLL (up to a constant)

_ lem - ; Ly ot
Z(r) = IEAD = 01 +  3log(B(r)?) +’LMEI§1"()(”<)' (23.55)

23 (r)?
(b) variance regularizer ~—

(a) data fit: down-weight uncertain rays (c) transient sparsity

- (a) Data fit. With e = C — C, the residual is scaled by 1 / ﬁzz larger predicted uncertainty
= the ray pays less in the loss and contributes weaker gradients. Because B is composited
through transient opacity (Eq. (23.54)), this down-weighting targets rays affected by transient
phenomena.

— (b) Variance regularizer. The %log ,32 term is the Gaussian normalizer; it prevents the trivial
escape f3 — oo and calibrates the learned scale. Minimizing (a)+(b) w.r.t. B2 gives f2 = |le||?:
intuitively, the model is nudged to predict a per-ray variance commensurate with that ray’s
squared error—big errors (noisy/hard rays) push 3 up; small errors pull it down. This keeps [§
neither exploding (penalized by log) nor collapsing to zero (penalized by the data term).

— (c) Transient sparsity. The /;-style penalty on nonnegative o) discourages using the transient
density to explain persistent structure, preserving a clean static reconstruction.

Training vs. inference. This NLL is used only during training to make supervision robust (via 3 )

and to keep transients sparse. At inference, the transient/uncertainty branches are disabled and we

render only with f = ¢ from the static field, yielding clean, temporally stable views. The dataset-
level objective simply sums .#(r) over all sampled training rays (equivalently }; ¥ rc . -Zi(r)).
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(a) Static (b) Transient (c} Composite (d) Image (e) Uncertainty

Figure 23.92: Training-time composition and uncertainty. NeRF-W separately renders the static
(a) and transient (b) elements of the scene, composites them (c), and compares to the image (d) with
a loss weighted by a rendered uncertainty map (e) that discounts anomalous regions. Photo by Flickr
user vasnic64 / CC BY. Credit: [418].

Architecture & Implementation Details

Cameras. Poses and intrinsics (with radial/tangential distortion) are estimated using COLMAP.
Training. Hierarchical sampling (coarse—fine) as in NeRF; Adam with (8;=0.9, 8,=0.999,e=10""),
batch size 2048, 300,000 steps on 8 GPUs. Hyperparameters (SBmin, Ay, n@_ n(9) are selected on
Brandenburg Gate and reused across scenes [418]. Evaluation protocol. NeRF—W learns appearance
embeddings only for fraining images. For a held-out test image, the appearance code is unknown, so
at test time we introduce a new variable ét(gs)t and optimize it while freezing all network weights and
all other latents. Concretely, we minimize the same per-ray color objective used in training, but only
over rays from the left half of the test image:

EE:S)t < argmin Z Z(r; E(“)zf),
rcleft-half

where % is the Gaussian NLL (or /; in the coarse pass) evaluated with the frozen fields. After this
(a)

brief adaptation, we render with the szatic field (transient/uncertainty branches disabled) using £,

and compute PSNR/SSIM/LPIPS only on the right half (Fig. 23.93).

This split-half protocol prevents information leakage: the pixels used to tune ngs)t are dis-
joint from the pixels used to score. It also leverages a key design property of NeRF-W—q () is
appearance-free—so test-time appearance tuning cannot change geometry, only photometric factors
(exposure/white balance/lighting), yielding fair and stable evaluation of novel-view synthesis under
the test image’s appearance.

(a) NeRF-W w/o opt. (b) NeRF-W (c) Reference

Figure 23.93: Half-image optimization for test-time appearance. During evaluation, /(@ is
optimized on the left half of the test image; metrics use the right half. Photo by Flickr user
eadaoinflynn / CC BY. Credit: [418].
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Experiments and Ablations

NeRF-W is evaluated on six Phototourism landmarks and compared against NRW [426], NeRF [429],
and two ablations: NeRF-A (appearance only; no transient) and NeRF-U (uncertainty only; no
appearance). NeRF-W attains the best PSNR and MS-SSIM across all scenes and competitive LPIPS.

Prague Old Town

Sucre Coeur

Taj Mahal

Figure 23.94: Qualitative results on the Phototourism dataset. Columns show methods (NRW,
NeRF, NeRF-A, NeRF-U, NeRF-W) and the held-out ground-truth view; rows show scenes: Prague
Old Town (appearance variation), Sacre Coeur (transient occluder: flag), and 7aj Mahal (fine
geometric/detail reconstruction). Red/blue insets zoom into regions that highlight the differences.
NeRF-W simultaneously adapts to appearance changes (top), removes image-specific occluders
(middle), and preserves fine details (bottom). More scenes are provided in Fig. 14 (supplementary).
Photos by Flickr users firewave, clintonjeff, leoglenn_g / CC BY. Credit: [418].

(a) Reference (b) NeRF (c) NeRF-W

Figure 23.95: Depth maps (expected termination). NeRF’s geometry is corrupted by appearance
variation and occluders; NeRF-W is robust and produces accurate reconstructions. Photos by Flickr
users burkeandhare, photogreuhphies / CC BY. Credit: [418].
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Figure 23.96: Appearance-space interpolation. Interpolating between two £(9) produces renderings
where color/illumination vary smoothly while geometry remains fixed. Photos by Flickr users
mightyohm, blatez / CC BY. Credit: [418].

NERF NERF-W

Reference

Figure 23.97: Temporal consistency via EPIs. Epipolar plane images (EPI) synthesized from
rendered videos on Brandenburg Gate. NRW exhibits flicker; NeRF shows ghosting; NeRF-W yields
clean, smooth EPIs (high temporal consistency). Credit: [418].

Limitations and Future Work

Failure modes. Despite its robustness to in-the-wild photos, NeRF-W still fails in predictable ways:

* Sparse or weak supervision. Regions that are rarely seen, far from cameras, or only observed at
oblique angles (e.g., large ground/sky areas) are poorly constrained and often reconstruct with
localized blur. The model has too little multi-view evidence to pin down both geometry and
appearance (examples in Fig. 23.98).

» Pose/camera errors from SfM. NeRF-W assumes accurate COLMAP poses/intrinsics. Bad esti-
mates introduce inconsistent rays, which the model cannot reconcile, leading to blur/ghosting or
wrong structure in affected regions; see discussion in [418].

* Appearance outside the training manifold. The per-image appearance code captures global
photometric effects, but extreme illumination/exposure shifts or strong non-Lambertian effects
may not be representable, yielding color mismatches even when geometry is correct.

» Imperfect transient separation. Without labels, the transient branch can under/over-explain clutter:
some truly static details may be treated as transient (causing holes/softening), or transient residue
can remain as faint “fog”.

Future directions.

(1) Joint camera / radiance-field optimization with photometric calibration. Optimizing poses,
intrinsics, exposure, and the field together (a neural analogue of bundle adjustment) could
correct SfM drift and harmonize brightness/white balance across views, reducing blur and
ghosting.

(i1) Stronger disentanglement of illumination vs. exposure/white balance. Factorizing the appear-
ance code into physically meaningful components would enable finer control (e.g., change
lighting without altering exposure) and reduce leakage of photometric variation into geometry.

(iii) Learned priors for transient segmentation and temporal consistency. Incorporating priors
(e.g., semantic or motion cues) could make the static/transient split more reliable and stabilize
renderings across viewpoints, further limiting colored-fog artifacts.
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(iv) Scaling to very sparse, long-tail photo collections with better uncertainty calibration. Improv-
ing the calibration of per-ray uncertainty (so predicted variances match actual errors) would

help the model down-weight unreliable rays more appropriately, making reconstructions more
accurate when data are scarce or noisy.

Figure 23.98: Limitations on Phototourism. Rarely-seen parts of the scene (ground, left) and
incorrect camera poses (lamp post, right) can result in blur. Credit: [418].
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Motivation

Problem. Given a sparse set of posed source images, synthesize photorealistic novel views of unseen
scenes without any per-scene fine-tuning. A single model should generalize zero-shot to new scenes.
(An optional short per-scene fine-tune can further improve fidelity; see IBRNety).

Background: What is Image-Based Rendering (IBR)? IBR produces new views by reusing
captured rays from nearby images rather than fitting a global scene-specific field. A representative
classical pipeline (e.g., LLFF [428], which predates and is not based on NeRF) typically contains:

(1) Source selection: choose a small working set of nearby views for the target camera.

(2) Geometric proxy: estimate coarse geometry (e.g., SfM/colmap depths, plane-sweep volumes,
or multi-plane images) to relate target pixels to source pixels/features.

(3) Reprojection/warping: use camera intrinsics/extrinsics to warp source evidence (pixels or
learned features) toward the target viewpoint.

(4) Blending & visibility: combine warped evidence with view-dependent weights (heuristic or
learned). Errors in proxy geometry or weighting often cause ghosting near occlusions and thin
structures.

IBR preserves high-frequency appearance because it copies real image content, but its success hinges
on good proxies and robust visibility reasoning under sparse views.

How NeREF differs (and how IBR can build on it). NeRF [429] represents a single scene as
a continuous radiance+density field parameterized by an MLP, trained per scene by minimizing a
photometric loss under differentiable volume rendering. This yields accurate geometry/appearance
but requires scene-specific optimization. Modern IBR-style methods can reuse NeRF’s rendering
formulation (sampling, transmittance, composition) while replacing the scene-specific field with
mechanisms that aggregate multi-view image evidence on the fly. Thus, IBR can be viewed as
image-conditioned rendering, whereas NeRF is scene-parameterized rendering.

Key idea. /BRNet [654] is trained once, across many diverse scenes, to interpret a small,
pose—proximal set of source images from the current scene and convert them into per-ray volumetric
properties that a standard NeRF-style volume renderer [429] can compose. The learned modules—a
shared per-image CNN, lightweight MLP heads for visibility-aware blending and pooling, and a
single-layer ray transformer that reasons along a ray—do not memorize a particular scene; instead,
they encode transferable priors for fusing multi-view evidence. At test time, these same modules
run in a purely feed-forward manner on the new scene’s images, so no per-scene optimization is
required (a short optional fine-tune, IBRNety, can further refine thin structures and specular detail
when capture is very sparse) [654].

Method: image-conditioned RGB-c prediction and NeRF-style rendering

Setup and notation.

Given a target camera ray r(z) = o+ td and a small working set of N nearby source images with
known intrinsics/extrinsics, IBRNet predicts, for each sampled 5D query (x,d) onr, a color ¢ € [0, 1]3
and a density o > 0 by aggregating multi-view evidence from the source views and composing
them with the standard differentiable volume renderer [429, 654]. Throughout, C; and f; denote the
RGB and CNN feature sampled from source view i at the projection of x; d; is the source viewing
direction; and Ad; = d — d; encodes the relative direction.



1816 Chapter 23. Lecture 23: 3D vision

Pipeline overview (stages).

» Stage 1 — View selection & feature extraction (per selected source view, once). Select
N neighboring source images whose cameras are close to the target pose, whose headings
are similar to d, and whose frusta overlap the target frustum. Each selected image is passed
once through a shared encoder—decoder CNN to produce a dense 2D feature map (at reduced
resolution). Every pixel of this map encodes a local descriptor mixing appearance and coarse
geometric cues (e.g., texture, edges, occlusion hints from context). These learned features are
later sampled (via projection) at arbitrary 3D queries to provide per-view evidence about what
the scene looks like from that camera. We cache, for each view i, its RGB image, its feature
map, and its viewing direction d; so they can be reused for all target pixels/rays.

o Stage 2 — Per-ray volumetric prediction (uses all N views at each sampled 3D point). For
each target pixel, cast a ray and sample M points {xk}ﬁ”: | (near—far). At each sample x; we
use all selected views:

— Multi-view gathering. Project x; into each source view i with the known cameras;
bilinearly read the view’s RGB C; and feature vector f; at the projected coordinates
(invalid/out-of-frustum projections are skipped or downweighted). Form the relative
viewing direction Ad; = d — d; (or an angular encoding).

— Color via learned blending. A small shared MLP takes [f;, Ad;] and outputs a blending
logit ¢;. Convert logits to weights via a softmax

exp(oy)
= oo SR MUV P
j=1 exp(“j ) i
and compute the sample color as a convex combination
N
Cr = Z Wf C,’.
i=1

Why view dependence is preserved: ¢ is a weighted copy of actual source pixels, so
specularities and other view-dependent effects present in appropriately aligned views
are naturally carried into the synthesized color; Ad; steers weights toward sources with
similar viewing directions [654].
— Density via ray-wise reasoning.
# (i) Density feature by multi-view pooling (per sample; permutation-invariant).
Using the gathered per-view features {f,-}ﬁ\’: | at x;, compute global statistics to
expose agreement/disagreement across views:

=
=

p=g )t V=g )Y (G-

1

Il
-
Il
-

For each view i, concatenate local and global cues and pass through a shared
PointNet-like MLP:

[fb u, V] w) (f:7 Si)v

yielding a multi-view—aware feature f! and a reliability score s;. Normalize scores
into visibility-aware weights

exp(si)
Yo exp(s))’

P =
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then form weighted first- and second-order statistics and map them to a compact
density feature:

N
v =Y wi(f— )%, f5(x;) =MLPy([1,,, v,]) € R%.
i=1

This pooling handles a variable number of views, downweights inconsistent/occluded
views, and summarizes multi-view agreement at X; into a fixed-length descriptor
predictive of occupancy [654].

+ (ii) Ray transformer for coherent densities (per ray). Collect the near-to-far
sequence {fs(x¢) }¥L, for one ray and add depth-wise positional encodings py (e.g.,
sinusoidal in ray parameter #;):

ze=fs(X) +pr, k=1,....M.

A lightweight ray transformer (single multi-head self-attention layer) processes

{z } so each sample attends to the others along the same ray. Intuitively, strong near-

field evidence can suppress spurious far-field candidates, and clusters of consistent

samples reinforce surfaces. The attended features {Z; } are passed through a tiny
head to obtain nonnegative densities:

A
0 = MLP, (%), k=1,....M.
ity B
ighted | = R J_T ;
(pontng *1_M1* | o j
: LOTHC | — 3 density o
pooling Transtormer 4.-
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£y # v fy wy :
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#* nelwork inputs VK3 Nxl Nx3
© concatenalion ® element-wize multiplication
. [——— M clementowise mean of [£]Y v elementowise varimce uf £ B ccnsity feature
w;  pooling weight wi  color blending weight Ad; relative viewing dircetion C; | 1mage color

Figure 23.99: Density and color prediction at a 5D location (x,d) in IBRNet [654]. Per-view
features {f;} are combined with global statistics (mean/variance) by a PointNet-like MLP to produce
multi-view—aware features and visibility-aware weights; weighted pooling yields a compact density
feature f5. A ray transformer consumes the sequence {fs(X;)} on a ray (with positional encodings)
and outputs coherent densities { o }. For color, a blending head uses [f;, Ad;] to predict weights that
form ¢ as a weighted average of source colors, preserving view-dependent effects.
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* Stage 3 — NeRF-style volume rendering & training (per pixel). With (¢, o;) at sorted
depths along the ray, let &; denote the spacing between consecutive samples (e.g., O = txr1 — I
in ray-parameter units). The transmittance to sample k is

k—1
T = exp(— Z Gj5j>,
j=1

and the rendered pixel color is

M
l‘) = Z Tk<1 —e_Gk5k> Cr.
k=1

Training follows the familiar coarse/fine hierarchical sampling and an ¢, photometric loss
on both passes. The renderer is unchanged from NeRF [429]; what differs is how (¢, o) are
predicted: here they are inferred on-the-fly from the target scene’s images and features, using
weights learned across many training scenes [654].
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Figure 23.100: IBRNet system overview for novel view synthesis [654]. To render a target view
(red dashed frustum), the pipeline: (1) selects N neighboring source images (by pose proximity,
viewing-direction similarity, and frustum overlap) and computes a dense CNN feature map for
each (cached and reused); (2) for each target ray sample (x;,d), projects into all sources to read
colors {C;} and features {f;}, forms relative directions {Ad;}, predicts a view-dependent color ¢, by
learned blending of {C;}, and aggregates {f;} with visibility-aware weights into a compact density
feature f5(xx); (3) feeds the sequence {fs(x¢)}2_, to a lightweight ray transformer to obtain coherent
per-sample densities {0y }, and composes (¢, 0y ) using the standard NeRF volume renderer with
coarse/fine hierarchical sampling and an ¢, reconstruction loss.

Why fast and zero-shot.

Per-source-view features are computed once and reused; per-sample heads are tiny MLPs; the only
attention is a single, lightweight transformer along each ray. Because the scene content resides in the
images and the network merely aggregates them using learned, transferable priors, a new scene needs
no optimization loop—yet the same pipeline admits a brief fine-tune (IBRNet;;) when desired to
adapt to extreme sparsity or challenging reflectance, without altering the rendering formulation [654].
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Architecture & Implementation Details

High-level architecture.

IBRNet comprises three lightweight components trained jointly across many scenes [654]:

* Per-image encoder—-decoder CNN (shared). A U-Net/ResNet34-style encoder—decoder
(Instance Normalization as replacement of BatchNorm) processes each selected source image
once to produce a dense 2D feature map at reduced resolution (output: 160x 120x64)." These
features are cached and later sampled by projection at arbitrary 3D queries.

* Per-sample MLP heads (shared across views and rays).

— Color head (blending). Given a projected feature f; from view i and the relative viewing
direction Ad;, a small MLP outputs a scalar blending logit whose softmax across views
yields weights {w¢}. The sample color is ¢ = }; wC; (a convex blend of actual source
colors), preserving view dependence.

— Density pooling head. For density, a PointNet-like shared MLP maps [f;, i, v] (local
feature with global across-view mean/variance) to a multi-view—aware feature f; and a
reliability score s;. Softmax-normalized scores provide visibility-aware weights w; o
exp(si). Weighted mean/variance over {f}} are then mapped by a tiny MLP to a compact
density feature f;(x;) €R% (e.g., dy=16).

* Ray transformer (single layer, along-ray self-attention). For one ray, the sequence
{f5(x¢) L, (with depth-wise positional encodings) is processed by a single multi-head
self-attention layer (4 heads). The attended features feed a tiny head to produce nonnegative
densities {0y} jointly for all samples, improving depth ordering and occlusion handling.

Feature extraction network.

Input (id: dimension)

Layer

Output (id: dimension)

0: 640 x 480 x 3

1: 320 x 240 x 64

2: 160 x 120 x 64

3: 80 x 60 x 128

5: 40 x 30 x 256

[3, 6]: 80 x 60 x 256
7: 80 x 60 x 128
[2,8]: 160 x 120 x 128
9: 160 x 120 x 64

7 x 7 Conv, 64, stride 2
Residual Block 1

Residual Block 2

Residual Block 3

3 x 3 Upconv, 128, factor 2
3 x 3 Conv, 128

3 x 3 Upconv, 64, factor 2
3 x 3 Conv, 64

1 x 1 Conv, 64

: 320 x 240 x 64
: 160 x 120 x 64
: 80 x 60 x 128
: 40 x 30 x 256
: 80 x 60 x 128
: 80 x 60 x 128
: 160 x 120 x 64
: 160 x 120 x 64
Out: 160 x 120 x 64

O R I B W =

Table 23.24: Feature extraction network architecture [654]. “Conv” denotes conv + ReLU +
InstanceNorm; “Upconv” is bilinear upsampling then a stride-1 conv. The 64-D output map is split
into two 32-D maps for the coarse and fine branches, respectively.

ISee Table 23.24 for exact layers and shapes. The 64-D map is split into two 32-D maps for the coarse/fine branches.
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Network size and compute.

Method #Params | #Src.Views | #FLOPs | PSNR1 | SSIMT | LPIPS]
SRN 0.55M - M 22.84 | 0.668 0.378
NeRF [429] | 1.19M - 304M 26.50 | 0.811 0.250
IBRNetg 0.04M 5 29M 25.80 | 0.828 0.190
IBRNety 0.04M 8 45M 26.56 | 0.847 0.176
IBRNetg 0.04M 10 55M 26.73 | 0.851 0.175

Table 23.25: Complexity vs. quality (Real Forward-Facing) [654]. IBRNet’s per-sample heads
are tiny; FLOPs scale roughly linearly with the number of source views used at inference.

Experiments & Ablations

Datasets and evaluation protfocol.

IBRNet is evaluated on three standard benchmarks: Diffuse Synthetic 360° (DeepVoxels subset),
Realistic Synthetic 360° (NeRF synthetic), and Real Forward-Facing (LLFF forward-facing scenes).
Following the original evaluation, each test view is rendered using N=10 selected source views.
Image quality is reported with PSNR/SSIM (higher is better) and LPIPS (lower is better) [654].

Baselines.

The scene-agnostic (no per-scene tuning) setting is compared to LLFF [428]. The per-scene op-
timization setting is compared to SRN [573], NV (Neural Volumes) [389], and NeRF [429]. An
optional short per-scene fine-tuning variant (IBRNetg) is also reported.

Quantitative comparison (synthetic datasets).

Method Setting Diffuse Synthetic 360° Realistic Synthetic 360°
PSNR?T SSIM?t LPIPS] PSNR?T SSIM?T LPIPS|

LLFF [428] No per-scene opt. 34.38 0.985 0.048 24.88 0911 0.114
IBRNet [654] No per-scene opt. 37.17 0.990 0.017 25.49 0.916 0.100
SRN [573] Per-scene opt. 33.20 0.963 0.073 22.26 0.846 0.170
NV [389] Per-scene opt. 29.62 0.929 0.099 26.05 0.893 0.160
NeRF [429] Per-scene opt. 40.15 0.991 0.023 31.01 0.947 0.081
IBRNety; [654] Per-scene opt. 42.93 0.997 0.009 28.14 0.942 0.072

Table 23.26: Synthetic datasets [654]. In the no per-scene regime, IBRNet outperforms LLFF on
both synthetic benchmarks, indicating effective zero-shot generalization from learned multi-view
priors. With per-scene tuning, IBRNety becomes competitive with state-of-the-art per-scene methods
on the Diffuse set and reduces the gap on the Realistic set.
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Quantitative comparison (Real Forward-Facing).

Method Setting PSNR?T SSIMT LPIPS|
LLFF [428] No per-scene opt. 24.13 0.798 0.212
IBRNet [654] No per-scene opt. 25.13 0.817 0.205
SRN [573] Per-scene opt. 22.84 0.668 0.378
NeRF [429] Per-scene opt. 26.50 0.811 0.250
IBRNetg [654] Per-scene opt. 26.73 0.851 0.175

Table 23.27: Real Forward-Facing [654]. IBRNet improves over LLFF without per-scene opti-
mization, supporting that image-conditioned blending and along-ray attention transfer across scenes.
Optional fine-tuning (IBRNety) further sharpens thin structures and reflections, surpassing NeRF on
SSIM/LPIPS and slightly on PSNR.

Ablation studies.

PSNR?T SSIM T LPIPS|
No ray transformer 21.31 0.675 0.355
No view directions 24.20 0.796 0.243
Direct color regression 24.73 0.810 0.220
Full model (IBRNet) 25.13 0.817 0.205

Table 23.28: Ablations on Real Forward-Facing (pretrained, no per-scene tuning) [654]. Along-
ray self-attention (ray transformer) is critical for resolving occlusions/depth; relative view directions
improve view-dependent appearance; blending observed colors outperforms direct RGB regression.

Sensitivity to source-view density.
Input view sparsity denotes limiting both the number and angular spread of available source images
for rendering. In the IBRNet evaluation protocol [654]:
 Cameras on the upper hemisphere are subsampled by factors {2,4,6,8,10} to simulate pro-
gressively sparser capture.
» Hence, for a given target view, the number of selectable neighbors N and baselines decrease,
reducing parallax and multi-view agreement.
* The rendering pipeline and loss remain unchanged; only the available inputs differ.
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Figure 23.101: Sensitivity to input view sparsity [654]. Source views are uniformly subsampled
on the upper hemisphere by factors {2,4,6,8,10} to create varying densities. Results are shown for
the pretrained model (no per-scene tuning) and for a per-scene fine-tuned variant (IBRNetg).
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What the figure shows and why it matters.

* Observed effect of sparsity (Figure 23.101). As source views become sparser, errors grow near
thin structures, specular regions, and occlusion boundaries. This is consistent with weaker
multi-view consistency and fewer reliable visibility cues.

* Zero-shot robustness. The pretrained (scene-agnostic) model degrades gracefully: despite
reduced inputs, the learned fusion recovers large-scale structure and many details, indicating
effective cross-scene priors.

Per-scene fine-tuning (IBRNetg): how it is done and why it helps.

* Procedure.

— Initialize all network parameters from the scene-agnostic pretrained model (shared
encoder—decoder CNN, per-sample MLP heads for color and density pooling, and the
ray transformer).

— Optimize on the posed images of the target scene using the same NeRF-style objective:
coarse/fine hierarchical sampling of ray points and an ¢, photometric loss between
rendered and ground-truth pixel colors [654].

— Keep the rendering pipeline, view selection (N neighbors), sampling strategy, and losses
unchanged; only the weights are updated. In practice, rays are randomly sampled across
training images each iteration, and both coarse and fine branches are trained jointly as in
the pretrained model.

* What is adapted. Fine-tuning specializes the generic, cross-scene priors to the geome-
try/appearance and camera layout of the specific scene by calibrating:

- Visibility-aware pooling. The PointNet-like density-pooling head refines the reliability
scores {s;} and resulting weights {w;} so that views inconsistent or occluded at a sample
location receive lower influence when forming the compact density feature g (X ).

— Color blending. The color head adjusts how relative viewing directions Ad; and per-
view features f; are mapped to blending weights {w{}, improving reproduction of
scene-specific view-dependent effects (e.g., specularities) under the available baselines.

— Along-ray reasoning. The ray transformer adapts its self-attention to the scene’s
depth statistics, helping resolve near—far ordering and occlusions more decisively when
aggregating {fs(x¢) }2 .

— Low-level features. The shared encoder—decoder CNN updates its filters so that the
2D feature maps align with the target scene’s photometric characteristics (exposure,
material cues, texture scale), which strengthens the multi-view consistency signal used
downstream.

* Why it helps under sparsity.

— With few and narrowly spaced source views, the generic priors learned across many
scenes may be insufficient to disambiguate thin structures and complex occlusions.
Fine-tuning reduces this domain gap by aligning the priors to the target scene’s actual
pose/appearance distribution.

— Calibrated visibility weights decrease uncertainty in fs, steering density toward physi-
cally plausible surfaces and away from “black-hole” artifacts.

— Refined color blending emphasizes the most reliable source rays for each 3D sample,
improving view-dependent appearance without introducing high-frequency regression
artifacts.

— The adapted ray transformer strengthens along-ray suppression of spurious far samples
once a nearer surface is explained, yielding cleaner boundaries and fewer floaters.
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* Empirical takeaway (Figure 23.101).

— As input views are made sparser, IBRNetg consistently degrades more gracefully than
the zero-shot model: edges remain sharper, thin structures persist longer, and occlu-
sion boundaries are cleaner, while the rendering objective and architecture remain
unchanged [654].

Qualitative comparisons.

Figure 23.102: Qualitative comparison on Real Forward-Facing [654]. IBRNet reconstructs
fine geometric and appearance details while avoiding ghosting near boundaries and thin structures
where LLFF struggles; compared to NeRF, it reduces high-frequency artifacts and better preserves
reflections in several scenes.

With/without ray fransformer.

Figure 23.103: With vs. without the ray transformer [654]. Each triplet shows (left) the pretrained
model without the ray transformer, (middle) the model with the ray transformer, and (right) the
ground truth. Without along-ray self-attention, densities are predicted from per-sample cues only,
frequently yielding “black-hole” voids and boundary ghosting near occlusions. Adding a single
along-ray self-attention layer (with depth-wise positional encodings) aggregates density features
across all samples on the ray, enforcing coherent near—far ordering and markedly cleaner edges.
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Geometry and additional results.

Figure 23.104: Proxy geometry and rendering on two scenes (Leaves, Horns) [654]. For
each scene, columns show: leftr—ground-truth image; middle—pretrained IBRNet (no per-scene
tuning), with synthesized RGB (top) and estimated depth (bottom); right+—IBRNet fine-tuned on
the scene (IBRNety), again with synthesized RGB (top) and depth (bottom). Fine-tuning sharpens
geometry and improves view-dependent appearance, yielding cleaner boundaries and more stable
thin structures.
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Figure 23.105: Realistic Synthetic 360° results [654]. High-fidelity renderings are achieved without
per-scene optimization; remaining failures appear under very sparse views and complex geometry,
where additional per-scene adaptation can help.

Limitations and Future Directions

Limitations.

IBRNet can degrade under extremely sparse inputs and complex occlusions; although the ray
transformer mitigates “black holes”, challenging specular/transparent regions may still benefit from
scene-specific adaptation. Quality depends on source-view selection, pose accuracy, and coverage;
thin structures and reflections improve with brief per-scene fine-tuning (IBRNetg) [654].
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Concurrent and prior generalizable radiance-field methods.
Several highly cited works contemporaneous with (or preceding) IBRNet pursue generalizable novel
view synthesis with related but distinct designs:

* pixelNeRF [739] (CVPR 2021): conditions a NeRF directly on image-aligned features from
one/few inputs and regresses color/density. Unlike IBRNet’s explicit color blending and
along-ray transformer, pixelNeRF relies on a fully convolutional conditioning pipeline for
feed-forward generalization.

* GREF [632] (ICCV 2021; arXiv 2020): learns a general radiance field by projecting pixel
features to 3D and aggregating across views (with attention). Compared to IBRNet, GRF
eschews pixel copying/blending and focuses on implicit field regression conditioned on inputs.

* MVSNEeRF [79] (ICCV 2021): imports plane-sweep cost volumes and 3D CNNs from MVS
for geometry-aware aggregation. In contrast to IBRNet’s PointNet-style pooling plus a ray
transformer, MVSNeRF leverages explicit multi-plane geometry priors to guide density/color
regression and supports fast feed-forward reconstruction with optional per-scene fine-tune.

Subsequent follow-ups building on IBRNet’s goals.
A line of work pursues the same objective—high-quality novel views from sparse inputs with little or
no per-scene optimization—by relocating where priors and visibility reasoning live in the pipeline:

* NeuRay [382] (CVPR 2022): augments feature aggregation with an explicit, learned per-
view visibility field. For each 3D query, the method predicts how visible it is from every
source camera and downweights occluded/inconsistent evidence before color/density predic-
tion. Compared to IBRNet’s implicit, score-based pooling, NeuRay disentangles visibility
estimation from appearance blending.

* GeoNeRF [267] (CVPR 2022): injects stronger geometry by constructing multi-scale cost
volumes (plane-sweep style) and fusing them with a Transformer. This emphasizes epipo-
lar consistency and depth reasoning more explicitly than IBRNet’s PointNet-like pooling,
improving few-view robustness and occlusion handling.

* Point-NeRF [714] (CVPR 2022): anchors features on a neural point cloud and renders
through point-based volume rendering. In contrast to IBRNet’s pixel-aligned (per-view)
feature sampling, Point-NeRF shifts to a scene-adaptive, point-anchored representation that
can be efficient and accurate when reliable points are available.

* RegNeRF [452] (CVPR 2022): remains per-scene but targets the same sparse-input failure
modes via strong regularization (e.g., unseen-view patch losses, sampling annealing). While
not cross-scene like IBRNet, it offers complementary loss/regularization ideas that can inspire
priors for generalizable renderers.

Key design axes highlighted by these follow-ups.

* Conditioning mechanism: pixel-aligned sampling (IBRNet) vs. cost-volume aggregation
(GeoNeRF) vs. point-anchored features (Point-NeRF).

* Visibility modeling: implicit reliability pooling + along-ray attention (IBRNet) vs. explicit
per-view visibility fields (NeuRay) vs. geometry-constrained matching in volumes (GeoNeRF).

* Training regime: cross-scene, feed-forward generalization (IBRNet, NeuRay, often GeoNeRF
variants) vs. per-scene but robustly regularized optimization (RegNeRF).

* Trade-offs: stronger geometry priors tend to improve occlusions and thin structures under
extreme sparsity, while pixel/feature-conditioned designs often yield higher throughput and
simpler deployment across scenes.



23.11 Enrichment 23.11: NeRF: Real-World Robustness & Sparse Supervision 1827

Enrichment 23.11.4: pixelNeRF: Neural Radiance Fields from One or Few Images

Motivation

Neural Radiance Fields (NeRF) [429] achieve impressive photorealism in novel view synthesis but
require dense multi-view supervision and time-intensive per-scene optimization. This limitation
makes them unsuitable for scenarios with only one or few input views. PixeINeRF [739] addresses
this shortcoming by learning a scene prior across multiple objects and categories, enabling feed-
forward prediction of radiance fields conditioned on sparse input images. The key insight is to
incorporate pixel-aligned image features into NeRF’s volumetric formulation, thereby leveraging
visual evidence for generalization across scenes.

Input Novel views Input Novel views Input MNovel views

TIT FAANA momevo

pixelNeRF

i

Input: 3 views of held-out scene QOutput: Rendered new views

Figure 23.106: NeRF from one or few images. PixelNeRF predicts neural radiance fields from
a single (top) or few posed images (bottom). Unlike NeRF, which requires dense views to work,
PixelNeRF generalizes across scenes and performs robustly even with sparse views [739].

Method

PixelNeRF modifies the classical NeRF formulation by conditioning the radiance field on features
extracted from input images. This conditioning transforms NeRF from a per-scene optimization
problem into a feed-forward prediction pipeline that can generalize to unseen objects and scenes.

Radiance field prediction
As in NeRF, the radiance field is a continuous function

f(x,d) = (0,¢),

that maps a 3D point x € R? and viewing direction d € R? to a density ¢ and color c. In NeRF, this
mapping is optimized independently for each scene. PixeINeRF instead conditions f on features
aligned with the input pixels.

Feature encoding and alignment
An encoder E (a ResNet-34 backbone pretrained on ImageNet) processes each input image / into a
pixel-aligned feature grid W = E(I). Given a query point X in the camera space of an input image,
PixelNeRF projects x onto the image plane:

n(x) = K[R | 1]x,
where K are the camera intrinsics and [R|¢] are extrinsics. The local image feature is then sampled

via bilinear interpolation:

w=W(x(x)).
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This feature encodes appearance cues and geometric context at the projection of x.

Feature-conditioned NeRF
The NeRF network f receives the positional encoding y(x), the viewing direction d, and the
interpolated feature w:

f(y(x),d;w) = (0,¢).

Instead of concatenating w to the input, PixelNeRF injects it as a residual modulation at each layer
of the MLP, inspired by style transfer methods such as AdaIN and SPADE. This design improves
stability and ensures features influence the radiance field consistently across depths.

Volume rendering loss
Rendered colors are computed as in NeRF:

CA'(r):/t:fT(t)G(t)c(t)dt, T(t):exp(—/t:c(s)ds>.

Training minimizes pixel-wise squared error:

A

Z=Y ¢ -cls

reZ(P)

Why view-space conditioning

Most reconstruction frameworks define radiance fields in a canonical object-centered frame, requiring
all instances to share alignment. PixelNeRF instead operates in view space, i.e., the coordinate frame
of each input camera. This removes the need for a canonical alignment, improving generalization to
unseen categories, multiple-object scenes, and real-world captures where canonical orientation does
not exist.

Multi-view extension
For multiple input images {7}, with poses P} = [R1)|¢()], query points are transformed into
each view:

Each view provides intermediate features:
VO = fi(yxD),d"s w0 (z(x1V))).

These are pooled using an order-independent operator Y (average pooling) and passed to a final
network f>:

(G,C) = fZ(W(V(l)v‘ . ’V(n)))

This architecture allows variable numbers of input images at test time without retraining.
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Intuition and significance

PixelNeRF can be understood as embedding a strong inductive bias into NeRF: each query point
consults features sampled from projected 2D observations. This design provides two critical benefits:
(1) appearance grounding, since colors derive from aligned image evidence; and (2) geometric
priors, since features across views encode spatial structure. Consequently, PixeINeRF learns to
hallucinate plausible completions when input views are sparse, a task impossible for vanilla NeRF.
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Figure 23.107: PixelNeRF pipeline in the single-view case. Query features are sampled from
image-encoded feature volumes and combined with spatial coordinates before passing through the
NeRF network [739].

Architecture and Implementation

PixelNeRF uses a ResNet-34 encoder with a feature pyramid to capture local and global cues. Fea-
tures from multiple scales are upsampled and concatenated, resulting in 512-dimensional descriptors
aligned with image pixels. The NeRF network f is implemented as a residual MLP. Instead of
concatenating features directly, linear layers map each feature vector into per-block residuals added
within ResNet blocks. This design stabilizes training and enables feature modulation across layers.
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Figure 23.108: Multi-view PixelNeRF architecture. Separate encoders produce feature grids per
view, which are transformed, pooled, and aggregated through f; and f, [739].
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Experiments and Ablations

PixelNeRF is evaluated across category-specific (chairs, cars), category-agnostic (13 ShapeNet
classes), unseen categories, multi-object scenes, and real-world datasets (Stanford Cars; DTU MVS),
demonstrating consistent gains over SRN [573] and DVR [451]. Ablations confirm the necessity of
pixel-aligned local features and view-direction inputs.

Category-specific single-view reconstruction
A separate PixelNeRF is trained per category using multi-view 2D supervision; qualitative examples
include a chair, sofa, van, and police car.

Figure 23.109: Category-specific single-view reconstruction benchmark. Separate models for
cars and chairs; qualitative comparison with SRN [573]. Credit: [739].

Category-specific two-view reconstruction
Two input images are encoded; two novel renderings are shown per example for chairs and cars.

2 Input Views

Figure 23.110: Category-specific 2-view reconstruction benchmark. Credit: [739].
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Method 1-view 2-view
PSNR? | SSIMt | PSNR? | SSIM?T
Chairs
GRF [632] 21.25 0.86 22.65 0.88
TCO* [610] 21.27 0.88 21.33 0.88
dGQN [146] 21.59 0.87 22.36 0.89
ENR* [137] 22.83 - - -
SRN [573] 22.89 0.89 24.48 0.92
PixelNeRF* [739] | 23.72 0.91 26.20 0.94
Cars
SRN [573] 22.25 0.89 24.84 0.92
ENR* [137] 22.26 - - -
PixelNeRF* [739] | 23.17 0.90 25.66 0.94

Table 23.29: Category-specific 1- and 2-view reconstruction. Methods marked * do not require
canonical poses at test time. One model per category is evaluated in both settings. Values match the
original paper’s Table 2.

Ablation on local features and view directions

Goal This ablation on ShapeNet chairs isolates the contributions of two architectural choices
in PixelNeRF [739]: pixel-aligned local features and explicit view directions. The objective is to
determine how each component affects few-shot reconstruction quality in single-view and two-view
settings within PixeINeRF’s viewer-centric, feed-forward formulation.

Design of the variants

e Full The complete PixelNeRF model conditions the radiance field on fine-grained, pixel-
aligned image features and includes the NeRF-style viewing direction input d to capture
view-dependent appearance.

* - Local Replaces pixel-aligned features with a single global image code. This removes
spatially precise conditioning at projected locations 7(x), testing whether per-pixel alignment
is essential for shape/detail recovery.

* - Dirs Removes the explicit direction input d to test the importance of view-dependent
effects (e.g., specularities) under sparse supervision.

Mechanism and expected effects PixelNeRF uses a ResNet-34 encoder to produce a multi-
scale feature pyramid that is upsampled and concatenated into ~512-D descriptors aligned to
input pixels. For a 3D query point x, the point is projected to each input image, and a bilinearly
interpolated feature w = W (7(x)) modulates the NeRF MLP through residual injections at block
entrances. This pixel-level conditioning supplies localized appearance and geometry cues tied to x’s
projections. Removing local features (- Local) collapses this spatially precise conditioning to a
global code, reducing fidelity in thin structures and high-frequency textures. Removing directions (-
Dirs) suppresses view-dependent modeling, impairing consistency under large baselines or glossy
surfaces.

Findings The following table shows that both components are important. Relative to Full,
- Local exhibits noticeable drops in PSNR/SSIM and worse LPIPS, indicating that pixel-aligned
evidence is helpful for accurate shape and texture reconstruction from few views. - Dirs also
degrades all metrics, confirming the choice of using explicit viewing direction inputs for high-fidelity,
view-dependent rendering. The Full model achieves the best performance in both 1-view and 2-view
settings.
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Variant 1-view 2-view

PSNRT | SSIM1 | LPIPS) | PSNRT | SSIM? | LPIPS]
—Local 20.39 0.848 0.196 21.17 0.865 0.175
— Dirs 21.93 0.885 0.139 23.50 0.909 0.121
Full 23.43 0911 0.104 25.95 0.939 0.071

Table 23.30: Ablation on ShapeNet chairs. Pixel-aligned local features and explicit view directions
are both essential for few-shot quality; the Full PixeINeRF model attains the best PSNR/SSIM and
lowest LPIPS in 1-view and 2-view regimes (matches Table 3 in [739]).

Category-agnostic single-view reconstruction
A single PixelNeRF trained jointly on the 13 largest ShapeNet categories preserves thin structures
and small textures, while outperforming baselines quantitatively (exactly as reported).
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Figure 23.111: Category-agnostic single-view reconstruction. PixelNeRF is trained as a single
model across 13 ShapeNet categories, without category-specific specialization. The results show
superior recovery of fine structures such as chair legs, monitors, and tabletop textures compared
to methods that compress the scene into a single latent vector. Competing baselines such as SRN
struggle in this setting, with degraded reconstructions and unreliable test-time latent inversion.

Unseen categories and multi-object scenes
Training only on plane, car, chair, PixelNeRF generalizes to 10 unseen categories and handles
composed scenes of multiple chairs by predicting in view space.
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Figure 23.112: Generalization to unseen categories. A model trained only on plane, car, and
chair generalizes to 10 unseen ShapeNet categories. Despite not being exposed to these categories
during training, PixeINeRF produces structurally reasonable and visually coherent reconstructions,
demonstrating strong cross-category priors. Credit: [739].
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Figure 23.113: 360° view prediction with multiple objects. PixelNeRF naturally handles multi-
object scenes, such as multiple ShapeNet chairs, because its prediction is conditioned in view space.
In contrast, canonical-space models like SRN struggle with alignment when multiple objects are
present. Credit: [739].

Unseen category Multiple chairs
Method PSNR? | SSIM?T | LPIPS| | PSNRT | SSIM?T | LPIPS|
DVR [451] 17.72 0.716 0.240 - - -
SRN [573] 18.71 0.684 0.280 14.67 0.664 0.431
PixelNeRF [739] | 22.71 0.825 0.182 23.40 0.832 0.207

Table 23.32: Challenging ShapeNet tasks. Left: zero-shot generalization to 10 unseen categories
using a model trained on only three classes (plane, car, chair). Right: two-view reconstruction
of scenes with multiple chairs. PixeINeRF clearly surpasses baselines in both settings, showcasing
robustness to unseen object types and multi-object compositions. Matches Table 5 in [739].

Real images: Stanford Cars and DTU MVS

A car model transfers to Stanford Cars after background removal with PointRend; on DTU, feed-
forward wide-baseline synthesis is demonstrated from three posed inputs; PSNR quantiles versus
per-scene NeRF are reported in the paper.
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Figure 23.114: Results on real car photos. PixelNeRF trained on ShapeNet cars is directly applied
to the Stanford Cars dataset [303]. Backgrounds are removed using PointRend [295]. The model
generates plausible view rotations about the vertical axis without any fine-tuning, demonstrating
cross-dataset transfer. Credit: [739].
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Input: 3 views of held-oul scene Movel views

Figure 23.115: Wide-baseline novel view synthesis on DTU. On the DTU MVS dataset [262],
PixelNeRF synthesizes novel views from as few as three posed input images. Notably, the training
and test sets share no scenes, yet reconstructions remain consistent, highlighting the generalization
ability of learned priors under wide-baseline, real-scene conditions. Credit: [739].
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Figure 23.116: Few-shot reconstruction performance on DTU. PSNR quantiles across scenes
with 1, 3, 6, or 9 input views. PixelNeRF uses a single trained model with 3-view conditioning,
while NeRF is retrained per scene and per view count. PixelNeRF maintains competitive or superior
performance without test-time optimization. Matches Figure 9 in [739].

Limitations and Future Work
Limitations
* Rendering speed. PixelNeRF inherits NeRF’s slow volumetric rendering, with runtime
scaling linearly with the number of input views. This makes interactive applications infeasible.
* Positional encoding scale. The choice of frequency bands in y(-) and manually tuned ray
sampling bounds limit scale invariance. PixelNeRF struggles when scenes deviate strongly in
scale or depth range.
* Dataset constraints. Training and evaluation rely on ShapeNet and DTU, which are synthetic
or controlled. Generalization to in-the-wild 360° captures is still limited.
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Future work and influence
PixelNeRF inspired numerous follow-ups addressing its limitations:
* IBRNet [654] improved multi-view aggregation with attention-based pooling, enhancing
generalization across unseen scenes.
* MVSNEeRF [79] introduced cost-volume features to better exploit geometric consistency under
sparse views.
* PixelNeRF++ and other variants investigated scaling the approach to more complex outdoor
or dynamic settings.
* Vision transformers for NeRF priors (e.g., [267, 382]) replaced CNN encoders with trans-
formers for improved visibility reasoning and global context.
These directions show how PixelNeRF provided the first bridge between feed-forward image-
conditioned priors and NeRF-based volumetric rendering, catalyzing a wave of methods tackling
sparse-view reconstruction and real-world generalization.
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Enrichment 23.12: NeRF: Unbounded, Dynamic, Large-Scale Scenes

Scaling beyond tabletop scenes requires anti-aliasing across scales, compositional scene structure,
and deformation fields for motion.

* Block-NeRF [602]: Composes geographic “blocks” to model city-scale environments with
streaming and modular training.

* Mip-NeRF 360 [29]: Tackles unbounded 360° scenes with integrated positional encoding and
anti-aliased cones.

* Nerfies [469]: Learns continuous deformation fields from casual handheld videos for non-rigid,
dynamic scenes.
* D-NeRF [488]: Extends NeRF with time as an input for explicit scene dynamics.

Further influential works (not expanded): HyperNeRF [468] (handles topological changes in
dynamic scenes), Mega-NeRF [413] (city-to-landscape scale).

Enrichment 23.12.1: Block-NeRF: Scalable Large Scene Neural View Synthesis
Motivation

Neural Radiance Fields (NeRF) and its multiscale extension mip-NeRF (see 23.10.6) have demon-
strated remarkable performance on small-scale, object-centric, or single-building scenes. However,
scaling such methods to city-sized environments introduces severe bottlenecks: limited model
capacity, memory constraints, and inconsistent appearance due to data collected across different
days, times, and weather conditions. For practical applications in mapping and autonomous driving,
the ability to reconstruct neighborhoods with temporal consistency and update regions without
retraining the full model is crucial. Block-NeRF [602] introduces a decomposition strategy that
splits the environment into compact, geographically bounded NeRFs (blocks). Each block is trained

independently and later merged at inference to produce seamless renderings, decoupling rendering
cost from the overall environment size.
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Figure 23.117: City-scale reconstruction with Block-NeRF. The Alamo Square neighborhood
in San Francisco reconstructed using multiple Block-NeRFs trained on data from three months.

Updates can be applied locally (e.g., construction area on the right) without retraining the entire
model. Credit: [29].
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Method

High-level overview

Block-NeRF [602] scales neural view synthesis to neighborhoods by structuring the scene geograph-
ically and decoupling capacity and rendering from global extent. The pipeline proceeds in four
stages:

* Geographic tiling of the street network into overlapping blocks using priors such as intersec-
tion coordinates and segment lengths (from maps or HD-road graphs).

* Per-block training of compact mip-NeRFs (see 23.10.6) on geographically filtered images,
with appearance embeddings, exposure conditioning, and pose refinement to absorb long-term
capture variability.

* Visibility-driven selection of only the few blocks that actually see the current view, using a
small visibility network to cull irrelevant blocks.

* Cross-block compositing and appearance alignment to merge rendered images smoothly
and reconcile style differences across time, weather, and cameras.

Block partitioning and structure

The partitioning strategy employed by Block-NeRF is designed to make large-scale reconstruction,
such as multi-block urban scenes, tractable by dividing the environment into smaller, manageable
sub-regions. Instead of training one monolithic NeRF for an entire city—which would exceed
memory and compute limits—Block-NeRF constructs a structured grid of compact NeRFs that can
be trained and updated independently.

Why overlapping sub-regions? Each Block-NeRF is defined to overlap about 50% with its
neighbors. This deliberate redundancy serves two roles:

* Geometric continuity: Overlap ensures that street geometry and building facades crossing
block boundaries are represented consistently by at least two models, reducing visible seams
during rendering.

* Appearance alignment: Because training images are captured under different conditions
(day/night, clear/cloudy, varied camera exposure), overlap provides shared pixels where
neighboring blocks can align their appearance embeddings. Without overlap, blocks could
converge to inconsistent colors or lighting, producing sharp discontinuities.

During inference, this overlap also supports seamless compositing when multiple blocks contribute
to a target view, avoiding visual jumps at block boundaries.

Why place origins at intersections? Block origins are typically anchored at road intersections.
Intersections serve as natural hubs in city topology: they connect multiple streets, maximize shared
visibility across trajectories, and ensure that blocks cover semantically meaningful spatial units.
Placing block centers at intersections also yields a regular, interpretable tiling of the urban grid. In
practice, a block covers its local intersection and extends along adjacent streets.

How are partitions built? From these origins, each block’s coverage extends roughly 75%
of the way to neighboring intersections. This produces the desired ~ 50% overlap across adjacent
blocks. Building the partitions proceeds as follows:

1. Geographic initialization: Block origins are selected at intersections or uniformly along long
street segments, using map priors such as OpenStreetMap or HD-road graphs.

2. Coverage definition: Each block is defined as a sphere or radius around the origin, extending
most of the way toward neighbors to enforce overlap.
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3. Geographic filtering of training data: Each training image is assigned to blocks based on
whether its camera frustum intersects the block’s coverage region. This ensures that each
Block-NeRF only sees the data relevant to its intended sub-region.

4. Independent training: Blocks are trained independently in parallel, producing a modular set of
models. This modularity allows retraining only the affected blocks when local changes occur
(e.g., construction on one street), rather than reoptimizing the entire city.

This decomposition yields a scalable representation: a city becomes a grid of compact NeRFs
with intentional redundancy at boundaries. The overlap is key not only for geometric continuity but
also for appearance alignment, enabling Block-NeRF to harmonize heterogeneous data collected
across days, weather conditions, and camera settings.

Architectural design choices
Each Block-NeRF extends mip-NeRF with three critical augmentations:

* Appearance embeddings (per-image latent codes) absorb day-to-day or seasonal shifts in
illumination and weather, ensuring that lighting changes are captured photometrically rather
than as spurious geometry.

» Exposure conditioning encodes camera exposure values (e.g., shutter speed x gain) with a
sinusoidal positional encoding, stabilizing training under brightness fluctuations and enabling
interpretable exposure control at inference.

* Pose refinement introduces small, regularized SE(3) offsets per driving segment to correct
residual odometry drift, mitigating ghosting and duplication artifacts at block boundaries.

In addition, a lightweight visibility network f, is trained to predict whether a spatial sample would
be visible from a given camera viewpoint. Unlike computing transmittance 7" directly from each
block’s density field (which requires full ray marching), f, is a cheap learned proxy supervised
by training-time transmittance. This decoupled approximation plays two roles in the Block-NeRF
pipeline: (1) block selection at inference, where it prevents unnecessary evaluation of irrelevant or
occluded blocks, and (ii) appearance matching, where it identifies reliable overlap regions between
neighboring blocks for cross-block alignment.
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Figure 23.118: Block-NeRF architecture. Built on mip-NeRF (see 23.10.6). The density MLP f
outputs ¢ and features; the color MLP f, consumes features, view direction, exposure encoding, and
appearance embedding to predict RGB; the visibility MLP f, regresses training-time transmittance,
supporting block selection and overlap-based appearance alignment. Credit: [29].
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How f, integrates into the pipeline
During training. For every training ray, Block-NeRF already computes sample weights

T, = exp(— Z Gj6j),
j<i
the transmittance at depth #;. These values supervise f,(x;,d) at sampled points, teaching the auxiliary
network to approximate visibility directly from (x,d) without performing volume accumulation.
Thus f, becomes a fast surrogate of NeRF’s own visibility reasoning.
During inference. Given a novel camera:

1. Candidate selection: Gather blocks within radius Rgeject Of the camera center c.

2. Visibility pruning: For each candidate, probe f, at a sparse set of sample points/rays from
¢ and average predictions. Blocks with low mean visibility are culled. Typically only 1-3
remain, preventing compute waste on blocks that are occluded or irrelevant.

. Rendering: Surviving blocks are fully rendered with mip-NeRF ray marching.

4. Compositing: Per-block images I; are combined with inverse-distance weights, producing a

seamless output. Distance-based blending is temporally stable, avoiding flicker in flythroughs.

5. Appearance alignment: To harmonize across different lighting conditions, f, also identifies

high-visibility overlap between neighboring blocks. In these regions, adjacent blocks adjust
their latent appearance codes so that colors match the reference block, yielding globally
consistent appearance (time-of-day, weather, white balance).

98]
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Figure 23.119: Visibility-guided compositing. Candidate blocks near the camera are scored by f,.
Blocks with low predicted visibility (bottom) are culled. The remaining per-block renderings are
blended in image space with distance-based weights, producing seamless transitions across block
boundaries while avoiding seams from irrelevant blocks. Credit: [29].
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Why f, is essential

Without f,,, Block-NeRF would need to partially render all nearby blocks to check visibility. This is
computationally intractable for hundreds of blocks. f, serves as a fast scout: trained once during
supervision, then deployed at inference to prune irrelevant blocks and guide alignment. This makes
city-scale rendering practical while preserving seamless transitions across block boundaries.

Compositing across blocks

After visibility pruning, the surviving blocks are rendered with mip-NeRF’s volumetric ray marching
(Sec. 23.10.6). Their outputs I; are then blended in raster space using inverse-distance weights
relative to the camera:

wies[le—xil|7P, Y wi=1,
i

with p controlling the sharpness of transitions. This global weighting strategy is simple to compute,
avoids per-pixel overhead, and—most importantly—yields temporally stable results for long fly-
throughs. In practice, distance-based blending reliably hides seams in overlap regions; more complex
schemes (e.g., depth- or visibility-based blending) can sharpen stills but often introduce flicker over
time.

Appearance control and cross-block alignment

A remaining challenge is that independently trained blocks do not share a common appearance
embedding space: the same latent index can correspond to different global looks (e.g., sunny in one
block, cloudy in another). When blended directly, such inconsistencies manifest as visible seams. To
harmonize the output, Block-NeRF performs appearance matching across overlaps:

1. Fix a reference block with a chosen appearance code ¢,

2. For each neighboring block j, use f, to identify overlap regions that are simultaneously visible.

3. Optimize only ¢;, keeping network weights frozen, to minimize color differences over the
shared patch:

min 3 [[Tet(ps ) = 1;(p3 ¢))|
I pep

‘2
4. Propagate alignment outward across the block graph.

This process aligns low-frequency appearance factors such as illumination, weather, and time-
of-day, producing a globally coherent style while preserving local geometry. Once aligned, the
entire city-scale environment can be rendered consistently under any desired appearance (e.g., dusk
everywhere).

Figure 23.120: Appearance embeddings Per-image latents represent weather/illumination diversity
(day/night, clear/cloudy), preventing geometry corruption and enabling controllable appearance
during inference. Credit: [29].
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Figure 23.121: Exposure conditioning Conditioning on exposure stabilizes training across bright-
ness variation and provides an interpretable control knob at render time (e.g., brighten/darken without
altering geometry). Credit: [29].

Base Block-NeRF Adjacent Block-NeRF
= e a

Before Appearance Matching After Appearance Matching

Figure 23.122: Cross-block appearance matching A fixed target appearance (left) is propagated to
neighbors by optimizing only their appearance codes on overlapping, high-visibility regions, yielding
a consistent global style (e.g., coherent night appearance) across blocks. Credit: [29].

Why this design works

Geographic tiling concentrates capacity where needed and enables local updates. Visibility-driven
selection avoids wasting compute and prevents seam artifacts from blocks that cannot explain the
view. Distance-based blending is temporally stable and simple. Appearance embeddings + exposure
conditioning disentangle nuisance factors (time, weather, camera settings) from scene structure, while
appearance matching reconciles independently trained blocks into a coherent city-scale radiance
field.

Experiments and Ablations

Ablations on Alamo Square

Appearance embeddings, exposure conditioning, and pose refinement all contribute significantly
to fidelity. Removing appearance embeddings forces the model to encode weather variations as
geometry, introducing artifacts. Disabling pose refinement produces blur and duplication from
misalignment. Removing exposure slightly lowers accuracy but eliminates exposure control.
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| Model | PSNRtT | SSIMt | LPIPS| |
mip-NeRF [30] 17.86 0.563 0.509
-Block-NeRF (no appearance) 20.13 0.611 0.458
-Block-NeRF (no exposure) 23.55 0.649 0.418
-Block-NeRF (no pose opt.) 23.05 0.625 0.442
Full Block-NeRF 23.60 0.649 0.417

Table 23.33: Ablation study on Alamo Square. Each architectural component contributes: appear-
ance embeddings mitigate geometry hallucinations; pose refinement sharpens alignment; exposure
conditioning improves stability and control.

Block-NeRF
-Exposure -Pose Opt. Full

Ground Truth mip-MeRF U Appearance

Figure 23.123: Qualitative ablations. Without appearance embeddings, cloudy geometry is intro-
duced. Without pose optimization, ghosting occurs (e.g., duplicated telephone pole in the first row).
Exposure conditioning provides modest improvements in fidelity and crucial control at inference.
Credit: [29].

Block granularity on Mission Bay

Splitting into finer blocks improves accuracy even when the total parameter count is fixed. With
smaller block sizes, each block specializes to local geometry and appearance, and only a few blocks
are active per frame, keeping inference efficient.

| #Blocks | Weights / Total | Block size | Compute || PSNRT | SSIM?T | LPIPS]| |

1 0.25M/ 0.25M 544 m 1x 23.83 0.825 0.381
4 0.25M / 1.00M 271 m 2% 25.55 0.868 0.318
8 0.25M /2.00M 116 m 2% 26.59 0.890 0.278
16 0.25M / 4.00M 54 m 2% 27.40 0.907 0.242
1 1.00M / 1.00M 544 m 1x 24.90 0.852 0.340
4 0.25M / 1.00M 271 m 0.5x% 25.55 0.868 0.318
8 0.13M/ 1.00M 116 m 0.25x% 25.92 0.875 0.306
16 0.07M/ 1.00M 54 m 0.125x% 25.98 0.877 0.305

Table 23.34: Effect of block granularity on Mission Bay. More blocks yield higher reconstruction
fidelity. Even with fixed total parameters (bottom), splitting capacity into multiple small blocks
improves accuracy and reduces per-frame compute since only a subset of blocks is active. Credit:
[29].
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Limitations and Future Work
Block-NeRF inherits Mip-NeRF’s high rendering cost and struggles with unmasked dynamic content.
Transient objects leave artifacts such as shadows; vegetation and seasonal changes lead to blurred
trees; construction requires retraining of affected blocks. Distant structures are under-sampled,
producing lower fidelity. Future directions to combat these and improve results include:
* Dynamic radiance fields for explicitly modeling moving objects.
* Unbounded representations (e.g., NeRF++ [772], mip-NeRF 360 [29]) for sharper distant
reconstructions.
* Acceleration techniques such as voxel caching [370, 740] or hash encodings [443] for
real-time rendering and faster training.

Motivation

Real-world unbounded scenes (full 360° rotations, sky and horizons, distant buildings) reveal
persistent weaknesses in NeRF-style pipelines: distant regions render blurry, scaling capacity
becomes costly, and ambiguity induces artifacts such as semi-transparent floaters and background
collapse. Readers are referred to the prior subsection on mip-NeRF for anti-aliasing via integrated
positional encoding (IPE) over conical-frustum Gaussians (§23.10.6) [30]. MipNeRF360 [29] builds
on that foundation to make 360° unbounded scenes numerically well-posed, sample-efficient, and
less ambiguous.

Challenges in unbounded 360° scenes

* Global parameterization. Fitting an unbounded world into a fixed near/far box squeezes
very distant geometry into a tiny coordinate range, so equal steps in model space correspond
to huge steps in world space at the far field, leaving too few effective intervals for the entire
background and causing blur despite intra-interval anti-aliasing [29, 30].

* Sampling geometry. Uniform steps in metric depth ¢ devote many samples to nearby content
(large pixel footprint) but too few to distant content (tiny footprint), which yields aliasing and
loss of detail in horizons and skies for fully 360° captures [29].

* Capacity vs. efficiency. Large, real scenes mix extremely near and far structure; making a
single mip-NeRF MLP sufficiently large and supervising it at multiple scales is expensive, so
capacity is constrained by training cost [30].

* Ambiguity and artifacts. The inverse problem is underconstrained at scale; optimization can
explain pixels via semi-transparent blobs (floaters) or by dragging distant matter toward the
camera (background collapse). Noise injection and multi-scale supervision help but neither
controls how mass is arranged along a ray nor fixes the global parameterization mismatch [30,
429].
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MipNeRF360 solutions to unbounded scenes challenges

1. Nonlinear scene reparameterization. A smooth contraction maps R? into an isotropic ball
of radius 2 while leaving the unit ball around the camera unchanged. Preserving the unit ball
keeps local metric geometry faithful where pixels are most sensitive (foreground parallax and
high-frequency detail). Compressing the exterior into the shell 1 —2 makes “infinity” finite
and numerically well-behaved, and the extra radius beyond 1 provides dynamic range so far
depths do not collapse onto a single boundary. The spherical target avoids axis/corner biases
of a cube, treating all directions symmetrically. Paired with disparity-linear spacing along
rays, equal steps in the contracted coordinate correspond more closely to equal changes in
image footprint at long range, restoring a well-conditioned sampling geometry for unbounded
scenes.

2. Proposal-driven hierarchical sampling. Each camera ray is divided into contiguous segments
(intervals) in a normalized coordinate s € [0, 1], yielding a 1D histogram with a nonnegative
weight per interval that reflects its contribution to the pixel after volumetric compositing.
What changes versus mip-NeRF is the division of labor: rather than repeatedly querying
and supervising the same MLP at multiple scales, MipNeRF360 [29] decouples where to
sample from what to predict. A small proposal MLP is evaluated on a coarse, roughly uniform
partition (in the contracted, disparity-linear coordinate) to produce a coarse weight profile that
guides where the ray should be refined; the ray is then re-partitioned so intervals concentrate
around the predicted peaks (optionally repeating this proposal step once more). Only after
this final, content-focused partition has been built is the high-capacity NeRF MLP run—once
per ray at a single stage, namely on the final set of intervals—by querying it at each final
interval to predict densities and colors for the actual rendering. To make the proposal reliable
without adding another image loss, a lightweight histogram-consistency objective trains the
proposal to cover the support that the NeRF MLP ultimately uses (gradients flow only into the
proposal in this term), ensuring the sampler does not overlook mass that the renderer needs. In
short, mip-NeRF’s multi-scale rendering is replaced by a cheap sampler (proposal MLP) plus
a single high-fidelity renderer (NeRF MLP), concentrating expensive computation exactly
where it matters most [29].

Why this improves things:
» The proposal amortizes search, so the final intervals rapidly cluster near actual surfaces
instead of being wasted in empty space.
* The NeRF MLP avoids redundant coarse-and-fine rendering passes, enabling higher
capacity without prohibitive training cost.
* The consistency term keeps proposals conservative (they must cover what NeRF uses),
reducing missed surfaces and aliasing in unbounded scenes.

3. Distortion regularization. Like mip-NeRF, each interval is a conical frustum approximated
by a 3D Gaussian and is anti-aliased within the interval via integrated positional encoding;
what those methods do not control is how the total weight is distributed across intervals
along the ray. In unbounded scenes this longitudinal ambiguity is a major failure mode: the
optimization can explain a pixel by spreading small weights over many separated intervals
(yielding semi-transparent floaters), or by shifting mass into near intervals to shorten optical
paths (background collapse). MipNeRF360 [29] adds a distortion loss that penalizes spread of
the per-ray weight histogram in the normalized coordinate s (via pairwise distances between
interval midpoints plus a width term).
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High level: the loss softly prefers compact, near-unimodal allocations across intervals when
consistent with the images, steering the solution toward “a surface here” rather than many faint
lobes along the line of sight. This complements the within-interval anti-aliasing (unchanged)
and, together with the proposal-guided sampling and contraction, reduces floaters, discourages
background collapse, and yields sharper, more plausible geometry in 360° environments [29].

(a) mip-NeRF [3], SSIM=0.526 (b) Our Model, SSIM=0.804

Figure 23.124: Comparison to mip-NeRF. (a) Though mip-NeRF is able to produce accurate
renderings of objects, for unbounded scenes it often generates blurry backgrounds and low-detail
foregrounds. (b) MipNeRF360 produces detailed realistic renderings of these unbounded scenes, as
evidenced by the renderings (top) and depth maps (bottom) from both models. See the supplemental
video for additional results. Credit: [29].

Method

MipNeRF360 extends mip-NeRF (§23.10.6) to unbounded 360° scenes with three coupled compo-
nents: a smooth nonlinear scene reparameterization that makes “infinity” finite while preserving
near-camera geometry; a proposal-driven hierarchical sampling scheme that decouples where
to sample from what to predict via online histogram consistency; and a distortion regularizer that
shapes per-ray weight distributions to suppress floaters and discourage background collapse [29].

Preliminaries: mip-NeRF

For a ray r(r) = o+ rd with distances t = {f;}?' , partitioning intervals T; = [t;,#;+1), mip-NeRF
approximates each conical frustum by a 3D Gaussian with mean ( and covariance ¥ and featurizes
it with integrated positional encoding (IPE):

_ [[sin(2'p) exp(— 2% diag(x)) | "
Y(u,X) = { [008(24“) exp(( 21 diag(Z)))] }é=0 (23.56)

These features drive an MLP (NeRF MLP) to produce density 7; and color ¢;:

(Ti,¢;) = MLP(y(r(T;)); OncrE) (23.57)
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Pixel color is rendered by volumetric compositing:

C(r,r) =) wic, (23.58)

W; = (1 P (ti+1*ti)) exp(— Z Ty (tr 1 — [i/)> (23.59)

i'<i
Coarse intervals are sampled uniformly in [t,,,#¢]:
1€~ U [tn, 7], ¢ =sort({r}) (23.60)
then refined via inverse-transform sampling from the coarse histogram:
' ~hist(t,we), ' =sort({r'}) (23.61)
Training minimizes a weighted sum of coarse/fine reconstruction losses:

Y <5 Zeeon (CO1),€°() + Zieeon (L), € () (23.62)

re#
See §23.10.6 for details [30].

Scene and ray parameterization
Context and goal. In mip-NeRF, each ray interval (a conical frustum) is approximated by a
3D Gaussian with mean p and covariance X, and features are computed directly in Euclidean
coordinates via integrated positional encoding (IPE). For truly unbounded 360° scenes, this Euclidean
parameterization becomes ill-conditioned at long range. MipNeRF360 changes where those features
are computed: it first reparameterizes the scene by a smooth warp f : R* —R3 that makes infinity
finite, and only then encodes the frustum-Gaussians. This has two consequences. First, the Gaussian
must be pushed through the nonlinear f so that both its center and its spatial extent are correctly
warped. Second, ray distances must be reparameterized to align sample placement with the new
geometry. Together, these steps define MipNeRF360’s scene and ray parameterization [29].
Pushing Gaussians through a smooth warp (Eq.9). Because f is nonlinear, the image of a
Gaussian is not Gaussian in closed form. MipNeRF360 therefore adopts the standard first—order
(Extended Kalman Filter—style) approximation: linearize f at the mean and propagate mean and
covariance through that local linear map,

)~ f() +Ip () (k= p), f(E) = (), ()T (23.63)

Here J¢ () is the 3x3 Jacobian of f at u1, capturing the local stretch/rotation induced by f. This
“Kalman-like” pushforward is essential: it preserves not only the warped position f(u) but also
the warped extent and orientation J fZJ]T of the frustum. Without updating the covariance, far-
field frustums—often highly anisotropic—would be misrepresented after warping, undermining
mip-NeRF’s anti-aliasing.

Choosing the warp: contraction (Eq.10). In MipNeRF360 the scene warp f is a smooth
contraction that maps all of R? into a closed ball of radius 2 while leaving the unit ball unchanged:

X, x| <1,
f(x) = contract(x) = 1

X (23.64)
(=) e Il
IxI/ Tx
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Why keep ||X|| <1 unchanged, and why a shell [1,2] for the far field? The unit ball fixes a normalized
near-field scale around the camera where small metric errors drive perceived sharpness (parallax,
fine texture). Keeping f(x) = x there preserves exact Euclidean geometry and the anti-aliasing
behavior inherited from mip-NeRF. Mapping everything beyond the unit sphere into the finite shell
1 — 2 preserves dynamic range for large depths: depths just beyond 1 map near 1, while depths
||x|| — e map smoothly toward 2—so “far” and “very far” remain separable after warping, instead
of collapsing onto a single boundary. Because the target is spherical, all directions are treated
symmetrically.

Why this reduces common failure modes (mechanism, not just outcome):

* Background blur. In Euclidean ¢, a fixed number of intervals must span an enormous depth
range, so each far interval covers a huge swath of world space; its Gaussian/IPE averages many
distinct background colors, appearing blurry. After contraction paired with disparity-linear
spacing (explained below), the far field occupies a finite, uniformly coverable band in the
warped coordinate. Intervals become approximately equal-sized in the contracted radius, so
the background is represented by many small, distinct bins rather than a few massive ones.
Less averaging = sharper backgrounds.

* Background collapse. With poor far-field resolution, optimization can “cheat” by pulling
density toward the camera: shorter paths can reproduce colors with fewer samples, so mass
drifts forward. In the contracted domain, moving density from the far shell toward the near
region causes large displacements in the warped coordinate (and hence stronger reconstruction
penalties), while the far band itself now has sufficient resolution to place density where images
demand it. The optimization no longer gains an easy advantage by collapsing the background
forward.

After pushing the frustum-Gaussian (i,X) through f via the linearization in Eq. (23.63), features
are computed from the contracted Gaussian

¥( contract(u, X)),

so within-interval anti-aliasing is preserved but now in a bounded, well-conditioned coordinate
system [29].

Off-axis IPE—where it fits and why it matters After the scene is contracted and each frustum-
Gaussian (u,X) is pushed through the warp using the EKF-style update in Eq. (23.63), MipNeRF360
computes features in the contracted space with Integrated Positional Encoding (IPE). IPE is mip-
NeRF’s anti-aliasing mechanism: instead of encoding a single point, it encodes the expected
sine/cosine responses under the Gaussian, so pixel footprint and frustum extent are baked into the
features. In the original, axis-aligned version, these sinusoids are taken along the coordinate axes,
which means only the diagonal of X (per-axis variance) can modulate the features.

The contraction plus the Kalman-like pushforward typically yields full, rotated covariances in
the warped space—far-field frustums are elongated and oriented off-axis—so restricting IPE to axis
directions discards the very orientation cues that distinguish different Gaussians. MipNeRF360
therefore adopts off-axis IPE (Appendix of [29]): it projects the Gaussian onto a fixed bank of non-
axis-aligned unit directions (the vertices of a twice-tessellated icosahedron), allowing off-diagonal
covariance to influence the features. Intuitively, two Gaussians can share the same per-axis spreads
yet differ in orientation; axis-aligned IPE conflates them, while off-axis IPE keeps them separate.
The result is a richer, orientation-sensitive encoding of elongated, distant frustums, which improves
discrimination and stability in the far field [29].
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Reparameterizing the ray: disparity-linear coordinate (Eq. 11). The contraction makes the
space finite; the ray parameter determines how samples populate that space. MipNeRF360 maps
Euclidean distance ¢ € [t,,,7¢] to a normalized coordinate s € [0, 1] via an invertible g:

_ 8(1) —g(t)

T gl —g) T (s8(ty) +(1=5)8(1a)), (23.65)

and sets g(x) = 1/x so bins are uniform in inverse depth (disparity). Why s (disparity) behaves better
than t (metric depth):

* Matches image sensitivity. In a pinhole camera, a fronto-parallel patch at depth z projects
with scale o< 1/z; small image changes are roughly proportional to changes in disparityd =1/z
(since dimage/dd stays more nearly depth-invariant than dimage/dz). Uniform steps in
s therefore allocate samples in proportion to perceptual/photometric change along the ray,
especially at long range, improving coverage of sky and distant objects.

* Pairs with contraction. For a camera at the origin, the contraction radius along a ray is r/ (1) =
2— % Uniform steps in s with g(¢) = 1/¢ (i.e., uniform disparity) produce approximately
uniform steps in r’ across the outer shell. Thus, a fixed sample budget yields near-uniform
spatial coverage in the warped domain, which is the domain where features are computed.

* Numerical stability and consistency. Normalizing every ray to s € [0, 1] makes histograms,
losses (proposal consistency, distortion), and resampling ray-agnostic: bin sizes, gradients,
and learning rates do not depend on unknown scene scales or ad-hoc near/far ranges. The
mapping in Eq. (23.65) recovers ¢ only where metric distances are required (e.g., transmittance
factors), avoiding depth-scale—dependent conditioning in the rest of the pipeline.

Together, Eq. (10) makes “infinity” finite with preserved depth resolution, and Eq. (11) distributes a
fixed number of samples where the image is most sensitive—yielding sharper backgrounds, fewer
collapse incentives, and more stable optimization in unbounded 360° scenes [29].
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Figure 23.125: Scene reparameterization visualization. A 2D visualization of the scene param-
eterization. The operator contract(-) (Eq. (10), arrows) maps coordinates onto a ball of radius 2
(orange), leaving points within radius 1 (blue) unchanged. This contraction is applied to mip-NeRF
Gaussians in Euclidean 3D (gray ellipses) similarly to a Kalman filter to produce contracted Gaus-
sians (red ellipses), whose centers lie within radius 2. The design of contract(-), combined with
linear-in-disparity ray spacing, yields equidistant intervals in the orange region for rays cast from the
origin. Credit: [29].
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Coarse-to-fine online distillation
Where this fits in the pipeline. Having reparameterized the scene with the contraction f and the ray
with the disparity-linear coordinate s (Sec. 23.12.2), MipNeRF360 must still decide where along
s € [0, 1] to place computation. Rather than supervising a single MLP at multiple scales (mip-NeRF),
MipNeRF360 separates where to sample from what to predict: a lightweight network proposes
sampling distributions along the ray, and a high-capacity network predicts densities and colors [29].
Two-MLP cascade. The model uses (i) a small proposal MLP that outputs only densities (hence
interval weights, no colors), and (ii) a large NeRF MLP that outputs both density and color. Work
proceeds along the normalized coordinate s:

* Coarse partition and proposal histogram. Start by partitioning s € [0, 1] into contiguous
bins with endpoints 7 = {7y, ...,fy } (paper notation uses 7 for bin edges; here 7 indicates the
proposal partition; ¢/t can be read as any monotone ray coordinate, e.g., s). Evaluate the
proposal MLP at these bins and convert predicted densities to a proposal weight histogram
(7, W) using the standard volumetric compositing weights (cf. NeRF/mip-NeRF; see Eq. (23.59)
in the previous subsection).

» Importance resampling. Treat w as a distribution over the ray and resample to form a finer
partition that concentrates bins where W is large (near likely surfaces). The paper uses one or
two proposal stages, each producing its own (7, W) and a refined partition.

* Final rendering pass. Only after the final, content-focused partition is constructed, evaluate
the high-capacity NeRF MLP once per ray at a single stage: query it at each final interval to
predict density and color, and composite to the pixel. This avoids redundant coarse-and-fine
renderings of the same ray while still guiding samples to informative regions.

mip-NeRF . Z D

Coarse: _ — 7
tC @ W .C CC recon
) m I:l
| | Erecon C*
Fine: £ wf e 3 E Elf
t s C
Our Model i
Prop. 1: - @p — e T £prop
t Y w Stop Grad
NeRRL: + @n e E D £I’(:(:()n D*
] C C

MLP: (—') Weighted Sum: E Resample: — NS Logs: E

Figure 23.126: Architecture vs. mip-NeRF. mip-NeRF reuses one MLP across scales and supervises
all scales. MipNeRF360 replaces early image-supervised passes with a proposal MLP that emits
weights (no color) to guide resampling, and a single final NeRF MLP that outputs weights and colors
for supervision. The proposal MLP is trained so its weights w are consistent with the NeRF MLP’s
final weights w. A small proposal MLP plus a large NeRF MLP yields high capacity while remaining
tractable. Credit: [29].
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From proposal to final histogram. Building on the two—MLP cascade, each ray is processed in
two stages: (i) one or two proposal passes produce a coarse, then refined sampling partition together
with a coarse weight histogram; (ii) a single final pass evaluates the high-capacity NeRF MLP on
the last, content-focused partition to obtain the weights and colors used for rendering. The proposal
is trained to safely guide the final pass via a one-sided consistency loss; the NeRF MLP is trained
by the usual image reconstruction (and later, distortion) losses. Crucially, the consistency loss uses
stop-gradient on the NeRF outputs so that NeRF “leads” and the proposal “follows”, preventing the
two networks from colluding by making NeRF artificially easier to cover [29].

Notation and partitions (one ray). Along a ray we keep a 1D histogram: a strictly increasing
list of bin edges and one nonnegative weight per bin that sums to 1. During the proposal stage
the small network is evaluated on a coarse partition, yielding a proposal histogram with edges

i={i ]}’j”: o and weights W = {Ww J}ZJ"’: , (weights computed from proposal densities via standard NeRF
compositing). After importance resampling around peaks of W, we obtain a refined partition on
which the NeRF MLP is run once to produce the final histogram (¢,w) with edges t = {#;}}, and
weights w = {w[}?il. Typically M < M and proposal bins are wider. This is an intended difference
in bin counts/widths that we denote as different “step size”. Because the refined edges are created
Jrom the coarse proposal via resampling, the two partitions need not align; they are allowed to be
misaligned by design.

About coordinates. The paper actually samples and resamples in the disparity-linear coordinate
s € [0, 1]. For notational continuity we write edges as 7, but you can read ¢ as “whatever monotone
ray coordinate is used to lay out edges” (in practice, r = s here). This choice does not affect the
consistency machinery: the check asks whether a final interval T; = [f;,#;11) is covered by the
coarse proposal, which we test by summing proposal weights over all proposal bins that overlap T;.
Summing over overlaps depends only on which portions of the ray are covered, not on how those
portions are parametrized, so it remains valid even when the two histograms have different edge
locations, widths, or numbers of bins.

Histogram-consistency bound (Eqs. 12-13). The proposal is trained with a one-sided don ’t-
miss-mass constraint so that importance resampling can always find regions the final pass relies on.
Let the final bins be 7; = [f;,7;+1) and the proposal bins be Tj = [f;,7j+1). Define the overlap-based
bound for any interval 7T':

bound(f,w,T) = ) ;. (23.66)
J:TNT;#0

Consistency requires w; < bound(7,w,T;) for all i. Any excess final mass above this bound is
penalized:

A 1 R 2
Lovop (1w, 1) = 2:—max(0, w,-—bound(t,w,T,-)) , (23.67)
i wi

with stop-gradient on (¢, w) so that only the proposal MLP is updated.
Intuition.
* Coarse may over-cover, must not under-cover. A coarse proposal can safely spread mass
broadly—resampling will zoom into its peaks—but it must not omit mass where the final
pass concentrates; otherwise, that region could never be discovered. The bound in Eq. (23.66)
encodes exactly this asymmetry by demanding that every final-bin weight be “explainable” by
overlapping proposal mass.
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* Independent of bin layout and size. Because the bound sums proposal mass over overlaps,
it tolerates different bin counts and widths and does not assume aligned edges. Merging or
splitting proposal bins while conserving mass does not change whether a region is covered.

* Loss roles at a glance. The NeRF MLP optimizes image reconstruction (and, later, distortion)
on the final partition, while the proposal MLP optimizes %}, to learn a conservative cover
around NeRF’s weight distribution. This division of labor lets the small network amortize
“where to look™ and the large network focus capacity on “what to predict”, improving both
speed and accuracy in unbounded scenes.

Proposal 1
, —— Proposal 2
| —— NeRF

S
(a) 0% optimized (b) 4% optimized (c) 100% optimized

Figure 23.127: Histogram evolution over training. For a single ray in bicycle, the NeRF histogram
(t,w) (black) and two proposal histograms (7, W) (yellow, orange) across training. Early weights are
near-uniform; later, NeRF concentrates at a surface while proposals adapt to cover it, enabling robust
resampling. Credit: [29].

Sampling refinements: what they do and why they help.
* Annealing. Before drawing fine samples from w, raise weights with a Schlick-biased schedule
over step n€ [0, N],

bn/N
Wn o< W (b—1)n/N+1 , b=10.

Early in training, this flattens the distribution (exploration across the ray); as training proceeds,
it sharpens back to w (exploitation near predicted surfaces). This avoids premature lock-in to
spurious peaks.

* Dilation. Convert the histogram to a density p; = w;/(fi+1 —1;), replace p by a local maximum
over s & &, with

a
k—1
Hk/:1 ny

where ny, is the number of fine samples drawn at proposal level &, then integrate back and
renormalize. This creates a small, scale-aware safety margin around peaks so that minor
pose/view changes do not cause the proposal to miss a thin surface (reduces rotational aliasing).

& = +b, a=0.5, b=0.0025,
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* Midpoint resampling. Draw n+1 sorted samples from the coarse histogram and use midpoints
of adjacent samples (including reflected endpoints) as the new bin edges. Using raw samples

as edges erodes peaks and creates irregular gaps; midpoints preserve modes and yield more
even, low-alias partitions.

w
w
N

PR

Figure 23.128: Motivation behind .Z},;.p. If two histograms could arise from the same underlying
distribution, the bound induced by (7,W) upper-bounds (7,w) and the loss is zero; otherwise, any

surplus final mass (red) is penalized, teaching the proposal to cover regions NeRF actually uses.
Credit: [29].

0.5-

0.0
mip-NeRF:

Figure 23.129: Midpoint resampling. Using sampled points as endpoints (blue) erodes coarse

modes and spans gaps asymmetrically; midpoints between sorted samples (red) yield more regular
refinements and reduce aliasing. Credit: [29].
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Regularization for inferval-based models

Even with contraction and proposal guidance, the inverse problem remains ambiguous along the ray:
colors can be matched by distributing small weights across many separated intervals (floaters) or by
shifting mass toward the camera (background collapse). MipNeRF360 therefore adds a distortion
loss on the per-ray step function wy(-) = ¥,;w; 1, )(+) over s€ [0, 1]:

Liist(s,w) = //ws(u) ws(v) |u—v|dudv. (23.68)
Evaluated on piecewise-constant histograms, this yields the efficient discrete form

SitSip1 S8t
2 2

-Ziist(S,W) = ZWin

i7j

1
+3 zi:w,? (Sis1—5i). (23.69)

The pairwise-midpoint term penalizes spreading weight across distant intervals, while the width
term penalizes placing large mass in wide bins. Minimizing %5, thus favors compact, minimally
fragmented weight layouts consistent with the image evidence, which suppresses floaters and reduces
the incentive for background collapse. Gradients of this loss naturally pull nearby weighted intervals
together, shrink overly wide bins, and drive weights to zero when a ray is empty [29].

(a) no Lajst (b) no Lajs¢, w/noise [33] (c) with Laist

Figure 23.130: Effect of Z4;is;. The regularizer suppresses floaters and prevents background collapse
more effectively than density-noise injection [429], which can also reduce reconstruction detail.
Credit: [29].
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Figure 23.131: Gradients of %y, Visualization of V.4, on a toy step function: it shrinks interval
widths, pulls distant intervals together, consolidates mass into a small number of nearby intervals,
and drives all weights to zero when the ray is empty. Credit: [29].

Optimization and training recipe
Network sizes and sampling. The proposal MLP uses 4 layers with 256 hidden units; the NeRF
MLP uses 8 layers with 1024 units; ReLLU internals and softplus density. Two proposal stages are
evaluated (each with 64 samples) to produce (5(*), () and (51, (1)), followed by one NeRF stage
with 32 samples to produce (s,w) [29].

Loss. The overall objective is

1
L = Lrecon(C(1),C) + A Lsie(5,w) + Y Lorop(s,w, 50 M), 4 =0.01 (23.70)
k=0

with stop-grad on (s,w) inside Zprop. Lrecon Uses the Charbonnier loss /(x —x*)% + €2 with
e=107.

Schedule and stabilization. Train for 250k iterations, batch size 2'# rays, Adam with (By, B, €) =
(0.9,0.999,1079), log-linear LR from 2x 1073 to 2x 10~ with 512-step warm-up, gradient clipping
to norm 1073, Random RGB backgrounds during training encourage opaque backgrounds; at test
time use (0.5,0.5,0.5) [29].

Implementation notes. Apply the Jacobian efficiently via autodiff linearize/JVP primitives
without explicitly forming J;. When a full covariance is computed, off-axis IPE (Appendix; fixed
non-axis-aligned basis P from a twice-tessellated icosahedron) leverages anisotropy information that
axis-aligned IPE discards.
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Results and Ablations

Quantitative evaluation

MipNeRF360 is evaluated on the new 360° unbounded dataset introduced in the paper, as well as on
prior benchmarks. On the synthetic Tanks and Temples and LLFF datasets, it achieves state-of-the-art
results, substantially improving PSNR, SSIM, and LPIPS compared to NeRF and Mip-NeRF. The
distortion loss is particularly important in suppressing floaters and stabilizing reconstructions in
unbounded scenes [29].

Qualitative comyparison

Figures in the paper show that MipNeRF360 produces sharper details, cleaner geometry, and more
consistent background rendering compared to both NeRF and Mip-NeRF. Floaters that plague earlier
methods are effectively eliminated, and distant backgrounds are reconstructed without collapse.

Ablations
The authors conduct extensive ablation studies:

* Proposal guidance. Removing the proposal MLP stages and sampling only from the fi-
nal network leads to degraded quality and visible floaters, confirming the necessity of the
histogram-consistency training.

* Distortion loss. Disabling %5 produces fragmented weight distributions along rays, resulting
in floaters and background collapse. Compared to density-noise injection, Ly yields superior
suppression of artifacts without sacrificing fine detail.

* IPE vs. standard PE. Replacing integrated positional encoding with ordinary positional
encoding reduces performance in unbounded scenes, especially where anti-aliasing is critical.
Off-axis IPE further improves handling of anisotropic footprints.

 Single vs. multi-proposal. Using two proposal stages instead of one refines the sampling
distribution more reliably, especially in challenging rays with both near and far content.

Generalization across datasets
Ablations also demonstrate that the combination of contraction, histogram consistency, and distortion
regularization is robust across different scene scales.

Limitations
Despite its advances, MipNeRF360 has limitations:
* Training cost. The multi-stage proposal guidance and large NeRF MLP make training
computationally demanding compared to lightweight or grid-based alternatives.
* Rendering speed. At test time, inference is slower than real-time systems such as PlenOctrees
or Instant-NGP, since MipNeRF360 still relies on MLP queries along rays.
* Over-regularization. In some cases, the distortion loss can oversimplify weight distributions,
slightly reducing fine detail in favor of compactness.
* Scene priors. While contraction handles unbounded domains, scenes with extreme depth
ranges or severe occlusion patterns may still exhibit artifacts or require many proposal samples
to converge.

Outlook

These limitations motivate subsequent work on accelerating unbounded NeRF training and inference
(e.g., via hash encodings or tensor decompositions) and on refining regularizers to balance artifact
suppression with fine detail preservation.
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Enrichment 23.12.3: D-NeRF: Neural Radiance Fields for Dynamic Scenes

Motivation

Rendering novel views of a scene from a sparse set of images is a fundamental challenge in computer
vision and graphics, with applications in augmented reality, virtual reality, and film production.
Neural Radiance Fields (NeRF) [429] demonstrated that a static 3D scene can be encoded as a
continuous volumetric radiance field, enabling photo-realistic novel view synthesis. However, the
core assumption of NeRF is staticity: every spatial location corresponds to a fixed geometry and
appearance across all observations. This assumption breaks down in the presence of dynamic,
non-rigid motion, such as humans moving, articulated objects deforming, or shadows shifting with
time. Directly extending NeRF by adding a time parameter fails, as temporal redundancy and
correspondences across frames are not effectively exploited.

D-NeREF, introduced by Pumarola et al. [488], addresses this limitation by explicitly modeling
temporal dynamics. The key idea is to represent dynamic scenes via a canonical configuration and
learn a deformation field that maps any observed state of the scene back to this canonical space.
This canonical anchor allows the model to share information across different time instants and learn
consistent geometry and appearance, despite each temporal state being seen from only a single
viewpoint.

-
-

--—;, m \‘,

ﬂéf!ﬁ!if

Point of View & lmu

Figure 23.132: Dynamic scene synthesis with D-NeRF. The authors propose a method to render
novel views at arbitrary time instants for dynamic scenes with complex non-rigid geometry. Results
include a dinosaur skeleton moving over time (top) and a construction worker changing poses
(bottom). Each frame is synthesized from sparse monocular input without requiring ground-truth
geometry or multi-view capture [488].

Problem Setup

The problem considered by D-NeRF is illustrated in the below figure. Given a sparse set of images
of a non-rigid dynamic scene captured by a moving monocular camera, the objective is to implicitly
encode the scene such that novel views at arbitrary times can be synthesized. Formally, the model
must learn a mapping

M: (x,d,t) — (c,0),

where x € R? is a 3D point, d is the viewing direction,  is a time parameter, ¢ € R? is the emitted
color, and ¢ € R> is the volume density.
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Figure 23.133: Problem setup of D-NeRF. From a sparse set of monocular frames of a non-rigid
dynamic scene, paired with camera parameters, D-NeRF learns an implicit scene representation. The
model synthesizes novel views at arbitrary time instants, as shown on the right [488].

Challenges of direct spatio-temporal regression.
A straightforward idea might be to extend NeRF by regressing color and density directly from both
space and time,

M: (x,d,t) — (c,0).

Yet this formulation quickly breaks down: a surface point that moves or deforms across frames
is assigned different coordinates at each time ¢, and the model has no way of knowing that these
correspond to the same physical entity. As a result, temporal redundancy is ignored, leading to
blurred reconstructions and unstable geometry.

To address this, D-NeRF introduces an intermediate canonical configuration that serves as a
shared reference for all time instants. Instead of relearning radiance for every frame, the model
learns a deformation field that warps observed points back to the canonical space. Radiance and
density are then predicted only once in this space, ensuring that appearance remains consistent over
time.

This decomposition has clear benefits:

* Temporal consistency. Consider the tip of a moving finger: without alignment, the network
must memorize its material properties at every position along its trajectory. With the canonical
anchor, the finger tip maps to a single coordinate, preserving sharp detail.

* Separation of dynamics from statics. Static background points (e.g., walls) map trivially
to themselves, while dynamic objects (e.g., a bouncing ball) are displaced by the learned
deformation. The canonical network can thus specialize in view-dependent appearance, while
motion complexity is isolated in the deformation field.

This design reflects how humans perceive motion: despite deformations, objects are recognized as
consistent entities by mentally aligning them to an internal reference. Analogously, D-NeRF aligns
all observations to its canonical configuration, laying the foundation for the method described next.

Method
The D-NeRF method generalizes NeRF to handle dynamic, non-rigid scenes by decomposing the

mapping
M: (x,d,t) — (c,0)

into two learnable modules:
* a deformation network ¥;, which aligns points observed at time ¢ with a canonical space,
* a canonical network W,, which predicts density and radiance in the canonical configuration.
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The resulting architecture, as can be seen in the following figure, learns how geometry changes over
time via W; while maintaining appearance consistency through ¥,.

(xvzt) -»[]ﬂl]ﬂ--l_\x.._\_\-._\r'r - _(Axy-AyzAz,68) --[]Dﬂ[]—-t:li.(l.lj.n:- ~
{ Wy Y1 W,

-

Deformed Scene Scene Canonical Space Scene Canonical Space

Figure 23.134: Model architecture of D-NeRF. The deformation network ¥, maps points observed
at time ¢ to a canonical space. The canonical network ¥, assigns volume density and view-dependent
radiance in this canonical configuration [488].

Canonical network
The canonical network W, learns to represent the scene at a fixed reference state, chosen as t = 0. It
predicts color ¢ and density o for each canonical point and viewing direction:

Y, : (x+Ax,d) — (c,0).

This canonical anchor integrates information from all time instants, so that missing or occluded
details in one frame can be inferred from others. Intuitively, ¥, functions as a static NeRF defined in
canonical space, ensuring that geometry and appearance remain temporally consistent.

Deformation network
The deformation network W, estimates a displacement field that maps points observed at time ¢ into
the canonical configuration:

Y, @ (x,1) — AX,
so that the canonical coordinate is given by x + Ax. Formally, the network is constrained as
lPt (X, 0) - O,

ensuring that the canonical state coincides with the scene at t = 0. Dynamic regions (such as
moving limbs or bouncing balls) receive non-zero displacements, while static background points
map (hopefully) to themselves. This separation of deformation from radiance allows the canonical
network to remain agnostic to motion.

Volume rendering with deformations

To render an image, D-NeRF adapts the NeRF volume rendering equation to account for canonical
warping. Given a ray defined by origin o and direction d, a 3D point along the ray is x(k) = 0+ hd.
The color of a pixel p at time ¢ is computed as

Cp,1) = /h Y ()6 (pUnn) e(p(hir).d) dh 23.71)
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where

p(h,1) = x(h) + P, (x(h),1), (23.72)
[c(p(h,t),d), G(p(h,t))] - ‘Px(p(h,t),d), (23.73)

T(h,1) = exp (— /h fG(p(s,t))ds) . (23.74)

Here p(h,t) is the warped canonical point corresponding to x(%), and T (h,t) is the accumulated
transmittance probability along the ray. Equations 23.71-23.74 mirror NeRF’s rendering formulation,
but crucially, density and radiance are queried in canonical space.

For practical training, the integrals are approximated using stratified quadrature with N samples
along each ray. The discrete approximation is

N
Z (hn,t) 0t(hp,t,8,) ¢(p(hn,1),d), (23.75)

with

a(h1,8) =1 —exp(—G( (h,1))5), (23.76)

T’ (hy,t) —exp< Zo > (23.77)

m=1
where 0, = hy,+1 — h,, is the distance between samples.

Learning objective
The networks W, and ¥; are trained jointly by minimizing the mean squared error between rendered
pixels and ground-truth images:

1Y a
ZM;HC(% —C'(pi,t Hz, (23.78)

where N rays are sampled per batch, C denotes the ground-truth pixel colors, and €’ is the predicted
color from Eq. 23.75. This supervision requires only monocular images with known camera poses,
without multi-view consistency or 3D ground truth.

Architecture and Implementation Details

Network design

Both the canonical network W, and the deformation network ¥, are implemented as multilayer
perceptrons (MLPs) with eight fully connected layers of 256 units each and ReL.U activations.
The canonical network outputs color ¢ and density ¢ with a final sigmoid activation to constrain
values to valid ranges, while the deformation network outputs displacement vectors Ax with no
final non-linearity. This separation ensures that the canonical branch specializes in appearance and
geometry, while the deformation branch is free to model continuous spatial displacements.



1860 Chapter 23. Lecture 23: 3D vision

Positional encoding
As in NeRF [429], D-NeRF does not feed raw coordinates and viewing directions directly into the
networks. Instead, each scalar input p is mapped to a higher-dimensional Fourier feature space:

¥(p) = (sin(2°mp),cos(2°7p), ..., sin(2"7p), cos(2Exp)) .

This positional encoding enables the MLPs to represent highly oscillatory functions, which is crucial
for capturing fine geometric detail and sharp appearance boundaries.

D-NeRF applies the encoding separately to spatial coordinates x, viewing directions d, and time ¢,
but with different frequency depths L. Spatial coordinates require high-frequency capacity to model
detailed surfaces and textures, so L = 10 is used. By contrast, time and viewing direction are more
smoothly varying quantities—motions are continuous and shading changes gradually—so a smaller
frequency budget (L = 4) suffices. This allocation balances expressivity and stability, ensuring the
model can capture fine spatial details without overfitting to noise in temporal or directional variation.

Canonical reference frame
The canonical configuration serves as a temporal anchor for the entire dynamic scene. Without loss
of generality, D-NeRF defines the frame at = 0 as canonical, imposing the constraint

lPt (X7 0) =0.

This choice is practical: one reference frame must be selected, and picking the first observed frame
avoids ambiguity while ensuring that the deformation network only learns displacements for ¢ # 0.
Anchoring to t = 0 guarantees that all temporal states are consistently mapped to a single geometry,
so that the canonical network ¥, always operates in a stable coordinate system.

Curriculum strategy

Training D-NeRF directly on the full temporal range is challenging, since large deformations between
distant time instants make optimization unstable. To mitigate this, the authors introduce a curriculum
learning strategy: input frames are ordered chronologically and introduced gradually, starting from
those close to the canonical frame and progressively extending to more distant time instants. This
approach allows the networks to first master small deformations, then progressively handle larger
ones. The effect is similar to learning a language by starting with simple phrases before moving to
complex sentences—by staging the difficulty, convergence is improved and the learned deformation
fields remain smoother and more coherent.

Optimization details

Training is conducted on 400 x 400 images for 800k iterations. Each batch samples N; = 4096
rays, with 64 samples per ray. The Adam optimizer [293] is used with initial learning rate 5x 1074,
exponential decay to 5 x 1079, and momentum parameters 3; = 0.9, B, = 0.999. On a single Nvidia
GTX 1080 GPU, training takes approximately two days.
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Experiments and Ablations
D-NeRF is evaluated on a dataset of eight synthetic dynamic scenes rendered with complex motions
and non-Lambertian materials. Each sequence contains between 100 and 200 frames at 800 x
800 resolution, with ground-truth train/validation/test splits. The experiments aim to dissect the
contributions of the canonical and deformation networks, and to compare D-NeRF against two
alternatives:

* NeRF [429], which assumes static scenes and therefore cannot handle motion.

* T-NeRF, a temporal baseline that directly regresses

(x,d,t) — (¢,0),

without using a canonical space or deformation field. T-NeRF highlights the shortcomings of
naive temporal modeling: while it can capture coarse changes over time, it treats the same
physical point at different instants as unrelated, leading to blurred details and inconsistent
geometry. Importantly, T-NeRF is not D-NeRF without curriculum learning, but rather the
simplest 6D extension of NeRF used as a baseline.

Learned canonical scene and displacement fields

D-NeRF successfully learns a displacement field Ax that aligns all observations to a sharp canonical
space. The following figure illustrates this mapping: dynamic inputs at different time instants are
warped into the canonical configuration, where geometry and appearance remain stable. The figure
shows radiance rendering, density mesh, depth map, and color-coded correspondences. Matching
colors across canonical and deformed meshes demonstrate that temporal correspondences are
preserved, even though each deformation state is only seen from a single viewpoint.

RGR Mesh Depth x+AX

)& 4 &
ELE:
e

Figure 23.135: Visualization of the learned canonical scene. A dynamic scene at time ¢ is
mapped into a canonical configuration via the learned displacement field Ax. From left to right:

rendered radiance, density mesh, depth map, and color-coded correspondences between canonical
and deformed meshes. Consistent colors indicate correct alignment across time [488].
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Shading and appearance consistency

A key challenge is handling shading effects and appearance changes over time. The following figure
shows a scene with three balls made of plastic (green), translucent glass (blue), and metal (red).
Although shadows and highlights move across the floor as objects deform, D-NeRF encodes these
changes by warping the canonical configuration. For instance, shadows cast by the red ball at # = 0.5
and ¢ = 1 are aligned to different canonical regions, yet the network synthesizes them consistently.
This demonstrates that D-NeRF can separate geometry from shading variation, producing coherent
results without explicitly modeling illumination.

t=0.5 Canonical Space =l

Figure 23.136: Analyzing shading effects. Correspondences between canonical space and observed
scenes at t = 0.5 and ¢ = 1 for three balls of different materials. Shading changes, such as floor shad-
ows, are synthesized by warping the canonical configuration, preserving temporal coherence [488].

Quantitative and qualitative comparisons
D-NeRF is compared against two baselines:

* NeRF [429], which assumes static scenes.

» T-NeRF, a 6D extension that directly regresses (x,d,?) — (¢, o) without canonical warping.
As shown in the following table, D-NeRF consistently outperforms both baselines across metrics
including MSE, PSNR, SSIM, and LPIPS. Qualitatively, NeRF collapses to blurry averages of
motion, while T-NeRF captures coarse dynamics but fails on high-frequency details such as textures
and fine structures. D-NeRF preserves sharpness and reproduces fine detail, despite each time instant
being observed from only a single camera.

Hell Warrior Mutant Hook Bouncing Balls
Method MSE| PSNRT SSIMT LPIPS||MSE| PSNRT SSIMT LPIPS||MSE| PSNRf SSIM{ LPIPS||MSE| PSNRf SSIM{ LPIPS|
NeRF [429] 44e-3 1352 0.81 0.25 | 9e-4 2031 091 0.09 |2le-3 1665 0.84 019 | le2 1828 0.88 023
T-NeRF (temporal baseline) | 47e-4 23.19 093  0.08 | 8e-4 3056 096  0.04 |18e-4 2721 094 0.06 | 6e-4 3201 097 0.04
D-NeRF [488] 3le-4 2502 095 006 | 7e-4 3129 097 0.02 |1le4 2925 096 0.11 | 5e-4 32.80 098 0.03
Lego T-Rex Stand Up Jumping Jacks
Method MSE| PSNR{ SSIM{ LPIPS||MSE| PSNR{ SSIM{ LPIPS||MSE| PSNR{ SSIM{ LPIPS||MSE| PSNR{ SSIM{ LPIPS
NeRF [429] 9e-4 2030 079 023 | 3e-3 2449 093 013 | le2 1819 0.89 0.14 | le2 1828 0.88 023
T-NeRF (temporal baseline) | 3e-4 23.82 090 015 | 9e-4 30.19 096 0.13 | 7e-4 3124 097  0.02 | 6e-4 3201 097 003
D-NeRF [488] 6e-4 21.64 083 016 | 6e-4 3175 097 0.03 | Se-4 3279 098 0.02 | Se-4 3280 098 0.03

Table 23.35: Quantitative comparison MSE/LPIPS (lower is better) and PSNR/SSIM (higher is
better) across eight dynamic scenes.
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Figure 6: Qualitative Comparison. Novel view synthesis results of dynamic scenes. For every scene we show an image synthesised
from a novel view at an arbitrary time by our method, and three close-ups for: ground-truth, NeRF, T-NeRF, and D-NeRF (ours).

Figure 23.137: Qualitative comparisons. Novel view synthesis at arbitrary time instants for
dynamic scenes. Close-ups show ground truth, NeRF, T-NeRF, and D-NeRF. NeRF fails to represent

motion, T-NeRF captures dynamics but loses high-frequency detail, while D-NeRF produces sharp
reconstructions [488].
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Time and view conditioning

Finally, D-NeRF demonstrates robust novel-view synthesis across both space and time. The following
figure shows renderings of diverse dynamic scenes from novel viewpoints at multiple time instants.
The first column displays the canonical configuration, while subsequent columns show warped
renderings across time. The model generalizes to articulated human motion, asynchronous object
motion, and complex deformations. Interestingly, even when the canonical space appears slightly
blurry (as in the Jumping Jacks scene), the warped renderings remain sharp, indicating that the
deformation field compensates to maximize rendering quality.

Canonical Space t=0.1 t=0.3
. .
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Figure 23.138: Time and view conditioning. Novel renderings from two unseen viewpoints across
time. Scenes include articulated motion (Tractor), human motion (Jumping Jacks, Warrior), and
asynchronous dynamics (Bouncing Balls). Canonical spaces (first column) serve as anchors for
consistent geometry [488].



23.12 Enrichment 23.12: NeRF: Unbounded, Dynamic, Large-Scale Scenes 1865

Limitations

Although D-NeRF represents an important step beyond static NeRF by explicitly modeling dynamics
through a canonical scene representation and a time-conditioned deformation network, it still exhibits
several notable limitations:

* Training cost. Like NeRF, D-NeRF relies on volumetric rendering that requires querying
MLPs hundreds of times per ray. The addition of a deformation network compounds this cost,
making training slow and memory-intensive (on the order of days on a single GPU).

* Synthetic focus. D-NeRF’s evaluation is confined to clean, synthetic sequences with known
camera parameters and dense coverage. Its performance on real-world captures—with noise,
sparse viewpoints, and imperfect calibration—remains unexplored.

* Deformation capacity. The deformation field is assumed to be smooth and bijective, mapping
each observation into the canonical space. While effective for simple motions, this assumption
struggles with complex dynamics such as large occlusions, self-contact, or true topological
changes (e.g., an object splitting or a mouth opening/closing).

* Canonical anchoring. D-NeRF typically fixes the canonical frame at # = 0, which is arbitrary.
If the first frame is occluded or atypical, this choice can bias correspondences across time and
destabilize optimization.

Future directions
These limitations motivated a wave of follow-up research that sought to make dynamic NeRFs more
practical and robust:

* From synthetic to real-world capture. Extending canonical-deformation frameworks to
unconstrained mobile videos requires handling photometric inconsistency, calibration errors,
and drifting backgrounds.

* From weak to stronger priors. Beyond smoothness assumptions, deformation fields benefit
from geometric regularizers that bias them toward locally rigid or cycle-consistent warps,
preventing collapse into degenerate solutions.

* From arbitrary to flexible canonicalization. Conditioning deformations purely on time
anchors the canonical space too rigidly; more adaptive conditioning strategies are needed to
capture variations across diverse observations.

* From expensive to efficient training. Reducing the heavy computational footprint of dynamic
NeRFs—without sacrificing fidelity—remains a central challenge, inspiring later work on
acceleration and hybrid representations.

In summary, D-NeRF established the usefulness of canonicalization for dynamic scene recon-
struction but remained limited by its computational demands, reliance on synthetic settings, and
difficulty with complex deformations. The next method we examine, Nerfies, was developed pre-
cisely to address these shortcomings, adapting the canonical-deformation formulation to casually
captured real-world videos.
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Enrichment 23.12.4: Nerfies: Deformable Neural Radiance Fields

Motivation

Dynamic NeRFs such as D-NeRF [488] demonstrated that a canonical radiance field plus a defor-
mation mechanism can reconstruct non-rigid scenes; however, D-NeRF was validated primarily
on synthetic data with known calibration and dense coverage. Nerfies [469] adapts this canoni-
cal-deformation paradigm to casual, real-world captures (handheld mobile selfies), introducing
design choices to handle photometric inconsistency, large yet locally rigid motion, and under-
constrained optimization. The goal of the work is photorealistic, free-viewpoint renderings of people
and everyday scenes captured outside controlled rigs.

(a) casual capture (b) input images

Figure 23.139: Results from Nerfies. Photo-realistic reconstructions from handheld mobile captures:
casual waving sequences (a) and selfie photos/videos (b) are turned into free-viewpoint renderings
(c) with accurate geometry (d). Source: [469].

Method
Nerfies retains a canonical radiance field but replaces time-conditioned displacements with per-image
latent—conditioned SE(3) deformation fields, stabilized by elastic regularization and a coarse-to-fine
(c2f) schedule on positional encodings. Compared to D-NeRF’s (x,7) — Ax, this design introduces
the following key shifts:
* Decoupling from absolute time: Conditioning deformations on a per-image latent code
@; instead of the scalar time index ¢t removes an arbitrary temporal anchor (e.g., t=0) and
improves flexibility for casually captured sequences with irregular motion
* Locally rigid motion modeling: Using dense SE(3) transforms allows compact, coherent
representation of rotations and translations across space, addressing ambiguity that displace-
ment fields face when mimicking rotation via spatially varying translations
* Bias toward plausible deformations: Elastic regularization on the deformation Jacobian
and a c2f frequency-annealing schedule guide optimization away from degenerate warps in
under-constrained settings

Motivation relative to D-NeRF

While D-NeRF established the value of canonicalization for dynamic scenes, its reliance on syn-
thetic data and time-conditioned displacements limited applicability to real-world captures. Nerfies
adapts the same blueprint to unconstrained videos, focusing on robustness to casual data collec-
tion, realistic motion modeling, and training stability. In doing so, it addresses D-NeRF’s key
weaknesses—pose anchoring, rotational ambiguity, and fragile optimization—while preserving the
benefits of a canonical template
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Canonical radiance field
A canonical NeRF

F:(x,d,y;) = (c,0)

maps canonical 3D position X', view direction d, and an appearance latent ; to color and density. The
use of per-image appearance latents follows the idea introduced in NeRF-W (see Enrichment 23.11.2),
where such codes compensate for photometric variations across casually captured images (e.g.,
exposure, white balance, or tone mapping). This differs from D-NeRF, where the canonical template
is tied to the frame at =0, effectively anchoring the scene to an arbitrary temporal reference. In
Nerfies, the canonical radiance field instead represents a learned, temporally invariant template
of the subject, disentangled from both time and observation-specific appearance. The canonical
configuration is not selected from a single frame but is optimized jointly during training so that all
deformed observations can be consistently mapped into it.

Observation-to-canonical deformation

Each input image i is associated with two learned latents: an appearance code y; (as in NeRF-W;
see Enrichment 23.11.2) that absorbs photometric variations, and a deformation code @; that indexes
a per-image deformation field. For a sample x on a camera ray in the observation frame,

T:(x,0) — X, G(x,d,y;, @) = F(T(x,0),d, ;).

Rendering proceeds by sampling along the ray in the observation frame, mapping samples to the
canonical frame via 7', querying the canonical field F, and volumetrically integrating as in NeRF.
Relation to D-NeRF. D-NeRF ties deformation to an explicit time index ¢, which implicitly
anchors the canonical to a particular frame and encourages frame-tracking warps. Nerfies instead
replaces ¢ with per-image deformation indices @; and learns the canonical jointly with F and 7. This
shift has several practical consequences:
* Removal of arbitrary anchoring: Deformations are no longer tied to =0, avoiding bias
toward whichever frame was chosen as the reference.
* Observation-based indexing: States are referenced by observation identity rather than clock
time, allowing out-of-order or irregular captures to be modeled consistently.
* Interpolatable state space: The latent deformation codes live in a continuous space, so
smooth synthesis of intermediate states is possible by interpolating between codes.
Inference for new views (same scene). During training, each input image is assigned two codes:
a deformation code w; (capturing the pose or state of the scene in that frame) and an appearance
code y; (capturing its photometric style, e.g., exposure). Once training is complete, we can render
the scene from any new camera without retraining:
* Novel view of a training frame. Suppose we want to see frame i (same body pose, same
facial expression, etc.) but from a new camera angle. We simply reuse its learned codes
(w;, y;). Rays are cast from the new camera, warped into canonical space by T (x, @;), and
rendered through the canonical NeRF F. No new optimization is required.
* Novel view of an in-between frame. If we want to synthesize a pose that was not captured
exactly, we can interpolate between nearby deformation codes. For instance,

oa)=(l-a)o;+ow;, oc]l0,1],

smoothly blends the deformations of frames i and j. This produces a plausible intermediate
motion that can then be rendered from any viewpoint.
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* Appearance. The appearance code y; can be reused from a particular frame (to match its
look), or set to a certain training image value or an interpolation between such codes, as shown
with the deformation code.

In short, Nerfies inference works by treating each frame’s latent codes as a handle on the scene’s
configuration. By reusing or interpolating these codes, the model can render captured or novel states
from arbitrary viewpoints, and with arbitrary appearance settings, something that time-anchored
methods like D-NeRF cannot easily achieve.

latent 4 latent appearance code
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Figure 23.140: Architecture overview. Each image has a deformation code @ and an appearance
code y. Samples are traced in the observation frame, mapped to the canonical frame by a deformation
field (an MLP conditioned on w), then the canonical NeRF is queried and integrated. Source: [469].

Why dense SE(3) fields

A naive displacement field writes X' = x+ V(x, ;). While universal in principle, it is cumbersome
for coherent rotations: a single rigid rotation must be approximated by spatially varying translations
whose magnitudes grow with distance from the axis. This entangles motion type and spatial location,
making the mapping hard to learn consistently and prone to shear-like artifacts.

Nerfies instead predicts a dense SE(3) transform at each location, using a screw-axis parame-
terization S = (r;v) € RO (the Lie algebra se(3)). Intuitively, r encodes the local rotation axis and
angle, and v encodes the accompanying translation consistent with that rotation (a “twist”). Let
0 = ||r|| be the rotation angle, and let [r], denote the 3x3 skew-symmetric matrix for cross products.
The exponential map yields the rigid transform

sin 0 1—cosO, ,, 1—cosH 0 —sinf .,

e =1 + 9 [I‘]X 62 [r]xv G=1+ T[r]x + T[I‘]X,

X = &x = &'x + Gv.

Intuition. The term €" rotates x by angle 6 around axis r/6. The matrix G converts the “velocity” v in
the Lie algebra into a translation that is compatible with the rotation (so that rotation and translation
form a single rigid motion). When 6 — 0, the series reduce to "~ I+ [r]x and G~ I+ 3|,
smoothly recovering pure translations and infinitesimal rotations. This parameterization lets the
MLP express rotations coherently (one angle shared over a region) rather than reconstructing them
as inconsistent, location-dependent shifts.

The deformation network W : (x, @;) — (r, V) is initialized near identity (small outputs for r,v),
so that e5 & I at the start of training. This stabilizes optimization: the model learns residual motion
away from no-warp, while additional priors (elastic/background regularization and the coarse-to-fine
schedule) bias solutions toward plausible, near-rigid deformations where supervision is weak.
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Figure 23.141: SE(3) vs. translation fields. To represent a simple rigid rotation of the star, a
translation field must assign different displacement vectors depending on location: a faraway point
requires a long translation #;, while a point closer to the center requires a shorter one #,. This spatially
varying pattern complicates learning, since the network must coordinate many different magnitudes
and directions just to encode one global rotation. In contrast, an SE(3) field expresses the same
motion with a single rotation angle 6 applied consistently across space. The network only needs
to learn one compact parameterization of the rigid transform, making optimization easier and the
resulting deformations more coherent. Source: [469].

Observation vs. canonical frames

The central idea of Nerfies is to disentangle appearance from motion by mapping every observed
image into a common reference. Each input frame is an observation frame—the subject in its actual
pose, expression, or transient configuration at capture time. The network jointly learns a static
canonical frame—a pose-agnostic 3D template—along with a deformation field that warps each
observation back to this shared canonical space. The displacement vectors encode how geometry
must be shifted (e.g., sideways or front—back) so that all observations reconcile into a single,
consistent template.

observation frame canonical frame

Figure 23.142: Observation vs. canonical frames. The observation frame (left) shows the raw
geometry as captured in a specific image, here with the head turned and displaced. The canonical
frame (right) shows the learned static template in a standardized pose. Insets highlight displacements
(sideways or front—back shifts) that the learned deformation field applies to map observed points
into the canonical configuration. Source: [469].
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Elastic regularization (why, what, how)

Why. Jointly fitting the canonical radiance field F and the deformation 7 from only photometric
supervision is under—constrained: many different (F,T) pairs can reproduce the same pixels. In
practice, the optimizer may “explain” motion by letting 7" shrink, stretch, or shear space (degenerate
but photometrically cheap), rather than by learning the intended near—rigid motion. Plain smoothness
penalties (as in D-NeRF) do not directly discourage such volume changes.

What. Nerfies therefore adds an as-rigid-as-possible prior: locally, a small neighborhood should
behave like a rigid body (rotation + translation), i.e., preserve lengths/areas/volumes. This explicitly
targets “shrink/grow” modes.

How. Let J7(x) = dT(x,®;)/dx be the Jacobian of the deformation at a sample x. With the
SVD Jr = UXVT and singular values {o}, rigidity corresponds to X = I (no local scaling). We
penalize deviation from this condition using the log-scale error

Lelastic (X) = || logz‘ 12::7

where logX = diag(log 01,log 02,log 03). Using log makes expansion and contraction symmetric
(e.g., 0=2 and 6=0.5 incur equal cost in magnitude). For robustness to truly non-rigid regions and
occasional outliers, Nerfies applies a Geman—McClure penalty to the log-scale magnitude,

o%lastic-r(x) = P(H 10g2”p7 C) )

and weights the term by ray transmittance so that empty space (which should be free to warp to
account for foreground motion against a static background) is not over-regularized.

Intuition in one sentence. The loss tells the network: “prefer deformations that look locally
rigid (rotate/translate) and only scale when necessary,” which steers optimization away from pho-
tometrically convenient but geometrically implausible solutions that simple smoothness cannot
prevent.

example inputs ground truth elastic off elastic on

Figure 23.143: Elastic regularization effect. Under-constrained captures (few, biased views) are
prone to distortion; the elastic prior substantially reduces such artifacts. Source: [469].

Background regularization

Static points (e.g., from SfM) are softly encouraged to remain fixed in canonical space to prevent
background drift:

1 K
Hhe = g 705 @) =
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Coarse-to-fine optimization (why, what, how)
Why. If the deformation network can express high spatial frequencies from the start, it may overfit
tiny appearance cues and settle in poor local minima before the large, global motion is discovered.

What. We therefore curriculum the capacity of the deformation MLP: begin with only low-
frequency (smooth) warps, then gradually admit higher frequencies so the model first aligns the big
motion and only later refines fine detail.

How. Let y(x) denote the positional encoding of coordinates used by the deformation network
T. Its j-th frequency band is multiplied by a Hann window weight

1 —cos(mclamp(a — j,0, 1 t
( p( J ))7 () = m_7
2 N

wi(a) =

where m is the maximum number of bands and 7 € [0, N] indexes training. Early on a~0, so
wj(a)~0 for all high j and only the lowest bands are active (smooth warps). As ¢ increases, the
window slides to the right, smoothly turning on higher bands until, at & = m, all are fully active.

Effect. The network first solves the easy, low-frequency alignment (rigid/large motions), then
safely adds high-frequency corrections (facial wrinkles, cloth folds, small non-rigid motion). This
schedule consistently avoids bad minima while preserving the ability to model fine motion by the
end of training.

gt m = m = c2f

Figure 23.144: Effect of coarse-to-fine optimization. Comparison of three training strategies for
dynamic scenes (head turn, smile). gt: Ground-truth reference frame. m=4: Training with only
a few low-frequency positional-encoding bands produces overly smooth results—Ilarge motions
are captured but fine details (e.g., cheek deformation in a smile) are blurred. m=8: Allowing
all frequency bands from the start destabilizes training: the network overfits local details before
learning the global motion, leading to severe artifacts (e.g., head turn collapse). c2f: The proposed
coarse-to-fine schedule gradually introduces higher frequencies. This curriculum lets the model first
align global motion and later refine fine-scale details, yielding sharp and accurate reconstructions
closely matching the ground truth. Source: [469].
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Latenf-code interpolation

Per-image conditioning means each training frame i carries two learned embeddings: an appearance
code y; and a deformation code ®;. Because @; indexes the scene state (pose/deformation) indepen-
dently of camera, we can synthesize intermediate states by interpolating in the deformation-latent
space while rendering from any camera:

(D((X) = (l_a) wstart+awend, o c [0, 1]

Holding v fixed (or blending it similarly) produces smooth motion with consistent geometry and
appearance in novel views.

interpolated frames from a novel view

Figure 23.145: Latent-code interpolation from a novel viewpoint. Start/end frames (cyan/pink
borders) from BADMINTON define two observed states. The middle columns are synthetic frames
rendered from a novel camera by linearly interpolating the corresponding deformation codes @ and
evaluating F(T(-,o(a)),-, ¥). Top row: RGB; bottom row: depth. The racquet sweeps smoothly
and depth varies coherently, illustrating that per-image deformation latents form a state space that
supports continuous interpolation. Source: [469].

Architecture and implementation details
Canonical field. A NeRF-style MLP F : (x',d, y;)— (¢, o) with sinusoidal positional encodings
predicts color and density in a canonical space; density uses a Softplus activation to ensure valid
densities.

Deformation network. An MLP W predicts a dense SE(3) field via screw parameters (r,V)
from encoded observation-space points and a per-image deformation code:

W (x,0;)— (r,v), T(x,a) = ™x.

Per-image latents. Appearance latents {y;} absorb photometric variation (exposure/white
balance). Deformation latents {®;} index the non-rigid state for each observation and enable state
interpolation.
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Experiments and Ablations

Evaluation uses synchronized dual-phone captures to obtain validation views of the same dy-
namic state. Baselines include NeRF, NeRF+latent, Neural Volumes, NSFF', and a D-NeRF-style
y(t)+Translation. Qualitative results show recovery of fine structures (e.g., hair strands) and full-
body details; quantitative comparisons (PSNR/LPIPS) and ablations validate the contributions of
SE(3) deformations, elastic regularization, background constraints, and c2f.

ground truth rendered color render w/o bg

Figure 23.146: Thin hair strands. Adjusting the far plane allows rendering against a flat background,
highlighting fine geometry. Source: [469].

s

example inputs renered rgb rendered depth

Figure 23.147: Full-body reconstructions. High-quality details such as fabric wrinkles and
eyeglasses are captured from casual recordings. Source: [469].
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TAIL BADMINTON DRINKING

Broom

Training view  Novel view (GT) Ours ~y(t)+trans NSFF NV NeRF

Figure 23.148: Dynamic scenes comparison. Side-by-side baselines with PSNR/LPIPS (best high-
lighted in red) illustrate that numerical gains do not always reflect perceptual quality. Source: [469].
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Figure 23.149: Quasi-static scenes comparison. Similar trends appear on mostly static captures;
perceptual quality correlates imperfectly with PSNR. Source: [469].
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Table 23.36: Quasi-static captures from [469]. Each entry is PSNR/LPIPS (dB/unitless). Bold
marks the best value per column for each metric (higher PSNR, lower LPIPS).

Method Glasses Beanie Curls Kitchen Lamp Toby Sit Mean
PSNR/LPIPS PSNR/LPIPS PSNR/LPIPS PSNR/LPIPS PSNR/LPIPS PSNR/LPIPS PSNR/LPIPS

NeRF [429] 18.10/0.474 16.80/0.583 14.40/0.616 19.10/0.434 17.40/0.444 22.80/0.463 18.10/0.502
NeRF + latent 19.50/0.463 19.50/0.535 17.30/0.539 20.10/0.403 18.90/0.386 19.40/0.385 19.10/0.452
Neural Volumes [389]  15.40/0.616 15.70/0.595 15.20/0.588 16.20/0.569 13.80/0.533 13.70/0.473 15.10/0.562
NSFF' [349] 19.60/0.407 21.50/0.402 18.00/0.432 21.40/0.317 20.50/0.239 26.90/0.208 21.30/0.334
¥(t) + Trans' [488] 22.20/0.354 20.80/0.471 20.07/0.426 22.50/0.344 21.90/0.283 25.30/0.420 22.20/0.383
Nerfies (1=0.01) 23.40/0.305 22.20/0.391 24.60/0.319 23.90/0.280 23.60/0.232 22.90/0.159 23.40/0.281
Nerfies (A=0.001) 24.20/0.307 23.20/0.391 24.90/0.312 23.50/0.279 23.70/0.230 22.80/0.174 23.70/0.282
No elastic 23.10/0.317 24.20/0.382 24.10/0.322 22.90/0.290 23.70/0.230 23.00/0.257 23.50/0.300
No coarse-to-fine 23.80/0.312 21.90/0.408 24.50/0.321 24.00/0.277 22.80/0.242 22.70/0.244 23.30/0.301
No SE3 23.50/0.314 21.90/0.401 24.50/0.317 23.70/0.282 22.70/0.235 22.90/0.206 23.20/0.293
Nerfies (base) 24.00/0.319 20.90/0.466 23.50/0.345 22.40/0.323 22.10/0.254 22.70/0.184 22.60/0.314
No BG Loss 22.30/0.317 21.50/0.395 20.10/0.371 22.50/0.290 20.03/0.260 22.30/0.145 21.50/0.296

Table 23.37: Dynamic captures from [469]. Each entry is PSNR/LPIPS (dB/unitless). Bold marks
the best value per column for each metric (higher PSNR, lower LPIPS).

Method Drinking Tail Badminton Broom Mean
PSNR/LPIPS PSNR/LPIPS PSNR/LPIPS PSNR/LPIPS PSNR/LPIPS

NeRF [429] 18.60/0.397 23.00/0.571 18.80/0.392 21.00/0.667 20.30/0.506
NeRF + latent 21.90/0.233 24.90/0.404 20.00/0.308 21.90/0.576 22.20/0.380
Neural Volumes [389]  16.20/0.198 18.50/0.559 13.10/0.516 16.10/0.544 16.00/0.454
NSFFT [349] 27.70/0.080 30.60/0.245 21.70/0.205 28.20/0.202 27.10/0.183
y(t) + Trans' [488] 23.70/0.151 27.20/0.391 22.90/0.221 23.40/0.627 24.30/0.347
Nerfies (A=0.01) 22.40/0.087 23.90/0.161 22.40/0.130 21.50/0.245 22.50/0.156
Nerfies (A=0.001) 21.80/0.096 23.60/0.175 22.10/0.132 21.00/0.270 22.10/0.168
No elastic 22.20/0.086 23.70/0.174 22.00/0.132 20.90/0.287 22.20/0.170
No coarse-to-fine 22.30/0.096 24.30/0.257 21.80/0.151 21.90/0.406 22.60/0.228
No SE3 22.40/0.086 23.50/0.191 21.20/0.156 20.90/0.276 22.60/0.228
Nerfies (base) 22.60/0.127 24.30/0.298 21.10/0.173 22.10/0.503 22.50/0.275
No BG Loss 22.30/0.085 23.50/0.210 20.40/0.161 20.90/0.330 21.80/0.196

Limitations and Future Work

Like other diffeomorphic-warp dynamic NeRFs, Nerfies faces difficulty with genuine topology
changes (e.g., mouth opening/closing) and very rapid motion, where geometry can become inconsis-
tent despite plausible colors. This is a great limitation and a focus for future works to improve.

example inputs rendered color rendered depth

Figure 23.150: Topological limitations. Color renderings may remain plausible while geometry
degrades under topology changes or rapid motion. Source: [469].
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Enrichment 23.13: NeRF: Editing, Controllability & Semantic Manipulation

Decoupling geometry, appearance, and semantics enables targeted edits, retrieval, and instruction
following.
* LEREF [288]: Language-embedded radiance fields support text queries and localized edits
grounded in semantics.
* Instruct-NeRF2NeRF [202]: Uses instruction-following priors to edit existing NeRFs while
preserving scene identity and structure.
Further influential works (not expanded): NeRF-Editing [165] (factorized edits via differentiable
decompositions). We note broader text-guided approaches, but keep focus on language-driven
interfaces directly usable for scene editing.

Enrichment 23.13.1: Language Embedded Radiance Fields (LERF)

Motivation

Neural Radiance Fields (NeRFs) [429] reconstruct scenes as continuous volumetric functions,
producing photorealistic novel views. Yet despite this visual fidelity, the representation itself is
semantically opaque: the field encodes only colors and densities, without grounding in human-
interpretable concepts. This opacity restricts interaction and control—for example, one cannot
simply ask where the “utensils” are in a kitchen or identify objects based on abstract properties and
affordances.

In contrast, 2D open-vocabulary methods such as LSeg [326] and OWL-ViT [433] enable
language-driven reasoning about images. However, they often depend on region proposals or
supervision from curated segmentation datasets, which biases generalization toward in-distribution
categories and weakens expressivity for rare or long-tail queries.

NeRF —\ /——CLFP

Language Embedded Radiance Field

*Mulﬂ—ﬂnle Semantics

Figure 23.151: Language Embedded Radiance Fields (LERF). CLIP representations are distilled
into a dense, multi-scale 3D field that can be reconstructed from a hand-held phone capture in under
45 minutes. Once trained, LERF supports real-time natural-language queries, producing relevancy

maps for prompts ranging from abstract concepts to fine-grained attributes and even scene text.
Source: [288].
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High-level overview

Language Embedded Radiance Fields (LERF) [288] close the semantics gap by grounding raw
CLIP [498] embeddings in a dense, multi-scale 3D field that is optimized alongside a NeRF backbone.
Unlike proposal- or dataset-driven 2D pipelines, LERF does not fine-tune CLIP and does not rely
on segmentation masks. The key idea is to make language supervision volumetric and scale-aware:
instead of supervising infinitesimal points (ill-posed for patch-based CLIP), LERF learns a view-
independent language field:

Flang(X,5) € R4

that outputs a CLIP vector for a 3D cube centered at x with physical side length 5. Supervision
comes from a precomputed multi-scale pyramid of CLIP embeddings derived from image crops
of training views. During rendering, NeRF’s density weights integrate these features along rays to
produce pixel-aligned, view-consistent relevancy maps for arbitrary text prompts.

How it works at a glance

* 1) Capture and NeRF: Optimize a NeRF backbone for geometry and appearance from a
casual hand-held sequence.

 2) CLIP supervision pyramid: Precompute a multi-scale feature pyramid of CLIP embed-
dings from image crops between spi, and Spax.

* 3) Language field over volumes: Train Fian (X, s) to match the (interpolated) CLIP embedding
of the crop corresponding to the projected physical volume, keeping it view-independent.

* 4) Volumetric language rendering: Along a ray r(¢), evaluate Fiae (X(),s(¢)) and integrate
with NeRF’s density-based weights to obtain a per-pixel language embedding.

* 5) Relevancy maps for text prompts: Embed the query text with CLIP and score cosine
similarity against rendered language embeddings to obtain a 3D-consistent heatmap.

Why fthis suits open-vocabulary 3D queries
LERF transforms a static NeRF reconstruction into a semantic 3D interface that can be queried
directly with natural text. Its design provides three key advantages:

* 3D consistency: NeRF’s volumetric rendering fuses information across views; LERF ties
language to geometry at each 3D location and scale, eliminating per-view inconsistencies
common in 2D detectors. This ensures that queries like “yellow” highlight the same regions
from all viewpoints.

* Open-vocabulary generality in 3D Both LERF and OWL-ViT inherit CLIP’s open vocabu-
lary, but LERF avoids 2D detection biases (per-view boxes/masks) by learning a volumetric
semantic field. This improves long-tail and abstract queries in practice—for instance “elec-
tricity” activates outlets and cords jointly, and rare entities like “Waldo” localize coherently
within the 3D scene.

* Hierarchical semantics via scale: The explicit physical scale s allows the same 3D location
to carry different meanings depending on context (e.g., “utensils” at a coarse scale versus
“wooden spoon” at a fine scale). This also extends naturally to scene text, such as localizing
the printed word “Boops” on a mug.

In practice, these capabilities can be realized from a casual hand-held capture: a scene is

reconstructed in under one hour, after which relevancy maps for arbitrary text prompts can be
generated interactively in real time.
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Method

The central contribution of LERF [288] is to extend the NeRF framework with a language field that
grounds natural language in 3D space. Below, we detail the method from the field definition and
supervision to volumetric rendering and regularization.

Language field definition
Standard NeRF parameterizes a continuous volumetric function

F(x,d) — (0,c),

where each 3D sample x and viewing direction d yield a density ¢ and view-dependent color
c. This encodes only geometry and appearance, with no semantics. LERF augments this with a
view-independent language field computed from a shared semantic backbone Efey:

h(x) = Efea(X), Fiang(h(x),s) € R,

Unlike NeRF’s infinitesimal point queries, Fiang is defined over volumes: for a cube centered at x
with side length s, the output is a CLIP feature vector describing that region’s semantics. The explicit
physical scale s is essential: large s aggregates broad context (e.g., “utensils” across a drawer), while
small s isolates fine parts (e.g., a “wooden spoon”). Fiayg is view-independent, so multiple views of
the same 3D region reinforce a single semantic embedding.

Supervision via CLIP pyramid
CLIP produces semantics for image patches with context, while NeRF samples 3D points. LERF
supervises a world-space volume (X, s) using the CLIP embedding of the image patch onto which it
projects. The pipeline: (i) precompute, for each training image, a multi-scale “textbook™ of CLIP
features in image coordinates; (ii) during training, project (x,s) into a view and read the matching
embedding via interpolation.

Part 1 — Precomputation: building the image-space textbook

)

1. Choose image scales: Define discrete square crop sizes {slmg

Smax (often log-spaced).

2. Slide and embed: For each training image and each si(r];)g, slide a square window on a regular
grid with overlap (~ 50%), resize to CLIP’s input, and encode with the frozen CLIP image
encoder to obtain

} in pixels between sy, and

¢

stored at crop center (u,v) for that scale.

3. Form the multi-scale feature pyramid: Stack the per-scale grids to obtain, per image, a

pyramid indexed by (u,v) and sb)

img (large crops — scene/objects; small crops — parts/text).
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Part 2 — Training: supervising a world-space volume with an image-space patch

1. Pick a pixel and a CLIP scale: Choose a training pixel (#,v) and a pyramid scale sjme
(crop size, in pixels). Cast the camera ray r(¢) through (u,v) and sample depths {#;} with
camera-frame depths z;.

2. Backbone features and scale in world space: For each sample x; = r(#;), compute backbone
features

h(Xi) = Efeat(xi)7
and set a world-space receptive field that projects to the chosen image crop:

Zi

S(ti) = 7 Simg

where f is the focal length in pixels. This makes farther samples use a larger physical support
so that all samples along the ray correspond to the same image receptive field sipg.

3. Query the language head and volume-render: Evaluate the language head per sample and
aggregate with the standard NeRF weights w; = T;o;:

~ ¢l'
(plang u,v; Slmg ZWzFlang ( ))7 q)lang = Ai

This yields a rendered per-pixel language embedding aligned with scene geometry.
4. Retrieve the CLIP target (image space): Trilinearly interpolate the precomputed CLIP
pyramid at (u,V, simg) (bilinear over (u,v) and linear over adjacent scales) to get

(PCLIP

CLIP 512 ~CLIP __ target

Prarget (U Vs Simg) € RV, arget = T CLIP|[
H(ptargetHZ

5. Align rendered prediction to CLIP target: Use cosine similarity on unit-normalized vectors:
N . CLIP
Lang = 1— cos((plang(u,v,simg) q)tdrget(u v, slmg)>

Notes on correctness and design

* What is h(x)? It is the shared, multi-resolution hashgrid feature produced by Ejey at 3D
position x; both semantic heads read these same features.

* Where is the “cube” ? The cube is implicit in the scale argument s(f;) of Fiang: it specifies the
physical support in 3D over which the language head aggregates semantics at each sample.
No explicit 3D voxelization or 2D rasterization of a cube is required.

» Why render before supervising? CLIP targets live at image patches. By volume-rendering
Fang along the ray with NeRF’s transmittance weights, the predicted embedding becomes a
geometry-aware, per-pixel descriptor that is commensurate with the image-space CLIP patch,
making the supervision well-posed.

* Faithful scale coupling: The mapping s(t;) = (zi/ f) simg preserves a fixed image receptive
field while adapting the world receptive field by depth, ensuring consistent coarse-to-fine
behavior across views.
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Volumetric language rendering

The NeRF scene is trained photometrically to predict (o, ¢); this backbone is unchanged. LERF adds
a parallel, view-independent semantic layer rendered with the same sampler and transmittance. Along
r(t) = o +td with step size §;, opacity @; = 1 —exp(—0; §;), and transmittance 7; = [];;(1 — a;),

(f)lang(uaV;s) = Zwiﬂang(h(r(ti))ys(ti))a w; = T; 04,

followed by ¢, normalization. The depth-dependent s(7) mirrors the projective coupling used in
supervision. Given a text query, the CLIP text encoder yields @iex; cosine similarity with Qg
produces a view-consistent relevancy map. During training,

PN CLIP
ﬁang = 1—cos ( (Plang7 (Ptarget> ’

where @SLIP

arget 18 retrieved from the pyramid at the projected location and scale.

LERF Rendering . Multiscale CLIP Preprocessing

* Multiscale CLIP Features Image Patchas Training Image

Figure 23.152: LERF optimization Left: a language field over 3D volumes (x,s) is sampled
along rays and aggregated with NeRF transmittance weights. Right: supervision comes from a
precomputed multi-scale CLIP pyramid; features are interpolated at the projected location and scale.
Source: [288].

Regularization with DINO
LERF augments the CLIP-driven language supervision with a second, structural head that reads the
same latent features but not the scale:

Fdino(h(x)) € Rddi“".

Precomputation (DINO). Each training image is passed once through a frozen DINO ViT, producing
dense, pixel-aligned descriptors

9P™O (u,v) € Réimo

Unlike CLIP, which supplies a multi-scale pyramid of patch embeddings to supervise scale-aware
semantics, DINO descriptors are already dense at the native image resolution and require no pyramid
or scale interpolation. They provide local, category-agnostic cues (smooth within objects, sharp at
boundaries).
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Volumetric rendering and loss. Using the same transmittance weights w; as RGB and the CLIP
head,

¢din0(u7v) = ZWiFdino(h(r<ti)))a gdino = H(pdino(uvv) - q)DINO(u’v)H;

Both A,y (patch-based, multi-scale CLIP) and i, (dense, pixel-aligned DINO) backpropagate
through their heads and into the shared backbone Efe,, shaping h(x) to be smooth on object interiors
and to change sharply at boundaries. This regularizes the latent space that the CLIP head consumes,
yielding crisper, less patchy semantics at inference—despite the DINO head never being matched to
text at test time.

Inference: scale selection and heatmayp rendering

At inference time, LERF produces a text-driven heatmap indicating where a natural-language query
is likely to be grounded in the 3D scene. Importantly, only the CLIP head and the NeRF rendering
pipeline are used; the DINO head serves only as a training-time regularizer and is not involved at
test time.

Scale selection (global per query). The CLIP head is conditioned on a physical scale parameter
s, which ties a 3D neighborhood in world coordinates to the patch sizes that CLIP was trained on.
Because the optimal scale depends on the query (“kitchen” spans meters, while “wooden spoon”
spans centimeters), LERF sweeps over a discrete set of candidate scales:

1. Render the CLIP feature field @jang (u,v;s) for each candidate s (e.g., ~ 30 uniformly spaced
values in [0,2] m).

2. For each s, compute a relevancy map by comparing rendered features to the text embedding
(see below).

3. Reduce each map to a scalar activation (e.g., the mean similarity of the top-k pixels).

4. Select the scale s with the highest activation and keep its relevancy map for visualization.

This procedure balances global and local queries: scene-level concepts favor larger s, while fine-
grained part queries favor smaller s. Fixing a single global s per query stabilizes the visualization,
though it assumes objects of interest are roughly consistent in size.

Text embeddings. For a user-specified query (e.g., “wooden spoon”), a frozen CLIP text encoder
produces a unit-normalized embedding vector

Dext € R312,

This serves as the reference against which all rendered CLIP features are compared.

Relevancy computation (CLIP + NeRF aggregation). Given a viewpoint and the chosen scale s,
each pixel (u,v) accumulates semantic features along its camera ray:

(ﬁlang(uaV;s) = Zwiﬂang(h(r(ti))as(ti))a

where r(¢) is the ray, h(-) the shared latent features, and

Wi = T;'OC,', o = l—exp(—q&-), T,:H(I—OC,)

j<i
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These weights are identical to those used in NeRF’s RGB rendering, ensuring that semantic aggrega-
tion is geometry- and opacity-aware. The per-pixel relevancy score is then the cosine similarity:

score(u,v) = COS((plang(M,V;s)? (Ptext)~

Refinements. Two additional steps sharpen the resulting heatmap:
* Null phrase calibration: The mean similarity to generic prompts (“object”, “things”, “stuff”,
“texture”) is subtracted to suppress spurious activations that are semantically uninformative.
* Visibility and opacity filtering: Pixels with low accumulated opacity are discarded, and only
rays with sufficient multi-view support (e.g., visible in > 5 training images) are retained,
suppressing background clutter and artifacts.

Intuition. This inference process ensures that:
* CLIP supervision remains faithful to its training context (patch-level embeddings), thanks to
explicit scale coupling.
* NeRF’s volumetric rendering guarantees view-consistency and geometry alignment in the
heatmaps.
* Post-processing steps mitigate noise, producing sharp, interpretable visualizations that localize
natural-language queries in 3D scenes.

Architecture and factorization (overview, sharing, and why DINO helps). LERF is trained
end-to-end with three cooperating modules: (1) a NeRF backbone (o, c) for appearance/geometry
that receives only Z,p; (2) a shared feature backbone Efe, (multi-resolution hashgrid) that outputs
h(x); and (3) two disjoint semantic heads that both read h(x):

Flang(h(X), S) S RS]Z» Fdino(h(X)) S R%ino
—_— ———
CLIP head DINO head

Because Hang and Lgino both update Efeo;, DINO’s dense, pixel-aligned supervision sculpts the
shared latent space into geometry-aware features that directly benefit the CLIP head at inference.
Why DINO (and not SAM or detector/segmenter baselines).

* Dense, label-free, pixel-aligned targets: DINO preserves open-vocabulary zero-shot behavior
without prompts or class lists.

* Continuous supervision matches volumetric training: DINO’s smooth-within / sharp-at-
boundary behavior fits differentiable volumetric ¢, regression; hard masks (e.g., SAM) in-
troduce discrete topology, prompt dependence, and dataset biases ill-suited to continuous
multi-view rendering.

* Regularizing the shared latent space: Since both heads read h(x), DINO improves the
very features the CLIP head uses; mask pipelines would require non-differentiable steps
(masking/reprojection) and would not densify the latent space end-to-end.

* Practicality: A single frozen DINO pass per image yields cheap regression targets; mask
generators add runtime/brittleness and risk constraining open-vocabulary behavior.

Thus, DINO acts as an effective training-time structural regularizer on the shared backbone, while
CLIP remains the sole driver of text matching at inference.
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Training objective. LERF trains all of its components end-to-end from scratch on the target scene.
The CLIP and DINO encoders that provide semantic supervision are frozen, but both the NeRF
branch (o, ¢) and the semantic backbone Efe, are actively optimized. The total loss is

Z = D%gb + )Llango%ang + Afdino«s%ino-

* Ziep (photometric). The NeRF branch is trained in the standard way: for each ray r, the
rendered color C(r) is matched to the ground-truth pixel C*(r) using MSE,

Lo = g L () =C*(n)]3-
re%

This is necessary because NeRFs are not “once-for-all” pretrained models; they must be
optimized per scene. A NeRF trained on Scene A carries no useful weights for Scene B.
Without this photometric loss, the geometry and appearance of the new scene would never be
recovered.

* ZAang (language). Cosine similarity between the rendered, unit-normalized CLIP embedding
(rang and the interpolated CLIP target from the multi-scale crop pyramid. This updates the
shared semantic backbone and the CLIP head.

* Zaino (structure). ¢, regression between the rendered DINO embedding Qgino and frozen
per-pixel descriptors @°™O (i, v). This updates the shared backbone and the DINO head.

Why train jointly? If we were to freeze a separately trained NeRF and only add semantics afterwards,
the semantic heads would be forced to sit on top of whatever ambiguities or artifacts the NeRF
geometry contains (e.g., smoky volumes in textureless regions). By co-optimizing Zep, -Lang, and
Ziino together, the geometry and semantics co-adapt: RGB loss guarantees photometric fidelity,
while the semantic losses push the backbone to place sharper boundaries and consistent features
at object borders. The result is a decoupled but synergistic training process: geometry is accurate,
semantics are consistent, and the final heatmaps are crisp and view-consistent.
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Results and Ablations

Qualitative results

LEREF enables open-vocabulary, language-driven exploration of reconstructed 3D scenes. Given a text
query (e.g., “coffee mug”), the model renders a relevancy heatmap that highlights the corresponding
3D region across novel views, acting as a soft segmentation without predefined categories or manual

LR ENT

masks. Representative results show robust localization across: objects (“eggs”, “shoes”), parts

LRI

(“hand”, “fingers”), attributes/materials (‘“wooden”, “glass”), abstract categories (“‘cartoon”, “bath

toy”), long-tail named entities (“waldo”, “jake from adventure time”), and even text strings on book
spines (“the cookie bible”). These maps remain view-consistent due to volumetric aggregation and

the shared 3D geometry. (Adapted from [288].)

ST
3D scene: Ramen

3D scene: Figurines “cartoon” “bath toy "

“tay elephant” “jake from adventure time" “waldo ™

“the cookie bible” “marie kondo™ “vans™ “dress shoes”

Figure 23.153: Qualitative results across diverse scenes. LERF grounds free-form queries in
3D for in-the-wild captures (ramen, hand object, figurines, bookstore, shoe rack). Queries span
categories (“cartoon”), attributes (“glass of water”), parts (“fingers”), long-tail entities (“waldo”,
“jake from adventure time”), brands (“vans”), and book titles (“the cookie bible””). Heatmaps are
view-consistent and multi-scale. Source: [288].
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2D CLIP vs. volumetric LERF
A direct 2D baseline interpolates similarity over patchwise CLIP embeddings in image space, which

ignores multi-view geometry. In contrast, LERF renders language features volumetrically using
NeRF transmittance, improving alignment with 3D structure.

2D CLIP LERF

l’l’ji!‘}, r

Qi LE
vase

“wooden spoon”

Figure 23.154: 2D CLIP interpolation vs. LERF. Per-image 2D CLIP heatmaps (middle) are
blob-like and inconsistent, while LERF (right) produces crisp, geometry-aligned activations for
prompts such as “lily”, “vase”, and “wooden spoon”. Source: [288].

>
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Localization against LSeg (3D) and OWL-VIiT
LEREF is further compared to baselines that rely on 2D vision-language models projected into 3D.
Results show stronger localization for long-tail concepts from novel views.

“cookbooks”
@LSeg (3D) @OWL-VIT @LERF

Figure 23.155: Localization comparison in novel views. LERF correctly localizes long-tail targets
such as “cookbooks” and “olive oil” where LSeg(3D) and OWL-ViT often fail. Source: [288].

LSeg(3D)  _ LERF

“glass of water”

L

“Egg!)

Figure 23.156: Comparison to LSeg(3D). LSeg succeeds on in-distribution labels (e.g., “glass of
water”) but struggles with out-of-distribution queries (e.g., “egg”); LERF handles both via open-
vocabulary volumetric grounding. Source: [288].

Test Scene ‘ LSeg 3D) OWL-VIiT LERF

waldo kitchen 13.0% 42.6% 81.5%
bouquet 50.0% 66.7% 91.7%
ramen 15.0% 92.5% 62.5%
teatime 28.1% 75.0% 93.8%
figurines 8.9% 38.5% 79.5%
Overall 18.0% 54.8% 80.3%

Table 23.38: Localization accuracy. Comparison between LSeg(3D), OWL-ViT, and LERF across
scenes. LERF substantially improves performance on long-tail queries. Source: [288].
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3D existence: precision-recall
The task evaluates whether a queried concept exists anywhere in a scene, independently of precise
localization. For each {scene, query} pair:
* Rendering and calibration
— Render the volumetric language map by integrating the language field along camera rays
with NeRF transmittance weights:

¢lang(u7V;s) = ZWiFlang(h(r(ti))a s(ti))7 wi =T, o =1 _eioi&--
i

— Compute per-pixel relevancy scores via cosine similarity to the text query embedding
from the frozen CLIP text encoder, Qex(, and apply null-phrase calibration by subtracting
the mean similarity to generic phrases (“object”, “things”, “stuff”, “texture”).

— Apply visibility/opacity masking: discard pixels with low accumulated opacity and
suppress samples observed by fewer than ~ 5 training views to reduce noise in poorly
constrained regions.

» Score aggregation to a scene-level value

— Aggregate per-pixel scores within each view using top-k pooling (over high-confidence
pixels).

— Aggregate across views (e.g., max or mean) to produce a single scene-level score
indicating the strongest evidence of the concept anywhere in the scene.

* Precision—recall computation

— Sweep a threshold over the scene-level score to trace out the PR curve; positives/negatives
derive from human annotations.

— Report results on two query sets:

x COCO-like: frequent, closed-vocabulary-style labels where baselines are compara-
tively strong.

+ Long-tail: in-the-wild labels (brands, book titles, parts, attributes) that stress open-
vocabulary generalization.

COCo Long-Tail Labels

Precision

LERF
=== | Seq 30(DFF)

10 1
Recall

Recall

Figure 23.157: Precision-recall on 3D existence queries. LERF (orange) dominates 3D LSeg
(purple) across operating points. On COCO-like labels (left), both methods reach high precision
at low recall, but LERF sustains better recall as thresholds relax. On the long-tail set (right),
LSeg collapses while LERF maintains a wide, high-precision regime, reflecting the advantages of
volumetric rendering, multi-scale supervision, and open-vocabulary text alignment. Source: [288].
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Ablation studies

The contribution of DINO regularization and multi-scale CLIP supervision can be isolated through
ablations. Removing DINO weakens object-level grouping and boundary sharpness, producing
patchy features that bleed into the background, particularly in sparsely observed areas. Training
without the CLIP pyramid (single-scale) harms both coarse context and fine parts: large objects lose
global coherence and small items lose discriminative detail. Together these components regularize
the shared semantic backbone and stabilize the language field across scales.

LERF (w/o DINO) LERF

“fingers”

LERF (w/o Multiscale) LERF

“Creamer pods”

Figure 23.158: Ablations. Top: Without DINO, activations become diffuse and off-surface, bleeding
across object boundaries; with DINO, crisp object-aligned maps are recovered (e.g., hand/fingers,
blue dish soap). Bottom: Without multi-scale supervision, both large concepts (“espresso machine”™)
and tiny details (“creamer pods’) are missed; full multi-scale training restores correct localization at
the appropriate scale. DINO acts only as a training-time regularizer; inference uses the CLIP head.
Source: [288].
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Failure cases and ambiguities

Typical errors stem from (i) fine-grained category proximity in CLIP space (e.g., “zucchini” vs. other
long green vegetables), (ii) visual look-alikes or texture priors (“leaf” firing on green plastic), and
(ii1) global context gaps where volumetric aggregation over thin structures favors edges (“table”).
These issues reflect both biases in the teacher model and geometric ambiguities in under-constrained

regions.

“leaf™ “table”

Figure 23.159: Common failure modes. (Top) Long-tail mix-ups under similar appearance (*“zuc-
chini” activating on cucumbers/corn). (Bottom) Texture and shape confusions (“leaf” on green
plastics) and weak global reasoning (“table” edges dominate). Source: [288].

"Sugar packets"
—

Ta r et "Bell peppers"

Target ~ "Refrigerator”

Figure 23.160: CLIP-driven ambiguities. Errors often trace to the frozen teacher: (left) grocery
queries where visually similar produce cluster in feature space (“bell peppers” vs. jalapefios); (right)
metallic context around “portafilter”’; and absent queries (“kiwis”) that nevertheless elicit responses.
Source: [288].
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Prompt sensitivity (orompt funing)

Because CLIP embeddings are highly sensitive to text phrasing, LERF inherits this prompt sensitivity.
Adding discriminative modifiers (color, material, container type) reduces ambiguity and improves
accuracy, particularly when geometry is ambiguous or coverage is sparse.

= i L

"Tea mag.l‘ms‘s"‘ "Tea ina rrmmg!a;s"‘

"P.;i;er (.'O_aée‘ filters
in a bag"

More specific queries

Figure 23.161: Prompt specificity matters. Refined queries (“blue dish soap” vs. “dish soap”;
“tea in a transparent glass™ vs. “tea”) suppress distractors and sharpen activations, highlighting the
sensitivity of the system to linguistic detail. Source: [288].

CLIP bag-of-words behavior

Supervision from frozen CLIP also introduces token-level quirks: compositional structure may be
underweighted and nouns can dominate parts or attributes unless explicitly disambiguated. Typos
that remain close in token space may also mislead supervision.

Bi‘ue:en}r domits”

Figure 23.162: Bag-of-words effects in CLIP. Query phrasing reveals CLIP’s tendency toward
bag-of-words behavior. A single-word query like “blueberry” correctly isolates the blueberry donuts,
but the seemingly more specific phrase “blueberry donuts” instead highlights all donuts, dominated
by the noun. Similarly, part-level queries such as “handle” produce diffuse activations, while “mug
handle” strengthens the focus near the handle yet still covers most of the mug. These effects illustrate
the limits of CLIP’s compositional reasoning. Source: [288].
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Efficiency analysis

Training overhead relative to a vanilla NeRF is modest: CLIP crop pyramids and dense DINO
descriptors are precomputed once per image, and training reduces to fast lookups and ¢, regression
to frozen targets. At inference, rendering language maps reuses the same rays and transmittance
weights as RGB; the DINO head is inactive. Overall runtime and scaling remain comparable to
standard NeRF pipelines while providing richer, open-vocabulary semantics.

Summary of findings
Experimental analyses identify three design choices as critical:

1. Volumetric, scale-aware supervision that couples world-space volumes to multi-scale CLIP
patch embeddings.

2. Auxiliary DINO regularization that imposes within-object smoothness and sharp inter-object
boundaries on the shared semantic backbone.

3. Factorized architecture that decouples geometry (trained only by Zj.) from semantics
(trained by “Aang/Laino), preventing geometric drift.

Together these elements yield view-consistent, open-vocabulary 3D semantic maps that answer
existence queries robustly and localize fine-grained concepts across novel viewpoints.
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Enrichment 23.13.2: InstructNeRF2NeRF: Editing 3D Scenes with Instructions
Motivation

Editing implicit 3D representations is nontrivial: traditional 3D tools presuppose explicit geometry
and expert workflows, whereas neural radiance fields provide no direct handles for intuitive ma-
nipulation. CLIP-guided or physics-based approaches have enabled stylization or property tweaks
but often struggle with localized, instruction-driven edits that remain consistent across viewpoints.
InstructNeRF2NeRF [202] proposes a language-based interface for NeRF editing by harnessing an
instruction-following 2D diffusion prior and consolidating those edits into a coherent 3D scene via
iterative retraining.

NeRF Scene

Figure 23.163: Editing 3D scenes with instructions. InstructNeRF2NeRF performs diverse global
and local edits on a reconstructed NeRF using only natural language. Shown prompts include: “Give
him a cowboy hat”, “Give him a mustache”, “Make him bald”, “Turn him into a clown”, “As a
bronze bust”, etc., demonstrating the abilities of this work. Source: [202].

Background on InstructPix2Pix

The InstructNeRF2NeRF (I2N2) framework enables intuitive, language-based 3D scene editing
by leveraging InstructPix2Pix (IP2P) [57], a diffusion model trained specifically for instruction-
following image editing. 12N2 employs IP2P to iteratively modify the multi-view images that
supervise a NeRF, thereby nudging the underlying 3D scene toward the desired text instruction. For
diffusion fundamentals and classifier-free guidance, see Ch. 20, §20.9.1 and §20.9.4.

Core idea of InstructPix2Pix

IP2P differs from text-to-image models by conditioning on both an input image c; (to ground the
edit) and a natural-language instruction cr (to specify the change). Editing is performed in the
latent domain by progressively denoising a noisy latent z; toward an edited latent zy. The denoising
network &g predicts the injected noise,

é — Ee(zt;ta CI7CT)5

from which the edited latent is obtained and decoded to pixels. This single-pass, dual-conditioned
formulation avoids per-example inversion or fine-tuning while enabling localized, instruction-aligned
edits.
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Crucial controls: dual guidance scales
IP2P extends classifier-free guidance with two independent scales that balance fidelity and edit
strength:

» Image guidance s; controls similarity to the conditioning image c; (content preservation)

* Instruction guidance sy controls adherence to the instruction c7 (edit strength)
Tuning (s7,s7) is essential for multi-view consistency when IP2P is used to edit the many camera
views that supervise a 3D scene.

“Sywan sunfiowers with roses”

Figure 23.164: InstructPix2Pix examples. Given an image and a text instruction, IP2P applies the
appropriate edit in a single forward pass without per-example inversion or fine-tuning. For instance:
“Swap sunflowers with roses” (top left), “Add fireworks to the sky” (top row, middle), and “Make his
jacket out of leather” (bottom right). Source: [57].

How InstructPix2Pix is frained and why Prompt-to-Prompt alone is insufficient
IP2P is trained on a large-scale instruction—edit dataset constructed synthetically [57]. Instead of
hand-drawn masks, structural consistency between “original” and “edited” images is enforced at
data-generation time using Prompt-to-Prompt 20.11.5.1 with Stable Diffusion 20.11.4: the same
random seed and cross-attention structure are reused so pose, layout, and background align, and only
the instructed change varies. The pipeline is:
 Instruction and caption generation A finetuned GPT-3 proposes an initial caption, an
instruction, and a corresponding edited caption.
* Consistent image pair synthesis Stable Diffusion with Prompt-to-Prompt generates the
original and edited images with shared seeds and attention maps to preserve structure.
* Triplet assembly at scale Over ~450,000 triplets are collected: (original image, instruction,
edited image).
* Diffusion training A diffusion model is trained on these triplets to perform instruction-
following edits on arbitrary input images.
At inference, IP2P edits real images by directly conditioning on (cy,cr) and controlling (s7,s7).
This capability is precisely what Prompt-to-Prompt (P2P) lacks: P2P is an inference-time technique
for editing images as they are generated from text, requiring the source and target prompts and access
to the generation trajectory. It cannot edit arbitrary photographs because those internal states are
absent. IP2P, trained on P2P-aligned pairs, learns the general skill of editing any given image from
an instruction.
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Training Data Generatlon Instruction-following Diffusion Model
{a) Generate text dits: {d) Inference o resl Images:

L5
Ingest Capiion: hasegragd of o g ridg 0 fovse” = GPT3 4'

(b} Ge

Figure 23.165: Training pipeline of InstructPix2Pix. (a) Finetuned GPT-3 generates instructions
and edited captions; (b) Stable Diffusion with Prompt-to-Prompt produces aligned original/edited
image pairs; (c) over 450k training triplets are assembled; (d) a diffusion model is trained to follow
instructions for image editing. At inference, the model edits real images using natural instructions.
Source: [57].

What IP2P brings beyond text-to-image diffusion and Prompt-to-Prompt

* Real-image editing from instructions Unlike text-to-image models, IP2P accepts an existing
image c; and modifies it according to cr, rather than synthesizing a new scene from scratch.

* Grounded edits with controllable fidelity Image conditioning and the s; scale preserve.
identity, layout, and fine details; sy controls edit strength, enabling cross-view consistency
when editing NeRF training images.

* Generalization to arbitrary inputs Training on many aligned before—after pairs teaches the
model to apply edits to photographs without access to diffusion internals, which P2P requires.

Connection to InstructNeRF2NeRF
Text-only diffusion priors struggle on reconstructed scenes because each view would need a perfectly
faithful textual description, often causing blur or divergence. InstructNeRF2NeRF (I12N2) resolves
this by embedding InstructPix2Pix (IP2P) inside an Iterative Dataset Update loop that edits
supervision images in the Stable-Diffusion—style latent space and then retrains the NeRF. At a high
level, each cycle consists of:
* Original capture anchoring: Use the unedited capture IV as conditioning to preserve scene
identity, viewpoint geometry, and fine detail.
« Latent-space editing: Edit the current NeRF render I/ in the latent domain using the
instruction ¢y and guidance scales (s7,s7).
* Dataset refinement: Replace the edited images in the training set and fine-tune the NeRF
on this partially updated dataset.
Repetition consolidates potentially inconsistent per-view edits into a single, 3D-consistent
solution.
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Method

The core mechanism is an Iterative Dataset Update (Iterative DU) that alternates between latent-
space editing of training views with InstructPix2Pix (IP2P) and NeRF optimization on the evolving
dataset. Rather than modifying the NeRF loss directly with diffusion gradients, as in Score Dis-
tillation Sampling (SDS), edits are injected indirectly by refreshing the supervision images. This
design retains the stability of conventional NeRF optimization while leveraging the semantic power
of diffusion models.

Editing a single dataset image
Given a calibrated view v with original capture I°, current render I/ from the evolving NeRF, and a
global instruction cr, IP2P outputs an updated image

I\I;—H A U9(11ln L 11(;)7 CT)7
where Uy denotes the latent-domain editing pipeline:

20 =E(10) (encode original capture for image conditioning c;),
20 =&(I) (encode current NeRF render),
7, = ForwardDiffuse(zo,7) (add noise in latent space),
&=¢p(zt,cr=z10,cr)  (IP2P U-Net noise prediction with dual conditioning),
Zo = Denoise(z;, &,s7,57)  (classifier-free guidance with s;,s7),

I = 9(%) (decode edited latent to RGB).

The noise level ¢ € [fin, imax] trades off structure preservation (lower ¢) versus stronger edits (higher

1).

Iterative Dataset Update
At each outer iteration, the following sequence is performed:
* Render One or more views are rendered from the current NeRF
* Edit in latent space Each rendering is edited by IP2P using the original-capture latent
c; = &(1%) and instruction cr
* Decode and replace Edited latents are decoded to RGB and replace the corresponding
training images
* Retrain NeRF Standard NeRF optimization is run on rays sampled from the full, partially
edited dataset
Anchoring edits with 10 prevents drift across iterations, while guidance scales (s;,s7) balance fidelity
and edit strength. Repeated alternation reconciles per-view edits into a consistent 3D radiance field.

Training objective and relation to SDS
The NeRF is trained with a conventional photometric reconstruction loss:

Lere = Y [|Co(r) = ()|,
rez

where Cy(r) is the color predicted by the NeRF for ray r, and C(r) is the RGB from the current
dataset image after any IP2P updates.
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This contrasts with methods that use Score Distillation Sampling (SDS), where the diffusion
model provides a gradient directly on NeRF-rendered images to guide optimization toward the text
prompt. While SDS can align NeRF to a description without paired data, it often yields blurry
density or divergence when applied to real captures, because each camera view would require a
perfectly accurate textual description.

InstructNeRF2NeRF avoids this instability by letting [P2P generate updated images that already
satisfy the textual instruction. The NeRF is then trained only on image-level supervision, preserving
the stability and geometric grounding of the reconstruction while still inheriting the semantic
flexibility of diffusion editing.

Dalasel Update Original Dataset Image

Conditioning
Signal A

Texl Prompt
“Teira the bear im0 a geicily bear”

B

Current NeRF Render Noise

Figure 23.166: Overview. InstructNeRF2NeRF alternates between rendering, instruction-based 2D
editing (InstructPix2Pix), dataset replacement, and continued NeRF training to gradually realize the
edit in 3D. Source: [202].

Original Data Updated Dataset

Early lteration —_— Late fteraticn

Figure 23.167: Dataset evolution. Early edited views can be inconsistent; alternating IP2P updates
with NeRF optimization consolidates them into a 3D-consistent scene. Source: [202].
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Architecture and Implementation Details

Implementation follows nerfacto in Nerfstudio. Latent noise levels are sampled from [fmin, fmax] =
[0.02,0.98]; IP2P runs for 20 denoising steps per update. Classifier-free guidance typically uses
s; = 1.5 and s7 = 7.5. Each outer cycle updates one image (d = 1) and performs n = 10 NeRF opti-
mization steps. Training proceeds up to 30k iterations on a single Titan RTX GPU. Hyperparameters
such as edit scheduling and ray sampling strategies follow the InstructNeRF2NeRF paper [202].

1.75 13 1.25
Image Guidance Scale

Figure 23.168: Guidance scale. Varying the image guidance controls resemblance to the original
scene; text guidance controls adherence to the instruction. Renderings are from the edited 3D scenes.
Source: [202].

Experiments and Ablation
Qualitative edits span global scene changes (time of day, weather, material and style) and localized
object or identity modifications while maintaining cross-view consistency across novel viewpoints.

Original NeRF

Figure 23.169: Qualitative results. Diverse contextual and localized edits on real scenes, including
environmental changes (e.g., time of day, weather) and object-specific modifications. These are
renderings from the edited 3D scenes produced by InstructNeRF2NeRF. Source: [202].
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Figure 23.170: Viewpoint consistency. Vertical slice montage along a camera path. Top: original
NeRF. Middle: InstructNeRF2NeRF with the instruction “turn him into a clown” produces consistent
appearance across viewpoints. Bottom: per-frame InstructPix2Pix edits on renderings lead to
inconsistencies such as changing hair and shirt colors. Source: [202].

Baselines and iterative update importance
The ablation suite isolates the impact of image conditioning and the iterative dataset update:

* Per-frame IP2P on novel-path renderings: Applying InstructPix2Pix independently to
each rendered frame yields strong single-frame edits but significant view-to-view variance,
breaking 3D consistency.

* One-time dataset update: Editing every training image once and training to convergence
depends heavily on initial 2D consistency; typical outcomes are blurry, artifact-prone 3D
scenes.

* DreamFusion-style SDS with text-only diffusion: Using SDS with a text-only Stable
Diffusion prior on a real scene tends to diverge because each view would require an exact
textual description of the entire scene.

* SDS with InstructPix2Pix: Image conditioning prevents divergence, yet optimization that
samples only from a few full images yields unreliable supervision and more artifacts.

* IN2N + Stable Diffusion: Replacing IP2P with text-only Stable Diffusion inside the iterative
loop produces blurry, incoherent density due to the lack of image conditioning.
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b

o g, . . - b S
Criginal NeRF Curs + Stable Diffusion D5 + InstructFR2Fix One time Dataset Update

Figure 23.171: Baselines and ablations. Left to right in each block: Original NeRF, IN2N + Stable
Diffusion (no image conditioning), SDS + IP2P, One-time dataset update, and InstructNeRF2NeRF
(full method with Iterative DU and IP2P). The full method best preserves geometry while producing
coherent semantic edits across views. Source: [202].

Quantitative evaluation

Following the paper, two CLIP-space metrics are reported across 10 edits on two scenes: Text—image
direction similarity (edit alignment) and Consistency across frames along a novel path. Results
show that InstructNeRF2NeRF matches the edit strength of per-frame IP2P while achieving the best
multi-view consistency.

Method CLIP Direction Similarity T Consistency 1
Per-frame IP2P [57] 0.1603 0.8185
One-time DU 0.1157 0.8823
SDS + IP2P [57] 0.0266 0.9160
InstructNeRF2NeRF 0.1600 0.9191

Table 23.39: Quantitative metrics. Alignment with the textual edit and inter-frame consistency
in CLIP space. InstructNeRF2NeRF preserves edit strength comparable to per-frame IP2P while
achieving the best consistency. Source: [202].
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Limitations and Future Work

Performance inherits the strengths and weaknesses of the 2D editor. When InstructPix2Pix fails to
carry out the desired instruction or yields inconsistent 2D updates, consolidation into a clean 3D
edit can fail. Challenging cases include large structural rearrangements, difficult removals, or subtle
material edits that are under-specified.

Dataset Image

InstructPix2Pix Update Trained NeRF
X - ?ﬁ‘ ¥

- - - ——
Sﬁﬁ SR gﬂu

. g
“Delete the bear statue”

.......

“Give him a checkered jacket”

Figure 23.172: Limitations. Top: instruction “Delete the bear statue” results in weak or inconsistent
inpainting from the 2D editor, limiting 3D removal. Bottom: instruction “Give him a checkered
jacket” is applied weakly and inconsistently in 2D, and the effect washes out after NeRF training.
Source: [202].

Observed failure modes
» Editor failure or ambiguity: Certain instructions are not faithfully executed by Instruct-
Pix2Pix, leading to missing or incorrect edits in the supervision images.
* Inconsistent 2D updates: View-dependent differences in edited details can be irreconcilable
during volumetric optimization, producing blur or artifacts.
» Large geometric changes: Edits that imply topological change or wide-scale geometry
rearrangement remain challenging under image-conditioned editing.

Future directions
* Stronger 3D priors during editing: Incorporate multi-view or depth-aware constraints into
the editing stage to reduce cross-view variance.
* Structure-aware regularization:  Encourage locality and geometric plausibility (e.g.,
semantic masks or learned attention priors without manual annotation).
* Interactive guidance: Human-in-the-loop strategies to refine ambiguous instructions or
correct inconsistent edits during Iterative DU.
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Enrichment 23.14: NeRF: Generative & Cross-Modal Foundations

Linking NeRFs with large pretrained priors (diffusion, language) enables text-to-3D and cross-modal
supervision, a step toward 3D foundation models.
* DreamFusion [487]: Distills a 2D text-to-image diffusion model into a NeRF for text-to-3D
synthesis via score distillation.
* Latent-NeRF / DreamFields [427, 606]: Trains radiance fields in latent spaces or with strong
2D guidance to boost fidelity and efficiency.
Further influential works (not expanded): Magic3D [353], Fantasia3D [85] (two-stage, high-res
pipelines). Mentioned for context; emphasis remains on NeRF-centric generation and cross-modal
supervision.

Enrichment 23.14.1: DreamFusion: Text-to-3D with Score Distillation Sampling

DreamFusion [487] tackles the ambitious goal of generating a valid 3D NeRF model directly
from text, without relying on paired 3D supervision. The method’s central innovation is Score
Distillation Sampling (SDS), which couples a frozen 2D diffusion model to a differentiable renderer:
the diffusion prior acts as a semantic critic that supplies image-space gradients, and these are
backpropagated into a NeRF to sculpt a 3D scene consistent with the text prompt.

Motivation

The aim is to produce a valid, view-consistent 3D NeRF from a single text caption, i.e., without any
paired multi-view images. This problem is deeply underconstrained: many different 3D scenes can
render to images that look plausible to an image-level critic at a single viewpoint. Naively optimizing
photometric appearance is therefore not enough to guarantee correct geometry.

Why “many valid 2D views” need not imply valid 3D
Even if each individual view looks correct, the training signal in text-to-3D is typically per-step,
single-view and unpaired across time. This creates several loopholes:

* No cross-view correspondence. In supervised NeRF, the same real scene must simultaneously
satisfy dozens of fixed cameras; pixels across views are tied by projective geometry, leaving
little room for degenerate solutions. In DreamFusion-like setups, each step samples a new
random camera and a fresh critic; there is no explicit constraint that a pixel explaining the
“nose” in one view must correspond to the same 3D locus explaining the nose in later views.

* View-dependent radiance enables per-view “‘explanations”. A classical NeRF uses ¢(x,d):
color may change with viewing direction d. With only a single camera per step, a network can
satisfy the critic by repainting appearance per view while keeping density nearly flat, yielding
billboards/multi-faced artifacts.

* Ill-posedness and missing parts. A single projection collapses depth; occluded/back-facing
regions are unobserved. Even with multiple independently sampled views over training,
nothing forces the model to make those views arise from one coherent shape rather than a
union of per-view “sheets.”

* Scale and transmittance trade-offs. Volume rendering allows different combinations of
density and color to produce similar pixel intensities; without geometric signals, optimization
may settle on thin, view-specific, semi-opaque structures that look right but encode poor shape.
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Intuition (the “fog sheets” thought experiment): Think of the NeRF as controlling a cube of fog. At
the start there is no object at all—the model must somehow conjure a cat from a caption. At training
step ¢, the diffusion critic looks from the front and asks for a cat. The simplest trick is to condense a
thin fog sheet and paint on a flat image of a cat’s face. From the front this looks fine. At step r+1,
the critic moves to the side and again asks for a cat. Nothing forces the network to keep the same cat
consistent across views: it can just create a new perpendicular fog sheet with a different painted cat
profile. Each request is satisfied—the critic always sees “a cat” from its current angle—but the fog
volume now contains multiple inconsistent 2D cats stitched together, not a single coherent 3D cat.

How DreamFusion closes the loophole

The root problem is that many distinct 3D explanations can project to equally valid 2D images. To
avoid this “per-view repainting”, DreamFusion changes the rules of rendering. Instead of allowing
arbitrary view-dependent color, it splits appearance into albedo (intrinsic, view-independent surface
color) and shading (appearance derived from surface normals and lighting). With this setup, the
only way to make the same cat look correct from different angles is to actually form a stable 3D
shape whose shading and albedo explain the critic’s feedback. Randomized camera viewpoints
and lightweight view prompts bind these perspectives together, while the diffusion prior supplies
semantics and realism. The result is that 2D guidance becomes not just image supervision, but
a force that sculpts consistent geometry across views—even though no ground-truth 3D scene is
available as in classical NeRF training.
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Figure 23.173: DreamFusion training loop overview. A NeRF parameterized by weights 6 predicts
two intrinsic fields: density 7(x), which encodes geometry, and albedo p(x), the view-independent
base color. Surface normals from —V T combined with randomized point lighting yield shaded
renders, while volume rendering integrates along rays from randomly sampled cameras to produce 2D
images. These images are noised to form z,, then passed with the text prompt y into a frozen text-to-
image diffusion prior (Imagen). The diffusion model predicts the added noise &, (z;|y,); comparing
against the true noise € defines the Score Distillation Sampling (SDS) loss. The residual w(t)(€y — €)
provides a low-variance update direction that is backpropagated through the differentiable renderer,
adjusting NeRF parameters 0. Iterating this loop with randomized cameras and lighting gradually
sculpts the fog-like NeRF volume into a coherent, view-consistent 3D object faithful to the caption.
Credit: DreamFusion [487].
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Method

High-level optimization loop

At each training step DreamFusion renders an image from the current 3D field, queries a frozen
diffusion prior for an image-space correction, and backpropagates that correction into the field’s
parameters. The loop is:

1. Sample view and light: a random camera and a nearby point light are chosen; the caption is
augmented with lightweight view tokens (front/side/overhead) to match the sampled viewpoint.

2. Select a render mode: one of albedo, shaded, or textureless shaded is chosen (described
below).

3. Render: a differentiable volume renderer integrates density 7 and albedo p, with shading tied
to surface normals from —V 7.

4. SDS guidance: the rendered image is noised to z;, the frozen diffusion prior predicts & (z|y,?),
and the residual with the injected noise € is formed.

5. Update: the residual is backpropagated through the renderer and used to update NeRF
parameters 0.

Foreground-background separation

A single NeRF that tries to explain both the object and the environment tends to take an easy shortcut:
it smears low density across space or “repaints” colors per view, satisfying a 2D critic without
sculpting a compact 3D shape. DreamFusion avoids this by giving the object and the environment
different jobs:

* Foreground object field. Inside a bounded sphere, an MLP fy : x — (7(x), p(x)) predicts
volumetric density T (shape) and view-independent albedo p (base color). Because p does
not depend on view direction, variability across viewpoints must come from geometry and
lighting, not from re-painting appearance.

* Directional background. A lightweight function b(t) of ray direction supplies the distant
backdrop (a “skybox”). It cannot produce density or geometry—only colors—so it cannot be
used to explain images by adding fog in 3D.

The renderer combines the two with standard alpha compositing:

Cimg = Cfg_’_(l_A)b(f.)’ Cfg:zwiciv A:ZW"'

If the object along the ray is opaque (A = 1), the background is hidden; if the ray is empty (A~0),
the background shows through. Trained end-to-end with SDS, the object field learns compact shape
and albedo, while the background head explains the environment without inviting density “spill”.
For purely scenic prompts (e.g., “a sunset”), the object field can remain nearly transparent and the
background carries the content; for object-centric prompts, they cooperate naturally.

From density to orientation: making shape visible

Once foreground and background are disentangled, the next step is to make the object’s geometry
perceptible from a single rendered view. In images, 3D shape is revealed primarily through shading,
which depends on how surfaces are oriented relative to light. To compute shading, DreamFusion
derives surface orientation directly from the NeRF’s density field.
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The volumetric density 7(X) is a scalar field: low in empty space, high inside the object. Its
gradient V47 points toward the direction of steepest increase, i.e., into the solid. Flipping the sign
yields an outward-pointing vector aligned with the local surface normal:

Yiwin;
Yiwi
where the ray-normal fi is an opacity-weighted average of sample-level normals. This construction
provides the critic with orientation cues even though the NeRF never predicts normals explicitly.
With normals available, DreamFusion can introduce randomized lighting. A point light direction
i, ambient term £, and diffuse color £, define a Lambertian shading factor:

n(x) o< —Vy1(x), n=

si =y + £y -max{0, (n;,1)}.

This factor modulates albedo p; at each sample to yield intensity variations that depend on surface
curvature.

By alternating whether albedo is included, modulated, or removed, DreamFusion creates com-
plementary renderings that expose different signals about appearance and shape. These become the
three render modes described next, each designed to steer the critic’s gradients toward the right part
of the scene representation.

Render modes: complementary recipes for supervision
The object head always outputs the same raw ingredients at each 3D point: volumetric density 7(x)
(which sculpts shape) and albedo p (x) (the base, unlit color). From 7 we also derive a surface normal
via —V 7, and with a randomized light we compute a shading factor s. The three render modes are
not extra networks, but three different recipes for combining these ingredients into a 2D image. By
showing the critic different combinations, DreamFusion exposes both texture and geometry.
* Albedo (color only).
c?lb = pi.
This mode shows the critic just the raw pigment without any lighting. It ensures that caption
semantics (e.g. “a red apple”) anchor to the right places in the 3D volume. Gradients flow
mainly into albedo p, with weaker updates to density 7 through transmittance. On its own,
however, this admits the “billboard” shortcut: painting a flat plane with the right texture.
* Shaded (color + light).

shaded

C; =piOs, si=4, +€p max{O, <n,-7i>}, n; o< —VXT(X[).

Here the albedo is modulated by diffuse shading. Because s; depends on surface normals, and
normals depend on V7, feedback now flows through the density field as well as the albedo.
This couples appearance to geometry: the critic’s judgment of brightness directly sharpens the
shape.

» Textureless shaded (shape only).

texless

C; = (p El)

By setting albedo to white, the only variations in the rendered image come from light and
surface orientation. The critic can no longer be satisfied by painting details onto flat surfaces:
the only way to improve is to refine geometry so that shading patterns look realistic. Gradients
thus flow almost exclusively into 7.
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Why alternate between all three? Each mode alone is insufficient. Albedo anchors colors but ignores
shape; textureless shading enforces shape but discards semantics; shaded rendering mixes both but
can be ambiguous about whether an error is due to color or geometry. By cycling among them,
DreamFusion forces the critic’s gradients to supervise both appearance and geometry, closing off
shortcuts and gradually sculpting a coherent 3D object.

This sets up the final ingredient: a way to turn the critic’s judgment into gradients. The critic is
a frozen text-to-image diffusion model, and the mechanism is Score Distillation Sampling (SDS),
described next.

Score Distillation Sampling: turning a 2D prior info 3D updates
Goal. Use a frozen 2D diffusion model as a critic to guide a 3D NeRF. The critic never trains; only
the NeRF parameters 6 are updated.

Rendering and forward noising. For a sampled camera, light, and render mode m € {alb, shaded, texless},
render

x(m) (9) € RHXWx3
Draw timestep ¢ and add VP noise:

Zt:oc,x(m)(e)—i—O}S, SN‘/V(OJ)v a12+0-12: L.

Frozen critic (diffusion prior). The diffusion network predicts the injected noise

€y = &y(z|y,1)

(with CFG inside the call). If the render already lies on the prompt manifold, &, ~ €; otherwise the
difference (& — €) is a pixel-space correction.

SDS gradient (definition and derivation). DreamFusion defines the update via the critic’s score,
chained through the renderer:

ox(m)

Vo Lsps(0) =By e |w(t) (8 (21 |y,1) — ) o |-

Diffusion theory gives V_, logpy(z |y) o< —(&; — €)/ 0, so the term (& — €) is an image-space
residual direction. No gradient flows through &y; all learning happens by multiplying this residual
with the renderer Jacobian dx(" /96.

How the image residual becomes NeRF updates. Let G = w(t) (& — &) € RF*W>*3 Then

dx(m) T&x(m)
Vo -Zsps = <G, 89> =) G, 8170 )

pixels p

N

=1

For a pixel p with ray samples {x;}

N N
C= Zwici, A:ZW,', w; =T;q, T;ZI I(I—OCJ'), Oljzl—e_riai.
4 =

i=1 i= Jj<i
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Useful partials:

oo s s ‘ oC
oT; =i " =o(l - @), Ipi

= W; I3.
We keep the standard NeRF transmittance pathway symbolic via gc which accounts for how
changing opacity at any sample modulates all farther contributions through 7; (k > i).

Mode-specific decompositions. The render mode m sets ¢; and therefore which parameters receive
strong gradients.

Albedo (unlit): appearance-centric updates

1b
a = pi.

Chain rule:
8xa1b oC 8p, 8061- 81:1-

Z&pl EL) Z 8061 ot 00’
~— =~
w,~ viaT, w §;(1—a;)

Effect. The first sum (strong) refines p (textures/colors). The second (weaker) adjusts 7 only through
transmittance—insufficient to robustly sculpt geometry on its own.

Shaded color (lit): coupled appearance—geometry updates

c“hade‘jI =p;®s, si =Ly +{p -max{0, <n,~,i>}, n; < —Vy1(x;).
Chain rule (grouping terms):
axshaded oC 8(p, ©s;) 8p, Z dC d(p; ®s;) In; IT; N oC 80@@
00 ~ dp; 8p, de;  om; 9T 96 ~Jdo; dT; d6
appearance (as in albedo) geometry via normals geoWnce

Effect. Two geometry channels appear: (i) via normals (n; < —V 7, which introduces derivatives
of V1 w.r.t. 8; autodiff handles these), and (ii) via . Shaded mode therefore sculpts T while still
refining p.

Textureless shaded (lit, no texture): pure geometry updates
c(exless =g (p — 1)
= =1).

1

Chain rule:

8xte’“e“ Z dC ds; dn,; IT; n Z aC 805,-%
dc; om; 0T, 060 ~ da; dT; 96

~~ ~~

geometry via normals geometry via transmittance

Effect. With p removed, all signal flows into 7. The only way to please the critic is to improve
geometry (normals/curvature and occupancy).

Intuition. SDS provides a pixel-space “correction image”. The renderer’s Jacobian routes that
correction into p in albedo mode, and into 7 (via normals and opacity) in shaded/textureless modes.
Cycling the three modes resolves the classic ambiguity: albedo learns caption-faithful appearance;
shaded couples appearance to curvature; textureless removes the paintbrush entirely, hardening
geometry. High CFG increases realism of the supervising direction but may reduce diversity; w(z)
balances contribution across noise levels.
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View sampling and view-aware prompting

Each iteration samples a random camera (azimuth, elevation, distance, focal multiplier) and a point
light near the camera. Captions are augmented with lightweight view fokens (front/side/overhead)
to align the diffusion prior’s expectations with the current viewpoint. Because albedo p is view-
independent, variation across views must be accounted for by geometry and lighting, encouraging
one coherent 3D asset rather than per-view repainting.

Ancestral Sampling Score Distillation Sampling
5 Mmmu;'u-
i z; = g(0:)
e ‘41» i—b Liz
ze 1
Updates sample in plu,l space; 21 = ddpm_updat.e zf] Updates parameters with SGD: 0,11 = opt.step(d,, Vallx;))

Figure 23.174: Sampling an image vs. sculpting a 3D field. Left (ancestral diffusion): a standard
diffusion model synthesizes a 2D image by denoising zr — zo directly in pixel space. Right (SDS
in DreamFusion): the diffusion model is used as a critic. A NeRF render x = g(0) is noised to
% = 04x+ 0;€; the model predicts &, and the residual (£y — €) becomes an image-space update that
is backpropagated through the differentiable renderer to adjust the NeRF parameters 6. Thus, SDS
does not generate pixels; it provides gradients that sculpt the 3D field. Credit: DreamFusion [487].

Putting the loop together
Each iteration interleaves appearance- and geometry-focused signals so that SDS sculpts both p and
T

1. Sample view and light. Draw a random camera and a point light; add view fokens (front, side,
overhead, etc.) to the caption.

2. Pick a render mode. Alternate among albedo (anchors color semantics), shaded (injects

curvature/normal cues), and fextureless shaded (removes texture shortcuts to force geometry).

Render and diffuse. Render x(")(6) at low resolution; sample 7 and form z; = a;x"™ + ;€.

4. Apply SDS. Evaluate &y (z|y,); form g; = w(t) (& — €); backpropagate g; through the renderer
to update 6.

(98]

Albedo steps maintain caption-faithful appearance; shaded steps sharpen geometry via normal-
dependent shading; textureless steps consolidate shape by eliminating albedo as a degree of freedom.
View-aware prompting stabilizes semantics across viewpoints, randomized lighting diversifies
geometric cues, and background factorization prevents degenerate density fills—together converting
2D diffusion feedback into reliable, 3D-consistent supervision.

Implementation Details

Frozen diffusion prior

DreamFusion employs the base Imagen model at 64 x 64 with classifier-free guidance and a strong
language encoder (e.g., T5-XXL). Larger guidance typically improves realism at the cost of diversity.

Foreground-background composition

The object field is confined to a bounded sphere to discourage diffuse density spread. The background
head provides direction-conditioned colors and is alpha-composited via transmittance, yielding
object-centric assets without fog.
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Experiments and Ablation

Qualitative gallery and comparisons

DreamFusion produces diverse, compositionally rich assets with multi-view consistency and clean
geometry.

é |
3

an orangutan making a clay bowl on a throwing wheel* 2 raccoon astronaut holding his helmet ! u blu: jay standing on a l'|rvr. basket of rainbow macarons®

I~

o eorgi taking a selfie® o table with dim sum on it

ﬁiﬁ

Michelangelo style satue of dog reading news on a cellphane a tiger dresseat s adlu.mr

i

a humnanoid robot playing the cello®

F Y Y

a chimpanzee dressed like Henry VI king of England®

a steam engine irain, high resolution*

A1)

a frog wearing 3 swealer?

an all-utbity vehiche driving across a siream’ 2 baby bunny siting on top of a stack of pancakes

aclassic Packard car

a X M

woomsed oul view of Tower Bridge made out of gingerbread and condy’ i robe and dinosaur pl.mn chess, high rese \I\m o * a squirre] gesturing in front of an easel showing colosful pie Lh.lm

Figure 23.175: DreamFusion gallery of text-to-3D assets. Each cell shows results for one text
prompt (examples include “a raccoon astronaut holding his helmet”, “a baby bunny sitting on top
of a stack of pancakes”, “a sliced loaf of fresh bread”, and “Sydney Opera House, aerial view”).
For every prompt, two novel viewpoints demonstrate multi-view consistency of the learned 3D
NeREF. Insets provide disentangled visualizations: textureless shading reveals the learned geometry
independent of albedo, while normal maps expose smooth surfaces and curvature. The collection
highlights DreamFusion’s ability to (i) synthesize creative and compositional scenes (e.g., a robot
and dinosaur playing chess), (ii) generate faithful geometry and detailed textures across diverse
categories (animals, food, vehicles, architecture), and (iii) disentangle shape from appearance by
supervising both albedo and geometry. Prompt modifiers (x, T, ) correspond to stylistic cues
improving realism. Videos and interactive results available at dreamfusion3d.github.io. Credit:
DreamFusion [487].
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Dream

Fields

Dream

Fields
(reimpl.)

CLIP-
Mesh

Dream-
Fusion
(Ours)

matte painting of a castle made 5 yage with a h&nlbur ger

of cheesecake surrounded by a ity
moat made of ice cream pi OWers

Figure 23.176: Qualitative comparison of text-to-3D methods. Each column corresponds to the
same text prompt (e.g., “a matte painting of a castle made of cheesecake surrounded by a moat made
of ice cream”, “a vase with pink flowers”, “a hamburger”); The figure compares between Dream
Fields (original), Dream Fields (reimplementation) [258], CLIP-Mesh [548], and DreamFusion.
Dream Fields often produces amorphous, low-detail shapes with color patterns loosely matching the
text. CLIP-Mesh improves geometric definition (e.g., a recognizable vase or castle) but introduces
noisy, unrealistic textures typical of CLIP-guided optimization. DreamFusion, guided by a diffusion
prior via SDS, produces coherent 3D structures with clean silhouettes, semantically faithful details,

and plausible textures across views. Credit: DreamFusion [487].

Caption-image coherence via CLIP retrieval

Goal. To test whether generated 3D assets truly match their captions, DreamFusion evaluates
caption—image coherence using CLIP retrieval, following the protocol in [487]. CLIP serves as a
frozen “judge” that compares rendered images against text captions.

Metric (R-Precision). The evaluation is framed as a retrieval task:
* Render an image from the 3D model (two views per asset).
* Present CLIP with this image and its correct caption, alongside 40 random distractor captions.
* Count success if CLIP assigns the highest similarity to the correct caption.
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R-Precision is the fraction of correct matches. Higher values indicate stronger text-image alignment.

Encoders. Results are reported across three CLIP backbones: B/32, B/16, and L/14. This ensures
robustness across different embedding granularities.

Two evaluation modes. To disentangle appearance from geometry, renders are produced under two
conditions:
* Color renders: full shaded images that test joint shape and texture alignment.
* Textureless renders (‘“‘Geo”): albedo removed, leaving only shading from geometry. This
isolates whether the 3D shape alone matches the caption, eliminating texture-only shortcuts.

Caveat. Baselines like Dream Fields and CLIP-Mesh are trained directly with CLIP supervision.
Their scores may be optimistic when evaluated with the same CLIP family, while DreamFusion
relies on a diffusion prior (Imagen) and therefore does not benefit from this alignment.

Table 23.40: CLIP R-Precision (%) on object-centric COCO. “Geo” uses fextureless shaded
renders (albedo removed) to test geometry—text alignment. { evaluated with one seed. Baseline
numbers in parentheses may be inflated when training and evaluation share the same CLIP model.

Method CLIP B/32 CLIP B/16 CLIP L/14
Color Geo Color Geo Color Geo
GT Images 77.1 - 79.1 - - -
Dream Fields (reimpl.) [258] 68.3 - 74.2 - - -
CLIP-Mesh [548] 67.8 - 75.8 - 7457 -
DreamFusion 751 425 775 46.6 79.7 585

Findings.

* Color renders. DreamFusion matches or surpasses prior work across all CLIP backbones,
confirming strong caption—appearance coherence. Generated models are not only textured
plausibly but also semantically faithful to prompts.

* Textureless renders. DreamFusion achieves much higher R-Precision than baselines. This
shows that even without texture, the geometry itself is aligned with the caption. By contrast,
CLIP-supervised methods often rely on painting textures onto weak shapes.

* Mechanism. These gains come from DreamFusion’s design: view-independent albedo,
shading-based supervision, and Score Distillation Sampling. Together, they prevent degen-
erate “billboard” solutions and force the model to sculpt volumetric geometry that remains
recognizable even when stripped of texture.

In summary, CLIP retrieval confirms that DreamFusion succeeds not just at painting caption-faithful
textures but also at learning consistent 3D geometry that aligns with the text prompt.
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Ablations: what unlocks geometry?
What we test. Starting from a minimal setup, components are added one at a time to see which
choices turn 2D supervision into reliable 3D shape:

* View-aware prompting. Append tokens that match the sampled camera (e.g., front, side,
back, overhead) so the text prior “expects” the current viewpoint.

* View-independent reflectance (with normals). Replace a view-dependent RGB head with an
object field that outputs density T and view-independent albedo p; compute surface normals
from the density gradient (ne< —V ) and use them for shading.

* Randomized diffuse lighting. Sample a point light (typically near the camera) every step so
different parts of the surface are illuminated over training.

* Textureless shaded passes. Interleave renders where albedo is removed (p = 1) so the image
depends only on geometry through shading.

Why they matter.

* View tokens = single identity across views. Without them, the critic judges each view in
isolation; the model can learn Janus artifacts (multi-faced subjects) and flat, view-specific
fixes. Aligning the caption to the camera ties all views to the same object.

* View-independent p + normals = “paint” no longer helps. When color cannot vary with
view, appearance changes must come from lighting on geometry. Normals derived from —V 1T
route supervision into T, improving curvature and smoothness rather than re-painting per view.

* Random lighting = all bumps get seen. A fixed light can hide geometry on the dark side.
Varying light direction exposes different surface patches across steps, yielding denser, less
biased geometric gradients.

* Textureless passes = unambiguous shape signal. Removing albedo eliminates the “texture
shortcut”. The only way to satisfy the critic is to sculpt 7 so shading alone explains the image.
Trade-off: overuse can encourage carving high-contrast texture edges into geometry, so these
passes are interleaved rather than used exclusively.

Empirical takeaway. In the ablation (see the below figure), improvements are smallest on

albedo evaluations and largest on shaded/textureless evaluations—precisely where geometry matters.
The progression

1. base (no view tokens),

2. + view-aware prompting,
3. + lighting/shaded renders,
4. + textureless shaded passes

monotonically increases geometry-sensitive R-Precision and visually turns multi-faced, flat subjects
into smooth, volumetric shapes with cleaner silhouettes.
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Figure 23.177: Ablation: components that improve geometry. Left: CLIP L/14 R-Precision
measured on three evaluation renders (Albedo, Shaded, Textureless) as components are added. Gains
are largest for geometry-sensitive evaluations (Shaded/Textureless). Right: Prompt “A bulldog is
wearing a black pirate hat”. Progression shows: base — +view tokens — +lighting — +textureless
shading. Tokens stabilize semantics; lighting exposes curvature; textureless passes remove the
billboard shortcut and yield more volumetric geometry. Credit: DreamFusion [487].

Iterative refinement and compositional editing
Editing protocol. DreamFusion allows continued optimization from intermediate checkpoints. A
single NeRF is retained while the caption is modified, and SDS fine-tuning resumes on the updated
text. This means new content is composed onto the existing asset rather than starting over.
What this enables.
* Start from a base object (e.g., “a squirrel”).
* Add attributes sequentially: “wearing a leather jacket”, then “riding a motorcycle”. Each
edit accumulates without breaking identity or view consistency.
* Branch into creative variants: the same squirrel can be edited to be “carved out of wood”, or
placed in new environments like “on a road made of ice” vs. “through a field of lava™.
a leather
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Figure 23.178: Iterative refinement with compositional editing. From a base model, optimization
continues as the text is edited (attributes, style, background). Top rows show two novel views
per edit; strips give additional viewpoints. Because a single NeRF is optimized throughout, new
attributes are layered onto the same geometry rather than regenerated from scratch, maintaining view
consistency and identity while enabling interactive scene building. Credit: DreamFusion [487].
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Limitations and Future Work
While DreamFusion establishes a powerful pipeline for text-to-3D generation, several limitations
remain:

* Diversity vs. guidance. Extremely strong classifier-free guidance (CFG) is required to achieve
high-fidelity supervision. This often induces mode seeking, reducing sample diversity across
random seeds and causing repeated “canonical” solutions for a given prompt.

* Material and lighting realism. The use of diffuse Lambertian shading simplifies training
but underrepresents specular highlights, translucency, and complex BRDF effects. As a result,
generated assets often appear matte or plasticky rather than photorealistic.

* Scene complexity. DreamFusion is fundamentally object-centric: it assumes a single fore-
ground object within a bounded volume and a separate background. This restricts its ability to
model multi-object interactions, cluttered layouts, or spatially structured environments.

* Compute bottleneck. The most significant drawback is efficiency. SDS guidance requires
repeatedly rendering full-resolution images from the NeRF and passing them through the
frozen diffusion prior. This is slow and memory-intensive, limiting scalability and making
interactive use challenging.

These limitations motivated subsequent methods that trade DreamFusion’s image-space guidance
for more efficient latent-space guidance. Approaches such as LatentNeRF [427], Fantasia3D [85],
and Magic3D [353] directly distill supervision from latent diffusion models (e.g., Stable Diffusion)
rather than pixel-space denoisers. This substantially reduces computational cost while preserving
geometric consistency. In addition, Fantasia3D explores disentangled control over geometry and
appearance, addressing the shading/material realism issue, while Magic3D introduces a coarse-to-
fine optimization pipeline that improves both detail and efficiency.

Looking forward, promising directions include:

* Diversity-aware guidance, balancing CFG fidelity with variability.

* Richer reflectance models, capturing specularities and complex light transport.

* Scene-level modeling, extending beyond single objects to structured, multi-object environ-
ments.

* Hybrid pipelines, combining DreamFusion’s explicit geometry supervision with latent diffu-
sion efficiency, as seen in later works.

In the next part, we examine LatentNeRF, a direct response to DreamFusion’s computational
bottlenecks, which achieves faster optimization by shifting SDS guidance from image-space to
latent-space, while also keeping/improving the resultant image quality.
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Enrichment 23.14.2: Latent-NeRF for Shape-Guided 3D Generation

Motivation

From DreamfFusion fo Latent-NeRF

DreamFusion 23.14.1 established that a powerful 2D text-to-image diffusion model can supervise
a 3D NeRF via Score Distillation Sampling (SDS), but it operates in RGB space and originally
relied on a heavy, proprietary backbone (Imagen). Latent-NeRF adopts the same SDS principle yet
relocates supervision and rendering into Stable Diffusion’s VAE latent space Z, thereby reducing
computational load while maintaining multi-view consistency through NeRF’s volumetric rendering.
Beyond efficiency, the central goal is controllability: text-only guidance is underconstrained in 3D,
so the paper introduces Sketch-Shape geometry guidance and Latent-Paint for texturing explicit
meshes.

“Astack of v 4
pancakes covered
in muaple syrup”

“A highly detailed - A Cicrman o =i fish with
sandeastle™ 3 Shepherd™ " leopard spots™
I

Latent-NeRF Sketch-Shape Latent-Paint

Figure 23.179: Latent-NeRF’s three text-guided modes. Left: Latent-NeRF (text-only text-to-3D).
Middle: Sketch-Shape for coarse shape control. Right: Latent-Paint for text-guided texture on
explicit shapes. The top row shows inputs. Examples include: “A stack of pancakes covered in
maple syrup”, “A highly detailed sandcastle”, “A German Shepherd”, and “A fish with leopard spots”.
Source: [427].

Why latent supervision

Volumetric rendering is fundamentally a linear operation that blends feature vectors along rays. The
convolutional encoder used in the VAE ensures that each latent vector at coordinate (u,v) encodes a
localized patch of pixels, often called a super-pixel. These super-pixels preserve spatial coherence,
so interpolating them along a ray produces meaningful blends in latent space. Empirically, decoding
linear combinations of latents results in plausible local textures and structures, just as decoding
linearly blended RGB colors yields plausible photometric mixtures. This property justifies treating
Z (typically 64x64x4) as a continuous radiance field suitable for NeRF-style volume rendering,
even though its channels are abstract features rather than raw RGB.

In effect, the latent radiance field serves as a dense 3D representation in which NeRF’s differ-
entiable rendering can be applied directly, producing latent images that are natively compatible
with Stable Diffusion’s denoiser. This eliminates the bottleneck of pixel-to-latent encoding at each
iteration and allows gradients from the diffusion model to flow efficiently into the NeRF.
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Method
Overview and connection to DreamfFusion
Latent-NeRF builds directly on the Score Distillation Sampling (SDS) framework introduced in
DreamFusion, but shifts the entire process into the latent space. Whereas DreamFusion renders
RGB images from NeRF and then re-encodes them into latents for diffusion guidance, Latent-NeRF
trains a NeRF whose outputs are already latents. This simple yet powerful modification removes
redundant encoding steps and ensures consistency between the NeRF’s output domain and the Stable
Diffusion denoiser.

Concretely, the NeRF MLP maps a 5D input—3D position plus 2D viewing direction—to a
volume density ¢ and a 4-dimensional latent feature vector ¢ € R*. Standard volumetric rendering
integrates these outputs along each ray, yielding a latent image

ze R64><64><4.
At each training step, Latent-NeRF applies SDS in latent space:

1. A random diffusion time ¢ is sampled.

2. Gaussian noise € is added to the rendered latent z, producing x; = \/04z++/1 — o4 €.

3. The frozen Stable Diffusion denoiser & (x;,T,t) predicts the noise, conditioned on the text
prompt 7.

4. The SDS gradient is computed from the residual (&5 — &), which backpropagates through the
rendering process to update the NeRF parameters 6.

This procedure is structurally analogous to DreamFusion, but by performing all operations in the
latent domain, Latent-NeRF achieves both efficiency and training stability. Subsequent refinement
stages can optionally decode the latent radiance field back into RGB using the VAE decoder, enabling
high-fidelity visualization while retaining the computational benefits of latent-space supervision.

Latent-NeRF Score Distillation

Stable “a vase with
Diffusion sunflowers” |

s, t, T —e |

n. Vigpgres—e¢

Figure 23.180: Overview of latent-space SDS for Latent-NeRF. A rendered latent map z is noised
at time ¢ and denoised by Stable Diffusion; the difference between predicted and injected noise yields
gradients that update the NeRF in latent space. Inference decodes z to RGB via the VAE decoder.
Source: [427].
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NeRF in Stable Diffusion latent space

Given a point x and view direction, the MLP outputs (cj,c2,c3,¢4) and density o. Standard
volumetric rendering aggregates these along the ray to yield z. This retains the multi-view coupling
of NeRF while aligning supervision to the latent domain where the teacher denoiser operates.

SDS in latent space
At each step, with € ~.47(0,1) and schedule constant @,

X = Voyx +/1—aye, (23.79)
and the per-pixel SDS gradient is
V. Lsps = w(t) (& (x:,1,T) — €), (23.80)

where €, denotes the denoiser, 7 is the prompt, and w() depends on the noise schedule. Latent-NeRF
minimizes

L = ASDS ZLsps + )Lsparse og/{;parse» (23.81)
with Ziparse = BE(Wpiend) to suppress floaters/background fog.

Step-by-step fraining loop
# Pretrained Stable Diffusion: encoder E, decoder D, UNet eps_phi

1
> # Radiance field f_theta: (z, y, 2z, d) -> (cl..c4, sigma)

3

4+ for step in range(num_steps):

5 # 1) Random camera pose; render latent z via volumetric rendering

6 z = render_latent (f_theta, sample_camera())

-

8 # 2) Pick diffusion time t and add noise

9 t = sample_t()

10 eps = torch.randn_like(z)

11 x_t = sqrt(alpha_bar[t]) * z + sqrt(l - alpha_bar[t]) * eps

12

13 # 3) Denoise with text T and form SDS gradient wrt z

14 eps_pred = eps_phi(x_t, t, T) # Stable Diffusion UlNet

15 g_sds = w(t) * (eps_pred - eps)

16

17 # /) Backprop through rendering to update theta

18 loss_main = (g_sds.detach() * z).sum() # autograd handles chain rule
19 loss_sparse = binary_entropy(w_blend(z))

20 loss = lambda_sds*loss_main + lambda_sparse*loss_sparse

21 loss.backward(); optimizer.step(); optimizer.zero_grad()
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Rendering and latent image formation

Let {x,-}f’: | be the stratified samples along a camera ray with spacings A;. The field outputs
(¢i,0;) = fo(x;,d) where ¢; € R* are Stable-Diffusion VAE latents and o; > 0 are densities. Using
standard alpha compositing:

a; = 1 —exp(—0iA), T =[]0 —ay), (23.82)
J<i
N
wi=To;,  z(u,v) =Y wie; € R, (23.83)
i=1

so the rendered latent image z € R%+*%4*4 is obtained by evaluating (23.83) per pixel (u,v).

Diffusion guidance in latent space (SDS)
For a randomly drawn diffusion step # and Gaussian noise € ~.4(0,1), the forward noising is

Xy = \/(37;2 —+ / 1—56;8, (2384)

and the per-pixel SDS gradient applied to z is
VoZsps = w(t) (& (x,1,T) — €), (23.85)

where €, is the frozen Stable Diffusion denoiser and w(t) follows the noise schedule (scaling can
absorb the /1 — 0 factor used in some SDS variants). Gradients backpropagate through (23.83)
and (23.82) into 6.

Classifier-free guidance (CFG) in latent SDS
When using CFG, the denoiser is queried twice (with/without the text):

éCfg = (1+s)8¢(xt7t7T) _S8¢(xt7t7®)7 5207 (2386)
and &y in (23.85) is replaced by &f,. This preserves the SDS form while strengthening text adherence.

Sparsity / anti-fog regularization

A well-known failure mode in NeRF optimization is the tendency to produce “floaters” (detached

blobs of density) or a diffuse “fog” spread throughout the volume. Both artifacts can satisfy the

supervision signal (e.g., SDS) from certain views, but they yield incoherent or implausible 3D

structure. To combat this, Latent-NeRF introduces a sparsity prior on the ray termination probability.
Let w; denote the volumetric weight at sample i along a ray, and define the ray’s termination

probability as

Wierm = Zwi = 1-Ty41,
i

where Ty is the residual transmittance at the end of the ray. Intuitively, wier, measures whether
the ray “hit something” (value close to 1) or passed entirely through empty space (value close to 0).
The sparsity penalty applies the binary entropy function:

o%sparse = — Wierm l0g Weerm — (1 - Wterm) 10g(1 - Wterm) . (23.87)
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Why this works.

* The binary entropy function is minimized at wierm = 0 or 1, meaning the ray makes a confident,
binary decision: either no surface was encountered, or a solid surface terminated the ray.

* The function peaks at wierm = 0.5, corresponding to maximum ambiguity. This case occurs
when the model spreads low opacity across many samples, effectively creating fog. The loss
strongly penalizes this outcome.

Effect on geometry. Minimizing .Z{p.rse discourages semi-transparent mass and pushes density

into compact, surface-like structures. This leads to:

1. Suppression of floaters: small blobs of density that contribute minor opacity become disfavored,
since they push wier, away from O or 1.

2. Crisp object boundaries: instead of a gradual haze, rays either fully terminate on an object
(opacity near 1) or pass cleanly through empty space (opacity near 0).

Relation to other regularizers. This objective serves the same purpose as the “opacity penalty”
in DreamFusion and resembles distortion-based losses in Mip-NeRF 360, which also discourage
opacity from being spread diffusely along rays. The key distinction here is its simplicity: the binary
entropy prior directly penalizes uncertainty in ray termination, providing a lightweight yet effective
“anti-fog” constraint that integrates seamlessly with SDS.

Total objective (normal/text-only mode)
Combining latent SDS with sparsity yields:

ﬁotal = 2‘SDS D%SDS + Asparse c%parsea (2388)

with Zsps applied by integrating (23.85) over all pixels of z for the current camera. Typical
implementation details include:
* Camera sampling. Uniform azimuth/elevation around the object with radius jitter; FoV drawn
from a range to expose multiple scales.
* t-sampling. Uniform or cosine-weighted over diffusion steps; w(r) chosen to balance early/late
noise levels.
* Gradient stabilization. Stop-gradient on &, (teacher) and optional gradient clipping on
V.-%sps before backpropagating through volume rendering.
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Sketfch-Shape guidance: Rationale and Mechanism

Why it is needed. Text-to-3D generation guided only by natural language is often underspecified:
prompts such as “a wooden chair” or “a German Shepherd” describe appearance but rarely pin down
a unique geometry. This lack of geometric priors can produce ambiguous or unstable reconstructions
(e.g., Janus-like multiple faces, inconsistent body proportions). To mitigate this, Latent-NeRF
introduces Sketch-Shape guidance, which supplies a coarse 3D proxy (e.g., composed of primitive
shapes or a rough mesh) that defines global structure and pose. The text prompt then refines this
scaffold by providing details, texture, and style. This decoupling of geometry (from the Sketch-Shape)
and appearance (from text guidance) yields controllable, stable synthesis.

Figure 23.181: Sketch-Shape results under different prompts. One simple animal-like mesh
guides distinct objects (deer, German Shepherd, pig); four views per result demonstrate 3D consis-
tency. Source: [427].

How it works. The coarse shape is converted into a binary occupancy function, agr(p) € {0,1},
which marks whether a sampled point p along a camera ray lies inside or outside the proxy. The
NeRF MLP is not replaced by a separate network; rather, the same radiance field MLP outputs its
usual density o and opacity anerr(p). A distance-weighted cross-entropy loss then encourages
ONeRF tO match oGr:

d2

Lo shape = CE(overe(p), acr(p)) -(1-¢ 27 ), (23.89)

where d is the distance from p to the Sketch-Shape surface, and oy controls the softness of the
constraint.
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Interpretation of the weighting. The exponential term modulates how strictly the constraint is

enforced:

* Far from the surface (large d), the weight — 1, so the NeRF is strongly penalized if its
occupancy diverges from the proxy. This preserves the global volume.

* Near the surface (d = 0), the weight — 0, relaxing the constraint. Here, the NeRF is free to
deviate from the coarse proxy and follow gradients from the text-conditioned SDS loss. This
enables addition of fine details (fur, ornaments, textures) without being locked into the proxy’s
crude geometry.

The parameter oy tunes this tradeoff: small values enforce tight adherence to the proxy, while larger
values allow more stylistic freedom.

Integration. The Sketch-Shape loss is evaluated on the same set of ray samples already used
for volumetric rendering, so no additional forward passes are needed. The NeRF MLP remains the
sole predictor of densities and latents; the proxy only contributes distance and occupancy values for
loss computation. This design makes Sketch-Shape guidance a lightweight addition that integrates
seamlessly with the main SDS optimization, combining coarse geometric supervision with text-driven
refinement.

Effect of the leniency parameter oy
Increasing oy relaxes the constraint, enabling the NeRF geometry to deviate more from the input
shape under textual pressure.

= I
s

0.05 0.1 0.3 0.7 1.5

Figure 23.182: Ablation over oy in Eq. 23.89. Larger oy yields more lenient alignment and greater
geometric evolution. Source: [427].
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Latent-Paint for explicit meshes
When an explicit mesh with known UV coordinates is available, Latent-Paint enables texture
optimization directly in the Stable Diffusion latent space.

UV coordinates. UVs are a standard graphics convention for mapping points on a 3D surface to
positions in a 2D texture image. Each vertex on the mesh is assigned a (,v) coordinate in [0, 1], so
that a 2D image can be “wrapped” around the 3D surface. If a mesh does not come with UVs, they
can be automatically computed with algorithms such as XAt/as, which unfold the surface into a set
of non-overlapping charts.

Mechanism. Latent-Paint defines a latent texture image © € in the same 4-channel
space as Stable Diffusion’s VAE. Differentiable rasterization maps each triangle of the mesh to
the corresponding latent pixels of ®, producing a rendered latent image from a given camera
viewpoint. This image is then supervised by the same latent SDS rule used in Latent-NeRF: it is
noised, denoised by the Stable Diffusion UNet, and the residual between predicted and injected noise
provides gradients. These gradients backpropagate through the differentiable renderer to update the
pixels of ©.

After convergence, a single decode of ® with the VAE decoder produces a high-resolution RGB
texture image. The benefit of this approach is that it avoids per-pixel optimization in RGB space
and instead leverages Stable Diffusion’s compact latent representation to guide texture generation
efficiently.

RH><W><4

Latent-Mesh

" 4 Diff
j" Renderer

|

E x “a goldfish”

i uv

i Map | @ [N @ 000 Y Y

| 128 x 128 x 4 ! ' 1
. ] i Score

| Distillation

VLgps ~€s—¢

L »Decoder

Figure 23.183: Latent-Paint pipeline. A 128x128x4 latent texture is optimized by latent SDS
through a differentiable renderer; a single VAE decode yields the final RGB texture. Source: [427].
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RGB refinement with a learnable linear adapter

Although latent-space training is efficient, many applications (visualization, export, rendering)
require a NeRF that emits RGB directly. To bridge this gap, Latent-NeRF adds a small linear adapter
on top of the NeRF’s four latent output channels (cy,...,cs). This adapter maps the latent channels
to approximate RGB (7, 8,b) using a 3 x4 matrix, initialized to a hand-fit linearization of the Stable
Diffusion VAE decoder:

~ (&
P 0.298 0.187 —0.158 —0.184\ [
¢|=10207 0286 0.189 —0.271||*]. (23.90)
3 0.208 0.173 0264 —0.473) |3
C4

This initialization is only a starting point; the matrix is made frainable and updated during refinement.
What parameters are trained.
* NeRF MLP weights (geometry and latent features): the network that outputs densities ¢ and

latent channels (cy,...,c4) continues to be optimized.
* Adapter weights (the 3x4 matrix): this layer learns a better mapping from the four latent
channels to RGB.

Both components co-adapt: the NeRF learns to emit latent features that decode to better colors, and
the adapter learns how to colorize those features effectively.

How RGB participates in the loss.

* The NeRF with the adapter renders an RGB image /rgg (via volumetric compositing of (7, g, 13)
and o).

e Jrgp is passed through the (frozen) VAE encoder to obtain a latent code 7.

* Score Distillation Sampling (SDS) is applied in latent space on 7' using the text-conditioned
denoiser; this yields gradients.

» Gradients backpropagate through the encoder (no updates), then through the RGB image,
adapter, volume renderer, and into the NeRF MLP.

Thus, even though the supervision remains in Z, the RGB pathway matters: the only way to make 7’
align with the text-conditioned score is to render RGB that, when re-encoded, produces better latents.
This couples pixel-space fidelity to the latent-space objective.

Why this matrix and how it improves.

* [Initialization: the matrix in Eq. 23.90 approximates the VAE decoder’s local colorization,
providing coherent initial RGB previews rather than arbitrary colors.

* Learning signal: there is no ground-truth RGB. Improvement is measured by how well the
re-encoded latents 7’ satisfy SDS. Lower SDS loss implies better alignment; gradients adjust
both the adapter matrix and NeRF MLP accordingly.

* Why not decode with the full VAE decoder D each step? Inserting a deep CNN into every
volumetric rendering iteration would be prohibitively slow, and SDS still requires returning
to Z. The adapter achieves a fast, differentiable RGB bridge without dragging D through the
ray-marching loop.

Why refinement helps.

* Latent-only training captures semantics but can under-express pixel-space sharpness due to
decoder limitations.

* The refinement loop biases the field toward RGB detail: the NeRF learns to place and modulate
high-frequency color directly, while SDS—applied after re-encoding—Xkeeps the result text-
faithful and multi-view consistent.
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Figure 23.184: RGB fine-tuning strategy. Starting from a Latent-NeRF trained in latent space,
a trainable matrix adapter maps the four latent channels to RGB to obtain an RGB preview. The
system then continues optimization with supervision in RGB: render an RGB view, re-encode it with
the VAE encoder to Z, and apply the same SDS guidance. Gradients update both the NeRF MLP
and the adapter, improving high-frequency color/detail while retaining the robustness of latent-space
supervision. Source: [427].

Architecture and Implementation Details

Backbones

Stable Diffusion v1-4 (HuggingFace Diffusers) provides the VAE (E,D) and UNet denoiser €;;
Instant-NGP serves as the NeRF backbone for efficiency. Latent rendering uses 64 x 64 x4 maps;
Latent-Paint uses H =W =128 latent textures by default.

Schedules and regularizers

SDS uses Eq. 23.84-23.85 with w(¢) tied to the diffusion schedule. A binary-entropy sparsity term
BE (wpiend) suppresses floaters and encourages strict object/background blending. Sketch-Shape uses
Eq. 23.89 over the point set already sampled for volumetric rendering.

Experiments and Ablations

Text-only generation and mulfi-view consistency

Latent-NeRF produces coherent 3D assets under text-only guidance; view sweeps confirm stable
geometry and appearance.

“A photo of a giraffe”

TEEE.

-

“A photo of 4 vase with sunflowers™

Al D 8 P )
& v 9 &€ @©

“A photo of a basket with fiuits”

Figure 23.185: Results from different viewpoints. Examples include “A photo of a giraffe”, “A
photo of a vase with sunflowers”, and “A photo of a basket with fruits”, rendered from multiple
views to demonstrate 3D consistency. Source: [427].
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Qualitative comyparison
Against DreamFields, CLIPMesh, and DreamFusion, Latent-NeRF typically shows sharper textures
and more plausible geometry for identical prompts.

DreamFields

DreamFields reimpl.

CLIPMesh

DreamFusion

Latent-NeRF (Qurs)

“a Matte painting of a “A vase with pink “A hamburger”
castle made of flowers”
cheesecake surrounded
by a moat made of ice
cream”

Figure 23.186: Qualitative comparison. Rows: DreamFields/reimpl., CLIPMesh, DreamFusion,
Latent-NeRF. Columns: prompts such as castle, vase, hamburger. Latent-NeRF yields detailed and
prompt-faithful geometry and materials. Source: [427].
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RGB refinement improvements
Refinement enhances high-frequency detail (textures, material cues) beyond what the VAE decoder
alone produces.

RGB Refinement Latent

Latent

RGB Refinement

Figure 23.187: RGB refinement results. Improvements are shown for latent text-to-3D (ice cream,
temple) and Sketch-Shape (lego, car); per-pixel normals visualize geometry. Source: [427].
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Controllability via Skefch-Shape

Using identical prompts with and without shape guidance reveals strong benefits for geometric
coherence.

Shape guidance  No shape guidance  Shape guidance = No shape guidance

“A robot hand, realistic” “a lego man”

Figure 23.188: Ablation on shape guidance. With vs. without Sketch-Shape under identical prompts

(robot hand, lego man) shows the role of geometric priors in eliminating wispy, incoherent structures.
Source: [427].

More Sketch-Shape results
A simple house prior can be styled in multiple ways; further examples span hands, toys, and vehicles.

|

R
N
v ® o
X

“A house made “A gingerbread “A gothic “A house made
of lego” house™ house™ of candy”

Figure 23.189: House prior under multiple styles. Lego, gingerbread, gothic, and candy; RGB
refinement is applied for detail. Source: [427].
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“a robot hand, realistic”

*a teddy bear in a tuxedo”

*a sports car, highly detailed”

Figure 23.190: Additional Sketch-Shape examples. Robot hand, teddy bear in a tuxedo, lego man
demonstrate cross-category controllability. Source: [427].
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Latent-Paint on generic meshes

Text-driven textures can be applied to shapes without UVs (computed on-the-fly) or with precomputed
UVs.

“A wooden “A next “A black “A garden gnome
brown cabinet” gen nascar” grand piano” with a red hat”

‘
“A steel “A next “A pink “A garden gnome
cabinet” gen nascar” grand piano”  with a green hat”

Figure 23.191: Latent-Paint on ModelNet40 meshes. UVs absent in inputs; XAtlas is used.
Variation across seeds is shown on NASCAR; material/style shifts illustrated on cabinet, piano, and
gnome. Source: [427].

“Piranha Fish™ “A fish with leopard “Goldfish”
spots”

Figure 23.192: Latent-Paint with precomputed UVs. A single fish mesh textured as piranha,
leopard-spotted fish, and goldfish. Source: [427].
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Texturing comparison on a common mesh
Latent-Paint produces textures that are more realistic and prompt-faithful than CLIP-guided baselines.

4 #
B 4
B J

“A black boot” “A blue converse allstar “UGG boot”
shoe”

Tango [V]

CLIPMesh [26]

Latent-Paint (Ours)

Figure 23.193: Boot texturing comparison. Rows: Tango, CLIPMesh, Latent-Paint. Columns:
black boot, blue Converse All-Star, UGG boot. Latent-Paint captures correct materials and iconic
details. Source: [427].
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Personalization via Textual Inversion
Latent-NeRF inherits the ability to use learned tokens for novel objects/styles, enabling faithful
reconstruction and creative composition.

a backpack that looks like *

Figure 23.194: Textual Inversion. A token learned from few images enables generating “a *
sculpture” and composing “a backpack that looks like *”. Source: [427].

Limitations and Future Work

View ambiguity and Janus arfifacts

Because Latent-NeRF relies on a 2D prior, supervision for unseen views is weak. This often causes
Janus artifacts, such as multi-faced geometry (e.g., a squirrel with two faces), where the denoiser
defaults to canonical front views rather than plausible backs.

= - g '. 7 .I. o
,‘“ :) \ = : 1

Latent-NeRF with “A photo of a squirrel”

7

Stable Diftusion with “A photo of a squirrel, back\*iew"-

Figure 23.195: Janus artifact. A “squirrel” generated with Latent-NeRF shows two faces from
different views, caused by the 2D diffusion prior failing on unseen backs. Source: [427].

Conftrollability and future directions

Controllability remains limited: results vary with seed, and prompts can be ambiguous. The
paper mitigates this with shape priors (Sketch-Shape), explicit texturing (Latent-Paint), and opacity
regularization, but these do not fully solve view inconsistency. Future directions include integrating
other, possibly stronger, 3D priors (depth or normal cues), exploring 3D-native diffusion backbones,
and extending beyond UV textures to richer material models such as BRDFs.



