22.1
22.1.1

£»

&

%

Motivation and Definition

What is Self-Supervised Learning (SSL)?
Learning Representations Without Labels
Self-Supervised Learning (SSL) is a learning paradigm that allows models to learn from unlabeled
data by solving automatically constructed tasks—known as pretext tasks—that do not require manual
annotations. These tasks are derived from the raw input itself and are carefully designed to encourage
the model to learn semantic structure and meaningful features that transfer well to standard supervised
tasks such as image classification, object detection, or segmentation.

A central goal in SSL is to obtain a compact embedding function

fo :RP - R4, where d < D,

that maps high-dimensional inputs (e.g., images) to low-dimensional feature vectors. These embed-
dings should reflect the intrinsic structure of the data: semantically similar inputs (e.g., two views of
the same object) should have high similarity in the latent space, while dissimilar inputs should be
mapped far apart. This geometric constraint is typically imposed using a distance metric such as
cosine similarity or Euclidean distance.

Pretraining Then Transferring
Most SSL pipelines follow a two-stage workflow:

1. Pretraining: The model is trained from scratch to solve a synthetic pretext task using only
unlabeled data. This forces the encoder to develop robust, general-purpose features.

2. Transfer: The learned encoder is then adapted to a downstream task. This can be done by
fine-tuning all weights using a small amount of labeled data, or by freezing the encoder and
training only a lightweight head (e.g., a linear classifier).
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Self-Supervised Learning: Pretext then Transfer
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Figure 22.1: Self-supervised learning via pretext tasks. Top: the model is pretrained using a synthetic
task derived from the input data. Bottom: the encoder is transferred to a downstream task with
limited supervision. Goal: the pretrain+transfer pipeline outperforms purely supervised training.

This two-phase approach is illustrated in Figure 22.1. Notably, SSL-based pretraining can outperform
both randomly initialized models and models trained in a fully supervised manner on large-scale
labeled datasets such as ImageNet—especially when downstream labels are scarce.

Embedding Geometry and Semantic Similarity

At the heart of SSL is the idea of embedding structure. The model is encouraged to produce similar
embeddings for input samples that are semantically related (e.g., different augmentations of the same
image), while enforcing dissimilarity between unrelated examples. This results in a representation
space in which similarity under a fixed metric (such as cosine similarity) reflects semantic closeness.
In many cases, the learned embeddings can serve directly as features for classification, retrieval, or
verification.

Why Pretext Tasks Work

Although pretext tasks may appear synthetic or even trivial in nature, their solutions often require
understanding of high-level structure and semantics. For example, a task that involves predicting the
correct orientation of an image implicitly forces the model to recognize objects and their canonical
alignment. Similarly, tasks that rely on partial reconstruction require capturing texture, geometry,
and context. By solving such surrogate tasks, the model acquires transferable visual concepts that
generalize well across datasets and tasks.

Categories of Pretext Tasks
Pretext tasks vary in their construction, but all share the goal of inducing the model to learn
informative and transferable features. They can be grouped into several broad categories:
* Generative tasks: These involve reconstructing or generating parts of the input image:
— Autoencoding: Compress and reconstruct the original image.
— Denoising / Masked Modeling [210]: Predict masked or corrupted image regions.
— Colorization [777]: Recover color from grayscale inputs.
— Inpainting [472]: Fill in missing patches.
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— Autoregressive prediction: Predict future pixels or patches based on context.
— Generative Adversarial Training [180]: Learn to synthesize realistic images.
* Discriminative tasks: These involve predicting a categorical property or relation:
— Context prediction [129]: Identify the relative spatial layout of image patches.
— Rotation prediction [172]: Classify the discrete rotation applied to an image.
— Clustering and pseudo-labeling [70]: Assign images to unsupervised feature clusters.
— Similarity discrimination [88, 211]: Distinguish between similar and dissimilar inputs.
* Multimodal tasks: These extend SSL beyond RGB by incorporating other input modalities:
— Video: Learn from temporal coherence and motion patterns.
— 3D and depth: Predict shape or geometry from partial views.
— Audio—visual alignment [13]: Determine whether audio and video correspond.
— Image—text matching [498]: Learn aligned representations across modalities.

Backbones, Augmentations, and Losses

The success of SSL depends not only on the task formulation but also on architectural and algorithmic
choices. Backbone networks such as ResNets [206] and Vision Transformers [133] are commonly
used to extract hierarchical features. Data augmentations—such as cropping, flipping, color jittering,
and blurring—play a critical role in enforcing invariance and robustness by creating diverse input
views. Loss objectives vary by task type and are tailored to align representations appropriately;
further details are introduced later in this chapter.

Summary

Self-supervised learning enables models to learn visual representations by solving data-derived
pretext tasks. These representations, encoded as compact embeddings, exhibit semantic structure
and generalize across tasks and domains. SSL has emerged as a foundational paradigm for scalable
learning in the absence of labels.

Why Self-Supervised Learning?

Supervised Learning is Expensive

Modern deep learning systems thrive on data—but high-quality labeled datasets are costly to obtain
at scale. Consider the task of labeling one billion images: even under optimistic assumptions (10
seconds per image, a wage of $15/hour), the annotation cost exceeds $40 million. This estimate
excludes setup overheads, platform fees, and quality control, meaning real-world costs could easily
be two to three times higher. As models grow larger and more data-hungry—such as Vision
Transformers and foundation models—this dependency on human-annotated supervision becomes
increasingly impractical.

But Unlabeled Data is Free (and Plentiful)

In contrast, unlabeled image data is ubiquitous. Vast corpora of raw images can be harvested from
the web, videos, or embedded sensors at minimal cost. Self-Supervised Learning (SSL) capitalizes
on this abundance by creating artificial supervision signals from the data itself. Rather than relying
on manually assigned class labels, SSL constructs pretext tasks—auxiliary objectives that encourage
the model to uncover meaningful structures within the input.
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Learning Like Humans

Unlike traditional supervised systems, human learning is largely unsupervised. Babies are not handed
millions of labeled examples—instead, they learn by interacting with their environment, forming
expectations, and detecting patterns. SSL adopts a similar philosophy: it trains models to predict
naturally occurring signals in the input (e.g., spatial context, color, motion, or other parts of the
image), enabling them to develop internal representations that generalize across tasks.

SSL as the Backbone of Foundation Models

This learning paradigm has enabled the emergence of powerful generalist systems, such as foundation
models in vision and language. For example, CLIP [498] learns visual representations by aligning
images with their associated captions—without requiring fine-grained category labels. Inspired by
the success of large-scale self-supervised pretraining in NLP (e.g., GPT [59]), these models rely
on SSL objectives—such as contrastive learning, masked prediction, or multimodal alignment—to
learn semantically rich, transferable features. As a result, SSL is now a key pillar in scaling visual
learning beyond the limits of supervision.

LeCun’s Al Cake: SSL as the Base Layer
The Cake Analogy
Yann LeCun famously likened the components of Al to a layered cake:
» Génoise (Base): Self-Supervised Learning—general representation learning from unlabeled
data.
* Icing: Supervised Learning—fine-tuning on specific tasks with labeled data.
* Cherry: Reinforcement Learning—learning from sparse reward signals in sequential decision
tasks.

Motivation: LeCake

P> “Pure” Reinforcement Learning (cherry)
» The machine predicts a scalar reward given once in a
while.

» A few bits for some samples

P> Supervised Learning (icing)
» The machine predicts a category or a few numbers
for each input

» Predicting human-supplied data
» 10—10,000 bits per sample

P> Self-Supervised Learning (cake génoise)
» The machine predicts any part of its input for any,
observed part.

P Predicts future frames in videos
» Millions of bits per sample

Yann LeCun’s cake

Figure 22.2: Yann LeCun’s "Al Cake" analogy. SSL forms the foundational bulk of learning by
leveraging abundant unlabeled data to produce general-purpose representations.

Practical Significance
This analogy underscores that any intelligent pipeline should begin with SSL to form robust founda-
tional knowledge before adding task-specific or behavior-based learning.
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Practical Integration into Deep Learning Pipelines
How SSL is Used in Practice
SSL models are often trained on vast unlabeled datasets to produce strong feature extractors. These
are then reused in downstream tasks:
* Linear classifiers for probing representation quality.
* KNN retrieval to test neighborhood consistency.
* MLPs for non-linear transfer to downstream tasks.
* Fine-tuning the backbone network on task-specific data.

Flexible Transfer and Modularity

In practice, a lightweight classifier—typically a linear layer or a shallow multilayer perceptron
(MLP)—is attached on top of the frozen encoder to perform downstream tasks. If the learned
representations are not perfectly linearly separable, using an MLP head with 2-3 layers often yields
substantial performance improvements by capturing mild nonlinearities.

Full fine-tuning of the encoder is also possible and sometimes beneficial when ample downstream
labels are available. However, this approach introduces significantly more trainable parameters and
risks overfitting in low-data regimes. As such, full fine-tuning should be reserved for downstream
datasets of moderate to large scale, while smaller datasets benefit more from frozen representations
with minimal adaptation.

Strategic Impact and Adoption

Self-supervised learning has become the default pretraining strategy for modern vision models,
particularly large-scale architectures like Vision Transformers. By eliminating the need for manual
annotation, SSL shifts the bottleneck from label curation to scalable data collection, enabling broader
and more cost-effective deployment. Its ability to learn transferable features from unlabeled data
makes it a foundational component of contemporary Al pipelines.
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A Taxonomy of Self-Supervised Representation Learning Methods

Self-Supervised Representation Learning (SSRL) now comprises a diverse set of methods that extract
meaningful representations from unlabeled data. These methods are generally categorized into four
principal families based on their core learning strategies.

Contrastive Methods

Discriminative Representations via Similarity and Dissimilarity

Contrastive approaches train encoders to pull together representations of similar samples (positive
pairs) and push apart those of dissimilar ones (negative pairs). These typically rely on aggressive
data augmentation and clever mining or sampling strategies.

* SimCLR / SimCLR v2 [88, 89]: Frameworks that rely on strong augmentations and a
projection head; SimCLR v2 adds depth and fine-tuning.

* MoCo/MoCo v2/MoCo v3 [94, 95, 211]: Momentum Contrast methods with a dynamic
dictionary and momentum encoder; v2 improves augmentations and projection design, v3
applies them to ViTs.

¢ ReLIC/ReLIC v2 [437, 620]: Contrastive methods that extend instance discrimination with
latent clusters.

* CLIP [498]: Multimodal contrastive learning aligning image and text embeddings.

* NNCLR [138]: Nearest-neighbor based contrastive learning for representation smoothing and
consistency.

Insight
Contrastive methods achieve strong performance but often require large batch sizes, memory banks,
or additional sampling heuristics to mine hard negatives.

Distillation-Based Methods
Teacher-Student Framework without Negatives
Distillation-based approaches avoid negative samples by training a student network to match the
embeddings or output distributions of a slowly-updated teacher model.
* BYOL [188]: Learns representations by aligning student and teacher networks without any
contrastive negatives.
* SimSiam [92]: Demonstrates that negative samples and momentum encoders are not strictly
required.
* DINO /DINOV2 [69, 463]: Combines ViT architectures with self-distillation, yielding highly
transferable visual features.
* C-BYOL [319]: Introduces curriculum learning into the BYOL pipeline to improve robustness.

Insight
These methods are empirically robust, especially when combined with ViT backbones, and combat
representation collapse using asymmetric loss structures or architectural regularization.
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Feature Decorrelation Methods
Promoting Redundancy Reduction
These methods encourage feature dimensions to be uncorrelated, ensuring each encodes distinct
information.
* Barlow Twins [751]: Minimizes off-diagonal cross-correlations while aligning features.
* VICReg [28]: Combines variance preservation with invariance and decorrelation terms.
» TWIST [145]: Adds whitening-based losses atop Barlow-style objectives to enhance decorre-
lation.

Insight
By enforcing statistical independence across channels, these approaches reduce collapse risk and
yield more disentangled representations.

Clustering-Based Methods
Learning via Group-Level Semantics
Clustering-based approaches group similar samples using pseudo-labels from online or offline
clustering, and then train the model to predict cluster assignments.
* DeepCluster / DeeperCluster [70, 73]: Alternate between k-means clustering and training
the network using cluster assignments.
* SWAV [72]: Learns cluster prototypes and aligns augmentations via swapped prediction.

Insight
These methods bridge the gap between contrastive and generative modeling, capturing semantic
structure without explicit supervision or handcrafted positives/negatives.

Summary Table

Table 22.1: Overview of SSRL Method Families

Category Key Mechanism Representative Methods

Contrastive Pull together similar samples; re- | SimCLR, MoCo, CLIP, ReLIC, Re-
pel negatives using contrastive | LICv2, NNCLR
losses

Distillation Match teacher and student outputs | BYOL, SimSiam, DINO, DINOv2, C-

via EMA; no negatives needed BYOL

Feature Decorrelation | Enforce uncorrelated dimensions | Barlow Twins, VICReg, TWIST
via covariance-based losses

Clustering Use pseudo-labels from clustering | DeepCluster, SwAYV, DeeperCluster
to form supervision
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Contrastive Methods
Motivation for Contrastive Learning

Among various SSL strategies, contrastive learning has emerged as a particularly effective and
conceptually elegant approach for acquiring rich and transferable visual representations.

A central objective in SSL is to train a model that maps high-dimensional data (e.g., images in
RP) into compact, semantically meaningful embeddings in a lower-dimensional space R?, where
d < D. These embeddings are intended to satisfy a key geometric property: inputs that are
semantically similar should have representations that are close under a chosen similarity metric
(typically cosine similarity), while dissimilar inputs should be mapped far apart. Such semantic
alignment in the embedding space enables generalization across a wide range of downstream tasks,
including classification, retrieval, and segmentation.

Core Idea

Contrastive learning formalizes representation learning as a discrimination problem in the latent
space. The model is trained using positive pairs—typically two different augmentations of the same
image—and negative pairs, composed of unrelated images. The objective is to pull positive pairs
close together in the embedding space while pushing negative pairs apart. This dynamic creates a
structured feature space where semantic similarity correlates with geometric proximity.

A widely used formulation is based on the contrastive loss, such as InfoNCE [459], which
minimizes the distance between an anchor and its positive key, while simultaneously maximizing the
distance to negative keys in a batch or memory bank. Mathematically, for an anchor representation
z; and its positive counterpart z;, the loss takes the form:

exp(sim(z;,z;)/7)
):kK:1 exp(sim(z;,z¢)/7)’

ZnfoNcE = — log

where sim(-,-) denotes cosine similarity and 7 is a temperature hyperparameter.

Instance Discrimination as a Pretext Task

Unlike traditional classification, contrastive learning does not assume predefined categories. Instead,
it adopts the instance discrimination paradigm, treating each image as its own class. The model learns
to identify an augmented view of the same instance among a set of distractors. This formulation
naturally addresses the representation collapse problem—where a model maps all inputs to the same
point—by requiring the network to maintain distinctiveness across a large set of negatives.

For instance, we can decide that given a batch of N images, each image is augmented twice
to produce 2N views. These are embedded via an encoder and normalized into unit vectors. The
resulting 2N representations define N positive pairs and 2(N — 1) negatives per anchor. Contrastive
loss is then applied over these structured pairs to enforce the desired geometry of the representation
space.

Avoiding Trivial Solutions

One of the key advantages of contrastive learning over earlier heuristic pretext tasks (e.g., jigsaw
puzzles, rotation prediction, or colorization) is its robustness to degenerate solutions. Pretext
tasks based on fixed prediction targets often result in overly task-specific or low-level features. In
contrast, contrastive methods build representations through relational signals—similarity between
instances—thereby capturing high-level invariances and semantic content. The explicit use of
negatives ensures that the encoder cannot collapse all embeddings into a trivial constant vector.
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Scalability and Generalization

Contrastive methods scale effectively to large datasets and can leverage high-capacity models,
such as ResNet or Vision Transformers (ViTs), to learn expressive features. Large batch sizes or
memory banks are often used to provide a diverse pool of negatives, although variants have also
been developed to operate efficiently under smaller memory or compute budgets.

The learned representations exhibit strong transferability and often rival or surpass those obtained

through supervised pretraining. Notable examples include:

* Face verification [554], where contrastive loss enables identity-preserving embeddings for
recognition and clustering.

» Zero-shot classification with CLIP [498], which learns aligned embeddings for images
and natural language descriptions via contrastive training, unlocking powerful cross-modal
generalization.

* General-purpose pretraining, where contrastive methods such as SimCLR [88] and MoCo [211]
have closed the performance gap between supervised and self-supervised approaches across
many vision benchmarks.

Key Advantages
The popularity of contrastive learning stems from several practical and conceptual strengths:

* State-of-the-art performance: When trained with sufficient compute and data, contrastive
models achieve competitive results across a wide range of tasks.

* Transferability: Representations learned through contrastive objectives generalize well to
tasks unseen during training, even with minimal fine-tuning.

* Conceptual simplicity: The framework is based on intuitive geometric principles—pull
similar things together, push dissimilar things apart—and often implemented with simple
Siamese or triplet architectures.

* Scalability: Contrastive methods make efficient use of large unlabeled datasets and are
well-suited for modern distributed training environments.

SSL Model
These refer to the same .
model (architecture and ~ 1
weights). Basically, we are
using a Siamese Network.
SSL Model We want the embedding
vectors of the same face to

be similar to one another.

Figure 22.3: Illustration of contrastive learning for face verification. The model maps augmented
images of the same person to nearby embedding vectors (high cosine similarity), while pushing
embeddings of different people apart (low cosine similarity). A well-trained model allows verification
by thresholding the cosine similarity between face embeddings.
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From Semantic Similarity to Objective Formulation
The core objective of contrastive learning is closely aligned with the goals of metric learning: to
construct an embedding space in which semantically similar inputs are mapped to nearby vectors,
and dissimilar inputs are pushed apart. Let fp : R® — R¢ be an encoder network that maps high-
dimensional input samples x € RP to compact feature vectors z = fg(x) € RY. In practice, these
embeddings are ¢;-normalized to lie on the unit hypersphere, i.e., ||z]|o = 1.

A natural and widely used choice for comparing such embeddings is cosine similarity, defined
as:

Xi T Xj
sim(x;,x;) = cos(6; ;) = Jo(xi) fo(x))

e Ga)ll2 1 fe (xp)l2”

When embeddings are normalized, this expression simplifies to the dot product:
sim(x;,x;) = fo(xi) ' fo(x)),

which measures the cosine of the angle 6; ; between the two vectors.

Cosine similarity ranges from —1 (opposite directions) to 1 (identical directions), with 0 indicat-
ing orthogonality. It captures the directional alignment between vectors while being invariant to their
scale, making it particularly suitable for high-dimensional spaces where the absolute magnitudes of
features are less meaningful than their relative orientations. In the context of contrastive learning,
cosine similarity quantifies the semantic closeness of data points in the embedding space—serving
as the quantitative foundation upon which the contrastive objective is built.

Conftrastive Learning as Mutual Information Maximization

In addition to its geometric intuition, contrastive learning can be interpreted through the lens of
information theory. The goal of the model is to maximize the mutual information between two
views of the same input instance—each obtained via stochastic data augmentations such as random
cropping, color distortion, or blurring. These views are assumed to preserve the core semantics of
the original image while introducing superficial variations.

By maximizing agreement between these positive views in the embedding space, the model
learns to retain the information that is shared across augmentations. This process encourages the
representation to focus on invariant, discriminative features and to discard irrelevant noise. In effect,
contrastive learning approximates the maximization of mutual information between transformed
views of the same input [459], guiding the model toward robust and generalizable representations.

Towards a Unified Loss Function
These insights—geometric alignment under cosine similarity and mutual information preservation
under augmentation—together motivate a concrete learning objective. To formalize the contrastive
principle, we require a loss function that:

* Encourages high similarity between embeddings of positive pairs;

* Penalizes similarity between embeddings of negative pairs.
In the next section, we derive the InfoNCE loss, a widely adopted objective that captures these goals
by comparing the relative similarity of a positive pair to a set of negatives drawn from the batch or
memory bank. This loss serves as the cornerstone of modern contrastive methods.
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Origin and Intuition Behind Contrastive Loss
From Dimensionality Reduction to Discriminative Embeddings
The contrastive loss was first proposed by Hadsell et al. [199] for supervised dimensionality
reduction. The goal was to learn a transformation Gy (), parameterized by weights W, that maps
high-dimensional inputs XecRPtoa compact embedding space R?, such that similar inputs are
embedded close together and dissimilar ones are mapped at least margin m apart.

Given a pair (X;,X,) and a binary similarity label Y € {0, 1}, the contrastive loss is:

Lo 1 1
LW,Y, X, %) =(1-Y)- 5D%V +¥ - [max(0,m —Dy)?

where Dy = ||Gw (X)) — Gw (X2) |2

Why the Margin Matters
This loss has two regimes:

* For similar pairs (Y = 0), the embedding distance Dy is minimized.

* For dissimilar pairs (Y = 1), the distance is enforced to be at least m.

The margin prevents the model from arbitrarily increasing dissimilar distances, akin to the hinge
loss in SVMs.

@®- points, similar to @ @- points, similarto @
O- points, dissimilar to @ O- points, dissimilar to @

Figure 22.4: Initial state of the embedding space. The anchor point (blue) is surrounded by both black
points (similar) and white points (dissimilar). Arrows illustrate distances: blue arrows indicate intra-
class similarity (to similar points), while red arrows indicate inter-class dissimilarity (to dissimilar
points). Figure credit: [33].

A Visual Summary of the Learning Objective

The goal of contrastive learning is to shape the embedding space such that similar points are tightly
clustered while dissimilar points are pushed away. This intuition is captured by minimizing the
intra-class distances and maximizing the inter-class distances. Visually, we aim to shorten the
intra-class arrows (from the anchor to similar samples) and lengthen the inter-class arrows (from the
anchor to dissimilar samples).

Formally, for each anchor embedding 7,,, we want:

rzrel% 172 —Zill2 < jnell/r‘} 172 = Zjll2,



1468 Chapter 22. Lecture 22: Self-Supervised Learning

where & denotes the set of similar (positive) examples and .4 the set of dissimilar (negative)
examples. This condition ensures that the most distant positive is still closer than the nearest
negative—enabling accurate grouping under a simple nearest-neighbor decision rule.

@®- points, similar to ® @- points, similar to ®
O- points, dissimilar to @ O- points, dissimilar to @

Figure 22.5: Left: Initial configuration where both similar (black) and dissimilar (white) points lie
within a margin radius m of the anchor (blue sphere). Right: Post-optimization state, where only
similar (black) points remain within the margin, and dissimilar (white) points have been pushed
outside. Figure credit: [33].

This margin-based separation underpins the contrastive loss function introduced by Hadsell et al.,
which explicitly enforces that:

* Similar samples (label Y = 0) fall within a small distance of the anchor;

 Dissimilar samples (label Y = 1) are pushed outside a minimum margin .

Why Not Use p-?
One might consider directly maximizing dissimilarity by minimizing ﬁ, where Dy = ||Gw (X;) —
Gw(X,)|)2. However, such a formulation is unstable: the gradient of ﬁ diverges as Dy — 0, which

can lead to numerical instability and overfitting. Instead, Hadsell et al.’s formulation imposes a
margin-based hinge on the dissimilar term:

1
5 [max(O,m—DW)]z,

which saturates to zero once the dissimilar pair is sufficiently separated—yielding a more stable and
robust learning signal.

From Supervision to Self-Supervision
Originally developed for supervised settings with labeled pairs, contrastive loss has been adapted
to the self-supervised regime by removing the need for manual annotations. In this formulation,
positive pairs are created by applying two different augmentations to the same image, while negative
pairs are defined implicitly by treating other images in the batch (or memory bank) as dissimilar.
This strategy enables scalable training on large unlabeled datasets while learning semantically
meaningful embeddings. The underlying assumption is that different augmented views of the same
image share the same semantic identity.



22.3 Conftrastive Methods 1469

This idea forms the basis of prominent SSL. methods such as SIimCLR [88], which relies on large
batches and strong augmentations, and MoCo [211], which uses a momentum encoder and memory
bank to maintain negative examples across iterations.

These methods extend contrastive learning to instance-level discrimination tasks without labels,
preserving the core objective: pull similar samples together and push dissimilar ones apart. We now
illustrate how augmented views form anchor—positive—negative triplets used in contrastive training.

A Simple Framework for Contrastive Learning of Visual Representations

Ty, YR TR, &

(f) Rotate {90°,180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

Figure 22.6: Data augmentation pipeline in SimCLR: each input image is transformed using a series
of operations to create different views (positives). Figure credit: [88].

Triplet Setup: Anchor, Positive, Negative
Every training batch uses:
¢ An anchor /¢,
* A positive /T, an augmented view of the anchor,
» Multiple negatives /—, views of different images.
The model learns to attract I and I, while repelling I from all I~

Distance
fH=0(It) Function: §

J(f“, f+) Minimize ‘

Encoder

Distance
Fo=0(1%) Function: §

5(f",f‘) —> Maximize \
| ‘

fm=61")

Negative: I~

Figure 22.7: Anchor-positive-negative structure: minimize distance between anchor and positive,
maximize from negative. Figure credit: [310].



1470 Chapter 22. Lecture 22: Self-Supervised Learning

This setting prepares the ground for more advanced losses like InfoNCE and NT-Xent, which we
now derive.

The NT-Xent Loss: Normalized Temperature-Scaled Cross-Entropy

Overview and Purpose

The NT-Xent loss (Normalized Temperature-Scaled Cross Entropy) was introduced in SimCLR [88]
as a specialized instance of the broader InfoNCE loss. Its goal is to pull together embeddings of
positive pairs—two different augmentations of the same image—while pushing apart negative
pairs—augmentations of other images.

Unlike the more general InfoNCE, which allows a fixed number of negatives K (often stored
in a memory bank), NT-Xent uses all other augmented samples within the batch as negatives. This
batch-based construction, combined with cosine similarity and temperature scaling, makes NT-
Xent self-contained, scalable, and well-suited for large-batch training without the need for external
memory or momentum encoders.

Pairwise Contrastive Loss: NT-Xent Formulation
Given a batch of N training images, SimCLR applies two independent stochastic data augmentations
to each, resulting in 2N views. These are passed through a shared encoder f(-) followed by a
projection head g(-), producing representations {z;,2s,...,Zoy} C R?. Each original image thus
yields a positive pair: (zpx—1,22) fork=1,...,N.

Let sim(z;,z;) denote the cosine similarity between embeddings z; and z;, both normalized to
unit length:

T
Z; Z;

sim(#,2)) = 2 T

€11

The NT-Xent loss for a positive pair (i, j) is defined as:

exp (sim(Zi, Z])/T)
e W i €xp (sim(z;,2¢) / 7) ’

where T > 0 is a temperature hyperparameter that scales the logits in the softmax.

This loss encourages each anchor z; to be more similar to its corresponding positive z; than to
any of the 2N — 2 remaining negatives in the batch. Importantly, the positive j is included in the
denominator as part of the softmax normalization—framing the task as (soft) classification among
all other examples, with the correct match being j.

Batch Aggregation and the 5 ‘ Factor
Each of the 2N augmented views serves once as an anchor. Hence, the total batch loss averages over
all 2N such anchor-positive loss terms:

=

NT-Xent = Z (2k — 1,2k) + £(2k, 2k — 1)].

The normalization factor ﬁ ensures that the total loss is the mean over all anchor-based

comparisons. Each sample contributes exactly one anchor-to-positive term (and is a target once for
its positive), and the symmetry ensures both directions are treated equally.
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The Role of Symmetry

In SimCLR, each image gives rise to two independently augmented views, forming a positive pair.
For each such pair (i, j), the NT-Xent loss is computed twice: once treating i as the anchor and j as
the positive, and once with roles reversed. This symmetric loss formulation is not redundant—it is a
principled mechanism that enforces bidirectional learning and representational consistency.

A common misconception is that if the representation i is optimized to be similar to j, then

J will automatically become similar to i. While this holds for the cosine similarity itself—since
sim(z;,z;) = sim(zj,z;)—it does not hold for the gradients of the loss. The NT-Xent objective
applies a softmax over all non-anchor embeddings for each anchor. Thus, in £(i, j), z; is compared
against all other examples to classify z; as its match. In contrast, £(j,i) uses z; as the anchor and
normalizes over a different softmax distribution. Despite the symmetry of the similarity metric,
the loss landscapes—and therefore the gradients—are different for £(i, j) and ¢(j,i). As a result,
omitting either direction would lead to asymmetric learning and potentially degraded representations
for one side of the pair.

* Balanced gradient updates: Each of the 2V views in a batch acts as an anchor exactly once.
This guarantees that every view receives a direct learning signal and contributes symmetrically
to parameter updates.

* Reciprocal alignment: Symmetric loss ensures that both views learn to identify their counter-
part among many negatives, encouraging mutual semantic agreement across augmentations.

* Gradient diversity and stability: By computing the loss in both directions, the batch yields
twice as many anchor-positive training signals. This increased supervision reduces gradient
variance and stabilizes convergence.

» Stronger collapse prevention: Symmetry amplifies the discriminative pressure by requiring
every view to be uniquely identifiable from its counterpart. This discourages degenerate
solutions where all embeddings collapse to the same point.

In summary, the symmetric NT-Xent loss is essential for learning robust, discriminative, and
augmentation-invariant representations. It ensures that both views of each instance are held equally
accountable during training, preventing one-sided learning and promoting mutual consistency across
the feature space.

lllustration of the Loss Mechanism

Algorithm 1 SimCLR’s main learning algorithm.
input: batch size N, constant 7, structure of f, g, 7.
for sampled minibatch {zx}}_, do

forallk e {1,...,] N} do

draw two augmentation functions t~7, t' ~T
the first @ mentation

o1 = t(@k)

hat-1 = f (@) y Backbone )

Zok=i=g(hsi=1)) ) Output (projection)# pr
1€ ond augm Atior:

ok = t' (k)

hox = j(;ﬁ_,”}Ba,ckbone

2o = g(hok) 30utpm (projection)

end for

forallic {1,....2N} andj € {1,...,2N} do
si5 =2 2/ (zil]lz31)

end for

define (i, j) as (i, j)= lngxi\“zi”’,

L= 5k T, [6(2k—1,2Kk) + £(2k, 2k—1)]
update networks f and g to minimize £

end for

return encoder network f(-), and throw away g(-)

Figure 22.8: Left: Augmentations of the same image form a positive pair. Right: SimCLR’s NT-Xent
loss pipeline with encoder f(-) and projection head g(-). Source: Left: [420], Right: [88].
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Role of the Projection Head
SimCLR applies the NT-Xent loss not on the encoder output #; = f(%;), but on a transformed
embedding z; = g(h;) produced by a non-linear projection head g(-). This architectural choice serves
multiple roles:
* Enhanced contrastive learning: The projection head maps features into a latent space tailored
for the contrastive objective, often improving training efficiency and downstream alignment.
* Disentangled optimization: By separating the encoder and contrastive spaces, SInCLR
allows f(-) to focus on learning transferable representations, while g(-) handles the invariance
constraints of the contrastive task.
* Downstream effectiveness: Empirically, the encoder outputs / outperform the projected
representations z on downstream tasks. This suggests that g(-) discards non-semantic variation
useful only during pretraining—preserving generality in f(-).

Log-Softmax Intuition

f(z) = —log(x)

Perfect case we want to get close to, as the
cosine similarity of negative pairs is close to
-1, and of the positive pair close to 1.

Figure 22.9: Visualizing the objective: positive pair similarity approaches 1; negatives approach -1.
Ideally, ¢(i, j) ~ 0 when the numerator and denominator match. Source: [420].

For each positive pair, we want the similarity score s; ; to dominate the softmax numerator, while
all other similarity scores are minimized in the denominator. This aligns positive pairs and repels
negative ones in angular space.

Summary

NT-Xent effectively replaces the contrastive margin in Hadsell’s formulation with a temperature-
scaled softmax. It eliminates the need for threshold tuning, is differentiable everywhere, and naturally
fits into batch-wise contrastive pipelines.
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We now examine two key contrastive frameworks: SimCLR, which uses NT-Xent with large in-
batch negatives, and MoCo, which introduces a momentum encoder and memory queue for scalable
contrastive learning. We start with SimCLR, then follow MoCo through its three versions.

SimCLR: A Simple Framework for Contrastive Learning

Overview

SimCLR [88] introduced a surprisingly simple yet powerful framework for self-supervised contrastive
learning that achieved state-of-the-art performance using standard architectures and without requiring
negative mining tricks or memory banks. Its core training objective is the NT-Xent loss, introduced
in part 22.3.3, which pulls together positive pairs while pushing apart negatives in the embedding
space.

Architecture Components
The SimCLR framework is composed of the following components:

* Stochastic Data Augmentation Module: Each image is transformed into two augmented
views using strong random transformations (e.g., random cropping, color distortion, blur),
forming a positive pair. Other images in the batch form negative pairs.

* Encoder Network f(-): A standard ResNet (e.g., ResNet-50) extracts a representation vector
h € R? from each augmented view.

* Projection Head g(-): A small MLP maps / to a lower-dimensional vector z = g(), on which
the contrastive loss is applied.

The paper’s critical finding is that while contrastive training is applied to z, the upstream encoder
output 4 consistently yields better performance on downstream tasks. The projection head thus acts
as a form of task-specific decoupling, allowing the encoder to retain general-purpose semantics while
contrastive alignment occurs in z-space.

Design Principles Behind SimCLR
Beyond its loss function, SImCLR’s success hinges on several essential design insights:

» Strong Data Augmentations Are Crucial: SimCLR demonstrated empirically that augmen-
tations such as random crop, color distortion, and Gaussian blur are not mere regularizers but
define the pretext task by creating diverse views of the same image.

* Importance of the Projection Head: Removing the non-linear head or applying the con-
trastive loss directly on 4 significantly degraded performance. This architectural separation
was essential for avoiding information loss and achieving strong transferability.

* Large Batch Sizes: NT-Xent is computed over all other 2N — 2 samples as negatives. Larger
batches improve the quality of negative sampling, and SimCLR scaled up to batch sizes of
8192 using 128 TPU cores.

* Temperature Scaling: The temperature parameter T controls the sharpness of the similarity
distribution and strongly affects performance. Lower values increase contrastiveness but can
destabilize training; careful tuning is needed.

Training Configuration and Stability

SimCLR’s strong performance was not only due to its contrastive loss and data augmentations, but
also to its rigorous training setup. The model was trained for 1000 epochs—an unusually long
schedule—using large batch sizes of up to 8192.
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These batch sizes are essential for generating a sufficient number of negative examples within each
batch (e.g., 16,382 negatives per positive pair at batch size 8192). To enable stable optimization under
such conditions, SimCLR used the LARS optimizer [738], which supports large-batch training with
high learning rates.

The learning rate followed a linear warm-up for the first 10 epochs, followed by a cosine decay
schedule without restarts. Training also relied heavily on strong data augmentations, including
color distortions, random cropping, and Gaussian blur, which proved more impactful for contrastive
learning than for supervised settings. Despite its conceptual simplicity, SiImCLR was computationally
intensive: a full 1000-epoch training of ResNet-50 required multiple days on TPU pods or dozens of
V100 GPUs.

Performance Benchmarks
SimCLR established new benchmarks for self-supervised learning:

* Linear evaluation protocol: When training a linear classifier atop frozen features, SimCLR
achieved 76.5% top-1 accuracy on ImageNet with a ResNet-50 encoder—on par with fully
supervised ResNet-50 models. This confirmed that self-supervised pretraining could match
label-based training in representation quality.

* Label efficiency: In semi-supervised settings, SimCLR dramatically outperformed supervised
baselines. Fine-tuning on just 1% of ImageNet labels yielded substantially better accuracy
than supervised models trained on the same data subset. This demonstrates the method’s
exceptional ability to learn from scarce annotations.

* Transferability: SimCLR’s representations transferred effectively to downstream tasks be-
yond ImageNet. Across 12 natural image classification datasets, SimCLR matched or surpassed
a supervised ResNet-50 baseline on 10 of them, demonstrating robustness and generality.

These results highlight that scaling contrastive learning—through larger batches, longer training,
and effective augmentations—can yield powerful representations without the need for human labels,
and can generalize across domains.

Visualization of SimCLR Pipeline

Algorithm 1 SimCLR’s main learning algorithm.

input: batch size IV, constant 7, structure of f, g, T
for sampled minibatch {z:}}_, do

o Embeddings we want similar forallk € {1.....] N'} do
Projection R draw two augmentation functions t~ 7, t'~T
head ~ Maximize agreement # the first augmentation
s e Top—1 = t(xx)
»‘/H} L’J’x?’ hok-1 :f(j;%il)}Backbone # representation

b By T SRS Y Ouput prefesion) projectio

the second augmenta
1 ’J 0 (D)

o ‘ hoy = f(ig,.)KBackbone # representatior
AN 7N 2ok = g(hok) ' 30utput (projection) projection
. .'-\‘f ) end for
Augmented ‘ foralli € {1,....2N}andj € {1,..., 2N} do

Y BT ¢
~ N0 ugmented
Bascencoder  “viewsz . () ' viewsl Shs =20zl  # pairvise similait
\" d for
Wil e exp(si,3/7)
Input sample define ((i, j) as £(i, j) =~ log s "R

L= SN [6(2k—1,2K) + £(2k, 2k—1)]
update networks f and g to minimize £

end for

return encoder network f(-), and throw away g(-)

Figure 22.10: SimCLR pipeline: each image is augmented into two views. Representations / from
the encoder are passed through a projection head g(-) to yield z, on which the NT-Xent loss is applied.
Figure adapted from: [88].
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Limitations and the Road to MoCo
Despite its success, SImCLR suffers from a key limitation: its reliance on extremely large batch
sizes. Since all negatives are sampled in-batch, sufficient diversity requires thousands of negatives
per anchor—demanding massive compute. This constraint motivates subsequent approaches such
as MoCo, which replace batch-based negatives with a dynamic memory bank and a momentum
encoder, offering comparable performance with smaller batches.

We now turn to MoCo [211], a method that addresses this limitation by introducing a scalable
and memory-efficient alternative to batch-based contrastive learning.

Momentum Contrast (MoCo)
Motivation: Avoiding Large Batch Sizes
SimCLR demonstrated that contrastive learning benefits significantly from large numbers of negative
examples. However, it used in-batch negatives only, meaning the number of negatives was tied to
the batch size. To provide over 8000 negatives per anchor (as in SimCLR), one must train with
prohibitively large batches—e.g., 8192 samples—across dozens of GPUs with high memory budgets.
MoCo [211] was introduced to overcome this scalability bottleneck. Its core idea is to decouple
the number of negatives from the batch size by maintaining a large, dynamic dictionary (queue)
of past embeddings. It also introduces a momentum encoder to ensure that the representations stored
in this queue evolve slowly and remain consistent over time—enabling effective contrastive learning
with a small batch and many stable negatives (previously stored in a FIFO queue).

Core Architecture
MoCo adopts an asymmetric dual-encoder architecture, consisting of:
* Query encoder f;: a standard neural network (e.g., ResNet-50) trained via backpropagation.
* Key encoder f;: a second encoder with the same architecture, whose parameters are updated
as a moving average of fg:

O <—m- 6+ (1—m)-6,

This momentum update with m ~ 0.999 ensures that fj evolves slowly, producing temporally

consistent keys that can be stored in a queue and reused as negatives across multiple steps.
Terminology note. MoCo replaces the classical anchor—positive—negative triplet terminology with
the more functional terms guery (trainable view) and key (reference views). The positive key comes
from the same image as the query, while negatives are sampled from the memory queue.

Contrastive Loss in MoCo

MoCo adopts the InfoNCE loss, mathematically identical to the NT-Xent loss in SimCLR. For a
query g = f,(xq), a positive key k™ = fi(x]), and a set of negatives {k; } drawn from the queue .,
the loss is:

exp(q-k*/7)
exp(q-kT/T) + Li-crexplg-k=/7T)

DgMoCo = - 10g

The query and its positive key are two augmentations of the same image, while the negatives come
from different images (past embeddings stored in the queue).
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MoCo Training Pipeline
Each training step proceeds as follows:

Nk wn =

Sample a batch of images; for each image, create two augmentations: x, and x;.

Pass x, through the query encoder f, to produce the query g.

Pass x; through the key encoder f; to obtain the key k™. No gradients flow through f;.
Compute the InfoNCE loss between g, k™, and negatives {k~ } in the queue.
Backpropagate gradients to update f,.

Update f; using exponential moving average (EMA) of f,.

Enqueue the new key k™ and dequeue the oldest key to maintain queue size.

Why MoCo Works: Scale, Stability, and Efficiency

MoCo addresses two core challenges in contrastive learning: the need for many negatives and the
requirement for stable targets. Its architecture offers a scalable and hardware-efficient alternative to
large-batch contrastive methods like SimCLR.

Large-scale negatives without large batches: In SimCLR, negatives are limited to samples
within the current batch, requiring extremely large batch sizes (e.g., 8192) to match the
number of negatives MoCo can access. MoCo overcomes this limitation through a dynamic
queue: a FIFO buffer of encoded key representations from prior mini-batches. This decouples
the number of negatives from the current batch size, allowing MoCo to leverage tens of
thousands of negatives per step (e.g., a queue of 65,536) while training with batches as small
as 256—greatly reducing the compute and memory burden.

Stable representations through momentum: To ensure that the queue remains semantically
consistent with the current encoder, MoCo employs a momentum encoder. The key encoder f;
is updated as an exponential moving average (EMA) of the query encoder f;:

9k<—m-9k+(1—m)-eq

A high momentum (e.g., m = 0.999) ensures that f; evolves slowly across training steps. This
stabilizes the embeddings stored in the queue and prevents contrastive comparisons from
drifting out of alignment. Without this slow evolution, earlier keys would quickly become
obsolete, leading to noisy or contradictory learning signals.

Asymmetric training improves robustness: Only the query encoder f, is trained with
gradients, while the key encoder f; passively tracks it via momentum. This architectural
asymmetry improves training stability, reduces memory requirements, and avoids collapse.
By decoupling the learning dynamics of the two encoders, MoCo implicitly regularizes the
training objective, making the contrastive task more stable and better behaved.

What the Queue Enables
Unlike SimCLR, which must compute all negatives on-the-fly within the current batch, MoCo
separates negative storage from computation. This leads to multiple advantages:

Extremely large dictionaries: MoCo’s queue holds thousands of negatives—potentially
100x more than what can fit in a single batch. This increases the diversity of the contrastive
signal and improves the model’s ability to discriminate among fine-grained features in high-
dimensional space.
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* Efficient memory and compute: Only the current batch is encoded by f, and fi, while prior
embeddings are reused from the queue without recomputation. This constant per-step cost
enables MoCo to scale up the effective batch size without scaling GPU memory usage.

* Temporal coherence: The queue is updated at each step by enqueuing newly encoded positive
keys and removing the oldest entries. Because the key encoder evolves slowly via EMA, even
old entries in the queue remain consistent with the current representation space. Without this,
the contrastive task would break down—indeed, MoCo fails to train when m = 0.

contrastive loss contrastive loss contrastive loss
q-k q-k q-k
q k q k q k
encoder q encoder k encoder sampling encoder LT
encoder
memory
e bank .
9 z* zd zd zk
(a) end-to-end (b) memory bank (c) MoCo

Figure 22.11: Comparison of contrastive learning mechanisms. (a) SimCLR relies on large batches
to generate negatives. (b) Memory banks store representations but lack alignment with the current
encoder. (c) MoCo uses a momentum encoder and dynamic queue to maintain a large, consistent
dictionary. Source: [211].

Momentum Hyperparameter Tuning and Ablation Results
A central component of MoCo’s architecture is the momentum-based update of the key encoder f;,
governed by an exponential moving average (EMA):

9k<—m-9k—|—(l—m)-9q

Here, 6, and 6, denote the parameters of the query and key encoders, respectively, and m € [0, 1)
is the momentum coefficient.

This update rule ensures that the representations stored in the queue—many of which were
computed several iterations earlier—remain temporally consistent with the current query space.
A high momentum slows the evolution of f, thereby maintaining coherence among the stored
negatives. In contrast, a low momentum causes f; to change rapidly, making the queue misaligned
with the current query distribution and impairing training.

Table 22.2: Impact of momentum coefficient m on top-1 ImageNet accuracy under linear evaluation.
Source: [211].

m 0 0.9 | 0.99 | 0.999 | 0.9999
Accuracy (%) | fail | 55.2 | 57.8 | 59.0 58.9
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As shown in Table 22.2, the model’s performance is highly sensitive to the value of m. When m = 0,
MoCo fails entirely—the key encoder becomes a direct copy of the query encoder, causing the
queue to drift erratically and undermining consistency. At the other extreme, very high momentum
values (e.g., m = 0.999) yield the best performance by preserving alignment across steps while still
allowing the queue to adapt gradually. These findings emphasize that consistency is more important
than freshness in maintaining a reliable dictionary for contrastive learning.

Other Key Ablations and Design Justifications
In addition to momentum tuning, the MoCo v1 paper includes several important ablations that
support its architectural decisions:

* Queue size K: Larger queues consistently improve performance. Increasing K from 4,096 to
65,536 enables access to more diverse negatives without great additional computational cost,
as only the current mini-batch is encoded.

* Contrastive loss mechanisms: MoCo is compared to two alternatives: (i) a memory bank
that stores outdated keys, and (ii) an end-to-end encoder that uses in-batch negatives. All
mechanisms benefit from larger negative sets, but MoCo outperforms the others by maintaining
both scale and temporal consistency.

60
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Figure 22.12: Comparison of three contrastive loss mechanisms on the ImageNet linear classification
benchmark using a ResNet-50 backbone. All models share the same pretext task and differ only
in their contrastive design. The number of negatives is K for MoCo and memory bank methods,
and K — 1 for end-to-end approaches (excluding the positive sample). MoCo matches or surpasses
the accuracy of both alternatives by combining a large pool of negatives with temporally consistent
embeddings—achieving strong performance without relying on massive batches or tolerating stale
keys. Source: [211].

* Shuffling BatchNorm: In distributed training, naive use of Batch Normalization (BN) can
introduce information leakage between the query and key branches. Since BN computes
statistics across a batch, both the query and its corresponding positive key—if processed
within the same synchronized batch—may indirectly share feature information through shared
normalization. This enables the model to "cheat" the pretext task by manipulating BN statistics,
resulting in artificially low loss without truly learning semantic structure.
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To mitigate this, MoCo applies batch shuffling for the key encoder: samples are randomly
permuted before being distributed across GPUs. As a result, the BN statistics used in the
query and key branches are computed over different sample subsets. This decouples their
normalization pathways and forces the model to solve the contrastive task based on actual
feature alignment rather than statistical shortcuts. Ablation results show that disabling this
trick leads to significant performance degradation, underscoring its role in enabling genuine
contrastive learning.

* Transfer performance: MoCo’s learned representations generalize well to downstream
tasks. When fine-tuned on PASCAL VOC, COCO detection, or keypoint estimation, MoCo-
pretrained models often outperform supervised counterparts, especially under low-data regimes.

Together, these results establish MoCo as a scalable and principled solution to the limitations of
in-batch contrastive methods. Its success laid the groundwork for subsequent improvements in MoCo
v2 and MoCo v3.

Performance and Comparison with SimCLR
MoCo achieves comparable results (though lesser in this version) to SimCLR with dramatically
lower resource demands:

Table 22.3: Key Comparison between SimCLR and MoCo.

Aspect SimCLR MoCo

Negatives Source In-batch only External memory queue
Batch Size Require- | Very large (up to 8§192) Small/moderate (e.g., 256)
ment

Architectural Symme- | Symmetric (same encoder) Asymmetric (EMA target)
try

Update Mechanism SGD on both encoders SGD + EMA

Memory Usage High (due to batch size) Efficient

Collapse Prevention Large batch + symmetry Stable queue + EMA encoder

From MoCo v to MoCo v2

MoCo v1 successfully decoupled negative sampling from batch size, enabling scalable contrastive
learning with modest compute. However, its initial formulation was deliberately minimal—focused
on demonstrating feasibility rather than achieving state-of-the-art accuracy. This left room for
improvement. MoCo v2 [95] builds directly on the core architecture of MoCo v1 but integrates
empirical best practices from SimCLR, including stronger data augmentations, a deeper nonlin-
ear projection head, and cosine learning rate decay. These enhancements are orthogonal to the
momentum-queue mechanism and can be applied without changing MoCo’s fundamental contrastive
structure. As a result, MoCo v2 significantly boosts linear evaluation performance, closing the gap
with—and in some settings surpassing—SimCLR, all while maintaining the efficiency and stability
of the original framework.
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MoCo v2 and MoCo v3

From MoCo v to v2: Architectural Refinements

Following the success of MoCo [211], the second version—MoCo v2 [95]—introduced two impact-
ful modifications inspired by SimCLR [88]:

* Replacing the ResNet encoder’s linear head with a 2-layer MLP projection head (2048-d

hidden layer, ReLU nonlinearity).

* Augmenting the training pipeline with stronger augmentations, specifically adding Gaussian

blur.

While these changes appear minor, they yield significant accuracy gains during unsupervised
training. Notably, MoCo v2 maintains MoCo v1’s core design: a dynamic queue of negative
keys and a momentum encoder. These enhancements allow MoCo v2 to surpass SIimCLR in
performance—despite requiring significantly smaller batch sizes.

MLP Head and Temperature Ablation. The following table—based on results from [95]—high-
lights the influence of the MLP projection head and temperature parameter T on ImageNet linear
classification accuracy:

Tt [007 01 02 03 04 05
w/oMLP | 60.6 60.7 59.0 582 572 56.4
w/MLP | 629 649 662 657 650 643

Table 22.4: Impact of MLP head and temperature T on ImageNet linear classification accuracy using
ResNet-50 trained for 200 epochs. Results reproduced from [95].

Comparison with SimCLR. As further demonstrated in Table 22.5, MoCo v2 [95] achieves
competitive or superior performance compared to SImCLR, despite using significantly smaller batch
sizes and fewer computational resources.

Method MLP aug+ cosine Epochs Batch Acc. (%)
MoCo vl [211] 200 256 60.6
SimCLR [88] v v v 200 256 61.9
SimCLR v v v 200 8192 66.6
MoCo v2 [95] v v v 200 256 67.5
SimCLR v v v 1000 4096 69.3
MoCo v2 [95] v v v 800 256 71.1

Table 22.5: ImageNet linear probing accuracy: MoCo v2 vs. SimCLR. “aug+” includes stronger
augmentations such as Gaussian blur and color jitter. Data from [95].

MoCo v3: Adapting Momentum Contrast fo Vision Transformers

With the rise of Vision Transformers (ViTs) [133], MoCo v3 [93] extended the momentum con-
trastive learning framework beyond convolutional backbones. It introduces several architectural and
algorithmic updates that make it well-suited for training Transformer-based encoders in a scalable,
stable, and contrastive manner.
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Key innovations of MoCo v3 include:

* Removal of the memory queue: Unlike MoCo v1 and v2, MoCo v3 discards the dictionary

queue and adopts an in-batch negatives strategy like SimCLR. This is made viable by scaling
up batch sizes (e.g., 2048—4096), ensuring sufficient negative diversity without external
memory.

* Symmetric contrastive loss: Previous versions used an asymmetric loss—queries were

trained to match fixed keys. In MoCo v3, both augmented views are treated symmetrically:
the loss is computed as .Z(q1,k2) + -Z(qa,k1 ), leveraging the full batch and encouraging
bi-directional alignment.

* Non-shared prediction head: A learnable prediction MLP is appended only to the query

encoder f;. This design, borrowed from BYOL, avoids trivial alignment and improves training
stability by introducing asymmetry between encoders.

* Frozen random patch projection in ViTs: MoCo v3 introduces a seemingly counter-intuitive

yet effective design: when using ViTs, the patch projection layer—which maps image patches
into token embeddings—is randomly initialized and then frozen. This layer is not trained;
instead, a stop-gradient operator is applied immediately after it. The rationale stems from
a key observation: during self-supervised ViT training, sharp gradient spikes frequently
originate in the shallowest layers, particularly the patch projection. These spikes cause
unstable optimization and mild accuracy degradation (e.g., 1-3%). Freezing this projection
layer eliminates this instability, yielding smoother loss curves and higher final accuracy.
Importantly, the frozen projection still preserves input information due to the overcomplete
nature of the embedding (e.g., mapping from 768 raw pixels to a 768-dimensional vector),
making random projection surprisingly effective. While it may seem preferable to use a
pretrained patch embedder, doing so would violate the self-supervised training regime’s inde-
pendence from labeled data. The frozen random projector thus offers a principled compromise:
it avoids instability without introducing supervision or sacrificing downstream performance.

These architectural innovations result in a streamlined and highly effective self-supervised training
procedure. The following pseudocode illustrates the core training loop of MoCo v3 in PyTorch-like
syntax, highlighting the interplay between query and key encoders, augmentation symmetry, and
momentum updates:

© o N ;R W N =

# f_q: backbone + projection MLP + prediction MLP
# f_k: backbone + projection MLP (momentum-updated)
# m: momentum coefficient

# t: temperature

for x in loader: # Load a minibatch of N samples
x1, x2 = aug(x), aug(x) # Two random augmentations per sample
ql, 92 = f_qx1), f_qx2) # Query embeddings (with pred head)
k1, k2 = f_k(x1), f_k(x2) # Key embeddings (no pred head)

loss = ctr(ql, k2) + ctr(q2, k1) # Symmetric InfollCE loss
loss.backward()

update(f_q) # SGD update for query encoder
fk=mx*xf k+ (1 -m) *x £f_.q # EMA update for key encoder
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Loss Function. MoCo v3 uses a symmetric InfoNCE loss computed over in-batch negatives. Each
query is matched to its corresponding key, and all other entries in the batch act as negatives:

def ctr(q, k):

1
2 logits = mm(q, k.t()) # Nzl cosine similarities

3 labels = range(N) # Positive pairs on the diagonal

4 loss = CrossEntropyLoss(logits/t, labels)

5 return 2 * t * loss # Scaling to match StmCLR convention

This formulation treats each pair (g;,k;) as positive, and the remaining N — 1 entries in each row
as negatives. The temperature ¢ adjusts the sharpness of the distribution, and the scaling factor 2¢
compensates for the bidirectional loss.

Why Symmetric Loss?

Earlier MoCo variants used an asymmetric loss because they relied on an external queue whose keys
were not mutually comparable. MoCo v3, by operating on synchronized in-batch keys, can safely
match both g1 — k» and g» — k. This symmetry increases gradient diversity, ensures both views
act as anchors, and improves the robustness of learned representations.

Explanation
* The query encoder f, is updated via SGD and includes both a projection and prediction head.
* The key encoder f; is updated via exponential moving average (EMA) of f,, and has no
prediction head.
* The contrastive loss uses all N — 1 in-batch samples as negatives for each query.
* Symmetric training ensures both augmented views serve equally as anchor and target, avoiding
representational bias.

Performance Highlights

MoCo v3 achieves state-of-the-art results on ImageNet using both CNN and ViT backbones. Ta-
bles 22.6 and 22.7 show MoCo v3 outperforming or matching alternatives like BYOL and SimCLR
across multiple settings.

Table 22.6: Linear evaluation accuracy (%) on ImageNet using various backbones.

Method | ViT-S/16 ViT-B/16 ResNet-50

MoCo v3 72.5 76.5 73.8
BYOL 71.0 73.9 74.3
SimCLR 69.0 73.9 70.4
SwAV 67.1 71.6 71.8

Table 22.7: MoCo v3 accuracy on ImageNet with larger ViT backbones. Source: [93].

Backbone | VITFB  ViT-L ViT-H
Linear Probing 76.7 77.6 78.1
End-to-End Finetuning | 83.2 84.1 -
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Takeaway

MoCo v3 elegantly unifies contrastive learning with Transformer architectures by (1) removing the
queue, (2) adopting a symmetric InfoNCE loss, and (3) introducing practical stability mechanisms
like frozen embeddings and non-shared heads. These changes not only boost performance but also
simplify training and broaden applicability across vision architectures.

SimCLR v2: Scaling Contrastive Learning for Semi-Supervised Settings

Mofivation and Overview

SimCLR v1 [88] showed that strong visual representations can be learned without labels by lever-
aging contrastive learning with the NT-Xent loss (see 22.3.3). However, its focus was limited to
unsupervised pretraining with moderate architectures and did not provide a full pipeline for label-
efficient learning. To address this, SimCLR v2 [89] introduces a scalable and modular framework
that unifies contrastive pretraining, supervised fine-tuning, and self-distillation. The result is a
general-purpose pipeline for semi-supervised learning that achieved (at the time of publication)
state-of-the-art performance in low-label regimes, while also improving linear evaluation and transfer
capabilities.
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Figure 22.13: SimCLR v2 three-stage semi-supervised training pipeline: unsupervised contrastive
pretraining (left), supervised fine-tuning on few labels (center), and distillation to a student network
(right). Figure credit: Created by the author, adapted from [89, 420].
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Three-Stage Training Framework

SimCLR v2 introduces a structured pipeline that combines large-scale self-supervised pretraining,
label-efficient supervised fine-tuning, and knowledge distillation. This enables strong performance
in both self- and semi-supervised regimes by leveraging unlabeled data at scale and making effective
use of limited labels.

1. Unsupervised Pretraining: A high-capacity encoder (e.g., ResNet-152 or ResNet-152+SK)
is trained using the SimCLR contrastive objective on large-scale unlabeled data. This stage
learns augmentation-invariant features by bringing together representations of the same image
under different views while repelling those from different images. Larger encoders capture
more diverse semantic structure, aiding downstream generalization.

2. Supervised Fine-tuning: The pretrained encoder is fine-tuned on a small labeled subset (e.g.,
1-10% of ImageNet). Rather than discarding the projection head, fine-tuning starts from
an intermediate layer (layer_2) of the MLP, preserving useful invariances and improving
performance under low-label settings.

3. Knowledge Distillation: The fine-tuned model acts as a teacher for a student network, which
is trained on unlabeled data using soft labels (logits or probabilities). These soft targets
encode inter-class structure and uncertainty, guiding the student to learn smoother and more
generalizable decision boundaries. Surprisingly, the student can even outperform the teacher.

Architectural Enhancements and Ablation Insights
SimCLR v2 enhances SimCLR v1 through several key refinements:
* Larger Encoders: Using deeper and wider networks, such as ResNet-152+SK, improves
representation quality learned from unlabeled data.
* Three-Layer Projection Head: The projection MLP g(-), extended from 2 to 3 layers,

z=Ws-ReLU(W, -ReLU(W;h)),

increases the head’s expressiveness for contrastive learning while decoupling it from the
encoder f(+), which remains focused on learning transferable features.

* Mid-layer Fine-tuning: Fine-tuning from the second hidden layer of g(-) bridges pretraining
and downstream tasks, acting as a task-adaptive adapter and improving label efficiency.

Why Distillation Works
The distillation step enables the student to benefit from the teacher’s knowledge—even exceeding
it—through several mechanisms:

* Soft Targets as Rich Supervision: Unlike hard labels, soft labels encode class similarities
and model uncertainty, offering a smoother and more informative learning signal.

* Regularization via Teacher Guidance: The teacher’s outputs act as denoised supervision,
reducing overfitting to limited labels and improving generalization.

* Expanded Supervision from Unlabeled Data: By assigning soft labels to the entire unlabeled
set, the student trains on a vastly expanded pseudo-labeled dataset.

» Simpler Optimization Objective: Mimicking the teacher’s output distribution is often easier
than learning the task from scratch with limited labels, enabling more stable and efficient
training.

* Student Surpassing Teacher: The student can outperform its teacher because it trains on more
data (via distillation) with richer supervision, while regularized by the teacher’s knowledge.



22.3 Conftrastive Methods 1485

Quantitative Results and Analysis

To assess SImCLR v2’s performance under semi-supervised conditions, the authors evaluate its
accuracy on ImageNet using 1% and 10% of labels. Following a two-stage protocol—self-supervised
pretraining followed by supervised fine-tuning and distillation—SimCLR v2 achieves substantial
improvements over both prior self-supervised methods and strong semi-supervised baselines. The
table below reports Top-1 and Top-5 accuracy using various ResNet architectures and training setups.

Table 22.8: Semi-supervised ImageNet classification results. Top-1 / Top-5 accuracy (%) using
1% and 10% of labels. All SImCLR v2 variants use distillation; smaller models are distilled from the
3x+SK teacher. Adapted from [89].

Method Architecture 1% Tl 1% T5 10% T1 10% T5
Supervised baseline [89] ResNet-50 254 48.4 56.4 80.4
SimCLR v1 [88] R-50 (4x) 63.0 85.8 74.4 92.6
BYOL [188] R-200 (2x) 71.2 89.5 717.7 93.7
SimCLR v2 (distilled) R-50 73.9 91.5 71.5 934
SimCLR v2 (distilled) R-50 (2x+SK) 75.9 93.0 80.2 95.0

SimCLR v2 (self-distilled) R-152 (3x+SK)  76.6 93.4 80.9 95.5

Table 22.8 shows that with just 1% of labels (approximately 13 images per class), SImCLR v2 with
ResNet-152 (3x wider + SK convolutions) achieves 76.6% Top-1 accuracy and 93.4% Top-5
accuracy, outperforming all prior methods.

Table 22.9: Effect of distillation on ImageNet Top-1 accuracy under 1% and 10% label regimes. Sim-
CLR v2 achieves strong performance without label-based supervision during distillation. Adapted
from [89].

Training Setup 1% Labels | 10% Labels
Label only 12.3 52.0
Label + distill (labeled only) 23.6 66.2
Label + distill (labeled + unlabeled) 69.0 75.1
Distill only (unlabeled only) 68.9 74.3

Table 22.9 presents ablations on distillation strategy. Notably, a comparable performance to the best
one is achieved even without any labeled examples during the distillation phase. This demonstrates
the strength of soft-label supervision: learning from the teacher’s logits—even on fully unlabeled
data—transfers robust knowledge.
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Table 22.10: Top-1 accuracy (%) under linear evaluation on ImageNet using frozen backbones. All
models use ResNet-50 (1, no SK) for a fair comparison.

Method Top-1 Accuracy (%)
Supervised 76.6
MoCo v2 [95] 71.1
SimCLR v1 [88] 71.7
SimCLR v2 [89] 76.3

Table 22.10 reports linear evaluation accuracy for ResNet-50 (1) backbones. SimCLR v2 substan-
tially improves over SimCLR v1 and MoCo v2, nearly matching the fully supervised model despite
using no labels during pretraining.

Conclusion

The SimCLR family demonstrates the power of contrastive learning to scale with model capacity
and data availability. Starting from its first version [88], which emphasized instance discrimination
with large batch sizes and strong augmentations, SImCLR v2 [89] extended this foundation into a
full semi-supervised framework. It combines:

* Stronger encoders and augmentations during large-scale contrastive pretraining,

* A deeper projection head with mid-layer fine-tuning to retain invariant features,

* Soft-label distillation to extract value from unlabeled data—even without further label

supervision.

These advances allow SimCLR v2 to achieve top-tier performance across both low-label and
fully supervised regimes. However, while effective, SImCLR remains a purely instance-level learner,
optimizing contrast between individual examples rather than trying to capture the semantic structure
of the data manifold directly.

This motivates the next family of methods—ReLIC (REpresentation Learning via Invariant
Causal mechanisms)—which extends contrastive learning by incorporating relational and group-
level constraints, paving the way for more robust and causally grounded representations.
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RelIC: Representation Learning via Invariant Causal Mechanisms

Motivation and Causal Assumptions

ReLIC [437] introduces a causal lens to self-supervised representation learning by explicitly aiming
to disentangle content from style. The method assumes that each observed image X is generated by
two independent latent factors:

X =g(C,S)

where:

* C denotes the content—the semantically relevant signal such as object identity, shape, or

structure.

S represents the style—the nuisance variation such as color, lighting, texture, or viewpoint.
and assumes statistical independence between them: C L S. This separation echoes the intuition that
the identity of an object (e.g., “cat”) does not depend on superficial visual properties like background
or illumination.

To formalize its invariance objective, ReLIC relies on the causal do-calculus [477]. Specifically,
for any downstream task Y;, the model assumes that predictions should be based solely on content C,
and remain unchanged under interventions on style S. This is written as:

pPE=(y, | C) = p*S=9)(y, | C), Vsi,s; €S

Here, p?°=9)(¥; | C) denotes the interventional distribution—the probability of label ¥; conditioned
on content C, under a hypothetical external intervention that forces the style variable S to take the
value s. The use of do-notation, introduced by Pearl, distinguishes causal effects from observational
correlations. In this context, it encodes the notion that the label of an image (e.g., “zebra”) should
not change merely because the background shifts from grassland to water, or the lighting changes
from day to dusk.

Example: Consider two augmentations of an image of a red car—one where the car appears under
daylight and one under shadows. While these views differ in pixel space, the object’s identity is the
same. A causally robust model should therefore map both views to the same semantic representation,
ignoring the nuisance introduced by style.

In ReLIC, such interventions on S are simulated using common data augmentations (e.g., random
crop, color jitter, Gaussian blur), and the goal becomes to learn a representation f(X) that reflects
C while being invariant to such augmentations. By explicitly encouraging prediction consistency
across different styles, ReLIC aligns representation learning with the causal invariance principle:
semantic meaning should remain stable under changes that do not alter the underlying content.

Learning via Invariant Proxy Prediction
Since the latent variables C, S, and Y; are unobserved during training, ReLIC introduces a self-
supervised proxy objective that indirectly enforces the causal invariance principle. Specifically, it
defines:
* A proxy task Y%, instantiated as instance discrimination—distinguishing each image from all
others.
* A set of augmentations <7 = {aj,ay, ...} that preserve content but vary style. These are
treated as interventions on the style variable S.
* A learned encoder f(X), which is optimized to approximate the latent content variable C.



1488 Chapter 22. Lecture 22: Self-Supervised Learning

The central learning principle is that predictions of the proxy task should remain invariant under
different style interventions:

peDYR | f(X) = pP YR (X)), Vaia; €

This means that although the augmentations a;,a; may alter stylistic attributes (e.g., color, back-
ground), the identity prediction of the image via the proxy task Y% should remain unchanged when
computed on the representation f(X).

To implement this, ReLIC defines a joint loss consisting of two components:

1. A standard contrastive loss (e.g., InfoNCE) that encourages positive pairs to be close and
negative pairs to be apart.

2. An explicit invariance penalty, formalized as a Kullback—Leibler (KL) divergence between
the predicted proxy distributions across different augmentations:

Zine = Dxr (p(Y® | f(@i(X))) | P(Y® | f(a;(X))))
The full ReLIC objective is a weighted sum of these terms:

ZReLIC = c%:ontrastive + B : o%nv

where 3 > 0 controls the strength of the invariance constraint. This structure ensures that representa-
tions are both discriminative and causally invariant, encouraging the encoder f(X) to capture content
while discarding stylistic factors.
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Figure 22.14: Causal assumptions and learning objective in ReLIC: representations should yield
invariant predictions across style interventions (augmentations). Figure adapted from [437].

Summary

ReLIC recasts self-supervised learning as a problem of learning causally invariant representations.
Unlike SimCLR or MoCo, which enforce augmentation invariance implicitly through the contrastive
loss, ReLIC explicitly penalizes prediction shifts induced by augmentations using a causally inspired
KL regularization term. This principled approach leads to features that are not only discriminative
but also robust to distributional shifts, improving generalization on downstream tasks and out-of-
distribution robustness benchmarks.
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From Proxy Tasks to Instance Discrimination
To approximate latent content C without using task-specific labels, ReLIC defines a self-supervised
proxy task Y based on instance discrimination. Each training image is treated as its own class:

[yt =i) | x € 2)

This fine-grained task encourages the model to recognize image instances across views, even when
style perturbed. Since it refines any downstream task into its most atomic semantic form, instance
discrimination serves as a universal supervision signal for representation learning.

Figure 22.15: Instance discrimination as a universal refinement: each image is treated as its own
class, enabling the learning of invariant representations. Adapted from [437].

RelLIC Architecture and Training Setup
ReLIC employs a dual-view contrastive framework with asymmetric roles for its components. Each
image x; is augmented twice: xﬁ,xﬁ’ ~ 7. The two views are processed by:

* f: online encoder, trained via backpropagation.

* g: target encoder, updated as an exponential moving average (EMA) of f:

g<m-g+(1—m)-f

* h,q: projection heads for f and g, respectively.
This yields ¢>-normalized embeddings:

/

Z=h(f(). 2 =qls(x))

Terminology note. ReLIC adopts modern functional terminology aligned with self-supervised
learning conventions, replacing the classical triplet roles (anchor, positive, negative) with guery and
target. The online view x}, processed by the trainable encoder f, serves as the query. Its counterpart
xﬁ’, processed by a fixed encoder g—either updated via exponential moving average (EMA) or
detached via stop-gradient—provides the target. The query is optimized via backpropagation; the
target supplies both a matching embedding and a reference similarity distribution. In this formulation,
the target view effectively assumes the role of an anchor, acting as a stable reference for both the
contrastive (first-order) and distributional (second-order) loss terms.
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Contrastive and Distributional Loss Terms
The online embedding z} serves as a query, contrasted against the batch of target embeddings {z’j/ ;V:l .
ReLIC’s objective includes two components:

* The first term is a contrastive loss, which encourages similarity between a data point z; and
its positive pair zﬁ’, while contrasting it against all negatives drawn from the other augmented
view ¢'. Importantly, this term is asymmetric: it compares Z; to the set {ztj/} iU {2}, rather
than symmetrizing over both directions. However, because both ¢ and ¢’ are sampled from
a stochastic augmentation distribution, this asymmetry is averaged out across training. This
encourages reciprocal distancing of negatives across both views and aligns positive pairs more
tightly.

* The second term is a KL divergence regularizer that explicitly enforces distributional
invariance. It compares the similarity distributions (i.e., softmax beliefs over all targets)
induced by z} and zﬁ/ across augmentations. This penalizes shifts in similarity structure due
to augmentations, encouraging the model to learn representations where pairwise similarity
patterns remain consistent regardless of the applied style transformation. Critically, while the
loss is often written using shorthand as p(z.) and p(z" ), these distributions are coupled—each
depends on the cross-view similarities and cannot be computed independently. This coupling
is what gives the KL term its invariance-enforcing power.

Together, these losses promote both instance-level alignment and global relational consistency across
views—key to ReLIC’s causal invariance principle.

The use of a target encoder updated via EMA plays a central role in enabling these two losses to
work in tandem. While the contrastive objective focuses on instance discrimination, the invariance
loss compares entire distributions of similarity scores. In this setup, the online encoder must align its
outputs with a stable reference. By slowly updating the target encoder as an exponential moving
average of the online encoder, ReLIC ensures that the embeddings used to construct the target
distributions evolve smoothly over time.

This strategy is adapted from BYOL [188] and is crucial for preventing representational collapse
and instability in optimization. Unlike MoCo [211], which uses EMA to maintain a large and
consistent dictionary of negatives, ReLIC leverages it to stabilize relational signals—specifically,
the structure of similarities across samples and augmentations. The EMA target acts as a form of
temporal ensembling, allowing the online network to chase a slowly moving target that encodes
more robust, invariant relationships.

Importantly, only the online encoder f is used at inference time. The target encoder g exists purely
as a training mechanism to provide smooth and stable targets. Its EMA nature ensures that the
guidance it provides is less noisy and more temporally averaged, avoiding the pitfalls of attempting
to match rapidly fluctuating representations. Without such a mechanism, the KL regularizer could
force the online network to chase unstable similarity profiles—potentially leading to divergence or
collapse.

Thus, the EMA target encoder is not an architectural luxury but a functional necessity: it anchors the
distributional invariance constraint with a slowly evolving reference, ensuring that the online encoder
converges toward a representation space that is both semantically meaningful and causally invariant
under augmentation-induced interventions. We now proceed to formalize the loss used in ReLIC.
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Loss Term 1: Instance-Level Contrastive Learning

ReLIC promotes first-order consistency by maximizing the similarity between positive pairs (xf,xi-/)
using a contrastive learning objective. Similarity is defined as a temperature-scaled dot product
between ¢>-normalized embeddings:

(u,v)

0c (uv V) = )

T

where T > 0 is a temperature hyperparameter.

For notational clarity and to build intuition more effectively, we denote the projected embeddings as
z="h(f(x))andz' = g(g(x’)), and express the loss in terms of z, z’ rather than directly using the input
views xﬁ,xf/. This also entails defining @; as a standalone operator that applies a temperature-scaled
dot product to any pair of vectors, rather than implicitly depending on encoder branches as in
the original ReLIC formulation. While this represents a notational simplification, the underlying
computation and resulting loss remain mathematically equivalent.

Given two augmentations xﬁ,xf-l ~ 7 of an image x;, the model computes corresponding embeddings:

where f and & define the online encoder and projector, and g, g are their EMA-based target counter-
parts.

The probability of correctly identifying the positive match zﬁ/ among a batch of targets is given by:

exp(9:(2},2}))
N
L exp(¢x (2}, 7;))
=

pdx) =

ReLIC defines the contrastive loss by summing over all instances and all pairs of augmentations:

N

ZLeontrastive = — Z Z log p(x§ ;)é/)

i=ltt
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Figure 22.16: Contrastive training in ReLIC: positive pairs (connected by green lines) are pulled
closer, while negative pairs (connected by red dotted lines) are pushed apart. Arrows indicate
pairwise distances in embedding space, measured via cosine similarity. Figure by the author; image
samples are from the Food101 dataset [50].

As shown in Figure 22.16, this formulation pulls together positive pairs across augmentations while
pushing apart all negatives in the batch. Unlike binary classification formulations, ReLIC optimizes
a softmax distribution over the full batch, which enables fine-grained relational learning.

The target encoder—updated via exponential moving average (EMA) of the online encoder—provides
stable reference embeddings throughout training. This softmax-based instance discrimination lays the
foundation for the second loss term, which aligns relational belief distributions across augmentations
to enforce invariance.
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Loss Term 2: KL Regularization for Distributional Invariance
While the contrastive objective aligns positive pairs (z;, Zi-/), it does not ensure that the similarity
structure of the learned representation is preserved across augmentations. Specifically, two em-
beddings of the same image—though close to each other—may still rank other samples in the
batch differently, resulting in inconsistent relational structure. This undermines the goal of learning
augmentation-invariant semantics.

To address this, ReLIC introduces a KL divergence regularization term that promotes dis-
tributional invariance: the belief distributions over similarity scores, as induced by different
augmentations of the same image, should remain consistent.

KL Divergence Between Positive Pairs. Let z; denote the embedding from the online encoder and
zi-/ from the EMA-updated target encoder. ReLIC defines similarity-based belief distributions as
follows:

sty = ity =)
; exp <¢r(z§,zt]f)>
Jj=1

R GED)
X exp (00(2{.2)

The KL divergence is then computed as:

/

Di(p(¥) | () = sg [log p(x} 1) | ~log pl;af)

This expression is consistent with the formulation in the original paper. The stop-gradient operator
sg[] is applied to the first term, freezing the target distribution computed from zﬁ/. During training,
only the online encoder f (producing z!) is updated, while the target encoder g (producing zf)
provides a stable reference distribution.

Rationale for Stop-Gradient. This asymmetry in optimization is crucial. If both sides of the KL
divergence were updated simultaneously, they could co-adapt or collapse toward trivial, unstable
solutions. By freezing the target-side distribution, ReLIC stabilizes training and ensures that the
online encoder learns to match a slowly evolving belief structure. This follows the mean teacher
strategy [707], where the EMA encoder serves as a consistent teacher guiding the online encoder
toward invariant behavior.
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Figure 22.17: KL regularization in ReLIC encourages the similarity distributions of query embed-
dings from different augmentations to match. Arrows represent similarity scores from one view to
all targets in the other. Figure by the author; image samples are from the Food101 dataset [50].

As shown in Figure 22.17, this loss does not merely align a positive pair but enforces that their
similarity profiles over the batch remain invariant. This encourages the model to encode consistent
relational structure under visual perturbations.

From Causal Motivation to Loss Consfruction
ReLIC is motivated by a causal view of data generation, assuming that an image is generated as:

X=g4(CS), CLS

Here, C represents semantic content (identity), while S encodes nuisance style factors (e.g., lighting,
texture, viewpoint). Augmentations correspond to interventions do(S = s) that modify style while
preserving content. The objective is to learn representations f(X) that preserve information about C,
while being invariant to changes in S:

plol@ (Y®| (X)) ~ constant across a € .7

This leads to a two-part loss:
* First-order consistency: contrastive alignment of positive pairs via instance discrimination.
* Second-order consistency: KL regularization to enforce invariance of similarity beliefs
across different augmentations.
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RelIC Objective
The full training loss combines contrastive alignment with the KL regularizer:

N
Zraue= Y, Y [~logp(isx!) +B-Dia(p() | p())]

tt' ~T i=1

Here, the contrastive term aligns positive pairs and repels negatives, while the KL term enforces
second-order consistency—i.e., stable similarity distributions across views. The use of random
sampling over augmentations 7,1 ~ 7 ensures that both asymmetric directions are symmetrized
statistically over training.

Though the notations p(x) and p(xﬁ/) appear independent, it is critical to recognize that they are
inherently cross-view coupled: each belief distribution is computed relative to embeddings from the
opposite augmentation stream. This coupling is the cornerstone of ReLIC’s distributional invariance
mechanism and is what gives the KL term its power to preserve relational structure under stylistic
perturbations.



1496 Chapter 22. Lecture 22: Self-Supervised Learning

Architecture and Implementation Details
* Encoders f, g: ResNet-50 backbones
* Projection heads £, q: 4-layer MLPs with hidden sizes decreasing from 4096 to 512
* Representation dimension: 128
* Augmentations: random resized crop, color jitter, blur
* EMA decay: typically m = 0.999
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Figure 22.18: ReLIC training pipeline: dual augmentations, dual encoders, and loss computation
with KL regularization. Figure created by the author.

Performance and Evaluation

ReLIC was shown to perform competitively on ImageNet-1k under the linear evaluation protocol.
With ResNet-50, it achieved a top-1 accuracy of 74.8%, surpassing BYOL (74.3%) and approaching
SwAV (75.3%) despite using no labels.

Importantly, the target encoder g was used for downstream tasks—leveraging its stabilized updates
for robust representation quality.

Summary and Outlook

ReLIC advances contrastive self-supervised learning by formally embedding it within a causal
framework and enforcing explicit invariance through regularization. This combination of theory
and practice yields robust, transferable features and avoids overfitting to augmentation artifacts. Its
success underscores the power of integrating causal reasoning into representation learning.

In the following subsection, we explore ReLLICv2 [620], which pushes this principle further
through saliency-aware masking, multi-scale augmentations, and more aggressive generalization
techniques—achieving state-of-the-art robustness and even surpassing supervised learning baselines.
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RelICv2: Enhanced Invariant Representation Learning

Motivation: From View Invariance to Causal Robustness

While ReLIC [437] introduced a principled invariance regularizer to contrastive learning, it still relied
on standard augmentations to simulate causal interventions on style. However, such augmentations
may preserve background textures or co-occurring objects that correlate with semantic classes but
are not causally related to the object’s identity. These spurious correlations can leak into the learned
representations, reducing generalization to out-of-distribution (OOD) data.

ReLICv2 [620] addresses this by incorporating additional methodologies to steer the model
toward representations that are truly content-based. Its core aim is to ensure that the similarity
structure induced by the learned representation reflects underlying semantic content—regardless
of variation in background, style, or partial visibility. To this end, ReLICv2 extends the original
framework along two key dimensions:

1. Foreground-aware saliency masking to remove spurious background signals.
2. Multi-view training with heterogeneous crop sizes to promote spatial and semantic robust-
ness.
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Figure 22.19: ReLICv2: Large and small views are generated and optionally passed through an
unsupervised saliency mask. Contrastive and invariance losses are computed between each online
view and all target large views. Figure credit: [620].

Foreground Saliency Masking

A central challenge in contrastive representation learning is the presence of spurious correla-
tions—for instance, consistent co-occurrence between a semantic object and background artifacts
such as textures, lighting conditions, or object co-appearance. While ReLIC [437] addressed this
problem by enforcing invariance across augmentations, it treated all pixels equally, which allowed
such spurious background features to influence learning.

To counteract this, ReLICv2 [620] introduces a fully unsupervised saliency masking mechanism
that encourages learning from foreground content while ignoring distractive background information.
This is achieved through the following steps:

* A saliency estimation pipeline is applied to each view during training to generate a binary

mask.

* Pixels outside salient regions are masked out and replaced by noise or zero.

* This operation is applied stochastically, so some crops retain full background information to

preserve diversity.
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The key advantage of this approach is that the model learns to be invariant to background style
by seeing both masked and unmasked variants of the same image and being explicitly penalized if
its similarity distribution shifts. This enforces a causal disentanglement between the object’s content
and its style or context.

)

Figure 22.20: Foreground saliency masks are estimated without supervision and optionally applied
to both large and small views during training. This encourages representations that prioritize object-
centric content while discarding background variation. Figure credit: [620].

Multi-View Learning with Large and Small Crops
ReLICv2 generalizes the two-view contrastive setup of ReLIC into a flexible multi-view framework
that better captures semantic and spatial invariance. Specifically, it samples a set of large views
(standard resized crops of the full image) and a smaller number of small views (localized, tighter
crops, potentially occluding object parts). The key motivations behind this design are:
» Style robustness: Large views, subjected to heavy augmentations (color jitter, blur, etc.),
teach the model to be invariant to style changes while preserving object identity.
* Occlusion robustness: Small views encourage the model to preserve consistent similarity
distributions even when only partial visual evidence of the object is available.

RellCv2 Objective

ReLICv2 extends the original ReLIC framework [437] by combining instance-level contrastive
learning with a distributional invariance regularizer. It operates over multiple augmented views of
each image in a batch, leveraging both global and local crops. For each image x; in a batch of N
training samples, two distinct sets of augmentations are generated:

o Y= {xi”‘ }%]:1 ~ s aset of L large (global) views per image, where each augmentation
to, ~ Jsa applies standard transformations from .7 with optional saliency masking (with
probability p,,). These large views serve both as online queries and as targets via the EMA
network. In the loss, one of them—indexed by ¢;—acts as the reference anchor.

o = {xf’t’vl }f}ZI ~ 7 asetof S small (local) views, where each augmentation z;, ~ .7 uses
standard SimCLR-style transformations without masking. These are used only as queries
through the online encoder.

Each view x € .Z; U .%; is passed through the online encoder-projector h(f(x)), yielding an ¢,-

normalized query embedding z € R?. However, only the large views xi’tﬁ' € .%; are also processed by
the EMA-based target network ¢(g(x)) to produce corresponding target embeddings z’ € R?. This
design reflects a key idea: large views are more likely to preserve global object semantics and full
spatial context, making them better suited as stable targets.
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In contrast, small crops may omit critical semantic information and thus are excluded from forming
targets to prevent anchoring on incomplete or misleading features.

The total ReLICv2 objective combines contrastive identification and distributional alignment across
multiple augmented views of each image:

L L
Ligy Lty Lite, Lte,
L=Y Y | X |Zlogp(y ) +B-Dia (p(™) | selp(xi™)
i=10=1 \ fr=1
large-to-large large-to-large
contrastive distributional alignment
comparisons among
large views
S

SJSI . IJIZ‘]

—logp(x;”";x;

[>t(1

)+B D (p(6™) || selp(x;

small-to-large
contrastive

)

small-to-large
distributional alignment

22.1)

comparisons of small views

Lty
to large anchor x; !

As indicated in Eq. (22.1), large views appear on both sides of the probability terms—once as queries
through the online network and once as targets through the EMA network—whereas small views
appear only on the query side. This asymmetry is deliberate. Large crops typically cover most
of the object and its surrounding context, so restricting the EMA network to these views makes
its targets encode stable, holistic semantics. Letting the same large views also act as queries ties
the online representation space to this global anchor, ensuring that the online encoder cannot drift
too far from a context-rich reference. Small crops, by contrast, may capture only object parts or
even background. They are therefore used solely as queries, never as targets, so that incomplete
or ambiguous content cannot reshape the EMA distribution. Moreover, the objective intentionally
omits small-to-small terms: local views are never trained to match one another directly, but instead
are all pulled toward the shared large-view targets via the InfoNCE and KL components. In effect,
each small crop must explain the same global semantic distribution as its corresponding large view,
enforcing a local-to-global inductive bias while keeping the target side anchored in stable, high-level
structure.

Term 1. Contrastive Log-Likelihood (Large-to-Large)

The first component of the ReLICv2 loss in Equation (22.1) compares large (global) views of the
same image under different augmentations. For each training image x;, each large view xﬁ’% €% is
treated as a query, and compared to a designated reference anchor xf’% € .Z;. The online and target
embeddings are given by:

l,tgl

2=h(f(x,"?)), 7 =q(ax™)),
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where all vectors are ¢;-normalized. The similarity between query and target is computed using a
temperature-scaled dot product:

!
To estimate the contrastive likelihood, ReLICv2 defines a candidate set ‘51.1’62 = {xlﬂ' }UA7, where
i C Ujzi 2 consists of negative large views sampled from other images in the batch. The

. .- . Lyt Litg, .
contrastive softmax probability of matching query x; 2 to anchor X; s
/
Lt, Lt ex Z,Z
p(x"x") p(9:(z,2))

R y exp(qbf(z,z;c))’

1,0
(7 2
pAS i

where z; = g(g(xx)) are target embeddings of the candidates. The negative log-likelihood loss,

Lig, L

710gp(x[ ,)Ci )7

encourages alignment between different large views of the same image while contrasting against
negatives from other images.

. . . . . L
A corresponding contrastive term is also applied between each small view x;’ ' € . and the same

anchor xi’t[‘ . This will be described in detail in later parts.

Term 2: KL Divergence (Large-fo-Large)

The second component of the large-to-large comparison in Equation (22.1) enforces distributional
invariance between augmented views of the same image. Rather than matching a single positive, this
term aligns entire similarity distributions over the batch, thereby promoting second-order consistency
in relational structure.

Let xi’% € .Z; be the query view, and xi’% € .Z; the reference anchor. The online embedding of the
query is:

Lt
Zquery = h(f(xl Q))a
while the online embedding of the reference view is:

lvt['l

Zet = h(f(x;")).

To compute similarity distributions, both embeddings are compared to a shared candidate set of
target embeddings defined over the current batch:

N
xkEuofj}.

J=1

%atch = {Q(g(xk))

For each candidate z;( € Hbatch, We define the similarity between the query and candidate as:

(z.2;)

0:(z,2;) = —
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The resulting similarity distributions over %, are defined as softmaxes:

Lt exp (¢1,- (unery ) Z;C))

D2 k] = ’
(xl )[ ] Y exp (¢T (unerva;d))
Z;(,E:%atch

exp ((Pq: (Zref7 Z;{))
Y exp (¢r (Zrefv Z;c/)) ‘

/
Zy € Hbatch

The KL divergence between these two distributions is then:

Diw (p") | selp™)])

where the stop-gradient operator sg|-] freezes the reference distribution to prevent gradient flow. This
ensures that the online embedding of the query view learns to imitate the relational structure of the
anchor without altering the target distribution.

In combination with the contrastive term, this distributional alignment encourages each large view
to exhibit consistent similarity rankings to all other examples, thereby reinforcing invariance to
augmentation, masking, and local variation.

Small-to-Large View Consistency Terms
In addition to large-to-large comparisons, ReLICv2 enforces consistency between small (local) and
large (global) views of the same image. These terms correspond to the second set of inner summands

. . . s . . . L.t
in Equation (22.1), where each small view xf’ ' € .7 is aligned to a large anchor view x; e %
using both contrastive and distributional losses.

Let

Zguery = h(f(xzs"t” ))

denote the online embedding of the small view, and

lvté'l

Zrer = h(f(x;"))
the online embedding of the reference large view. The target candidate set remains

N
xkEU.ﬁfj},

J=1

Hbatch = {z;c - q(g(xk))

where each z; € R? is the #,-normalized target embedding corresponding to a large view in the
batch.
The contrastive softmax probability that the small view matches its designated large anchor is:

Syt l,tg1 eXp (¢T(unerya 221 ))
(xl- 3X; )= S
Y exp (¢T(unerw Zk))

/
z;, € Hbatch
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where z; = g( g(xi’t" )) is the target embedding of the anchor view. The corresponding first-order
contrastive loss is:

Sifsy l,l[l

_logp('xi ’xi )7

which encourages the small view to identify the correct global anchor among a set of distractors
from other images.

To additionally enforce second-order alignment, similarity distributions over the batch are computed
for both views:

sty exp (‘Pr (Zquery, Z;) )

S k] = ,
Pl )k Y exp (‘Pr(zqueryvzfc/))
Z;(/@%/batch

exp (e (Zref, 2;))

Y exp (‘PT(ZrefaZ/,d))’

Z;(/ e%alch

lJll

Pl ")k =

for all zﬁc € Jpach- These distributions reflect the relational structure induced by each view across
the batch.
The KL divergence term between the distributions is:

Die (p(5™) I selp(x™)])

where the stop-gradient operator sg|-] ensures that the reference distribution remains fixed during
optimization. This term aligns the similarity profile of the partial view with that of the full-resolution
anchor, reinforcing relational consistency.

Together, these small-to-large alignment terms promote local-to-global consistency, requiring
representations of cropped or occluded views to exhibit the same relational semantics as their
corresponding full-image counterparts. This increases robustness to object scale, partial visibility,
and spatial perturbations.
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Training Procedure

The pseudocode below summarizes the training pipeline for ReLICv2. Each batch sample x is
optionally passed through a learned saliency masking module to suppress background regions with
probability p,,. Large views are generated via global crops and passed through both the online
network f, and the target network g;, while small views are generated via local crops and passed
only through f,. The online and target projections are then used to compute the ReLICv2 loss,
which includes both contrastive log-likelihood and KL divergence terms for all large-to-large and
small-to-large view pairs, as defined in Equation (22.1).

After computing the average loss over all view comparisons, the online network is updated via
backpropagation, and the target network is updated using an exponential moving average (EMA) of
the online parameters. This view-dependent asymmetry ensures that only semantically complete
views contribute to the distributional anchors, while smaller or occluded views regularize the learning
objective.

P

f-o: online network: encoder + comparison_net
g_t: target network: encoder + comparison_net
gamma: target EMA coefficient

n_e: number of negatives

p_m: mask apply probadbility

rr

© ® N9 o U R W N =

for x in batch: # load a batch of B samples
10 # Apply saliency mask and remove background
11 x_m = remove_background (x)

13 for i in range(num_large_views):

14 # Select either original or background-removed image with probability
— p_m

1s x_sel = x_m if Bernoulli(p_m) else x

16 # Apply large crop and augmentation

17 x1_i = aug(crop_1l(x_sel))

18

19 # Forward pass through online and target networks

20 ol i = f_o(x1_1i)

21 tli=g t(x1_ i)

22

23 for i in range(num_small_views):

2 # Apply small crop and augmentation

25 xs_i = aug(crop_s(x))

26 # Forward pass through online network only

27 os_i = f_o(xs_1)

28

29 loss = 0

30

31 # Contrastive + KL loss: large-to-large

3 for i in range(num_large_views):

33 for j in range(num_large_views):

34 loss += loss_relic(ol_i, tl_j, n_e)
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35

36 # Contrastive + KL loss: small-to-large

37 for i in range(num_small_views):

38 for j in range(num_large_views):

39 loss += loss_relic(os_i, tl_j, n_e)
40

41 # Normalize loss over all pairs

42 scale = (num_large_views + num_small_views) * num_large_views
43 loss /= scale

44

45 # Backpropagation and EMA update

46 loss.backward()

47 update (f_o)

48 gt = gamma * gt + (1 - gamma) * f_o

With the training procedure and loss structure established, we next examine the empirical behavior
of ReLICv2 across architectural ablations, saliency effectiveness, and transfer benchmarks.

Empirical Evaluation and Robustness Analysis

Continuing from the objective formulation, we now elaborate on the empirical insights, ablations,
and evaluation results that highlight the advantages of ReLICv2. These include improvements in
robustness, semantic fidelity, and transferability, as well as quantitative comparisons with previous
state-of-the-art contrastive methods.

Linear Evaluation Performance
ReLICv2 achieves state-of-the-art accuracy under the linear probing protocol on ImageNet, outper-
forming both self-supervised and fully supervised ResNet-50 models.

Table 22.11: Linear evaluation accuracy (%) on ImageNet. ReLLICv2 leads across ResNet variants.

Method Top-1 Accuracy
Supervised (ResNet-50) 76.5
MoCo v2 (ResNet-50) 71.1
ReLIC (ResNet-50) 74.8
ReLICv2 (ResNet-50) 77.1
ReLICv2 (ResNet-200, 2x) 80.6

ReLICv2 is the first self-supervised method to consistently outperform supervised training on
ImageNet under equivalent evaluation settings.
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Robustness and Out-of-Distribution Generalization

To evaluate the robustness and OOD generalization capabilities of ReL.ICv2, the authors test linear
classifiers trained on frozen ImageNet-pretrained ResNet-50 features across five datasets. The
evaluation follows a zero-shot linear protocol: classifiers are trained using labeled ImageNet training
data and evaluated directly on the test sets of each benchmark without fine-tuning.

Table 22.12: Robustness and OOD generalization results. Top-1 accuracy (%) from linear
classifiers trained on frozen ImageNet-pretrained ResNet-50 representations. ImageNet-V?2 values
are reported for matched frequency (MF), threshold-0.7 (T-0.7), and top images (TI). ImageNet-C
accuracy is averaged over 15 corruptions. Adapted from [620].

Method INetV2-MF T-0.7 TI INet-C INet-R Sketch ObjectNet
Supervised 65.1 73.9 784 409 24.0 6.1 26.6
SimCLR [88] 53.2 61.7 68.0 31.1 18.3 39 14.6
BYOL [188] 62.2 71.6 77.0 428 23.0 8.0 23.0
ReLIC [437] 63.1 723 777 445 23.8 9.1 23.8
ReLICv2 [620] 65.3 745 794 448 23.9 9.9 259

ReLICv2 achieves state-of-the-art robustness across all ImageNet-V2 variants and ImageNet-C,
outperforming both previous self-supervised methods and the supervised baseline. For out-of-
distribution generalization, ReLICv2 remains competitive with the supervised model and consistently
improves upon earlier contrastive approaches.

Semantic Clarity and Class-wise Consistency
Beyond accuracy, ReLICv2 improves the semantic structure of the learned feature space, as evidenced
by class confusion metrics and visualization.

ReLICv2 e BYOL

-4.5

-4.0

Figure 22.21: Confusion matrix under linear evaluation. ReL.ICv2 achieves sharper class boundaries
and reduced confusion between semantically similar categories. Figure credit: [620].

The improved class separability reflects tighter within-class clustering and more discriminative,
content-aligned representations.
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Summary

ReLICv2 extends contrastive self-supervised learning with principled causal regularization, saliency
masking, and multi-scale view consistency. Its empirical performance not only surpasses earlier
methods like ReLLIC, MoCo, and SimCLR, but also matches or exceeds supervised learning on Ima-
geNet and robustness benchmarks. These advances underscore the strength of explicit distributional
invariance and inductive view diversity in driving generalizable feature learning.
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Further Contrastive Innovations

Contrastive learning has progressed significantly beyond its foundational frameworks like SimCLR
and MoCo, which rely on instance discrimination with simple augmentations and view matching.
Recent approaches have introduced new ways to define “positives” and “negatives,” enhancing
sample efficiency, semantic alignment, and robustness to augmentations. This subsection highlights
three such innovations: Nearest-Neighbor Contrastive Learning (NNCLR), Adversarial Contrastive
Learning (AdCo), and Contrastive Learning with Stronger Augmentations (CLSA).

Nearest-Neighbor Conftrastive Learning (NNCLR)

NNCLR [138] introduces a principled rethinking of how positive pairs are defined in contrastive
learning. Instead of relying solely on augmentations of the same image, NNCLR retrieves the
nearest neighbor of each query from a momentum-encoded support queue and uses it as the positive.
This shifts the learning objective from enforcing low-level augmentation invariance toward learning
semantic consistency across the dataset.

The training process proceeds in three stages:

1. Two augmented views x},x? ~ 7 are generated for each image x;. One is selected as the
query.

2. The nearest neighbor of the query embedding is retrieved from a dynamically updated support
queue to serve as the positive.

3. An InfoNCE contrastive loss is applied between the query and its nearest neighbor, using other
samples from the batch or queue as negatives. Optionally, the loss can be symmetrized by

repeating the process with the roles reversed.

SimCLR
<------ >
InfoNCE random mini-batch random
Loss

augmentation augmentation

view 1 view 2
manifold of all samples

Bs T2

Nearest-neighbor CLR

<= == = >
InfoNCE
Loss
view 1 NNs olf view 2
view

eeeeee t-neighbors

from the support set <0 - >

SR @r S InfoNCE
~ Loss

- -

NNs of view 2
view 1

view 1

support set

Support nearest neighbor of view 1 in the support set

set

Figure 22.22: Overview of NNCLR training [138]. Each query is paired with its nearest neighbor
from a support queue. This decouples the definition of positives from augmentation alone and
encourages semantic alignment.

This design introduces several key benefits:
* It promotes semantic grouping: nearest neighbors increasingly belong to the same class or
share meaningful visual attributes as training progresses.
* It reduces dependence on strong augmentations, since neighbor retrieval introduces natural
variation and semantic diversity.
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* It enhances generalization and transferability, improving performance on both linear evalu-
ation and few-shot classification across downstream tasks.
NNCLR improves SimCLR’s ImageNet top-1 accuracy by 3.8% and outperforms supervised ResNet-
50 in 11 out of 12 transfer benchmarks.

Adversarial Contrastive Learning (AdCo)

AdCo [235] reframes negative sampling as a learnable adversarial process. Instead of drawing
negatives from a memory bank or batch, AdCo introduces a set of adversarial negatives—learnable
vectors optimized to be maximally confusing to the encoder. Training proceeds via a minimax game:

Hlein m}X ZLeontrast ( 0, N ) )

where the encoder 0 is trained to discriminate positives from negatives, while the adversarial
negatives ./~ are simultaneously updated to increase their similarity to the query.

This setup provides several key advantages:
* Principled hard negative mining: negatives are dynamically optimized to match the current
query distribution.
* Reduced reliance on large batches or queues: learned negatives eliminate the need for
external storage or large-scale sampling.
* Improved representation quality: the continual adversarial challenge accelerates conver-
gence and sharpens instance discrimination.
AdCo achieves 75.7% top-1 accuracy on ImageNet (ResNet-50) with multi-crop augmentations,
surpassing many memory-based contrastive baselines while using fewer resources.

Conftrastive Learning with Stronger Augmentations (CLSA)

CLSA [673] addresses a core failure mode of contrastive learning under overly strong augmentations.
Traditional objectives force embeddings of weak and strongly augmented views to match directly,
risking semantic distortion or collapse. Instead, CLSA compares their similarity distributions over
a memory bank, enabling robustness to heavy transformations without enforcing brittle pointwise
alignment.

l\gveak

Zoom =KL (p(- | 7%) [ p(- 1)) .

where p(- | z) denotes a softmax over cosine similarities to entries in a memory bank. A stop-gradient
is applied to the weak-view distribution, distilling its similarity structure into the strong view. This
Distributional Divergence Minimization (DDM) loss transfers relational knowledge rather than
requiring exact feature alignment.

Given a weak view z"** and a strong view z; ¢, CLSA minimizes a distributional KL divergence:

This design enables:

* Semantic consistency under severe augmentations, by aligning distributions rather than

embeddings.

* Robust, generalizable features without collapse, even when weak and strong views differ

substantially.

* Improved downstream performance, particularly for detection and transfer settings.
CLSA achieves 76.2% top-1 accuracy on ImageNet with a ResNet-50 backbone and multi-crop
augmentation, approaching supervised performance. On COCO, it improves small-object detection
AP by 3.6% over MoCo v2, demonstrating strong transferability and robustness.
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While both CLSA and ReLICv1 employ KL divergence to align distributions across augmented
views, they do so under fundamentally different assumptions and goals. The divergence in purpose
is not due to how the distributions are computed—both apply softmax over similarities—but in what
those distributions represent and how they are interpreted within the learning process.

CLSA: Distributional Distillation Across Augmentation Strength
CLSA [673] addresses the difficulty of learning from strongly augmented views, which may dis-
tort semantic content. It applies KL divergence between the similarity distributions of a weakly

: etwee
augmented view z** and a strongly augmented view z; =t

Zoom =KL (p(- | %) [ p(- 1)) .

where p(- | z) is a softmax over similarities to entries in a memory bank. A stop-gradient is applied
to the weak view, casting it as a teacher. The KL term thus distills structural information—i.e., the
neighborhood of similar samples—into the strong view. This setup is intentionally asymmetric: the
strong view learns from the more stable similarity beliefs of the weak view without forcing their
embeddings to match directly.

RellCv 1. Invariant Prediction Across Augmentations
ReLICv1 [437] uses KL divergence to enforce prediction consistency across augmented views. Given
embeddings from two views x} and xﬁ/, ReLIC aligns their proxy-target prediction distributions:

Zr1 =KL (p() | selp(x)])

where p(x) is a contrastive softmax over a designated positive and batch negatives. Unlike CLSA,
the two views are treated symmetrically in principle—they are semantically equivalent—and the KL
term acts as a regularizer for causal invariance. The model is penalized when stylistic changes
(augmentations) alter its output belief about the target. The stop-gradient ensures that gradients flow
only through the query view, anchoring the prediction distribution of one view as the reference.

Two KL Terms, Two Philosophies

Aspect CLSA (DDM Loss) ReLICv1 (Invariance Loss)

Input Assumption Strong view is a degraded student; | Both views are peers; neither is
weak view is the teacher. privileged.

What is aligned? Similarity distribution over mem- | Proxy-target prediction over con-
ory bank neighbors. trastive positives/negatives.

Purpose of KL Guided distillation under heavy | Regularization for prediction stabil-
augmentation. ity.

Role of stop-gradient On the teacher (weak view). On the reference view in KL.

Underlying Robustness | Robustness through neighborhood | Causal invariance across style in-
consistency. terventions.
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Summary (CLSA vs. RelIC)

Although both methods compare softmax distributions over similarity scores, their roles in learning
are distinct. CLSA uses KL divergence for structure transfer from clean to noisy views, enhancing
robustness under severe augmentation. ReLIC uses KL divergence for semantic invariance, ensuring
that the model’s proxy predictions remain stable across augmentations. Both are asymmetric, but
for different reasons—CLSA’s asymmetry reflects a teacher-student hierarchy; ReLIC’s enforces
consistency between symmetric peers. This difference reflects their respective goals: relational
robustness versus predictive invariance.

Comparative Landscape and Emerging Trends

Table 22.13: Comparison of selected self-supervised methods on ImageNet. Top-1 accuracy from
linear evaluation on ResNet-50, unless otherwise noted. All methods use two global views unless
stated.

Method Backbone Negatives? Positives Top-1 (%)
SimCLR [88] ResNet-50 In-batch Augmented view 69.3
MoCo vl [211] | ResNet-50 Queue Augmented view 60.6
MoCo v2 [95] ResNet-50 Queue Augmented view 71.1
MoCo v3 [93] ViT-B/16 Momentum encoder Augmented view 76.5
NNCLR [138] ResNet-50 NN queue Nearest neighbor 75.4
AdCo [235] ResNet-50 | Adversarial negatives Augmented view 72.8
CLSA [673] ResNet-50 Queue Weak/strong views 76.2
ReLIC [437] ResNet-50 Belief alignment Predictive views 74.8
ReLICv2 [620] | ResNet-50 | EMA + multi-view | Multi-view + masking 771

Across these methods, several trends emerge:

* Semantic alignment via feature-space neighbors (NNCLR).

* Learnable negatives for harder optimization (AdCo).

* Distributional robustness to augmentation strength (CLSA).
These directions extend the original contrastive learning paradigm toward methods that generalize
better, converge faster, and are more robust to practical training conditions.

A Transition Toward Natural Supervision

While the above methods operate entirely in the visual modality, a growing class of contrastive
frameworks leverages image—text supervision. The CLIP model (Contrastive Language—Image
Pretraining), introduced in the next section, aligns vision and language encoders via large-scale web
supervision, enabling zero-shot transfer and multimodal generalization.
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CLIP: Learning Transferable Visual Models from Natural Language Supervision
Motivation: Beyond Fixed Labels

Traditional supervised vision models are trained on fixed, human-curated label sets like ImageNet.
While effective within their domains, these models suffer two key limitations: they cannot generalize
beyond the predefined label set, and they require extensive manual annotation. For example, a model
trained on ImageNet may recognize a “leopard,” but not a “hedgehog,” “sedan,” or “birthday cake”
if such categories were excluded from training.

The internet, by contrast, offers a vast, freely available resource of images paired with natural
language captions—on platforms like Flickr, Reddit, and Pinterest. These (image, text) pairs encode
rich, descriptive, and diverse supervision. CLIP [497] proposes to leverage this organic data to
train vision models in a more scalable, generalizable, and label-free way: by aligning images and
language directly.

Essentially, what we get from CLIP is
a space/landscape in which matching
captions and images are closer, and

CLIP 94% Match those that are not matching are
further away:

Black and white Border Collie dog posing on ———> i Arphoto
the grass in the park with open mouth in ’ poy ..‘ of a Main

: Coone
the warm sun during golden hour cat

. @ b
it e
CLIP 8% Match

. .o
-~ 3
L VA r
A picture of a cat wearing a skirt walking in —— g A photo of a white
the park \ = ~ airplaneona

" concrete field

Figure 22.23: CLIP learns a shared embedding space for images and text, aligning semantically
matching pairs while repelling mismatched ones. Figure adapted from [497].

A Naive Approach: Capftion Prediction
A natural first attempt to link vision and language is to train a model to generate a caption from an
image—similar to traditional image captioning [648]. This seems promising at first: to succeed, the
model must learn rich visual semantics. For instance, recognizing that the image in Figure 22.23
depicts a black-and-white Border Collie on grass implies some level of object understanding.

However, this predictive approach quickly proves inefficient for learning general-purpose visual
representations. The task of full caption generation is a high-entropy objective: the model must not
only parse visual content but also master grammar, syntax, and word ordering. Worse, there are often
many valid ways to describe the same image (e.g., “a dog in a field” vs. “a Border Collie outdoors™),
making learning brittle—small phrasing changes can yield very different loss signals.

Additionally, captions scraped from the web tend to be noisy, inconsistent, or stylistically verbose
(e.g., “A photo of a ...”), further degrading training robustness. These issues compound to make
caption prediction a poor pretraining signal for transferable visual understanding.
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Efficiency Comparison: Conftrastive vs. Predictive Objectives

The limitations of prediction-based learning become especially apparent in zero-shot settings—where
the model must generalize to new categories without any task-specific supervision. A standard
benchmark for evaluating this generalization is zero-shot ImageNet classification.

What is Zero-Shot ImageNet Accuracy? The goal is to classify a test image into one of 1,000
ImageNet classes, without training on labeled ImageNet examples. Rather than learning a classifier,
the model performs retrieval over text descriptions:

1. For each class (e.g., golden retriever, container ship), a prompt such as “a photo of a
golden retriever” is written.

2. These 1,000 prompts are encoded using the model’s text encoder.

The test image is encoded with the image encoder.

4. The predicted label is the one whose text embedding is closest to the image embedding
(typically using cosine similarity).

(98]

This evaluation setup naturally favors models that embed both modalities into a shared semantic
space—as is the case with CLIP. In contrast, predictive models such as caption generators and
Bag-of-Words predictors were originally designed for different objectives and typically require
additional adaptation or heuristic matching to be evaluated in this retrieval-style framework.
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Figure 22.24: Zero-shot ImageNet classification accuracy under different training objectives. CLIP’s
contrastive loss dramatically outperforms alternatives like Bag-of-Words prediction and autoregres-
sive captioning. Figure adapted from [497].
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Figure 22.24 compares three paradigms under this shared evaluation task:

1. Caption Prediction: Autoregressive models are trained to generate full captions from image
inputs. For zero-shot classification, the model first generates a caption, then this caption
is matched to one of the 1,000 class prompts—either by computing string or embedding
similarity. However, this is a two-stage workaround not aligned with the original training
objective. Moreover, autoregressive generation is inherently slow and computationally costly,
making this pipeline brittle and inefficient.

2. Bag-of-Words Prediction: These models output an unordered set of words associated with
the image. To adapt this to classification, each class name is reduced to a bag of tokens, and the
model’s prediction is matched by measuring overlap (e.g., Jaccard similarity or word count).
This formulation removes syntax and speeds up training—achieving a 3x efficiency gain over
full captioning—but it still lacks a true similarity metric or embedding space for semantic
alignment, limiting performance.

3. Contrastive Learning (CLIP): CLIP directly learns a joint embedding space by maximizing
agreement between paired image—text embeddings in a batch of N pairs. Using a symmetric
contrastive loss, the model distinguishes N correct alignments from N? possibilities. This not
only fits the zero-shot retrieval formulation exactly—it also yields an additional 4 x efficiency
gain over Bag-of-Words, and a total of 12x over caption generation.

Why Conftrastive Learning Wins
CLIP’s alignment of training objective, architecture, and evaluation yields several key advantages:
* No generation overhead. CLIP bypasses the need for text decoding, grammar modeling, or
syntactic correctness—only vector similarity matters.
* Direct semantic grounding. Because learning is framed as matching, CLIP aligns image and
text by shared meaning, not lexical overlap—making it robust to phrasing variation.
* Superior generalization. CLIP achieves state-of-the-art zero-shot accuracy on ImageNet
without ever seeing the 1,000 labels—demonstrating contrastive learning’s strength for transfer.

Key Insight

While all three approaches leverage similar image—text data, only CLIP’s contrastive formulation is
structurally aligned with retrieval-based classification. Predictive models like caption generators and
Bag-of-Words predictors require nontrivial adaptations to operate in this setting, often resulting in
inefficiencies and mismatches between their training and evaluation procedures. CLIP, by contrast,
is trained end-to-end to embed images and text into a shared semantic space, where simple similarity
comparisons drive both training and inference.

This alignment between objective and evaluation is what enables CLIP to outperform traditional
models in both accuracy and efficiency. But how exactly is this achieved? In the next parts, we
explore the architectural design and training strategy that make CLIP’s contrastive learning pipeline
so effective—and so broadly applicable.
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CLIP’s Contrastive Training Approach and Loss

Training Strategy: Paired Alignment at Scale

CLIP is trained to align images and their natural language descriptions in a shared multimodal
embedding space using a contrastive objective. Its architecture consists of two independent yet
jointly optimized encoders:

* An image encoder fj,,, typically a ResNet-50 or Vision Transformer (ViT), maps an image
ximg to a latent representation. A learned projection head Wiy, then maps this representation
into the shared embedding space.

* A text encoder fi.x, implemented as a Transformer with causal attention (similar to GPT),
maps a sequence of tokens x{*' to a text representation. Like the image side, it is followed
by a projection head Wi, to align the embedding space. Importantly, this encoder is trained
from scratch alongside the vision backbone—without using language-specific objectives like
masked language modeling or next-token prediction.

Both embeddings are /;-normalized to lie on the unit hypersphere:

img

X
z text __

= normalize(fimg (X} *)Wimg), 2" = normalize( frext (") Wiext)
This ensures that similarity between representations corresponds directly to their cosine similarity,
computed as a dot product between normalized vectors.

Symmetric Confrastive Loss
CLIP optimizes a symmetric contrastive loss over batches of paired image—text examples. Given
a batch of N pairs {(x;",x!*")}¥  _the model considers all N? possible image—text pairings. The

similarity between image i and text j is given by:

img _text
("™, )
Sij=——— (22.2)
i T
where T > 0 is a learnable temperature parameter that controls the sharpness of the softmax
distribution. A lower value of T emphasizes hard negatives more strongly. This is essentially a
temperatured cosine similarity, as the embedding vectors are £;-normalized.

The loss is defined as the average of two cross-entropy terms:

exp(sii) o exp(sii)
Y exp(si j) Y rexp(s)i)

1 N
Lo = N Y |—log (22.3)
i=1

* The first term encourages each image to retrieve its paired text (image-to-text).

* The second encourages each caption to retrieve its corresponding image (text-to-image).

This symmetric setup casts contrastive learning as two parallel classification problems. Each
image and caption acts as a query, identifying its matching partner among all candidates in the batch.
All other pairs serve as implicit negatives—yielding N> — N distractors per batch.
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Figure 22.25: Contrastive loss structure in CLIP. For the third image—text pair, CLIP computes
similarities between the image and all texts (row) and between the text and all images (column). The
objective is to maximize the diagonal element (the correct pair) and suppress off-diagonal similarities.
Figure adapted from [497].

Interpretation and Scaling Advantages

CLIP’s contrastive objective directly optimizes semantic alignment across modalities without relying
on generation, token-level supervision, or fixed label vocabularies. By training on naturally co-
occurring (image, text) pairs, the model learns to encode meaning in a way that is more invariant to
phrasing and robust to contextual variation. This approach enables retrieval-based evaluation without
requiring textual decoding or classification heads.

Importantly, the shared embedding space learned by CLIP supports efficient downstream usage:
zero-shot classification, retrieval, and prompt-based recognition all reduce to simple similarity search
via dot products. This stands in contrast to autoregressive captioning or bag-of-words models, which
require additional steps—such as text generation or lexical matching—to participate in the same
tasks.

Efficient Large-Scale Training

CLIP was trained on a massive dataset of 400 million (image, text) pairs collected from the web.
The dual-encoder architecture makes this process computationally scalable: contrastive gradients
can be computed efficiently across large batches in parallel, without the need for memory banks,
hard negative mining, or cross-modal attention mechanisms.

Moreover, CLIP treats the temperature parameter T in the similarity score as a learnable quantity.
Rather than manually tuning it, the model optimizes 7 jointly with the encoders. This dynamic
adaptation improves convergence and stability, particularly when training with large and noisy data.
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Together, these design choices make CLIP’s training pipeline not only more scalable but also better
aligned with real-world web supervision, laying the groundwork for transferable, open-vocabulary
visual understanding.

CLIP Loss Pseudo Code & Further Explanations
Loss Pseudo Code

i

1
> image_encoder - Resllet or Vision Transformer (ViT)

3 text_encoder - CBOW or Text Transformer

4 I[n, h, w, c] - minibatch of aligned images

s T[n, 1] - minibatch of aligned texts

6 W_i[d_v, d_e] - learned projection of image to embed
7 W_t[d_t, d_e] - learned projection of text to embed
8 t - learned temperature parameter

9 rr

10

11 # extract feature representations of each modality:
12 I_f = image_encoder(I) #[n, d_z]

13 T_f = text_encoder(T) #/[n, d_t]

# joint multimodal embedding [n, d_e]:
16 I_e = 12_normalize(np.dot(I_f, W_i), axis=1)
T_e = 12_normalize(np.dot(T_f, W_t), axis=1)

19 # scaled pairwise cosine similarities [n, n]:
20 logits = np.dot(I_e, T_e.T) * np.exp(t)

2 # symmetric loss function:

23 labels = np.arange(n)

24 loss_i = cross_entropy_loss(logits, labels, axis=0)
»s loss_t = cross_entropy_loss(logits, labels, axis=1)
26 loss = (loss_i + loss_t)/2

Explanation

The input consists of N aligned (image, text) pairs. The image encoder produces visual feature
vectors of dimension d;, while the text encoder outputs textual features of dimension d;. These are
projected into a shared d,-dimensional embedding space using learned linear mappings W; € R% >4
and W, € R%*de

Since the raw feature dimensions d; and d; differ across modalities, the projections W; and W; ensure
compatibility for similarity comparison. After projection, both embeddings are ¢;-normalized,
making the dot product a cosine similarity:

<Z1.mg,z;ext>

1mg t'ext) — 1

" = (@4

cosine(z — 1~ —(z
img text Lo

2 =1 - 1125

as ||z|| = 1 after normalization. The resulting matrix of logits € R¥*" contains pairwise similarities

scaled by exp(t), where t € R is a learned temperature parameter controlling the sharpness of the

softmax distribution.
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The final loss is symmetric: it computes a softmax distribution over both rows (image-to-text) and
columns (text-to-image), applying a cross-entropy objective in each direction:
* Row-wise (Image— Text): For each image embedding, predict the index of its matching
caption within the batch.
* Column-wise (Text—Image): For each text embedding, predict the index of its corresponding
image.
By penalizing high similarity with mismatched pairs, the loss encourages the model to separate true
associations from in-batch negatives. The total loss is the average of the two directional components.

Intuition Behind the BCE Terms
The batch cross-entropy (BCE) terms across each axis correspond to estimating a categorical
distribution over possible matches. For the image-to-text loss:

img _text
! s T
BCE,; = —log exp((zl .’Z’ >/ )

=rexp((g™,25) /7)

The same applies symmetrically for the text-to-image direction. These distributions penalize the
model for assigning high confidence to mismatched pairs i # j, encouraging tight alignment across
modalities.

CLIP Experiments and Ablations

Zero-Shot Performance vs. Supervised Models

A key highlight of CLIP’s training pipeline is its ability to perform zero-shot classification—assigning
labels to images from unseen datasets without any gradient updates or supervision. To benchmark
this, the authors compared zero-shot CLIP models to traditional supervised baselines trained on
ImageNet.
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Figure 22.26: Zero-shot CLIP is competitive with fully supervised linear probes on ImageNet-trained
ResNet-50 features. Out of 27 datasets, CLIP wins on 16—including ImageNet itself. Figure adapted
from [497].
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The standard supervised baseline here uses a linear probe: a linear classifier trained atop frozen
ResNet-50 representations. CLIP, by contrast, uses zero-shot prompts like “a photo of a banana” to
embed classes and selects the class whose embedding has highest cosine similarity with the image.
The fact that CLIP can outperform supervised ResNet-50 on ImageNet—without access to ImageNet
labels—speaks to the effectiveness of language supervision and contrastive learning at scale.

Notably, CLIP’s margin of superiority is largest on datasets with few training examples per class,
where fine-tuning is difficult but general representations are valuable. On highly specialized or
medical tasks (e.g., tumor detection), however, supervised models still outperform.

Robustness to Natural Distribution Shift

Vision models often suffer substantial performance degradation under natural distribution shift—a
change in data appearance or source that does not alter the label space. CLIP, trained on noisy and
uncurated web data, displays remarkable robustness in this setting.
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Figure 22.27: CLIP significantly reduces the robustness gap across several distribution shift bench-
marks, outperforming supervised baselines. Zero-shot variants reduce the gap by up to 75%. Figure
adapted from [497].
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For example, when evaluating image classification across ImageNet and four derived variants (e.g.,
ImageNet-V2, ImageNet-R, ObjectNet), CLIP maintains stronger consistency than a supervised
ResNet-101 with similar in-domain accuracy. The key factor is CLIP’s exposure to diverse, real-
world variation during pretraining, which encourages abstraction over spurious correlations. Rather
than memorizing style- or dataset-specific statistics, CLIP learns to recognize the underlying semantic
identity of objects (e.g., banana-ness) across contexts.
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Linear Probe Evaluation Across Models

To further probe the quality of its representations, CLIP was evaluated using linear probes on
frozen encoders. This is a common technique for comparing feature expressiveness across models: a

logistic classifier is trained on top of the frozen embeddings to assess how linearly separable different
categories are.
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Figure 22.28: Linear probing performance across several models. CLIP with Vision Transformer
backbones achieves competitive or superior results, while being significantly more compute-efficient
than traditional ResNets. Figure adapted from [497].

The results demonstrate that CLIP’s representations are broadly transferable: its largest model
(ViT-L/14@336px) outperforms strong supervised and self-supervised baselines, such as MoCo
v2 and Noisy Student EfficientNet-L2, on both 12- and 27-dataset suites. Additionally, ViT-based
CLIP models were found to be roughly 3 x more compute-efficient than CLIP’s ResNet counter-
parts—highlighting the dual benefits of better generalization and architectural efficiency.
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Tradeoffs in Dataset-Specific Adaptation

The final experiment explored the tension between generality and specialization. While CLIP excels
in zero-shot transfer, adapting it to a specific dataset—rvia fine-tuning or learning dataset-specific
classifiers—can sometimes improve local performance at the cost of broader robustness.
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Figure 22.29: Adaptation tradeoff: fine-tuning CLIP on ImageNet improves in-domain performance
but may degrade generalization to other datasets. Prompt ensembling or hybrid classifiers offer more
balanced solutions. Figure adapted from [497].

For instance, training a linear classifier directly on ImageNet features can slightly improve classifica-
tion accuracy on ImageNet itself, but may lower performance on distribution shift benchmarks. This
suggests that such fine-tuning encourages reliance on domain-specific cues. The authors recommend
using prompt ensembling (e.g., averaging over templates like “a photo of a {label}”) to boost
zero-shot accuracy while preserving generalization.

Summary and Practical Takeaways
CLIP’s experimental evaluation reinforces the power of contrastive language—image pretraining on
noisy, web-scale data. Its design decisions—such as symmetric contrastive loss, massive in-batch
negatives, and a learnable temperature—translate into practical benefits:
* Zero-shot generalization: CLIP achieves strong performance across 30+ datasets without
task-specific labels.
* Transferability: CLIP’s representations are broadly useful for linear probing, retrieval,
captioning, and grounding tasks.
* Robustness: Its learned embeddings are more stable under distribution shift compared to
supervised baselines.
In sum, CLIP represents a turning point in multimodal learning—demonstrating that large-scale
contrastive training with natural language supervision can rival, and sometimes surpass, years of
progress in image-only representation learning.
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Self-Distillation Methods
Limitations of Contrastive Learning

Despite their widespread success, contrastive self-supervised methods such as SimCLR [88],
MoCo [211], and CLIP [497] face several notable limitations:

* Dependence on Negative Samples: These methods require large sets of negative examples to
avoid representational collapse. This introduces a tension between performance and semantic
alignment: semantically similar examples may be treated as negatives (‘“false negatives”),
inadvertently pushing related representations apart.

» Large Batch Size Requirements: To provide sufficiently diverse negatives, methods like
SimCLR rely on large batch sizes (e.g., 4096+), which strain GPU memory. Alternatives
like MoCo sidestep this using memory banks, but introduce complexity in maintaining and
sampling from queues.

* Sensitivity to Augmentations: The contrastive signal depends critically on strong augmen-
tations (e.g., color jittering, cropping, blurring). Methods are often brittle to changes in
augmentation policy, limiting robustness across domains.

* Careful Hyperparameter Tuning: Performance is sensitive to choices such as the temperature
parameter T, the architecture and depth of projection heads, and optimizer configurations.

* Collapse in Poor Settings: When negatives are insufficiently diverse, models risk collapsing
to trivial solutions. Though contrastive learning is more robust than most SSL paradigms,
collapse remains a challenge.

* Limited Semantic Understanding: Contrastive methods typically focus on instance-level
discrimination, which can impede learning of semantic groupings. Images of the same
object under different conditions (e.g., lighting or pose) may be treated as unrelated, limiting
generalization.

These limitations motivate a shift to a different family of self-supervised methods that can learn

without explicit negatives: self-distillation.

From Contrastive Methods to Self-Distillation

While contrastive methods supervise learning by comparing different data samples—usually requiring
negative pairs and large batch sizes—self-distillation offers a predictive alternative. These methods
optimize alignment between different augmented views of the same image, typically without explicit
negatives or pairwise contrast. The goal is to preserve the representational power of self-supervision
while avoiding its brittle design constraints.

Self-distillation builds on the broader framework of knowledge distillation (KD), originally
proposed for model compression [219]. In classical KD, a compact student network is trained to
imitate the behavior of a high-capacity teacher network—often using soft probability outputs rather
than hard labels to provide richer supervision.

Classical Knowledge Distillation

Knowledge distillation (KD) is a framework for transferring learned representations from a high-
capacity feacher network to a smaller or simpler student model [182, 219]. This transfer allows the
student to benefit from the teacher’s deep knowledge and generalization behavior—even without
direct access to labeled data.
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Three main families of KD approaches exist:
* Response-based distillation: The student mimics the teacher’s final output, typically in the
form of class logits or softmax scores:
— Hard distillation treats the teacher’s top-1 class as a one-hot label.
— Soft distillation uses the teacher’s entire output distribution, often softened with a tem-
perature parameter to expose class similarities.
* Feature-based distillation: The student learns from intermediate hidden activations of the
teacher, promoting alignment of local feature patterns.
* Relation-based distillation: The student matches higher-order relationships between samples,
such as pairwise similarities or structural dependencies.
Of these, response-based distillation is the most widely adopted. Its key idea is to replace hard labels
with a richer supervisory signal: the teacher’s full softmax output. These soft targets reveal relative
similarities between classes, sometimes referred to as "dark knowledge". For example, a teacher
might predict 80% truck and 15% bus, helping the student encode class similarity beyond binary
decisions.
To generate soft targets, the teacher’s logits z; are scaled by a temperature parameter T > 1 before
applying the softmax:

 explai/o)
PO = § exp(z/7)

The student outputs a similarly softened distribution Q, and training minimizes the Kullback—Leibler
divergence:

D (P1) = L Ptog (g0 ).

A higher 7 flattens the distribution, encouraging the student to learn inter-class relationships and not
just the top prediction.

Response-Based Knowledge Distillation
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Figure 22.30: Response-based knowledge distillation [182]. A student network is trained to match
the soft output distribution (logits) of a pre-trained teacher.
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While response-based distillation is powerful, it assumes access to a pretrained and fixed teacher
network—an assumption that breaks down in self-supervised learning, where no labeled data exists
to train such a teacher. This motivates a natural question: can a model learn from itself in the absence
of labels or external supervision?

Self-distillation (SD) emerges as a compelling answer. Rather than mimicking a separate teacher,
the model supervises itself across different time steps or input views. This reframes knowledge
distillation as an internal prediction alignment task and opens the door to label-free, contrastive-free
representation learning.

We now explore the formulation and motivation behind self-distillation in greater depth.

From Classical KD to Self-Distillation

Self-distillation (SD) adapts the teacher—student framework to the self-supervised setting, where
no labels or pretrained teachers are available. Unlike classical knowledge distillation (KD), which
transfers soft predictions from a fixed, pretrained teacher, SD involves a model feaching itself through
the alignment of its own predictions across time and augmentations. This reframing introduces
several core differences:

» Teacher origin: In KD, the teacher is a static, often overparameterized model trained with
supervision. In SD, the teacher is a moving target: a slowly evolving exponential moving
average (EMA) of the online model itself.

* Supervisory signal: KD aligns softmax distributions over classes. SD discards class supervi-
sion entirely and instead minimizes representation discrepancy across views—typically using
cosine or MSE loss between learned embeddings.

* Training objective: KD is supervised or semi-supervised; SD is fully unsupervised and relies
on view consistency for training.

Despite these differences, both paradigms are united by the use of soft targets—intermediate
representations that provide a richer learning signal than hard labels alone. In SD, this soft signal
comes not from external supervision, but from a stabilized, slowly moving reference.

Self-Distillation: Teacher-Free Prediction Alignment
Self-distillation methods implement this paradigm via two networks with shared architecture:

* The online network, trained via backpropagation.

* The target network, updated via an EMA of the online network’s weights.
At each training step, the online network processes a view x’, while the target network encodes
a separate view X" of the same image. A non-linear predictor head h, applied only to the online
network, introduces architectural asymmetry—a critical element for avoiding collapse. The loss is
computed as:

2

)

Lo = ||B(fo(+')) ~ stop_grad(£i(x"))|

where f, and f; are the encoders of the online and target networks, respectively. The stop_grad
operator prevents gradients from flowing into the target branch, ensuring it provides a stable, fixed
target.

Crucially, this loss operates on representation vectors—not logits—and does not require predefined
classes. But this raises a conceptual puzzle: If both networks start from scratch, how does learning
begin?
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Cold Start and the Bootstrapping Feedback Loop

A central puzzle in self-distillation is how training succeeds when both the online and target networks
are randomly initialized. At first glance, the idea of learning from a "teacher" that knows nothing
appears paradoxical. Yet, in practice, self-distillation methods such as BYOL and SimSiam converge
reliably. This success hinges on a carefully engineered interplay of asymmetries that enable the
model to bootstrap its way to meaningful representations.

* Data asymmetry: Even with identical initial weights, the two branches receive different
augmentations of the same input image. These distinct views lead to different encoder outputs,
producing a nonzero initial loss and immediate gradients—providing a meaningful signal from
the first step.

* Architectural asymmetry: A non-linear predictor head # is applied only to the online
branch. This ensures that the network’s task is not merely to copy the target’s output, but to
learn a transformation that aligns embeddings across different views. Without this asymmetry,
collapse to trivial solutions (e.g., constant outputs) becomes a local minimum; with it, such
solutions become unstable.

* Temporal asymmetry via EMA: The target network is updated as an exponential moving av-
erage (EMA) of the online network’s parameters. This produces a slowly evolving teacher that
acts as a smoothed, temporally consistent guide. Early in training, even small improvements
in the online network are gradually integrated into the target, allowing it to become a slightly
better teacher over time.

Together, these asymmetries initiate a self-reinforcing learning loop: the online network improves
slightly, the EMA target incorporates this improvement with stability, and the next iteration uses the
improved target as a more informative reference. Over time, this dynamic leads to the emergence of
increasingly structured representations.
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Figure 22.31: Left: Classical knowledge distillation with distinct teacher and student networks.
Right: Self-distillation using an online and a momentum-updated target network of identical archi-
tecture [135].

But how can a model learn anything useful from an initially random target? The key insight is that
learning does not require the target to be semantically meaningful from the start—it only needs to be
consistent. Even a random network, when applied to different views of the same image, produces
outputs with subtle statistical regularities.
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By aligning its predictions to these weak but consistent signals, the online network begins to capture
view-invariant structure. The EMA then amplifies and stabilizes this structure over time, enabling
the system to progressively bootstrap richer representations from noise.

This bootstrapping mechanism—rooted in data diversity, architectural design, and temporal smooth-
ing—explains how self-distillation avoids collapse and learns effectively from scratch, without labels
or contrastive negatives.

Final Representation: What Do We Keep?

A major trend across modern self-supervised learning (SSL) is the use of teacher—student architec-
tures with distillation-like mechanisms. While not all methods—such as MoCo or SimCLR—fit
the narrow definition of self-distillation, they adopt similar principles involving dual networks,
embedding alignment, or moving-average targets. In these frameworks, the standard practice is to
retain only the online encoder (backbone) after training, while discarding all auxiliary components.

* BYOL (self-distillation): “At the end of training, we only keep the encoder fy; everything
else is discarded.”

* SimCLR (contrastive): “We throw away the projection head and use the encoder’s penulti-
mate layer for downstream tasks.”

* DINO (self-distillation): “The features used in downstream tasks are the output of the
backbone f.”

» Barlow Twins (non-distillative): The projection head (called the expander) is discarded; only
the encoder is retained.

This design choice is justified by both theoretical and practical considerations:

* The online encoder is the active learner. It is optimized via gradient descent and accumulates
the learned representations by minimizing the self-supervised loss. Its parameters reflect the
most up-to-date and discriminative features at the end of training.

* The target network is a training stabilizer. It acts as a slowly updated exponential moving
average (EMA) of the online network. While it provides a stable signal throughout training, it
is always lagging behind the online model. As such, it is not an independent model but an
auxiliary ensembling mechanism.

* Auxiliary heads are task-specific. The predictor and projector are only necessary to shape
the loss landscape during pretraining (e.g., for embedding alignment). They are not designed
for general-purpose feature transfer, and often reduce information useful for downstream
tasks [88, 188].

In summary, the encoder of the online network—the part trained to predict and adapt—captures
the transferable structure learned during pretraining. The other components, though essential for
enabling stable and effective training, are not retained. For downstream tasks, a new head (e.g., a
linear classifier) is attached to the frozen or fine-tuned encoder. This separation between pretext
optimization and transfer representation is central to the self-distillation pipeline.

Introduction Summary
Self-distillation methods learn by enforcing consistency across views without contrastive loss or
negative samples. Through architectural asymmetry, temporal smoothing, and internal bootstrapping,
they extract rich representations from unlabeled data. This paradigm underlies modern frameworks
such as BYOL, SimSiam, and DINO.

We now examine how these principles are instantiated, starting with BYOL’s use of a predictor
head and momentum encoder to stabilize training.
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Bootstrap Your Own Latent (BYOL)

Motivation: Learning Without Contrast

Contrastive learning methods like SimCLR and MoCo rely heavily on negative pairs to prevent
representational collapse. These methods require either extremely large batch sizes (e.g., 4096
in SimCLR) or auxiliary structures like momentum encoders and memory queues (as in MoCo).
However, managing these negatives introduces several downsides: semantic repulsion, high GPU
memory demand, sensitivity to augmentation strategies, and complex tuning of hyperparameters
such as temperature.

In response to these limitations, BYOL [188] proposes a radically different approach: a self-
distillation framework that learns meaningful representations without any form of negative samples.
BYOL replaces the contrastive objective with a predictive one—minimizing the distance between two
augmented views of the same image—enabled by a dual-network setup and architectural asymmetries
that avoid collapse.

Architectural Overview

Bootstrap Your Own Latent (BYOL) introduces a self-supervised framework built on two interacting
neural networks: an online network, which is trained via gradient descent, and a target network,
which provides stable targets without backpropagation. The two branches share the same backbone
architecture but differ in their update mechanisms and structural components.

* Online Network (trainable): Composed of an encoder fg, a projector gg, and a predictor
qe- The predictor head gg is applied only in this branch and introduces essential asymmetry,
playing a crucial role in preventing representational collapse.

* Target Network (non-trainable): Consists of an encoder f¢ and a projector ge. Its parameters
are updated using an exponential moving average (EMA) of the online network’s weights:

E«—1E+(1—-1)0

where 7 € [0, 1) is a momentum coefficient, typically initialized at T = 0.996 and gradually
increased to 1.

For each image x, BYOL applies two stochastic data augmentations, producing two distinct views
v=1t(x) and v/ = #(x). The online network processes v through its encoder—projector—predictor
pipeline to yield a predicted representation. Simultaneously, the target network processes V' through
its encoder and projector to generate a target embedding. The objective is to align these outputs
without requiring negative examples.

view representation projection prediction
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Figure 22.32: BYOL architecture: the online branch predicts the target embedding from a different
view of the same image. The target branch is updated via EMA and does not receive gradient updates.
Only the online encoder fj is retained after training. Figure adapted from [188].
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Mathematical Formulation and Training Objective
Let x € & be an input image. BYOL applies two independent stochastic augmentations to obtain
views v =1(x) and v/ = #'(x). These views are processed by two networks:
* Online network (learned via backpropagation): composed of an encoder fy, a projection head
g0, and a predictor head gg. It computes:

yo=fo(v), ze=go(ve): Po=4qe(z0)
* Target network (updated via EMA): composed of encoder f; and projector g¢, with:
Ye=1e(V)s 2z =8e ()
To ensure stable training, both outputs are ¢>-normalized:

/

Po Z/ _ Z§
AT

Po =1
1Pall2

The core objective encourages the online prediction pg to align with the target projection Zf:, treated
as a constant using a stop-gradient operator:

2

/ _ =/
fe,g (vv) = Hpe - Sg(Zg)H2
This squared ¢,-distance is equivalent to maximizing cosine similarity between unit vectors. The
stop-gradient (sg) operator halts gradient flow through the target branch, enforcing an optimization
asymmetry that is crucial for collapse prevention.

To ensure balanced learning and prevent the network from specializing in predicting only one view
from the other, BYOL symmetrizes the loss by swapping the roles of the online and target branches
across augmentations. Specifically, the second augmented view V' is passed through the online
network and the first view v through the target network, producing a second prediction—target pair:

Zoe (V) = |5y 8z

where py = qo(ge(fo(v'))) and Zz = Hf&%. This symmetry ensures that both augmentations
contribute equally to representation learning and mitigates potential bias arising from fixed network

roles.

The final training objective combines both directions:
LoyoL = Ly (vV) + je,é v,

Unlike contrastive frameworks that depend on repulsion between negatives, BYOL relies solely on
positive pair alignment. Its ability to avoid collapse stems not from the loss formulation alone, but
from a carefully balanced design: the predictor head introduces architectural asymmetry, the EMA
target stabilizes learning trajectories, and the stop-gradient mechanism prevents trivial feedback
loops. Together, these elements enable the model to distill invariant, semantically meaningful
features from raw, unlabelled data. We’ll uncover it in detail later.
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Robustness and Empirical Performance

A central strength of BYOL lies in its robustness to design constraints that affect contrastive
methods. Unlike SimCLR, which degrades significantly without large batch sizes or aggressive data
augmentations, BYOL maintains high performance under less demanding setups.
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Figure 22.33: Left: Top-1 accuracy on ImageNet under varying batch sizes. SimCLR drops sharply
below 512, while BYOL remains stable down to 256 and only deteriorates significantly below it.
Right: Effect of removing different augmentations from the baseline. In this aspect, BYOL also
shows greater robustness than SimCLR. When color distortions were removed from the augmentation
pipeline SimCLR performance dropped far more than BYOL. Adapted from [188].

Batch Size Robustness. BYOL does not depend on negative sampling, and thus avoids the batch
size bottleneck inherent in contrastive methods. While SimCLR relies on large batches (e.g., 4096) to
yield diverse negatives, BYOL performs well down to a batch size of 256. Below 128, performance
does decline—but this is attributed to the batch normalization statistics becoming unreliable at small
batch sizes, rather than any flaw in BYOL’s learning dynamics.

Augmentation Robustness. SImCLR’s reliance on strong augmentations (e.g., color jitter, grayscale)
is tied to its need to create hard positives and diverse negatives. In contrast, BYOL learns by aligning
predictions, not discriminating between pairs, and therefore suffers less when specific augmentations
are removed. While strong augmentations still help, BYOL’s learning signal is less fragile, making it
easier to deploy in practice with simplified data pipelines.

Linear Evaluation on ImageNet
To assess representational quality, BYOL is evaluated using the standard linear probing protocol on
ImageNet: the encoder is frozen and a linear classifier is trained on top. BYOL sets a new state of
the art across several architectures.



22.4 Self-Distillation Methods 1529

Table 22.14: Top-1 and Top-5 accuracy on ImageNet under linear evaluation. BYOL outperforms
both contrastive and non-contrastive baselines. Adapted from [188].

Method Architecture Params Top-1 Top-5

SimCLR [88]  ResNet-50 (2x) 94M 742  92.0
BYOL (ours) ResNet-50 (2x) 94M 774  93.6
CPC v2 [214] ResNet-161 305’M 715 90.1
MoCo v2 [95] ResNet-50 (4x) 375M 71.1 -

BYOL (ours) ResNet-200 2x) 250M  79.6 94.8

Semi-Supervised Evaluation
BYOL also excels in label-scarce regimes. When trained with just 1% or 10% of labeled ImageNet
data, it significantly outperforms prior work.

Table 22.15: Semi-supervised ImageNet accuracy under 1% and 10% label availability. Adapted
from [188].

Method Architecture 1% Top-1 10% Top-1 1% Top-5
Supervised [88] ResNet-50 25.4 56.4 48.4
SimCLR [88] ResNet-50 (4x) 63.0 74.4 85.8
BYOL (ours) ResNet-200 (2 %) 71.2 71.7 89.5

Transfer to Downstream Tasks

Pretraining with BYOL produces highly transferable representations. On 12 downstream datasets
evaluated under linear probing, BYOL outperforms both SimCLR and supervised ImageNet baselines
in most cases.

Table 22.16: Linear evaluation on diverse downstream tasks using a ResNet-50 encoder. Adapted
from [188].

Method Food101 CIFAR10 CIFAR100 Birdsnap SUN397 Cars Aircraft VOC07 DTD Pets Caltechl01 Flowers
BYOL (ours) 753 91.3 78.4 57.2 62.2 67.8  60.6 82.5 755 904 94.2 96.1
SimCLR [88] 72.8 90.5 74.4 42.4 60.6 493 4938 81.4 757 84.6 89.3 92.6
Supervised-IN 723 93.6 78.3 53.7 61.9 66.7 610 82.8 749 915 94.5 94.7

Ablation Studies and Collapse Prevention
Extensive ablation studies reveal that BYOL’s success hinges on a triad of mechanisms designed to
destabilize trivial solutions and guide the optimizer toward informative representations:

* Predictor gg: A non-linear MLP head applied only to the online branch. Its architectural
asymmetry is critical: without it, the online encoder can trivially match the target’s output,
resulting in representational collapse. This is empirically confirmed by the original BYOL
ablation, where removing the predictor yields just 0.2% top-1 accuracy [188], and reinforced
by later works like SimSiam, in which the authors observed that the predictor stabilizes
training even without a momentum encoder [92].



1530 Chapter 22. Lecture 22: Self-Supervised Learning

* EMA Target Update (7): The target network is updated as an exponential moving average of
the online parameters. Setting T = 0 eliminates temporal smoothing, effectively collapsing the
two branches and destabilizing learning. Conversely, fixing 7 = 1 stalls the target, preventing
progressive refinement. BYOL operates best under a high-momentum regime (e.g., T =~ 0.996),
which introduces a slow-evolving supervisory signal [188, 616].

* Stop-Gradient: Gradients are prevented from flowing into the target branch, breaking sym-
metry and avoiding trivial co-adaptation. Without this operation, the encoder and predictor
can conspire to output constant vectors that yield low loss, leading to collapse [92].

Each of BYOL’s core mechanisms—predictor asymmetry, EMA target updates, and stop-gradient,
addresses a distinct failure mode that could otherwise lead to representational collapse. While a
constant-output encoder can technically minimize the loss, this solution becomes unstable under
BYOL’s training dynamics. In particular, the online network is constantly updated to match a
target that is slowly changing and view-dependent. Attempting to align all predictions to a fixed,
uninformative vector becomes increasingly inconsistent and error-prone as training progresses. This
makes the trivial solution difficult for the optimizer to maintain.

A useful analogy is that of a pencil balanced on its tip: although this is a valid equilibrium in
theory, it is so sensitive to perturbations that it cannot be maintained in practice. Likewise, in
BYOL, the combination of architectural asymmetry and temporal smoothing renders the collapsed
solution highly sensitive to random fluctuations and gradient noise. As a result, optimization is
naturally repelled away from collapse and drawn toward more stable solutions—namely, feature-rich
representations that reflect consistent structure across augmented views [616].

Recent theoretical analyses reinforce this intuition. Although a degenerate, constant-output solution
can trivially minimize the BYOL loss, such a solution is structurally fragile. The predictor must map
diverse augmentations to a fixed target representation—an unrealistic objective if the features encode
no meaningful variation. Instead, BYOL implicitly promotes alignment of principal components
across views and disperses variance across feature dimensions [616, 751]. These emergent properties
parallel the explicit redundancy-reduction objectives introduced later in VICReg and Barlow Twins.

Finally, standard deep learning practices further bolster training stability. Random initialization
ensures that optimization begins in a diverse regime, away from degenerate attractors. Batch
Normalization injects stochasticity and enforces re-centering, making it harder for the model to
converge to constant outputs. While neither mechanism alone is sufficient to prevent collapse—and
BYOL has been shown to function even without batch statistics [528]—their inclusion supports
better optimization and generalization throughout training.

Conclusion

BYOL marked a turning point in self-supervised learning by showing that predictive alignment—without
contrastive negatives—can produce strong, transferable representations. Its stability arises not from
the loss itself, but from three key mechanisms: a predictor for architectural asymmetry, EMA for
temporal smoothing, and stop-gradient for optimization decoupling. Together, they prevent collapse
and promote invariant feature learning.

This success prompts a natural question: Can these benefits be retained without the EMA target?
SimSiam explores this possibility by preserving the predictor and stop-gradient, but removing the
momentum encoder. We now examine its simplified design and theoretical insights.
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SimSiam: Self-Supervised Learning Without Negative Pairs or Momentum
Motivation: Can Collapse Be Avoided Without Negatives or EMA?

SimSiam [92] explores a surprising and insightful question at the heart of self-supervised representa-
tion learning: Can we avoid collapse without contrastive negatives or a momentum-updated target
network? Building on architectural insights from BYOL [188], SimSiam introduces a drastically
simplified framework that removes both of these components—Ilong believed to be essential for
training stability—and retains only one asymmetry: the stop-gradient operation.

The framework employs a Siamese setup, where two augmented views of the same image are
processed through identical encoders. Crucially, the gradient is only allowed to flow through
one branch, while the other is treated as a fixed target. This seemingly minimal intervention
proves sufficient to prevent representational collapse. Empirically, SimSiam achieves competitive
performance among non-contrastive methods, despite its conceptual simplicity and lack of auxiliary
targets or negative sampling.

Although SimSiam does not reach state-of-the-art accuracy, it plays a pivotal role in understanding
why self-distillation methods work and which mechanisms are truly necessary for stable learning.
It reveals that collapse prevention can emerge purely from gradient-level asymmetry, while other
components—such as momentum encoders or batch normalization—may be helpful but not essential.
As such, SimSiam is not merely a practical method but a crucial analytical probe into the foundations
of self-supervised learning.

Architecture and Symmetric Learning Mechanism
SimSiam employs a symmetric Siamese architecture to compare two augmented views of a single
image. Given an input x, two views x; = 7(x) and x, = #'(x) are generated through independent data
augmentations. These views are processed by a shared-weight network composed of:
* Encoder f(-): a shared backbone (typically ResNet-50) followed by a projection MLP. The
encoder maps each augmented view to a projected representation z.
* Prediction head /(-): an MLP applied only to one branch to break symmetry and introduce
gradient asymmetry.

similarity
predictor h stop-grad
encoder f encoder f
Hix) Hi)
image T

Figure 22.34: SimSiam architecture. Two augmented views of the same image are processed by
a shared encoder (backbone + projection MLP). A prediction MLP is applied to only one branch,
and the other is frozen via a stop-gradient. The model is trained to align predictions with projected
features, without using negative pairs or momentum encoders. Adapted from [92].
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Let the intermediate representations be:

a=fx), n=fx), pr=hz), p2=h(z)

SimSiam minimizes the negative cosine similarity between predictions and the stop-gradient-
protected projections of the other view:

Y 2 B
Ipill2 llz2ll2’

z
P (p2,z1) = P 1

2(p1,22) = N '
(p1,22) Ip2ll2 |lz1ll2

To avoid biasing the learning toward one view, SimSiam symmetrizes the loss by swapping the roles
of the two views and aggregating both prediction-target pairs. The final training objective is:

1 1
ZsimSiam = 59(191,3%(12)) + 59(1727 sg(z1))

Here, sg(-) denotes the stop-gradient operation, which halts gradient flow through the target
branch.

SimSiam Training Pseudocode

The following pseudocode illustrates SimSiam’s core training loop. It highlights the minimalist
design that enables stable representation learning without contrastive pairs or a target network. The
encoder f (composed of a backbone and a projection MLP) processes two augmented views x; and
x, of each input image. The prediction MLP #4 is then applied to each projection, and the loss is com-
puted as the average negative cosine similarity between cross-view prediction—target pairs. Crucially,
the function D includes a detach() operation on z, implementing the stop-gradient mechanism that
prevents representational collapse by freezing the target features during backpropagation.

# f: backbone + projection mlp

1
2 # h: prediction mlp

3

4 for x in loader: # load a minibatch = with n samples
5 x1, x2 = aug(x), aug(x) # random augmentation

6 zl, z2 = £(x1), £(x2) # projections, n-by-d

7 pl, p2 = h(zl), h(z2) # predictions, n-by-d

8

9 L = D(p1, 22)/2 + D(p2, z1)/2 # loss

10

1 L.backward() # back-propagate

12 update(f, h) # SGD update

13

14 def D(p, z): # mnegative cosine similartity

15 z = z.detach() # stop gradient

16 p = normalize(p, dim=1) # l2-normalize

17 z = normalize(z, dim=1) # l2-normalize

18 return -(p * z).sum(dim=1) .mean()
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Gradient Formula and Learning Signal
SimSiam’s training objective is defined by a symmetrized negative cosine similarity loss:

1 1
ZsimSiam = 59(171,38(22)) + 59(192,38(21))

where p; = h(f(x1)), 22 = f(x2), and

p Z
Dp.2) = b
EERER

is the negative cosine similarity between ¢;-normalized vectors.

Focusing on the first term, .4 = %.@ (p1,sg(z2)), the stop-gradient operator ensures that z, is treated
as a constant during backpropagation. Thus, gradients flow only through the predicting branch.

Let P = PI/HPIHZ and Z, = Zz/HZsz, so that:

1
2 = —§P1 V)

Since Z; is fixed, the gradient with respect to p; is given by:

oL 1 om’
op1 2 dap1 ?

Using the identity:

o _ 1 (1_ p1p1T>
ap1  lpill2 1p113

we obtain the explicit gradient:

0.%, 1 < 2 (p1-22)p1 )

dpr 2 \lpilklzllz Pz

This learning signal pulls p; toward alignment with the fixed z,, encouraging consistent representa-
tions across augmentations.

Gradients are then propagated backward through the prediction head 4 and encoder f via the chain
rule:

0.4 9L dp 044 9L dpr 9z

90, " opi 20, 96, dp 9z 96,

This selective update mechanism enforces asymmetry: only the predicting branch is optimized in
each term, while the target remains a fixed reference.

The stop-gradient operation acts as a structural constraint that prevents representational collapse.
Without it, gradients flow symmetrically through both branches, allowing the shared encoder f
to trivially minimize the loss by collapsing all outputs to a constant vector c. If all outputs align
perfectly, then:

z
pPil=2=pr=71=C = R 2(p,z) = —1
Pl llzll2
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Since the SimSiam objective is symmetrized and each term is weighted by % the total loss becomes:

1 1
ZLsimSiam = 5(—1)%—*(—1) =1

This value represents the global minimum of the objective. However, it corresponds to a degenerate
solution in which all representations collapse to a single direction on the unit sphere. In this
state, feature variance across the batch approaches zero, and the learned representations become
uninformative for downstream tasks.

The stop-gradient prevents this collapse by halting gradient flow into one branch—treating its
representation as a fixed learning target. This breaks the co-adaptation loop that would otherwise
allow the model to coordinate both views toward trivial agreement. Instead, the predicting branch
(through 4 and f) must learn to match a (hopefully) non-trivially evolving target z, whose variability
is preserved by being exempt from gradient updates in that loss term. Empirically, SimSiam without
stop-gradient rapidly converges to this trivial solution with a loss of —1, near-zero standard deviation
in outputs, and chance-level accuracy [92]. In contrast, with stop-gradient, the network is compelled
to extract meaningful, invariant features across augmentations, sustaining both representation quality
and diversity.

EM-Like Interpretation of SimSiam Training

SimSiam’s optimization can be interpreted as an online, alternating process analogous to the
Expectation-Maximization (EM) algorithm. This perspective helps explain how SimSiam avoids
collapse despite its symmetric architecture and lack of contrastive negatives or momentum encoders.

Let 7, denote a latent target representation for image x. SimSiam implicitly minimizes the following
population objective:

g(evn) = IEx,T U|f9(T(X)) - an%]

where fp is the encoder (including the projection MLP), 1y is an instance-specific latent representa-
tion, and 7' ~ .7 denotes a random data augmentation sampled from the augmentation distribution

T.

Optimizing both 6 and 7 jointly would lead to degenerate solutions. Instead, SimSiam implicitly
performs the following alternating procedure at each iteration:

* E-step (Target estimation): Fix 6, and approximate 1, < fp(7"'(x)), where T'(x) ~ 7 is a
fresh stochastic augmentation. In practice, this corresponds to computing the second view’s
representation zp = f(x») and freezing it via the stop-gradient operator: 1, = sg(z2).

* M-step (Parameter update): Fix 1,, and update 6 to minimize ||fo(T (x)) — n,||3. This
corresponds to computing p; = h(f(x)), and updating the parameters of f and A to align the
prediction with the frozen target 2.

This alternating behavior is what prevents collapse. The target 1, varies stochastically due to
different augmentations drawn from .7, which include cropping, color jittering, flipping, and
blurring. Consequently, the model isn’t likely to simply map every input to a constant vector. Instead,
it’s encouraged to learn how to produce a representation f(x) that generalizes across augmentations
and can be transformed by the predictor /4 into an accurate match for z;.
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The presence of the prediction head & further supports this EM interpretation. Since the E-step is
approximated using a single sample rather than the expectation E7 [f(7 (x))], h learns to compensate
for this variability, acting as a regression head that bridges the gap between stochastic projections.
Empirically, removing or fixing & causes the model to collapse, reinforcing its role in stabilizing the
alternating optimization.

In summary, SimSiam’s use of stop-gradient transforms a structurally symmetric architecture into
an asymmetrically optimized system. This EM-like view provides a principled justification for the
training dynamics, explaining how the model achieves non-trivial representation learning without
explicit negative samples or temporal ensembling.

Conclusion: Stop-Gradient as a Structural Inductive Bias

This asymmetric optimization induced by the stop-gradient operation is not merely a stabilizing
detail—it is the cornerstone of SimSiam’s ability to extract useful representations from unlabeled
data. It reshapes the training dynamics in a way that not only avoids trivial solutions, but also
encourages robustness to augmentation, separation of semantics, and sensitivity to structure.

But how critical is this mechanism in practice? To what extent do other components—such as the
prediction head, batch normalization, or network depth—contribute to the method’s success? The
following part delves into SimSiam’s empirical landscape, dissecting its architecture through targeted
ablations and revealing which ingredients are essential for stability, performance, and generalization.

Empirical Validation of the Stop-Gradient Mechanism

SimSiam’s most critical empirical finding is that the stop-gradient operation is indispensable for
preventing representational collapse. When the stop-gradient is removed, the network degenerates
immediately, producing near-constant outputs and achieving no meaningful accuracy—even on
simple benchmarks. This collapse is evidenced by three distinct indicators:

1
0.5 —1
50
— S(Op_grad 2 [\/\W
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Figure 22.35: SimSiam with vs. without stop-gradient. Left: training loss. Middle: per-channel
standard deviation of /-normalized output. Right: kNN accuracy as a proxy for representational
quality. The absence of stop-gradient causes immediate collapse. Figure adapted from [92].

* Loss dynamics: Without stop-gradient, the training loss plummets to a trivial minimum,
reflecting degenerate convergence.

* Representation collapse: The standard deviation across channels drops sharply, indicating
that all output vectors are collapsing to a single mode.

* kNN classification: Downstream utility is destroyed—accuracies approach random guess
levels.
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These findings confirm that the stop-gradient is not merely a training trick—it is the primary
stabilizing force in SimSiam. By freezing one side of the network, the method introduces a hard
asymmetry that prevents both branches from co-adapting to trivial solutions. It also reduces mutual
drift, anchoring learning around a fixed target.

Ablation Studies and Analysis

To better understand the mechanisms underlying SimSiam’s stability and performance, the authors
conduct a series of ablation studies [92]. These experiments systematically isolate the role of the
prediction head, learning rate decay, batch size, and BatchNorm placement. The results reinforce that
while many design choices improve training dynamics, only a few are truly critical for preventing
collapse.

Variation Accuracy (%)
Baseline (predictor MLP + Ir decay) 67.7
(a) No predictor MLP 0.1
(b) Fixed random predictor 1.5
(c) No learning rate decay 68.1

Table 22.17: Effect of modifying the predictor. Removing the prediction MLP (a) or freezing it
(b) causes complete collapse, confirming its essential role in breaking architectural symmetry and
guiding learning. Surprisingly, removing learning rate decay (c) slightly improves performance,
suggesting that continual plasticity in the prediction head helps match dynamically evolving targets.
Adapted from [92].

The predictor MLP £ is indispensable. When removed or fixed, the system collapses to degenerate
solutions. This highlights that 4 not only introduces a necessary asymmetry but must remain trainable
to track the evolving representations. Moreover, disabling learning rate decay on z improves results—
likely because 4 must continuously adapt to non-stationary targets z,, a behavior consistent with the
EM-like interpretation of SimSiam’s training dynamics.

Batch Size 64 128 256 512 1024 2048 4096
Accuracy (%) 66.1 673 68.1 68.1 68.0 679 64.0

Table 22.18: Effect of batch size. SimSiam maintains high performance across a wide range of batch
sizes, highlighting its independence from negative sampling. Performance drops slightly at extreme
batch sizes due to SGD inefficiency and overly stable BatchNorm statistics. Adapted from [92].

SimSiam achieves strong results even at small batch sizes, in contrast to contrastive methods like
SimCLR that require large batches to construct effective negative sets. At extreme batch sizes (e.g.,
4096), performance drops slightly—not because of collapse, but due to reduced stochasticity in
BatchNorm and diminished gradient noise. This mirrors similar limitations observed in supervised
training with large batches. Optimizers like LARS could potentially mitigate this, though they are
not required for stability.
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Case Proj. BN Pred. BN (output) Accuracy (%)
(a) No BN - - 34.6
(b) Hidden-only BN v - 67.4
(c) Default (hidden+output) v - 68.1
(d) All BN (incl. pred. output) v v unstable

Table 22.19: Effect of BatchNorm placement in MLP heads. Batch Normalization (BN) stabilizes
training when applied to the hidden layers of the projection and prediction heads. However, applying
BN to the final output of the prediction MLP leads to unstable training due to conflicts with the
alignment objective of cosine similarity. Adapted from [92].

BatchNorm is beneficial when applied to the hidden layers of the projection and prediction MLPs,
where it improves convergence by reducing internal covariate shift and smoothing the loss landscape.
This effect is evident in cases (b) and (c), which significantly outperform the no-BN baseline (a).

However, applying BN to the final output of the prediction MLP—as in case (d)—causes the model
to diverge. This is not due to collapse (i.e., the model outputting a constant vector), but rather to
optimization instability: the loss becomes erratic, and training fails to converge. The root cause is a
conflict between BatchNorm’s standardization objective and the alignment objective of the cosine
similarity loss.

To illustrate: the cosine similarity loss encourages the predicted vector p; to point in the same
direction as the stop-gradient target zo. But BatchNorm normalizes each output dimension across the
batch to zero mean and unit variance, thereby erasing consistent directional signals that span the
batch. For example, if a feature dimension consistently activates for a particular semantic concept
(e.g., "dog" images), BatchNorm will force this signal back toward zero, undermining the model’s
effort to align p; and z,. As a result, the loss and the normalization act at cross-purposes, producing
gradients that oscillate and fail to descend smoothly.

This instability is a distinct failure mode: while the model does not collapse, it also cannot learn.
Therefore, the lesson is not merely to use BN, but to use it strategically: allow it to regularize
internal representations, but avoid placing it at points where it interferes with critical geometric
constraints like those enforced by cosine similarity.

In summary, SimSiam’s ablation studies reveal a delicate interplay between network architecture
and training dynamics. Preventing collapse depends not only on the presence of the stop-gradient
and a learnable prediction head, but also on ensuring that optimization components like BatchNorm
cooperate with—rather than counteract—the training objective.
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Comparison to Other Self-Supervised Methods

SimSiam’s performance is benchmarked against leading methods including SimCLR, MoCo v2,
BYOL, and SwAV. Remarkably, SimSiam achieves comparable performance despite being simpler
and not requiring negative samples, large batches, or momentum encoders.

Method Neg. Pairs Momentum 100ep 800 ep
SimCLR (repro.) v - 66.5 70.4
MoCo v2 (repro.) v v 67.4 72.2
BYOL (repro.) - v 66.5 74.3
SWAV (repro.) - - 66.5 71.8
SimSiam - - 68.1 71.3

Table 22.20: Linear evaluation accuracy (%) on ImageNet for various SSL methods. SimSiam is
competitive despite requiring neither negatives nor EMA. Table adapted from [92].

Method VOC07 AP  VOC07+12 AP COCO Det. AP  COCO Seg. AP
ImageNet Sup. 424 53.5 38.2 333
SimCLR (repro.) 46.8 55.5 37.9 33.3
MoCo v2 (repro.) 48.5 57.0 39.2 34.3
BYOL (repro.) 47.0 55.3 37.9 33.2
SWAV (repro.) 46.5 554 37.6 33.1
SimSiam (base) 47.0 56.4 37.9 33.2
SimSiam (opt.) 48.5 57.0 39.2 344

Table 22.21: Transfer learning performance on detection and segmentation benchmarks. SimSiam
performs competitively across domains. Table adapted from [92].

Paper Summary

SimSiam’s primary contribution lies in its radical simplification of self-supervised learning. By
eliminating the need for negative pairs and momentum encoders, it reveals that the stop-gradient
operation alone—when paired with architectural asymmetry and prediction—can stabilize training
and prevent collapse. This simplicity does not come at the cost of performance: SimSiam rivals
more complex frameworks on standard benchmarks, and its ablations underscore the critical role of
its asymmetries in training dynamics.

SimSiam’s findings challenge earlier assumptions from contrastive learning and BYOL: namely,
that collapse prevention demands external mechanisms such as queues or target encoders. Instead,
SimSiam highlights the importance of gradient flow structure rather than network complexity. Its
implicit EM-like interpretation and empirical robustness invite new design patterns in self-supervised
learning that prioritize architectural asymmetry and prediction dynamics.

This shift sets the stage for the emergence of methods like DINO, which further extend these ideas
in several directions:
* From instance-level to token-level supervision: While SimSiam aggregates representa-
tions over the entire image, DINO introduces finer-grained self-distillation using ViT tokens,
allowing localized learning signals.
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* From representation alignment to cluster emergence: SimSiam optimizes similarity losses
between two views. DINO, by contrast, encourages the emergence of semantically meaningful
clusters—without requiring labels.

* From architectural asymmetry to output sharpening: DINO stabilizes training not only
through stop-gradients and momentum encoders, but also by temperature sharpening and cen-
tering of the output logits—mechanisms that expand and refine the core idea of bootstrapping.

In the following subsection, we explore DINO (Self-Distillation with No Labels) [71], a milestone
that blends SimSiam’s SG asymmetry, BYOL’s EMA targets, and transformer-specific innovations
to enable the emergence of semantic structure in vision transformers—without supervision.

DINO: Self-Distillation with No Labels

Motivation: From Invariance to Semantic Understanding

Self-supervised learning (SSL) has steadily progressed from contrastive methods such as Sim-
CLR [88] and MoCo [211] to non-contrastive approaches like BYOL [188] and SimSiam [92]. Each
iteration has reduced reliance on negative pairs or auxiliary targets. DINO [71] marks a conceptual
leap by combining self-distillation with Vision Transformers (ViTs) [133], enabling strong visual
representations—and even emergent semantic segmentation—without supervision.

The motivation behind DINO is twofold. First, the authors seek to exploit the inductive capacity of
ViTs without the constraints of predefined labels. Second, they aim to go beyond learning invariances
to augmentations—toward improved semantic understanding. Remarkably, DINO-trained ViTs
learn to identify object boundaries and semantic regions using only internal attention, with no labels
provided during training.

Figure 22.36: Self-attention maps from a ViT trained with DINO. The [CLS] token’s attention
reveals object-aware localization, despite the absence of labels. Figure adapted from [71].

Self-Distillation Without Labels
DINO—short for Distillation with NO labels—frames self-supervised learning as a teacher—student
distillation task without any labeled data. Both the student gg_and teacher gq networks share the
same architecture (typically a ViT backbone followed by an MLP head), but differ in how their
parameters evolve:

* The student network gg, is updated via standard backpropagation.

» The teacher network gg, is updated as an exponential moving average (EMA) of the student:

0, < A6, +(1—2)6,

where 4 € [0.996, 1.0] controls the EMA momentum.
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This EMA update, inherited from BYOL, ensures that the teacher changes slowly over time, providing
stable and high-quality training targets. Throughout training, the teacher consistently produces better
representations than the student, guiding it toward semantically meaningful features.

Multi-Crop Strategy and View Asymmetry

DINO formulates self-supervised learning as a knowledge distillation task between a student
network gg and a teacher network gg,, parameterized by 6, and 6;, respectively. Both networks
share the same architecture, but only the student is updated via gradient descent. The teacher
parameters are updated using an exponential moving average (EMA) of the student parameters.

From each input image, DINO samples a set of augmented views V using a multi-crop strategy:

« Two global views x{,x5 € V, high-resolution crops (e.g., 224 x 224) that each cover a large

portion of the image.

* Several local views x' € V' \ {x{,x3 }, smaller crops (e.g., 96 x 96) that focus on limited regions.
The student network gg_processes all views x’ € V, while the teacher network gg, processes only the
global views x € {x§,x5}. This asymmetry enforces a local-to-global learning objective, where the
student must produce predictions from partial information (local crops) that are consistent with the
teacher’s output on broader contextual views (global crops).

Each network outputs a K-dimensional vector that is interpreted as unnormalized logits over K
output bins. These logits are then normalized into a categorical probability distribution using a
temperature-scaled softmax. For the student network, the output distribution is defined as:

Pt = SP(8a () /7)

= : 224
Yic1exp(ge, (¥) 0 /7) ey

where Py (x’ )(i) denotes the normalized probability assigned to the i-th output dimension, and 7, > 0
is the temperature parameter controlling the entropy of the student distribution: larger 7, produces
softer (higher-entropy) outputs.

For the teacher network, the output distribution is computed similarly, but includes a centering term
and a lower temperature for sharpening:

P (x)(z) _ CXp((ggt (x)(l) — C(i))/Tl)
t Yie1exp((ge, (x)®) — W) /1)’

where 7, < 7, induces sharper, more peaked teacher predictions, and the centering vector C € RX
is updated via exponential moving average of the teacher outputs over the batch. The purpose of
centering is to prevent collapse to a trivial solution in which one output bin dominates across all
images and views. Together, centering and sharpening ensure that the teacher provides a stable,
informative target distribution.

(22.5)

The training objective is to align the student’s prediction on one view x' € V with the teacher’s
prediction on a different view x € {x{, x5}, where x’ # x. This promotes consistency across differently
sized or positioned crops from the same image, enabling the student to learn invariant semantic
representations. The objective minimizes the cross-entropy between teacher and student outputs:

min Y Y H(sg(P(x), P(x)), (22.6)
% reled ey
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where the cross-entropy is defined as H(p,q) = —YX | p¥logq, and sg(-) denotes the stop-
gradient operator applied to the teacher’s output to prevent gradients from flowing into gg,. Only
the student parameters 6, are updated via backpropagation, while the teacher parameters 6, are
updated via EMA.

x_3 Crop x_| V| Crop

Figure 22.37: Multi-crop augmentation in DINO. The student sees both global and local views; the
teacher sees only global views. This view asymmetry encourages learning local-to-global consistency.
Figure adapted from [635].

This asymmetric design—across view assignment, parameter updates, and output normalization—is
central to DINO’s ability to learn structured representations without collapse. The use of multi-crop
views, particularly the contrast between local and global crops, forces the student to infer the teacher’s
global semantic predictions from partial observations. This promotes object-centric representations,
robustness to occlusion, and invariance to viewpoint and scale—all without requiring negative pairs
or a prediction head.

loss:
-p2logpr Q

softmax

student ggs = teacher g

ema

Figure 22.38: Self-distillation without labels in DINO. Two views x; and x; of the same image
are used: x, is a global crop seen by the teacher, while x; may be a local crop seen only by the
student. Both networks share the same architecture but differ in parameters. The teacher output
is centered (mean-subtracted) and sharpened with a low-temperature softmax. The student output
is computed at a higher temperature and trained to match the teacher via cross-entropy. Gradients
flow only through the student; the teacher is updated via EMA with a cosine-scheduled momentum.
Figure adapted from [71].
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Architectural Backbone: Why Vision Transformers?

Vision Transformers (ViTs) are particularly well-suited to DINO’s self-distillation framework. As
introduced in Section 18.4, ViTs tokenize an input image into fixed-size patches, which are embedded
and processed via stacked self-attention layers. A special learnable token— [CLS]—is prepended to
the patch sequence and serves as a global aggregator. Its final representation is typically used as the
image-level summary.

In DINO, the output of the [CLS] token is passed through a projection head: a 3-layer MLP that
transforms the D-dimensional backbone output into a K-dimensional logit vector. These logits
represent the model’s assignment over K emergent prototypes or semantic bins and serve as the input
to the softmax used in the self-distillation loss. Thus, while the [CLS] token itself captures holistic
image semantics, it is the post-MLP logits—derived from it—that define the probabilistic targets and
predictions compared between the teacher and student.

This architectural separation is crucial: the ViT backbone focuses on learning rich, position-aware
image features via attention, while the projection head maps the globally pooled [CLS] embedding
into a space amenable to self-supervised alignment. The student is trained to match the teacher’s
softened and centered output distributions over these prototypes, even from smaller local crops. This
interaction—between ViT’s global summarization, DINO’s multi-view setup, and the projection
into a high-rank prototype space—is what enables strong, semantically aligned features to emerge
without supervision.

In the following parts, we formalize the training algorithm via pseudocode and dissect the core
components of DINO’s loss—centering, sharpening, and their interplay with temperature scaling.

Preventing Collapse with Centering and Sharpening

A central challenge in self-supervised learning is avoiding representational collapse—a degenerate
regime in which the model produces trivial or uninformative outputs. This pathology arises when the
training objective admits solutions that minimize the loss without learning useful representations.
DINO avoids collapse not through architectural asymmetry—such as a prediction head used in
BYOL [188] or SimSiam [92]—but through a carefully constructed functional asymmetry, applied
only to the teacher network’s output.

Collapse in self-supervised learning generally takes two forms:
* Feature collapse: The network produces nearly identical feature vectors for all inputs, with
one output dimension dominating. This leads to low-diversity, axis-aligned representations.
» Uniform (entropy) collapse: The network assigns equal probability to all output dimensions,
producing a flat softmax distribution with maximal entropy. No useful discrimination between
inputs is preserved.

DINO applies two operations exclusively to the teacher network’s output—centering and sharpen-
ing—which together form a minimal yet effective defense against representational collapse. Each
mechanism targets a distinct degenerative tendency, and their opposing effects balance one another
during training.
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Centering mitigates dominance by individual output dimensions. For a batch of teacher outputs

(2! B | c RX, DINO maintains a center vector ¢ € RK as an exponential moving average of the
batch mean:

1 & G
cem-c—l—(l—m)-EZZ,()
i=1

This vector is subtracted from each teacher output before softmax:

By dynamically recentering the logits, this operation suppresses feature-level biases and encourages
more uniform activation across output dimensions. Without sharpening, however, this would tend to
flatten the output distribution.

Sharpening counteracts this flattening by applying a low-temperature softmax:

o0 _ e /1)
() _
¥X exp(z¥/7)

Using a fixed 7; < 1 sharpens the distribution, amplifying differences between logits and ensuring
that predictions remain discriminative. It directly opposes the entropy-increasing effect of centering.
Together, centering and sharpening maintain a dynamic equilibrium: centering spreads the activa-
tion mass to prevent collapse to a single dimension, while sharpening re-concentrates it to avoid
degeneration into a flat distribution.

The student output is computed similarly but without centering and at a higher temperature 7, > 7,
yielding a smoother target-matching distribution:

o0 (/)
S -

£ exp( /7)
Asymmetric Distillation Objective

The student is trained to align with the centered and sharpened teacher distribution using cross-
entropy:

K . .
Zoinvo =— Y, sg(Pt(])) Tog PV
j=1
The stop-gradient operator sg ensures that only 6; is updated via backpropagation, while the teacher
parameters 6, are updated using EMA:
0, A6, + (1 —2)6;

This setup allows the teacher to evolve smoothly and act as a temporally stable target. The combined
action of centering and sharpening—applied only to the teacher—ensures that the student is always
supervised by a high-quality, non-degenerate signal, without the need for contrastive losses or
architectural asymmetry.
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Why Use Softmax Without Labels?

At the core of DINO lies a compelling conceptual shift: it reframes self-supervised learning as an
emergent classification problem, defined not by human-annotated labels but by the model’s own
internal structure. While DINO operates with no external supervision, it still applies a softmax trans-
formation to the output logits of both student and teacher networks. This might seem puzzling—why
produce a probability distribution if there are no categories to classify? The answer is that softmax
enables the model to create its own set of categories, and to learn by predicting them.

Each network maps an input image to a logit vector z € RX, where K is a chosen hyperparameter.
This vector is then converted into a probability distribution P(x) € AK~! via a temperature-scaled
softmax. Crucially, the K output dimensions do not correspond to predefined semantic classes—they
represent dynamically evolving prototypes, discovered by the model as it organizes visual inputs
over the course of training. One can think of these as soft “pseudo-classes”, where each dimension
captures a recurring visual structure or concept (e.g., rounded shapes, fine textures, scene layouts).
In the followup work DINOV2, these dimensions are explicitly referred to as prototype scores.

The softmax distribution over these K dimensions forms the basis for DINO’s training signal. The
teacher gg, observes one view of an image and outputs a confident distribution P, (x); the student gg,
sees a different view x” and tries to match the teacher’s prediction:

Zoivo = H(sg(P(x)), P(x')).

This loss aligns the student’s distribution to the teacher’s via cross-entropy, forcing the student to
interpret the image in a way that is consistent with the teacher’s assessment. The softmax ensures
both networks operate in a shared probabilistic space, enabling this alignment even when their inputs
differ in scale or context.

But how does DINO ensure that the teacher’s predictions remain confident and non-collapsing? It
does so by applying two carefully designed regularizers to the teacher’s logits before softmax:

* Sharpening ensures that the teacher makes confident predictions. A low temperature 7, << 1
in the softmax amplifies differences in the logits, yielding a peaked distribution. This helps
the student receive a clear, unambiguous target.

* Centering encourages the teacher to use all prototype dimensions over time. By subtracting a
running mean c from the logits before softmax, it prevents any one prototype from dominating
across batches, encouraging representational diversity.

These two forces pull in opposite directions—sharpening concentrates the teacher’s prediction on a
few prototypes, while centering spreads usage across all K dimensions. Their interaction, mediated
through softmax, creates a stable equilibrium: each teacher prediction is sharp, yet the overall
distribution of assignments across a batch remains diverse. This balance is what makes DINO’s
self-distillation objective viable, even in the absence of labels.

In summary, softmax in DINO is not merely a mathematical convenience—it is the scaffolding
that allows the model to frame, solve, and learn from its own classification problem. It transforms
unstructured feature vectors into structured probabilistic predictions, enabling the emergence of
semantic prototypes and providing a coherent target space for training. Without softmax, there would
be no way to compare outputs in a principled method that makes sense.
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No Predictor: Functional Asymmetry Instead of Architectural Tricks

DINO eliminates the predictor MLP—a component considered critical in BYOL [188] and Sim-
Siam [92]—and instead adopts a fully symmetric architecture where both student gg, and teacher gg,
share the same backbone and projection head. Instead of introducing architectural asymmetry, DINO
relies entirely on functional asymmetry applied to the teacher’s logits: centering and sharpening.
Ablations in [71] show these mechanisms are both necessary and sufficient to prevent collapse.

Removing either of these components results in catastrophic degradation:
* Without sharpening, the teacher output becomes flat (maximum entropy), leading to uniform
collapse and 0.1% k-NN accuracy.
* Without centering, the output concentrates on a single dimension (zero entropy), causing
dimensional collapse and degrading k-NN accuracy to 17.5%.
* Without the momentum teacher (i.e., using the student directly), training becomes unstable
and drops to 29.7% accuracy.

While the DINO paper does not report an ablation that replaces centering and sharpening with
a predictor, such a configuration is conceptually equivalent to BYOL or SimSiam. The key
components—momentum teacher, predictor, and stop-gradient—form an alternative symmetry-
breaking mechanism that has been validated to prevent collapse when used with MSE/cosine-
similarity based loss. In that context, the predictor prevents collapse by structurally decoupling
the student’s output from the target. But in DINO, the authors explicitly demonstrate that this
architectural overhead is not needed.

Indeed, when a predictor is added to the DINO pipeline—i.e., in addition to centering and sharp-
ening—it slightly hurts performance. Linear evaluation accuracy drops from 76.1% to 75.6% on
ViT-S/16 [71, Tab. 14]. This empirically reinforces that DINO’s collapse-prevention stems entirely
from the entropy—variance regularization applied to the teacher’s output, making the predictor
superfluous.

The decision not to include a “predictor-only” ablation reflects the authors’ aim: to validate their
proposed method, not to reimplement prior frameworks. As they state:

“Other popular components such as predictor, advanced normalization or contrastive
loss add little benefit in terms of stability or performance.” [71]

In summary, DINO offers a compelling alternative to predictor-based non-contrastive methods. Its
ablations confirm that centered and sharpened logits, combined with a momentum teacher and
stop-gradient, suffice for stability and semantic learning. Predictor-based asymmetry, while valid
in BYOL or SimSiam, is neither necessary nor helpful in DINO’s regime.
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PyTorch-Style Pseudocode and Explanation
The following pseudocode outlines a simplified DINO training loop (without multi-crop), adapted
from [71].

© o N ;R W N =

# gs, gt: student and teacher networks

# C: center (K-dimensional)

# tps, tpt: student and teacher temperatures

# 1L, m: network and center momentum rates

gt.params = gs.params # initialize teacher = student

for x in loader: # load a minibatch = with n samples
x1, x2 = augment(x), augment(x) # random views
s, s2 = gs(x1), gs(x2) # student outputs (n z K)
tl, t2 = gt(x1), gt(x2) # teacher outputs (n = K)
loss = H(t1l, s2)/2 + H(t2, s1)/2
loss.backward() # backprop through student
update(gs) # SGD step on student
gt.params = 1 * gt.params + (1 - 1) * gs.params
C=mx*C+ (1 - m) * cat([t1, t2]) .mean(dim=0)

def H(t, s):
t = t.detach() # stop gradient
s = softmax(s / tps, dim=1)
t = softmax((t - C) / tpt, dim=1) # center + sharpen

return - (t * log(s)).sum(dim=1) .mean()

Step-by-step explanation:

. Two augmented views x1,x; of the same image are generated, typically with one being a local
crop and the other a global crop.

. The student network gy processes both views, yielding logits z; = gg,(x1), 22 = gg,(x2),
which are converted into probability distributions P;(x1), Ps(x2) via softmax.

. The teacher network gg—an exponential moving average (EMA) of the student—processes
the same views to produce logits z| = gg,(x1), Z5, = gg,(x2). These logits are centered and
sharpened, then passed through a softmax to obtain the target distributions P, (x;), P (x7).

. The student is trained to match the teacher’s targets under a cross-entropy loss:

£ = H(sg(F(x2)), Bs(x1)) + H(sg(P(x1)), s(x2)),

where sg(-) denotes the stop-gradient operator blocking gradient flow through the teacher.
. The teacher’s parameters are updated using an EMA of the student’s weights:

6, < 16, +(1—1)8,

where A € [0.996, 1] is a momentum coefficient scheduled over training.
. The center vector ¢ € RX is updated as a batch-wise EMA of teacher logits:

1&g
c<—m-c+(1—m)‘§ZZ,(l),
i=1

to prevent any output dimension from dominating the teacher distribution.
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Experimental Results and Ablations for DINO

Linear and k-NN Evaluation on ImageNet

We begin by comparing DINO to prior self-supervised methods under the standard linear probing
and k-NN evaluation protocols on the ImageNet validation set. As shown in the below table, DINO
achieves strong performance with both ResNet-50 and Vision Transformer (ViT) backbones, consis-
tently outperforming previous methods such as MoCo-v2, SwWAV, and BYOL across architectures.
Notably, DINO with ViT-S/8 achieves 79.7% top-1 linear accuracy and 78.3% k-NN accuracy,
indicating a highly structured feature space even without training a classifier.

Method Architecture Params (M) im/s Linear k-NN
Supervised RN50 23 1237 79.3 79.3
SimCLR [88] RNS50 23 1237 69.1 60.7
MoCo-v2 [95] RN50 23 1237 71.1 61.9
Barlow Twins [751] RN50 23 1237 73.2 66.0
BYOL [188] RN50 23 1237 74.4 64.8
SwAV [72] RN50 23 1237 75.3 65.7
DINO RN50 23 1237 75.3 67.5
Supervised ViT-S 21 1007 79.8 79.8
MoCo-v2* [95] ViT-S 21 1007 72.7 64.4
SwAV* [72] ViT-S 21 1007 73.5 66.3
DINO ViT-S 21 1007 77.0 74.5
DINO ViT-S/8 21 180 79.7 78.3
DINO ViT-B/8 85 63 80.1 77.4

Table 22.22: Top-1 accuracy on ImageNet for linear and k-NN evaluations using different self-
supervised methods and architectures. DINO achieves state-of-the-art results, especially with
small-patch ViTs.

DINO'’s features show a remarkable structure: while k-NN classification generally underperforms
linear probing, the gap is small for DINO. This indicates that its embedding space naturally clus-
ters semantically similar examples. Smaller patch sizes further boost accuracy—at the cost of
throughput—Iikely due to finer spatial granularity resulting in more tokens per image.

Transfer to Retrieval and Segmentation Tasks
At the time of its publication in 2021, DINO set new state-of-the-art results across several downstream
tasks using frozen features—demonstrating that self-supervised Vision Transformers can rival and
even surpass supervised CNNs in transferability.

For instance, in image retrieval on the Revisited Oxford and Paris datasets, DINO with ViT-S/16
pretrained on ImageNet achieved up to 42% mAP without any task-specific tuning. This outper-
formed supervised baselines such as ViT-B/16 trained on ImageNet, and even surpassed traditional
retrieval pipelines like R-MAC with ResNet-101 [526]. When pretrained on a landmark-specific
dataset (Google Landmarks v2), DINO further exceeded 51% mAP—outperforming specialized
systems while relying solely on frozen transformer features.

In copy detection, DINO with ViT-B/8 achieved over 85% mAP on the Copydays ‘“strong”
benchmark, outperforming previous state-of-the-art systems such as Multigrain [41], which had been
trained with handcrafted augmentations and retrieval losses.
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DINO’s strong results are particularly notable given that its features were not trained with any
retrieval-specific objective, underscoring the versatility of its learned patch embeddings.

On the DAVIS 2017 video object segmentation benchmark, DINO again surpassed earlier self-
supervised approaches such as STC [256] and MAST [314], achieving over 71% in combined
region similarity and contour accuracy (J&Fy,) with ViT-B/8. Unlike fully supervised systems like
STM [456], DINO used no ground truth or training on the video domain. Its results were obtained by
simple nearest-neighbor propagation of frozen patch tokens, with no fine-tuning—demonstrating that
semantic segmentation capabilities emerged naturally from DINQO’s local-to-global self-supervised
training objective.

Overall, these results established DINO as a highly competitive method for visual representation
learning in 2021. Its self-supervised ViT backbones delivered robust and semantically aligned
features that generalized across classification, retrieval, and dense prediction tasks, without needing
specialized heads or labeled data.

Ablation: Emergent Object Segmentation via Self-Attention

Self-attention maps from the final layer of a DINO-trained ViT reveal striking object-centric activa-
tions when using the [CLS] token as a query. For each input image, three representative attention
heads are shown. Despite being trained without any labels, the model consistently highlights the
spatial extent of the main object—e.g., birds or dogs—while suppressing background regions.

In contrast, attention maps from a supervised ViT trained on ImageNet display more diffuse
activations. They tend to focus on discriminative parts of the object (such as a head or limb),
reflecting the minimal attention required to satisfy the classification objective. Since a supervised
model only needs to distinguish among predefined labels, it lacks incentive to capture full object
structure.

DINO Supervised DINO Supervised
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Figure 22.39: Self-attention from the final ViT layer using [CLS] token queries. DINO (left)
produces object-aligned attention maps that are sharp and coherent across different heads. The
supervised ViT (right), while still focusing on relevant regions, exhibits more fragmented and class-
discriminative attention. Adapted from [71].




22.4 Self-Distillation Methods 1549

DINO’s attention behavior differs fundamentally. Its self-supervised objective aligns embeddings
across augmentations rather than classes, implicitly encouraging the model to locate the entire
object regardless of viewpoint. The result is an emergent ability to segment objects at a coarse
level—without any annotation, supervision, or object priors. This qualitative ablation highlights the
semantic richness of DINO’s representations compared to those learned under supervised training.

Ablation: Semantic Structure from Unlabeled Data

A t-SNE projection of class-wise average features from DINO reveals clear semantic structure
emerging from self-supervised training. The embeddings are computed by averaging [CLS] token
outputs across all validation images in each ImageNet class. Even without labels, DINO organizes
conceptually related categories into tight, coherent clusters.

In this subset of the full visualization, car-related categories such as minivan, sports car, and
grille form a contiguous super-cluster—despite being distinct ImageNet classes. This is especially
notable because a supervised model would be explicitly trained to pull these apart. DINO instead
learns to preserve their visual proximity, discovering a shared abstraction of "automobile" from raw
pixels alone.

This behavior suggests that DINO builds representations that reflect the natural geometry of the
visual world, rather than the boundaries imposed by classification labels. It captures both fine-grained
distinctions and higher-order groupings, resulting in a structured embedding space where semantic
similarity is preserved. This emergent clustering is a strong indicator of the model’s capacity for
generalization and compositional reasoning.
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Figure 22.40: t-SNE projection of class-wise averaged [CLS] features from DINO. Car-related
categories (e.g., minivan, sports car) form a compact super-cluster in the learned representation
space, despite no access to labels during training. Adapted from [71].
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Ablation: Teacher Update Strategies
DINO updates the teacher network via a momentum-based exponential moving average (EMA) of
the student weights after each mini-batch. To evaluate this design choice, the authors compared
several teacher variants: a frozen student copy, weights from the previous iteration, and weights
from the previous epoch. Both the static and previous-iteration versions result in complete collapse,
with top-1 k-NN accuracy near 0.1%. Interestingly, using the teacher from the previous epoch
still achieves 66.6%, suggesting that smooth but temporally coherent updates suffice for learning.
Nonetheless, the EMA momentum teacher yields the best results with 72.8% top-1 accuracy.
Throughout training, the EMA teacher consistently outperforms the student. Although both
converge by the end, DINO evaluates downstream performance using the teacher encoder—a
departure from prior approaches like BYOL and SimSiam that use the online student. This
decision aligns with the observation that the teacher features are more stable and better structured
during training.
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Figure 22.41: Top-1 k-NN accuracy on ImageNet during training. Left: EMA teacher consistently
outperforms the student. Right: Momentum updates outperform all other teacher variants. Repro-
duced from [71].
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Ablation: Collapse Prevention via Centering and Sharpening

To prevent representational collapse, DINO employs two distributional constraints on the teacher’s
output: centering, which stabilizes the logit distribution, and sharpening, which encourages low-
entropy predictions. As shown in the following figure, removing either component results in flat KL
divergence between teacher and student, signaling collapse. Only when both are applied does the KL
divergence rise—indicating informative learning. Centering alone or sharpening alone is insufficient.
This explicit collapse prevention sets DINO apart from prior self-supervised methods that rely on
architectural asymmetry or negative sampling.
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Figure 22.42: Collapse analysis. Left: Teacher entropy remains high without sharpening. Right:
KL divergence between teacher and student only increases when both centering and sharpening are
used. Reproduced from [71].

Ablation: Patch Size and Inference Throughput

DINQO’s Vision Transformer backbones allow tuning patch size to balance performance and efficiency.
Smaller patches increase spatial resolution and token count, yielding higher accuracy but lower
throughput. As seen in the following figure, ViT-B with 8 x 8 patches significantly outperforms
the 16 x 16 baseline. However, reducing to 5 x 5 yields negligible further gains while reducing
throughput by over 4x. Thus, 8 x 8 represents a strong tradeoff between accuracy and compute.
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Figure 22.43: Effect of patch size on accuracy and throughput. Smaller patches improve accuracy,
but slow down inference. Reproduced from [71].
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Ablation: Batch Size Effects

Unlike contrastive methods such as SimCLR that require large batch sizes to generate diverse
negatives, DINO adopts a BYOL-style architecture that enables stable training with significantly
smaller batches. As shown in the below table, increasing the batch size from 128 to 1024 yields only
a modest gain in top-1 k-NN accuracy—from 57.9% to 59.9%. This insensitivity to batch size makes
DINO appealing for resource-constrained training setups, eliminating the need for large memory
banks or massive batches.

Batch Size  Top-1 k-NN Accuracy (%)

128 579
256 59.1
512 59.6
1024 59.9

Table 22.23: Effect of batch size on top-1 k-NN accuracy for DINO models trained for 100 epochs
without multi-crop. Reproduced from [71].

Ablation: Multi-Crop Augmentation and Resource Tradeoffs

DINO relies heavily on the multi-crop augmentation strategy—combining two high-resolution global
views with multiple low-resolution local views—to enforce scale-invariant learning. Increasing the
number of local crops steadily improves accuracy but also increases compute and memory costs.

Multi-Crop Configuration Top-1(100e) Time (100e) Top-1(300e) Time (300e) Mem. (GB)

2%2242 67.8% 15.3h 72.5% 45.9h 93
2x2242 + 2x962 71.5% 17.0h 74.5% 51.0h 10.5
2x2242 + 6x962 73.8% 20.3h 75.9% 60.9h 12.9
2%2242 + 10x962 74.6% 24.2h 76.1% 72.6h 15.4

Table 22.24: Effect of multi-crop augmentation on linear top-1 accuracy, training time, and peak
memory usage for ViT-S/16 models. Data reproduced from [71].

Paper Conclusion

In summary, DINO achieves stable, predictor-free self-supervised learning through a carefully
engineered interplay of functional asymmetries: centering, sharpening, a momentum-updated teacher,
and a stop-gradient constraint. These mechanisms explicitly regulate entropy and variance in the
teacher’s output, preventing collapse without requiring negative pairs or architectural tricks. Crucially,
DINO’s design scales naturally to Vision Transformers and large-scale training, laying the foundation
for more expressive, prototype-aware models. In the following part, we examine DINOv2, which
extends this framework with dense patch-level supervision, stronger augmentations, and improved
generalization across tasks and domains.
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DINOv2: Learning Robust Visual Features Without Supervision

Background and Moftivation

DINOV2 [463] represents a decisive step forward in the development of general-purpose vision
encoders trained without supervision. It builds on the architectural principles of DINO [71] while
introducing two central innovations: first, a series of engineering improvements that enable stable
training at scale—including techniques such as FlashAttention, sequence packing, and fully-sharded
data parallelism (FSDP); and second, a novel data processing pipeline that yields a large, high-quality,
balanced pretraining corpus.

The training strategy centers on a single, extremely large Vision Transformer (ViT-g/14, 1.1B
parameters) pretrained on 142M carefully curated images (the LVD-142M dataset), whose represen-
tations are later distilled into smaller ViT models. Unlike CLIP-style models that rely on text-image
supervision, DINOvV?2 is trained using only image data. This allows it to retain high-resolution,
non-textual visual information that often goes unmentioned in captions. The authors argue—echoing
a key insight from DINO—that purely visual supervision can uncover richer and more structured
representations than those constrained by human-generated text.

Figure 22.44: First three PCA components of ViT patch embeddings visualized as RGB heatmaps.
Each column juxtaposes conceptually related images: birds and airplanes (a), elephants and statues
(b), horses in photo and sketch (c), and cars in photo and sketch (d). Matched parts across object
categories or visual styles receive similar embeddings. Adapted from [463].

Emergent Semantic Structure Without Labels
The visualization in Figure 22.44 reveals a remarkable capability: DINOv2’s patch-level representa-
tions exhibit emergent semantic correspondence across object categories and rendering styles. For
example, bird wings and airplane wings are colored similarly, as are the heads of elephants and
elephant-shaped statues. The model aligns photorealistic and sketched horses, or cartoon and real
cars, segmenting analogous parts despite strong differences in appearance.

This behavior signals several breakthroughs. First, the model learns to perform unsupervised
part segmentation without ever being given part annotations. Second, it displays invariance to pose,
style, and texture—robustly recognizing object parts under transformations.
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Third, the model appears to perform a form of cross-category analogical reasoning, matching
functionally equivalent structures (e.g., “wheels” or “trunks”) across classes. Such analogical
alignment is typically considered a hallmark of higher-level semantic understanding.

These emergent patterns strongly support the case for self-supervised pretraining at scale:
DINOvV2 shows that sufficiently powerful image-only models can learn both global and local features
that are semantically structured, compositionally aware, and transferable across modalities, even
without textual guidance.

Scaling Training through Architectural and Data Efficiency

While DINOvV?2 inherits the foundational self-supervised architecture of its predecessor, its effective-
ness stems in large part from practical advancements that make large-scale training both tractable
and robust. The authors integrate optimizations such as FlashAttention, activation checkpointing,
and fully sharded data parallelism (FSDP), enabling training with very large batch sizes—up to
2,048 samples per GPU on ViT-g/14. Large batches improve gradient estimation by reducing noise
and encouraging optimization steps aligned with the full data distribution. This stabilizes training
dynamics and improves convergence, especially in high-capacity models.

In contrast to earlier self-supervised models, which required either fine-tuning or domain adapta-
tion to achieve high downstream performance, DINOv2 encoders are designed to be used off-the-shelf.
Like other vision foundation models, they are pretrained on a large and diverse corpus of data and
are intended to transfer broadly. In low-data regimes, the authors recommend freezing the backbone
entirely and training only a lightweight task-specific head (e.g., a linear classifier or MLP). In
medium-scale scenarios, selectively fine-tuning the final 1-3 transformer blocks is beneficial. Full
fine-tuning is only advised when ample domain-specific data is available, as aggressive updates to a
well-pretrained encoder may cause overfitting or degrade generalization.

Data Processing in DINOv2

To fully leverage the model’s architectural scale, DINOv2 introduces a sophisticated data processing
pipeline that blends curated and uncurated image sources. As illustrated in the below figure, the
process begins by embedding all images using a frozen ViT-H/14 model pretrained on ImageNet-22k.
The uncurated images—often noisy or redundant—are first deduplicated using embedding similarity.
Importantly, this step preserves semantic diversity while eliminating near-identical copies.

Copies (almost identical)

Uncurated Data

Curated Data Embedding h Deduplication ! Retrieval
|

Figure 22.45: Overview of the DINOv2 data processing pipeline. Images from curated and uncurated
sources are embedded with a frozen ViT-H/14 model. Near-duplicate images are removed, and
uncurated data are aligned to curated anchors via embedding similarity to form the LVD-142M
dataset. Adapted from [463].
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Next, a form of self-supervised retrieval is performed: curated datasets are used as anchors,
and similar uncurated images are retrieved to augment them. This results in a large, semantically
aligned dataset that preserves the controlled structure of curated corpora while scaling up with the
diversity of web-scale data. The final product of this pipeline is the LVD-142M dataset, containing
142 million images from a wide range of visual domains, used to train the main DINOv2 encoders.

This deduplication and retrieval strategy relies on a strong self-supervised visual descriptor
capable of identifying semantically near-duplicate images. To support this pipeline, the authors
adopt a specialized copy detection model developed by FAIR: the Self-Supervised Copy Detection
(SSCD) network [481]. Although the approximate nearest neighbor search uses the FAISS library
for efficiency, the real innovation lies in the SSCD descriptor itself—an architecture that builds upon
SimCLR with tailored modifications for identifying visual copies under heavy augmentation and
corruption.

We now turn to the SSCD method, which serves as both a key enabler of DINOv2’s scalable
data pipeline and an interesting contribution to self-supervised learning in its own right.

SSCD: A Self-Supervised Descriptor for Image Copy Detection

Motivation for Copy Detection in DINOv2

Robust copy detection is a foundational requirement in the DINOv2 data pipeline, which deduplicates
over 600M web-crawled images to construct the 142M-image LVD-142M dataset [463]. Unlike
standard image retrieval—where similarity scores yield a ranked list—copy detection requires
confident binary decisions: is this image a transformed, compressed, or composited variant of a
known one? False negatives allow redundant content to persist, reducing data efficiency; false
positives are even more damaging, as they erroneously discard unique images and compromise
dataset diversity. Thus, high recall and especially high precision are critical, with a preference for
false negative tolerance over false positive risk.

To support this, DINOv2 adopts the Self-Supervised Copy Detection (SSCD) descriptors proposed
by [481]. SSCD produces compact fixed-length embeddings that can be indexed for fast approxi-
mate nearest neighbor (ANN) search, and—crucially—are compatible with a single global cosine
similarity threshold. This enables scalable deduplication across billions of comparisons without
query-specific calibration or second-stage verification. Such invariance is essential in class-agnostic,
internet-scale pipelines like DINOv2.

SSCD is built atop SimCLR but introduces two core modifications: (1) a mixed-positive contrastive
loss, where all augmentations and synthetic composites (e.g., Mixup, CutMix) are treated as valid
positives—enhancing robustness to occlusion and blending—and (2) a KoLeo entropy regulariza-
tion term that maximizes differential entropy of the embedding distribution. The latter explicitly
prevents representation collapse and spreads unrelated descriptors apart, tightening the cluster of true
matches and creating a geometric “valley” in distance space where thresholding becomes reliable.

To evaluate SSCD, the authors report both mean Average Precision (mAP) and micro Average
Precision (WAP). mAP measures the per-query ranking quality of retrieval. For each query image
g, the system returns a ranked list of N, candidate matches from the dataset, sorted in decreasing
similarity (i.e., most likely copies first). The rank k of a result denotes its position in this list: the
topmost candidate has rank 1, the second has rank 2, and so on.

The value of N, is a configurable hyperparameter: it reflects how many candidates are retrieved and
scored per query. In practice, N, is typically fixed across all queries and chosen to be large enough
to include all true positives (if possible) while limiting computational cost.
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For example, SSCD experiments on DISC2021 retrieve the top N, = 1000 candidates for each
query using approximate nearest neighbor (ANN) search. If a true match does not appear within
the top N, it is treated as a false negative for AP computation. Thus, larger N, values increase the
chance of recovering more true positives but can also dilute early precision and raise evaluation cost.

Given the candidate list of length N, the average precision (AP) for query q is defined as:

R TP(k)
‘gzq|kek@q ko

AP(q)

where:

o« Z,<{1,2,...,N,} is the set of ranks where true positives (matching images) appear,

* TP(k) is the number of true positives found in the top k positions.
This formula averages the precision at each rank where a correct match is retrieved, rewarding
systems that place true copies earlier in the list. The final mAP is computed by averaging over all
queries:

Y
mAP = 1 Y AP(q),
0=

where Q is the total number of query images. This is analogous to the mAP used in object detection
benchmarks such as COCO or Pascal VOC, except that here the queries are images rather than object
classes, and relevant items are copy instances rather than bounding boxes.

While increasing N, can marginally improve recall, it does not affect the shape of the precision-recall
curve beyond the first few true matches. In copy detection, the ability to retrieve true copies near
the top of the ranked list—rather than deep in the tail—is what determines retrieval quality. Hence,
SSCD is evaluated with fixed N, (e.g., 1000) across all queries to ensure fair comparison and practical
relevance.

In contrast to mAP, which computes a per-query precision—recall curve before averaging, micro
Average Precision (uAP) aggregates predictions globally across all queries and candidates. Rather
than evaluating how well the system ranks results for each query independently, uAP assesses
the overall binary classification performance under a single decision rule: declare a match if the
similarity score s > 7, and a non-match otherwise.

In practical terms, AP is computed as follows:

1. Compute similarity scores (e.g., cosine similarity) and ground truth labels for all query—
candidate pairs.

2. Pool all scored pairs into a single list, ignoring which query each pair originated from.

Sort this list in descending order of similarity score.

4. Sweep over the list from highest to lowest score, tracking cumulative true positives (TP), false
positives (FP), and false negatives (FN).

5. At each step, compute global precision and recall:

(98]

TP TP

Precisionpicro = TP+ FP’ Recallmicro = TP+FN’
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6. Plot the global precision—recall curve and compute the area under this curve:

1
UAP = / Precisionmicro (Recallpicro ) dRecallyicro-
0

This process treats every prediction equally, regardless of which query it is associated with. For
large-scale systems such as DINOv2, which apply a fixed cosine similarity threshold 7 across
billions of comparisons during deduplication, uAP provides a more faithful estimate of system-level
performance than mAP. It directly answers: How well does a single global threshold perform across
the entire dataset?

Why SSCD is optimized for pAP. The Self-Supervised Copy Detection (SSCD) framework is
explicitly trained to maximize separability under a global threshold. Its loss function includes:
* An InfoNCE contrastive loss, which pulls together positive pairs (transformed versions of
the same image) and pushes apart negatives.
* A KoLeo entropy regularization term, which spreads descriptors uniformly across the
embedding space, encouraging a high-entropy representation and avoiding collapse.
Together, these losses reshape the representation space so that:
* True copies form tight, isolated clusters with high similarity scores (near 1),
* Distractors are pushed to lower similarity regions,
* The resulting histogram of cosine similarities becomes bimodal, with a pronounced “decision
valley” between the two modes.
This structure enables the use of a single, global decision threshold 7 that robustly separates matches
from non-matches. nAP, by design, is sensitive to exactly this kind of calibration. In the case of
DINOV2, high uAP scores indicate that SSCD’s learned descriptors remain discriminative even when
evaluated at scale, under a uniform threshold shared across the dataset.

In practice, DINOV?2 retrieves nearest neighbors using fast ANN search and applies a fixed cosine
similarity cutoff to identify duplicates. There is no per-query re-ranking, no heuristic tuning, and no
label supervision—just a binary decision. pAP therefore serves not merely as an evaluation score,
but as a direct proxy for end-to-end deduplication success.
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Figure 22.46: SSCD architecture overview. Based on SimCLR, it introduces entropy regularization,
mixed-image-aware contrastive loss, and inference-time score normalization. Adapted from [481].
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SSCD enables this system to scale while preserving data quality, producing clean, non-redundant
datasets like LVD-142M that fuel generalization across downstream tasks.

Core Architecture and Augmentations

The Self-Supervised Copy Detection (SSCD) framework adapts the SimCLR dual-branch design into
a pipeline tailored for large-scale instance-level copy detection. From a single image, two heavily
augmented views are generated using aggressive transformations. Each view is then passed through
a shared convolutional encoder—typically a ResNet-50 or ResNeXt-101—which maps the input
into a dense feature map F € RE*H*W

To transform the spatial feature map into a compact, fixed-length descriptor, SSCD uses Generalized
Mean (GeM) pooling—a flexible alternative to average or max pooling. GeM introduces a learnable
exponent p that determines how much weight is given to high-activation regions within each channel
of the feature map:

oW ’
GCM(F)C = (I‘IIVV Z Z (Fc,h,w)p>

h=1w=1

This expression reduces to average pooling when p = 1 and increasingly resembles max pooling
as p — oo. By learning p directly from data, the network adapts its pooling behavior: lower p
values yield globally averaged features that are robust to noise and distributed edits, while higher p
values concentrate attention on localized peaks—useful for detecting inserted objects, watermarks,
or tampering artifacts.

This ability to interpolate between diffuse and selective aggregation is particularly valuable in copy
detection, where relevant cues may range from small, high-frequency details to global scene-level
structures. In practice, SSCD uses a single shared p across all channels (typically initialized at
p = 3), striking a stable balance between sensitivity and robustness across diverse manipulation

types.

The pooled vector is passed through a lightweight projection head (typically a two-layer MLP) that
outputs a compact descriptor of fixed dimension (e.g., 128 or 512). Unlike SimCLR, which discards
this projection head during inference, SSCD retains it since the output descriptor is used directly for
retrieval. This vector is then ¢,-normalized:

74— ——
12[l2

This normalization ensures metric compatibility and stabilizes the contrastive objective. Together,
the encoder, GeM pooling, and retained projection head form a compact and robust representation
pipeline—yielding descriptors resilient to occlusion, compression, content insertion, and other
real-world manipulations.

Post-Processing via Whitening and Synergy with Training

The final stage in SSCD’s inference pipeline is a whitening transformation, applied after L2
normalization to all output descriptors. Whitening reshapes the learned embedding space to be
statistically isotropic, removing both mean and correlation bias across dimensions. Each descriptor
z € R? is transformed using precomputed dataset-wide statistics—namely, the empirical mean p and
covariance matrix X, computed once over a large corpus of descriptors—via:

Zhitened = 2_1/2 (Z - [.L)
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This transformation serves three core functions. First, it standardizes the descriptor space by
decorrelating feature dimensions and equalizing their variance, so that all directions contribute
equally to similarity computations. Second, it enforces isotropy—an assumption underpinning
the efficiency of large-scale retrieval systems such as IVF-PQ and HNSW. Third, it mitigates
dimensionality collapse, a common issue in contrastive models where variance concentrates along
only a few axes, reducing the expressiveness of the embedding space.

One might ask why whitening is applied only at inference. The answer lies in the scale and stability
of the required statistics: computing  and ¥ over entire datasets yields reliable global structure,
whereas attempting whitening over per-batch covariance during training would be noisy, unstable,
and poorly aligned across steps. Moreover, whitening is a linear and invertible transformation; it
preserves the semantic topology learned during training—merely reorienting it into a more favorable
coordinate system.

Importantly, SSCD is not reliant on whitening to fix its representations post hoc. During training, it
integrates differential entropy regularization, which encourages descriptors to spread uniformly
over the hypersphere. This regularizer acts as a counterforce to the contrastive loss: while InfoNCE
pulls positives together and pushes negatives apart, entropy regularization ensures that the overall
space remains high-rank, well-distributed, and robust against collapse. Crucially, this does not
destroy the discriminative structure. The entropy term’s influence is strongest locally—discouraging
clustering of unrelated samples—while allowing global structure (e.g., semantic clusters) to form
freely.

The result is a learned representation that is already near-isotropic before whitening is applied.
The post-training whitening step thus introduces minimal distortion: it subtly aligns the learned
geometry with the assumptions of downstream search algorithms, improving recall and stability
without degrading feature quality. Eigenvalue clipping ensures numerical robustness, and whitening
is performed at the full descriptor size—without PCA compression—thanks to the high effective
dimensionality induced by the entropy-aware training.

Together with SSCD’s other architectural elements—aggressive augmentations, GeM pooling for
adaptive saliency control, and a retained projection head for stable inference—whitening forms the
final normalization layer that makes descriptors compact, expressive, and ready for high-throughput
image retrieval.

We now turn to the augmentation pipeline that enables SSCD to simulate real-world tampering
scenarios, further enhancing its robustness to both local edits and composite manipulations.

Augmentation Pipeline for Real-World Tampering

To simulate the types of transformations encountered in real-world copy detection (e.g., memes, im-
age edits, composites), SSCD uses an aggressive and diverse set of data augmentations. These include
common distortions such as JPEG compression, Gaussian blur, perspective shifts, text overlays, and
emoji insertions. More uniquely, SSCD incorporates mixed-image augmentations—specifically,
CutMix and Mixup—which blend content from two or more images into one. This simulates
adversarial cases such as content repurposing or collage creation.

These augmentations play a dual role. First, they force the model to focus on truly discriminative
visual content, rather than spurious correlations like background texture. Second, they expand the
definition of “positive pairs” during contrastive training: for example, an image and its Mixup blend
are treated as semantically related, reinforcing robustness to visual mixing.
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The inclusion of such augmentations is not just a heuristic—it is a principled way to operational-
ize invariance to partial copying and compositional edits, which are frequent in copy detection use
cases.

Loss Formulation with Enfropy and Mixed Posifives

SSCD departs from standard SimCLR in two complementary and carefully designed ways. First,
it extends the InfoNCE contrastive loss to support composite positives—image views blended via
CutMix or MixUp that contain content from multiple source images. Second, it introduces a
differential entropy regularization term to prevent representation collapse and encourage a well-
spread, high-entropy embedding space suitable for threshold-based copy detection.

In the modified contrastive loss, any descriptor z; derived from a mixed view treats all of its donor
images as positives. This is formalized by defining %; as the set of all positive indices for anchor z;,
yielding the following loss:

12N

exp(sim(zi,z;)/T
Bt = ZNZW p(sim(z2;)/7)

jey Zk(;éﬁ, exp(Sim(Zth)/T)

Here, P, includes both traditional augmentations and all donor views contributing to a mixed image.
This encourages the model to learn semantic consistency across partial overlaps and cut-and-paste
transformations—crucial for robustness in copy detection scenarios.

To complement this broadened notion of positive alignment, SSCD introduces an entropy-based
regularizer that governs the global geometry of the embedding space. Without this, contrastive
objectives can induce dimensionality collapse, where descriptors concentrate in a narrow subspace,
reducing expressiveness and degrading thresholdability.

SSCD addresses this by incorporating a differential entropy regularizer based on the Kozachenko
Leonenko (KoLeo) estimator. While the entropy of a continuous distribution p(x) is defined as:

H(p) =~ [ plo)logp(x)dx,

this integral is intractable in high dimensions. The KoLeo estimator instead penalizes geometric
crowding, using nearest-neighbor distances among non-positives to encourage spread. The entropy
loss is given by:

1 N
gKoLeo == Zlogmin HZi - ZJ'HZ,
N= "¢k
where nearest neighbors are restricted to negatives to preserve alignment. This term incentivizes
descriptors to be well-separated globally, mitigating collapse and encouraging full use of the unit
hypersphere.

The entropy regularization thus plays a dual geometric role: it prevents collapse by distributing
descriptors uniformly and enhances discriminability by separating unrelated images. These properties
are especially valuable for copy detection, where small transformations or content reuse must be
detected without confounding semantically unrelated instances. By pulling positives together while
pushing negatives apart, SSCD constructs an embedding space that is both locally tight—for precise
alignment—and globally uniform—to support robust thresholding.
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The final SSCD objective integrates both components:
Z55CD = “LnfoNCEmi, T A - LKoleo,  With (default) A = 30

This constructive tension yields a descriptor space well-calibrated for large-scale, threshold-based
copy detection: true variants of an image form tight clusters, while distractors—even if visually
similar—are geometrically repelled. This embedding structure is critical for scalable applications
like DINOV2, where deduplication must operate efficiently over hundreds of millions of images
using a single global threshold without task-specific tuning.
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Figure 22.47: Ablation: Entropy Regularization Improves Thresholdability. Histogram of
squared ¢, distances between descriptor pairs on DISC2021. The x-axis shows pairwise squared dis-
tance; the y-axis indicates frequency. Blue curves represent positive pairs (augmented or composite
views of the same image); Red curves show hardest negatives (non-matching nearest neighbors).
Top: Without entropy regularization (SimCLR), positives and negatives heavily overlap, making
global thresholding unreliable. Bottom: With KoLeo entropy regularization, many positives con-
centrate below 0.6, while negatives are pushed outward, peaking near 1.1. Despite a long-tailed
positive distribution (~35% beyond 1.15), the scarcity of negatives below 0.6 enables a global
threshold (e.g., T = 0.6) to recover most matches—achieving high recall. However, due to midrange
overlap, precision remains moderate. This balance favors high-recall use cases such as large-scale
pre-filtering, where false positives are tolerable. The separation shown here directly improves micro
Average Precision (UAP), which reflects how well a fixed threshold can distinguish matches from
non-matches across the entire dataset. Adapted from [481].
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Empirical Results and Impact

SSCD delivers strong empirical gains across multiple copy detection benchmarks. On DISC2021, it
improves over SImCLR by more than +48% in micro Average Precision (UAP), reflecting dramatically
better thresholded separation between copies and distractors. On the Copydays dataset, SSCD
achieves 86.6 mAP using a ResNet-50 backbone, and up to 93.6 mAP with a ResNeXt—substantially
outperforming prior contrastive and retrieval-based approaches, including Multigrain and DINO.
These results establish SSCD as a state-of-the-art self-supervised descriptor for real-world copy
detection tasks.

In addition to accuracy, SSCD is designed with deployment in mind. It produces lightweight
descriptors (e.g., 512 dimensions), incorporates internal score normalization for calibration, and
supports TorchScript export for efficient inference.

This combination of effectiveness and scalability is precisely what makes SSCD suitable for DI-
NOv2’s deduplication pipeline: applying a single, global cosine threshold to SSCD descriptors
filters redundant content across hundreds of millions of web images. The result is LVD-142M—a
large-scale, clean, and highly diverse dataset that forms the foundation of DINOv2’s training corpus.

Yet while deduplication solves the problem of data redundancy, it leaves open the deeper challenge of
data understanding. SSCD focuses on instance-level discrimination via global descriptors, sufficient
for matching near-duplicates—but inadequate for learning rich, hierarchical representations that
capture objects, parts, textures, and spatial relations. To train a general-purpose vision model,
DINOV2 must extract meaning not only from entire images, but also from their internal structure.

This is the motivation for DINOv2’s second key design pillar: Masked Image Modeling (MIM).
Inspired by masked language modeling in NLP—where models learn to predict missing words
from surrounding text—MIM applies a similar principle to images: it randomly masks a subset
of input patches and trains the model to infer the missing content based on the visible context.
This compels the model to develop a structured understanding of spatial relationships, textures,
object parts, and semantic composition. Rather than simply recognizing whole-image identities,
the model must learn to reconstruct or predict image regions in a way that reflects the underlying
scene structure. As a result, MIM encourages the emergence of rich, localized, and hierarchically
organized representations—properties essential for dense prediction, compositional reasoning, and
generalization across domains.

In the remainder of this part, we examine how DINOV2 incorporates MIM into its self-supervised
learning framework. We begin by revisiting the Masked Autoencoders (MAE) [210] approach,
which demonstrates that scalable and transferable visual representations can be learned by recon-
structing raw pixels over randomly masked patches using a simple asymmetric encoder—decoder
architecture. MAE’s high masking ratio and efficient training design make it a compelling base for
large-scale vision pretraining. We then turn to iBOT [799], which extends the MIM paradigm by
combining masked patch prediction with self-distillation. Instead of predicting pixels, iBOT trains a
student network to match the patch-level and class-level outputs of a momentum teacher network,
using a contrastive formulation that unifies local and global supervision. This dual-objective structure
not only improves semantic alignment across views but also enhances token-level understanding—an
architectural strategy that DINOv2 ultimately adopts and refines.

As we will see, the full DINOv?2 objective integrates iBOT-style masked token prediction with global
self-distillation and entropy-based regularization, resulting in a unified framework that learns strong,
scalable, and semantically rich visual representations without labels.
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Masked Autoencoders (MAE): Scalable Vision Learners

Masked Autoencoders (MAE) [210] introduced a scalable and generative alternative to contrastive
self-supervised learning, drawing inspiration from masked language modeling in NLP. At the time,
leading methods such as MoCo and SimCLR trained models to discriminate between augmented
views of different images—a strategy that produced linearly separable features suitable for linear
probing, where a simple linear classifier is trained on top of a frozen backbone for downstream tasks
like ImageNet classification. In contrast, MAE proposed to reconstruct missing parts of an image,
training a Vision Transformer (ViT) to generate masked regions from a sparse set of visible patches.
This approach shifted the focus from view discrimination to generative modeling, emphasizing
content recovery and holistic understanding.

Two key innovations underpinned MAE’s success. First, the model uses a high masking ra-
tio—typically 75%—which makes the reconstruction task challenging and encourages the encoder
to capture global semantic structure. Second, it employs an asymmetric encoder—decoder architec-
ture: the encoder processes only visible patches, while a lightweight decoder reconstructs the full
image using both the encoded tokens and learnable mask tokens. This design reduces computation
significantly—for example, a ViT processing 196 image patches will encode only 49, lowering the
cost of quadratic attention. The decoder is discarded after pre-training.

MAE achieves state-of-the-art performance when the pretrained model is fully fine-tuned, meaning all
weights are updated for the target task. For instance, ViT-L and ViT-H models pretrained with MAE
reach 85.9% and 87.8% top-1 accuracy on ImageNet-1K, respectively. However, MAE performs
poorly under linear probing: its features are not well organized for simple linear separation. This
reveals a trade-off—MAE learns rich, dense representations that support fine-tuning, but they are
less directly usable in frozen, plug-and-play settings.

encoder - decoder

O
\
LB i [ |

Figure 22.48: MAE architecture and objective. A large fraction of image patches (e.g., 75%) is
masked, and the encoder processes only the visible subset. Mask tokens are inserted post-encoder
and processed by a lightweight decoder to reconstruct the full image. The decoder is discarded after
pre-training (Adapted from [210]).
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This trade-off invites a deeper look into MAE’s core architecture and training dynamics. In the parts
that follow, we examine the asymmetric encoder—decoder design, the pixel-level reconstruction loss,
empirical findings from ablation studies, and qualitative insights from image reconstructions. These
components not only reveal how MAE enables efficient, scalable pre-training but also explain its
limitations in producing linearly separable features. These very limitations would later motivate
hybrid approaches—such as iBOT and DINOv2—that build upon MAE’s generative backbone while
introducing discriminative signals to enhance semantic structure in the learned representations.

Asymmetric Architecture and High-Ratio Masking

The MAE framework is built upon two foundational principles: a high masking ratio that removes
most of the input image, and an asymmetric encoder—decoder architecture that enables efficient
training and scalable inference. Together, these choices define a powerful generative pretext task for
self-supervised learning.

Given an input image of size 224 x 224, MAE first partitions it into non-overlapping patches of
size 16 x 16, yielding N = 196 total patches. A random subset comprising N patches is masked,
typically with a high masking ratio r = 0.75, leaving V = (1 — r)N = 49 visible patches. This high
ratio ensures that reconstructing the missing content requires more than low-level interpolation; it
compels the model to infer semantic structure from sparse observations.

Encoder. The encoder is a standard Vision Transformer (ViT), modified to operate solely on the
visible subset of patches. Each visible patch is linearly projected into a d-dimensional token (e.g.,
d = 768 for ViT-Base) and combined with its positional embedding, yielding a sequence x, € RV *<.
This sequence is processed by the encoder fy to produce latent representations:

z, = fo(x,) € RV >4,

This architectural asymmetry is critical: by removing masked tokens from the encoder input, MAE
reduces the self-attention cost from & (N?) to ¢(V?). Since V is just a quarter of N, this translates
to an approximate 16 x reduction in attention overhead. Such savings enable efficient pre-training of
large models like ViT-L and ViT-H without relying on specialized sparse operations. Additionally,
by excluding mask placeholders, the encoder is encouraged to build robust semantic representations
from incomplete and irregular visual input—promoting holistic understanding instead of overfitting
to token identity. Meanwhile, a lightweight decoder—typically just 1-8 Transformer blocks with
reduced width (e.g., 512)—is used to reconstruct the masked content without overwhelming the
overall computational cost.

Decoder. The decoder in MAE is a lightweight Transformer that operates only during the pre-
training phase. Its purpose is to reconstruct the full set of N image patches—including the masked
ones—based on the sparse, high-level features extracted by the encoder. The decoder receives as
input:

« the encoded visible tokens z, € RV %4,

* rN copies of a shared, learned mask token m € R!'*¢, and

« positional embeddings p € R¥*¢ associated with the original patch positions.
The key design choice is that all masked positions share the same learnable vector m—that is, there
is no position-specific or image-dependent masking embedding. This simplification ensures that the
decoder must rely on the context provided by the visible tokens and their positional relationships to
generate plausible reconstructions.
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To reassemble the full patch sequence, the V visible tokens and rN mask tokens are merged and
sorted according to their original spatial indices. After positional embeddings are added, the resulting
sequence of shape RV*? is passed through a shallow Transformer decoder 8¢:

X=gy (sort ([zv;m(rN)] +p>> ,
where m™) denotes the broadcasted mask token repeated rN times, and & € RV*? is the output
feature map representing all patches, reconstructed into patch embedding space.

The decoder is intentionally shallow and narrow—typically just 4-8 Transformer blocks with lower
embedding dimension (e.g., 512)—because its role is to convert semantic context into low-level
pixel estimates, not to learn general-purpose representations.

Loss. The reconstruction target is the original (normalized) pixel content of each masked patch. Let
%; € R? denote the ground-truth target for masked patch i, and let &; be the decoder’s prediction. The
loss is a mean squared error (MSE) computed only over the masked patches:

1 2
Aaae = — Y 1% —%ill3,
rNiex/(

where ./ is the set of indices corresponding to masked patches. By excluding visible patches
from the loss, the model is forced to rely on contextual reasoning rather than simply memorizing
input-output pairs. Despite using a low-level reconstruction target (pixels), this strategy leads to
strong high-level features in the encoder, especially when followed by supervised fine-tuning.
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Figure 22.49: MAE achieves optimal performance with a high masking ratio (75%), benefiting both
fine-tuning and linear probing. A low masking ratio (e.g., 25-50%) results in diminished linear
separability, as the task becomes too easy (Adapted from [210]).

After pre-training, the decoder is discarded entirely. For downstream recognition tasks, the encoder is
reused in isolation and applied to the unmasked, full image. Its output—obtained either from a class
token or global average pooling—serves as the learned representation for tasks such as classification,
detection, or segmentation. This asymmetry ensures that representational power is concentrated in
the encoder, promoting strong transferability while minimizing deployment overhead.
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In summary, MAE’s encoder—decoder structure is deliberately optimized for both scalability and
semantic richness. The encoder learns to infer high-level representations from sparse, context-limited
views of the image, while the decoder performs a minimalistic reconstruction task.

Empirical Results and Qualitative Analysis

The MAE paper provides both qualitative and quantitative evidence for the effectiveness of masked
autoencoding as a pretext task. A central finding is that MAE learns holistic and semantically
meaningful representations, even when only a small subset of input patches is visible.

Qualitative Reconstructions: MAE’s reconstructions from highly masked images are not pixel-
perfect but are often semantically plausible. As illustrated in Figure 22.50, the model can infer the
coarse structure, object category, and spatial layout of missing regions, despite having access to only
20-25% of the original patches.

Figure 22.50: Example reconstructions on ImageNet validation images with 80% masking. For each
triplet: masked input (left), MAE reconstruction (center), and ground truth (right). While visible
patches are not reconstructed, the model infers plausible global structure (Adapted from [210]).

The reconstructions tend to be blurry, a known consequence of using an MSE loss in pixel space,
which averages over plausible outcomes. Nonetheless, these results confirm that the encoder has
learned high-level features of object geometry and context.

Figure 22.51: MAE generalizes well to out-of-distribution samples. When applied to COCO images,
a model pretrained only on ImageNet produces semantically coherent reconstructions, even when
the outputs differ from the ground truth. (Adapted from [210])
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Robustness to Higher Masking Ratios: Even when masking exceeds 85-95%, the model is still
able to reconstruct scenes with recognizable structure, as shown in Figure 22.52. This demonstrates
that the encoder has internalized robust priors over image composition and semantics, which emerge
naturally from the self-supervised objective.

original mask 75% mask 85% mask 95%

Figure 22.52: Reconstructions under increasingly aggressive masking. MAE remains robust up to
95% masking, producing plausible if blurry results, suggesting strong generalization from sparse
inputs (Adapted from [210]).

Importantly, the choice of random masking is not incidental. Structured masking schemes such as
grid-wise or block-wise remove spatial redundancy less effectively, enabling shortcut learning and
degrading the semantic quality of representations. Randomly sampling patches without replacement
eliminates these correlations and compels the model to develop better representations.

random 75% block 50% grid 75%

Figure 22.53: Comparison of masking strategies. Random masking (left) produces harder prediction
tasks and better representations than block-wise (center) or grid-wise (right) masking, which leak
low-level structure (Adapted from [210]).
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Masked Autoencoders (MAEs) have established themselves as a scalable and efficient framework
for self-supervised learning. Their asymmetric encoder—decoder design and high masking ratio
(typically 75%) enable lightweight training even with large ViT backbones such as ViT-L and ViT-H.
However, while MAEs excel in downstream fine-tuning tasks, they exhibit a fundamental limitation
in frozen representation quality.

This becomes evident in linear probing evaluations. A ViT-L model trained with MAE achieves
only 75.8% top-1 accuracy on ImageNet, whereas contrastive and distillation-based methods fare
significantly better: MoCo v3 reaches 77.6% with ViT-L, and DINO achieves 80.1% with the smaller
ViT-B/8. This discrepancy reflects a core issue with MAE’s pixel-level reconstruction loss: although
it drives the learning of rich, transferable features, these features are not organized in a semantically
aligned or linearly separable manner. The encoder is optimized for reconstruction fidelity, not
classification utility.

Ablation Studies: The following ablations from [210] offer empirical insight into this behavior,
highlighting which architectural decisions contribute to performance gains—and where limitations
persist:

* Decoder depth and width: Increasing decoder depth substantially improves linear probing
(4+8.0%) but barely affects fine-tuning. This suggests the pixel-level target lacks semantic
pressure for linear alignment.

» Mask token placement: Including masked tokens in the encoder severely harms both accuracy
and efficiency.

* Reconstruction target: Normalized pixels outperform both raw pixels and discrete token
targets (e.g., dVAE from BEiT).

* Data augmentation: MAE performs well even with minimal augmentation, unlike contrastive
methods which depend heavily on strong augmentation pipelines.

* Masking strategy: Random sampling significantly outperforms structured block or grid
masking.

Table 22.25: Key findings from MAE ablation studies. Accuracy differences are reported on
ImageNet-1K for ViT-L pretrained for 800 epochs. Optimal settings are bolded.

Component Setting Fine-tuning (%) Linear Probing (%)
Decoder Depth 8 blocks vs. 1 block +0.1 +8.0
Decoder Width 512-d vs. 256-d —0.1 —1.6
Mask Token (Encoder) w/ token vs. w/o —-0.4 —14.1
Target Type Norm. pixels vs. unnorm. +0.5 +0.4
Data Augmentation Crop vs. Crop + jitter —-0.4 —2.4
Masking Strategy Random vs. Block —2.1 —10.9
Masking Ratio 75% vs. 50% —0.5 —17.5

These findings reinforce MAE’s strengths in architectural simplicity and scalability, but also un-
derscore the need for learning objectives that promote semantic alignment. The gap in linear
separability—despite strong reconstruction and transfer performance—motivates the development
of hybrid approaches that retain MAE’s architectural benefits while improving the discriminative
structure of the learned features.
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To address this, iBOT [799] introduces a unifying framework that combines MAE’s masking-based
efficiency with the self-distillation paradigm of DINO. Instead of predicting pixels, iBOT casts
masked image modeling as a semantic feature prediction task. A student network is trained to match
the outputs of a momentum-updated teacher network on two levels:
* Patch-level distillation: For masked regions, the student predicts the teacher’s soft feature
distributions using cross-entropy, improving local semantic alignment.
¢ Global self-distillation: The student’s [CLS] token is trained to match the teacher’s [CLS]
token across multiple augmented views, using the DINO objective.
This approach effectively replaces MAE’s low-level regression loss with high-level classification
objectives, enabling the model to learn both localized visual concepts and globally coherent features.
The result is significantly improved linear separability and enhanced performance in frozen transfer
settings.

Within the broader self-supervised landscape, iBOT serves as the architectural and algorithmic bridge
to DINOv2. DINOV2 inherits iBOT’s dual-objective design—combining masked feature prediction
with global alignment—and extends it with entropy-based regularization techniques such as centering
and KoLeo. This synthesis enables stable and scalable pretraining, producing general-purpose visual
representations that match or exceed supervised baselines in both fine-tuned and frozen evaluations.

iBOT: Masked Image Modeling with Self-Distillation

iBOT [799] advances masked image modeling by combining the token-masking strategy introduced
in MAE with the self-distillation framework of DINO. While MAE relies on an asymmetric en-
coder—decoder design to reconstruct masked image patches at the pixel level, iBOT reformulates
the task as semantic feature prediction. Architecturally, it adopts a symmetric, Siamese-style setup
with two Vision Transformers—a student and a momentum-updated teacher—mirroring DINO’s
design. The student receives a masked image and is trained to match the teacher’s soft output
distributions at both the patch level (for masked tokens) and the image level (via the [CLS] token).
This dual-objective formulation preserves MAE’s efficiency in masking-based supervision while
promoting the discriminative alignment necessary for strong frozen transfer performance—without
requiring task-specific fine-tuning.
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Figure 22.54: iBOT trains a student network to match the soft outputs of a momentum-updated
teacher on both class and patch tokens. Only the student receives masked inputs; the teacher operates
on full images. Predictions are made in feature space via projection heads and cross-entropy loss
(Adapted from [799]).
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The iBOT architecture, illustrated in Figure 22.54, unifies the scalability of masked autoencoders
with the semantic alignment of self-distillation. It adopts an asymmetric student—teacher framework
where both networks are Vision Transformers (ViTs), but operate on distinct inputs and follow
different training dynamics. Specifically, the student receives a randomly masked view of the image,
while the teacher always processes the full, unmasked version. This input-level asymmetry, inspired
by masked autoencoders like MAE, encourages the student to infer semantically meaningful content
from limited context.

Beyond masking, iBOT incorporates several training asymmetries central to the success of DINO.
The teacher network is updated as an exponential moving average (EMA) of the student’s parameters,
making it a slowly evolving target that stabilizes learning. A stop-gradient is applied to the teacher’s
output to prevent gradient flow during loss computation. Crucially, iBOT also employs two additional
mechanisms to avoid representational collapse: centering, which subtracts a running mean from
the teacher’s output to encourage diversity, and sharpening, which applies a low temperature to the
teacher’s softmax to yield confident, discriminative targets. These mechanisms are applied not only
to the global [CLS] token (as in DINO), but also extended to patch-level outputs for masked tokens.

Together, these architectural and training asymmetries allow iBOT to reinterpret masked image mod-
eling as a feature-level distillation task—eschewing pixel-level reconstruction in favor of predicting
the teacher’s semantic output distributions. This reframing produces linearly separable features
suitable for frozen transfer and forms the conceptual foundation upon which DINOV2 is built.

An input image of size 224 x 224 is tokenized into a grid of non-overlapping 16 x 16 patches,
producing 196 visual tokens. A learnable [CLS] token is prepended, resulting in a sequence of
N = 197 tokens. Each token is projected into a high-dimensional embedding (e.g., D = 768 for
ViT-B) and augmented with fixed sine-cosine positional encodings.

The student network receives a corrupted version of this sequence, where a large random subset
(e.g., 75%) of patch tokens is replaced by a shared learned [MASK] token. The student processes the
masked sequence and outputs embeddings for all tokens—both visible and masked—including the
[CLS] token. These are passed through a shared projection head to produce probability distributions
over a fixed vocabulary of prototypes (typically K = 8192), one per token.

The teacher network, updated via exponential moving average (EMA) from the student, processes
the full, unmasked sequence of the same image. It outputs target distributions for both the patch
tokens and the global [CLS] token. These soft targets act as an online tokenizer, dynamically
adapting over training and eliminating the need for discrete codebooks or external pretraining (as
used in BEiT).

Learning is driven by matching the student’s predictions to the teacher’s targets at two levels:

* Patch-level distillation: The student predicts the teacher’s soft feature distributions for
masked patches using a cross-entropy loss. This encourages localized, context-aware feature
learning.

* Global self-distillation: The student’s [CLS] token—typically from a different augmented
view—is aligned with the teacher’s [CLS] token, following the DINO objective. This enforces
global semantic consistency.
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This dual prediction setup introduces two key advantages over pixel-based masked modeling:
» Latent-space supervision: iBOT operates entirely in a learned semantic space, avoiding the
ambiguity of pixel regression and focusing instead on high-level structure.
* Unified local and global alignment: By combining patch-level and image-level objectives,
iBOT learns both part-based semantics and holistic representations in a single pass.

These innovations yield high-quality, linearly separable features even without fine-tuning—resolving
a key shortcoming of MAE. Rather than preserving MAE’s encoder—decoder architecture, iBOT
retains its token-masking formulation while introducing semantic supervision through a symmetric,
DINO-inspired self-distillation design. In this way, iBOT serves as a conceptual and algorithmic
bridge to DINOV2. In the next part, we formalize the iBOT objective and detail the mechanisms that
ensure effective alignment across masked tokens and global embeddings.

iBOT Loss Function and Self-Distillation Objective

The iBOT framework introduces a unified self-supervised learning objective that combines masked
image modeling (MIM) with cross-view self-distillation. The two components work in tandem to
supervise the model at both local (patch-level) and global (image-level) scales, without requiring
class labels or reconstruction targets.

Patch-Level Loss: Masked Image Modeling as Feature Distillation. Let u and v be two augmented
views of an image x. The student network f; o i receives masked views i, ¥, where a random subset
of patch tokens is replaced by a shared, learnable token embedding ¢™¥. The teacher network f; o i,
updated via exponential moving average (EMA), always observes the unmasked views.

Each network maps patch tokens to a probability distribution over K learnable prototypes. These
prototypes are not semantic classes, but rather serve as anchors in the representation space, following
the idea introduced in DINO [71]: by applying a softmax over the dot products between features and
prototype vectors, the model is effectively solving an unsupervised classification task it defines for
itself. This encourages separation and clustering of features into emergent categories.

Let Pgamh(ﬁ) = ¥ ¢ RV*K be the student’s patch-level output for the masked view #, and

PPM (u) = uf™" € RV*K the teacher’s output on the corresponding full view u, where N is the
number of patches. The mask indicator m; € {0, 1} specifies which positions were masked.

The patch-level masked image modeling loss for view u is then computed as a masked cross-entropy:

N
31\(/1’3\4 - _ Z m; - Pg/atch<ui)'r IOngatCh(ﬁi)

i=1
This encourages the student to match the teacher’s soft probability distribution at each masked
patch, thereby learning semantically grounded, context-aware features. Cross-entropy penalizes
discrepancies between the teacher’s soft target (a sharpened, semantically meaningful distribution)
and the student’s prediction. Unlike one-hot targets, this soft supervision enables smooth gradients
and richer learning signals.

A

An identical loss "S/ﬂ]\(/[vl)l\/[ is computed between P2"" (v) and P2*" (), and the final patch-level loss is
symmetrized:

1 u v
v = 5 («fl\(aﬁw ﬂiﬁ&ﬁw)
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This ensures that both views contribute equally, improving generalization across diverse augmenta-
tions.

Global Loss: Cross-View [CLS] Token Distillation. In parallel, iBOT minimizes a self-distillation

loss between [CLS] tokens from opposite views. The teacher processes full inputs u, v to yield u,[CLS],
vt[CLS], while the student processes masked inputs ¥, i to produce ﬁLCLS], IZLCLS]. The cross-entropy
loss is:

1

Final Objective. The total loss is the sum of local (patch) and global ([CLS]) distillation objectives:

Lot = “LvMm + ZeLs

Centering and Sharpening for Stability. To prevent representation collapse and promote mean-
ingful feature diversity, iBOT adopts two output normalization techniques—centering and sharpen-
ing—originally introduced in DINO [71]. These operations are applied exclusively to the teacher
network’s logits prior to the softmax, introducing an essential asymmetry between the teacher and
student distributions.

» Centering: Let z denote the teacher’s raw pre-softmax logits for either patch tokens or [CLS]
tokens. A running exponential moving average (EMA) of the logits is maintained across
training steps to compute a global center vector ¢ € RX. For each mini-batch, the logits are
centered as:

Zeentered =Z—¢, Wwhere ¢ < m'-c+ (1 —m') - meanpyecn(z)

The momentum coefficient m’ € [0, 1) controls the update smoothness. Centering ensures that
all prototype dimensions remain active and prevents output collapse to a degenerate solution
where one prototype dominates.

* Sharpening: The centered logits are divided by a low temperature 7, < 1, which flattens the
softmax denominator and yields a more peaked probability distribution:

Py (x) = softmax (x . c) ,  Pp(x) = softmax <x>
t

Ts

The student temperature 7; is typically set to a higher value (e.g., T, = 0.1) than the teacher

temperature (e.g., T, = 0.04), further accentuating the asymmetry between the two outputs.
This teacher—student temperature asymmetry serves multiple purposes. First, it provides a stronger
and less noisy supervision signal by making the teacher’s output distribution highly confident (i.e.,
close to one-hot), which simplifies the student’s task of matching it. Second, it prevents representa-
tional uniformity by preserving inter-sample diversity: the teacher maintains sharp, discriminative
distributions, while the student must learn to approximate them despite incomplete input views and
higher entropy outputs.

Together, centering and sharpening constitute a critical design choice in iBOT. The use of batch-wise
statistics (for centering) and low-temperature scaling (for sharpening) ensures that the learned token
distributions remain diverse, stable, and semantically structured across the training trajectory.
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These mechanisms operate as a form of entropy regularization and are essential to achieving
effective self-distillation without collapse.

Projection Head Sharing. Finally, iBOT shares the projection head between [CLS] and patch
tokens:

[CLS] _ 4 patch [CLS] _ , patch
hs - hga ¢ 9 ht - hl
This enforces alignment in the learned representation space and improves transfer performance b
g p p p p y
promoting consistency between local and global features.

Together, these components allow iBOT to reinterpret masked image modeling as feature-level
knowledge distillation with semantically rich, soft supervision—bridging the scalability of MAE
with the semantic structure of DINO.
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iBOT Training Procedure

The full iBOT training procedure is summarized in the following PyTorch-style pseudocode.

Algorithm 1: iBOT PyTorch-like Pseudocode w/o multi-crop augmentation

Input:
gsa gt N
G
Ts» Tt 5
ToiTe s ter

m,m'; momentum rates for center on
G¢.params = g,.params

for x in loader do

u, v = augment(x), augment(x) ;
1., m.,, = blockwise_mask(w) ;

¥, m,, = blockwise_mask(wv) :

1 [CL81 qpateh = g (40, return_all_tok=true) ; [n, K],
L8] pPateh - g (§. return_all_tok=true) ; ! [n, K],
[cLS] atcl -
w0 up ™ = gi(u, return_all_tok=true) ; [n, K],
v[HS] pP*h = g, (v, return_all_tok=true) ; [n, K],

Licrs) = H(@8) o[8] O 1, 1) 12 + H(D 628 w8 O, 1y, 1) /12
Lo = (M, - H{@pateh o P** " ¢ 77 ) sum(dim=1) / m,, sum(dim=1) / 2

+ (m, - H(gPateh yP*<h o 27 1) sum(dim=1) / m,,.sum(dim=1) / 2
(Lcrsy -mean() + L. mean()).backward()

update(g;) : / student, teacher and cente
ge.params = [ g;.params +(1 — )+ g.params

C=m-C+(1-m) cat([w/**, /" ]).mean(dim=0)

C'=m'-C' + (1 —m')- cat([uP**", ¥P***"]).mean(dim=(0, 1))

end

defH(s, t, ¢, T, T¢) 2

s = softmax(s / 7., dim=1)

return —(t- log(s)).sum(dim=-1);

t = t.detach(); / stop gradien

t = softmax((t — ¢) / 7, dim=1); center + sharyg

Figure 22.55: iBOT training procedure in PyTorch-style pseudocode form, illustrating the com-
putation of both the masked image modeling loss and the [CLS] token self-distillation loss. This
schematic captures the core logic of token-level and global-level supervision using a momentum-

updated teacher and centering/sharpening techniques. Figure adapted from [799].

This training loop operationalizes the central innovations of iBOT: online semantic tokenization
via the teacher, joint learning of local and global targets, and distribution-level alignment using
cross-entropy in a stabilized feature space. These design decisions form the foundation upon which
iBOT outperforms prior methods in both semantic classification and dense vision tasks. We now

turn to its empirical evaluation.



22.4 Self-Distillation Methods 1575

Empirical Results and Evaluation

iBOT demonstrates state-of-the-art performance across a wide range of self-supervised benchmarks,
successfully bridging the gap between generative and contrastive/distillation-based methods. Its dual-
level objective—combining a local, patch-level masked prediction task with a global [CLS] token
self-distillation task—produces representations that are highly linearly separable and semantically
structured, even without fine-tuning.

ImageNet Linear Probing: A key weakness of earlier masked image models such as BEiT and MAE
was their poor performance under linear probing, due to their focus on pixel-level reconstruction
rather than semantic separability. As shown in the below table, iBOT decisively resolves this issue.
Using a ViT-B/16 backbone, iBOT achieves a linear probing accuracy of 79.5% on ImageNet,
outperforming both the generative BEiT and the distillation-based DINO. This result confirms
that iBOT’s features are not just powerful but also organized in a way that is directly usable for
downstream classification without further adaptation.

Table 22.26: ImageNet-1K classification results. iBOT achieves state-of-the-art linear probing
accuracy while maintaining strong fine-tuned performance. (Adapted from [799])

Method Arch. Epochs Linear (%) Fine-tune (%)

DINO ViT-B/16 1600 78.2 83.6
BEiT ViT-B/16 800 71.7 834
iBOT ViT-B/16 1600 79.5 84.0

Label-Efficient Transfer: iBOT also excels in low-label regimes, demonstrating high sample
efficiency. On semi-supervised benchmarks using only 1% or 10% of ImageNet labels, it consistently
outperforms DINO using the same ViT-S/16 backbone. This suggests that iBOT’s representations
capture class-relevant structure so effectively that a linear classifier can succeed with minimal
supervision.

Table 22.27: Semi-supervised learning on ImageNet-1K with 1% and 10% labels. iBOT exhibits
high label efficiency in low-shot transfer. (Adapted from [799])

Method Arch. 1% 10%

DINO ViT-S/16  60.3 74.3
iBOT ViT-S/16 619 75.1
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Unsupervised Clustering: The benefit of iBOT’s patch-level distillation is particularly evident in
clustering tasks. Without access to any labels, iBOT achieves superior performance over DINO on
all standard clustering metrics. The additional supervision on masked tokens encourages the model
to develop finer-grained visual representations that enhance semantic separation across classes.

Table 22.28: Unsupervised clustering on ImageNet-1K. iBOT improves upon DINO across all
clustering metrics. (Adapted from [799])

Method Arch. ACC ARI NMI FMI

DINO ViT-S/16 414 298 768 328
iBOT ViT-S/16 434 328 78.6 35.6

Downstream Transfer: Detection and Dense Prediction. iBOT generalizes effectively across a
wide spectrum of vision tasks. The table below presents results on object detection and instance
segmentation (COCO dataset, evaluated via AP metrics), as well as semantic segmentation (ADE20K,
measured by mloU). While object detection involves sparse localization of individual objects, both
instance and semantic segmentation require dense, per-pixel predictions. By jointly supervising both
global [CLS] and patch-level token features, iBOT fuses DINO’s semantic abstraction with MAE’s
spatial precision—resulting in superior performance across both sparse and dense modalities.

Table 22.29: Transfer results on COCO (object detection and instance segmentation) and ADE20K
(semantic segmentation). iBOT outperforms both BEiT and DINO across all evaluated tasks.
(Adapted from [799])

Method APY* AP™X  mIoU (ADE)

BEiT 50.1 43.5 45.8
DINO 50.1 43.4 46.8
iBOT 51.2 44.2 50.0

Summary: These results demonstrate that iBOT’s hybrid design—combining masked image model-
ing with self-distillation—yields representations that are not only semantically rich but also spatially
precise. Unlike MAE, which primarily excels at reconstruction, iBOT produces features that are lin-
early separable and transferable across diverse downstream tasks, even without extensive fine-tuning.
This unification of global and local supervision makes iBOT a crucial stepping stone toward more
general and scalable vision frameworks such as DINOv2.
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Ablation Studies and Component Analysis

To understand which components of iBOT contribute most to its empirical success, the authors
conducted a series of ablation studies. These isolate the effects of patch-level losses, projection head
configurations, masking strategies, and temperature stabilization mechanisms. The results highlight
the architectural decisions critical for learning linearly separable, transferable features.

Effect of the Masked Token Prediction Loss. The patch-level masked image modeling (MIM) loss
is a defining element of iBOT’s design. The following table shows that removing this term leads
to a sharp drop in linear probing performance (from 79.5% to 75.3%), confirming that token-level
supervision provides essential fine-grained semantic guidance beyond global alignment.

Table 22.30: Ablation on patch-level loss. Removing the masked patch loss reduces linear accuracy,
showing that local token supervision is critical for representation quality. (Adapted from [799])

Loss Components Linear (%) Fine-tune (%)
Global + Patch (Full iBOT) 79.5 84.0
Global only ([CLS] distill) 75.3 83.3

Shared vs. Separate Projection Heads. iBOT employs a single projection head shared across
both patch tokens and the global [CLS] token. The following table shows that using separate heads
yields negligible improvement in fine-tune, and a slight decrease in linear probing, and it introduces
additional complexity. Therefore, the shared configuration simplifies training and generalization
without loss of accuracy.

Table 22.31: Ablation on projection heads. Using a shared head across tokens performs on par with
a dual-head setup while maintaining simplicity. (Adapted from [799])

Head Configuration Linear (%) Fine-tune (%)

Shared Head (default) 79.5 84.0
Separate Heads 79.4 84.1

Masking Strategy. Although iBOT [799] briefly mentions blockwise masking, its actual imple-
mentation employs a random masking strategy. For each image, either no masking is applied (50%
probability), enabling pure [CLS] supervision, or a prediction ratio is uniformly sampled from
the range [0.1,0.5] and used to randomly mask patches. This dynamic approach, unlike MAE’s
fixed 75% masking or BEiT’s structured blockwise strategy, stabilizes training under multi-crop
augmentation and balances local and global supervision.

Temperature Sensitivity and Centering. As in DINO, iBOT employs sharpening (low-temperature
softmax) and centering for both global and patch tokens. Teacher temperatures of 0.04 and
momentum-updated running means improve contrastiveness and prevent representational collapse.
These mechanisms are essential for balanced distributional supervision in both prediction streams.
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Summary. These ablations demonstrate that iBOT’s strong transfer performance arises from a
precise combination of design choices: patch-level distillation, architectural parameter sharing,
structured masking, and symmetric stabilization. These components collectively reinforce the
model’s ability to align semantic content across masked and unmasked views, foreshadowing key
techniques later adopted in DINOv2.

iBOT vs. DINO: Paving the Way for DINOvZ2

While iBOT is a direct descendant of DINO, sharing its student—teacher architecture and self-
distillation principles, it introduces a pivotal extension. DINO enforces consistency between the
global [CLS] tokens produced by different views of the same image, aligning them in feature space
via a cross-entropy loss. iBOT generalizes this strategy by extending the distillation target to all
masked patch tokens using a masked image modeling (MIM) loss. This addition allows iBOT to
learn not only holistic image-level semantics, but also fine-grained local features across hundreds
of spatial tokens. Both models rely on similar strong augmentation pipelines, including multi-crop
views, to provide diverse training signals.

In this way, iBOT can be understood as a superset of DINO. It retains the original [CLS]-based
objective of DINO, while augmenting it with a patch-level prediction task that enables richer spatial
understanding. This hybrid formulation proves especially effective for transfer to dense prediction
tasks, such as object detection and semantic segmentation, where local features are critical.

From iBOT to DINOv2. DINOvV2 keeps iBOT’s dual-loss recipe—global [CLS]—level and local
patch—level self-distillation—yet adds a small set of focused upgrades that make the framework scale
stably to hundreds of millions of images and billions of parameters:

* KoLeo Regularizer: a k-NN entropy term on the [CLS] embedding flattens the batch feature
distribution, preventing collapse and boosting instance—retrieval accuracy.

* Sinkhorn-Knopp Centering [72]: the teacher logits are re-centered with a few SK iterations
rather than a simple centering + sharpening. This enforces balanced prototype usage and further
stabilises training.

* Untied Projection Heads: in contrast to iBOT’s single shared head—which the authors of iBOT
showed was best at their scale—DINOV2 allocates separate MLPs to the global and local branches.
Decoupling allows the [CLS] head to specialise in semantic alignment while the patch head
captures spatial detail, yielding consistent gains once model and data are scaled up.

* Multi-Crop Optimisations: positional embeddings are interpolated on-the-fly to support the usual
mix of 224% and 987 crops, and training ends with a short high-resolution phase (518%) using the
“FixRes” trick to sharpen pixel-level features without incurring full-resolution cost.

* LVD-142M Corpus: a deduplicated 142-M image collection supplies the scale and diversity that
earlier ImageNet-based training lacked, reducing reliance on heavy augmentations and improving
cross-domain transfer.

« Efficiency Tweaks: FlashAttention, sequence packing (masking attention across crops), compute-
skipping stochastic depth, FSDP, and knowledge-distillation pre-warming all reduce memory usage
and training time. Crucially, these improvements enable the use of larger batch sizes, which in
turn sharpen the statistical stability of prototype assignments and improve probing accuracy. This
leads to stronger, more linearly separable features—often usable off the shelf without finetuning.
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Collectively, the KoLeo regularizer, Sinkhorn—Knopp (SK) centering, and untied projection heads
address the core pitfalls of self-distillation: feature collapse, prototype imbalance, and representa-
tional bottlenecks. When combined with large-scale data (LVD-142M), high-resolution finetuning,
and a suite of efficiency optimizations (e.g., FlashAttention, stochastic depth, sequence packing),
these changes enable DINOvV2 to scale gracefully and achieve state-of-the-art performance in frozen,
linear, and low-shot settings—often surpassing supervised ViTs of similar size.

While many of these upgrades build on familiar components—KoLeo from SSCD, dual-loss from
iBOT, and data curation from prior work—DINOV2 introduces a novel centering scheme based on
the Sinkhorn—Knopp algorithm. As the only mechanism not previously covered in this chapter, it
forms the focus of the next part. We then proceed to summarize DINOv2’s empirical results and
ablations.

Sinkhorn-Knopp Centering in DINOv2

In self-distillation frameworks like DINOv2, the teacher assigns each image a soft probability
distribution over K learned prototypes. However, if these assignments become too concentrated—e.g.,
most images are mapped to a small subset of prototypes—the model risks representational collapse:
features lose diversity, and learning stagnates. This imbalance is especially problematic in large-scale
settings, where uniform usage of model capacity is critical.

Intuition. The goal of centering in DINOV2 is to ensure that:

1. No prototype dominates the batch—each prototype is used roughly equally.
2. Each image maintains uncertainty—its assignment is not overly confident.

In other words, we want a batch-level distribution of prototype assignments that is balanced and
high-entropy. Such diversity prevents collapse and improves representation learning. While DINO
and iBOT achieved this by subtracting an EMA-based center and applying sharpening, DINOv2
adopts a more principled, batch-local alternative: Sinkhorn—Knopp normalization.

Sinkhorn-Knopp Algorithm. Let z € RX*2 denote the teacher’s logits assigning B image features
to K learned prototypes. DINOv2 transforms these raw logits into a soft, balanced assignment matrix
0 € RE*B a5 follows:

Step 1: Affinity Matrix Construction. The teacher’s logits z € R€*Z which measure the sim-
ilarity between each image and prototype, are sharpened by a temperature parameter T > 0 and
exponentiated to form the affinity matrix A:

A;j = exp (%) .

This transformation amplifies high-confidence predictions when 7 is small, making the matrix entries
more peaked. However, it is important to emphasize that this is nor a softmax: unlike softmax, the
rows (or columns) of A are not normalized to sum to one. As such, A € REXB contains unnormalized,
non-negative scores reflecting the raw affinity between images and prototypes.

Why is this distinction important? A softmax would normalize over one axis—typically columns—causing
the output to behave like a probability distribution for each sample. But this ignores the balance
across prototypes: some prototypes might dominate the entire batch if their logits are consistently
high. This can lead to prototype collapse, where only a few prototypes are used during training.
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Step 2: Sinkhorn—-Knopp Rescaling. To transform the unnormalized affinity matrix A € IR{fXB into
a balanced assignment matrix Q, DINOv2 applies the Sinkhorn—Knopp algorithm, which rescales
both rows and columns to enforce specific marginal constraints:

O = diag(u) A diag(v),

where u € ]RI;) and v € Rio are scaling vectors, and diag(-) constructs a diagonal matrix from its
argument.

This transformation adjusts:

* Rows: Multiplication by diag(u) on the left scales each row i of A by u;,

* Columns: Multiplication by diag(v) on the right scales each column j of A by v;.
The effect is to redistribute the raw affinity mass in A, without altering the internal ranking of logits
within each row or column. The goal is to find # and v such that the resulting matrix Q satisfies the
desired marginal constraints:

Qlp = %IK (equal total mass per prototype), Q'1x =1z (valid distribution per image).

How the Rescaling Works. Rather than solving these coupled equations for « and v in closed form,
the Sinkhorn—Knopp algorithm computes them through fixed-point iteration:

initialize: u® = L1g, v =1,
repeat: vt = (ATu(t))il,

-1
1 1 1
L) — (Av<f+ )) 4,

where division and inversion are element-wise. Each update enforces one marginal exactly while
slightly perturbing the other. Despite this tug-of-war, the process converges rapidly: after only 3-5
iterations, the residual marginal error is negligible (typically < 1073).

Why This Works. The final matrix Q = diag(u)A diag(v) preserves the shape and non-negativity of
A, but scales it such that:

» Each prototype receives the same total assignment mass across the batch (row-balanced),

» Each sample’s assignment forms a valid probability distribution (column-normalized).
This procedure is differentiable, stateless, and highly parallelizable.
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Sinkhorn-Knopp Algorithm (NumPy Pseudocode)

The Sinkhorn—Knopp algorithm transforms an unnormalized affinity matrix A € RX*8 into a balanced
assignment matrix Q that satisfies:

* Column-normalization: Each sample is softly assigned, so each column sums to 1.

* Row-equipartition: Each prototype is used equally across the batch, so each row sums to %
This is accomplished by solving for scaling vectors u € RX and v € R? such that:

QO = diag(u) - A - diag(v),
with updates alternating between enforcing row and column constraints.
import numpy as np

1
2

3 def sinkhorn_knopp(logits: np.ndarray,
4 tau: float = 0.05,

5 n_iter: int = 3,

6 eps: float = le-9) -> np.ndarray:
7

8

9

mnnn

Sinkhorn-Knopp matriz balancing for prototype assignments.

10 Args:

11 logits : (K, B) teacher logits (K = prototypes, B = samples)

12 tau : temperature for sharpening (smaller -> peakier)

13 n_iter : number of Sinkhorn iterations (3-5 usually sufficient)
14 eps : small constant for numerical stability

15

16 Returns:

17 § : (K, B) assignment matriz with row sums approz 1/K

18 and column sums approx 1

19 mnimnin

20 K, B = logits.shape

21

2 # Step 1: Compute affinity matriz 4 (unnormalized)

23 A = np.exp(logits / tau)

24

25 # Step 2: Initialize scaling vectors

26 u = np.ones((K, 1), dtype=A.dtype) / K # target row mass

27 v = np.ones((B, 1), dtype=A.dtype) # target column mass

28

29 # Step 3: Iterative normalization

30 for _ in range(n_iter):

31 v=10/(A.T @u+ eps) # column update (per sample)
32 u= (1.0 /K) / (AQGv + eps) # row update (equipartition)
33

34 # Step /: Reconstruct § = diag(u) @ 4 @ diag(v)

35 Q= (ux4d) *v.T # NumPy broadcasting

36

37 # Optional: normalize { to sum to 1

38 Q /= Q.sum()

40 return Q
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Explanation and DINOv2 Motivation

* Step 1: Affinity Construction. The teacher logits are sharpened by temperature 7 and exponenti-
ated. This yields A € RE*8, where A;; = exp(z;j/7) encodes prototype—sample affinity. Unlike
softmax, this does not normalize across rows or columns.

» Step 2: Scaling Initialization. Vectors u and v are initialized to match the target row and column
marginals. In DINOv2, rows should sum to % (equal prototype usage), while columns should sum
to 1 (each image is fully assigned).

» Step 3: Iterative Balancing. Updates alternate:

1 1/K
V= , u= ,
Alu+e Av+€

which adjusts v to ensure column sums equal 1 and u to enforce row sums of % The process
converges quickly (3-5 steps suffice).
* Step 4: Matrix Scaling. The final assignment matrix Q = diag(u) - A - diag(v) is assembled once
the updates converge. NumPy’s broadcasting handles this efficiently via (u * A) * v.T.
This doubly-normalized structure prevents prototype collapse by guaranteeing uniform prototype
participation and valid image-level supervision. Unlike EMA centering, this method is purely
batch-local, stateless, and fully differentiable—making it ideal for large-scale training as used in
DINOV2.

Toy Example: The Fair Project Manager

To build intuition for Sinkhorn—Knopp centering, consider a project manager assigning tasks to a team
of specialized workers. This mirrors the self-supervised assignment problem in DINOv2: allocating
image embeddings (tasks) to prototype vectors (workers) in a fair, balanced manner. Without proper
constraints, greedy matching might overload generalists and underuse specialists—Ileading to the
very collapse Sinkhorn centering aims to prevent.

The Scenario. We have K = 3 workers:

* Alice (A): a frontend design expert.

* Bob (B): a backend logic specialist.

* Charlie (C): a versatile full-stack generalist.

A batch of B = 4 tasks arrives:

* T1: Create UI Mockup.

* T2: Implement Database API.

* T3: Debug Login Flow (mixed).
* T4: Refactor CSS.

Raw Affinity Scores. The manager scores how well each worker fits each task, producing an
unnormalized affinity matrix A € R3*4:

10 1 59
A=1|1 10 6 1
7 8 9 8

Rows index workers and columns index tasks; a higher value indicates stronger compatibility. For
example, Alice is well-suited for frontend-related tasks (T1, T4), Bob excels at backend (T2), and
Charlie scores decently across the board.
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The Problem. A naive greedy assignment—giving each task to the worker with the highest
score—would result in Charlie taking most tasks, starving Alice and Bob of work. This is analogous
to prototype collapse, where only a few prototypes are responsible for most of the supervision signal,
degrading representational diversity.

The Goal. We want a soft assignment matrix Q € R*>** such that:

* Every task is fully assigned: Each column sums to 1.

* Every worker gets equal load: Each row sums to % (i.e., 4 tasks divided equally among 3
workers).

Such a matrix is approximately doubly stochastic, but scaled to reflect our desired marginals.

Applying Sinkhorn—Knopp Centering. The algorithm proceeds in three main steps:

1. Sharpen the affinities using a temperature 7, and exponentiate:

(%)
K =exp 7/

2. Initialize row and column scaling vectors u € R3,v e R*.
3. Alternate normalization:

1
< ——— (normalize columns
Y KTu +& ( )
1/3
/ (normalize rows)
Kv+¢

After a few iterations, the result converges to:
QO = diag(u) - K - diag(v).

Result. A typical output might be:

0.60 0.13 0.15 0.45
0~ (0.10 0.70 0.33 0.20(, rowsums~ 1.33, columnsums=1.
0.30 0.17 0.52 0.35

This matrix shows that:

¢ Alice receives most of T1 and T4 (frontend).

e Bob dominates T2 (backend).

* Charlie helps with all tasks, especially the mixed T3.

Each worker handles ~ % tasks in total, and every task is fully distributed.

Why This Works. The Sinkhorn solution ensures:

* Every task is covered: All task columns sum to 1.

* No one is overloaded: Row sums are balanced across workers.

* Preferences are respected: Assignments remain proportional to the original affinities.

It yields the most unbiased, entropy-regularized allocation compatible with both local preferences
and global fairness constraints.
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Connection to DINOvZ2

This fair allocation scenario maps directly onto the representation learning setup in DINOv2. Each

part of the toy example has a precise analogue in the self-supervised learning framework:

* Workers — Prototypes — learnable vectors representing semantic regions of feature space.

» Tasks — Image embeddings — typically the [CLS] token of a Vision Transformer computed from
each image in the batch.

» Affinity scores A — Teacher logits — dot products between teacher embeddings and prototypes,
representing how well each image matches each prototype.

* Assignment matrix Q — Soft targets — the balanced probability distributions used to supervise
the student network.

In the original DINO framework, each image embedding is treated independently: the teacher logits
for each image are normalized via a softmax, yielding a local assignment distribution. While simple,
this can lead to prototype collapse—where only a few generic prototypes are favored and others are
ignored, similar to always assigning tasks to a single overqualified worker (like Charlie).

DINOV2 replaces this with a global, batch-wise assignment using the Sinkhorn—Knopp algorithm.
Instead of computing a distribution per image in isolation, it operates on the entire K x B matrix of
teacher logits—where K is the number of prototypes and B the batch size.

The Sinkhorn iterations compute scaling vectors u and v such that the resulting matrix

0 — diag(u) - exp (i) - diag(v)

satisfies two critical constraints:

* Column-normalization: Each image embedding (typically the [CLS] token) is assigned to all
prototypes via a soft probability distribution whose entries sum to 1. This ensures that each image
produces a valid supervision signal, and that no supervision mass is lost or duplicated.

* Row-equipartition: Each prototype receives exactly % of the total assignment mass, enforcing that
prototypes are used evenly across the batch—preventing collapse and encouraging specialization.

Just like the project manager who must assign tasks while ensuring each worker gets a fair workload
and each task is fully handled, DINOv2 uses Sinkhorn centering to jointly optimize assignment
quality and diversity. This global balancing acts as a regularizer that improves coverage of the feature
space, stabilizes training at scale, and encourages the emergence of rich, semantically structured
representations—all without introducing momentum encoders or memory banks.

In summary, Sinkhorn centering is DINOv2’s principled solution to the core problem of contrastive
self-supervision: how to prevent shortcut solutions (like assigning all images to a few dominant
prototypes) while still respecting the structure learned from the teacher network’s representations.
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Linear Evaluation on ImageNet and Comparison to Prior Work

To evaluate the representational strength of DINOv2, the authors conduct a standard linear evaluation
on ImageNet-1k using frozen pretrained features. The following table compares DINOv2 to prior
self-supervised and weakly supervised methods under consistent resolution and evaluation settings.
Each model is trained using its respective backbone and dataset, without finetuning.

DINOV2 achieves state-of-the-art top-1 accuracy among self-supervised methods across all model
scales. Notably, a ViT-g/14 pretrained with DINOv2 on LVD-142M achieves 86.5% top-1 accuracy
with a linear classifier and 83.5% with a k-NN classifier—surpassing earlier methods such as iBOT,
MAE, and even some large-scale weakly supervised models like OpenCLIP and SWAG.

Table 22.32: Linear evaluation and k-NN classification accuracy on ImageNet-1k. All methods use
frozen features. DINOv2 outperforms prior self-supervised models and approaches the performance
of large-scale weakly supervised models (Adapted from [463]).

Method Architecture Data Text Sup. k-NN (%) Linear (%) Real (%)

Weakly Supervised
CLIP ViT-L/14 WIT-400M v 79.8 84.3 88.1
CLIP ViT-L/14%%  WIT-400M v 80.5 85.3 88.8
SWAG ViT-H/14 IG-3.6B v 82.6 85.7 88.7
OpenCLIP  ViT-H/14 LAION-2B v 81.7 84.4 88.4
OpenCLIP  ViT-G/14 LAION-2B v 83.2 86.2 89.4
EVA-CLIP ViT-g/14 custom* v 83.5 86.4 89.3

Self-Supervised
MAE ViT-H/14 INet-1k X 49.4 76.6 83.3
DINO ViT-S/8 INet-1k X 78.6 79.2 85.5
MSN ViT-L/7 INet-1k X 79.2 80.7 86.0
EsViT Swin-B/W14 INet-1k X 79.4 81.3 87.0
Mugs ViT-L/16 INet-1k X 80.2 82.1 86.9
iBOT ViT-L/16 INet-22k X 72.9 82.3 87.5
DINOvV2 ViT-S/14 LVD-142M X 79.0 81.1 86.6
DINOv2 ViT-B/14 LVD-142M X 82.1 84.5 88.3
DINOvV2 ViT-L/14 LVD-142M X 83.5 86.3 89.5
DINOv2 ViT-g/14 LVD-142M X 83.5 86.5 89.6

We can clearly see that the combination of patch-level and global objectives, along with improvements
such as the KoLeo regularizer, Sinkhorn-normalized teacher outputs, and a large curated training
corpus (LVD-142M), enables DINOvV2 to match or exceed the performance of prior self-supervised
methods—especially in frozen, plug-and-play transfer setups.
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Ablation of Design Modifications from iBOT to DINOv2

To better understand which architectural and training refinements most contributed to DINOv2’s
performance, the authors conducted a controlled ablation starting from the iBOT baseline. Each
row in the following table reflects the incremental addition of a component, measuring its effect on
frozen k-NN and linear probe accuracy using a ViT-L/14 backbone pretrained on ImageNet-22k.
These experiments were run under equal compute budgets and consistent evaluation settings.

Table 22.33: Stepwise training ablation from iBOT to DINOv2 using ViT-L/14 pretrained on
ImageNet-22k. Colored deltas show improvement (green) or degradation (red) from the previous
step (adapted from [463]).

Modification k-NN (%) Linear (%)
iBOT baseline 72.9 82.3

+ Our reproduction setup 74.5 1.6 83.2 09
+ LayerScale, Stochastic Depth 75.4 09 82.0 12
+ 128k prototypes 76.6 12 81.9 o
+ KoLeo regularizer 78.9 23 82.5 06)
+ SwiGLU FFN 78.7 o2 83.1 s
+ Patch size 14 78.9 02 83.5 o4
+ Teacher momentum 0.994 79.4 os) 83.6 o
+ Warm-up schedule tweaks 80.5 ¢ 83.8 02
+ Batch size 3k 81.7 12 84.7 09
+ Sinkhorn—Knopp normalization 81.7 o 84.7 =
+ Untied heads = DINOv2 82.0 03 84.5 o>

Several key findings emerge from this analysis:

* Top k-NN gains come from: increasing the prototype count to 128k (+1.2%), introducing the
KoLeo loss (+2.3%), and increasing the batch size to 3k (+1.2%).

* Top linear probe gains are driven by: SwiGLU feedforward layers (+0.6%), KoLeo regular-
ization (+0.6%), and large batch training (+0.9%).

* LayerScale and Stochastic Depth hurt linear accuracy (—1.2%) but improve training stability
at scale, avoiding NaN losses.

* Sinkhorn-Knopp centering helps with prototype balancing but does not directly improve
probe metrics. Its benefits are more pronounced in stability and representation diversity.

* Untying the student and teacher projection heads slightly improves k-NN (+0.3%) while
slightly decreasing linear performance (—0.2%).
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Ablation of Pretraining Data: LVD-142M vs ImageNet-22k
While prior self-supervised methods like iBOT pretrain on ImageNet-22k, DINOv2 introduces a
more scalable and generalizable alternative: the LVD-142M dataset. This dataset is large (142
million images), deduplicated, filtered for visual quality, and domain-balanced. The authors compare
pretraining on LVD-142M to three other setups:

» ImageNet-22k, used by iBOT.

* INet-22k \ INet-1k, to test exclusion of overlapping downstream labels.

¢ Uncurated web-scale data, to evaluate the effect of raw, unfiltered data.

The following table reports frozen linear probing results across seven downstream benchmarks. All
models use the same ViT-g/14 architecture and are trained for the same number of iterations without
high-resolution adaptation.

Table 22.34: Comparison of different pretraining data sources. LVD-142M leads to stronger
generalization across diverse tasks while maintaining high ImageNet-1k accuracy (Adapted from
[463]).

Pretraining Data INet-1k INet-A ADE20k Oxford-M iNatl8 iNat21 Places205

ImageNet-22k 85.9 73.5 46.6 62.5 81.1 85.6 67.0
INet-22k \ INet-1k ~ 85.3 70.3 46.2 58.7 80.1 85.1 66.5
Uncurated 142M 83.3 594 48.5 543 68.0 76.4 67.2
LVD-142M 85.8 73.9 47.7 64.6 82.3 86.4 67.6

The results highlight several key findings:
* LVD-142M matches or exceeds ImageNet-22k on INet-1k and INet-A benchmarks.
* It substantially outperforms uncurated data on natural domain tasks (iNat2018, iNat2021)
and semantic segmentation (ADE20k).
* Removing INet-1k classes from ImageNet-22k slightly hurts performance, suggesting that
overlap is helpful in the standard protocol.

In summary, large-scale, curated, and domain-diverse pretraining data like LVD-142M proves critical
for learning transferable representations under the frozen-feature regime.
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Effectiveness of Knowledge Distillation from DINOv2

Although DINOV2 achieves state-of-the-art results using large-scale Vision Transformers such as
ViT-g/14, these models are computationally expensive to deploy in practice. To address this, the
authors investigate whether a smaller model—such as ViT-L/14—can inherit the representational
quality of a frozen DINOV2 teacher through self-supervised knowledge distillation.

In this setup, a ViT-g/14 DINOv2 model serves as the frozen teacher. A ViT-L/14 student is then
trained using the same self-distillation objective, aligning its patch and global tokens to those of the
teacher without access to labeled data.

The following figure shows that the distilled ViT-L/14 student:
* Outperforms the same model trained from scratch across all benchmarks.
* Sometimes even surpasses the teacher model itself (ViT-g/14) on certain downstream tasks.
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Figure 22.56: Effectiveness of knowledge distillation from DINOv2. A ViT-L/14 student distilled
from a frozen ViT-g/14 teacher outperforms the same architecture trained from scratch. On some
benchmarks, it even matches or exceeds the teacher’s own performance (Adapted from [463]).

These results confirm that the inductive biases and feature geometry learned by a larger DINOv?2
model can be successfully transferred to a smaller student. In practice, this provides an efficient path
to deployable self-supervised models that maintain high accuracy while reducing inference cost and
memory requirements.
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Transfer to Diverse Visual Tasks
Beyond classification, DINOv2 exhibits strong generalization across a range of dense prediction and
metric-based tasks—despite being trained without labels and without task-specific adaptations.

Semantic and Instance Segmentation. DINOv?2 achieves competitive performance on benchmarks
such as ADE20K and COCO. When using frozen features followed by linear or shallow heads, ViT-
B/14 and ViT-L/14 backbones match or exceed methods like MAE and iBOT on both segmentation
accuracy (mloU) and detection precision (AP). These results validate the spatial expressivity of
DINOV2 features, enabled by its patch-level self-distillation.

Depth Estimation. When evaluated on indoor datasets such as NYUv2, DINOv2 features yield
accurate monocular depth predictions using only linear regression from frozen embeddings. This
suggests that the model encodes strong geometric priors and scene structure, despite never being
trained on 3D data.

Image Retrieval. Without task-specific finetuning, DINOv2 achieves state-of-the-art zero-shot
retrieval results across multiple datasets. Its features exhibit high instance-level precision under
cosine or Euclidean similarity, demonstrating robustness to intra-class variation and viewpoint shifts.

Fine-Grained Classification. On datasets such as Oxford Pets and CUB-200, DINOv2 achieves
strong accuracy using frozen backbones with linear classifiers. These results indicate that the model
captures detailed attribute-level signals relevant for fine-grained recognition.

Summary. These results underscore DINOv2’s versatility: a single frozen backbone trained on
unlabeled images yields linearly decodable features spanning global semantics and local spatial cues.
Yet, as models and datasets continue to scale, new challenges emerge—most notably the degradation
of dense patch-level features and the need for resolution robustness. These limitations motivate
DINOv3, which extends DINOv2 with stability-oriented innovations such as Gram anchoring,
high-resolution adaptation, and efficient multi-student distillation, while preserving strong global
transferability.



1590 Chapter 22. Lecture 22: Self-Supervised Learning

DINOv3: Quick Overview

Motivation

DINOV2 22.4.6 introduced a strong self-distillation recipe: ViTs trained on unlabeled images can
be used as frozen backbones whose features are linearly decodable for both global and local tasks.
When researchers attempted to scale this recipe—training new models from scratch with larger ViTs,
broader curated corpora, and longer teacher—student schedules—three limits consistently surfaced
and constrained dense transfer in practice:

* Dense feature degradation. In extended self-distillation runs, the global (CLS) embedding
continues to improve for image-level classification, but patch-level tokens gradually lose
semantic organization. Inter-patch similarities and attention align less reliably with real object
boundaries or parts. As a result, a backbone that excels at classification provides weaker
frozen features for segmentation, detection, or correspondence. This drift originates in the
training dynamics and directly reduces the backbone’s utility for dense tasks.

* Resolution sensitivity. Models trained predominantly at a fixed resolution (e.g., 224) with
standard resize—crop internalize a positional geometry and token layout tuned to that scale.
When the same backbone is applied to larger images (384—768 px) or unusual aspect ratios,
spatial calibration slips and local consistency degrades. Global probes remain strong, but
dense predictions suffer.

* Training efficiency. Producing a full family of deployable backbones by training each student
independently is compute-heavy. Long schedules further intensify feature drift and resolution
brittleness. A recipe that can produce multiple high-quality backbones in one pass, while
preserving dense semantics and improving resolution transfer, is critical for making frozen
towers broadly reusable.

DINOvV3 is motivated by addressing these shortcomings: stabilizing patch-level semantics during

long training, ensuring that frozen encoders generalize across resolutions and aspect ratios, and
amortizing pretraining costs while delivering a versatile suite of vision backbones.

What DINOv3 changes
DINOv3 updates the DINOvV2 recipe with targeted mechanisms that tackle these limits while retaining
the simplicity of teacher—student self-distillation.

* Relational stabilization. A Gram anchoring loss matches student and teacher pairwise rela-
tions among patch embeddings by aligning their Gram matrices. This preserves neighborhood
structure and inter-patch similarities, counteracting late-stage drift and keeping object- and
part-level cues coherent in the frozen dense features.

* Resolution robustness. A short high-resolution adaptation phase with positional-encoding
jitter re-calibrates token geometry for larger inputs and varied aspect ratios. The same frozen
backbone then maintains spatial alignment at higher resolutions common in detection and
segmentation without sacrificing global recognition.

* Efficient multi-student distillation. One strong teacher supervises multiple students of
different capacities in parallel, sharing the expensive teacher forward pass. This amortizes
compute and produces a family of backbones—from lightweight to very large—with consistent
feature quality for different latency and memory budgets.

* Expanded, curated data regime. Beyond raw scale, stronger curation and balance broaden
concept coverage and stabilize patch-level statistics. This improves both global transfer and
the spatial consistency demanded by dense tasks across diverse domains.
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Position in the SSL landscape
Building on MoCo, BYOL, and DINOV2 [69, 188, 211, 463], DINOv3 pushes three fronts. Dense
patch-level learning. Unlike purely global embedding approaches, it supervises and stabilizes per-
token structure, enabling strong dense prediction with lightweight heads. Scalability. Larger ViTs
trained on vastly larger, better-curated corpora remain stable, yielding robust features across domains.
Universality. Frozen representations are competitive with supervised baselines on classification,
segmentation, detection, depth, and retrieval, reducing reliance on labeled data.

DINOV3 is a scaled, universal vision backbone that stabilizes what matters for dense transfer.
By preserving inter-patch structure, re-aligning for higher resolutions, distilling many students
efficiently, and training on a broader curated corpus, it retains DINOv2’s global strengths while
delivering substantially more reliable local features. The next part quantifies these effects relative to
22.4.6 and ablates the contribution of each component.

Practical gains

For practitioners, DINOv3 provides a stronger and more universal foundation than earlier self-
supervised backbones. It is trained at unprecedented scale—up to 7B-parameter ViTs on 1.7B
carefully curated images—where the curation pipeline filters out duplicates and low-quality samples
while balancing semantic coverage. This results in frozen encoders with both robust global features
and stable dense representations. Compared to 22.4.6, DINOv3 improves linear probing on ImageNet
by several points, narrows the gap with fully supervised baselines, and yields consistent gains on
dense tasks, e.g., +2.4 mloU on ADE20K semantic segmentation and +1.8 mAP on COCO detection.
These improvements transfer smoothly across resolutions and domains, making the features more
reliable for real-world inputs. In addition, a family of distilled variants is released, offering models
from lightweight to billion-scale with aligned feature geometry. In practice, DINOv3 is not just
bigger—it is more curated, more stable, and more versatile, giving practitioners a dependable starting
point for classification, detection, segmentation, retrieval, or depth estimation pipelines.

From Self-Distillation to Clustering-Based Objectives

The self-supervised methods explored thus far—including BYOL, SimSiam, DINO, iBOT, DINOv2
and DINOV3, all belong to the family of self-distillation approaches. These frameworks rely on
predictive objectives: the model learns to align the representations of differently augmented views
of the same image, often using momentum encoders, stop-gradient mechanisms, depending mostly
on asymmetries to progress learning. Whether operating at the level of global features (e.g., CLS
tokens) or local patch embeddings, these methods implicitly structure the representation space by
enforcing consistency across views.

Prediction is not the only route to self-supervision. A distinct line of research instead uses clustering-
based objectives, which partition the feature space into discrete prototype assignments so that similar
images group together. To avoid collapse onto a few prototypes, these methods enforce constraints
such as entropy regularization or balanced assignments. A central example is SWAV (Swapped
Assignments between Views), which performs online prototype assignment for each view and
enforces cross-view consistency by swapping assignments. Balanced prototype usage is ensured
through Sinkhorn—Knopp centering, a mechanism later echoed in DINOv2. SwAV thus bridges
contrastive learning and unsupervised clustering, providing an alternative path toward semantically
structured representations.
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Clustering Methods

SwAV: Online Clustering via Swapped Assignments

From Contrastive Bottlenecks to Clustering-Based Self-Supervision

In the early evolution of self-supervised learning, contrastive methods such as SimCLR and MoCo
achieved strong performance by optimizing for instance-level discrimination. These methods
learn features by attracting embeddings from augmented views of the same image while repelling
embeddings of different images, typically using a contrastive loss such as InfoNCE. However, this
approach incurs a computational bottleneck: it requires either extremely large batch sizes (e.g.,
4096+ in SimCLR) or auxiliary structures such as memory queues (as in MoCo) to sample sufficient
negatives.

SwAV (Swapping Assignments between Views) [72] proposes a fundamentally different formu-
lation. Instead of comparing embeddings pairwise, SWAV performs online clustering by assigning
features to a set of learned prototypes and enforcing consistency of these assignments across different
augmentations of the same image. This eliminates the need for negatives while retaining the align-
ment pressure of contrastive learning. Crucially, the model is trained to predict the cluster assignment
of one view using the features from another—a formulation known as swapped prediction.

SwAV thus reinterprets contrastive learning as a form of clustering consistency, where the
supervision signal is not continuous similarity but rather discrete soft assignments. Features are
grouped online using the Sinkhorn-Knopp algorithm, which computes entropy-regularized transport
plans to ensure balanced and diverse assignments.
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Figure 22.57: Overview of SWAV’s online clustering strategy. Each augmented view is projected to
a shared prototype space. The model predicts the cluster assignment of one view using features from
another, using balanced soft assignments computed with the Sinkhorn-Knopp algorithm. (Adapted
from [72])

Key Innovations in SWAV:

* Online clustering with balanced assignments: Instead of relying on offline k-means, SWAV
performs batch-wise clustering during training by computing soft prototype assignments via
Sinkhorn—Knopp. This ensures that all prototypes are equally used and prevents collapse.

* Swapped prediction loss: The model predicts the cluster assignment of one view using features
from another, promoting cross-view consistency at the prototype level.
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* Multi-crop augmentation: SwAV introduces multiple resolutions of image crops (e.g., 2 global +
6 local), increasing data diversity and boosting learning efficiency without enlarging the batch size.
In the following parts, we describe SwAV’s architectural design, its clustering-based objective, the
Sinkhorn-Knopp assignment procedure, and its empirical advantages over the traditional contrastive
methods.

Architecture and Training Pipeline

SwAV introduces a clustering-based approach to self-supervised learning that forgoes instance-
level comparisons and negative pairs. Instead, it learns semantically meaningful representations by
predicting the cluster assignment (or code) of one view from the embedding of another—a strategy
known as swapped prediction. This framework builds on a standard encoder—projector backbone
and is driven by three key components: multi-crop augmentation, online clustering using learnable
prototypes, and balanced code assignment via entropy-regularized optimal transport.

Multi-crop Augmentation and Swapped Prediction
Each training image is augmented into multiple crops of varying scale:

* Two global views x;, ,x, € R?24%224 capturing full-scene semantics;

» Several local views x;,,x,,,--- € R%*% capturing fine-grained details.
All views are processed by a shared encoder fy, typically a ResNet-50 or ResNet-200, followed by a
two-layer MLP projector g4. This yields embeddings z € RP, with D = 128, that are normalized to
lie on the unit hypersphere:

= 8o(folr)
g (fo(x))ll2

Each embedding computes a softmax prediction p € AX over a set of shared learnable prototypes
C= [Cl,...,CK] € RExD:

®) _ exp(z'cr/7)
Yi—rexp(zlep /1)’

where 7 is a temperature parameter. These predictions are produced by all crops—both global and
local.

p

Code generation via balanced Sinkhorn assignment. As in DINOv2’s centering mechanism
(see 22.4.6), SWAV uses the Sinkhorn—Knopp algorithm to convert unnormalized dot-product scores
between embeddings and prototypes into a balanced assignment matrix. Specifically, only the
two global views per image contribute target codes. Let Z € RP*B denote the matrix of B global
view embeddings and C € RX*P the prototype matrix. The dot products § = CZ € RK*8 serve as
unnormalized affinity scores between views and prototypes.

These scores are first sharpened and exponentiated to form a nonnegative affinity matrix:

CZ|;;
Aij:CXP<[T]U>, for1<i<K,1<j<B.
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Unlike softmax, this operation does not normalize rows or columns; instead, SWAV applies
Sinkhorn-Knopp to produce a balanced assignment Q € RX*B of the form:

O = diag(u) A diag(v),

where u € RI§0 and v € Rio are scaling vectors computed iteratively. After just a few iterations
(typically 3-5), this procedure yields a matrix that satisfies the marginal constraints:

0l1p = 21k, 01 = 315.

These constraints guarantee:

» Each prototype is used equally across the batch.

* Each sample receives a valid probability distribution over the K prototypes.
The columns of Q thus define the target codes g, € AX for each global view, which are treated as
fixed during training and used in the swapped prediction loss.

This balanced assignment strategy—identical in spirit to DINOv2’s centering approach—prevents
collapse by enforcing uniform prototype utilization and ensures diverse, high-entropy targets through-
out training. Because the prototype matrix C is trained jointly with the encoder, SWAV learns to
maintain semantically meaningful clusters in a fully online and differentiable fashion.

Training Objective and Prototype Updates
SwAV’s core learning signal is derived from the swapped prediction loss: each view z; (whether
global or local) is trained to match the target code g, of a different global view from the same image:

K
zq5) == Y ¢ log pi*.
k=1

Each global crop predicts the other’s code, and local crops are split between them. The loss is
symmetrized and averaged across all eligible view—target pairs in the batch.

Because the codes ¢; are treated as fixed labels (no gradient flows into them), the model is
forced to adjust both its encoder and prototypes to improve predictive accuracy. In particular, the
gradient signal updates the prototype matrix C, which is implemented as a linear layer without bias
or activation. This allows the cluster centers to adapt continuously to the evolving embedding space.

Stability and scalability. Two design decisions prevent degenerate solutions:

* The balanced assignment constraint ensures that all prototypes are used uniformly within each

batch.

* A stop-gradient on the targets g, prevents prototypes from simply drifting to match predictions.
Additionally, the prototype weights are frozen for the first epoch to give embeddings time to spread
out before clustering begins. The Sinkhorn step is applied only to global crops, so adding more local
views increases gradient signal at negligible additional cost.
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Figure 22.58: Swapped prediction in SWAV. Two augmented views x; and x; yield embeddings
zs and z;. A soft cluster code g, is computed from z; using Sinkhorn—Knopp, while z; is trained to
match g, via softmax over the prototypes. Swapping roles symmetrizes the loss (Adapted from [72]).

Summary
SwAV’s architecture learns representations using:
* Soft prediction: Every crop x yields an embedding z that predicts a probability distribution p
over the prototype set C via dot-product similarity.
* Balanced code generation: Global crops generate target codes g, through Sinkhorn-based
optimal transport, enforcing uniform use of prototypes.
* Swapped prediction loss: The model is trained to align the prediction p, of one view to the
code ¢, of another, encouraging semantic consistency across views.
This design eliminates the need for negatives, momentum encoders, or memory banks, while
achieving efficient, scalable, and semantically meaningful feature learning with a standard CNN
backbone.

Empirical Results and Key Findings

SwAV introduced a new paradigm for self-supervised learning by coupling multi-crop augmentation
with online clustering and swapped prediction. This design proved empirically successful across
both standard linear evaluation and a wide range of downstream transfer tasks, offering strong
performance while remaining efficient and scalable.
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Benchmarking on ImageNet

SwAV was the first self-supervised method to exceed 75% top-1 accuracy on ImageNet using a
standard ResNet-50 under the linear evaluation protocol. With 75.3% accuracy after 800 epochs [72],
it significantly outperformed earlier approaches such as SImCLR (69.3%), MoCo v2 (71.1%), and
BYOL (74.3%). This result brought SWAV within 1.2% of supervised pretraining (76.5%)—a major
milestone at the time. Scaling to a ResNet-50-w5 architecture pushes accuracy even further, reaching
78.5%.

Transfer to Downstream Tasks
SwAV also excels on transfer benchmarks. On VOC07+12 detection (APs), it surpasses supervised
training by over 1 point (82.6 vs. 81.3). On COCO, it improves over the supervised baseline in both
object detection (41.6 vs. 39.7 AP) and instance segmentation (37.8 vs. 35.9 mask AP). These results
show that SWAV’s representations generalize better across tasks, benefiting from their semantic
grounding and scale invariance.

Training Efficiency and Accessibility

A defining strength of SWAV is its performance under constrained settings. While SimCLR required
extremely large batch sizes (e.g., 4096), SWAV achieves competitive accuracy (74.3%) with a batch
size of just 256 and training for 400 epochs. This efficiency stems from its design: SWAV avoids
the need for memory banks, negative pairs, or momentum encoders, relying instead on multi-view
prediction with a small set of balanced targets.

Ablation Highlights
SwAV’s design was supported by extensive ablation studies [72], which revealed the distinct
contribution of each architectural component:

* Multi-crop augmentation was the most impactful addition. When training a ResNet-50
for 200 epochs on ImageNet without a feature queue, adding 6 low-resolution local crops
(96 x 96) to the standard 2 global crops (224 x 224) improved linear accuracy from 66.2%
to 70.7%—a gain of +4.5%. This strategy multiplies training signal without significantly
increasing compute or memory, and was later adopted by DINO and iBOT.

* Prototype count showed strong robustness. Varying the number of prototypes from K = 3,000
to K = 15,000 had negligible impact on final accuracy (< 0.3%), provided Sinkhorn balancing
was applied. The method remained effective as long as the prototype set was sufficiently
overcomplete relative to batch size.

* Sinkhorn-Knopp assignment proved essential: replacing Sinkhorn with unbalanced soft-
max assignments caused significant degradation—dropping top-1 accuracy by over 3%—
highlighting the importance of balanced code usage to avoid prototype collapse.

Impact and Legacy

SwAV demonstrated that online clustering with learnable prototypes, when combined with scale-
diverse views and efficient balancing, could rival and even surpass contrastive learning. Its in-
novations reduced computational overhead, improved convergence, and enabled strong transfer
performance—all within a streamlined ResNet-based pipeline. These ideas laid critical groundwork
for the next generation of self-supervised methods, including DINO and iBOT, and remain influential
in the field.
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Feature Decorrelation Methods
Barlow Twins: Feature Decorrelation without Negatives

Barlow Twins [751] is a simple yet effective self-supervised method that encourages representations
to be simultaneously invariant to augmentations and decorrelated across features. It belongs
to a broader class of decorrelation-based self-supervised learning approaches that aim to avoid
representational collapse without relying on contrastive loss, negative pairs, or momentum encoders.

The method is named after neuroscientist Horace Barlow, whose redundancy reduction hypothesis
posits that sensory systems learn to represent stimuli in a compact, non-redundant way. In this
spirit, Barlow Twins learns representations that capture unique, non-overlapping information in each
dimension—maximizing utility for downstream tasks.
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Figure 22.59: Overview of Barlow Twins. Two augmented views of the same image are processed
through a shared encoder and projector. The method computes a cross-correlation matrix across the
batch and minimizes a loss that enforces invariance (diagonal entries close to 1) and decorrelation
(off-diagonal entries close to 0). Adapted from [751].

Method Overview

Barlow Twins formulates representation learning as a redundancy-reduction problem guided by
self-supervised invariance. Given a training image X € R”*W>3 two independent stochastic
augmentations t*, 78 ~ 7 produce views:

YA =(X), YB=1B(X).
These are processed by a shared encoder—projector stack gy o fg, yielding normalized embeddings:

_ wlh(Y) L sela(¥?)
189 (fo (Y4))[|2" 186 (fo(Y?))ll2



1598 Chapter 22. Lecture 22: Self-Supervised Learning

Over a mini-batch of size B, we stack the normalized embeddings into matrices Z4, Z2 € RB*P_ The
core statistic in Barlow Twins is the empirical cross-correlation matrix C € RP?*? defined as:

1

C=-
B

B
(Z4)7Z8, Cyj= % Z Z/g(t) Zf(/)‘
b=1

Each entry C;; measures the linear correlation between the i-th feature in view A and the j-th feature
in view B, with values in the range [—1, 1]. Intuitively:

* C;; = I: perfect positive correlation—features vary identically across the batch.

* C;; = 0: statistical independence—no linear correlation.

¢ C;j = — 1. perfect negative correlation—still redundant and thus undesirable.

Barlow Twins aims to make C ~ Ip, the identity matrix, based on two key principles:

(i) Invariance: pushing each diagonal entry C;; — 1 ensures that each feature remains stable
across augmented views of the same image;

(ii) Redundancy reduction: minimizing off-diagonal entries C;; — O for i # j encourages features
to be decorrelated and non-redundant.

This objective encourages the learned representation to be both semantically consistent and informa-
tionally diverse—qualities essential for downstream generalization.

Redundancy Reduction Loss
The training loss penalizes any deviation of C from the identity:

D D
Lyr £ ) (1-Ca)* +2 ppNey : B
i=1 i=1 j£i
Invariance term redundancy reduction term

Here, A is a weighting coefficient that balances the importance of diagonal preservation and
off-diagonal suppression. The original paper sets A = 5 x 1073 and reports robustness to this
choice [751].

Intuition. The first term ensures that each embedding dimension captures consistent semantic
content across augmented views (invariance), while the second term discourages redundancy by
pushing feature dimensions to be statistically independent.

Practical Details
* The loss is computed on the batchwise cross-correlation, avoiding the need for negative pairs,
momentum encoders, or memory banks.
* Gradients propagate through all features and samples due to the fully differentiable nature of
C.
* Prior to computing C, the embedding vectors are batch-normalized to have zero mean and
unit variance—without affine parameters—to stabilize statistics.

In contrast to contrastive or distillation-based frameworks, Barlow Twins achieves both invariance
and feature diversity in a fully symmetric manner, using only positive pairs from the same
image. Its loss structure alone is sufficient to prevent representational collapse.
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Empirical Results and Ablation Studies

Barlow Twins delivers strong empirical performance across both standard self-supervised bench-
marks and downstream transfer tasks. Despite its architectural simplicity and the absence of negative
pairs, teacher networks, or asymmetric encoders, the method achieves competitive results through a
symmetric objective that jointly enforces invariance and redundancy reduction.

Linear Evaluation on ImageNet

In the standard linear probing setup on ImageNet-1K, Barlow Twins achieves 73.2% top-1 and 91.0%
top-5 accuracy using a ResNet-50 trained for 1000 epochs [751]. This outperforms earlier contrastive
baselines such as SimCLR (69.3%) and MoCo v2 (71.1%), and comes close to SWAV (75.3%) and
BYOL (74.3%), despite using neither multi-crop augmentation nor a momentum encoder.

Table 22.35: ImageNet-1K linear evaluation (ResNet-50). Barlow Twins performs competitively
with state-of-the-art SSL methods. Adapted from [751].

Method Top-1 (%) Top-5 (%)
Supervised 76.5 -
MoCo 60.6 -
PIRL 63.6 -
SimCLR 69.3 89.0
MoCo v2 71.1 90.1
SimSiam 71.3 -
SwAV (no multi-crop) 71.8 -
BYOL 74.3 91.6
SwAV 753 -
Barlow Twins 73.2 91.0

Transfer Learning Performance

Barlow Twins generalizes well to diverse downstream tasks. When frozen ResNet-50 features are
evaluated via linear classifiers, the model performs comparably to SWAV and BYOL and consistently
outperforms/on par with SImCLR and MoCo v2. These results—summarized in the following
table—highlight the semantic richness and generality of the representations learned through the
Barlow Twins objective.

Table 22.36: Transfer learning benchmarks. Performance is measured using linear classifiers
trained on frozen features. Adapted from [751].

Method Places-205 VOCO07 (mAP) iNatl8
Supervised 53.2 87.5 46.7
SimCLR 52.5 85.5 37.2
MoCo v2 51.8 86.4 38.6
SwWAV (no multi-crop) 52.8 86.4 39.5
SwAV 56.7 88.9 48.6
BYOL 54.0 86.6 47.6

Barlow Twins 54.1 86.2 46.5
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Ablation Studies
Controlled ablations confirm that both terms of the loss—the invariance and redundancy penal-
ties—are essential. The following table shows that removing either term severely degrades perfor-
mance. Notably, using only the redundancy term causes collapse. Additional findings include:
* Normalization matters: Applying feature-wise normalization before computing the cross-
correlation matrix improves stability.
* BatchNorm in the MLP improves performance, though the method is fairly robust without
1t.
* Loss formulation is key: Replacing the objective with a temperature-scaled softmax cross-
entropy reduces top-1 accuracy by more than 8%.

Table 22.37: Ablation results. Removing either loss component or normalization significantly
degrades accuracy. Adapted from [751].

Configuration Top-1 (%) Top-5 (%)
Full loss (default) 714 90.2
Only invariance term 57.3 80.5
Only redundancy term 0.1 0.5
Feature-wise normalization 69.8 88.8
No BN in MLP 71.2 89.7
No BN + No normalization 53.4 76.7
Cross-entropy w/ temperature 63.3 85.7

Batch Size Robustness

Barlow Twins performs well even at small batch sizes. The following figure shows that, unlike
SimCLR and BYOL, it maintains high accuracy at batch sizes as low as 256. This is because it does
not rely on in-batch negatives or queue-based comparisons.
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Figure 22.60: Effect of batch size. Barlow Twins retains high accuracy at small batch sizes, unlike
SimCLR and BYOL. (Adapted from [751])
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Effect of Projector Dimensionality

The following figure illustrates how Barlow Twins benefits from larger embedding dimensions.
Unlike SimCLR and BYOL, which plateau or degrade with wider projections, Barlow Twins
continues to improve up to 8192 or even 16384 dimensions—Ilikely due to its decorrelation objective.
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Figure 22.61: Effect of embedding dimensionality. Barlow Twins scales well with projector width,
unlike SIMCLR and BYOL (Adapted from [751]).

Sensitivity to Augmentations

The following figure shows how performance declines as augmentations are progressively weakened.
Barlow Twins is more robust than SimCLR, but slightly less stable than BYOL, whose architectural
asymmetry offers stronger inductive bias under weak views.

=&— BT (ours)

———
~_—~a
~—~

- - -e- BYOL
s s ST --@- SimCLR
3 :

>

O _10-

©

|

3

Y -151

<L

1 201

Q

o

= s

o

\ne o\ e’
aaﬁe\\ . G(a\l"’c ot I\ N B\ 0P

» WO croP

Figure 22.62: Sensitivity to augmentation strength. Barlow Twins is more robust than SimCLR
but less stable than BYOL (Adapted from [751]).
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Hyperparameter Stability

The loss function in Barlow Twins consists of two complementary terms: one that enforces invariance
across augmented views by driving the diagonal of the cross-correlation matrix C toward 1, and
another that encourages decorrelation by penalizing off-diagonal terms. The scalar hyperparameter
A controls the relative importance of the redundancy reduction objective:

LT = Z(] _Cii)2+7LZZC§/'
i i j#i

While in principle tuning A could affect convergence and representation quality, Barlow Twins
exhibits remarkable robustness to its value. As shown in the following figure, top-1 accuracy remains
stable across several orders of magnitude of A, simplifying deployment and hyperparameter tuning.
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Figure 22.63: Effect of redundancy weight A. Barlow Twins maintains stable accuracy over a wide
range of redundancy loss weights (Adapted from [751]).

Summary and Outlook

Barlow Twins achieves state-of-the-art performance with a remarkably simple and symmetric training
objective. By maximizing invariance while minimizing redundancy, it learns representations that are
both stable across views and statistically diverse—without relying on negative pairs, momentum
encoders, or asymmetric architectures. These principles underpin a broader family of non-contrastive
methods that favor structured, constraint-based losses over explicit comparison.

In the next part, we examine VicReg (Variance-Invariance-Covariance Regularization), which
builds on these ideas by decomposing the objective even further. Unlike Barlow Twins, VicReg
drops the cross-correlation matrix in favor of three explicit terms—each corresponding to a statistical
property of the learned features—and enables even greater control over the representation geometry.
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VICReg: Variance-Invariance-Covariance Regularization

VICReg [28] introduces a simple yet powerful objective for self-supervised learning that avoids
collapse using only positive pairs. The learning signal is decomposed into three distinct components:
* Invariance loss .%};;,: aligns the embeddings of different augmentations of the same image to
ensure consistent representation.
* Variance loss .%,,;: maintains a minimum standard deviation across each embedding dimen-
sion to prevent representational collapse.
» Covariance loss .%,,: penalizes redundancy by minimizing off-diagonal entries of the
covariance matrix across embedding dimensions.

%

v : maintain variance

¢ : bring covariance to zero

fo — - th 7 €@ s :minimize distance
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Figure 22.64: VICReg architecture. A batch of images / is augmented into two views X, X', encoded
into intermediate features Y,Y’, and passed through an expander MLP to yield final embeddings
Z,7'. The model minimizes three terms: a distance loss to align embeddings, a variance loss to
ensure feature spread, and a covariance loss to decorrelate features (Adapted from [28]).
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The architecture follows a symmetric dual-branch design (Figure 22.64). A batch of images / is
augmented twice using transformations ¢, ~ .7 to produce two views:

X=tI), X =t).

These views are encoded by two networks fg and f, (typically sharing weights) to produce interme-
diate features:

Y=fo(X), Y =faX)
A projection MLP, called an expander, maps these features to final embeddings:
Z=hy(Y), Z =Hy(Y')eR>P,

where B is the batch size and D is the embedding dimensionality.

We summarize VICReg’s notation and architecture:
* 7 Stochastic data augmentation distribution.
e t,t' ~ 7: Two sampled augmentations.
* [: Input batch of images.
X =1(I), X' =¢(I): Augmented views of the input.
* fo, fg:: Encoders (typically ResNet-50).
h¢,h’¢,: Expander MLPs (usually 3-layer).
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* Y = fo(X), Y = fp(X'): Intermediate feature vectors.
* Z=hy(Y), Z' = by (Y') € RP*P: Final embeddings used in the VICReg loss.

The overall objective is a weighted sum of three losses:
gVICReg(ZaZ,> = As -iﬂsim(za Z/) + 2rv gvar(z7zl) + lc -iﬂcov (Z,Z,),

where:
» %im ensures invariance by pulling corresponding embeddings Z and Z’ together,
* _Z,ar maintains per-dimension variance across the batch, enforcing feature spread and avoiding
collapse,
* Z.ov minimizes covariance between different embedding dimensions, encouraging decorrela-
tion.
Default weights are A, = 25.0, A, = 25.0, and A. = 1.0, balancing similarity and statistical regular-
ization for stable training.

In the next parts, we analyze each of these terms in detail—beginning with the invariance loss
Zim—and explain how their combination avoids representational collapse while encouraging
semantically meaningful and diverse feature learning.

Invariance Term: Similarity Loss
The first component of VICReg’s objective promotes invariance to data augmentation. This term
encourages embeddings of two augmented views of the same image to be close in Euclidean space,
thereby ensuring semantic consistency across different appearances of the same input.

Let a batch of B input images be augmented twice to produce views X and X', which are
then mapped to embeddings Z,Z' € RB*P by the encoder—projector stack. Each row pair (z;,2})
corresponds to two views of the same image.

The similarity loss is defined as the mean squared error (MSE) between corresponding embeddings:
1&g )
! /
Zim(Z,Z') = 3 Y Nz =zl
i=1
This can be compactly expressed as the squared Frobenius norm:

1
Lim(2,2) = Ll|Z=Z'||F-

This term pulls positive pairs together in the embedding space and plays the same conceptual role as
contrastive positives—but without relying on any form of negative sampling.

Why regularization is necessary. While the similarity loss encourages embeddings of augmented
views to align, minimizing it alone is insufficient—it admits a trivial solution where all embeddings
collapse to a constant vector (e.g., z; = z; = 0). Such a degenerate outcome minimizes the loss but
eliminates all useful information.

Unlike prior methods such as BYOL or SimSiam, which prevent collapse through architectural
asymmetry (e.g., predictor networks, stop-gradient operations, or momentum encoders), VICReg
avoids these design complexities. Instead, it tackles collapse directly and explicitly by introducing
two additional regularizers: a variance term that enforces feature spread across the batch, and a
covariance term that reduces feature redundancy.
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In the following parts, we present the variance and covariance regularizers that ensure each embed-
ding dimension maintains spread across the batch and captures decorrelated information. Together
with the similarity term, these components allow VICReg to learn rich, invariant features without
relying on negatives or specialized architectural tricks.

Variance Term: Spread Preservation
The second component of VICReg’s loss prevents dimensional collapse by enforcing variability
across samples in each embedding dimension. This is achieved by penalizing dimensions whose
batchwise standard deviation falls below a fixed threshold.

Let Z,Z' € RE*P denote the two batches of embeddings. For each feature dimension j €
{1,...,D}, define Z.; € R® as the j-th column of Z, representing the values of feature j across the
batch. The variance loss on Z is defined as:

Loar(Z) = % f:lmax (0,}/— \/ Var(Z.;) +£> ,
=

where ¥ > 0 is a target standard deviation (typically y = 1), and € is a small constant (e.g., 10~%) for
numerical stability.

This ReLU-style hinge penalty activates only when the standard deviation of a feature falls below 7,
ensuring that each embedding dimension retains sufficient variation across the batch.
The full variance loss is applied symmetrically to both embedding branches:

ﬁ/ar(zaz/) - Z/ar(z) "‘ﬁar(zl)'

Intuition. Without this term, the model could minimize the similarity loss by collapsing all features
to a constant vector (e.g., Z = Z' = 0), which yields zero variance and no discriminative power. The
variance constraint ensures that each dimension remains active and informative by enforcing a lower
bound on its spread. Unlike whitening, which imposes full normalization, VICReg simply avoids
collapse by preventing features from becoming degenerate—making the constraint both flexible and
effective.

Next, we introduce the covariance regularizer, which complements this spread constraint by encour-
aging statistical independence between different feature dimensions.

Covariance Term: Redundancy Reduction

The third and final component of VICReg’s objective addresses feature redundancy. While the
variance loss ensures that each embedding dimension is active across the batch, the covariance loss
encourages decorrelation—ensuring that each feature captures distinct information.

Let Z € RB*P denote a batch of zero-mean embeddings. The empirical covariance matrix of Z is
given by:

1
YZ)=——27"7 e RP*P
(2) B 1 ,

where the diagonal elements capture featurewise variance (already handled by .Z,,;) and the oft-
diagonal elements encode pairwise linear correlations between feature dimensions.
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The covariance loss penalizes these off-diagonal entries:

1 1 1 2
Zeo(Z) = 5 ; Z(2)]} = D ; <B_IZ~—I|'—Z'j> ,
i#] i£j

where Z; € R® denotes the i-th column of Z, and the squared inner products quantify correlation
magnitude.

This term is symmetrized across both embedding branches:

,%OV(Z,Z/) = ag/ﬂcov(z) +°§/ﬂcov(z,)-

Intuition. High off-diagonal covariance implies that multiple features are encoding similar in-
formation, reducing representational efficiency. The covariance loss explicitly discourages such
redundancy by driving these correlations toward zero. This acts as a soft whitening constraint, but
without requiring full matrix inversion or decorrelation, and without interfering with the variance
term. Unlike methods that implicitly encourage feature decorrelation via batch normalization or
orthogonality constraints, VICReg enforces redundancy reduction directly through the loss function
in a differentiable and scalable manner.

Loss Summary. Together, the three VICReg losses form a self-contained and collapse-resistant
objective:

* Zum: aligns paired views to promote augmentation invariance.

* Zar: preserves diversity across samples by enforcing per-dimension spread.

* Zcov: eliminates linear redundancy by decorrelating features.

In the following part, we examine VICReg’s training setup and empirical results—including com-
parisons to contrastive and non-contrastive baselines across linear probing and transfer learning
benchmarks.
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Implementation Details and Empirical Evaluation

Training Setup

VICReg uses a standard ResNet-50 encoder followed by a three-layer MLP expander. Each hidden
layer contains 8192 units with Batch Normalization and ReL.U activation. The final embeddings
Z,7' € RB*D are used directly in the loss computation—without £-normalization or whitening.
Training is conducted for 1000 epochs using the LARS optimizer with a base learning rate of 0.3,
cosine learning rate decay, and batch size of 2048. The data augmentation strategy matches that of
SimCLR.

Linear Evaluation on ImageNet

The following table reports ImageNet-1K top-1 accuracy under the standard linear evaluation
protocol. VICReg matches the performance of Barlow Twins and significantly outperforms SimCLR,
all while avoiding negatives, target networks, or asymmetry. While BYOL achieves slightly higher
accuracy, it requires an additional predictor head and momentum encoder.

Table 22.38: Linear probing accuracy on ImageNet using ResNet-50. VICReg performs competi-
tively without contrastive negatives, stop-gradient tricks, or teacher networks. Adapted from [28].

Method Backbone Top-1 (%)
SimCLR ResNet-50 69.3
Barlow Twins ResNet-50 73.2
BYOL ResNet-50 74.3
VICReg ResNet-50 73.2

Transfer Learning Performance

VICReg generalizes well across diverse downstream tasks. The following table shows results
on Places205, Pascal VOCO07, and iNat18 using frozen ResNet-50 features with linear classifiers.
VICReg outperforms SimCLR, Barlow Twins, and BYOL across all benchmarks—particularly on
fine-grained classification tasks like iNat18.

Table 22.39: Transfer learning benchmarks. Top-1 accuracy or mAP from linear classifiers trained
on frozen ResNet-50 features. Results for VICReg and other methods are adapted from [28]. The
top-3 methods per column are underlined.

Method Places205 VOCO07 (mAP) iNatl8
MoCo [211] 46.9 79.8 31.5
PIRL [436] 49.8 81.1 34.1
SimCLR [88] 52.5 85.5 37.2
MoCo v2 [95] 51.8 86.4 38.6
BYOL [188] 54.0 86.6 47.6
Barlow Twins [751] 54.1 86.2 46.5
VICReg [28] 543 86.6 47.0

SwAV (multi-crop) [72] 56.7 88.9 48.6
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Robustness to Bafch Size

A practical strength of VICReg is its ability to maintain stable performance with small batch sizes.
Since VICReg does not rely on contrastive sampling, it avoids the sharp degradation seen in methods
like SimCLR. According to Section 5.2 of [28], reducing the batch size from 2048 to 256 results in a
drop of less than 1% for VICReg, while SimCLR suffers over 6%.

Summary of Empirical Results

VICReg combines competitive performance with architectural simplicity and training efficiency. Its
design avoids the pitfalls of earlier SSL methods by explicitly decomposing invariance, variance
preservation, and redundancy reduction into three stable, interpretable loss terms. The result is a
scalable and robust alternative to both contrastive and distillation-based approaches.

We next examine ablation studies that validate each component of the VICReg loss and highlight the
necessity of combining similarity, variance, and covariance terms.

Ablation Studies and Objective Decomposition

To isolate the contribution of each term in the VICReg objective, the authors conduct a series of
ablation experiments. These studies clarify how each component—the similarity term %, the
variance term %, and the covariance term .%,,,—contributes to learning stable, non-degenerate
representations. While the similarity loss encourages view alignment, it must be paired with
regularizers to prevent collapse and encourage feature diversity.

Effect of Removing Loss Terms

The following table reports the impact of disabling different loss components. When the variance
term is removed, the network collapses to a trivial solution where all embeddings are constant.
Removing the similarity term also causes failure: without alignment between views, no meaningful
features are learned. Removing the covariance term does not lead to collapse, but results in highly
redundant dimensions and reduced accuracy. All three terms are necessary to achieve invariance,
diversity, and disentanglement in the learned representation.

Table 22.40: Effect of VICReg loss term combinations on collapse and accuracy. Models
are pretrained for 100 epochs on ImageNet using a ResNet-50 backbone and evaluated by linear
probing. Following [28], collapse is defined as the standard deviation across embedding dimensions
approaching zero. Note that the full VICReg model achieves 73.2% top-1 accuracy after 1000 epochs
(see Table 1 in [28]); these 100-epoch results are used for efficient ablation. Default loss weights are
As = 25 (similarity), A, = 25 (variance), and A, = 1 (covariance).

Loss Configuration As  Collapse Top-1 Acc. (%)
sim + var + cov (VICReg) 25 68.6

sim + var (no cov) 1 57.5

sim + cov (no var) 25 -

var + cov (no sim)
Only sim 1

ASRNENE SRS
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Architectural Robustness

VICReg is architecturally flexible. It does not require weight sharing or symmetric encoders.
Performance remains strong in non-Siamese setups: when the encoders for the two branches are
decoupled, accuracy drops only marginally (from 73.2% to 72.8%). Similarly, reducing the expander
from three to two layers results in minimal degradation, demonstrating robustness to projection head
configuration.

Comparison with Whitening-Based Methods

Unlike methods such as Barlow Twins, which impose an identity constraint on the cross-correlation
matrix, VICReg decomposes redundancy reduction into two explicit regularizers: a variance term to
preserve spread, and a covariance term to enforce decorrelation. This formulation eliminates the
need for batch normalization across views and makes the method more stable—especially when
training with smaller batch sizes.

Ablation Summary
These findings highlight the distinct and complementary roles of VICReg’s three loss terms:
¢ Invariance (\Zm): Aligns positive pairs to enforce view consistency.
* Variance (%ar): Prevents representational collapse by ensuring each dimension is active
across the batch.
» Covariance (Zy): Encourages disentanglement by reducing linear redundancy between
features.
Together, these components yield a stable and interpretable framework for self-supervised learn-
ing—one that avoids contrastive negatives, momentum encoders, and stop-gradient tricks while
remaining effective and scalable.
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Adapting SSL to Downstream Tasks

Self-supervised learning (SSL) decouples feature learning from task supervision, producing general-
purpose encoders that can be adapted to a wide range of downstream objectives—from classification
and retrieval to segmentation and detection. However, deploying these representations effectively
requires thoughtful alignment between the pretrained model, the target task, and the available
adaptation budget. Factors such as task structure, domain similarity, labeled data availability, and
hardware constraints all influence which adaptation strategy will yield the best trade-off between
performance, robustness, and efficiency. The following parts present a structured pipeline for
downstream transfer, beginning with backbone selection (the focus of this section) and continuing
through a hierarchy of adaptation strategies—ranging from simple linear probing to full fine-tuning.
By matching model flexibility to task demands, practitioners can harness the full potential of SSL.

Aligning Backbone Structure with Task Demands

The architecture and pretraining objective used in self-supervised learning (SSL) directly influence
the type of information encoded by the model. Depending on whether the training strategy empha-
sizes spatial precision or semantic abstraction, different backbones will excel at different downstream
tasks. This subsection outlines how the structural properties of SSL models align with the demands
of classification, retrieval, segmentation, and other vision problems.

Masked Image Modeling: Prioritizing Spatial Detail
Masked image modeling (MIM)—used in methods such as MAE, iBOT, and DINOv2—trains the
encoder to reconstruct masked portions of the input image. This objective forces the model to reason
about local textures, edges, and fine spatial patterns.
» These localized features are essential for dense prediction tasks such as semantic segmentation,
object detection, and monocular depth estimation.
* For example, adding a MIM objective to DINOv2 improves segmentation accuracy by nearly
3% mloU on ADE20k compared to global-only training [463].

Contrastive and Clustering Methods: Emphasizing Semantic Structure
Contrastive learning approaches like SimCLR and MoCo, and clustering-based methods like SWAYV,
optimize models to group together different augmented views of the same image while pushing apart
views of different images. These objectives lead the model to capture high-level concepts such as
object shape and category, rather than spatial details.
* Such models are well-suited for global tasks like image classification and retrieval, where the
goal is to assign an image to a broad semantic category or to match instances.
* However, their representations are often less suited for pixel-level predictions, as spatial
continuity is not explicitly encouraged during training.

Hybrid Approaches: Balancing Spatial and Semantic Information
Modern SSL methods like DINOv2 and EVA incorporate both reconstruction-style and global
invariance losses, enabling the model to learn features that capture both spatial granularity and
semantic abstraction.
* These hybrid models consistently perform well on both global and dense benchmarks, making
them suitable defaults when the downstream task mix is unknown or varied.
* DINOV2, for instance, achieves state-of-the-art linear probing accuracy on ImageNet while
also outperforming earlier models on semantic segmentation and depth estimation [463].
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Recommended Usage
* For tasks involving pixel-level supervision (e.g., segmentation, detection), select a model
trained with a strong MIM component.
* For tasks emphasizing semantic abstraction (e.g., classification, retrieval), contrastive or
clustering-based models are efficient and competitive.
» For multi-task pipelines or general-purpose usage, hybrid models such as DINOv2 offer
strong performance across the board.
* When interpretability or simplicity is preferred (e.g., in real-time systems), older contrastive
models with convolutional backbones may remain useful baselines.
Understanding whether a downstream task depends more on spatial resolution or semantic discrim-
ination is a critical first step in selecting a suitable SSL backbone. Hybrid models provide broad
coverage, but targeted choices remain important when task constraints are well-defined.

Data Distribution and Domain Shift Considerations

Despite the scale and diversity of modern pretraining corpora—e.g., LVD-142M for DINOv2 or
LAION-2B for CLIP—downstream datasets often exhibit domain shifts that undermine transfer
performance. These shifts may include differences in image content (e.g., medical or satellite
imagery), resolution, noise, label distribution, or visual style. Understanding and mitigating this
mismatch is essential for effective adaptation of self-supervised models.

Diagnosing Domain Shift
Before selecting an adaptation strategy—or even a specific pretrained backbone—it is important
to assess how well your downstream data align with the pretraining distribution. In some cases,
domain knowledge alone can provide strong cues: for example, highly specialized imagery—such as
histology slides, X-rays, or thermal satellite captures—is almost certainly out-of-distribution (OOD)
relative to natural-image web corpora like LAION or LVD-142M.

However, beyond intuition, several practical diagnostics can help estimate domain alignment
and inform next steps. These tools vary depending on the presence of labels and the type of task:

* For classification tasks with labeled data:

— Zero-shot k-NN classification: Extract features using the frozen SSL backbone and
train a k-nearest neighbors classifier on the labeled training set. If accuracy is very low, it
suggests the feature space does not align well with semantic categories in your domain.

— t-SNE / UMAP visualization: Project features from the frozen encoder into 2D and
color by class label. If clusters are poorly separated or entangled, it indicates that
representations may not be semantically structured for the task.

* For detection, segmentation, or unlabeled data:

— Region-based feature clustering: Extract local features (e.g., via sliding windows
or ViT tokens) and apply k-means clustering. If clusters fail to align with meaningful
regions (e.g., objects, organs), this suggests that spatial semantics may not be captured.

— Visual probing: Run pretrained detection or segmentation heads (e.g., COCO-trained
Mask R-CNN) using frozen features to visually assess qualitative results. While informal,
it can reveal if feature maps support spatial reasoning.
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Should We Try Multiple Backbones?

In practice, testing multiple pretrained backbones is often valuable—even if the final downstream
model will only use one. Running the above diagnostics with two or three strong candidates (e.g.,
DINOv2, ReLICv2) provides insight into how well each model’s feature space aligns with your data.
This can guide both:

* Finetuning strategy selection: If one backbone yields strong frozen-feature performance,
lightweight adaptation (e.g., PEFT or a small MLP head) may suffice. If all perform poorly,
continued pretraining or full fine-tuning may be needed.

* Model selection itself: In domains with unknown or complex statistics, empirical comparison
is often more reliable than purely theoretical choices. Trying multiple backbones during early
prototyping can uncover unexpected strengths in certain architectures or pretext objectives.

Summary

Domain shift is the central challenge in transferring self-supervised representations. Its presence
should be diagnosed early, using both domain knowledge and frozen-feature probes. Depending
on the task and data availability, this may also motivate testing multiple SSL backbones before
committing to a full adaptation pipeline. These diagnostics inform not only which model to use, but
also how aggressive the adaptation strategy must be—ranging from linear probing to full fine-tuning
or continued self-supervised training.

Fine-Tuning Self-Supervised Backbones

Once a self-supervised representation approach has been selected, the next challenge is adapting it to
a downstream task. This step is rarely trivial: unlike fully supervised pretraining, self-supervised
learning (SSL) does not optimize for any specific end task. As such, even the best SSL features may
need further adaptation to achieve peak task-specific performance.

This section presents a structured overview of fine-tuning strategies, grounded in three key
factors:

1. Domain similarity: How similar is the downstream data to the model’s pretraining corpus?
2. Label availability: Are sufficient labeled examples available, or only unlabeled data?
3. Resource constraints: How much GPU memory, time, and tuning budget are available?

We organize the landscape of adaptation strategies along a spectrum of increasing capacity and
computational cost. Each method offers a different trade-off between preserving pretrained features
and adapting to the task at hand.

Choosing an Adaptation Strategy: Data, Domain, and Cost
(1) Linear Probing and Lightweight Heads
The simplest option is to freeze the encoder and train a linear classifier or shallow MLP head on top.
This strategy serves two purposes: as a diagnostic tool to evaluate representation quality, and as a
minimal adaptation when data or compute is limited.

* Cost: Minimal. Only the top layer/shallow head is trained.

* When to use: Data is scarce, domain shift is low, or task setup favors interpretability and

stability.
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(2) Parameter-Efficient Fine-Tuning (PEFT)

Parameter-efficient fine-tuning (PEFT) methods adapt large pretrained models by updating only a
small subset of parameters—typically fewer than 1-5%—while keeping the main backbone frozen.
This significantly reduces GPU memory usage, training time, and the risk of overfitting, while
enabling the use of larger models within constrained compute budgets.

Why Use PEFT?

Unlike full fine-tuning, PEFT allows practitioners to leverage high-capacity models (e.g., ViT-L,
ViT-g based) that are otherwise, quite often, infeasible to train. Given fixed resources, fine-tuning a
larger model with PEFT generally outperforms full fine-tuning of a smaller model.

Common PEFT Strategies

* LoRA (Low-Rank Adaptation): Injects trainable low-rank matrices into frozen attention
or MLP layers. These matrices are merged into the base model post-training, resulting in
no inference overhead. LoRA is often the default PEFT choice due to its efficiency and
deployability.

* Adapters: Adds small bottleneck MLPs between transformer blocks. While adapters remain
active at inference—introducing minimal latency—they support modular multi-task setups
and continual learning by allowing separate task-specific modules.

* Prefix Tuning: Prepends trainable tokens to transformer inputs, influencing hidden states
without modifying core weights. Though popular in NLP, vision adaptations are emerging.
Prefix tuning incurs some runtime overhead and is most suitable for conditional task control.

Table 22.41: Comparison of PEFT methods. All strategies update fewer than 5% of parameters,
enabling adaptation of large models under resource constraints.

Method Mechanism Inference Recommended Use
Overhead

LoRA Low-rank updates added | None Default for efficient tuning
to frozen layers; merge- of large ViTs; zero latency
able post-training deployment

Adapters Trainable bottleneck | Low Continual and multi-task
MLPs inserted between learning with modular pa-
blocks rameter sharing

Prefix Tuning Adds trainable tokens to | Low Task  conditioning  or
attention inputs lightweight domain adapta-

tion

Practical Considerations
* Training Cost: PEFT methods drastically lower training time and memory footprint by
keeping backbone gradients frozen.
* Inference Cost: Only LoRA introduces no added latency post-merge. Adapters and prefix
tokens require minor runtime additions.
* When to Use: Use PEFT when fine-tuning large backbones under tight compute budgets,
when stability is a concern, or when enabling continual and multi-task learning.
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Overall, PEFT bridges the gap between frozen and full-tuned models. Among available methods,
LoRA is typically preferred for its balance of strong performance, deployment efficiency, and low
parameter cost. For even higher performance, variants like DoRA [373] can be used when labeled
data are moderate and the model size is large.

(3) Progressive Unfreezing and LP-FT

While PEFT offers a strong trade-off, some tasks benefit from increased adaptation capacity. Pro-
gressive unfreezing and linear-probe-then-fine-tune (LP-FT) represent staged strategies that
expand model plasticity while retaining some stability benefits of freezing.

Progressive Unfreezing
This strategy begins with training a head on frozen features, then gradually unfreezes blocks of the
encoder—typically from top to bottom. It allows gradients to flow through deeper layers only when
the head is aligned with the task, mitigating catastrophic forgetting and gradient shocks.

* Cost: Moderate to high, depending on how many layers are ultimately unfrozen.

* When to Use: Ideal when full fine-tuning is risky (e.g., small data, severe shift) but PEFT

does not offer sufficient accuracy.
* Tip: Use layer-wise learning rate decay (LLRD) and gradient clipping to stabilize training.

Linear-Probe-Then-Fine-Tune (LP-FT)
In LP-FT, a linear or MLP head is first trained until convergence with the encoder frozen. Then, the
entire model is unfrozen and optimized end-to-end, typically using LLRD.

* Cost: Similar to full fine-tuning, but often more stable and faster to converge.

* When to Use: Effective when domain shift is moderate and labeled data are available. LP-FT

is particularly helpful for ViTs, where naive full fine-tuning can destabilize pretrained features.

In both methods, adaptation proceeds cautiously: either by unfreezing layers in stages or by stabiliz-
ing the head before opening the full network. These strategies offer a smooth transition from frozen
representations to fully adapted ones, useful in mid-scale transfer regimes or when adapting to new
domains.

(4) Full Fine-Tuning (FFT)
When domain shift is large and enough labeled data are available, the full model—including
backbone—is updated via standard gradient descent. This offers maximal adaptation capacity but
also the highest risk of overwriting generalizable features learned during pretraining.
* Cost: High. All model parameters are trained.
* When to use: You have abundant labeled data, significant domain mismatch, and compute
budget for careful tuning.

(5) Continued Self-Supervised Pretraining (C-SSL)

When labeled data are scarce but domain-relevant unlabeled data are available, continued self-
supervised pretraining (C-SSL) can serve as a powerful bridge between generic pretraining and
task-specific adaptation. This strategy is especially valuable in two scenarios:

1. Significant domain shift—e.g., medical, satellite, or industrial imagery unseen during up-
stream pretraining.

2. Low-data regimes, where labeled samples are too limited for full supervised fine-tuning
without overfitting.
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By reapplying the SSL objective on unlabeled but relevant data, C-SSL helps realign the feature
space toward the structure of the downstream domain. Even a few epochs of additional pretraining on
a small curated subset can yield sizable performance gains in both linear probing and full fine-tuning.

Why Curation Beats Raw Scale

State-of-the-art self-supervised learning increasingly prioritizes data quality over raw quantity.
Continuing SSL on massive, uncurated datasets (e.g., LAION) often yields inferior representations
compared to those learned from curated corpora. Recent works underscore the importance of
semantic filtering, deduplication, and domain alignment:

* DINOV2 [463]: The LVD-142M dataset was curated from 1.2B web images using the SSCD
pipeline, which performed deduplication and semantic clustering. This led to significant gains
in zero-shot and fine-tuned performance across classification, detection, and segmentation.

* DataComp [164]: Training ViT-L on a filtered 1.4B subset of Common Crawl outperformed
models trained on the full 5B-image LAION set—demonstrating that careful curation improves
generalization more than scale alone.

These results highlight that continued SSL is most effective when preceded by rigorous dataset
curation, especially for real-world or domain-specific tasks.

Curation Workflow: Practical Steps
The following pipeline generalizes the SSCD-style approach into a modular process for assembling
a domain-relevant dataset for C-SSL:

1. Seed Set Definition: Begin with a small, high-quality set of in-domain examples—either
labeled or strongly relevant. This anchors what "relevant" means.

2. Candidate Corpus Construction: Collect a large set of unlabeled images. This can be broad
(e.g., LAION, Openlmages) or narrow (e.g., MIMIC-CXR for chest radiographs).

3. Embedding and Retrieval: Use a strong SSL backbone (e.g., DINOv2 ViT-L) to embed both
the seed set and candidate corpus. Use similarity search (e.g., FAISS) to retrieve near-neighbors
from the corpus for each seed image.

4. Clustering and Filtering: Optionally cluster all candidate embeddings (e.g., with k-means)
and retain clusters that have high overlap or proximity to seed embeddings. Filter out off-topic
or low-quality images.

5. Deduplication (SSCD): Use perceptual or embedding-based copy detection to eliminate
near-duplicate or low-diversity samples. This prevents overfitting to repeated content and
improves generalization.

6. C-SSL Training: Run a few epochs of self-supervised learning (e.g., DINOv2, ReLICv2) on
the curated subset.

This light-weight stage enhances the feature extractor’s ability to model domain-specific variations
before supervised fine-tuning begins.
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lllustrative Case Study: Learning Artistic Style

Consider the task of classifying images by style—e.g., distinguishing photographs from pencil
sketches, oil paintings, or anime drawings. This requires a feature space that captures the stylistic
intent or visual aesthetics of an image, not just its semantic content.

Challenge: Content-Biased Representations

A pretrained model like DINOvV2, optimized for object recognition, tends to group a photograph
of a cat and a painting of a cat close together—both are semantically “cat.” Stylistic differences
(e.g., brushstroke texture or linework) are treated as irrelevant. Fine-tuning this model on a small,
style-labeled dataset often fails, as its representations do not reflect the variation of interest.

C-SSL Solution: Re-centering on Style
To shift the model’s inductive bias from content to style, we can leverage LAION’s rich stylistic
diversity through continued self-supervised pretraining (C-SSL).

* Seed set: A few hundred labeled exemplars per style (e.g., photo, sketch, anime, impressionism),
drawn from curated art datasets or manually selected via keyword queries.

» Candidate corpus: A 10-100M image subset of LAION. Although noisy, it contains substan-
tial stylistic variation.

* Retrieval and curation: For each style, use a frozen DINOv2 encoder and FAISS to retrieve
the top-k most similar images for each seed. This forms content-diverse but style-coherent
collections. Deduplicate using SSCD to avoid overfitting on near-identical samples.

* Continued SSL: Train DINO on the aggregated and filtered corpus. Since content varies but
style is consistent within buckets, the model is forced to model stylistic features in order to
solve the SSL task.

This reorganizes the representation space: stylistic dimensions emerge as primary axes of variation,
and style clusters form across heterogeneous content.

Outcome: Efficient Style Recognition

After this C-SSL stage, a simple classifier trained on the original seed set performs well. The model
no longer conflates stylistic boundaries—it can distinguish a pencil sketch of a dog from a photo of
one because it has learned to represent what stylistic space an image belongs to, rather than merely
what object it depicts.
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Summary: Fine-Tuning Strategies for Self-Supervised Models

Fine-tuning a pretrained self-supervised model involves a progressive sequence of strategies, each
offering tradeoffs in performance, computational cost, and representational stability. The table below
summarizes key methods and their role in this hierarchy.

Table 22.42: Comparison of Fine-Tuning Strategies. Tradeoffs across flexibility, compute, etc.

to-end from scratch

Method Adaptation Scope Compute / | Typical Use Case
Params
Linear Probing | Train linear classifier on | Very Low Quick diagnostic; checks
(LP) frozen features linear separability
Shallow  MLP | Train small nonlinear | Low Low-cost  baseline for
Head head on frozen backbone mildly nonlinear tasks
LoRA (PEFT) Insert trainable low-rank | Low (<5%) Lightweight tuning under
adapters into backbone compute/memory con-
layers straints
Progressive Freez- | Gradually unfreeze layers | Medium Broader adaptation while
ing from top to bottom preserving pretrained fea-
tures
LP-FT LP — full FT with classi- | High Improves convergence and
fier warm start stability over naive FT
Full Fine-Tuning | Train all parameters end- | Very High Maximum flexibility;

needed for high-stakes or
large shifts

A recommended adaptation pipeline proceeds incrementally, balancing cost, stability, and perfor-
mance. At each stage, the goal is to extract maximum utility from the pretrained backbone before
escalating to more compute-intensive strategies.

Step 1. Start with a Linear Probe or Shallow MLP Head. This is the fastest way to evaluate
whether the downstream task is linearly or nonlinearly separable in the pretrained representa-
tion space. Training only the head is stable, efficient, and requires minimal tuning. A strong
linear probe often indicates low domain shift and may be sufficient for deployment.

Step 2. If accuracy is inadequate, escalate to LoRA. LoRA is a parameter-efficient fine-tuning
(PEFT) method that introduces trainable low-rank adapters into selected backbone layers. It
allows practitioners to fine-tune large backbones (e.g., ViT-L) under hardware constraints

where full fine-tuning would be infeasible.

* Important: Given a fixed compute budget, it is almost always better to tune a larger
model with LoRA than to fully fine-tune a smaller model. The larger capacity yields
stronger features, and the LoRA adapters can often achieve comparable or better
accuracy with far fewer updates.

» Optional: For even stronger results, consider DoRA [373], a variant of LoRA that
decouples the rank and scaling constraints. When the downstream dataset is not
excessively large, DoRA frequently outperforms full fine-tuning.




1618 Chapter 22. Lecture 22: Self-Supervised Learning

Step 3. If LoRA plateaus, apply Progressive Unfreezing. This strategy gradually unfreezes layers
of the backbone from the top down, allowing controlled adaptation. It expands model
plasticity while minimizing gradient instability and catastrophic forgetting—especially
valuable in mid-scale data regimes or when class imbalance exists.

Step 4. If broader adaptation is needed, use LP-FT. The Linear-Probe—then-Fine-Tune (LP-FT)
approach begins by training the head until convergence and then switches to full end-to-
end fine-tuning with layer-wise learning rate decay (LLRD). This warm-start stabilizes
optimization, improves generalization, and reduces gradient shock—particularly for ViTs or
in out-of-distribution settings.

Step 5. Use Full Fine-Tuning only when truly justified. Updating all weights provides maximum
flexibility but comes with the highest risk of overfitting, longest convergence time, and hence
the largest compute burden. Reserve this for large labeled datasets and severe domain shifts
(e.g., medical, satellite imagery). Without substantial data and compute, FFT can degrade
the pretrained representation.

This staged pipeline promotes early diagnostics, resource efficiency, and stable adaptation. Practi-
tioners can tune each level independently and only escalate when validation performance or domain
mismatch necessitate it. The following subsections develop each approach in detail—covering
implementation steps, optimization tips, and when to transition to the next level.

Linear Probing and MLP Head Adaptation

Purpose and Motivation

Linear probing and MLP-head evaluation serve as efficient diagnostic tools to assess whether a frozen
self-supervised representation is already linearly (or weakly nonlinearly) aligned with a downstream
task. They are fast, low-risk, and widely used in SSL pipelines to estimate how much task-specific
signal is already captured in the representation space.

Application Procedure

1. Freeze the Backbone: Load the pretrained encoder (e.g., ViT, ResNet) and freeze all weights.
Ensure normalization layers operate in inference mode to maintain consistent feature statistics.

2. Attach a Lightweight Classifier Head:

* Linear Probe: A single fully-connected layer W € R?*C, where d is the feature dimension
and C is the number of target classes.

* MLP Head: A shallow MLP, typically two/three layers with nonlinearity (e.g., ReLU or
GELU), optional dropout, and a final linear output.

3. Train the Head on a Labeled Dataset: Pass input images through the frozen backbone to extract
features, then through the trainable head. Use supervised loss (e.g., cross-entropy) and optimize
only the head parameters.

4. Evaluate on Validation Set: Use classification accuracy or task-specific metrics to assess
performance. Compare to known linear probe baselines from the literature (e.g., DINOv2: 86.3%
on ImageNet-1k [463]) when possible.
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Hyperparameter Recommendations

* Learning Rate: Use relatively high initial learning rates (e.g., 0.1-1.0 with SGD, or 3 x 10~*

with AdamW). Scale proportionally to batch size.

Epochs: Typically 50-100. For large datasets like ImageNet, 90 epochs with cosine decay
is common; for smaller datasets, 10-30 may suffice. In practice we can also aim for many
epochs and aid by early stopping if needed.

Batch Size: Large batch sizes (512-2048) yield more stable gradients. Use gradient accumu-
lation if memory-constrained.

+ Weight Decay: Often set to zero for linear heads. For MLPs, values in {1073,107*} may

help reduce overfitting.

* Augmentations: Use only lightweight augmentations consistent with the representation

learned during pretraining. This typically includes RandomResizedCrop to the input resolu-
tion, RandomHorizontalF1lip, and normalization to match pretraining statistics. Avoid strong
augmentations such as ColorJitter, RandAugment, or blur—these were critical during SSL
pretraining but degrade performance during linear probing [144, 756]. Instead, mimic the
evaluation protocol used during validation in the original SSL paper (e.g., DINOv2, MAE),
ensuring augmentation mismatch does not obscure representation quality.

Practical Tips and Diagnostic Insights

* Early Stopping: Monitor validation loss and stop if it plateaus. Overfitting can occur even

with frozen features if the head is too wide or the dataset is small.

* Head Design: For an MLP, a 2-layer network with width 24 and dropout 0.1—0.3 balances

expressivity and generalization. It is usually recommended to not use BatchNorm in the head
and prefer LayerNorm if we think additional normalization is needed.

* Loss Plateaus: If validation accuracy is poor and training loss is high, the representation lacks

separability—indicating the need for deeper adaptation.

When fo Escalate to LoRA or Other PEFT Techniques
Move beyond linear probing when:

1.

Underfitting Occurs: Training and validation accuracy are both low, despite hyperparameter

tuning.

Domain Shift is Present: Representations from the frozen model do not transfer well to the

target domain (e.g., medical imaging, satellite data).

. Task Requires Richer Features: Downstream tasks like segmentation or fine-grained classifica-
tion often require non-linear or spatially fine-tuned adaptation.

. High-Accuracy is Needed: Linear/MLP probing saturates at subpar accuracy; state-of-the-art

performance requires deeper adaptation.

In such cases, Low-Rank Adaptation (LoRA) offers a parameter-efficient means of adapting the
backbone by introducing trainable low-rank matrices alongside frozen pretrained weights. While
LoRA is computationally attractive and often yields competitive in-domain performance, recent
analyses [567] reveal that its updates are structurally distinct from those of full fine-tuning, potentially
degrading robustness and generalization. As such, LoRA should be seen as an efficient but not
equivalent substitute for full adaptation.
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# Example: PyTorch Linear Probe Setup

1
2
3 import torch

4 import torch.nn as nn

5 import torch.optim as optim

6 from torch.optim.lr_scheduler import CosineAnnealingLR
7

8

9

# Assume backbone is a pretrained model with an attribute output_dim
# and produces a feature vector of that size.
10 backbone = ... # e.g., backbone =
< torchvision.models.resnetb0(pretrained=True)
11 backbone_output_dim = backbone.fc.in_features # exzample for Reslet
12 backbone.fc = nn.Identity() # remove the classification head tf needed

14 # Freeze backbone parameters
15 for param in backbone.parameters():
16 param.requires_grad = False

18 # Define a linear classification head
19 num_classes = 100 # set according to your task
20 head = nn.Linear(backbone_output_dim, num_classes)

2 # Move models to device

23 device = torch.device("cuda" if torch.cuda.is_available() else '"cpu")
24 backbone.to(device)

25 head.to(device)

27 # Optimizer for head only
23 optimizer = optim.SGD(head.parameters(), lr=0.1, momentum=0.9)
29 scheduler = CosineAnnealinglR(optimizer, T_max=90)

Best Practices
» Use frozen batch statistics (do not update BatchNorm running stats).
* Save the best-performing head; it can warm-start future progressive fine-tuning (LP-FT).
* Normalize feature embeddings before the head to stabilize training.

Empirical Signal for Escalation

When evaluating adaptation progress, it is helpful to compare your current validation accuracy to
known baselines. In publicly benchmarked tasks (e.g., ImageNet, ADE20K, COCO), many SSL
backbones have been fine-tuned to near-optimal performance. If your validation accuracy plateaus
below 90-95% of the reported full fine-tuning result, and the training loss continues to decrease very
slowly, this typically indicates a representation bottleneck rather than a failure to optimize the head.

In such cases, additional flexibility is required. Instead of jumping directly to full fine-tuning—often
prohibitively costly—parameter-efficient methods like LoRA offer a compelling next step. LoORA
allows adaptation of large models under tight resource constraints while preserving most of the
pretrained structure. This approach will be detailed next.
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Low-Rank Adaptation (LoRA) for Efficient Transfer
Motivation and Intuition
As model sizes scale—particularly for Vision Transformers (ViTs)—full end-to-end fine-tuning
becomes increasingly costly. Low-Rank Adaptation (LoRA) [233] addresses this by freezing the
pretrained backbone and injecting small, trainable low-rank matrices into selected layers. These
matrices capture task-specific updates while preserving the general-purpose features learned during
pretraining.

The central insight is that many task-specific adaptations lie in a low-rank subspace. Instead of
updating the full weight matrix, LoRA applies a low-rank approximation, drastically reducing the
number of trainable parameters with minimal loss in performance.

Mechanism
Let W € R?** denote a frozen pretrained weight matrix. LoRA introduces a trainable low-rank
perturbation:

W=W+AW, where AW = BA,

with A € R, B € R4’ and rank r < min(d, k). This reduces the number of trainable parameters
from d - k to just r(d + k). For example, a 20,000 x 20,000 matrix adapted with r = 1 requires only
40,000 parameters—about 10,000 x fewer than full fine-tuning.

Inifialization and Forward Pass
To preserve initialization behavior and allow smooth gradient flow:
* B is initialized to zero, ensuring AW = 0 at step zero.
» A~ .#(0,0.022), allowing gradients to flow early in training.
The forward pass modifies the output with a rank-scaled update:

o
Wx+ —-BAx, xRk
r

The Role of the Scaling Factor o/ r
Without scaling, increasing the rank r naturally increases the magnitude of AW, since more degrees
of freedom lead to larger updates. This creates a coupling between capacity (rank r) and strength
(impact on the base model). The scaling factor & /r decouples these two aspects:

* r controls the complexity of the update—how expressive the adapter is.

* o modulates the strength—how strongly the adapter alters the model.
Setting o = r yields a/r = 1, i.e., no scaling. This is the standard default in many implementations
and helps ensure stable adaptation without requiring extensive hyperparameter tuning across different
r values.

Tuning a in Practice
Varying o allows practitioners to control adaptation aggressiveness:
* Use o > r (e.g., o = 2r) to amplify adaptation strength. This is useful when the base model
underfits or struggles to capture task-specific nuances.
» Use a < r (e.g., o = r/2) to dampen adaptation, stabilizing training in low-data or high-
variance regimes.
This mirrors the effect of a task-specific learning rate, giving fine-grained control over adapter
magnitude without modifying the global optimizer state.
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Empirical Findings and Low-Rank Capacity
Recent work has shown that large-scale models often require surprisingly low intrinsic rank for
effective adaptation [233, 567]:
* GPT-3 175B achieves strong performance with r = 1—4, indicating that only a few directions
in weight space need adaptation.
* For larger r, the amplification factor needed to match small-rank performance decreases—e.g.,
o ~ 20 for r =4, versus o ~ 2 for r = 64 [567].
This confirms that LoRA functions not by replacing the base model, but by amplifying task-relevant
directions already latent in the pretrained weights.

Inference-Time Behavior
Once trained, LoRA updates can be merged into the frozen backbone:

N (04
Wmerged =W+ 7 : BAa

restoring a standard weight matrix. This eliminates any additional inference latency, making LoRA
deployment-compatible and efficient.

Advantages of LoRA
LoRA offers an efficient and flexible mechanism for adapting large pretrained models using minimal
resources. Its main advantages include:

* Parameter Efficiency: LoRA typically updates less than 5% of the model’s parameters. For
example, tuning a ViT-B with LoRA may require only ~ 0.2% of parameters to be trainable,
enabling efficient training even on consumer hardware [233].

* Deployment Simplicity: Once fine-tuned, the low-rank updates can be merged into the frozen
weights, incurring no additional inference latency or architectural changes.

* Adaptability: LoRA enables tuning of much larger models than could otherwise be supported
by available compute. For a fixed budget, it is often more effective to fine-tune a larger model
with LoRA than to fully fine-tune a smaller one.

* Regularization: The low-rank constraint naturally limits overfitting, especially in low-
data regimes. Empirical results show that LoRA can outperform full fine-tuning on small
datasets [233].

* Composable Modularity: Multiple LoRA adapters can be swapped or merged for different
tasks without modifying the base model, supporting multi-task or continual learning.

Recommended Hyperparameters
The optimal LoRA configuration depends on model size, task complexity, and resource constraints.
The following values provide a practical starting point:
* Rank r: Begin with r € {4,8}. Use smaller ranks (e.g., r = 1,2) for simple tasks or tight
memory budgets. Increase to r = 16 or higher only if clear underfitting is observed [233, 351].
* Scaling o: Set o = r as a safe default. This yields a scaling factor &/r = 1, ensuring stable
updates that are invariant across different rank choices [233]. However, in practice, & can be
treated as an independent hyperparameter:
— r controls the expressive capacity of the adapter.
— «a modulates the update strength—how strongly the adapter modifies the frozen model.
If the adapter is too weak (e.g., underfitting or slow convergence), try increasing ¢« while
keeping r fixed.
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Conversely, lowering o can regularize aggressive updates in high-rank settings. Empirically,
tuning @ € [r,4r] often improves performance for large ViTs or tasks with domain shift.

* Dropout: Apply dropout in the range [0.05,0.1] when r > 16, especially for high-capacity
models or low-data tasks. For r < 8, dropout is typically unnecessary.

* Learning Rate: Use a learning rate of ~ le-4 for the classification head. LoRA adapters can
use 2x to 3x this rate (e.g., 2e-4-3e-4) to accelerate convergence.

* Target Layers: For ViTs, apply LoRA to the attention projection layers—q_proj and
v_proj—as these govern how tokens attend to each other. Optionally, extend to MLP blocks
for greater flexibility, though this increases parameter count.

Example: PyTorch-style LORA Setup

© o N L R W N =

from peft import LoraConfig, get_peft_model
from transformers import ViTForImageClassification

model = ViTForImageClassification.from_pretrained("facebook/dinov2-base")

lora_cfg = LoraConfig(

r=8,

lora_alpha=8,
target_modules=["query", "value"],
lora_dropout=0.05,

bias="none",
task_type="IMAGE_CLASSIFICATION",
)

model = get_peft_model(model, lora_cfg)
model.print_trainable_parameters() # View compression

# After training:
model .merge_and_unload() # Remove LoRA modules for inference

When LoRA Is Not Enough
While LoRA offers a powerful low-cost tuning option, it may saturate under the following conditions:

* Validation accuracy plateaus at < 90% of reported full fine-tuning results.

» Training loss stagnates even after increasing r or tuning learning rates.

* Severe domain shift from pretraining (e.g., medical imaging, aerial footage).

* Fine-grained spatial tasks (e.g., segmentation, depth) often require more flexible updates.

In such cases, progressive unfreezing or full fine-tuning should be considered.

Variants and Extensions
Recent works have extended LoRA to improve expressivity, stability, and training efficiency. Key
developments include:

* LoRA* [204]: Introduces different learning rates for the low-rank matrices A and B, addressing
training instabilities observed in wide models. This modification yields up to 2x faster
convergence and 1-2% higher accuracy over vanilla LoRA on large-scale benchmarks.

* DoRA [373]: Decomposes pretrained weights into direction and magnitude components and
adapts only the directional part via LoRA. This formulation enhances expressivity, narrows the
performance gap with full fine-tuning, and generalizes well across both vision and NLP tasks.
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* Adaptive-rank extensions [423, 641, 762]: Methods such as AdalLoRA, DyLoRA, and
AutoLoRA dynamically tune the rank r of the low-rank updates during training, enabling
more flexible trade-offs between performance and parameter efficiency.

« Stability-focused variants [244, 271]:

— rsLoRA introduces a normalization term to stabilize LoRA training in early stages.
— ALLoRA removes dropout and applies adaptive learning rates, improving robustness
and convergence in short runs.

Why They Matter

* LoRA™" mitigates inefficient gradient propagation in wide models, making it especially effec-
tive for large vision transformers.

* DoRA improves fidelity to full fine-tuning by allowing directional updates and magnitude
preservation, thereby enhancing task-specific adaptation.

* AdaLoRA-style methods enable adaptive scaling of adapter capacity during training, helping
to avoid overfitting and reduce unnecessary computation.

* Variants like rsLoRA and ALLoRA address critical stability issues, including gradient
spikes, dropout sensitivity, and learning rate misalignment.

Summary
LoRA is a scalable, hardware-friendly fine-tuning method that achieves strong transfer with minimal
compute. It is particularly effective when:

* Training large backbones is otherwise infeasible.

* Labeled data are limited.

* Inference latency must remain unchanged.
LoRA enables practitioners to train large self-supervised ViTs (e.g., ViT-L) using modest resources.
In the next subsection, we explore progressive unfreezing and LP-FT strategies that unlock full model
plasticity when LoRA’s outcomes are insufficient, and we have enough computational resources and
data to fine-tune the larger model.
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Progressive Unfreezing and LP-FT

Motivation

When Low-Rank Adaptation (LoRA) underperforms or saturates—particularly under large domain
shifts or on fine-grained tasks—more expressive fine-tuning strategies are needed. This subsection
introduces two such strategies: Progressive Unfreezing and Linear Probing followed by Full
Fine-Tuning (LP-FT). Both approaches aim to balance task-specific adaptation with preservation of
pretrained features, offering stronger generalization than head-only adaptation.

Progressive Unfreezing: Controlled Backbone Adaptation

Progressive Unfreezing gradually relaxes the frozen backbone assumption, unfreezing layers from
the top down (i.e., output-side first). This minimizes catastrophic forgetting and allows stable
adaptation, especially when only a subset of layers need modification.

» Stage-wise Layer Unfreezing: Start with a frozen backbone and a trained head. Then
iteratively unfreeze successive blocks (e.g., Transformer or ResNet stages), training the newly
unfrozen layers with smaller learning rates than earlier ones. This mirrors curriculum learning
for weights.

* Discriminative Learning Rates: Use a decay factor y € [0.7,0.95] across layers. If the
topmost layer group uses learning rate 1)g, set the learning rate for the i-th layer from the top
asm; =1no- Y.

 Stability and Regularization: Freeze BatchNorm/LayerNorm statistics to prevent drift, and
use early stopping to avoid overfitting. Monitor validation metrics after each unfreezing stage.

* Stopping Criteria: If further unfreezing leads to overfitting or stagnant validation perfor-
mance, revert to the previous best configuration. In many tasks, tuning only the top 1-3
layers/transformer blocks suffices.

Example Schedule

1. Train a linear or shallow MLP head on top of the frozen backbone.

2. Unfreeze the topmost layer group (e.g., last Transformer block), train with discriminative LR.
3. Repeat: unfreeze the next group, decay learning rate, monitor validation accuracy.

4. Stop once no gain is observed or overfitting begins.

This approach balances representation reuse and task-specific flexibility, and has been shown to
outperform full fine-tuning on limited-data and out-of-distribution (OOD) benchmarks [309].

LP-FT: Linear Probing Followed by Full Fine-Tuning
Linear Probing then Full Fine-Tuning (LP-FT) is a two-stage method that uses the linear head as
a warm-start initialization for full model adaptation. This strategy preserves early-stage alignment
and improves both convergence and OOD generalization.
» Stage 1 — Linear Probe: Train a classifier head on frozen backbone features. This provides
a robust task-specific initialization and avoids early gradient noise. Note: you can use your
previously trained head (if you followed the suggested strategy) for that purpose.
» Stage 2 — Full Fine-Tuning: Unfreeze the entire backbone and fine-tune all weights. Use a
very small learning rate (e.g., 1e-5-5e—5) and employ aggressive early stopping.
* Learning Rate Warm-up: Optionally apply linear warm-up over 5-10 epochs followed by
cosine decay. This stabilizes adaptation from pretrained weights.
+ Regularization: Use low weight decay (< 107°), and consider gradient clipping or norm
constraints to prevent abrupt drift from pretrained features.
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Best Use Cases
* LP-FT consistently improves out-of-distribution generalization. For example, fine-tuning
after a strong linear probe can yield +10% on datasets like ImageNet-R compared to direct
end-to-end tuning [309].
* LP-FT is well-suited when pretraining and downstream domains differ (e.g., from natural
images to medical or satellite imagery).
* LP-FT outperforms LoRA when adaptation requires high nonlinearity or full model plasticity.

Decision Guidelines

* Use Progressive Unfreezing when task performance is below target, LoRA is saturated, and
you suspect only a few layers require adaptation. Start with the top layers, increase depth
cautiously.

» Switch to LP-FT when performance plateaus after unfreezing several layers or when full
model plasticity is needed for domain adaptation or fine-grained tasks.

* Jump directly to LP-FT after LoRA if the task involves strong distribution shift and LoRA
capacity appears insufficient, especially when compute allows full model updates.

Summary

Progressive unfreezing and LP-FT offer structured and interpretable escalation paths beyond
lightweight methods like LoRA or head tuning. They enable more thorough adaptation while
mitigating catastrophic forgetting and reducing compute overhead relative to full fine-tuning. If per-
formance still saturates—particularly under significant domain shift or highly specialized tasks—one
may ultimately transition to full end-to-end fine-tuning. Since LP-FT and progressive unfreezing
already involve updating most or all of the backbone over time, full fine-tuning is not qualitatively
distinct in mechanism, only in immediacy. For this reason, we do not include a dedicated subsection
for full fine-tuning, treating it instead as the natural culmination of the adaptation continuum.



