
21. Lecture 21: Visualizing Models & Generating Images

Understanding the internal representations and decision processes of convolutional neural networks
(CNNs) is critical for both interpretability and model development. This chapter surveys a variety
of methods to visualize and analyze CNNs, structured thematically and chronologically. We begin
with low-level filters and progress to abstract representations, saliency maps, and generative image
synthesis techniques. Each section corresponds to landmark contributions in the field.

21.1 Visualizing Layer Filters
21.1.1 Visualizing First Layer Filters

Convolutional neural networks (CNNs) learn hierarchical representations from image data, with
early layers detecting local visual patterns and deeper layers progressively capturing higher-level
abstractions. To build intuition about how CNNs process visual inputs, it is instructive to begin by
examining the learned filters in the first convolutional layer across several canonical architectures.

Architecture Comparison
The first convolutional layer in a CNN directly operates on the input image in its raw RGB form.
Consequently, the learned filters in this layer have a natural and interpretable structure. For standard
3-channel color images, the first-layer filter weights have shape

Cout×3×K×K,

where Cout is the number of output channels (i.e., the number of learned filters), and K is the spatial
size of each filter (typically 7 or 11). Each individual filter thus consists of three K×K slices—one
per color channel—which can be stacked and visualized as a small RGB image. This design enables
direct visual inspection of the filters to understand what patterns they are tuned to detect.

• AlexNet [307]: 64×3×11×11
• ResNet-18 / ResNet-101 [206]: 64×3×7×7
• DenseNet-121 [243]: 64×3×7×7

21.1 Visualizing Layer Filters 1407

Despite significant differences in depth and architectural design, these models exhibit a consistent
phenomenon: the filters in the first layer resemble edge detectors, oriented bars, Gabor-like wavelets,
and color-sensitive blobs. These are closely aligned with known properties of early-stage neurons in
the mammalian visual cortex.

Figure 21.1: Visualization of first-layer convolutional filters from AlexNet, ResNet-18, and DenseNet-
121. Each filter is represented as a color image of shape 3×K×K, revealing sensitivity to edges,
orientations, and color gradients.

Interpretation and Limitations
Because the filters in the first layer operate directly on the input image, they can be visualized
straightforwardly as K ×K RGB patches, with each of the 3 channels contributing to a color
composite. This makes the first layer particularly interpretable: we can "see" what the model is
looking for, such as vertical edges, red-green opponency, or high-frequency textures.

However, such visualizations only offer a limited glimpse into the model’s behavior. These filters
detect purely local features and do not account for broader spatial context or higher-order semantics.
As a result, visualizing the first layer alone provides only shallow insight into the network’s full
representational power. To understand how a CNN constructs rich hierarchical features—capable
of recognizing objects, parts, and categories—we must investigate deeper layers, where features
become increasingly abstract and spatially integrated.

This motivates the exploration of visualization techniques for deeper activations and learned
embeddings, which we address in the following sections.

21.1.2 Visualizing Higher Layer Filters
Understanding what deeper layers in a convolutional neural network (CNN) are learning is a
central question in interpretability research. While visualizing the first convolutional layer yields
intuitive insights—thanks to its direct correspondence with RGB pixel inputs—the situation becomes
markedly more complex in deeper layers. These layers no longer respond to simple visual primitives
but to abstract feature combinations, making direct visualization of their filters significantly less
interpretable.

1408 Chapter 21. Lecture 21: Visualizing Models & Generating Images

Example: ConvNetJS Visualization
To illustrate this challenge, consider a toy CNN trained on CIFAR-10, as implemented in Con-
vNetJS [11]. The below figure visualizes the raw filter weights from the first three convolutional
layers of a simple 3-layer architecture:

• Layer 1: 16×3×7×7 — 16 filters applied to 3-channel RGB inputs.
• Layer 2: 20×16×7×7 — 20 filters each operating on all 16 feature maps from Layer 2.
• Layer 3: 20×20×7×7 — 20 filters applied to the 20 feature maps from Layer 3.
Each filter in deeper layers is a stack of K×K slices—one per input channel—which can be

visualized as a set of grayscale images. However, as shown in the below figure, while the first-layer
filters exhibit recognizable edge and color-selective patterns, the filters from Layers 2 and 3 appear
increasingly disorganized and abstract. This reflects a shift in representation: higher-layer filters
are no longer tuned to individual pixel-level structures, but to complex combinations of previously
learned features.

Figure 21.2: Raw filter weights from the first three convolutional layers of a ConvNet trained on
CIFAR-10. While the first-layer filters display interpretable patterns, deeper filters lack obvious struc-
ture, reflecting their abstraction from pixel-level semantics. Visualization source: ConvNetJS [11].

Interpretation and Motivation for Indirect Methods
As we ascend the network hierarchy, each filter becomes sensitive to more intricate spatial composi-
tions—such as repeated textures, curves, object parts, or category-level cues. These higher-order
features are not aligned with natural image statistics or directly grounded in the RGB input space.
Instead, they are formed by arbitrary nonlinear combinations of earlier-layer activations. Moreover,
filters in later layers have larger effective receptive fields, meaning that their responses integrate
information across wider regions of the input image.

Consequently, visualizing the raw weights of deeper filters—even as stacks of grayscale
slices—fails to reveal their functional role. These weights no longer "look for" simple patterns,
but rather detect abstract configurations of patterns-of-patterns. The lack of spatial or semantic
alignment makes their interpretation both difficult and potentially misleading.

21.2 Last Layer Features: Nearest Neighbors, Dimensionality Reduction 1409

To overcome this limitation, later in this chapter we will explore a suite of indirect visualization
techniques—such as activation maximization, guided backpropagation, and feature inversion—which
help reveal what kinds of inputs actually elicit strong activations in higher-layer units. These methods
synthesize or highlight meaningful visual patterns in the input space, offering a more powerful
interpretive lens than static filter weights.

Ultimately, this motivates a deeper shift in focus: rather than interpreting filters in isolation,
we often care more about the representations that the network constructs—especially at its final
convolutional layers. These representations are key to the model’s decision-making process and often
contain high-level semantic information. In the following parts, we examine these deep features
directly and explore how they encode task-relevant signals.

21.2 Last Layer Features: Nearest Neighbors, Dimensionality Reduction
The final layers of a convolutional neural network (CNN) encode compact, abstract representa-
tions that summarize the semantic content of an input image. In classification models such as
AlexNet [307], the penultimate fully connected layer—commonly referred to as fc7—produces a
4096-dimensional feature vector. This layer serves as a bottleneck, compressing spatial and visual
information into a high-level descriptor that feeds into the final classifier. Understanding these
abstract representations is crucial for interpreting model behavior and enables a range of downstream
applications beyond classification, including retrieval, clustering, and transfer learning.

21.2.1 Semantic Similarity via Nearest Neighbors
One intuitive technique to probe the quality of learned features is to compute nearest neighbors in the
last layer’s (pre SoftMax) feature space. For a given query image, we extract its feature vector from
the last layer (pre SoftMax) and compare it to feature vectors from a training set using ℓ2 distance.
This produces a ranked list of semantically similar images.

Figure 21.3: Comparison of nearest neighbors for a test image. Left: Retrieval in raw pixel space,
which is sensitive to visual noise and low-level similarity. Right: Retrieval in the last layer’s
feature space, which captures object-level semantics such as shape, class, and pose. Figure adapted
from [307].

1410 Chapter 21. Lecture 21: Visualizing Models & Generating Images

As can be seen in figure 21.3: Unlike raw pixel-space retrieval—which is highly sensitive to low-level
variations such as lighting, background, or slight translations—feature-space retrieval captures more
robust and semantically meaningful similarities. The features abstract away irrelevant appearance
differences and instead emphasize object identity, pose, and scene context. This property makes
them especially valuable for applications like image search and dataset exploration.

21.2.2 Dimensionality Reduction and Embedding Visualization
Convolutional neural networks learn to represent images in high-dimensional feature spaces—often
with hundreds or thousands of dimensions. While these abstract representations are powerful for
classification, similarity, and downstream tasks, they remain difficult to interpret directly. As humans,
our intuition and perception are fundamentally limited to low-dimensional spaces like 2D and 3D. To
bridge this gap, we turn to dimensionality reduction techniques that project complex feature vectors
into interpretable lower-dimensional spaces.

By visualizing these projections, we can uncover how the network organizes inputs: which
images cluster together, what semantic properties are preserved, and where decision boundaries
might lie. Such visualizations are not only useful for understanding a model’s behavior but also for
identifying failure cases, detecting dataset biases, evaluating the quality of artificially generated or
augmented data, and exploring representation similarity between tasks.

Two widely used techniques for this purpose are:
• Principal Component Analysis (PCA): A deterministic, linear projection method that iden-

tifies directions of maximum variance in the data. By projecting onto the leading principal
components, PCA reduces dimensionality while preserving as much variability as possible. It
is particularly effective at capturing global structure and identifying coarse axes of variation
such as illumination, scale, or pose. For a practical and intuitive introduction to PCA including
Python code and visual demonstrations, we highly recommend Steve Brunton’s excellent
video series on Singular Value Decomposition and PCA from the University of Washington.

Figure 21.4: A 2D t-SNE visualization of feature vectors extracted from the final FC layer of a
CNN trained on ImageNet. Each point represents a test image, positioned such that nearby points
in the plot correspond to images with similar features. This nonlinear embedding preserves local
neighborhoods, revealing the semantic organization of the learned representation space. For instance,
in the bottom left, flower images form a coherent cluster that transitions smoothly into butterflies,
illustrating how the network encodes visual similarity. Figure adapted from [307, 409].

https://www.youtube.com/watch?v=gXbThCXjZFM&list=PLMrJAkhIeNNSVjnsviglFoY2nXildDCcv
https://www.youtube.com/watch?v=gXbThCXjZFM&list=PLMrJAkhIeNNSVjnsviglFoY2nXildDCcv

21.2 Last Layer Features: Nearest Neighbors, Dimensionality Reduction 1411

• t-Distributed Stochastic Neighbor Embedding (t-SNE): A nonlinear, stochastic technique
designed to preserve local structure in the data. Unlike PCA, t-SNE focuses on maintaining
neighborhood relationships, often revealing tight semantic clusters that align with object
categories, poses, or contextual cues [409]. While t-SNE may distort global distances, it
is extremely effective at uncovering fine-grained groupings. For an in-depth and accessible
overview of t-SNE’s mechanisms and limitations, see this annotated guide.

While PCA is computationally efficient and preserves global geometry, it often fails to expose local
semantic clusters. In contrast, t-SNE is specifically tailored to emphasize local similarities, often
revealing latent category structure—but at the cost of distorting distances between distant points and
lacking run-to-run consistency. Both methods offer complementary perspectives on the underlying
feature space and are often used in tandem for exploratory analysis.

Figure 21.5: A t-SNE visualization of image embeddings generated by Stable Diffusion. Each point
represents a high-dimensional image embedding projected into 2D space. Notably, several red apples
are embedded close to tomatoes, likely due to visual similarity in shape and color (both being red
and round). This kind of confusion highlights how the model organizes its internal representation
space and helps diagnose classification ambiguity. Such insights can inform improvements like
augmenting the training set, refining class definitions, or modifying the architecture to better separate
semantically similar classes. Visualization adapted from [38].

Interpretation and Applications
High-level representations such as those from a CNN’s final layers encode rich semantic at-
tributes—ranging from object identity and viewpoint to scene layout and contextual cues. Distances
in this feature space often correlate well with human judgments of visual similarity, enabling a wide
array of practical applications:

• Image retrieval: Finding visually or semantically similar images in large datasets.
• Dataset visualization: Exploring the structure of labeled or unlabeled image corpora.
• Anomaly detection: Identifying outliers or data points poorly aligned with learned manifolds.
• Unsupervised clustering: Automatically grouping inputs by their learned feature similarity.
• Synthetic data evaluation: Comparing simulated or augmented images to real examples.

https://medium.com/@sachinsoni600517/mastering-t-sne-t-distributed-stochastic-neighbor-embedding-0e365ee898ea

1412 Chapter 21. Lecture 21: Visualizing Models & Generating Images

Moreover, these high-level embeddings are often transferable: features learned on large classification
datasets can be reused in novel tasks or domains with minimal fine-tuning. This principle—central
to transfer learning—demonstrates that the representations captured by deep networks are not only
powerful, but also generalizable.

In sum, dimensionality reduction provides a crucial bridge between abstract neural representations
and human-understandable intuition. Through methods like PCA and t-SNE, we can glimpse how
deep models internally organize visual information—and use these insights to refine, audit, and
better exploit our models.

21.3 Visualizing Activations and Maximally Activating Patches
Inspecting the learned weights of a CNN provides a static snapshot of the model’s potential for
pattern detection—its architectural “blueprint” for recognizing features. However, to understand what
the network actually does when processing a specific input, we often examine its activations—the
dynamic feature maps produced as the image flows forward through the network. These activations
reveal which filters fire, and crucially, where in the input those activations occur. In this sense,
weights describe capacity; activations reveal behavior.

How to Visualize Activations
Each convolutional layer produces a 3D tensor of shape C×H×W , where:

• C is the number of filters (channels),
• H×W are the spatial dimensions of each activation map.
Each 2D slice Ac ∈ RH×W reflects how strongly the cth filter responds at each spatial location.

To visualize a specific activation map:

1. Select a channel c ∈ {1, . . . ,C} to isolate one filter’s response.
2. Extract the 2D activation map Ac ∈ RH×W corresponding to that filter.
3. Normalize the values to the display range [0,255], typically via min–max scaling:

A′c = 255 · Ac−min(Ac)

max(Ac)−min(Ac)

This step is crucial because activations are real-valued and unbounded—some may be small
or near-zero (especially due to ReLU), while others are large. Without normalization, these
differences would be visually imperceptible.

4. Render the result as a grayscale image or heatmap. Heatmaps often provide richer visual
detail by using color gradients to emphasize intensity differences, making strong responses
immediately apparent.

21.3 Visualizing Activations and Maximally Activating Patches 1413

Figure 21.6: Example activations from the conv5 layer of a CNN. Each grayscale patch shows
the activation map of a single filter. Brighter regions correspond to stronger activations. The
predominance of dark areas arises from two key effects: (1) the use of ReLU, which sets all negative
pre-activation values to zero, producing sparse feature maps; and (2) the visualization step, which
rescales each map—originally containing real-valued outputs from −∞ to +∞—into the [0,255]
display range. When most values are near zero, this rescaling flattens the output, making subtle
responses appear uniformly dark. Figure adapted from [737].

As we move deeper into a convolutional network, filters become increasingly selective—activating
only in response to highly specific patterns or abstract visual concepts. Their corresponding activation
maps tend to be sparse: most values are zero due to the use of ReLU, which clips all negative
responses. Even among nonzero activations, only a few regions typically "light up." This sparsity can
be beneficial for interpretability, but also poses challenges: min–max normalization of nearly-zero
maps can exaggerate noise or suppress subtle, yet semantically meaningful signals. These artifacts
must be considered when interpreting visualizations.

Why Do Activation Maps Reveal Spatial Information?
Despite their abstract nature, convolutional activations retain spatial structure. Each filter is applied
across an input feature map using weight sharing—the same filter is convolved at every spatial
position. But the output varies based on the local content in the receptive field at each position.
Thus, each activation value Ac[h,w] reflects how well the filter c matched the input region centered
at position (h,w).

Visualizing these 2D slices (e.g., a single 13×13 map from a 128×13×13 tensor) highlights
the spatial pattern of a filter’s response. These patterns can be overlaid on the input (via the effective
receptive field [405]) to estimate where in the original image the filter was activated. However,
deeper layers have increasingly large receptive fields, making it harder to attribute activations to
specific image structures. As a result, spatial precision decreases, and interpretability becomes less
reliable the further we advance.

1414 Chapter 21. Lecture 21: Visualizing Models & Generating Images

What Do Activations Reveal?
Activation maps offer a structured way to investigate a CNN’s learned internal representations.
Specifically, they let us answer:

• Where (spatial localization): Because convolution preserves spatial arrangement, the activa-
tion map shows where in the input each filter fired. This provides coarse localization for the
visual features the filter detects, even without class-specific attribution methods.

• What (feature selectivity): By examining the activation maps across many images, we can
try to infer the type of feature a filter has learned to recognize. Early layers might detect
edges or color gradients [752], while later layers respond to higher-order patterns like textures,
object parts, or semantic categories [32, 737].

• When (context sensitivity): Activation strength across varied inputs reveals when a filter acti-
vates. Some filters are robust—firing across poses, lighting conditions, or backgrounds—while
others activate only under specific circumstances. This sensitivity can indicate generalization
strength or overfitting to spurious correlations.

ReLU activation plays a central role in this analysis: it promotes sparsity, simplifying interpretation
by highlighting only strong, positive responses. But it also discards all negative values—even those
with large magnitude—thereby removing potentially informative inhibitory signals. To recover this
information, one may inspect pre-ReLU activations or experiment with nonzero-centered alternatives
such as Leaky ReLU or ELU [109]. The trade-off between sparsity and representational richness
remains an open research question.

What Can We Do With Activation Maps?
Beyond visual intuition, activation maps support quantitative analysis and practical improvements:

• Debug unexpected behavior and expose spurious correlations: If a filter activates consis-
tently in irrelevant regions—e.g., sky, grass, or watermarks—it may signal that the model
relies on background cues rather than object-relevant features. For instance, a "cow" detector
firing primarily on grass may indicate dataset bias.

• Evaluate feature generality and specialization: By comparing activation maps across inputs,
we can assess whether filters detect broad, reusable patterns (e.g., wheels across vehicle types)
or overfit to narrow visual contexts (e.g., specific breeds or lighting). This aids in diagnosing
underfitting, overfitting, or insufficient dataset diversity.

• Guide architectural and training improvements:
– Pruning: Filters that remain inactive across most inputs may be redundant and removable.
– Augmentation: Overly selective filters may indicate a need for targeted data augmentation

(e.g., varied viewpoints or occlusions).
– Architecture tuning: Imbalanced usage of filters across layers may suggest overparame-

terization or motivate the use of attention, bottlenecks, or depth adjustments.
However, it’s important to recognize the limits of activation map interpretability, leading us towards
further research and hopefully better approaches. We remind the reader that in deeper layers, features
become more abstract and distributed, and receptive fields cover large, overlapping regions of the
input. As a result, the exact visual trigger for a given activation may no longer be clearly localized.
While activation maps remain a powerful tool—especially for understanding early and mid-level
representations—their utility diminishes in deeper layers, where methods like class activation
mapping (CAM) or feature inversion that we’ll cover later become more appropriate.

21.3 Visualizing Activations and Maximally Activating Patches 1415

21.3.1 Maximally Activating Patches
To gain a more concrete and intuitive understanding of what a convolutional filter has learned, an
effective strategy is to examine the image regions that elicit the strongest responses from that filter.
This technique, known as the maximally activating patch method, identifies the specific visual
patterns that most excite a given channel or neuron across a diverse dataset. Rather than inspecting
weights or abstract feature maps, we directly observe which natural image patches consistently
trigger high activations—revealing the visual motifs the network has internalized.

Methodology
The process consists of the following steps:

1. Select a target filter: Choose a specific convolutional layer and channel (e.g., channel 17 in
conv5). This channel acts as a spatially replicated detector for a particular feature across the
input.

2. Forward a dataset through the network: Pass a large collection of diverse images through
the network. For each image, record the full spatial activation map of the selected channel—i.e.,
all values Ac[h,w] at every spatial location.

3. Aggregate and rank responses: Collect all activation values from all images and spatial
positions. Identify the top-K strongest activations globally—these are the spatial locations and
images where the filter responded most strongly across the dataset.

4. Extract corresponding patches: For each of these peak activations, compute the receptive
field in the original input image that led to the activation. This mapping depends on the layer’s
position in the network (e.g., kernel size, stride, padding, pooling). Extract that region from
the input—this is the maximally activating patch for the neuron.

Figure 21.7: Maximally activating input patches for various neurons in a CNN. Each row
shows patches from different input images that produced high activations for a specific neuron.
These patches often reveal consistent visual motifs—such as specific textures, faces, or object
parts—suggesting that the neuron has become specialized for detecting that pattern. Figure adapted
from [584].

1416 Chapter 21. Lecture 21: Visualizing Models & Generating Images

This method is most directly interpretable in fully convolutional architectures, where each spatial
location in an activation map corresponds to a fixed receptive field in the input image. The spatial
correspondence in CNNs enables straightforward mapping from filter activations back to the regions
of the input that caused them. While exact pixel-level alignment can be imprecise—due to overlap-
ping receptive fields, nonlinear activations, pooling layers, and stride effects—the extracted patches
still reliably capture the dominant local visual stimulus that triggered the filter’s response. As such,
they offer a concrete and intuitive glimpse into what the neuron has learned to detect.

Intuition and Insights
This method gives us a dataset-level understanding of what a neuron "looks for". By observing many
input patches that excite a filter, we can infer its role in the learned feature hierarchy. For example,
some neurons specialize in detecting:

• Low-level cues like diagonal edges or color gradients.
• Mid-level textures such as mesh, fur, or bricks.
• High-level semantics such as eyes, animal faces, or wheels.

These patterns tend to be consistent across inputs, offering a clear visual prototype of the features
the filter has internalized.

Beyond interpretability, this method supports diagnosis:
• Redundancy: If many neurons are activated by visually similar patches, it may suggest

overparameterization and motivate pruning.
• Dataset bias: If a neuron fires only when a feature appears in a specific context (e.g., a texture

always on green grass), it may indicate reliance on spurious correlations in the training data.

From “What It Sees” to “What It Uses”
Taken together, activation maps and maximally activating patches provide complementary perspec-
tives on the behavior of individual filters in a convolutional neural network:

• Activation maps show where in a specific input image a filter activates. They highlight the
spatial regions that match the filter’s learned pattern in that image, offering localized insight
into the filter’s response.

• Maximally activating patches reveal what the filter is most tuned to detect. By scanning
across many inputs and extracting only the input regions that trigger the strongest responses,
this method uncovers the most prototypical visual stimuli associated with that filter—regardless
of their spatial position.

While activation maps offer per-image spatial footprints, maximally activating patches distill a filter’s
dataset-wide preferences. The former tells us where a filter fires; the latter tells us what consistently
causes it to fire.
However, both techniques are inherently class-agnostic. They tell us which features a filter responds
to and where it detects them—but not whether those responses contribute positively, negatively, or at
all to the model’s final decision for a specific class. In other words, they capture what the network
notices, but not what it relies on to make a prediction.

To move from feature visualization to decision attribution, we need methods that explicitly
measure how changes to specific input regions affect the output logits or class probabilities. This
brings us to the domain of saliency methods—a family of techniques designed to reveal which parts
of the input were most influential in producing a particular output. We begin this journey with one of
the most direct and interpretable approaches: saliency via occlusion.

21.4 Saliency via Occlusion and Backpropagation 1417

21.4 Saliency via Occlusion and Backpropagation
Saliency methods aim to identify which parts of an input image are most influential for a model’s
prediction. These techniques produce spatial or pixel-level explanations by quantifying how sensitive
the model’s output is to perturbations in the input—highlighting the regions that contribute most
strongly to the predicted class.

21.4.1 Occlusion Sensitivity
A natural way to probe a model’s decision is to ask: “What happens if we hide part of the input?”
Occlusion sensitivity [752] follows this idea in a simple, model-agnostic manner. It systematically
occludes small patches of the input image—one at a time—and measures how the predicted class
confidence changes. If masking a region leads to a significant drop in confidence, that region likely
contains features critical to the model’s decision.

Figure 21.8: Occlusion-based saliency maps [752]. Each image patch is occluded in turn, and the
drop in class confidence is recorded. Darker regions indicate locations where occlusion most
reduced the model’s confidence, corresponding to spatial regions that were most important to the
prediction.

Methodology
1. Define occlusion patches: Subdivide the input image into a grid of fixed-size patches (e.g.,

15×15 pixels), optionally using stride s to control overlap.
2. Mask one patch at a time: Replace each patch with a neutral baseline—commonly a gray

square, blurred patch, or zero-valued block—to simulate information removal.
3. Measure impact on prediction: For each occluded image, run a forward pass through the

model and compute the change in the predicted confidence score for the target class. The
larger the drop, the more critical the masked region is assumed to be.

From Patch Scores to Pixel-Level Saliency
This process yields a grid of scalar values, each representing the change in confidence caused by
occluding a particular patch. To convert this into a smooth, pixel-level saliency map:

• Assign each patch’s score to the pixels it covered—either uniformly or centered.

1418 Chapter 21. Lecture 21: Visualizing Models & Generating Images

• If patches overlap, aggregate the contributions to each pixel by summing or averaging over all
occlusions affecting that location.

• Interpolate the resulting low-resolution grid to match the full image resolution, optionally
applying smoothing to reduce blocky artifacts.

The result is a dense saliency map that visually highlights which regions of the input the model relied
on most for its prediction. Note that in many visualizations, darker areas indicate stronger drops in
confidence—i.e., occlusions that had the most damaging effect on classification. These regions are
interpreted as the most influential for the model’s decision.

Intuition and Interpretation
Occlusion sensitivity provides a direct, human-interpretable diagnostic: “If I hide this part of the
input, does the model still know what it’s looking at?” By observing how the model’s confidence
changes in response to occlusions, we infer which parts of the input are functionally necessary for the
current prediction. Unlike gradient-based saliency, this technique does not rely on access to internal
parameters or derivatives—it simply perturbs the input and watches how the output responds.

Enrichment 21.4.1.1: Advantages and Limitations of Occlusion Sensitivity

Advantages:
• Model-agnostic: Requires no access to model weights or gradients. Works with any black-box

model.
• Conceptually intuitive: Its interpretation is straightforward and visual—important regions are

those whose absence hurts confidence.
• Localized insight: Provides evidence tied to specific input regions, often yielding interpretable

and faithful attributions.

Limitations:
• Computational cost: Requires one forward pass per patch. For high-resolution images or small

stride, this becomes expensive.
• Resolution trade-off: Smaller patches improve spatial granularity but increase the number of

required evaluations.
• Out-of-distribution masking: Large or abrupt occlusions may produce unrealistic inputs,

potentially confusing the model.
• Mask design bias: The choice of occlusion value (e.g., gray vs. blur vs. noise) can significantly

affect results.

21.4.2 Saliency via Gradient Backpropagation
A more efficient method is to compute the gradient of the output score with respect to the input
pixels [570]. This produces a saliency map where each pixel’s intensity corresponds to the magnitude
of its influence:

Mi, j = max
c∈{R,G,B}

∣∣∣∣ ∂Sy

∂ Ii, j,c

∣∣∣∣
Here, Sy is the unnormalized score for the predicted class y, and Ii, j,c is the pixel value at location
(i, j) and channel c. The result is a single-channel map that highlights pixels with the highest
influence on the model’s decision.

21.4 Saliency via Occlusion and Backpropagation 1419

Figure 21.9: Gradient-based saliency map [570]: pixel importance is estimated by computing the
gradient of the class score with respect to each input pixel. Brighter regions correspond to pixels
where small changes most strongly influence the model’s output for the predicted class. In this
example, the saliency map highlights the dog’s shape—indicating that the network’s decision relies
on semantically meaningful regions of the input image.

Interpretation and Use Cases
Gradient-based saliency maps are useful for:

• Localizing object evidence: Which pixels most support the class prediction?
• Debugging dataset bias: Are predictions based on background cues or spurious features?
• Comparing models: How do different architectures attend to input?
Despite their appeal, gradient saliency maps can be noisy and sensitive to model initialization

and ReLU saturation.

Towards Unsupervised Segmentation

Figure 21.10: Foreground extraction via GrabCut applied to saliency maps. Although no explicit
segmentation labels are used, the resulting masks capture object shapes such as birds, snakes, and
insects—indicating that CNN attention aligns well with perceptually salient regions. Figure adapted
from [570].

1420 Chapter 21. Lecture 21: Visualizing Models & Generating Images

As illustrated in Figure 21.10, Simonyan et al. [570] demonstrated that applying classical segmen-
tation algorithms such as GrabCut [535] to gradient-based saliency maps can yield surprisingly
accurate foreground-background separation—even though the network was trained solely for classifi-
cation. This finding underscores the spatial coherence of CNN attention: regions that most influence
class predictions often align well with object boundaries.

While these examples are often cherry-picked and performance may vary considerably across
diverse images and classes, the result is nonetheless striking. It suggests that high-level classification
networks can implicitly acquire useful spatial priors, hinting at their potential for weakly supervised
or unsupervised segmentation—without access to any ground-truth masks.

21.5 Guided Backpropagation of Intermediate Features
Gradients are typically used to update model weights during training—but they can also be repur-
posed for interpretability. While basic saliency maps compute the gradient of the class score with
respect to input pixels, here we extend that idea: instead of analyzing the output neuron, we ask what
causes a specific intermediate neuron to activate. This allows us to inspect what internal features a
CNN is detecting at various depths.

21.5.1 Backpropagation to Visualize Intermediate Neurons
Given an input image, we forward it through the network and pause at an intermediate convolutional
layer (e.g., conv5). This layer outputs a tensor of shape C×H×W—where C is the number of
channels (filters), and H×W is the spatial resolution. We select a specific neuron, defined by its
channel index c and spatial location (h,w), and compute the gradient of that neuron’s activation with
respect to the input image:

∂Ac,h,w

∂ I

This tells us which pixels in the input image most strongly influence the activation of that individual
neuron. Intuitively, it shows the pattern the neuron is "looking for"—that is, what input changes
would most affect that neuron’s response.
Visualizing raw gradients of the class score with respect to input pixels often yields noisy and
unintelligible maps. This noise arises primarily from how gradients propagate through nonlinear
activation functions like ReLU. In particular, irrelevant negative signals can be amplified or useful
contributions canceled, obscuring the underlying patterns that truly drive the model’s decision.

21.5.2 Guided Backpropagation: Cleaner Gradient Visualizations
To address this issue, guided backpropagation [584] modifies the backward pass through ReLU
layers to suppress uninformative gradients and emphasize relevant, excitatory input patterns. It
introduces an additional masking rule during backpropagation:

• Forward pass: ReLU behaves as usual, blocking all negative activations: f (x) = max(0,x).
• Standard backward pass: Gradients are blocked if the forward activation was non-positive.

That is, if x≤ 0, then ∂L
∂x = 0.

21.5 Guided Backpropagation of Intermediate Features 1421

• Guided backpropagation backward pass: Gradients are blocked unless both the forward
activation x and the backward gradient ∂L

∂y are positive. This can be expressed as:

∂L
∂x

=

{
∂L
∂y if x > 0 and ∂L

∂y > 0

0 otherwise

Figure 21.11: Comparison of gradient flow in standard backpropagation vs. guided backpropagation.
The latter only allows gradients to pass through ReLU units when both the activation and incoming
gradient are positive—resulting in sharper and more interpretable saliency maps. Figure adapted
from [584].

Why Does This Help? Intuition and Impact
The exact reasons remain somewhat speculative. What we can empirically deduce is that guided
backpropagation appears to suppress noisy or ambiguous gradient signals—particularly those that
inhibit neuron activation. By allowing only positive gradients to flow through positively activated
neurons, it emphasizes features that excite the network, positively supporting the prediction, filtering
out suppressive or indirect influences.

1422 Chapter 21. Lecture 21: Visualizing Models & Generating Images

21.5.3 Visualizing Intermediate Feature Detectors

Figure 21.12: Visualizing intermediate features using guided backpropagation. Each row corresponds
to one neuron. Left: Input patches from the dataset that maximally activated the neuron. Right:
Guided backpropagation visualizations showing which pixels in the patch most contributed to the
activation.

Guided backpropagation enables us to generate clear and interpretable visualizations of what each
intermediate neuron responds to. For a given neuron and image, the resulting gradient map highlights
which pixels in that input most strongly support that neuron’s activation.
This technique complements the maximally activating patch method (21.3):

• Maximal patches show what kinds of image regions trigger a neuron across the dataset.
• Guided backpropagation shows which pixels within a specific image were responsible for

that neuron’s response.
Together, they offer both a global and local perspective on what each neuron represents: global
preferences from real data, and fine-grained pixel attributions within those preferred regions.

From Saliency to Synthesis
So far, our methods have analyzed fixed input images—identifying which parts contributed most to a
class prediction or neuron activation. But we can ask a more ambitious question: What image—real
or synthetic—would maximally activate a given neuron? Instead of attributing importance within a
fixed input, we aim to generate an image from scratch that embodies the neuron’s ideal stimulus.
This leads to the next technique: gradient ascent visualization, where we synthesize images by
directly optimizing the input to activate specific neurons.

21.6 Gradient Ascent and Class Visualization
Instead of inspecting how a fixed image influences a network’s prediction, we now flip the process:
we synthesize an input image that maximally activates a specific neuron. This neuron can reside
in the final classification layer or any intermediate feature map. The network is treated as a frozen
function f (I) with respect to input image I, and our goal is to optimize the image itself.

21.6 Gradient Ascent and Class Visualization 1423

Objective Function
Formally, we wish to find an image I∗ that maximizes a scalar objective function f (I)—for example,
the activation of a specific neuron—while also maintaining visual plausibility:

I∗ = argmax
I

f (I)︸︷︷︸
neuron activation

+ R(I)︸︷︷︸
image prior regularization

Here:
• f (I) is the value of the neuron we wish to maximize.
• R(I) is a regularization term that encourages the image to resemble a natural input.

Optimization via Gradient Ascent
To optimize this objective, we perform gradient ascent directly on the image:

1. Initialize I← 0 (e.g., a zero image).
2. Forward propagate I through the network to compute f (I).
3. Backpropagate ∂ f (I)/∂ I to obtain gradients w.r.t. the input pixels.
4. Update the image: I← I +η ·∇I (f (I)+R(I))

Figure 21.13: Gradient ascent loop: we synthesize an image I to maximize neuron output by
repeatedly updating it with the gradient ∇I f (I).

21.6.1 Regularization: Making Images Look Natural
Without regularization, the optimization typically yields noisy, high-frequency artifacts. A simple
baseline is ℓ2-norm regularization [570]:

R(I) =−λ∥I∥2
2

This penalizes pixel magnitudes and encourages smoother patterns.

1424 Chapter 21. Lecture 21: Visualizing Models & Generating Images

Figure 21.14: Synthetic images generated by optimizing the input to maximally activate specific out-
put neurons (e.g., dumbbell, dalmatian), using simple ℓ2 regularization to encourage smoothness.
Distinct visual features—such as dumbbell handles or dalmatian-like black-and-white spots—emerge
in the synthesized inputs, offering insight into the discriminative patterns the network associates
with each class. Figure adapted from [570].

Advanced Regularizers
We can improve image realism by applying additional constraints:

• Apply Gaussian blur during optimization.
• Set small pixel values to zero (hard-thresholding).
• Set small gradients to zero (gradient masking).
These enhancements reduce noise and amplify dominant structures in the image, as shown in the

below figure.

Figure 21.15: Improved results using enhanced regularizers: clear patterns emerge that resemble
flamingos, cobras, pelicans, and beetles, according to their respective class synthesized image.

21.6 Gradient Ascent and Class Visualization 1425

21.6.2 Visualizing Intermediate Features
We can apply the same gradient ascent technique to neurons inside hidden layers. By optimizing f (I)
for a specific feature map location in a middle layer (e.g., conv3 or conv5), we uncover abstract
texture patterns that these filters specialize in.

Figure 21.16: Neuron visualizations at different layers: eye-like motifs, spider-like webs in layer 5,
and red/green blobs in layer 3.

Multifaceted Feature Visualization via Generative Models
Earlier methods synthesized preferred inputs using direct gradient ascent in image space, often
constrained by simple regularizers like ℓ2. While interpretable to some degree, these visualizations
tended to be noisy and unnatural. To generate more realistic and semantically coherent preferred
inputs, Nguyen et al. [447] proposed optimizing within the latent space of a deep generative
model—such as a GAN or autoencoder—pretrained to produce natural images.

By searching for latent vectors that produce images which maximally activate a given neuron, this
approach yields high-quality visualizations that stay within the data distribution. Crucially, it also
enables multifaceted analysis: neurons often respond to several distinct visual modes, and these can
be surfaced by clustering the top activating examples and synthesizing a prototype for each cluster.

1426 Chapter 21. Lecture 21: Visualizing Models & Generating Images

Figure 21.17: Examples of realistic images synthesized using the multifaceted feature visualization
approach such as ’strawberry’, ’orange’. Figure adapted from [447].

Figure 21.18: Examples of realistic images synthesized via a generative model to maximally activate
neurons associated with classes like “toaster”, “triumphal arch”, “cellphone”, and others. The
approach ensures that each synthesized image remains within the natural image manifold. Figure
adapted from [447].

Realism vs. Fidelity
While generative models produce more interpretable and visually compelling results, they also
introduce a strong prior that can bias the outcome. The visualizations may reflect assumptions
encoded in the generator rather than the raw, unregularized preferences of the target neuron. Simpler
methods—such as direct optimization in pixel space with basic regularizers—may yield less realistic
but more faithful views into the network’s internal objectives. This reflects a fundamental trade-off
between interpretability and fidelity in feature visualization.

21.7 Adversarial Examples: A Deep Dive into Model Vulnerability 1427

21.7 Adversarial Examples: A Deep Dive into Model Vulnerability
Adversarial examples are inputs containing subtle, human-imperceptible perturbations that cause
deep neural networks to misclassify with high confidence. This phenomenon reveals a profound
vulnerability in the robustness of state-of-the-art AI models, with critical implications for security-
sensitive and safety-critical domains such as autonomous driving, medical diagnostics, and facial
recognition.

21.7.1 Fundamental Attack Mechanisms
From a technical perspective, the crafting of adversarial examples closely mirrors the gradient-based
input optimization techniques introduced earlier for model interpretation—such as saliency maps
and preferred input synthesis. However, while those techniques maximize the activation of a given
class to better understand what the model has learned, adversarial attacks use the same machinery to
intentionally fool the model.

The generation of an adversarial input typically involves solving an optimization problem to find
a minimally perturbed version I∗ of a given input Iorig that causes the model to output an incorrect
class label.

Figure 21.19: Adversarial examples: small, visually indistinguishable perturbations can cause drastic
misclassifications—e.g., an elephant becomes a koala, and a schooner becomes an iPod.

For a targeted attack (aiming to force classification into a specific wrong class c′), this objective can
be formalized as:

I∗ = argmax
I

 Sc′(I)︸ ︷︷ ︸
target class score

−λ · ∥I− Iorig∥∞︸ ︷︷ ︸
perturbation magnitude

 ,

where Sc′(I) is the model’s output score for the target class c′, and the regularization term λ · ∥I−
Iorig∥∞ ensures that the perturbation remains small enough to be imperceptible to humans.

1428 Chapter 21. Lecture 21: Visualizing Models & Generating Images

In essence, adversarial attacks are a malicious repurposing of the same gradient-based tools we
previously used for interpretability—now aimed not at understanding the model, but at exposing its
most brittle failure modes.

21.7.2 Taxonomy of Adversarial Attacks
White-box attacks
These attacks assume full "glass-box" visibility into the model (architecture, weights, gradients),
enabling highly effective, gradient-based perturbations:

• FGSM (Fast Gradient Sign Method) [181]: One-step attack. Computes the gradient of the
loss w.r.t. input once and perturbs each pixel by ε in the direction that maximizes loss—fast
but often coarse.

• BIM / I-FGSM (Basic / Iterative FGSM): Applies FGSM multiple times with smaller step
size and clips after each step. This yields more refined perturbations under the same ∥ ·∥∞ ≤ ε

constraint.
• PGD (Projected Gradient Descent) [411]: Widely regarded as the strongest first-order

adversary, PGD is a principled, iterative attack that maximizes model loss while strictly
enforcing an imperceptibility constraint on the perturbation. It is a cornerstone of both
adversarial evaluation and adversarial training [411].

– Random Initialization within the ε-ball: Unlike FGSM or BIM, PGD begins not from
the original input xorig, but from a randomly chosen point within the ℓ∞-ball of radius
ε . This random initialization allows the attack to explore more directions in the loss
landscape, increasing the chance of escaping local optima and locating truly worst-case
perturbations.

– Gradient Ascent + Projection Loop: PGD performs multiple steps of gradient ascent on
the loss:

x(t+1) = ΠB∞(xorig,ε)

(
x(t)+α · sign

(
∇xL (x(t),y)

))
Each gradient step pushes the input in a direction that increases the loss. The projection
operator Π then clips the result back into the ℓ∞-ball:

B∞(xorig,ε) =
{

x : ∥x− xorig∥∞ ≤ ε
}

ensuring that no pixel is perturbed by more than ε . This enforces imperceptibility and
validity at every step.

Why projection is crucial: Even small gradient steps can overshoot valid bounds—either
violating the ℓ∞ constraint or pushing pixel values outside the allowable range (e.g., [0, 1]).
The projection step acts like a tether, reeling the point back into the valid neighborhood around
xorig, thus preserving visual indistinguishability.
Intuition: Imagine trying to find the highest point (worst-case misclassification) within a tiny
neighborhood around your current location (the original image), while being tethered by a
rope of length ε . PGD lets you take purposeful, uphill steps in the loss landscape—but if
you stray too far, the rope snaps you back into the permissible region. This ensures that the
adversarial example remains both effective and imperceptible.

PGD is not only a powerful attack—it also defines a training-time adversary in robust optimiza-
tion formulations. Its widespread adoption stems from its ability to systematically approximate

21.7 Adversarial Examples: A Deep Dive into Model Vulnerability 1429

the worst-case error within a constrained region, making it the de facto benchmark for evaluat-
ing model robustness.

• Carlini–Wagner (C&W) [67]: A precision attack that solves an explicit optimization problem.
Instead of using sign gradients, C&W jointly minimizes:
(i) a distortion loss (e.g., ∥δ∥2) to keep the perturbation minimal, and (ii) a classification loss
that forces the model to misclassify with high confidence.
This targeted, optimization-based approach produces extremely small perturbations that often
break even robust models with imperceptible changes. Unlike FGSM, which takes a single
sign-based step, C&W adapts both direction and magnitude of every pixel.

Black-box attacks
In these, the attacker has no access to gradients or model internals:

• HopSkipJump [81]: A decision-based algorithm using only final class labels:

1. Initialization: Requires a starting adversarial example (any misclassified image).
2. Boundary search: Performs binary search along the line from the initial example to the

original image to find the closest point on the decision boundary.
3. Gradient estimation: Samples around that boundary point, using model outputs to

estimate a direction that moves toward the original image while staying adversarial.
4. Projection steps: Iteratively take steps along the estimated direction, projecting back

onto the boundary, refining the adversarial example.

This boundary-walking strategy efficiently finds small perturbations with few queries.
• Transfer attacks: Utilize the fact that adversarial examples often transfer across different

models. By crafting perturbations on a surrogate model (e.g., using FGSM, BIM, PGD), the
attacker can often fool the target model without any queries.

• Universal perturbations [440]: A single perturbation δ that fools the model across many
inputs:

1. Initialize δ = 0.
2. For each dataset image x:

– If x+δ is not adversarial, compute a minimal per-image perturbation δx.
– Update δ ← δ +δx and project within an ε-ball.

3. Repeat until δ consistently causes misclassification across the dataset.

This demonstrates a global vulnerability—some directions in input space universally degrade
model performance.

1430 Chapter 21. Lecture 21: Visualizing Models & Generating Images

Figure 21.20: White-box attacks use internal gradients to craft precise perturbations. Black-box
attacks rely on queries or surrogate transfer to mislead the model without internal access.

21.7.3 Milestones in Robustness Evaluation
• Carlini–Wagner attack [67]: Marked a turning point in adversarial research by defeating

many proposed defenses like defensive distillation. It prompted a deep reassessment of what
constitutes genuine robustness.

• Obfuscated gradients [628]: Revealed that many “robust” models only masked gradients,
rather than solving the underlying problem. This discovery exposed a major flaw in evaluation
protocols for robustness.

• Ensemble critique [66]: Demonstrated that naive ensembles of weak defenses do not produce
strong robustness, highlighting the need for principled combinations or fundamentally stronger
strategies.

• Cross-modality attacks [68]: Showed that adversarial vulnerabilities transcend modality
boundaries, enabling attacks to transfer across vision and language models in multimodal
architectures.

21.7.4 Defense Toolbox and Its Limitations
• Adversarial training [411]: The most empirically effective defense, achieved by injecting

adversarial examples into the training loop. While it improves robustness, it significantly
increases computational cost and may reduce clean accuracy. Its effectiveness is often con-
strained to the specific attack types seen during training.

• Input preprocessing: Simple techniques like JPEG compression, denoising, or spatial smooth-
ing aim to “clean” adversarial noise. Though computationally cheap, they are largely ineffec-
tive against adaptive attacks designed to survive such transformations.

• Certified defenses: Provide provable guarantees that no perturbation within a given ℓp

radius can alter the model’s prediction. Techniques such as interval bound propagation and
randomized smoothing are promising but face challenges in scalability and tightness of bounds.

• Architectural approaches: Aim to build inherently robust networks via design, e.g., enforc-
ing Lipschitz continuity, smoothing activations, or using specialized robust layers. While
theoretically appealing, these methods remain less mature and are still an active area of

21.8 Class Activation Mapping (CAM) and Grad-CAM 1431

research.

21.7.5 Real-World Relevance and Persistent Risks
Adversarial examples are not just a lab curiosity—they remain adversarial even after transformations
like printing, rephotographing, or 3D rendering. Notable risk areas include:

• Autonomous driving: Adversarial stop signs or lane markings can mislead onboard vision
systems.

• Facial recognition: Perturbed accessories (e.g., adversarial eyeglasses) can cause identity
spoofing.

• Medical imaging: Subtle modifications to radiology scans can alter diagnostic outcomes.

21.7.6 Open Challenges and Theoretical Connections
Crafting effective attacks remains easier than building robust models. Recent work connects adversar-
ial vulnerability to phenomena like deep double descent [445], where highly overparameterized mod-
els exhibit brittle decision boundaries. Understanding and bridging this generalization–robustness
gap is a central open problem in modern deep learning.

21.8 Class Activation Mapping (CAM) and Grad-CAM
Class Activation Mapping (CAM) [796] is a visualization technique that highlights regions in an
image which are important for a CNN’s classification decision. It operates by projecting the weights
from the final fully connected (FC) layer back onto the feature maps of the last convolutional layer.

Mechanism of CAM
Class Activation Mapping (CAM) [796] provides a way to localize the spatial regions in an image
that are most influential for a CNN’s classification decision. CAM relies on a specific architectural
constraint: the final convolutional layer must be followed by a global average pooling (GAP) layer
and a single fully connected (FC) layer that maps directly to class scores.

Let fk(x,y) denote the activation at spatial location (x,y) of channel k in the final convolutional
layer. After global average pooling, each feature map is reduced to a scalar:

Fk =
1

H ·W

H

∑
x=1

W

∑
y=1

fk(x,y),

where H and W denote the height and width of the feature map. These pooled features {Fk} are then
fed into a linear classifier:

Sc = ∑
k

w(c)
k Fk,

where w(c)
k is the learned weight connecting feature map k to class c in the final FC layer.

Substituting the definition of Fk yields:

Sc = ∑
k

w(c)
k

(
1

H ·W

H

∑
x=1

W

∑
y=1

fk(x,y)

)
=

1
H ·W

H

∑
x=1

W

∑
y=1

∑
k

w(c)
k fk(x,y).

1432 Chapter 21. Lecture 21: Visualizing Models & Generating Images

This formulation reveals that the class score Sc is a global sum of spatial contributions from each
location (x,y). The class activation map Mc(x,y) is then defined as the pre-pooled spatial contribution
for class c:

Mc(x,y) = ∑
k

w(c)
k fk(x,y).

This results in a low-resolution heatmap Mc that highlights the importance of each spatial location
for predicting class c. Since the feature maps fk(x,y) preserve spatial structure (albeit at reduced
resolution due to downsampling), the map Mc can be upsampled (e.g., via bilinear interpolation) to
align with the original image, allowing visual localization of discriminative regions.

Intuition. Each convolutional channel k responds to certain visual patterns (e.g., texture, shape).
The weight w(c)

k indicates how important that pattern is for class c. CAM computes a weighted
combination of these patterns over space, producing a heatmap that reveals where the class-specific
evidence appears in the image.

Figure 21.21: CAM pipeline: from feature maps to class-specific weighted sums, resulting in
localization maps.

21.8 Class Activation Mapping (CAM) and Grad-CAM 1433

Figure 21.22: Examples of CAM heatmaps for the classes dome and barbell. While effective, CAM
is limited to the last conv layer.

Limitations of CAM
CAM is constrained by architecture: it only works with CNNs that end with a global average pooling
layer directly connected to a linear classification head. This rules out many modern networks without
such structure, including those with multiple FC layers or attention blocks. Moreover, CAM can
only visualize the final convolutional layer, which may yield coarse localization due to its low spatial
resolution. It lacks the flexibility to probe earlier layers or networks with more complex topologies.
These limitations motivated the development of gradient-based generalizations such as Grad-CAM,
which we now proceed to cover.

21.8.1 Generalization via Grad-CAM
Grad-CAM (Gradient-weighted Class Activation Mapping) [559] addresses these issues by using the
gradients of any target class flowing into any convolutional layer to produce a localization map. The
weights αc

k for each channel k are computed as:

α
c
k =

1
Z ∑

i
∑

j

∂Sc

∂Ak
i, j

where Ak is the activation map for channel k, and Sc is the score for class c. The final Grad-CAM
map is:

MGrad
c = ReLU

(
∑
k

α
c
k Ak

)

1434 Chapter 21. Lecture 21: Visualizing Models & Generating Images

Figure 21.23: Grad-CAM architecture: gradients are backpropagated to a target conv layer to produce
class-discriminative maps.

21.8 Class Activation Mapping (CAM) and Grad-CAM 1435

Comparative Visualization Examples
Grad-CAM can be applied at any convolutional layer and in a wider range of networks. The following
figure shows comparisons between guided backpropagation, Grad-CAM, and their combination for
different classes (e.g., cat vs dog).

Figure 21.24: Qualitative comparison of different visualization methods applied to an image contain-
ing both a dog and a cat. (a) Original image. (b) Guided Backpropagation [584]: Highlights all
features that strongly influence the output, but lacks class-specificity. (c) Grad-CAM (ours) [559]:
Localizes class-discriminative regions by weighting feature maps based on class gradients. (d)
Guided Grad-CAM: Combines (b) and (c) to produce high-resolution, class-discriminative saliency
maps. (e) Occlusion sensitivity [752]: Systematically occludes image patches and measures score
drop, highlighting regions critical for prediction. (f) Grad-CAM on a deeper ResNet layer: Shows
consistent class-relevant focus across architectures. Notably, Grad-CAM (c, f) yields results visually
similar to occlusion (e) but is more accurate and is orders of magnitude faster to compute.

Grad-CAM is model-agnostic with respect to the output modality—it is not restricted to image
classification. By leveraging the gradients flowing into any convolutional feature map, Grad-CAM
can be extended to tasks like image captioning and visual question answering.

1436 Chapter 21. Lecture 21: Visualizing Models & Generating Images

Figure 21.25: Visual explanations for image captioning using Grad-CAM [559]. Left: Grad-CAM
applied to a captioning model [648] highlights the spatial evidence used when generating the sentence
“A man is sitting at a table with a pizza.” The heatmap localizes relevant objects such as the man
and the pizza, providing intuitive support for the generated caption. Right: Grad-CAM applied to a
global captioning model conditioned on bounding box-level captions produced by a dense captioning
system [269]. The highlighted regions correspond to the caption “A group of people flying kites on a
beach,” showing that Grad-CAM accurately localizes semantically meaningful regions despite not
using any box annotations during training.

21.8.2 Comparison Between CAM and Grad-CAM

Aspect CAM Grad-CAM
Architectural Require-
ment

Requires GAP before the FC clas-
sifier; limited to custom architec-
tures.

No architectural constraints;
works with standard CNNs like
VGG or ResNet.

Weight Calculation Uses fixed weights w(c)
k from the

final FC layer.
Computes dynamic weights α

(c)
k

via gradients of the class score.

Layer Applicability Only the last conv layer before
GAP.

Any convolutional layer, including
early or intermediate ones.

Network Compatibility Only with networks designed with
GAP.

Works with any pretrained CNN
without modification.

ReLU on Heatmap Not explicitly applied; may in-
clude negative activations.

Applies ReLU to focus on positive
class evidence.

Computational Cost Low; forward pass only. Higher; requires a backward pass
to compute gradients.

Table 21.1: Comparison of CAM and Grad-CAM in terms of architecture, flexibility, and output
quality.

21.9 Feature Inversion 1437

In summary, CAM introduced the concept of generating spatially localized class-specific heatmaps
using fixed feature-to-class weights, but its reliance on specific architectures limited its general
applicability. Grad-CAM resolved this by introducing dynamic, gradient-based weighting, allowing
it to be broadly applied to modern CNNs with richer, multi-layer interpretability.

From Explanation to Synthesis: A Path Toward Feature Inversion
CAM and Grad-CAM are valuable tools for interpreting neural networks by highlighting where the
model looks when making a prediction. But they remain reactive—they analyze a network’s behavior
given an input. What if we reversed this perspective?

Instead of asking “Where does the model look?”, we can ask “What does the model see?”.
That is: can we reconstruct or synthesize an input image that would strongly activate a specific
neuron, feature channel, or class output? This brings us to the domain of feature inversion—a
class of methods that aim to decode and visualize the internal representations of neural networks by
optimizing an input image to match hidden activations.

This generative view enables us to move beyond saliency and uncover the implicit visual concepts
a model has learned, making it an essential next step in deep network interpretability.

21.9 Feature Inversion
Feature inversion refers to the task of reconstructing an input image x∗ that corresponds to a given
internal feature representation Φ0 extracted from a trained convolutional neural network (CNN). In
contrast to gradient ascent—where we synthesize an image that maximally activates a particular
neuron—feature inversion aims to recover an image whose intermediate features match those of a
reference image.

Problem Formulation
Let Φ(x) ∈ Rd denote the feature vector extracted from an intermediate layer of a pretrained CNN
when processing an image x ∈ RH×W×C. Given a target image x0, we define Φ0 = Φ(x0). The goal
is to reconstruct an image x∗ such that its feature embedding closely matches Φ0, while also ensuring
that the reconstruction remains natural-looking.

x∗ = arg min
x∈RH×W×C

ℓ(Φ(x),Φ0)+λR(x)

ℓ(Φ(x),Φ0) = ∥Φ(x)−Φ0∥2

Here, R(x) is a regularization term (e.g., total variation) that encourages spatial smoothness or other
natural image priors:

RV β (x) = ∑
i, j

(
(xi, j+1− xi, j)

2 +(xi+1, j− xi, j)
2) β

2

Comparison to Gradient Ascent
Feature inversion minimizes the difference between two fixed feature vectors. In contrast, gradient
ascent attempts to maximize the activation of a particular neuron or class score:

x∗ = argmax
x

f (x)−λR(x)

1438 Chapter 21. Lecture 21: Visualizing Models & Generating Images

Thus, while gradient ascent highlights what inputs cause strong responses, feature inversion recon-
structs what input could have plausibly produced a given representation.

Figure 21.26: Feature inversion optimization: reconstruct an image whose features match those of a
target image, optionally constrained by image priors.

Effect of Layer Depth
The fidelity of reconstructed images depends on the depth of the feature layer:

• Shallow layers: Preserve local textures, colors, and edges. Reconstructions are often nearly
photorealistic.

• Deeper layers: Emphasize high-level semantics and invariance, discarding fine details. Re-
constructions become abstract or blurry.

Figure 21.27: Feature inversion examples. Top to bottom: two elephants, banana near an apple. As
we invert from deeper layers (left→ right), texture and color fidelity degrade, but semantic structure
is broadly preserved.

21.10 DeepDream: Amplifying Neural Perceptions 1439

Interpretability Insights
Feature inversion provides an intuitive, visual understanding of what information is preserved at
each stage of processing inside a CNN. It reveals how much of the original image is retained or
lost—both in low-level visual content and high-level semantic abstraction.

Applications
Beyond interpretability, feature inversion has been used in:

• Visualizing latent representations in self-supervised learning.
• Debugging representations in transfer learning pipelines.
• Data-free knowledge distillation and training set recovery.

Beyond Feature Inversion
While feature inversion focuses on reconstructing images that faithfully match internal represen-
tations, one can also explore how these representations transform an image when amplified. By
nudging the input in directions that increase certain layer activations, the network begins to impose
its learned abstractions onto the image—accentuating patterns, textures, or objects it has internalized.
This approach underlies the technique popularized by Google’s DeepDream, where gradient ascent
is applied iteratively on a real image to enhance the presence of specific learned features. Depending
on the layer selected, the result ranges from abstract texture hallucinations to fully formed semantic
motifs, offering a surreal glimpse into the model’s internal visual vocabulary.

21.10 DeepDream: Amplifying Neural Perceptions
While feature inversion seeks to match internal representations of a specific image, DeepDream [441]
instead aims to amplify patterns already present in a given image—revealing the "visual concepts"
that specific layers respond to. The result is often surreal and hallucinatory, reflecting the abstractions
encoded within the network.

Figure 21.28: DeepDream algorithm: Choose image and layer, forward pass to compute activations,
backpropagate activations as gradient, update image. Equivalent to maximizing feature norm.

1440 Chapter 21. Lecture 21: Visualizing Models & Generating Images

Optimization Objective
Formally, given a fixed CNN and a chosen layer φ , DeepDream seeks to find an image I∗ that
maximizes the L2 norm of the feature activations at that layer:

I∗ = argmax
I
∥φ(I)∥2

2 +R(I)

where R(I) denotes natural image regularization terms such as total variation, Gaussian blur, or pixel
clipping. These are essential to ensure outputs remain visually coherent and human-interpretable.

Amplifying Layer-wise Semantics
DeepDream acts like a feedback loop: it enhances the features already detected by a layer in the
input image. The layer selected significantly influences the visual effect:

• Lower layers: Emphasize edges, colors, and textures. These effects tend to be localized and
geometric.

• Higher layers: Reveal semantic abstractions—patterns resembling animals, eyes, buildings,
or other high-level features.

Figure 21.29: DeepDream on low-level layers: edge filters amplify simple patterns in the sky,
yielding fractal-like textures.

21.10 DeepDream: Amplifying Neural Perceptions 1441

Figure 21.30: DeepDream on high-level layers: dog-like patterns emerge in the clouds as the network
amplifies its abstract internal representations.

Figure 21.31: Examples of DeepDream artifacts: clouds mix with psychedelic animal heads, sky
becomes textured with hybrid features like buildings.

1442 Chapter 21. Lecture 21: Visualizing Models & Generating Images

Dreaming Deeper
The longer the optimization is run, the more pronounced the features become—and the farther the
image drifts from its original content. In effect, the neural network is “dreaming” what it expects to
see, iteratively shaping the image to match layer-wise priors.

Figure 21.32: Progressive amplification of features using DeepDream. The longer the process runs,
the more surreal and abstract the image becomes.

Figure 21.33: Further examples of DeepDream outputs. Internal concepts from different layers
manifest as repeating patterns in generated images.

21.11 Texture Synthesis 1443

Interpretability Value
Although DEEPDREAM lacks the formal guarantees of analytical interpretability techniques, it offers
a vivid and intuitive glimpse into what internal layers of a convolutional neural network are attuned
to. By recursively amplifying activation patterns in natural images, it exposes the preferences of
learned filters—ranging from edges and textures to object-like structures—across multiple layers
of abstraction. In doing so, DeepDream serves as a creative tool that externalizes otherwise hidden
visual concepts, blurring the line between model explanation and algorithmic art.

Perhaps more importantly, the emergence of repetitive motifs and rich, hallucinatory textures
in DeepDream outputs reveals a key inductive bias of CNNs: their strong reliance on texture-
like statistics, even in deeper semantic layers. This observation has inspired a wave of research
into directly modeling such internal representations—not just for visualizing what a network has
learned, but for synthesizing entirely new images governed by its internal feature distributions. Early
approaches based on patch reassembly or nearest-neighbor texture transfer paved the way, but it
was the work of Gatys, Ecker, and Bethge [170] that reframed texture as an optimizable property
encoded in the second-order statistics (Gram matrices) of deep feature activations. This insight laid
the foundation for the field of neural texture synthesis, which we explore next.

21.11 Texture Synthesis
Texture synthesis aims to generate a larger image from a small input patch such that the output
maintains similar local texture statistics. The goal is not to copy the input exactly, but to match its
perceptual properties at the level of local patterns and structure.
Before diving into neural approaches to texture synthesis, it’s helpful to build intuition from the
classical perspective. The task can be illustrated by providing a small texture sample—such as a
patch of bricks or fabric—and asking the algorithm to generate a larger image that visually resembles
it, without explicitly copying any region. This objective is illustrated in the below figure, followed
by a classical nearest-neighbor approach that exemplifies one of the earliest and most influential
strategies in this domain.

Figure 21.34: Texture synthesis task overview. Given a small input patch, the goal is to synthesize a
larger image that preserves similar local statistics—appearing perceptually consistent without direct
repetition.

1444 Chapter 21. Lecture 21: Visualizing Models & Generating Images

21.11.1 Classical Approaches
Early algorithms synthesize textures by directly copying pixels from a source image:

• Non-parametric sampling [140]: Grow the output image one pixel at a time in raster scan
order, matching local neighborhoods using nearest-neighbor search.

• Tree-structured vector quantization [688]: Speeds up sampling using a hierarchical data
structure for efficient neighborhood lookup.

Figure 21.35: Non-parametric texture synthesis [140]. The algorithm grows the output texture
pixel-by-pixel by matching local neighborhoods to those in the source patch using nearest-neighbor
search.

Figure 21.36: Examples of classical texture synthesis applied to a brick wall and a document
fragment. Pixel-based patch matching leads to surprisingly realistic results for locally stationary
textures.

21.11 Texture Synthesis 1445

Limitations of Pixel Matching
These techniques often fail on complex textures where pixel-level neighborhoods do not capture the
underlying structure. They also lack flexibility for incorporating semantics or learning-based priors.

21.11.2 Neural Texture Synthesis via Gram Matrices
Gatys et al. [170] proposed a landmark approach to texture synthesis using convolutional neural
networks pretrained on large-scale image datasets. Rather than matching image pixels directly, their
method captures texture by aligning the second-order statistics of intermediate activations in a CNN.
These statistics are encoded using Gram matrices, which measure feature co-activation patterns
while discarding explicit spatial information.

Constructing the Gram Matrix
Given a feature map tensor Fℓ ∈ RCℓ×Hℓ×Wℓ at some layer ℓ, we compute the corresponding Gram
matrix Gℓ ∈ RCℓ×Cℓ as:

Gℓ
c,c′ = ∑

h,w
Fℓ

c,h,w ·Fℓ
c′,h,w

Each entry Gℓ
c,c′ represents the inner product between feature maps c and c′ across all spatial locations.

This effectively measures the extent to which features c and c′ co-occur in the image, averaged over
space.

Figure 21.37: Constructing the Gram matrix: given feature activations across spatial dimensions, we
compute a C×C matrix that captures global feature co-occurrence statistics.

Why Gram Matrices?
Textures are often characterized by the statistical relationships between local patterns rather than
their precise spatial arrangement. By aggregating over spatial locations, the Gram matrix retains
feature co-activation statistics while discarding spatial structure—making it ideally suited for texture
modeling.

1446 Chapter 21. Lecture 21: Visualizing Models & Generating Images

Computationally, this becomes efficient by reshaping Fℓ from shape C×H×W into a matrix
F ∈ RC×(HW), and computing:

G = FF⊤ ∈ RC×C

This formulation allows fast matrix multiplication instead of nested loops, making it tractable even
for deep layers with large spatial dimensions.

Figure 21.38: Efficient Gram matrix computation by flattening spatial dimensions: from C×H×W
to C×HW , then multiplying by its transpose.

Optimization Pipeline
The texture synthesis process is driven by matching the Gram matrices of a generated image to those
of a reference texture image, across multiple CNN layers. The full algorithm is:

1. Use a pretrained CNN (e.g., VGG-19) and record feature activations Fℓ at selected layers for
a given texture image.

2. Compute Gram matrices Gℓ from these activations.
3. Initialize the synthesized image I from white noise.
4. Iterate:

• Forward I through the CNN to compute new Gram matrices Ĝℓ.
• Compute per-layer style loss:

Eℓ =
1

4N2
ℓ M2

ℓ
∑
c,c′

(
Gℓ

c,c′− Ĝℓ
c,c′

)2

• Aggregate across layers: L = ∑ℓ wℓEℓ

• Backpropagate to update the image I.

21.11 Texture Synthesis 1447

Figure 21.39: Full pipeline of neural texture synthesis: from extracting Gram matrices to iterative
gradient-based refinement of a noise image to match the desired style.

Effect of Matching Higher Layers
Different layers encode different types of information: lower layers capture fine-scale patterns
such as edges or color blobs, while deeper layers encode more abstract texture features. By
matching Gram matrices at higher layers, the synthesized texture captures broader patterns and
global structure—though precise spatial detail may be lost.

Figure 21.40: Texture reconstructions from matching Gram matrices at various depths. Shallow
layers reconstruct local textures; deeper layers capture larger-scale features and structure.

Impact and Legacy
The Gram-based synthesis approach laid the foundation for two influential lines of work:

• Neural Style Transfer – Separates style (texture) and content by combining Gram matrix loss
with feature reconstruction loss [169].

1448 Chapter 21. Lecture 21: Visualizing Models & Generating Images

• Fast Style Transfer – Trains a feedforward network to approximate the optimization, enabling
real-time applications using perceptual loss [268].

These models broadened the use of deep features for both artistic and functional image transforma-
tions—topics we now explore next.

21.12 Neural Style Transfer
21.12.1 Neural Style Transfer: Content and Style Fusion

Neural Style Transfer (NST) generates a new image I∗ that merges the semantic content of one image
with the visual style of another. Drawing from advances in texture synthesis and feature inversion,
NST formulates an optimization problem over a pre-trained convolutional network (typically VGG-
19), where the goal is to make I∗ simultaneously match:

• The content features of a content image Ic, extracted from higher-level activations.
• The style statistics of a style image Is, encoded as Gram matrices across multiple layers.

Intuition
Deep convolutional layers capture high-level abstractions—such as objects and layout—while
shallow layers encode texture, edges, and color patterns. NST leverages this hierarchy by aligning
I∗’s deep activations with Ic’s to preserve structure, and matching Gram matrices at multiple depths
to reflect Is’s stylistic patterns. This allows content and style to be fused in a perceptually coherent
manner.

Figure 21.41: Two optimization objectives: Top—Style (Texture Synthesis) via Gram matrix
matching; Bottom—Content Reconstruction via feature matching.

Optimization Objective
The network acts as a fixed perceptual encoder. To synthesize I∗, we minimize a loss combining:

• Content loss: Encourages I∗ to replicate the activations of Ic at a deep layer (e.g., conv4_2),
capturing object identity and layout.

• Style loss: Encourages I∗ to match the Gram matrices of Is across several layers (e.g., conv1_1
to conv5_1), encoding texture statistics at multiple spatial scales.

21.12 Neural Style Transfer 1449

These losses are defined over the same network, so inputs must be compatible in resolution. Although
Gram matrices are spatially invariant—aggregating across spatial locations—it is standard practice
to resize Ic, Is, and I∗ to a common resolution for stable optimization and fair comparison of content
and style representations.

Together, this dual-objective framework enables the creation of images that preserve the global
structure of a scene while adopting the local visual patterns of a target artistic style.

Figure 21.42: Neural Style Transfer architecture: Content features are extracted from the content
image, and style features (Gram matrices) from the style image. Both guide the optimization of a
new output image.

Optimization via Gradient Descent
To find the stylized image I∗, we define a total loss function that balances content fidelity and style
transfer:

Ltotal(I∗) = α ·Lcontent(I∗, Ic)+β ·Lstyle(I∗, Is)

where:
• Content Loss:

Lcontent(I∗, Ic) = ∥φℓ(I∗)−φℓ(Ic)∥2
2

This term ensures that the synthesized image I∗ matches the content features of Ic at a chosen
higher layer ℓ of the CNN. The function φℓ(·) denotes the activations at layer ℓ, which encode
abstract structural and semantic information.

• Style Loss:

Lstyle(I∗, Is) = ∑
j

w j ·
∥∥G j(I∗)−G j(Is)

∥∥2
F

This term measures the difference in style between I∗ and Is by comparing their Gram matrices
G j(·) at multiple layers j. Each Gram matrix captures the pairwise correlations between
feature channels, reflecting texture and visual style. The weights w j control the relative
importance of style matching across layers.

1450 Chapter 21. Lecture 21: Visualizing Models & Generating Images

The optimization starts from a randomly initialized image—or optionally the content image it-
self—and iteratively updates the pixels of I∗ using gradient descent. In each iteration:

1. I∗ is passed through the CNN to extract content and style features.
2. The total loss Ltotal is computed.
3. Gradients of this loss with respect to the image I∗ are computed via backpropagation.
4. The image is updated to reduce the loss: I∗← I∗−η ·∇I∗Ltotal, where η is the learning rate.

The trade-off parameters α and β modulate the relative emphasis on content preservation versus
style transfer. A higher α/β ratio favors structural fidelity, while a lower ratio prioritizes stylization.
This balance enables the method to flexibly interpolate between photorealistic and painterly outputs.

Figure 21.43: Gradient-based optimization: iteratively update the image to minimize content and
style loss using gradients from a pretrained CNN.

21.12 Neural Style Transfer 1451

Stylization Results
The outcome of this optimization is a new image that visually blends the spatial layout of the content
image with the textures and patterns of the style image.

Figure 21.44: A stylization result: the content structure is preserved while adopting textures and
colors from the style artwork.

Figure 21.45: Additional examples of Neural Style Transfer across various artworks and content
images.

1452 Chapter 21. Lecture 21: Visualizing Models & Generating Images

Controlling Style Intensity
Adjusting the ratio β/α enables control over how strongly the style is imposed versus how much
content is preserved.

Figure 21.46: Effect of changing content-style trade-off: higher style weight yields more aggressive
stylization; higher content weight yields better structural fidelity.

Effect of Style Image Scale
Interestingly, the spatial scale of the style image affects the type of features that are transferred.
Large style images encourage local brushstrokes; small images bias the transfer toward large-scale
visual motifs.

Figure 21.47: Effect of style image resizing: larger style image induces small-scale brush strokes;
smaller style image encourages transfer of large-scale visual features.

21.12 Neural Style Transfer 1453

Combining Styles
Neural Style Transfer can be extended to blend multiple styles by mixing the corresponding Gram
matrices:

L combined
style = γ ·L (1)

style +(1− γ) ·L (2)
style

This enables generation of novel, hybrid artistic effects.

Figure 21.48: Mixed style transfer: combining styles from two different artworks yields visually
blended results.

Limitations
Despite its effectiveness, this method is computationally expensive—each new stylized image
requires many forward and backward passes through the CNN. This limitation motivates the devel-
opment of real-time methods, discussed next.

1454 Chapter 21. Lecture 21: Visualizing Models & Generating Images

21.12.2 Fast Neural Style Transfer
While the original Neural Style Transfer algorithm produces compelling results, its reliance on
iterative optimization makes it computationally expensive. Each stylized image requires dozens to
hundreds of forward and backward passes through a deep network (e.g., VGG-19), making real-time
applications infeasible.

To address this limitation, Johnson et al. [268] proposed an alternative: train a separate feedfor-
ward neural network to perform style transfer in a single forward pass. Once trained, this network
can stylize new content images extremely efficiently—enabling real-time inference.

Training Setup
The core idea is to use the same perceptual loss as before—combining content and style objec-
tives—but apply it to train the weights of a stylization network Tθ (·) rather than directly optimizing
the image pixels.

Figure 21.49: Fast style transfer training loop: use perceptual loss to train a feedforward network
that performs style transfer in a single pass.

Key Insight
Instead of solving:

argmin
I

Lcontent(I, Ic)+Lstyle(I, Is)

for each new image Ic, the fast method learns:

argmin
θ

EIc

[
Lcontent(Tθ (Ic), Ic)+Lstyle(Tθ (Ic), Is)

]
This way, the trained network Tθ can stylize any new image without additional optimization.

21.12 Neural Style Transfer 1455

Stylization Examples
Once trained, the feedforward network can apply the desired style instantly.

Figure 21.50: Fast style transfer examples: output images styled in the aesthetics of Van Gogh’s
Starry Night and Picasso’s The Muse.

Instance Normalization
Ulyanov et al. [640] discovered that replacing batch normalization with instance normalization
significantly improves stylization quality. Unlike batch norm, instance norm normalizes each feature
map independently for each image—preserving per-instance feature statistics critical for style
representation.

Figure 21.51: High-quality stylized outputs from fast neural style transfer trained with instance
normalization.

1456 Chapter 21. Lecture 21: Visualizing Models & Generating Images

Conditional Instance Normalization for Multi-Style Transfer
Training one network per style is inefficient. Dumoulin et al. [136] introduced conditional instance
normalization, allowing a single network to stylize multiple styles. Each style is associated with a
unique set of scale and shift parameters:

IN(x;s) = γ
(s) · x−µ

σ
+β

(s)

where s denotes the selected style and (γ(s),β (s)) are learned per style. This allows:
• Fast switching between styles within one model.
• Style interpolation via blending parameters.

Figure 21.52: Conditional instance normalization enables one network to perform multiple
styles—and interpolate between them.

Summary and Emerging Directions
Fast neural style transfer leverages perceptual losses to train a feedforward network that efficiently
stylizes images in real time—an elegant engineering solution bridging artistic quality and speed.
However, this paradigm is now being extended further by cutting-edge approaches:

• Diffusion Model Style Transfer: Recent work such as DiffeseST introduces training-free style
transfer using diffusion models, leveraging DDIM inversion and spatial-textual embeddings to
achieve high-fidelity stylization without per-image optimization [239].

• Self-Supervised Style Augmentation: SASSL uses neural style transfer as a data augmen-
tation technique in self-supervised learning, improving representation quality by enhancing
style diversity while preserving content semantics [530].

• Semantically-Guided Diffusion Stylization: Models like StyleDiffusion and InST apply
diffusion processes with adaptive conditioning to disentangle style and content features,
offering richer control in stylization [685, 783].

These advances demonstrate the ongoing evolution of style transfer—incorporating generative
modeling, efficient adaptation, and semantic awareness—which promise more powerful and flexible
tools in future editions of this textbook.

