20.1 VAE Training and Data Generation

In the previous chapter, we introduced the Evidence Lower Bound (ELBO) as a tractable surrogate
objective for training latent variable models. We now dive deeper into how this lower bound is used
in practice, detailing each component of the architecture and training pipeline.

20.1.1 Encoder and Decoder Architecture: MNIST Example

Consider training a VAE on the MNIST dataset. Each MNIST image is 28 x 28 grayscale, flattened
into a 784-dimensional vector x € R”®*. We choose a 20-dimensional latent space z € R,

Example: Fully-Connected VAE

x: 28x28 image, flattened to 784-dim vector
z: 20-dim vector

Encoder Network Decoder Network
Ap(z [x) = N(gper Zy) Po(x | 2) = N(tyz Zy)2)
L 20] [in 768 (5,768 |
| Linear(400->20) Linear(400->20) | | Linear(dLD—:vTr’ES} | | Linear[41)u—>?68}
| Linear(784->400) | Linear(20>400) |

Justin Johnson Lecture 20- 13 March 30, 2022

Figure 20.1: Example architecture: The encoder maps input X to ji, and 0. The decoder maps a
sampled z to . and o ., defining a distribution over reconstructed pixels.

20.1 VAE Training and Data Generation 1031

Training Pipeline: Step-by-Step

The ELBO Objective

Recall from our theoretical derivation that our ultimate goal is to maximize the marginal log-
likelihood of the data, log pg (x). However, computing this probability directly involves an intractable
integral over the high-dimensional latent space. To circumvent this, we maximize a tractable surrogate
objective known as the Evidence Lower Bound (ELBO):

10g po(X) > By, (a1x) [log po (x| 2)] — Dk (44 (2] %) || p(2)) - (20.1)

reconstruction term KL regularization

We train two neural networks simultaneously—the encoder (inference network) and the decoder
(generative network)—to maximize this lower bound. Since standard deep learning frameworks (like
PyTorch or TensorFlow) are designed to minimize loss functions, we formally define the VAE Loss
as the negative ELBO:

Auas = —ELBO. (20.2)

Crucial nuance: Minimizing this loss is not strictly equivalent to maximizing the true data likelihood.
We are optimizing a lower bound. The gap between the log-likelihood and the ELBO is exactly
the expected KL divergence between our approximate posterior and the true posterior, log pg (x) —
ELBO = Exp,.. [Dxi(g¢(z | X) || po(z | x))]. If the encoder is not expressive enough to match the
true posterior, this gap remains strictly positive. This fundamental limitation—optimizing a bound
rather than the exact marginal likelihood—is one reason why later generative model families, such
as diffusion models and flow-based models, explore alternative training objectives that do not rely
on variational lower bounds.

For a high-level discussion on the properties of latent spaces (e.g., the manifold hypothesis), please
refer back to Section 19.4.2 (Chapter 19). Below, we detail the practical execution of the VAE
training pipeline in six stages.

1. Run input x through the encoder.
The encoder network gy (z | X) processes the input image, but unlike a standard autoencoder,
it does not output a single latent code. Instead, it predicts a probability distribution over the
latent space. Specifically, for a latent dimensionality J, the encoder outputs two vectors:

,uz|x€RJ and o7 €R’

z|x

These vectors parameterize a diagonal Gaussian distribution g4 (z | x) = A" (u x,diag(ai)

2
zlx

Note on Stability: In many implementations, the encoder actually predicts log-variance, log 62,

rather than o directly. This improves numerical stability by mapping the variance domain

(0,00) to the real line (—oo,o0). The variance is then recovered via an element-wise exponential.
2. Compute the KL divergence between the encoder’s distribution and the prior.

To ensure the latent space remains well-behaved, we enforce a penalty if the encoder’s

predicted distribution diverges from a fixed prior, typically the standard multivariate Gaussian

p(z) = A (0,1).

In what follows, we will often abbreviate i, and o7 as j and o2 for brevity.

1032 Chapter 20. Lecture 20: Generative Models Il

Because both the posterior and prior are Gaussian, the Kullback-Leibler (KL) divergence has
a convenient closed-form solution. We compute this simply by summing over all J latent
dimensions:

D (4o (z| %) || p(2) = »

0 |

J
Zl (1+logo; —u; —o7). (20.3)
=

This term acts as a regularizer. It pulls the mean u towards 0 and the variance 6 towards 1.
Without this term, the encoder could "cheat" by clustering data points far apart (making u
huge) or by shrinking the variance to effectively zero (making o — 0), effectively collapsing
the VAE back into a standard deterministic autoencoder.

3. Sample latent code z using the Reparameterization Trick.
The decoder requires a concrete vector z to generate an output. Therefore, we must sample
from the distribution defined by t and o©.
The Obstacle (Blocking Gradients): A naive sampling operation breaks the computation
graph. Backpropagation requires continuous derivatives, but we cannot differentiate with
respect to a random roll of the dice. If we simply sampled z, the gradient flow would stop at
the sampling node.
The Solution (Reparameterization): We use the reparameterization trick to bypass this
block. We express z as a deterministic transformation of the encoder parameters and an
auxiliary noise source:

2=, +0,,08 €~.N(0,]) (20.4)

Practical Implementation Details:

* Source of Randomness: We sample a noise vector € € R’ from .#7(0,I). This variable
effectively "holds" the stochasticity.

* Vectorization: In practice, we sample a unique € for every data point in the batch during
every forward pass.

* Gradient Flow: The operation © denotes element-wise multiplication. Crucially,
because &€ is treated as an external constant during the backward pass, gradients can flow
freely through p and o back to the encoder weights.

For a visual walkthrough of this mechanism, we recommend:
ML&DL Explained - Reparameterization Trick.

4. Feed the sampled latent code z into the decoder.
The decoder pg(x | z) maps the sampled code z back to the high-dimensional data space. It
outputs the parameters of the likelihood distribution for the pixels (e.g., the predicted mean
intensity for each pixel).

5. Evaluate the reconstruction likelihood.
We measure how well the decoder "explains" the original input x given the sampled code
z. For real-valued images, we typically assume a factorized Gaussian likelihood with fixed
variance. In this case, maximizing the log-likelihood is equivalent (up to an additive constant)
to minimizing the squared ¢, reconstruction error:

ZLrecon = ||X_5ZH§ (20.5)

https://www.youtube.com/watch?v=vy8q-WnHa9A&ab_channel=ML%26DLExplained

20.1 VAE Training and Data Generation 1033

6. Combine terms to compute the total VAE Loss.
The final objective function is the sum of the reconstruction error and the regularization
penalty:

Lyng(X) = =By g, (z1x) 102 po (x| 2)] + Dk (g0 (2| X) || p(2)) - (20.6)

Vv
reconstruction loss regularization loss

The VAE “Tug-of-War” (Regularization vs. Reconstruction):

The VAE objective function creates a fundamental conflict between two opposing goals,

forcing the model to find a useful compromise:

The Reconstruction Term (Distinctness): This term maximizes E[log pg(x | z)]. It drives
the encoder to be as precise as possible to minimize error. The Extreme Case: If
left unchecked, the encoder would reduce the variance to zero (¢ — 0). The latent
distribution would collapse into a Dirac delta function (a single point), effectively turning
the VAE into a standard deterministic Autoencoder. While this minimizes reconstruction
error, the model effectively “memorizes” the training data as isolated points, failing to
learn the smooth, continuous manifold required for generating new images.

The KL Term (Smoothness): This term minimizes Dky.(¢¢(z | X) || p(z)). It forces the en-
coder’s output to match the standard Gaussian prior (.#"(0,1)), encouraging posteriors to
be “noisy” and overlap. The Extreme Case: If left unchecked (i.e., if this regularization
dominates), the encoder will ignore the input x entirely to satisfy the prior perfectly.
This phenomenon, known as Posterior Collapse, results in latent codes that contain
no information about the input image, causing the decoder to output generic noise or
average features regardless of the input.

The Result: This tension prevents the model from memorizing exact coordinates (Autoencoder)

while preventing it from outputting pure noise (Posterior Collapse). The VAE settles on a

“cloud-like” representation that is distinct enough to preserve content but smooth enough to

allow for interpolation and generation.

Reconstructed Z r
Variational Autoencoders 9@ pr———
Train by maximizing the |z ~ N {»“1|7 Yzi2) | Decoder
variational lower bound
1 Ju'r'z E
| Erqgtaiologpe (x12))|— D (44 G212), p(2)) | Fz
1. Run input data through encoder to get a Latent
distribution over latent codes code Sample z from
2. Encoder output should match the prior p(z)! zlE e~ -\, (f1z) “E“ITJ
3. Sample code z from encoder output g Ericodar
4. Run sampled code through decoder to get a _uz| e Yo | >
distribution over data samples
5. Original input data should he likely under |
the distribution output from (4}! 3:{”;

6. Cansample a reconstruction from (4)

Justin Johnson Lecture 20- 21 March 30, 2022

Figure 20.2: Full VAE training pipeline. Note the separation of deterministic parameters (1,) and
stochastic noise (€) in the reparameterization step, allowing gradients to propagate to the encoder.

1034 Chapter 20. Lecture 20: Generative Models Il

Why a Diagonal Gaussian Prior?
We typically choose the prior p(z) to be a unit Gaussian .4 (0,I). While simple, this choice provides
powerful benefits:

* Analytical Tractability: As seen in Equation 20.3, the KL divergence between two Gaussians
can be computed without expensive sampling or integrals.

* Encouraging Disentanglement: The diagonal covariance structure assumes independence
between dimensions. This biases the model towards allocating distinct generative factors to
separate dimensions (e.g., “azimuth” vs. “elevation”) rather than entangling them, although in
practice such disentanglement is not guaranteed.

* Manifold Smoothness: By forcing the posterior to overlap with the standard normal prior, we
prevent the model from memorizing the training set (which would look like a set of isolated
delta functions). Instead, the model learns a smooth, continuous manifold where any point
sampled from .#7(0,1) is likely to decode into a plausible image.

How Can We Generate Data Using VAEs?

Once a Variational Autoencoder is trained, we can use it as a generative model to produce new data
samples. Unlike the training phase, which starts from observed inputs X, the generative process starts
from the latent space.

Sampling Procedure
To generate a new data point (e.g., a novel image), we follow a simple three-step process:

1. Sample a latent code z ~ p(z).
This draws from the prior distribution, which is typically set to .#"(0,I). The latent space has
been trained such that this prior corresponds to plausible latent factors of variation.

2. Run the sampled z through the decoder py(x | z).
This yields the parameters (e.g., mean and variance) of a probability distribution over possible
images.

3. Sample a new data point X from this output distribution.
Typically, we sample from the predicted Gaussian:

X~ JV(nux\zadlag<G)25\z))

In some applications (e.g., grayscale image generation), one might use just the mean [, as
the output.

This process enables the generation of diverse and novel data samples that resemble the training
distribution, but are not copies of any specific training point.

20.2 Results and Applications of VAEs 1035

Variational Autoencoders: Generating Data

After training we can

Sampled | 5
generate new datal data &
Sample x from
1. Sample z from prior p(z) 2|z ~ N{pty., Bypy.) | Decoder
2. Runsampled z through decoder to / \\
get distribution over data x N:.Iz Bale |
3. Sample from distribution in (2) to 3 ~ - o
generate data Latent z
code
Sample z from
prior p(z)

Figure 20.3: Data generation process in a trained VAE. A latent code z ~ p(z) is passed through the
decoder to generate a new image X.

20.2 Results and Applications of VAEs

Variational Autoencoders not only enable data generation but also support rich latent-space manipu-
lation. Below, we summarize key empirical results and capabilities demonstrated in foundational
works.

20.2.1 Qualitative Generation Results
Once trained, VAEs can generate samples that resemble the training data distribution. For instance:
* On CIFAR-10, generated samples are 32x32 RGB images with recognizable textures and
object-like patterns.
* On the Labeled Faces in the Wild (LFW) dataset, VAEs generate realistic human faces,
capturing high-level structures such as symmetry, eyes, hair, and pose.

Variational Autoencoders: Generating Data
32x32 CIFAR-10 Labeled Faces in the Wild

= q

Figures fram L) Dirk

Figure 20.4: VAE-generated images on CIFAR-10 (left) and LFW faces (right). Generated samples
resemble the training distribution but may lack fine detail.

20.2.2

1036 Chapter 20. Lecture 20: Generative Models Il

Latent Space Traversals and Image Editing

Once a VAE has been trained, we are no longer limited to simply reconstructing inputs. Because
the latent prior p(z) is typically chosen to be a diagonal Gaussian, the model assumes that different
coordinates of z are a priori independent. This structural assumption makes it natural to manipulate
individual latent dimensions and observe how specific changes in the code z manifest in the generated
data.

Example 1: MINIST Morphing
A classic illustration of this property is provided by [292] using the MNIST dataset of handwritten
digits. By training a VAE with a strictly two-dimensional latent space, we can visualize the learned
manifold by systematically varying the latent variables z; and z, across a regular grid (using the
inverse CDF of the Gaussian to map the grid to probability mass) and decoding the results.
As shown in the below figure, this reveals a highly structured and continuous latent space. Rather
than jumping randomly between digits, the decoder produces smooth semantic interpolations:
* Vertical Morphing (z;): Moving along the vertical axis transforms the digit identity smoothly.
For instance, we can observe a 6 morphing into a 9, which then transitions into a 7. With
slight variations in z», this path may also pass through a region decoding to a 2.
* Horizontal Morphing (z,): Moving along the horizontal axis produces different transitions.
In some regions, a 7 gradually straightens into a 1. In others, a 9 thickens into an 8, loops into
a 3, and settles back into an 8.
This confirms that the VAE has learned a smooth, continuous manifold where nearby latent codes
decode to visually similar images, and linear interpolation in latent space corresponds to meaningful
semantic morphing.

Variational Autoencoders

The diagonal prior on p(z) causes
dimensions of z to be independent

“Disentangling factors of variation”

AR B R B [[P . . . (. I, . LB o
NNYYLELLL LD DL OO DD DD FE
NNwetdttLoo DD DD DRRERS
NNttt LOoOoD 00D DRLRLEPE
N T b R TR TY P SRSy
e R R R - Pt R TR VR N SN
e D P e g g P P R N SR VY O SN o]
———m e mam OO NN NN NN D
—— s sweon@@d W WRRNREO
e weennO@WRRRRROO 0
SO @OOWWWRWWEOO O
——e—errrroRWWNBBOOOO
————eerctoonwwwbOOOOO
——memrr bl BOOOOD0O
———emrrthhnLLLOOODOOD
———en NN A c00
——mmanh OO0
—=manhafaaggighhheaaad
—mamman gyt ihhhand
NANNNNNYRYYYTYTYT NN VBB LL D

Vary z,

Kingma and Welling, Auto-Encoding Variational Beyes, ICLR 2014 Va r\;" Zz

lustin Jlohnson Lecture 20- 26 March 30, 2022

Figure 20.5: Latent space traversal in a 2D subspace of a trained MNIST VAE. Each cell is decoded
from a distinct point on a regular grid in latent space, showing smooth transitions between digit
images (e.g., 6 — 9 — 7). Adapted from [292].

20.2 Results and Applications of VAEs

The General Editing Pipeline

We can generalize this “traversal” idea into a simple but powerful pipeline for semantic image editing.

As illustrated in the below figure, the process is:

1. Encode: Run the input image x through the encoder to obtain the approximate posterior

qo (2 | X).

2. Sample: Draw a latent code z ~ gy (z | X) using the reparameterization trick from Sec-

tion 20.1.2.

3. Edit in latent space: Manually modify one or more coordinates of z (for example, set

Zj = zj+ 0) to obtain a modified code Z.

4. Decode: Pass the modified code Z through the decoder pg(x | z) to obtain the parameters of

an edited-image distribution pg (X | Z).

5. Visualize: Either sample X ~ pg(x | Z) or directly visualize the decoder’s mean as the edited
image.

In other words, the encoder maps images to a “control space” (latent codes), we apply simple

algebraic edits there, and the decoder renders the results back into image space.

Variational Autoencoders

After training we can edit images

Run input data through encoder to get a

distribution over latent codes

Sample code z from encoder output

Modify some dimensions of sampled code

Run modified z through decoder to get a

distribution over data samples
Sample new data from (4)

Edited ~ r

data s
Sample x from

’I,‘|3 ~ ."\"I'(}'-ﬂ;ﬂza 2::l:;l,-::]

.

v
Modified code Z J
i ..

Latent code e

Sample z from
Z|.‘IT ot -N’(#'zhs Ezh)

)uz|-7-' | i:;z|.-;-: |

Input -

Decoder

Encoder

>

Data o

Figure 20.6: Image editing pipeline with a trained VAE. After encoding an input, we sample a latent
vector z, modify selected coordinates, and decode the modified code to produce semantically varied

outputs.

lustin Johnson

Lecture 20- 3]

March 30, 2022

1038 Chapter 20. Lecture 20: Generative Models Il

Example 2: Disentanglement in Faces

While MNIST mainly exhibits simple geometric morphing, VAEs applied to more complex data often
uncover high-level semantic attributes. This phenomenon is known as disentanglement: particular
dimensions of z align with individual generative factors.

In the original VAE paper [292], the authors demonstrated this on the Frey Face dataset. Even
without label supervision, the model discovered latent coordinates that separately control expression

and pose:
* Varying one latent coordinate continuously changes the degree of smiling.
* Varying another coordinate continuously changes the head pose.

Variational Autoencoders ;‘:,3:;"# R

Degree of smile ."
The diagonal prior on p(z) causes v\ &\ﬁ{a
dimensions of z to be independent = r.#;## -#. .
e

- ' -
Head pose E oiae
SSSSeSes
\

—

Vary z,

“Disentangling factors of variation”

o
*

Kingma and Welling, Auto-Encoding Variational Beyes, ICLR 2014

lustin Johnson Lecture 20- 32 March 30, 2022

Figure 20.7: Semantic editing in a VAE trained on faces. Adjusting individual latent variables
smoothly changes attributes like expression (degree of smile) and pose (head orientation). Adapted
from [292].

This capability was further refined by [308] in the Deep Convolutional Inverse Graphics Network
(DC-IGN). Training on 3D-rendered faces, they identified specific latent variables that act like
“knobs” in a graphics engine:

* Pose (azimuth): rotating the head around the vertical axis while preserving identity.

» Lighting: moving the light source around the subject, while keeping pose fixed.
As shown in the following figure, editing a single latent value can rotate a face in 3D or sweep
the illumination direction, indicating that the model has captured underlying 3D structure from 2D
pixels.

20.3

20.3 Summary & Examples: Variational Autoencoders 1039

Variational Autoencoders: Image Editing

Original Reconstuction Pose (Azimuth) varied Original Reconstuction Light direction varied
-------------- | PR

<

AW CLeS

a
2

ASCTaCeE-
Aewdwew

ASTns o -

eradena

e e Lo

CEER

N R .

lustin Johnson Lecture 20- 33 March 3

Figure 20.8: Latent-space editing in a VAE-style model trained on 3D faces (DC-IGN). Left: varying
a “pose” latent rotates the head. Right: varying a “lighting” latent changes illumination direction.
Adapted from [308].

These examples highlight a key qualitative advantage of VAEs: beyond modeling the data dis-
tribution, they expose a low-dimensional latent space in which many generative factors can be
probed, interpolated, and edited. In practice, disentanglement is imperfect and not guaranteed, but
even partially disentangled latents already enable powerful and interpretable control over generated
images.

Takeaway

Unlike autoregressive models (e.g., PixelCNN) that only model p(x) directly and provide no explicit
latent code, VAEs learn a structured latent representation z. This representation can be used to
interpolate between images, explore variations along semantic directions, and perform targeted edits,
making VAEs particularly valuable for representation learning and controllable generation.

Summary & Examples: Variational Autoencoders

Variational Autoencoders (VAEs) introduce a probabilistic framework on top of the traditional
autoencoder architecture. Instead of learning a deterministic mapping, they:
* treat the latent code z as a random variable drawn from an encoder-predicted posterior
q4(z | X),
* model the data generation process via a conditional likelihood pg(x | z),
* and optimize the Evidence Lower Bound (ELBO) instead of the intractable marginal likeli-
hood pg(x).

1040 Chapter 20. Lecture 20: Generative Models Il

Pros

* Principled formulation: VAEs are grounded in Bayesian inference and variational methods,
giving a clear probabilistic interpretation of both training and inference.

* Amortized inference: The encoder gy (z | x) allows fast, single-pass inference of latent codes
for new data, which can be reused for downstream tasks such as classification, clustering, or
editing.

* Interpretable latent space: As seen in the traversals above, the latent space often captures
semantic factors (pose, light, expression) in a smooth, continuous manifold.

* Fast sampling: Generating new data is efficient: sample z ~ .#"(0,I) and decode once.

Cons
* Approximation gap: VAEs maximize a lower bound (ELBO), not the exact log-likelihood.
If the approximate posterior gy (z | X) is too restricted (for example, diagonal Gaussian), the
model may underfit and assign suboptimal likelihood to the data.
* Blurry samples: With simple factorized Gaussian decoders (and the associated MSE-like
reconstruction loss), VAEs tend to produce over-smoothed images that lack the sharp, high-
frequency details achieved by PixelCNNs, GANSs, or diffusion models.

Active Research Directions
Research on VAEs often focuses on mitigating these downsides while preserving their strengths:
* Richer posteriors: Replacing the diagonal Gaussian g4 (z | x) with more flexible families
such as normalizing flows or autoregressive networks to reduce the ELBO gap.
* Structured priors: Using hierarchical or discrete/categorical priors and structured latent
spaces to better capture factors of variation and induce disentanglement.
* Hybrid models: Combining VAEs with autoregressive decoders (e.g., PixelVAE), so that the
global structure is captured by z while local detail is modeled autoregressively.

Comparison: Autoregressive vs. Variational
Throughout this chapter, we have contrasted two major families of generative models. Figure 20.9
summarizes the trade-offs:
* Autoregressive models (PixelRNN / PixelCNN):
— Directly maximize pg(x) with exact likelihood.
— Produce sharp, high-quality images.
— Are typically slow to sample from, since pixels are generated sequentially.
— Do not expose an explicit low-dimensional latent code.
* Variational models (VAEs):
— Maximize a lower bound on pg(x) rather than the exact likelihood.
— Often produce smoother (blurrier) images with simple decoders.
— Are very fast to sample from once trained.
— Learn rich, editable latent codes that support interpolation and semantic control.
This comparison naturally raises the next question we will address: Can we combine these approaches
and obtain the best of both worlds?

20.3 Summary & Examples: Variational Autoencoders 1041

So far: Two types of generative models

Autoregressive models Variational models

- Directly maximize p(data) - Maximize lower-bound on p(data)
- High-quality generated images - Generated images often blurry

- Slow to generate images - Very fast to generate images

- No explicit latent codes - Learn rich latent codes

Can we combine them and get the best of both worlds?

lustin Johnson Lecture 20- 36 March 30, 2022

Figure 20.9: Comparison of autoregressive models and VAEs. Autoregressive models prioritize
exact likelihood and fine detail; VAESs prioritize latent structure and fast sampling. This motivates
hybrid architectures that seek to combine their respective strengths.

1042 Chapter 20. Lecture 20: Generative Models Il

VQ-VAE-2: Combining VAEs with Autoregressive Models
Motivation
Variational Autoencoders (VAEs) offer a principled latent variable framework for generative mod-
eling, but their outputs often lack detail due to oversimplified priors and decoders. In contrast,
autoregressive models such as PixelCNN produce sharp images by modeling pixel-level dependen-
cies but lack interpretable latent variables and are slow to sample from.

VQ-VAE-2 [514] combines these paradigms: it learns discrete latent representations via vector
quantization (as in VQ-VAE), and models their distribution using powerful autoregressive priors.
This approach achieves both high-fidelity synthesis and efficient, structured latent codes.

Architecture Overview
VQ-VAE-2 introduces a powerful combination of hierarchical encoding, discrete latent represen-
tations, and autoregressive priors. At its core, it improves upon traditional VAEs by replacing
continuous latent variables with discrete codes through a process called vector quantization.
* Hierarchical Multi-Level Encoder:
The input image x € RY*W*C 5 passed through two stages of convolutional encoders:
— A bottom-level encoder extracts a latent feature map z{, € R7%*Woxd where H), < H,
W, < W. This captures low-level image details (e.g., textures, edges).
— A top-level encoder is then applied to z{, producing z¢ € R¥>*Wixd with H, < Hj,
W, < W,,. This higher-level map captures global semantic information (e.g., layout,
object presence).
The spatial resolution decreases at each stage due to strided convolutions, forming a coarse-to-
fine hierarchy of latent maps.
¢ Vector Quantization and Codebooks:
Rather than passing the encoder outputs directly to the decoder, each position in the latent
maps is replaced by its closest vector from a learned codebook.
Intuition: Think of the codebook as a fixed “dictionary” of feature prototypes. Just as we
approximate a sentence using a limited vocabulary of words, VQ-VAE approximates an image
using a limited vocabulary of learnable feature vectors.
Each codebook is a set of K discrete embedding vectors:

Quantization proceeds by computing, for each latent vector z,(i, j), its nearest codebook entry:

z4(i,j) = e, where k* = argmin ||z.(i, j) —ex||2
k

This process converts the encoder output z, € R¥>*W*d (for each level I € {b,t}) into a
quantized tensor z, € R4 _and a corresponding index map:

i e {1,... K}

The quantized representation consists of the code vectors] (i, j) = € Oy (7,).
Why this matters:
— It creates a discrete latent space with symbolic representations and structured reuse of
learned patterns.
— Discretization acts as a form of regularization, preventing the encoder outputs from
drifting.

20.3 Summary & Examples: Variational Autoencoders 1043

— Why not use continuous embeddings? In continuous VAEs, the model often “cheats”
by hiding microscopic details in the infinite precision of the latent vector. Discretization
forces the model to keep only the essential feature prototypes.

— Most importantly, it enables the use of autoregressive priors (PixelCNN) that model the
distribution over discrete indices. These models are exceptionally good at predicting dis-
crete tokens (like words in a language model) but struggle to model complex continuous
distributions.

¢ Shared Decoder (Coarse-to-Fine Reconstruction):
The quantized latents from both levels are passed to a shared decoder:

— The top-level quantized embedding map z/ € RF*W*4 is first decoded into a coarse
semantic feature map.

— The bottom-level quantized embedding z] € RH»>*Woxd jg then decoded conditioned on
the top-level output.

This coarse-to-fine strategy improves reconstruction quality and allows the decoder to combine
semantic context with fine detail.

* Autoregressive Priors (Trained After Autoencoder):
Once the VQ-VAE-2 autoencoder (i.e., encoders, decoder, and codebooks) has been trained to
reconstruct images, we introduce two Pixel CNN-based autoregressive priors to enable data
generation from scratch.
These models operate over the discrete index maps produced during quantization:

- PixelCNN, models the unconditional prior p(i), i.e., the joint distribution over top-level
latent indices. It is trained autoregressively in raster scan order over the 2D grid H, X W,.

— PixelCNN;, models the conditional prior p(ip | i;), i.e., the distribution of bottom-level
code indices given the sampled top-level indices. It is also autoregressive over the spatial
positions Hj, x W}, but each prediction is conditioned on both previous bottom-level
indices and the entire top-level map i,.

Choice of Autoregressive Prior: PixelCNN vs. PixelRNN/LSTMs
While the VQ-VAE-2 architecture uses PixelCNN, other autoregressive sequence models exist.
It is important to understand the trade-offs that motivate this choice:

— Recurrent Models (PixelRNN, Diagonal BiLSTM): RNN-based approaches, such as
PixeIRNN (which includes Row LSTM and Diagonal BiLSTM variants), are valid au-
toregressive models. Because they rely on recurrent hidden states, they theoretically have
an infinite receptive field and can model complex long-range dependencies effectively.

— Why PixelCNN is preferred: Despite the theoretical power of LSTMs, they are inher-
ently sequential—computing pixel ¢ requires the hidden state from 7 — 1. This makes
training slow and difficult to parallelize over large 2D grids. In contrast, PixelCNN uses
masked convolutions. This allows the model to compute the probability of all indices in
the map simultaneously during training (parallelization), offering a crucial speed and
scalability advantage for the high-resolution hierarchical maps in VQ-VAE-2.

Note on Dimensions: The PixelCNN does not input the high-dimensional VQ vectors (e.g.,
size 64). It inputs the indices (integers). Internally, the PixelCNN learns its own separate,
smaller embeddings optimized for sequence prediction.

1044 Chapter 20. Lecture 20: Generative Models Il

How does autoregressive sampling begin?
PixelCNN models generate a grid of indices one element at a time, using a predefined order
(e.g., row-major order). To start the generation process:
— The first pixel (i.e., top-left index i; (1, 1)) is sampled from a learned marginal distribution
(or initialized with a zero-padding context).
— Subsequent pixels are sampled conditioned on all previously generated values (e.g.,
i;(1,2) ~ p(i12 | i1,1), and so on).
This sampling continues until all elements of i, and i, are filled in.

How does this enable generation?

Once we have sampled both latent index maps:

1. Retrieve the quantized embeddings z{ = ¢ [i,] and z] = €")i,).
2. Feed both into the trained decoder: & = Decoder(z/,z}).

This approach allows us to sample novel images with global coherence (via top-level modeling)
and local realism (via bottom-level refinement), while reusing the learned latent structure of
the VQ-VAE-2 encoder-decoder pipeline.

Summary Table: Dimensional Flow and Index Usage

Stage Tensor Shape Description

Input Image x HxWxC Original RGB (or grayscale) image given as input to
the VQ-VAE-2 pipeline.

Bottom Encoder Out- | H, x W), x d Bottom-level continuous latent map produced by the

put z; first encoder. Captures fine-scale features.

Top Encoder Output | H; x W; x d Top-level continuous latent map obtained by passing

z; z;, through the second encoder. Captures high-level,
coarse information.

Top-Level Index Map | H; x W; Ateach spatial location (i, j), stores index of the nearest

i codebook vector in ') for z¢(i, j).

Bottom-Level Index | H, x W, At each spatial location (i, j), stores index of the nearest

Map i, codebook vector in €'?) for z (i,).

Quantized Top-Level | H; x W, x d Latent tensor constructed by replacing each feature in

z! z{ with the corresponding codebook vector from ¢ ®)
using i;.

Quantized Bottom- | Hy x W), xd Latent tensor constructed by replacing each feature in

Level zZ z;, with the corresponding codebook vector from &)
using ip.

Reconstructed Image | H xW xC Final decoded image produced by feeding z/ and zZ

X into the decoder in a coarse-to-fine manner.

Table 20.1: Full data and dimensional flow in VQ-VAE-2 from raw input to final output, including
intermediate stages of encoding, quantization, and reconstruction.

20.3 Summary & Examples: Variational Autoencoders 1045

Next: Training and Inference Flow
Now that the architecture is defined, we proceed to describe the full training process. This includes:
* The VQ-VAE loss decomposition: reconstruction, codebook, and commitment losses.
* How gradients flow with the use of the stop-gradient operator.
* Post-hoc training of PixelCNNs over discrete index maps.
* Image generation during inference: sampling i, — i, — X.

Combining VAE + Autoregressive:
Vector-Quantized Variational Autoencoder (VQ-VAE2)

Train a VAE-like model to generate Use a multiscale PixelCNN to
multiscale grids of latent codes sample in latent code space
VO-YAE Encoder and Decoder Tradnineg Image Generation

pe oot

Raciwi el al, “Generaling Diverse High-Fidelity lmages with VOVAE-2Y NewlPS 2019

Justin Johnson Lecture 20 - 37 March 30, 2022

Figure 20.10: VQ-VAE-2 architecture: hierarchical encoding using vector quantization at two levels,
followed by a decoder and autoregressive priors trained over the discrete code indices.

Training the VQ-VAE-2 Autoencoder
Objective Overview

The VQ-VAE-2 model is trained to reconstruct input images while simultaneously learning a
meaningful discrete latent space. Its objective function is composed of three terms:

gVQ-VAE-Z = o%econ + ag/pcodebook + ﬁ ' ozﬂcommit
N—— SN—— N———
Image Fidelity =~ Codebook Update Encoder Regularization

Each term serves a different purpose in enabling a stable and effective quantized autoencoder.
We now explain each one.

1. Reconstruction Loss (%recon)

This term encourages the decoder to faithfully reconstruct the input image from the quantized latent
codes:

Zrecon = HX_’A‘H%

Here, & = D(z/, zZ) is the image reconstructed from the quantized top and bottom latent maps. This
is a pixel-wise squared error (or optionally a negative log-likelihood if modeling pixels probabilisti-
cally).

Why is the reconstruction sometimes blurry? The use of L, loss (Mean Squared Error) mathemat-
ically forces the model to predict the mean (average) of all plausible pixel values.

1046 Chapter 20. Lecture 20: Generative Models Il

* Example: If the model is unsure whether an edge should be black (0) or white (255), the
“safest” prediction to minimize L, error is gray (127). This averaging creates blur.

e LI vs L2: While L; loss forces the model to predict the median (which can be slightly
sharper/less sensitive to outliers), it still fundamentally penalizes pixel-level differences rather
than perceptual realism.

e Solution: To fix this, modern successors (like VQ-GAN) add an Adversarial Loss, which
penalizes the model if the texture looks “fake” or blurry, regardless of the pixel math.

2. Codebook Update (Z-odebook)
In VQ-VAE, the encoder produces a continuous latent vector at each spatial location, but the model
then quantizes this vector to the nearest entry in a learned codebook. Let

z.(i,j)€R?Y and € ={e,}K,, e, € RY

denote the encoder output and a codebook of K embeddings, respectively. Quantization selects a
discrete index via a nearest-neighbor lookup:

k*(i,j) = argmin |[z.(i, /) — e, z,(i,j) = €= (i)

ke{l,...K}

Why non-differentiability matters. The mapping z, — k* involves an argmin over discrete indices,
which is non-differentiable: infinitesimal changes in z, typically do not change the selected index k*.
Consequently, standard backpropagation cannot propagate gradients through the index selection to
instruct the encoder on how to adjust z,.
VQ-VAE resolves this by decoupling the updates:

* For the Encoder: It uses a straight-through gradient estimator, effectively copying gra-
dients from the decoder input z, directly to the encoder output z, during the backward pass
(treating quantization as an identity map for gradients).

* For the Codebook: It uses a separate update rule to explicitly move the embedding vectors
e, toward the encoder outputs that selected them.

There are two standard strategies to implement this codebook update: a gradient-based objective
(from the original VQ-VAE) and an EMA-based update (a commonly used stable alternative).

(a) Gradient-Based Codebook Loss (Original VQ-VAE) In this approach, the codebook embed-
dings are optimized by minimizing the squared distance between each selected embedding and the
corresponding encoder output. Crucially, we stop gradients flowing into the encoder for this term so
that it updates only the codebook:

og/ﬂcodebook = H Sg[ZE(ia J)] — € (i) HZ . (207)

Here sg|-| denotes the stop-gradient operator. This treats z, as a constant constant, ensuring that:
* Ziodebook pulls the code ey« toward the data point z, (a prototype update).
* The encoder is not pulled toward the codebook by this loss, preventing the two from "chasing"
each other unstably.
To prevents the encoder outputs from drifting arbitrarily far from the codebook, VQ-VAE requires a
separate commitment loss that pulls the encoder toward the code:

Leommit = B||ze (i, /) — seler-i.) |- (20.8)

Intuitively, Zodebook Updates the codes to match the data, while Z,ommic updates the encoder to
commit to the chosen codes.

20.3 Summary & Examples: Variational Autoencoders 1047

(b) EMA-Based Codebook Update (Used in Practice) An alternative strategy, widely used in
modern implementations, updates the codebook using an Exponential Moving Average (EMA). To
understand this approach, it is helpful to view Vector Quantization as an online version of K-Means
clustering.

Intuition: The Centroid Logic. In ideal clustering, the optimal position for a cluster center
(codebook vector e;) is the average (centroid) of all data points (encoder outputs z.) assigned to it.

optimal ZZg assigned to k
k

~ Count of z, assigned to k

Unlike K-Means, which processes the entire dataset at once, deep learning processes data in small
batches. Updating the codebook to match the mean of a single batch would be unstable (the codebook
would jump around wildly based on the specific images in that batch).
The EMA Solution. Instead of jumping to the batch mean, we maintain a running average of the
sum and the count over time. We define two running statistics for each code k:

* Ni: The running count (total "mass") of encoder vectors assigned to code k.

* Mj: The running sum (total "momentum") of encoder vectors assigned to code k.
For a given batch, we first compute the statistics just for that batch:

npAteh — Y 1[k*(i,j) = k], et — Y 1[k* (i, j) = K]z (i j).
ij ij

We then smoothly update the long-term statistics using a decay factor 7y (typically 0.99):

N Ny M MY 4 (1 y) b, (20.9)
———
History New Data

Deriving the Update. Finally, to find the current codebook vector e;, we simply calculate the
centroid using our running totals:

(t)
() _ Total Sum M;
- = : 20.1
“ Total Count N/Et) (20.10)

Why update this way?

* Stability: This method avoids the need for a learning rate on the codebook. The codebook vec-
tors evolve smoothly as weighted averages of the data they represent, reducing the oscillatory
behavior often seen with standard gradient descent.

* Robustness: It mimics running K-Means on the entire dataset stream, ensuring codes eventu-
ally converge to the true centers of the latent distribution.

In this variant, the encoder is still trained via the straight-through estimator and commitment loss.
The only difference is that the codebook vectors are updated analytically, effectively smoothing out
the prototype dynamics.

Summary of Update Strategies

* Gradient-based: Updates ey via Zodebook (EqQ. 20.7). Requires balancing with commitment
loss; moves codes via standard optimizer steps.

* EMA-based: Updates e; via running statistics (Eq. 20.10). Acts as a stable, online K-Means
update, ignoring gradients for the codebook itself.

1048 Chapter 20. Lecture 20: Generative Models Il

3. Commitment Loss (Lcommit)
This term encourages encoder outputs to stay close to the quantized embeddings to which they are
assigned:

o%ommit = Hze - Sg[e]H%

Here, we stop the gradient on e, updating only the encoder. This penalizes encoder drift and forces it
to "commit” to one of the fixed embedding vectors in the codebook.

Why Two Losses with Stop-Gradients Are Needed

We require both the codebook and commitment losses to properly manage the interaction between
the encoder and the discrete latent space.

Intuition: The Dog and the Mat. Why can’t we just let both the encoder and codebook update
freely toward each other? Imagine trying to teach a dog (the Encoder) to sit on a mat (the Codebook
Vector).

* Without Stop Gradients (The Chase): If you move the mat toward the dog at the same time
the dog moves foward the mat, they will meet in a random middle spot. Next time, the dog
moves further, and the mat chases it again. The mat never stays in one place long enough to
become a reliable reference point (“anchor’). The codebook vectors would wander endlessly
(oscillate) and fail to form meaningful clusters.

* With Stop Gradients (Alternating Updates):

— Codebook Loss: We freeze the Encoder. We move the Codebook vector to the center of
the data points assigned to it (like moving the mat to where the dog prefers to sit). This
makes the codebook a good representative of the data.

— Commitment Loss: We freeze the Codebook. We force the Encoder to produce outputs
close to the current Codebook vector. This prevents the Encoder’s output from growing
arbitrarily large or drifting away from the allowed "dictionary" of codes.

The stop-gradient operator ensures that only one component — either the encoder or the codebook
— is updated by each loss term. This separation is essential for training stability.

Compact Notation for Vector Quantization Loss
The two terms above are often grouped together as the vector quantization loss:

Lyq = |Isglze] —ell3+ Bllze — sgle]ll3

Training Summary
1. Encode the image x into latent maps:

X —>Z) — 2
2. Quantize both latent maps:
2(i.j) = V(i)], 2 (i,7) =€ fin(i,)]

where ip,i; € {1,...,K} are index maps pointing to codebook entries.
3. Decode the quantized representations:

%= D(a!.)

20.3 Summary & Examples: Variational Autoencoders 1049

4. Compute the total loss:

N l l
Z=Ix-xI3+ ¥ [lsglet’]— 3+ Bll2" — sgle]|
te{t,b}

5. Backpropagate gradients and update:
* Encoder and decoder weights.
* Codebook embeddings.

Training Summary with EMA Codebook Updates
If using EMA for codebook updates, the total loss becomes:

Aqvae2 = |x—%]3 +Bllz. —sgle]||3
—_— —.—.——

Reconstruction Commitment Loss

The codebook is updated separately using exponential moving averages, not through gradient-based
optimization.

This concludes the training of the VQ-VAE-2 autoencoder. Once trained and converged, the encoder,
decoder, and codebooks are frozen, and we proceed to the next stage: training the autoregressive
PixelCNN priors over the discrete latent indices.

Training the Autoregressive Priors
Motivation
Once the VQ-VAE-2 autoencoder has been trained to compress and reconstruct images via quantized
latents, we aim to turn it into a fully generative model. However, we cannot directly sample from the
latent codebooks unless we learn to generate plausible sequences of discrete latent indices — this is
where PixelCNN priors come into play.

These priors model the distribution over the discrete index maps produced by the quantization
process:

i {1,... KW 5, e {1, K} W

Hierarchical Modeling: Why separate priors?
Two PixelCNNs are trained after the autoencoder components (encoders, decoder, codebooks) have
been frozen. We use two separate models because they solve fundamentally different probability
tasks:
* Top-Level Prior (Pixel CNN;):
This models the unconditional prior p(i;), i.e., the joint distribution over top-level latent
indices. It generates the “big picture” structure from scratch and has no context to rely on.

H_ W

P(i;) = H Hp(it[hvw] ’it[< hv:]vit[h)< W])

h=1w=1

Here, each index is sampled conditioned on previously generated indices in raster scan order
— rows first, then columns.

1050 Chapter 20. Lecture 20: Generative Models Il

¢ Bottom-Level Prior (PixelCNN,):
This models the conditional prior p(i, | i;). It fills in fine details (texture). Crucially, it is
conditioned on the top-level map. It asks: “Given that the top level says this area is a Face,
what specific skin texture pixels should I put here?”

H, W,
lb’l, anlbhw lb<h]ib[h,<w],it)

Each index i,[h,w] is conditioned on both previously generated indices in i, and the full
top-level map i,.

Overall Training Details
* The PixelCNNs are trained using standard cross-entropy loss on the categorical distributions
over indices.
* Training examples are collected by passing training images through the frozen encoder and
recording the resulting index maps iy, ij.
* The models are trained separately:
— PixelCNN;: trained on samples of i
— PixelCNN,,: trained on i, conditioned on i,

Sampling Procedure
At inference time (for unconditional generation), we proceed as follows:

1. Sample i~ p(i;) using PixeICNN;.
2. Sample iy ~ p(ip | it) using Pixel CNN,,.
3. Retrieve quantized codebook vectors:

zlhow] = C Vi hwl], zi[hw] =E O i [h,w]]

A

4. Decode (z,z]) — %

Initialization Note

Since PixelCNNs are autoregressive models, they generate each element of the output one at a time,
conditioned on the previously generated elements in a predefined order (usually raster scan — left to
right, top to bottom). However, at the very beginning of sampling, no context exists yet for the first
position.

To address this, we initialize the grid of latent indices with an empty or neutral state — typically

done by either:

* Padding the grid with a fixed value (e.g., all zeros) to serve as an artificial context for the first
few pixels.

* Treating the first position (0,0) as unconditional and sampling it directly from the learned
marginal distribution.

From there, sampling proceeds autoregressively:

* For each spatial position (/,w), the PixelCNN uses all previously sampled values (e.g., those
above and to the left of the current location) to predict a probability distribution over possible
code indices.

* A discrete index is sampled from this distribution, placed at position (&, w), and used as context
for the next position.

20.3 Summary & Examples: Variational Autoencoders 1051

This procedure is repeated until the full latent index map is generated.

Advantages and Limitations of VQ-VAE-2
VQ-VAE-2 couples a discrete latent autoencoder with autoregressive priors (Pixel CNN-style) over
latent indices. This hybrid design inherits strengths from both latent-variable modeling and autore-
gressive likelihood modeling, but it also exposes specific trade-offs.

* Advantages

— High-quality generation via abstract autoregression. Instead of predicting pixels
one-by-one, the prior models the joint distribution of discrete latent indices at a much
lower spatial resolution. This pushes autoregression to a more abstract level, capturing
long-range global structure (layout, pose) while the decoder handles local detail.

— Efficient sampling relative to pixel-space. By operating on a compressed (and hi-
erarchical) grid of latent indices, the effective sequence length is drastically reduced
compared to full-resolution pixel autoregression, making high-resolution synthesis more
practical.

— Modularity and reuse. The learned discrete autoencoder provides a standalone, reusable
image decoder. One can retrain the computationally cheaper PixelCNN prior for new
tasks (e.g., class-conditional generation) while keeping the expensive autoencoder fixed.

— Compact, semantically structured representation. Vector quantization yields a dis-
crete code sequence that acts as a learned compression of the image, naturally suiting
tasks like compression, retrieval, and semantic editing.

* Limitations

— Sequential priors remain a bottleneck. Despite the compressed grid, the priors generate
indices sequentially (raster-scan order). This inherent sequentiality limits inference speed
compared to fully parallel (one-shot) generators.

— Training complexity. The multi-stage pipeline—(i) training the discrete autoencoder,
then (ii) training hierarchical priors—is often more cumbersome to tune and engineer
compared to end-to-end approaches.

— Reconstruction bias (Blur). The autoencoder is typically trained with pixel-space losses
(like L), which mathematically favor "average" predictions. This can result in a loss of
high-frequency texture details, as the model avoids committing to sharp, specific modes
in the output distribution.

10562 Chapter 20. Lecture 20: Generative Models Il

Qualitative Results

Combining VAE + Autoregressive: VQ-VAE2
256 x 256 class-condi

Redshank 1‘}‘:‘ E 1

Fekinese

ional samples, trained on |
= : &

Papillon

Drake

Spotted Salamander

Figure 20.11: Class-conditional ImageNet generations from VQ-VAE-2. Autoregressive priors over
discrete latents capture global structure while the decoder synthesizes local detail.

Combining VAE + Autoregressive: VQ-VAE2
1024 x 1024 generated faces, trained on FFHQ

Razavi et al, “Gererstng Uiverse High-Fdelity Images with YOARE-2" NearlPS 2012

Justin Johnson Lecture 20- 40 March 30, 2022

Figure 20.12: Face samples (FFHQ) generated using VQ-VAE-2. The hierarchical latent structure
supports coherent global geometry and sharp textures.

The Pivot to Adversarial Learning. While VQ-VAE-2 achieved state-of-the-art likelihood results,
the limitations highlighted above—specifically the sequential sampling speed and the blur induced
by reconstruction losses—set the stage for our next topic.

To achieve real-time, one-shot generation and to optimize strictly for perceptual realism (ignoring
pixel-wise averages), we must abandon explicit density estimation. We now turn to Generative
Adversarial Networks (GANSs), which solve these problems by training a generator not to match a
probability distribution, but to defeat a competitor.

20.4 Generative Adversarial Networks (GANS) 1053

Generative Adversarial Networks (GANS)

Bridging from Autoregressive Models, VAEs to GANs
Up to this point, we have studied explicit generative models:

* Autoregressive models (e.g., PixelCNN) directly model the data likelihood p(x) by factorizing
it into a sequence of conditional distributions. These models produce high-quality samples but
suffer from slow sampling, since each pixel (or token) is generated sequentially.

* Variational Autoencoders (VAEs) introduce latent variables z and define a variational lower
bound on log p(x), which they optimize during training. While VAEs allow fast sampling,
their outputs are often blurry due to overly simplistic priors and decoders.

* VQ-VAE-2 combines the strengths of both worlds. It learns a discrete latent space via
vector quantization, and models its distribution using autoregressive priors like Pixel CNN —
allowing for efficient compression and high-quality generation. Crucially, although it uses
autoregressive models, sampling happens in a much lower-resolution latent space, making
generation significantly faster than pixel-level autoregression.

Despite these advancements, all of the above methods explicitly define or approximate a probability
density p(x), or a lower bound thereof. This requires likelihood-based objectives and careful
modeling of distributions, which can introduce challenges such as:

* Trade-offs between sample fidelity and likelihood maximization (e.g., in VAEs).

* Architectural constraints imposed by factorized likelihood models (e.g., Pixel CNN).

This leads us to a fundamentally different approach: Generative Adversarial Networks (GANSs).
GANs completely sidestep the need to model p(x) explicitly — instead, they define a sampling
process that generates data, and train it using a learned adversary that distinguishes real from fake.
In the next section, we introduce this adversarial framework in detail.

Enter GANs

Generative Adversarial Networks (GANSs) [180] are based on a radically different principle. Rather
than trying to compute or approximate the density function p(x), GANs focus on generating samples
that are indistinguishable from real data.

They introduce a new type of generative model called an implicit model: we never write down p(X),
but instead learn a mechanism for sampling from it.

Setup: Implicit Generation via Adversarial Learning
Sampling from the True Distribution
Let X ~ pgaa(X) be a sample from the real data distribution — for instance, natural images. This
distribution is unknown and intractable to express, but we assume we have access to i.i.d. samples
from it (e.g., a dataset of images).

Our goal is to train a model whose samples are indistinguishable from those of pqa,. To this end,
we adopt a latent variable model:

* Define a simple latent distribution p(z), such as a standard Gaussian .#"(0,I) or uniform

distribution.

 Sample a latent code z ~ p(z).

* Pass it through a neural network generator x = G(z) to produce a data sample.
This defines a generator distribution pg(x), where the sampling path is:

z~p(z) = x=G(z)~pe(x)

1054 Chapter 20. Lecture 20: Generative Models Il

The key challenge is that we cannot write down pg(X) explicitly — it is an implicit distribution
defined by the transformation of noise through a neural network.

Discriminator as a Learned Judge

To bring pg closer to pgaa, GANs introduce a second neural network: the discriminator D(x),
which is trained as a binary classifier. It receives samples from either the real distribution pga, or the
generator pg, and must learn to classify them as:

1 if X ~ pdata (real)

D(x) = :
0 ifx~ pg (fake)

The generator G, meanwhile, is trained to fool the discriminator — it learns to produce samples that
the discriminator cannot distinguish from real data.

Adversarial Training Dynamics
The result is a two-player game: the generator tries to minimize the discriminator’s ability to detect
fakes, while the discriminator tries to maximize its classification accuracy.

Generative Adversarial Networks
Setup: Assume we have data x; drawn from distribution p,(x). Want to sample from py...
Idea: Introduce a latent variable z with simple prior p(z).

Sample z ~ p(z) and pass to a Generator Network x = G(z)
Then x is a sample from the Generator distribution p;. Want pg = py...!

Generator Generated Discriminator
Network Sample Network
Sample D
Fak
z from p, ¢ G axe

Train Generator Network G to convert
z into fake data x sampled from pg Real

by “fooling” the discriminator D] Train Discriminator Network D to
o ot a1, “Generatiee Adversan| Kote?, Nours 21113 Real Sample classify data as real or fake {1/0)

Justin Johnson Lecture 20 - 49 March 30, 2022

Figure 20.13: Generative Adversarial Networks (GANs): A generator network transforms latent
noise z into samples. A discriminator tries to classify them as fake or real. The two networks are
trained adversarially.

* The discriminator D is trained to maximize the probability of correctly identifying real vs.
generated data.
* The generator G is trained to minimize this probability — i.e., to make generated data look
real.
At equilibrium, the discriminator is maximally uncertain (i.e., it assigns probability 0.5 to all inputs),
and the generator’s distribution ps matches the real distribution pgyta.

Core Intuition

The fundamental idea of GANSs is to reframe generative modeling as a discrimination problem: if
we can’t explicitly define what makes a good image, we can still train a network to tell real from
fake — and then invert this process to generate better samples.

20.4 Generative Adversarial Networks (GANS) 1055

In the next part, we will formalize this game-theoretic setup and introduce the original GAN loss
proposed by Goodfellow et al. [180], including its connection to Jensen—Shannon divergence,
optimization challenges, and variants.

20.4.2 GAN Training Objective

We define a two-player minimax game between G and D. The discriminator aims to classify real vs.
fake images, while the generator tries to fool the discriminator. The objective function is:

minmax V(D,G) = Exvpy,, 108 D(X)] +Eqep(y) log(1 — D(G(2)))]

* The discriminator maximizes both terms:
- log D(x) encourages D to classify real data as real (i.e., D(x) — 1).
- log(1 —D(G(z))) encourages D to classify generated samples as fake (i.e., D(G(z)) —
0).
» The generator minimizes the second term:

IEEz~p(z) [lOg(l - D(G(Z))>]

This term is minimized when D(G(z)) — 1, i.e., when the discriminator believes generated
samples are real.

Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a minimax game

Discriminator wants Discriminator wants
D{x) = 1 for real data Di{x) = O for fake data
A A
i \ /)
min max (Ex"“]ndata [log D]+ E, pey [log (1 — D(6 (z)))])
Generator Generated Discriminatar : .
Network Sample Network
saiple | z G =—|_ Fake
z from p, =
B Lw

llow ot al, “Genestie Ad | Kats”, NeurlPs 20014

Justin Johnson Lecture 20 - 54 March 30, 2022

Figure 20.14: Adversarial training objective: the discriminator classifies between real and fake
images, while the generator tries to produce fake images that fool the discriminator.

The generator and discriminator are trained jointly using alternating gradient updates:

D+ D \Y% D
fort=1,...,T: < D+apVpV(G,D)
G+ G—0oasVsV(G,D)

Difficulties in Opfimization
GAN training is notoriously unstable due to the adversarial dynamics. Two critical issues arise:

1056 Chapter 20. Lecture 20: Generative Models Il

* No single loss is minimized: GAN training is a minimax game. The generator and discrimina-
tor influence each other’s gradients, making it difficult to assess convergence or use standard
training curves.

* Vanishing gradients early in training: When G is untrained, it produces unrealistic images.
This makes it easy for D to assign D(G(z)) ~ 0, saturating the term log(1 — D(G(z))). Since
log(1 —x) flattens near x = 0, this leads to vanishing gradients for the generator early on.

Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a minimax game

min max (Ex~paa:a [log D(x)] + E,-pz) [log (1 — D(é}.‘ (f)))])

At start of training, generator is very bad %
and discriminator can easily tell apart 2
real/fake, so D(G(z)) close to 0
Problem: Vanishing gradients for G

—4| — log(l — D{G(z))
00 0.2 0.4 0.6 0.8 1.0
I at al, “Generatrae Ad | Kats”, NoyrlPs 2014 D{G{Z])

Justin Johnson Lecture 20 - 60 March 30, 2022

Figure 20.15: At the start of training, the generator produces poor samples. The discriminator easily
identifies them, yielding vanishing gradients for the generator.

Modified Generator Loss (Non-Saturating Trick)
In the original minimax objective proposed in [180], the generator is trained to minimize:

Eypiz) log(1 —D(G(z)))]

This objective encourages G to generate images that the discriminator believes are real. However, it
suffers from a critical problem early in training: when the generator is poor and produces unrealistic
images, the discriminator assigns very low scores D(G(z)) ~ 0. As a result, log(1 —D(G(z))) ~ 0,
and its gradient vanishes:

d
Elog(l —D(G(z)))—0

This leads to extremely weak updates to the generator — just when it needs them most.

Solution: Switch the Objective
Instead of minimizing log(1 — D(G(z))), we train the generator to maximize:

IEerp(z) [IOgD(G(Z))]

This change does not alter the goal — the generator still wants the discriminator to classify its
outputs as real — but it yields stronger gradients, especially when D(G(z)) is small (i.e., when the
discriminator is confident the generated image is fake).

Why does this work?

20.4 Generative Adversarial Networks (GANS) 1057

* For small inputs, log(1 —x) is nearly flat (leading to vanishing gradients), while log(x) is
sharply sloped.
* So when D(G(z)) is close to zero, minimizing log(1 — D(G(z))) gives negligible gradients,
while maximizing log(D(G(z))) gives large, informative gradients.
This variant is known as the non-saturating generator loss, and is widely used in practice for training
stability.

Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a minimax game

min max (Ex~paa:a [log D(x)] + E,-pz) [log (1 - D(G (f)))])

and discriminator can easily tell apart 2

real/fake, so D(G(z)) close to 0 —
4] ——

4

At start of training, generator is very bad \\
Y
|
¥

72| — log(1-D(G(2))
—a] — —log(D(G(z)))

00 02 04 06 08 10
D(G(z})

Justin Johnson Lecture 20 - 6 March 30, 2022

Figure 20.16: Modified generator loss: maximizing log D(G(z)) yields stronger gradients early in
training, when the discriminator is confident that generated samples are fake.

Looking Ahead: Why This Objective?

We have introduced the practical GAN training objective. But why this specific formulation? Is
it theoretically sound? What happens when D is optimal? Does the generator recover the true
data distribution pg,e,? In the next section, we analyze these questions and uncover the theoretical
justification for adversarial training.

20.4.3 Why the GAN Training Objective Is Optimal
Step-by-Step Derivation
We begin with the original minimax GAN objective from [180]. Our goal is to analyze the equilibrium
of this game by characterizing the global minimum of the value function.

rninm[a)lx Ernpgae 102 D(x)] + E.) [log(1 — D(G(2)))] (Initial GAN objective)
= min max Ex~poua 108 D(x)] + Exp, [log(1 — D(x))] (Change of variables / LOTUS)

= min max / (Pdata(x)log D(x) + pc(x)log(1 — D(x)))dx (Definition of expectation)
O Jar

=min [max (pgaa(x)logD(x)+ p;(x)log(l1—D(x)))dx (Push max inside integral)
2 D(x)

1058 Chapter 20. Lecture 20: Generative Models Il

Justification of the Mathematical Transformations
To rigorously justify the steps above, we appeal to measure theory and the calculus of variations.
* Change of Variables (The Pushforward and LOTUS):
The second term in the original objective is expressed as an expectation over latent variables
~ p(z), with samples transformed through the generator: x = ((z). This defines a new

distribution over images, denoted p(;(x), formally known as the pushforward measure (or
generator distribution).
The transition from an expectation over z to one over x is a direct application of the Law of the
Unconscious Statistician (LOTUS). It guarantees that:

E. p)llog(1=D(G(2)] = Eyop nllog(1—D(x))]

This reparameterization is valid because the pushforward distribution pg exists. For the
integral notation used subsequently, we further assume pg admits a density with respect to the
Lebesgue measure.

* Expectation to Integral:
Any expectation over a continuous random variable can be written as an integral:

Evpl/ (0] = [pf(x)dx

This applies to both the real data term and the generator term, allowing us to combine them
into a single integral over the domain 2.
* Pushing maxp into the Integral (Functional Separability):

The discriminator D is treated here as an arbitrary function defined pointwise over the domain
Z . This is an assumption of non-parametric optimization (i.e., we assume D has infinite
capacity and is not constrained by a neural network architecture).

Crucially, there is no dependence or coupling between D(x;) and D(x;) for different values
of x. Therefore, the objective functional is separable, and maximizing the global integral is
equivalent to maximizing the integrand independently for each x.

max/ e dx — max--- dx
D Ja 2 D(x)

Solving the Inner Maximization (Discriminator)
We now optimize the integrand pointwise for each x € 2", treating the discriminator output y = D(x)
as a scalar variable. Define the objective at each point as:

f(y) =alogy+log(1—y), with a=paua(x), = pc(x)
This function is strictly concave on y € (0, 1), and we compute the maximum by solving f/(y) = 0:

a a
— =0 = y=
y 1=y a+

Substituting back, the optimal value for the discriminator is:

D* (X) _ Pdata ()C)
Pdata (X) +

20.4 Generative Adversarial Networks (GANS) 1059

Here’s how the components map:

* Pdata(x) (red) is the true data distribution at x.

* D(x) (purple) is the scalar output of the discriminator.

. (dark yellow) is the generator’s distribution at x.

This solution gives us the discriminator’s best possible output for any fixed generator G. In
the next step, we will plug this optimal discriminator back into the GAN objective to simplify the
expression and reveal its connection to divergence measures.

Plugging the Optimal Discriminator into the Objective
Having found the optimal discriminator D}. for a fixed generator, we now substitute it back into the
game to evaluate the generator’s performance.

Recall that our goal is to minimize the value function V (G, D). Since the inner maximization is
now solved, we focus on the Generator Value Function C((;), which represents the generator’s
loss when facing a perfect adversary:

C():mlz):lx\/(,D)=V(G,D})

To perform the substitution, let us first simplify the terms involving the optimal discriminator.

Given D}.(x) = %, the complementary probability (probability that the discriminator thinks
a fake sample is fake) is:
1—D* (.X) —1_ pdata(x) _
Pdata (X) + Pdata ()C) +

We now replace D(x) and (1 — D(x)) in the original integral objective with these expressions:

minC(G) = min /J (Paaalx) log (W) 400 log <W>)dx

Expected log-prob of real data Expected log-prob of generated data

Rewriting as KL Divergences

The expression above resembles Kullback—Leibler (KL) divergence, but the denominators are sums,
not distributions. To fix this, we need to compare pg., and - against their average distribution (or
mixture):

_ pdata(x) +
2

m(x)

We manipulate the log arguments by multiplying numerator and denominator by 2. This "trick" is
mathematically neutral (multiplying by 1) but structurally revealing:

- 1 Pdata (X)
= min (/y Pdata(x) log (2 ’ @ dx

1060 Chapter 20. Lecture 20: Generative Models Il

Using the logarithmic identity log(a - b) = loga +logb, we separate the fraction % from the ratio
of distributions. Note that log(1/2) = —log2:

— min (/J Paaa(x) [1og (P;t(x(;)) _ 10g2} dx
+ /J {log <m(x)> —logZ] dx)

We now distribute the integrals. Since pga, and are valid probability distributions, they
integrate to 1. Therefore, the constant terms —log?2 sum to —2log2 = —log4. The remaining
integrals are, by definition, KL divergences:

— min (KL <pdata pida‘a;) +KL ([P e da‘a;) —10g4>

Infroducing the Jensen-Shannon Divergence (JSD)

The expression inside the minimization is related to the Jensen—Shannon Divergence (JSD),
which measures the similarity between two probability distributions. Unlike KL divergence, JSD is
symmetric and bounded. It is defined as:

1 Ptq 1 P+q
JSD(p,q) = EKL (sz) + EKL (qHz

Final Result: Objective Minimizes JSD
Substituting the JSD definition into our derived expression, the GAN training objective reduces to:

minC(G) =min (2-JSD (pgata,) —log4)

Interpretation:

1. The term —log4 represents the value of the game when the generator is perfect (confusion).
Since log4 = 2log?2, this corresponds to the discriminator outputting 0.5 (uncertainty) for
both real and fake samples: 1log(0.5) +10g(0.5) = —log4.

2. Since JSD(p,q) > 0 with equality if and only if p = ¢, the global minimum is achieved exactly
when:

= Pdata (x)

This completes the proof: under idealized conditions (infinite capacity discriminator), the
minimax game forces the generator to perfectly recover the data distribution.

Summary

Optimal discriminator: D, (x) = _ baaly)
Pdata ()C) +

Global minimum: pg(x) = pgata(X)

20.4 Generative Adversarial Networks (GANS) 1061

Important Caveats and Limitations of the Theoretical Result

The optimality result derived above provides a crucial theoretical anchor: it guarantees that the
minimax objective is statistically meaningful, identifying the data distribution as the unique global
optimum. However, bridging the gap between this idealized theory and practical deep learning
requires navigating several critical limitations.

* Idealized Functional Optimization vs. Parameterized Networks. The derivation treats the

discriminator D (and implicitly the generator G) as ranging over the space of all measurable
functions. This "non-parametric" or "infinite capacity" assumption is what allows us to solve
the inner maximization problem maxp V (G, D) pointwise for every x, yielding the closed-form
Dg,.
In practice, we optimize over restricted families of functions parameterized by neural net-
work weights, Dy and Gg. The shared weights in a network introduce coupling between
outputs—changing parameters to update D(x;) inevitably affects D(x;). Consequently: (i)
The network family may not be expressive enough to represent the sharp, pointwise optimal
discriminator D{;; and (ii) Even if representable, the non-convex optimization landscape of the
parameters may prevent gradient descent from finding it. Thus, the theorem proves that the
game has the correct solution, not that a specific architecture trained with SGD will necessarily
reach it.

* The “Manifold Problem” and Vanishing Gradients. The JSD interpretation relies on

the assumption that pqu, and pg have overlapping support with well-defined densities. In
high-dimensional image spaces, however, distributions often concentrate on low-dimensional
manifolds (e.g., the set of valid face images is a tiny fraction of the space of all possible pixel
combinations).
Early in training, these real and generated manifolds are likely to be disjoint. In this regime,
a sufficiently capable discriminator can separate the distributions perfectly, setting D(x) ~ 1
on real data and D(x) ~ 0 on fake data. Mathematically, this causes the Jensen—Shannon
divergence to saturate at its maximum value (constant log?2). Since the gradient of a constant
is zero, the generator receives no informative learning signal to guide it toward the data
manifold. This geometry is the primary cause of the vanishing gradient problem in the original
GAN formulation and motivates alternative objectives (like the non-saturating heuristic or
Wasserstein distance) designed to provide smooth gradients even when distributions do not
overlap.

* Existence vs. Convergence (Statics vs. Dynamics). The proof characterizes the static

equilibrium of the game: if we reach a state where pg = pqata, We are at the global optimum.
It says nothing about the dynamics of reaching that state.
GAN training involves finding a saddle point of a non-convex, non-concave objective using
alternating stochastic gradient updates. Such dynamical systems are prone to pathologies that
simple minimization avoids, including: (i) Limit cycles, where the generator and discriminator
chase each other in circles (rotational dynamics) without improving; (ii) Divergence, where
gradients grow uncontrollably; and (iii) Mode collapse, where the generator maps all latent
codes to a single "safe" output that fools the discriminator, satisfying the local objective but
failing to capture the full diversity of the data distribution.

20.5
20.5.1

20.5.2

1062 Chapter 20. Lecture 20: Generative Models Il

GANs in Practice: From Early Milestones to Modern Advances

The Original GAN (2014)

In their seminal work [180], Goodfellow et al. demonstrated that GANs could be trained to synthesize
digits similar to MNIST and low-resolution human faces. While primitive by today’s standards, this
was a significant leap: generating samples that look realistic without explicitly modeling likelihoods.

Generative Adversarial Networks: Results

Generated samples

Nearest neighbor from training set

o et al, “Eene il | Mats”, NeurlPs 2014

Justin Johnson

Figure 20.17: Samples from the original GAN paper [180]. The model learns to generate MNIST
digits and low-res face images.

Deep Convolutional GAN (DCGAN)

The Deep Convolutional GAN (DCGAN) architecture, proposed by Radford et al. [495], marked a
significant step toward stabilizing GAN training and improving the visual quality of generated images.
Unlike the original fully connected GAN setup, DCGAN leverages the power of convolutional neural
networks to better model image structure and achieve more coherent generations.

Architectural Innovations and Design Principles

* Convolutions instead of Fully Connected Layers: DCGAN eliminates dense layers at the
input and output of the networks. Instead, it starts from a low-dimensional latent vector
z ~ 4 (0,I) and progressively upsamples it through a series of transposed convolutions (also
called fractional-strided convolutions) in the generator. This preserves spatial locality and
improves feature learning.

* Strided Convolutions (Downsampling): The discriminator performs downsampling using
strided convolutions rather than max pooling. This approach allows the network to learn its
own spatial downsampling strategy rather than rely on a hand-designed pooling operation,
thereby improving gradient flow and learning stability.

* Fractional-Strided Convolutions (Upsampling): In the generator, latent codes are trans-
formed into images through a series of transposed convolutions. These layers increase the
spatial resolution of the feature maps while learning spatial structure, enabling the model to
produce high-resolution outputs from compact codes.

20.5 GANs in Practice: From Early Milestones to Modern Advances 1063

* Batch Normalization: Applied in both the generator and discriminator (except the genera-
tor’s output layer and discriminator’s input layer), batch normalization smooths the learning
dynamics and helps mitigate issues like mode collapse. It also reduces internal covariate shift,
allowing higher learning rates and more stable convergence.

* Activation Functions: The generator uses ReLLU activations in all layers except the output,
which uses tanh to map values into the [—1, 1] range. The discriminator uses LeakyReLU
activations throughout, which avoids dying neuron problems and provides gradients even for
negative inputs.

* No Pooling or Fully Connected Layers: The absence of pooling layers and fully connected
components ensures the entire network remains fully convolutional, further reinforcing locality
and translation equivariance.

deconv 5x5
project and reshape deconv 5x5
deconv 5x5
deconv 5x5
100
4x4x1024 BxEx512 e
nox 16x16x256
32x32x128
64x64x3
(a) Generator
conv 5x5
conv 5x5
conv 5x5
conv 5x5
__I_/ b o
T N 1
4x4x512
W 16x16x128 8xBx256
Y 32x32x64

64x64x3
(b) Discriminator

Figure 20.18: DCGAN architecture overview. The generator (up) upsamples a latent vector using
transposed convolutions, while the discriminator (down) downsamples an image using strided
convolutions. Key components include batch normalization, ReLLU/LeakyReLU activations, and the
absence of fully connected or pooling layers. Source: IdiotDeveloper.com.

https://idiotdeveloper.com/what-is-deep-convolutional-generative-adversarial-networks-dcgan/

1064 Chapter 20. Lecture 20: Generative Models Il

Why it Works
These design choices reflect the successful architectural heuristics of supervised CNNs (e.g., AlexNet,

VGG) but adapted to the generative setting. The convolutional hierarchy builds up spatially coherent
features, while batch normalization and careful activation design help maintain gradient signal
throughout training. As a result, DCGANS are capable of producing high-quality samples on natural
image datasets with far greater stability than the original GAN formulation.

GAN
E

Generative Adversarial Networks: DC-

Samples
from the {4 8IS
model '
look
much
better!

Radford et al,
ICLA 2016

Figure 20.19: Samples from DCGAN [495], generating bedroom scenes resembling training data.

Latent Space Interpolation
One striking property of DCGAN is that interpolating between two latent codes z; and z, leads to

smooth transitions in image space:

G(1—o)z)+az), oc|0,1]

Generative Adversarial Networks: Interpolation

between
points in
latent z
space

Radford et al,
ICLA 2016

Figure 20.20: Latent space interpolation using DCGAN [495]. The generator learns to warp semantic
structure, not just blend pixels.

20.5 GANs in Practice: From Early Milestones to Modern Advances 1065

Latent Vector Arithmetic
DCGAN also revealed that semantic attributes can be disentangled in the latent space z. Consider
the following operation:

smiling man ~ mean(Zsmiling women) — MeaN(Zneutral women) + MeAN(Zneutral men)

/

TV Vv
attribute: smile remove woman identity add male identity

Generative Adversarial Networks: Vector Math

Smiling Neutral Neutral
woman woman man

Samples Smiling Man
from the

model

Average Z
vectors, do
arithmetic

Radford et al, ICLA 2016

Justin Johnson

Figure 20.21: Attribute vector manipulation in latent space: generating “smiling man” from other
distributions [495].

A similar example uses glasses as a visual attribute:

Zyoman with glasses = Zman with glasses — Zman without glasses T Zwoman without glasses

Generative Adversarial Networks: Vector Math

Man with Man w/o Woman
glasses glasses wo glasses

Woman with

Samples
glasses

from the
model

Average Z
vectors, do
arithmetic

Radford ot al, ICLA 2016

lustin Johnson Lecture 20 - 98

Figure 20.22: Latent vector arithmetic applied to glasses: the model captures the concept of “adding
glasses” across identities.

1066 Chapter 20. Lecture 20: Generative Models Il

Evaluating Generative Adversarial Networks (GANs)

Evaluating generative adversarial networks (GANs) remains one of the most important (and still
imperfectly solved) problems in generative modeling. Unlike likelihood-based models (e.g., VAEs),
standard GAN training does not yield a tractable scalar objective such as log pg(x) that can be
directly used for model selection. Instead, as derived in the previous section, GANs optimize a
minimax objective whose theoretical global optimum forces the generator to perfectly recover the
data distribution (pG = pdata), thereby minimizing the Jensen-Shannon Divergence (JSD).

Ideally, reaching this global minimum would satisfy all evaluation needs simultaneously. In practice,
however, we must evaluate the generator’s partial success along three distinct axes, each rooted in
the min-max formulation:

1. Fidelity (Realism): Do individual samples look real?
Min-Max mechanism: Enforced by the discriminator D. To minimize JSD, the generator
must ensure pg(x) is non-zero only where pgaa (x) is high. If G generates samples outside the
manifold of real data, the optimal discriminator D* easily identifies and penalizes them.

2. Diversity / Coverage: Does the model represent all modes of the data?
Min-Max mechanism: Theoretically mandated by the condition pg = pgata- The JSD is only
zero if G covers every mode of the target distribution with the correct density. (In practice,
however, optimization instability often leads to mode collapse, where G captures only a single
mode to satisfy D).

3. Semantic Correctness: (Optional) Does the model respect conditioning?
Min-Max mechanism: In conditional GANs, the adversarial game extends to joint distributions.
The discriminator forces pg(x,y) to match pga, (x,y), ensuring that generated samples x are
not just realistic, but correctly aligned with their labels y.

Since the training loss value (ideally —log4) is often uninformative about which of these properties
is being satisfied or violated, modern practice relies on a bundle of external checks and scores [400,
543].

A practical rule: metrics are only comparable under the same profocol

Absolute scores (especially FID/KID) are generally not portable across different datasets, resolutions,
feature extractors, or preprocessing pipelines. Therefore, whenever you report a quantitative score,
you should also report the evaluation protocol: the real split used (train vs. held-out test), image
resolution, number of generated samples, the feature extractor ¢(-), and the exact preprocessing (in
particular, resizing and cropping policy). In practice, protocol differences can easily cause score
swings that are comparable to (or larger than) architectural gains.

Qualitative vs. quantitative evaluation

We divide evaluation methods into two main categories: qualitative (human judgment, nearest-
neighbor checks) and quantitative (feature-space distribution metrics such as IS, FID, KID, and
precision/recall).

Qualitative Evaluation Methods

Manual inspection and preference ranking

The simplest evaluation technique is visual inspection of samples. Human judges may rate realism,
compare images side-by-side, or choose which model produces higher-quality samples.

20.5 GANs in Practice: From Early Milestones to Modern Advances 1067

In practice, this is often implemented via crowd-sourcing (e.g., Amazon Mechanical Turk) or
via blinded pairwise preference tests [543]. The advantage is sensitivity to “semantic failures” that
scalar metrics may miss (odd textures, broken geometry, repeated artifacts). The drawbacks are that
it is subjective, expensive, and difficult to scale to large sweeps or to reproduce exactly.

Nearest-neighbor retrieval (memorization / leakage sanity check)

A standard diagnostic is to test whether generated samples are near-duplicates of training examples.
Given a generated image x,, retrieve its nearest neighbor among a reference set of real images {x,}
using a perceptual similarity measure.

Important: Pixel-space ¢, is typically misleading (tiny translations can dominate ¢, while being
visually negligible), so in practice one uses deep features (e.g., Inception/DINO/CLIP embeddings)
or perceptual distances such as LPIPS [778]. Qualitatively inspecting pairs (xg,NN(x,)) can reveal
direct copying. However, note the asymmetry of this test: “not identical to a training image” is not a
proof of generalization; it is only a guardrail against the most obvious memorization failure modes.

Quantitative Evaluation Methods

Most modern metrics compare distributions of embeddings

Many widely used GAN metrics begin by embedding images with a fixed, pretrained feature extractor
¢(-) € RY (classically Inception-v3 pool3 features). One then compares the empirical distributions
of real embeddings {¢(x,)} and generated embeddings {¢(x.)}. This is both a strength and a
limitation: the metric becomes sensitive to the semantics captured by ¢, and insensitive to aspects @
ignores. This dependence is especially important under domain shift (e.g., medical images), where
ImageNet-pretrained features may be a weak proxy for perceptual similarity.

Inception Score (IS)

Proposed by [543], the Inception Score uses a pretrained classifier pg (y | x) to reward two properties:
(i) confidence on each generated sample (low conditional entropy H(Y | X)), and (ii) label diversity
across samples (high marginal entropy H(Y)). Let py(y) = Exp;[Po (¥ | x)]. Then

IS = exp(Ex~pg [Dxi(ps v [) | P (¥))]) -

While IS historically appears in many papers, it is often de-emphasized in modern reporting because
it has several structural limitations:
* No real-vs.-fake comparison: IS depends only on generated samples, so it can increase even
if samples drift away from the true data distribution.
* Classifier and label-set bias: its meaning depends on whether the pretrained classifier is
appropriate for the domain.
* Can miss intra-class mode collapse: generating one “prototype” per class can yield a strong
IS while having poor within-class diversity.

Frechet Inception Distance (FID)

The Fréchet Inception Distance (FID) [218] improves upon IS by directly comparing real and
generated feature distributions. Given real images {x,} and generated images {x,}, compute
embeddings u = ¢ (x,) and v = ¢ (x,), estimate empirical means and covariances (i,,X,) and (g, %,),
and define the squared 2-Wasserstein (Fréchet) distance between the corresponding Gaussians:

FID = ||, — pel? + Tr<zr+zg—2(zi/22gz}/2)1/2>.

1068 Chapter 20. Lecture 20: Generative Models Il

Intuitively, the mean term ||, — fLg||3 captures a shift/bias between the feature clouds, while the
covariance term captures mismatch in spread and correlations (often aligned with diversity and
mode coverage). This real-vs.-fake distribution comparison is the main reason FID became a de
facto standard.

How to interpret FID (and why “typical ranges” are only rough)
* Lower is better: smaller FID indicates closer alignment between real and generated feature
distributions under ¢.
* Non-zero even for real-vs.-real: if you compute FID between two finite real sample sets, it is
typically non-zero due to sampling noise.
* Context-dependent scale: absolute values depend strongly on dataset, resolution, and proto-
col; the safest use of FID is relative comparison under a fixed evaluation pipeline.

FID Pipeline: From Pixels to Feature Statistics

not data boundaries.

Réal = Real Embeddings {¢(x,)} Legend: Feature Space Summary
E m Blue ellipse = Real Gaussian it
Ee == Feature Fit Gaussian Compute FID = N,)
& " Extractor Statistics Mean+TEr‘m Orange ell pse = Gengrated
enerate: — i
e K" ;.,'goo\“\ (WG z) Covariance Term | Caussian it #lug, Bg)
w @ . Q\fg"fa”._ J Ellipses are 2nd-order summaries,

Generateni .E'r‘ﬁﬁéd'dings {pxght

r {a) Mean Mismatch: ||, — u, || (Feature Shift) 1(Examples of Covariance Mismatch: Tr(...) (Spread & Carrelatl'ans}\

A *Assumption for b1 & b2: Means aligned (i, = u,) to isolate covariance. **
b1: Under-dispersed b2: Mis-shaped / Mis-oriented
o Real (Made Collapse) {Wrong Correlations)
E W, T I Real Generaled Real 4 Generatad
g Yo N 5 Ny Z;) N % (g, Eq)
g ; =y
o
&
=
i
(5]
1]
) Systematic shift :
* {estg., qlobal blur, | Mode collapse Generated Wrong feature
wrong color). \(low diversity). N Eg) carrelations.

* Ellipses visualize 2"-order Gaussian approximation (g, E).

Projected Feature Dim 1 Tatal FID = [Mean Term)] + [Covarlance Term]

L4 L

Figure 20.23: Geometric Interpretation of the Fréchet Inception Distance (FID) on Face
Generation. Pipeline: Real (blue) and generated (orange) face images are mapped to feature
space. FID compares their distributions via Gaussian statistics. (a) Mean Mismatch (Bias): The
centers differ (||, — l,]|? > 0). Visual Interpretation: The generator misses the target distribution’s
"center of mass," often causing global shifts like incorrect color temperature (e.g., overly sepia) or
brightness offsets affecting all samples. (b) Covariance Mismatch (Diversity): The means are
aligned, isolating differences in spread and correlation. b1: Under-dispersion (Blur / Texture Loss).
Visual: Generated images appear blurry or texture-less compared to sharp real images. Geometric
Cause: The orange ellipsoid is nested inside the blue one. Blurring acts as a low-pass filter, removing
high-frequency variance. The generator "plays it safe" by averaging out details, effectively shrinking
the feature distribution (under-dispersion) and failing to fill the full volume of real facial textures.
b2: Mis-orientation (Attribute Skew). Visual: Generated images display a systematic bias, such
as wearing glasses in every sample, whereas the real data has a mix of glasses and no-glasses.
Geometric Cause: The orange ellipsoid is rotated or skewed. The model has learned incorrect
feature correlations—biasing the entire distribution toward a specific attribute (glasses) and failing
to align with the true principal axes of variation in the real population.

20.5 GANs in Practice: From Early Milestones to Modern Advances 1069

FID limitations and implementation pitfalls (often the main source of confusion)

* Second-order (Gaussian) summary: FID matches only first and second moments of ¢ (x);
real feature distributions are typically multi-modal, so (i, X) is a coarse approximation.

» Preprocessing sensitivity: resizing interpolation, cropping, and normalization can measur-
ably change FID. For fair comparisons, treat preprocessing as part of the metric definition
(“CleanFID-style” discipline: fixed, explicit preprocessing and extractor).

* Finite-sample effects: FID is a biased estimator with nontrivial variance at small sample
sizes; comparisons are most meaningful when computed with a large, fixed sample budget and
(ideally) repeated across random seeds/splits.

* Domain mismatch (feature-extractor bias): Inception features encode ImageNet semantics.
For domains far from ImageNet, it is common to replace ¢ with a domain-relevant encoder
(supervised or self-supervised), but then scores become extractor-specific and must not be
compared across different choices of ¢.

A Note on Reconstruction Metrics (PSNR, SSIM., LPIPS)
Readers coming from classical image restoration (denoising, deblurring, super-resolution) often
report PSNR or SSIM. These are paired (reference-based) metrics: they require a pixel-aligned
ground-truth target x and a prediction £. This makes them appropriate for supervised tasks (where
a single “correct” answer exists) but fundamentally mismatched to unconditional GAN synthesis
(where no unique target exists) and often misleading even for conditional GANSs.

* Peak Signal-to-Noise Ratio (PSNR). PSNR is simply a logarithmic rescaling of the pixelwise

Mean Squared Error (MSE):

MAX?
PSNR (x, %) = 1010g10< !) ,

MSE(x, X)

where MAX; is the maximum dynamic range (e.g., 255).
Why it fails for GANs: MSE relies on pixel-wise ¢, distance. It treats a tiny spatial shift (e.g.,
a nose moved by 1 pixel) as a massive error, yet it rewards blurring (averaging) because the
mean of many plausible edges minimizes the squared error. GANs, designed to produce sharp,
hallucinated details, often have poor PSNR despite superior perceptual quality.

e Structural Similarity Index (SSIM). SSIM attempts to quantify perceptual similarity by
comparing local statistics of image patches rather than raw pixels. For two patches x and %,
SSIM is the product of three terms:

SSIM(x,£) = I(x,£)* -c(x,£)P - s(x,£)?
—— ——— N——
Luminance Contrast Structure
1. Why do these terms match human perception? SSIM maps statistical moments to visual
concepts:

— Luminance (Mean (t): The average pixel intensity (, corresponds directly to the patch’s
brightness. A global lighting shift affects y but leaves the content intact.

— Contrast (Variance 0): The standard deviation 6, measures the signal amplitude. A
flat grey patch has o = 0 (no contrast), while a sharp edge has high ¢. Blurring acts as a
low-pass filter, reducing o, which SSIM penalizes as a loss of contrast.

— Structure (Covariance o,;): The normalized correlation measures if the patterns align
(e.g., do gradients point in the same direction?) regardless of their absolute brightness or
amplitude.

1070 Chapter 20. Lecture 20: Generative Models Il

2. Why SSIM fails for Semantic Realism: While better than PSNR, SSIM is still a low-level
statistic. It checks if local edges align, not if the image makes sense. A generated face with
distorted anatomy (e.g., an eye on the chin) might have excellent local contrast and texture
statistics (high SSIM if aligned to a reference), while being semantically broken. Conversely,
a plausible dog generated in a slightly different pose than the reference will suffer a huge
penalty.

LPIPS: Perceptual Similarity in Deep Feature Space
To bridge the gap between pixel metrics and human perception, LPIPS (Learned Perceptual Image

Patch Similarity) [778] measures distance in the activation space of a pre-trained deep network
(e.g., VGG or AlexNet).

LPIPS (x,£) = ;Ilww (we(x) = we(@®)l2

Unlike PSNR, which sees a "bag of pixels," LPIPS sees "hierarchy of features." It correctly identifies
that a sharp, texture-rich image is closer to reality than a blurry average, even if the pixels don’t align
perfectly.

Other Quantitative Metrics (Complements, Not Replacements)
Since unconditional GANs cannot use paired metrics, we rely on distributional metrics to diagnose
specific failure modes.

* Precision and Recall (Manifold Approximation) [541]. These metrics separate Fidelity
(Precision) from Coverage (Recall).

How are they measured without the true manifold? Since we cannot know the true high-
dimensional manifold, we approximate it using k-Nearest Neighbors (k-NN) balls around the
available data samples in feature space.
— Precision (Quality): What % of generated samples fall within the k&-NN balls of the real
data? (If low: generating garbage).
— Recall (Diversity): What % of real samples fall within the k&-NN balls of the generated
data? (If low: mode collapse).

* Kernel Inception Distance (KID) [45]. KID is a non-parametric alternative to FID. Instead
of assuming feature embeddings follow a Gaussian distribution, KID measures the squared
Maximum Mean Discrepancy (MMD) between the real and generated distributions in a
reproducing kernel Hilbert space (RKHS).

1. Feature Embeddings (X and Y). Like FID, KID operates in the feature space of a
pre-trained network ¢ (-) (usually Inception-v3). We define two sets of embeddings:

X={p(r, (Real), ¥ ={¢()}"_, (Generated).

Note that the sample sizes m and n need not be equal. This is practically useful when the
test set size is fixed (e.g., m = 10,000) but you wish to evaluate a smaller batch of generated
samples (n = 2,000) for efficiency.

20.5 GANs in Practice: From Early Milestones to Modern Advances 1071

2. The Metric: Unbiased MMD. KID compares these sets using a polynomial kernel function,
typically k(u,v) = (éuTV +1)3. The metric is computed via an unbiased estimator composed
of three terms:

1

n
KID— m—1) Zk Xiy Xir) ﬁzkyjayj - Z, (xi,y7)
t#t J#J i=lj=

Average Real-Real Similarity Average Gen—Gen Similarity Average Real-Gen Similarity

Ms

I
-

3. Intuition and Advantages. Conceptually, the formula measures "cohesion vs. separation”:
if the distributions match, the average cross-similarity (real vs. generated) should equal the
average self-similarity (real vs. real).

— Unbiasedness: The primary advantage of KID over FID is that its estimator is unbiased.
FID systematically overestimates the distance when N is small (bias o< 1/N). KID’s
expected value equals the true population distance regardless of sample size.

— Practical Use: This makes KID the standard choice for **small datasets**, few-shot
generation, or limited compute budgets where generating 50,000 samples for stable FID
is infeasible.

* Classifier Two-Sample Tests (C2ST). This involves training a new, separate binary classifier
to distinguish Real vs. Fake samples after the GAN is trained.

— If Accuracy ~ 50%: The distributions are indistinguishable (Perfect GAN).

— If Accuracy >> 50%: The classifier can spot the fakes.

Difference from GAN Discriminator: The GAN discriminator is part of the dynamic training
game (moving target). C2ST is a static "post-game referee" that provides a sanity check on
whether the final result is truly indistinguishable.

* Geometry Score (GS) [290]. While FID measures density, GS measures Topology (shape
complexity). It builds a graph of the data manifold and compares topological features like
"number of holes" or "connected components". Intuition: If the real data forms a single
connected ring (like a donut) but the GAN generates two disconnected blobs, FID might
be low (blobs are in the right place), but GS will penalize the broken connectivity (wrong
topology).

Optional but important when editing matters: Latent-Space Diagnostics

Metrics like FID evaluate the destination (the final distribution of images). They do not tell us about
the journey—specifically, whether the latent space is well-structured for editing and interpolation. For
models like StyleGAN, we use Perceptual Path Length (PPL) [278] to quantify the "smoothness"
of the latent manifold.

The Intuition: Smooth vs. Rugged Landscapes. Imagine walking in a straight line through the
latent space. In a disentangled (good) space, a small step results in a small, consistent visual change
(e.g., a face slowly turning). In an entangled (bad) space, the same small step might cause sudden,
erratic jumps (e.g., a face suddenly changing identity or artifacts appearing and disappearing). PPL
measures this "bumpiness".

1072 Chapter 20. Lecture 20: Generative Models Il

How is it computed?

1. Interpolate: Pick two latent codes z1,z> and take a tiny step € along the path between them
(usually using spherical interpolation, slerp).

2. Generate: Decode the images at the start and end of this tiny step: x = G(z(¢)) and X' =
G(z(t+¢)).

3. Measure: Calculate the perceptual distance d = LPIPS(x,x’).

4. Normalize: PPL is the expected value of this distance normalized by the step size €.

Interpretation:

* Low PPL (Good): The latent space is perceptually uniform. Changes in latent values map
linearly to changes in visual appearance, making the model reliable for animation and editing.

* High PPL (Bad): The latent space contains "hidden" non-linearities or singularities where
the image changes drastically (or breaks) over short distances.

Limitations and Practical Guidelines
Robust evaluation requires Protocol Discipline. Absolute scores are meaningless without context.
* Report the Protocol: Always specify resolution, feature extractor (e.g., Inception-v3), and
resizing method (CleanFID).
* Triangulate: Never rely on one number. Pair a distributional metric (FID/KID) with a
diagnostic metric (Precision/Recall).
* Qualitative Guardrails: Always visually inspect nearest neighbors. A perfect FID of 0.0
means nothing if the model simply memorized the training set.

Summary

Evaluating GANS is difficult precisely because there is no single, universally meaningful scalar
objective. In practice, the most reliable approach is protocol discipline plus metric triangulation:
report a real-vs.-fake distribution metric (FID or KID), decompose fidelity vs. coverage (precision—
recall), and keep qualitative sanity checks (inspection and nearest neighbors). When Inception
features are a poor fit for the domain, the feature extractor must be treated as part of the metric
definition, and comparisons should be restricted accordingly.

20.5.3

20.54

20.5 GANs in Practice: From Early Milestones to Modern Advances 1073

GAN Explosion

These results sparked rapid growth in the GAN research landscape, with hundreds of new papers and
variants proposed every year. For a curated (and still growing) collection of GAN papers, see: The
GAN Zoo.

2017 to present: Explosion of_GAN_s_‘ |

Cumulabve Umaer of Raman GAN papess by manm

am
aus
ano
42
i)
0

i

T LR

EE ol m7 i
“far

https://github.com/hindupuravinash/the-gan-zoo

Justin Johnson

Lecture 20 - 99 March 30, 2022

Figure 20.24: The GAN explosion: number of GAN-related papers published per year since 2014.

Next Steps: Improving GANs
While the original GAN formulation [180] introduced a powerful framework, it often suffers from
instability, vanishing gradients, and mode collapse during training. These issues led to a wave of
improvements that we now explore in the following sections. Notable directions include:
* Wasserstein GAN (WGAN) — replaces the Jensen—Shannon-based loss with the Earth
Mover’s (Wasserstein) distance for smoother gradients.
* WGAN-GP — introduces a gradient penalty to enforce Lipschitz constraints without weight
clipping.
* StyleGAN / StyleGAN2 — enables high-resolution image synthesis with disentangled and
controllable latent spaces.
* Conditional GANs (cGANs) — allows conditioning the generation process on labels, text, or
other modalities.
These innovations make GANs more robust, interpretable, and scalable — paving the way for
practical applications in vision, art, and science.

Wasserstein GAN (WGAN): Earth Mover’s Distance

While original GANs achieved impressive qualitative results, their training can be highly unstable
and sensitive to hyperparameters. A key theoretical issue is that, under an optimal discriminator, the
original minimax GAN objective reduces to a constant plus a Jensen—Shannon (JS) divergence
term between pga, and pg [180]. In high-dimensional settings where the two distributions often
lie on (nearly) disjoint low-dimensional manifolds, this JS-based perspective helps explain why
the learning signal can become weak or poorly behaved. Below, we revisit this failure mode and
then introduce Wasserstein GAN (WGAN) [14], which replaces JS with the Wasserstein-1 (Earth
Mover) distance to obtain a smoother, geometry-aware objective.

https://github.com/hindupuravinash/the-gan-zoo
https://github.com/hindupuravinash/the-gan-zoo

1074 Chapter 20. Lecture 20: Generative Models Il

Supports and Low-Dimensional Manifolds
* Support of a distribution: The subset of space where the distribution assigns non-zero
probability. In high-dimensional data like images, real samples lie on or near a complex,
low-dimensional manifold (e.g., the “face manifold” of all possible human faces).
* Generator manifold: Similarly, the generator’s outputs G(z) with z ~ p(z) occupy their own
manifold. Initially, the generator manifold often lies far from the data manifold.

Why the JS Divergence Fails in High Dimensions
In the original minimax GAN game, if the discriminator is optimized for a fixed generator, the value
function can be written as a constant plus a Jensen—Shannon divergence term [180]:

mgx V(G,D) = —log4 +2JS(pdata || PG) -

Thus, improving the generator in the idealized setting corresponds to reducing a JS-based discrepancy
between pga, and pg. However, when these distributions have disjoint support, this discrepancy
saturates and yields a poorly behaved learning signal:

» Early training (negligible overlap): The generator typically produces unrealistic outputs,
S0 pg has little overlap with pqa,. Ideally, we want a gradient that points towards the data.
However, the JS divergence saturates to a constant (log2) when supports are disjoint, providing
no smooth notion of “distance” to guide the generator.

* Weak or unreliable generator signal near an optimal discriminator: As the discriminator
becomes very accurate, its outputs saturate (D(x) =~ 1 on real, D(G(z)) =~ 0 on fake). This can
yield vanishing or highly localized gradients for the generator, making training brittle and
contributing to mode collapse.

Non-Saturating Trick: A Partial Fix.

To mitigate immediate vanishing gradients, Goodfellow et al. [180] proposed replacing the minimax
generator objective with a different (but still consistent) surrogate.

In the original formulation, the generator minimizes the probability of the discriminator being correct:

g — o [log(1—D(G(2)))]. (20.11)
When the discriminator is strong (common early in training), D(G(z)) ~ 0. In this region, the
function log(1 — x) saturates—it becomes flat, yielding near-zero gradients.

The non-saturating alternative instead maximizes the discriminator’s output on fake samples:

max B [logD(G(z)] <= min LS = =K, p»[logD(G(2))]. (20.12)

Why it helps: Although the optimum point theoretically remains the same, the gradient dynamics
differ. The function —log(x) rises sharply as x — 0. This ensures the generator receives a strong
gradient signal precisely when it is performing poorly (i.e., when D(G(z)) ~ 0), kickstarting the
learning process.

20.5 GANs in Practice: From Early Milestones to Modern Advances 1075

The Need for a Befter Distance Metric
Ultimately, the issue is not with the choice of generator loss formulation alone — it’s with the
divergence measure itself. Wasserstein GANs (WGANSs) address this by replacing JS with the
Wasserstein-1 distance, also known as the Earth Mover’s Distance (EMD). Unlike JS, the Wasserstein
distance increases smoothly as the distributions move apart and remains informative even when they
are fully disjoint. It directly measures how much and how far the probability mass needs to be moved
to align pg with pga. As a result, WGANSs produce gradients that are:
* Typically less prone to saturation than JS-based objectives when the critic is trained near its
optimum.
* More reflective of distributional geometry (how mass must move), rather than only separa-
bility.
* Better aligned with incremental improvements in sample quality, often yielding smoother
and more stable optimization in practice.
This theoretical improvement forms the basis of WGANS, laying the foundation for more stable
and expressive generative training — even before considering architectural or loss refinements like
gradient penalties in WGAN-GP [194], which we’ll cover later as well.

Wasserstein-1 Distance: Transporting Mass
The Wasserstein-1 distance — also called the Earth Mover’s Distance (EMD) — quantifies how
much “mass” must be moved to transform the generator distribution p¢ into the real data distribution
Pdata> and how far that mass must travel. Formally:
W(pdatilapG) = yen(ﬁﬁmpo) E(x,y)NY[Hx y”]
Here:
* y(x,y) is a transport plan, i.e., a joint distribution describing how much mass to move from
location y ~ pg to location x ~ pgaga.
* The set I1(pgaw, Pc) contains all valid couplings—that is, joint distributions y(x,y) whose
marginals match the source and target distributions. Concretely, ¥ must satisfy:

[ren)dy=paalx) and [y(y)dv=po(y). (20.13)

(In discrete settings, these integrals become sums). This constraint ensures mass conservation:
no probability mass is created or destroyed; it is simply moved from y to x.

* The infimum (inf) takes the best (lowest cost) over all possible plans y € I1.

* The cost function ||x —y|| reflects how far one must move a unit of mass from y to x. It is often
Euclidean distance, but other choices are possible.

Example: Optimal Transport Plans as Joint Tables
To see this in action, consider a simple example in 1D:

* Generator distribution pg: 0.5 mass at y; =0, and 0.5 at y, = 4.

¢ Data distribution pgae,: 0.5 mass at x; = 2, and 0.5 at x, = 3.
Each plan defines a joint distribution y(x,y) specifying how much mass to move between source and
target locations.

Plan 1 (Optimal):

‘ y=0 y=4
Yoan1(5,))= x=2| 05 00 = Cost=0.5-]2—0+0.5-[3—4|=1+0.5=[15]
x=3| 00 05

1076 Chapter 20. Lecture 20: Generative Models Il

Plan 2 (Suboptimal):
(y=0 y=4
Yoan2(t,y) = x=2| 00 05 = Cost=05:]3-0/+0.5-]2—4|=1.5+1=[2.5]
x=3| 05 0.0
Plan 3 (Mixed):
[y=0 y=4
Pian3(x,y) = x=2] 025 025 = Cost=) y(xy) |x—y/=[2.0]
x=3]025 025

Each table represents a valid joint distribution ¥ € I1(pgata, P), since the row and column sums
match the marginal probabilities. The Wasserstein-1 distance corresponds to the cost of the optimal
plan, i.e., the one with lowest total transport cost.

Why This Matters

* Meaningful even with disjoint support: Unlike JS (which saturates at log2 under dis-
joint support in the idealized analysis), Wasserstein-1 continues to vary with the geometric
separation between distributions.

* Captures geometric mismatch: It does not merely say “different”; it encodes how far
probability mass must move under an optimal coupling.

* Potentially informative signal early in training: When the critic is trained near its optimum
and the Lipschitz constraint is controlled, the resulting gradients can remain useful even when
pg is far from the data manifold.

GAN Improvements: Improved Loss Functions
WGAN with Gradient Penalty

Wasserstein GAN (WGAN) (WGAN-GP)

Gulrajai et al, “lrr proved Trainieg of
Wassarseln AN, Naurles 2077

Figure 20.25: Results of WGAN and WGAN-GP on the LSUN Bedrooms dataset. Compared to
standard GAN training, these objectives often yield more stable learning dynamics and improved
sample diversity in practice, driven by the Wasserstein-1 distance and Lipschitz-constrained critics.

20.5 GANs in Practice: From Early Milestones to Modern Advances 1077

From Intractable Transport to Practical Training

The Wasserstein-1 distance offers a theoretically sound objective that avoids the saturation problems
of JS divergence. However, its original definition involves a highly intractable optimization over all
possible joint couplings:

W (pdata, = inf Ecpyoylllx—
(pdata pG) YT (paa.pc) (x,y) Y[H y”]

Computing this infimum directly is not feasible for high-dimensional distributions like images.

The Kantorovich—Rubinstein duality makes the problem tractable by recasting it as:

W(pdatava) = H;\}lgl (EXNPdata [f(x)] - E)?NPG [f()?)]),

where the supremum is taken over all 1-Lipschitz functions f: 2" — R.

What These Expectations Mean in Practice
In actual training, we do not have access to the full distributions pga, and pg, but only to samples.
The expectations are therefore approximated by empirical means over minibatches:

1 m .
— Y FD) Eapglf(0)] &
i=1

F(GED)),

=1

1
Eprdata [f('x)] ~ %i
where:
. {x(f) % | is a minibatch sampled from the training dataset pqaa.
o {ZN ~ p(z), typically .4 (0,1), is a batch of latent codes.
« i) = G(z\9) are the generated images.

How the Training Works (Maximize vs. Minimize).
In WGAN, the critic f,, (parameterized by weights w) is trained to approximate the dual optimum
by widening the score gap between real and fake data.

1. The Critic Loss (Implementation View): Since deep learning frameworks typically minimize
loss functions, we invert the dual objective. We minimize the difference:

oZ:ritic —]Ezwp(z) [fw(G(Z))] - Eprdata [fW (X)] . (20 14)

Score on Fake Score on Real

Minimizing this quantity is equivalent to maximizing the score on real data while minimizing
it on fake data.

2. The Generator Loss: The generator is updated to minimize the critic’s score on its output
(effectively trying to move its samples “uphill” along the critic’s value surface):

Leen = —E.) [fw(G(2))]. (20.15)

Intuitively, the critic learns a scalar potential function whose slopes point towards the data manifold,
and the generator moves its probability mass to follow these gradients.

1078 Chapter 20. Lecture 20: Generative Models Il

Why This Makes Sense — Even if Samples Differ Sharply
This training might appear unintuitive at first glance:
* We are not directly comparing real and fake images pixel-by-pixel.
* The generator might produce very different images (e.g., noise) from real data in early training.
Yet, the setup works because:
* The critic learns a scalar-valued function f(x) that assigns a meaningful score to each image,
indicating how realistic it appears under the current critic.
» Even if two distributions have no overlapping support, the critic can still produce distinct
outputs for each — preserving a non-zero mean score gap.
* The generator then improves by reducing this gap, pushing p¢ closer to pqae, in a distributional
sense.
In other words, we do not require individual generated samples to match real ones — only that, on
average, the generator learns to produce samples that fool the critic into scoring them similarly.

Summary
WGAN training works by:

1. Using minibatch means to estimate expectations in the dual Wasserstein objective.

2. Leveraging the critic as a 1-Lipschitz scoring function trained to separate real from fake.

3. Providing stable, non-vanishing gradients even when real and generated distributions are far
apart.

This principled approach turns adversarial training into a smooth, geometry-aware optimization
process — and lays the foundation for further improvements like WGAN-GP.

Side-by-Side: Standard GAN vs. WGAN

Component Standard GAN Wasserstein GAN (WGAN)
Objective ming maxp [Ex-pgy, log D(x) ming max i, <1 By, (%)
+IEZ~/7(2) IOg(l - D(G(Z)))] - Ez~]7(z)f(G(Z)”
Output Type D(x) € [0, 1] (probability) f(x) € R (score)
Interpretation Probability x is real Realism score for x
Training Signal Jensen—Shannon divergence Wasserstein-1 (Earth Mover) dis-
tance
Disjoint Supports | JS saturates to log2; gradients van- | Distance remains informative (with
ish Lipschitz critic)

Table 20.2: Compact comparison of standard GAN and Wasserstein GAN (WGAN) formulations.

What’s Missing: Enforcing the 1-Lipschitz Constraint
The dual WGAN formulation transforms the intractable Wasserstein distance into a solvable opti-
mization problem:

W (Pdaaa, PG) = ol (B pia [()] = B [£ (2)])

20.5 GANs in Practice: From Early Milestones to Modern Advances 1079

However, this relies on a crucial condition: the function f must be 1-Lipschitz — that is, it cannot
change too quickly:

[f () = f()| < ller =2l Vi, x

This constraint ensures that the critic’s output is smooth and bounded — a key requirement to
preserve the validity of the dual formulation. Yet enforcing this constraint precisely over a deep
neural network is non-trivial. To address this, Arjovsky et al. [14] introduce a simple approximation:
weight clipping.

Weight Clipping: A Crude Approximation
After each gradient update during training, every parameter w in the critic is constrained to lie within
a compact range:

w <« clip(w,—c,4+c¢) with ¢=0.01

The rationale is that limiting the range of weights constrains the magnitude of the output changes,
thereby approximating a 1-Lipschitz function. If the weights are small, then the critic function f(x)
cannot change too rapidly with respect to changes in x.

Benefits of WGAN
Despite using a crude approximation like weight clipping to enforce the 1-Lipschitz constraint,
Wasserstein GANs (WGAN) demonstrate compelling improvements over standard GANs:

* More interpretable training signal (often): When the critic is trained near its optimum, the
WGAN critic loss frequently correlates better with generator progress than standard GAN
discriminator losses, making it a more practical monitoring metric.

* Smoother optimization in challenging regimes: Because Wasserstein-1 varies continuously
with distributional shifts (including disjoint support), WGAN can yield less saturated and
more stable gradients than JS-based objectives, especially early in training.

* Reduced risk of mode collapse (not eliminated): By encouraging the generator to reduce
a transport-based discrepancy rather than only improving separability, WGAN training can
make collapse less likely in practice, though it does not guarantee full mode coverage.

1080 Chapter 20. Lecture 20: Generative Models Il

i

\J

QL—. -
U 50000 100000 130090 200000 330004 FA0T0 0000 -:rqop:l "G s000D 10000 150000 200030 FAI0CD IA0IT F3AADT ACAA0T
Generazar iteration Geraratar iteraticas

MLP GMLP o

- B R =

H\

o .
0 50000 LU000 ISCO0E 200000 250000 IU000 T50U00 4AGI00

Figure 20.26: From Arjovsky et al. [14], Figure 4. Top: JS divergence estimates either increase
or remain flat during training, even as samples improve. Bottom: In unstable settings, the JS
loss fluctuates wildly and fails to reflect sample quality. These observations highlight a core issue:
standard GAN losses are not correlated with sample fidelity.

DCGAN |

%-Edéﬂ 4

¥ o1s
2

210
osh

A0 S0000G 60BN 5 I00GD0 290900 SODGD SADOD0 S0ROCG | GOGIDD
ratar iteratians

MLPSl?
%
i
;

®l

2

£ 10 ‘
a8

“a L0000 204040
Genar

-—h

o 1CAGT FODEOR WONOR ALOCAD SODAOD AO8000
Generator teraticns

Figure 20.27: From Arjovsky et al. [14], Figure 3. Top: With both MLP and DCGAN generators,
WGAN losses decrease smoothly as sample quality improves. Bottom: In failed runs, both loss and
visual quality stagnate. Unlike JS-based losses, the WGAN critic loss serves as a reliable proxy for
training progress.

20.5 GANs in Practice: From Early Milestones to Modern Advances 1081

Limitations of Weight Clipping in Practice

While simple to implement, weight clipping is an imprecise and inefficient method for enforcing the
1-Lipschitz constraint. It introduces multiple issues that degrade both the expressiveness of the critic
and the overall training dynamics:

* Reduced expressivity: Weight clipping constrains each parameter of the critic network to
lie within a small range (e.g., [—0.01,0.01]). This effectively flattens the critic’s function
space, especially in deeper architectures. The resulting networks tend to behave like near-
linear functions, as layers with small weights compound to produce low-variance outputs.
Consequently, the critic struggles to capture meaningful variations between real and generated
data — particularly in complex image domains — leading to weak or non-informative gradients
for the generator.

» Fragile gradient propagation: Gradient-based learning relies on consistent signal flow
through layers. When weights are clipped, two opposing issues can arise:

— If weights are too small, the gradients shrink with each layer — leading to vanishing
gradients, especially in deep networks.
— If weights remain non-zero but unevenly distributed across layers, activations can spike,
causing exploding gradients in certain directions due to unbalanced Jacobians.
These effects are particularly problematic in ReLU-like networks, where clipping reduces
activation diversity and gradient feedback becomes increasingly unreliable.

* Training instability and non-smooth loss: Empirical studies (e.g., Figure 4 in [14]) show that
critics trained under clipping oscillate unpredictably. In some iterations, the critic becomes too
flat to distinguish between real and fake inputs; in others, it becomes overly reactive to minor
differences. This leads to high-variance Wasserstein estimates and erratic training curves.
Worse, when the critic is underfit, the generator may receive biased or misleading gradients,
preventing effective mode coverage or long-term convergence.

Despite these challenges, weight clipping served its purpose in the original WGAN: it provided
a proof of concept that optimizing the Wasserstein-1 distance offers substantial advantages over
traditional GAN losses. However, it quickly became apparent that a more robust and mathematically
faithful mechanism was needed. This inspired Gulrajani et al. [194] to propose WGAN-GP —
which enforces Lipschitz continuity via a smooth and principled gradient penalty, significantly
improving stability and sample quality.

1082 Chapter 20. Lecture 20: Generative Models Il

WGAN-GP: Gradient Penalty for Stable Lipschitz Enforcement

While WGAN introduced a major improvement by replacing the JS divergence with the Wasserstein-
1 distance, its dual formulation relies on a key mathematical requirement: the critic f: 2~ — R must
be 1-Lipschitz. In the original WGAN, this was enforced via weight clipping, which constrains
parameters to a small interval. As discussed, clipping is a coarse proxy for Lipschitz control and
often leads to underfitting (an overly simple critic) or brittle optimization.

To address this, Gulrajani et al. [194] proposed WGAN-GP, which replaces structural constraints
on parameters with a differentiable gradient penalty that directly regularizes the critic’s input
sensitivity in the region most relevant to training.

Theoretical Mofivation: Lipschitz Continuity as “Controlled Sensitivity ”
A function f is 1-Lipschitz if the change in its output is bounded by the change in its input:

|f(x1) = f2)| < [Jer —xa|-

Intuitively, this imposes a global “speed limit” on the critic: small changes in the image should
not cause arbitrarily large changes in the critic score. When f is differentiable almost everywhere,
1-Lipschitzness implies

|Vif(x)|l2 <1 for almostevery x € 2,

and (under mild regularity conditions) the converse holds as well. See Villani [646] for a rigorous
treatment of Lipschitz continuity in optimal transport.

The WEGAN-GP Loss Function

WGAN-GP enforces this constraint softly via regularization. We train the critic to minimize

Zh. = Bepol (D] — By ()] + A By [(IVe/ ()]~ 1)?]

WGAN critic loss (minimization form)

gradient penalty

The generator is updated using the standard WGAN objective:

Lo=-E_,[f(G()].

Here A is a regularization coefficient (typically A = 10). The distribution p; is defined by the
interpolated samples used to evaluate the penalty, described next.

Interpolated Points: Enforcing a “Controlled Slope” Where It Matters Enforcing ||V f]| < 1
everywhere in high-dimensional space is both intractable and unnecessary. WGAN-GP instead
enforces a controlled slope in the region that most strongly influences learning: the “bridge” between
current generated samples and real samples.

* The bridge intuition (local changes should cause local score changes): The generator
updates its parameters by backpropagating through the critic score f(G(z)). Consequently, the
geometry of f in the neighborhood of generated samples—and in the nearby region leading
toward real samples—determines the direction and stability of the generator’s gradient. If f
becomes too steep in this region, generator updates can become unstable; if f becomes too
flat, learning stalls.

20.5 GANs in Practice: From Early Milestones to Modern Advances 1083

* Implementation via interpolation (sampling the bridge): WGAN-GP approximates this
bridge by sampling straight-line segments between random real and fake pairs. Given x ~ pgata,
X~ pg,and € ~ %[0, 1], define

£ =¢ex+ (1-¢)x

The distribution py is the law of X induced by this sampling procedure. The penalty is evaluated
on these X, encouraging the critic to behave like a well-conditioned “ramp” between real and
fake.

* An infinitesimal-change view (Explicit Intuition): For a small perturbation &, a first-order
approximation gives

[f(£+6) —f(D)] = [(Vef(£),8)] < [[Vaf(D)l2[8]2-

Thus, penalizing deviations of ||V:f(%)|2 from 1 explicitly enforces a controlled sensitivity:
it ensures that changing the image slightly along this bridge changes the critic score by a
predictable, bounded amount (roughly proportional to the change in the image).

Why Penalize Toward Norm 1 (Not Just “< 1””)? Formally, the Kantorovich—Rubinstein dual
requires ||V f|| < 1. WGAN-GP uses the two-sided penalty (|[Vf||> —1)? as a practical way to
produce a critic that is both Lipschitz-compliant and useful for learning.

» Upper bound (preventing instability): Enforcing gradients near 1 automatically discourages
IV]| > 1, which would make the critic hypersensitive. This prevents the exploding gradients
that often destabilize standard GANS.

* Avoiding flat regions (ensuring signal): If the critic becomes flat on the bridge (||V f|| ~ 0),
then f changes little as ¥ moves toward x. In this scenario, the generator receives a zero or
negligible gradient and stops learning. The two-sided penalty discourages such degeneracy by
encouraging a non-trivial slope on the bridge.

* A simple 1D example (Flat vs. Steep vs. Controlled): Consider a scalar input ¢ € [0, 1]
parameterizing a path from fake (r = 0) to real (r = 1), and let the critic along this path be
f(@).

— Flar (f'(t) = 0): The critic outputs constant scores. The generator gets no signal.

— Steep (f'(t) > 1): The critic jumps rapidly. Generator updates are unstable and explode.

— Controlled (f'(t) =~ 1): The critic acts like a ramp. Moving ¢ from O to 1 improves the
score steadily. This provides the ideal, constant-magnitude learning signal.

Comparison: Standard GANs vs. Clipped WGAN vs. WGAN-GP

1. Vs. Standard GANs: Standard GANs optimize a classification objective with a sigmoid
output. When the discriminator is perfect, the sigmoid saturates, and gradients vanish. WGAN-
GP uses a linear critic with a gradient penalty; this combination prevents saturation and
guarantees a steady flow of gradients even when the critic is accurate.

2. Vs. WGAN with Weight Clipping: Weight clipping constrains the critic’s parameters to
a box, which biases the network toward simple, linear functions and limits its capacity. In
contrast, WGAN-GP constrains the local slope of the function. This allows the parameters
themselves to be large, enabling the critic to learn complex, non-linear decision boundaries
(e.g., deep ResNets) while maintaining stability.

1084 Chapter 20. Lecture 20: Generative Models Il

Why This Avoids Over-Regularization Because the penalty is applied only on the interpolated
bridge samples £, the critic is not forced to satisfy a tight constraint everywhere in the vast input space
Z . Instead, it is encouraged to be well-behaved precisely in the region that dominates generator
learning dynamics, yielding a practical compromise: controlled sensitivity where it matters, without
globally crippling the critic’s capacity.

Code Walkthrough: Penalty Computation Below is a robust PyTorch implementation of the
gradient penalty. Note the use of create_graph=True, which is essential because the penalty
depends on V;f(X); updating the critic therefore requires differentiating through this gradient
computation.

def compute_gradient_penalty(critic, real_samples, fake_samples, device):
nnn

1
2

3 WGAN-GP gradient penalty: E[(//grad_zhat f(zhat)/[_2 - 1)-2].

4 Assumes fake_samples are treated as constants during the critic update.
5 nnn

6 # Detach fake samples to avoid backprop to G during critic update

7 fake_samples = fake_samples.detach()

8

9 # 1) Sample interpolation coefficients and build z_hat

10 alpha = torch.rand(real_samples.size(0), 1, 1, 1, device=device)

1 alpha = alpha.expand_as(real_samples)

12 x_hat = (alpha * real_samples + (1 - alpha) * fake_samples).requires_grad_(True)
13

14 # 2) Critic output on interpolates

15 f_hat = critic(x_hat)

16

17 # 3) Compute grad_{z_hat} f(z_hat)

18 grad_outputs = torch.ones_like(f_hat)

19 gradients = torch.autograd.grad(

20 outputs=f_hat,

21 inputs=x_hat,

22 grad_outputs=grad_outputs,

23 create_graph=True, # enables backprop through the gradient norm

24 retain_graph=True

25) [0]

26

27 # 4) Per-sample L2 norm and penalty

28 gradients = gradients.view(gradients.size(0), -1)

29 grad_norm = gradients.norm(2, dim=1)

30 return ((grad_norm - 1) *#* 2).mean()

Step-by-step intuition:

(a) Sample & interpolate: Mix real and fake samples to form x, and set requires_grad_(True)
so gradients w.r.t. inputs are tracked.

(b) Differentiate through the critic: Use torch.autograd.grad to compute V,.f(x). Setting
create_graph=True is crucial so the penalty can backpropagate into critic parameters.

(c) Apply the penalty: Flatten per sample, compute ¢, norms, and penalize (HVX)2 — 1)2.

20.5 GANs in Practice: From Early Milestones to Modern Advances 1085

Resulting Dynamics & Why It Helps

* Stabilized training: The critic avoids the pathological saturation or massive weight expansions
that occur with naive clipping. Its gradients remain “under control” precisely in the real-fake
frontier.

* More reliable gradients in practice: Compared to clipped WGAN:S, the critic is less likely
to become overly flat or excessively steep near the real-fake frontier, which often yields a
smoother and more informative learning signal for the generator.

* Minimal overhead, maximum benefits: The penalty is computed via a simple first-order
differentiation step. Empirically, it yields a more robust Lipschitz enforcement than globally
constraining network weights.

Interpreting the Loss Components
* The Wasserstein Estimate:

E[f(®)] - E[f(x)]

The critic minimizes Eg[f(%)] — E[f(x)], which is equivalent to maximizing E,[f(x)] —
Ez[f(%)], thereby widening the real-fake score gap.
* The Gradient Penalty:

AE [(1Vef ()]~ 1)?]

Why penalize deviation from 1, rather than just values > 1? To maximize the Wasserstein
gap, the optimal critic tends to use as much slope as allowed (up to the Lipschitz limit) in
regions that separate real from generated samples. Penalizing deviation from 1 encourages
non-degenerate slopes (so infinitesimal changes in X produce informative but bounded changes
in f(£)) while still controlling excessive gradients.

Key Benefits of the Gradient Penalty vs. Weight Clipping

* Precisely targeted constraint: By checking gradients only on line segments connecting real
and generated data, WGAN-GP avoids excessive regularization in unimportant regions.

* Avoids clipping pathologies: Hard-clipping forces weights into a small box, often causing
the critic to behave like a simple linear function. The soft gradient penalty allows for complex,
non-linear critics.

* Supports deeper architectures: WGAN-GP is compatible with deep ResNets without
suffering the instabilities or gradient vanishing often observed in clipped WGANS.

Practical Implementation Note: Avoid Batch Normalization A critical requirement for WGAN-
GP is that the critic must not use Batch Normalization. The gradient penalty is computed w.r.t.
individual inputs. BatchNorm couples samples in a batch, invalidating the independence assumption
of the penalty. Use Layer Normalization, Instance Normalization, or no normalization in the
critic (BatchNorm may still be used in the generator, since the gradient penalty is not taken w.r.t.
generator inputs).

1086 Chapter 20. Lecture 20: Generative Models Il

Cuuwg‘_g__enuu on CIFAR-10) Convergence on CIFAR-10

1

Ineeption Seore

—— Weight clipping
Gradient. Penalty {RMSProp)
—— Gradient Penalty {Adam}) el = Lm

— DCGAN =

Weight clipging

Ineepticn Seore

fient Penalty |

[iXi} 0.5 10 L5 20 0 1 2 4 4

Generator iterations d Wallelock time (in seconds)
Figure 20.28: From Gulrajani et al. [194]. Inception scores (higher = better) for WGAN-GP vs. other
GAN methods. WGAN-GP converges consistently, demonstrating improved stability over time.

Architectural Robustness

One of the most compelling benefits of WGAN-GP is its architectural flexibility. It works reliably
with MLPs, DCGANSs, and deep ResNets—even when using the same hyperparameters across
models.

DCGAN LSGAN WGAN (clipping) WGAN-GP (ours)
Baseline (¢ DCGAN, D DCGAN)

ey PR B B Piges

(': No BN and a constant number of filters, [): DCGAN

BLEE s

Il 3 e 3]
f iy . %

7 4-layer 512-dim ReL.U MLP,
- B

No normalization in either G or 2

Gated multiplicative nonlineariti

.|

tanh nonlincarities everywhere in G and D

0 T8
l._.th. g+ wiio

101-layer ResNet ¢ and D

Figure 20.29: From Gulrajani et al. [194]. Only WGAN-GP consistently trains all architectures with
a shared set of hyperparameters. This enables broader experimentation and performance gains.

State-of-the-Art Results on CIFAR-10 (At the Time of Publication)

In the experimental setup of Gulrajani et al. [194], WGAN-GP with a ResNet-based critic achieves
leading Inception scores on CIFAR-10 among the compared unsupervised baselines at the time
of publication. Since then, many subsequent GAN variants and training schemes have surpassed
these numbers; here, the table is best read as evidence that stable Lipschitz enforcement enables
higher-capacity architectures to train reliably and reach strong results under a fixed, controlled
comparison.

20.5 GANs in Practice: From Early Milestones to Modern Advances 1087

Unsupervised Model Inception Score
ALI (Dumoulin et al.) 5.34 +0.05
DCGAN (Radford et al.) 6.16 £ 0.07
Improved GAN (Salimans et al.) 6.86 £ 0.06
EGAN-Ent-VI 7.07 £ 0.10
DFM 7.72 £ 0.13
WGAN-GP (ResNet) 7.86 £ 0.07

Table 20.3: CIFAR-10 Inception scores reported by Gulrajani et al. [194] for selected unsupervised
baselines.

Conclusion

WGAN-GP combines the theoretical strength of optimal transport with the practical stability of
smooth gradient regularization. It replaces rigid weight clipping with a principled, differentiable
loss term—enabling deeper architectures, smoother convergence, and high-quality generation across
domains. Its success laid the groundwork for many subsequent GAN improvements, including
conditional models and progressive training techniques.

1088 Chapter 20. Lecture 20: Generative Models Il

Enrichment 20.6: The StyleGAN Family

The StyleGAN family, developed by Karras et al. [278, 279, 280], represents a major advancement
in generative modeling. These architectures build upon the foundational Progressive Growing
of GANs (ProGAN) [281], introducing a radically different generator design that enables better
disentanglement, fine-grained control, and superior image quality.

Enrichment 20.6.1: ProGAN Overview: A Stability-Oriented Design

ProGAN [281] stabilizes GAN training by progressively growing both the generator and discriminator
during optimization. Instead of learning to synthesize 1024 x 1024 images from the start, training
begins at a very low spatial resolution (typically 4 x 4) and then doubles resolution in stages:

47 5 8% 5 16% — -+ — 1024°.

The core idea is that early stages learn global structure (pose, layout, coarse shape) in a low-
dimensional pixel space, while later stages specialize in high-frequency detail (texture, strands of
hair, wrinkles), reducing optimization shock and improving stability.

Training Strategy

ProGAN couples a resolution-aware curriculum with several stabilization heuristics (pixelwise
feature normalization, minibatch standard deviation, equalized learning rate). The progressive
schedule has two intertwined components: (i) architectural expansion and (ii) a fade-in transition
that smoothly introduces newly added layers.

* Progressive layer expansion (the core mechanism): To move from resolution R to 2R,
ProGAN does not restart training from scratch. Instead, it grows both networks by appending a
small, highest-resolution block while reusing the previously trained lower-resolution networks
unchanged as an Old Stack. Conceptually, the Old Stack has already learned how to model
and judge coarse structure at resolution R, so the newly added parameters can concentrate
on the incremental difficulty of handling finer-scale detail that only exists at resolution 2R.
This isolates the new learning problem, reduces optimization shock, and makes the adversarial
game substantially better conditioned.

— Generator growth (adding detail at 2R): Let Gg denote the generator after training at
resolution R. When run up to its last internal feature tensor, it produces hz € RR*R*C,
which encodes a stable coarse scene description (global pose, layout, low-frequency
shape). To reach 2R, ProGAN upsamples this feature map and appends a New Block
(typically two 3 x 3 convolutions) that operates specifically at the new resolution. Finally,
anew toRGB head (a 1 X 1 convolution) projects the refined features to the three RGB

channels:
upsample Two 3x3 Convs / toRGB
2 — hp psamp R2RX2RXC hog € R2R*2RxC R
A e — New Block 1x1 ~—~—~
Old Stack (learns fine detail) Output Image
(RXRxC) (2RX2Rx%3)

In practice, upsampling is performed via nearest-neighbor interpolation (to avoid checker-
board artifacts from transposed convolutions), followed by the two 3 X 3 convolutions.

20.6 Enrichment 20.6: The StyleGAN Family 1089

X2R
~~

Input Image
(2RX2Rx3)

The New Block and its toRGB head are the only components that must learn how to
express and render the additional degrees of freedom available at 2R (sharper edges,
higher-frequency texture statistics), while the Old Stack continues to provide the already-
learned global structure. This division of labor is the main reason progressive growing is
easier to optimize than training a full 2R-resolution generator from scratch, where global
geometry and micro-texture would need to be discovered simultaneously under a rapidly
strengthening discriminator.

Discriminator growth (mirroring the generator at 2R): Let Dg denote the discriminator
trained at resolution R. At this point in training, Dg is already a competent “coarse
realism” judge: it has learned to map an R X R image (or, equivalently, an R x R feature
representation) to a scalar score by detecting global inconsistencies such as wrong layout,
implausible shapes, or broken low-frequency statistics.

When we increase the generator’s output resolution to 2R, the discriminator must expand
its perceptual bandwidth: it should still leverage its learned global judgment, but it must
also become sensitive to the new high-frequency evidence that now exists in 2R x 2R
images (e.g., sharper edges, texture regularities, aliasing artifacts). ProGAN achieves
this without discarding the already-trained discriminator by growing the discriminator in
the opposite direction of the generator: it prepends a small, high-resolution processing
block at the input side, and then plugs the pre-trained Dy (the Old Stack) in after this
new block.

Concretely, the new input-side block consists of a fromRGB stem (a 1 x 1 convolution)
that lifts raw pixels into feature space, followed by two 3 x 3 convolutions that operate
at resolution 2R to analyze fine-detail cues, and finally an average-pooling downsample
that produces an R x R feature tensor of the shape expected by the old discriminator
stack:

fromRGB / Two 3x3 Convs avgpool D
R2R><2R><C RZRXZRXC gp! RRxRxC Ry Score.
1x1 N——— _ New Block
High-res features (critiques fine detail) Compatible input for
(new stem output) Old Stack Dg

This construction makes the training dynamics much better behaved. The old discrimina-
tor Dg is not “thrown away” and relearned; it remains intact and continues to process an
R X R representation with the same tensor shape and comparable semantic level as in the
previous stage. In other words, the newly added high-resolution block acts as a learned
front-end sensor: it observes the extra information available at 2R, extracts the fine-scale
evidence that was previously invisible, and then hands a downsampled summary to the
already-trained “global judge” Dg.

As a result, the discriminator becomes stronger exactly where the generator gained new
degrees of freedom, but it does so in a controlled, localized way: most of the discrimina-
tor’s capability (the Old Stack) remains a stable foundation for judging geometry and
low-frequency structure, while only the new input-side block must learn how to interpret
and penalize higher-frequency artifacts. This is one of the key reasons progressive
growing improves stability compared to training a large 2R-resolution discriminator from
scratch, which can either (i) rapidly overpower the generator before it has learned coarse
structure, or (ii) destabilize optimization by forcing the entire discriminator to simul-
taneously learn both global and fine-scale judgments from an initially weak generator
distribution.

1090 Chapter 20. Lecture 20: Generative Models Il

* Fade-in mechanism (what is blended, when, and how it is controlled): Abruptly inserting
new layers can destabilize training, because the discriminator suddenly receives higher-
resolution inputs and the generator suddenly produces outputs through untrained weights.
ProGAN avoids this by linearly blending two image pathways during a dedicated transition
period.

At resolution 2R, the generator produces the final RGB image via:

Bi(0) =o' +(1-a) o, aclol]
where:
- xg}fh is the RGB output from the new block (upsample — conv — toRGB) at resolution
2R.

— X% is obtained by taking the previous stage output xg € RF*R*3 and upsampling it to

2R X 2R (using the same deterministic upsampling).
The discriminator uses a matching fade-in at its input:

() = - oh + (1—) - oI,

where (j);1 Iiegh is the feature map after the new fromRGB and convs at 2R, and (])%‘;QW is obtained

by downsampling the input image to R x R and passing it through the previous-stage fromRGB
branch.

How « is scheduled in practice: « is treated as a deterministic scalar that is updated as
training progresses, typically linearly with the number of images processed during the fade-in
phase:

. n
o m1n<1, > ,
Nfade

where 7 is the number of training images seen so far in the fade-in phase and Npyq. is a fixed
hyperparameter (often specified in “kimg”). Equivalently, in code one updates o once per
minibatch using the minibatch size. After the fade-in phase completes (@ = 1), ProGAN
continues training at the new resolution for an additional stabilization phase with ¢ fixed to 1.

» Stage completion criterion (schedule, not adaptive metrics): ProGAN uses a fixed curricu-

lum, not an adaptive convergence test. Each resolution stage consists of:

— Fade-in phase: linearly ramp o : 0 — 1 over Npq images.

— Stabilization phase: continue training for Ny, images with @ = 1.
The values Ngyge, Nstap are resolution-dependent hyperparameters (often larger for high res-
olutions; e.g., hundreds of thousands of images per phase at 1282 and above in the original
setup).

* Upsampling and downsampling operators (why these choices): The generator uses nearest-
neighbor upsampling followed by 3 x 3 convolutions to avoid the checkerboard artifacts often
associated with transposed convolutions. The discriminator uses average pooling for down-
sampling to provide a simple, stable low-pass behavior, again followed by 3 x 3 convolutions.

Why This Works
Progressive growing decomposes a difficult high-resolution game into a sequence of easier games:
« Large-scale structure first: At 4% or 82, the networks learn global layout with very limited
degrees of freedom, reducing the chance that training collapses into high-frequency “noise
wars” between generator and discriminator.

20.6 Enrichment 20.6: The StyleGAN Family 1091

* Detail refinement later: Each new block primarily controls a narrower frequency band (finer
scales), so it can specialize in textures while earlier blocks preserve global semantics.

* Compute efficiency: Early stages are much cheaper, and a substantial portion of training
time occurs before reaching the largest resolutions, reducing total compute versus training
exclusively at full resolution.

Generator
z-> I - = —> - > —
4xd
Gx8 G
TEx16
~
K2 xki2 @ '
Upscals 2x ftk
Mo leamable weights, uses neareet neighbor algorithm
M Densa Layer
Used in input layar anly (_I " (X)
Convolutional Layer
Filtars ara 323, stride = 1. paddirg = "sama’

" Leaky Rel U
Activation function Z = random code
Pixelnorm e ated i
An altemative to batch normalization Amaener s
e o = extant to which last layer is "faded in*

A 11 corwolutional layer that outputs 3 channels

Discriminator

* = input image

— — o = controls "fading in* of top layer

. \l/
x ®H- |- > - —>I I Ie D)
Axd
&xa

T6x16

kA2 x ki2
(1-0)

B Dense Layer From-RAGE Layer
U for GUESt ayers anly A 151 conualidional buper

B Minibatch Standard Deviation Layer Downscale 2x
Mo laemable perametars Lsns averagr poaling, ne Iamed prmmetars

_Leaky RelLU Caonvolutional Layer
Activeion fuction Filtars are: A3, shica - 7, pariding = 'same’

Figure 20.30: Progressive Growing in ProGAN: Training begins with low-resolution images (e.g.,
4 x 4). The generator grows by adding blocks that upsample feature maps and output higher-
resolution images, while the discriminator grows symmetrically by adding blocks that process
higher-resolution inputs before downsampling. Fade-in transitions blend old and new pathways to
avoid optimization shocks when new blocks are introduced. Figure adapted from [281], visualized
clearer in [696].

1092 Chapter 20. Lecture 20: Generative Models Il

Stabilization Heuristics

Beyond the progressive growth curriculum, ProGAN introduces three concrete modifications whose
shared goal is to make the generator—discriminator game numerically well-conditioned: (i) keep
generator signal magnitudes from drifting or “escalating” across depth and time, (ii) give the
discriminator an explicit handle on within-batch diversity so collapse is easier to detect, and (iii)
equalize the effective step sizes of different layers by a simple re-parameterization of convolution
weights.

* Pixelwise feature normalization (PixelNorm in the generator): ProGAN inserts a deter-
ministic normalization step after each convolutional layer in the generator (in the original
architecture, after the nonlinearity), applied independently at every spatial location and inde-
pendently for every sample in the minibatch. Let ay, ,, € IRC denote the channel vector at pixel
(h,w) in some intermediate generator feature map (for a fixed sample). PixelNorm rescales
this vector by its root-mean-square (RMS) magnitude:

a
\/ ¥,

This operation has no batch dependence and no learnable affine parameters (no ¥,); it is a
pure, local rescaling.
Why this particular form helps. The generator repeatedly upsamples and refines features, so
small imbalances in per-layer gain can amplify over depth, leading to layers that operate at
very different dynamic ranges. PixelNorm acts as a per-location “automatic gain control”: it
keeps the feature energy at each pixel close to a fixed scale, while still allowing the network to
encode semantics in the direction of ay,, (i.e., relative patterns across channels). This tends
to reduce sensitivity to initialization and learning-rate choices, and it limits runaway signal
magnitudes without forcing the generator to be linear or low-capacity.
How it differs from common normalizers. BatchNorm normalizes using minibatch statistics,
coupling unrelated samples and potentially injecting batch-dependent artifacts into generation;
PixelNorm avoids this entirely by operating per sample and per spatial location. LayerNorm
typically uses both centering and scaling (subtracting a mean and dividing by a standard
deviation over channels, sometimes over larger axes depending on implementation) and
is usually paired with a learnable affine transform; PixelNorm performs only RMS-based
rescaling (no mean subtraction) and no learned gain/shift, which preserves sparsity patterns
induced by ReLLU/leaky-ReLU and keeps the normalization as a lightweight stabilizer rather
than a feature-wise affine re-mapping. In the ProGAN context, the intent is not “feature
whitening” but simply keeping the generator’s internal signal scale under control throughout
progressive growth.

* Minibatch standard deviation (explicit diversity signal in the discriminator): Mode
collapse is difficult for a standard discriminator to detect because it scores each image inde-
pendently: if the generator outputs the same plausible-looking image for many latent codes,
per-sample classification can remain ambiguous even though the set of samples is clearly
non-diverse. ProGAN addresses this by appending a statistic that measures variation across
the minibatch to the discriminator’s activations near the end of the network.

Computation. Let f € RV*CHXW be g discriminator feature tensor for a minibatch of size N
at some late layer (typically when spatial resolution is already small).

h,

bh,w S]RC.

w
ahw +£

20.6 Enrichment 20.6: The StyleGAN Family 1093

The minibatch standard deviation layer computes:

(a) Batch-wise deviation: compute the per-feature, per-location standard deviation across the
minibatch,

1Y g
Ochw = \/ Z (fn,c,h,w - .uc,h,w)2 + €, Henw = 1 Z fn,c,h,w-
N n=1 N n=1

(b) Aggregate to a scalar: average o, j,, over channels and spatial positions to obtain a single
scalar s € R,

s = m Z GC,/’I,W'

c,h,w

(c) Broadcast and concatenate: replicate s to a constant feature map s1 € RV*!*XH>*W apd
concatenate it as an additional channel:

f' = Concat(f, s1) € RV (CHIxHW,

How it is used inside the discriminator: the next discriminator layers simply continue
operating on f’ (now with C + 1 channels). In particular, the subsequent convolution (or
final dense layers, depending on the stage) has trainable weights on this extra channel, so it
can treat 51 as a dedicated “diversity sensor’” and incorporate it into the real/fake decision
alongside the usual learned features.

Why this discourages collapse. If the generator collapses so that samples in the batch become
nearly identical, then many discriminator features also become nearly identical across n,
driving o, (and hence s) toward zero. The discriminator can then learn a simple rule:
“real batches tend to exhibit non-trivial variation, whereas collapsed fake batches do not”.
This converts lack of diversity into an easily separable cue, forcing the generator to maintain
perceptible sample-to-sample variability in order to keep the discriminator uncertain. The
aggregation to a single scalar is deliberate: it provides a robust, low-variance signal that is
hard to game by injecting diversity into only a small subset of channels or spatial positions.
How this affects the generator (the feedback loop). Although s is computed inside the
discriminator, it changes the generator’s training signal because the discriminator’s output now
depends on a quantity that summarizes between-sample variation. During backpropagation,
gradients flow from the discriminator score through the weights that read the extra channel
s1, then through the computation of s, and finally back to the generator parameters via
the generated samples that contributed to f. Consequently, if the discriminator learns to
penalize low s as “fake”, the generator can only improve its objective by producing batches
for which the discriminator features are not nearly identical across different latent codes.
Operationally, this introduces a pressure to map different z values to meaningfully different
outputs (and intermediate discriminator activations), counteracting the collapsed solution in
which G(z1) =~ G(z2) for many z; # z5.

1094 Chapter 20. Lecture 20: Generative Models Il

* Equalized learning rate (EqLR): Standard initializations (like He or Xavier) scale weights

once at initialization to ensure stable signal magnitudes. However, this creates a side effect:
layers with different fan-ins end up with weights of vastly different magnitudes (e.g., 0.01
vs 1.0). Since modern optimizers (like Adam) often use a global learning rate, this leads to
update speeds that vary wildly across layers. ProGAN solves this by decoupling the parameter
scale from the signal scale.
The Mechanism (Runtime Scaling). First, recall that fan-in (n) is the number of input
connections to a neuron (e.g., k* - C;, for a convolution). In EqLR, we initialize all stored
parameters w from a standard normal distribution .#"(0, 1). Then, during every forward pass,
we scale them dynamically:

2
Weffective = W * C, where ¢ = \/; .

The layer uses wegrective fOor convolution, ensuring the output activations have unit variance
(just like He initialization).
Why this stabilizes training (The ''Learning Speed'' Intuition). The benefit appears during
the backward pass. To see why, compare a large layer (where weights must be small) under
both schemes:
— Standard He Initialization: We initialize w ~ 0.01. If the learning rate is n = 0.01,
a single gradient step can change the weight from 0.01 — 0.02. This is a huge 100%
relative change, causing the layer to train explosively fast and potentially diverge.
— EqLR: We initialize w ~ 1.0. The constant ¢ ~ 0.01 handles the scaling downstream.
Now, the same gradient update 1 = 0.01 changes the stored parameter from 1.0 — 1.01.
This is a stable 1% relative change.
Result: By keeping all stored parameters in the same range (w ~ 1), EQLR ensures that all
layers—regardless of their size—learn at the same relative speed. This prevents the "race
condition" where some layers adapt instantly while others lag behind, which is critical for the
delicate balance of GAN training.
Note on Inference: There is no train—test discrepancy. The scaling c is a fixed mathematical
constant derived from the architecture dimensions. It is applied identically during training and
inference.

While ProGAN successfully synthesized high-resolution images with impressive quality, its architec-
ture introduced three fundamental limitations that StyleGAN sought to overcome:

 Latent code bottleneck: The latent vector z ~ .4(0,1) is injected only once at the input.
Its influence can weaken in deeper layers, which are responsible for fine-grained texture and
microstructure.

* Entangled representations: High-level attributes such as pose, identity, and background
are mixed in the latent space, so small perturbations in z can produce unpredictable coupled
changes across multiple factors.

* Lack of stochastic control: Fine-scale stochastic details (e.g., pores, hair microstructure, sub-
tle lighting variation) are not explicitly controlled or reproducibly isolatable in the generator.

These limitations motivated a rethinking of the generator design—Ieading to StyleGAN, which
introduces multi-resolution modulation, explicit stochastic inputs, and a non-linear mapping from z
to intermediate style vectors to improve disentanglement and controllability.

20.6 Enrichment 20.6: The StyleGAN Family 1095

Enrichment 20.6.2: StyleGAN: Style-Based Synthesis via Latent Modulation

While ProGAN succeeded in generating high-resolution images by progressively growing both
the generator and discriminator, its architecture left a core limitation unresolved: the latent code
7z~ A(0,1) was injected only at the input layer of the generator. As a result, deeper layers —
responsible for fine-grained details — received no direct influence from the latent space, making it
difficult to control semantic factors in a disentangled or interpretable way.

StyleGAN, proposed by Karras et al. [278], addresses this by completely redesigning the generator,
while keeping the ProGAN discriminator largely unchanged. The key idea is to inject the latent
code — transformed into an intermediate vector w € # — into every layer of the generator. This
turns the generator into a learned stack of stylization blocks, where each resolution is modulated
independently by semantic information.

This architectural shift repositions the generator not as a direct decoder from latent to image, but as
a controllable, hierarchical stylization process — enabling high-quality synthesis and fine-grained
control over attributes like pose, texture, and color.

Latent z € Z Latent z € Z . Noise
Synthesis network g

Const 4x4x512

Normalize

Mapping

Fully-connected

(a) Traditional (b) Style-based generator

Figure 20.31: StyleGAN architecture: The latent code z is first mapped to w, which then controls
AdalN layers across the generator. Stochastic noise is injected at each layer for texture variation.
Image adapted from [278].

1096 Chapter 20. Lecture 20: Generative Models Il

Key Architectural Ideas

(1) Mapping Network (2 — W).

Instead of injecting the latent vector z € R? directly into the generator, StyleGAN introduces a
learned mapping network — an 8-layer MLP that transforms z into an intermediate latent vector

w = f(z) € # . This design serves two main purposes:

* Alleviating entanglement (empirically): The original latent space 2 tends to entangle unrelated
attributes — such as pose, hairstyle, and facial expression — making them difficult to control
independently. The mapping network learns to reparameterize the latent space into %', which
is observed (empirically) to be more disentangled: specific dimensions in w often correspond to
localized and semantically meaningful variations.

 Improved editability: The intermediate latent space % facilitates smoother interpolation and
manipulation. Small movements in w tend to yield isolated, predictable image changes (e.g.,
adjusting skin tone or head orientation) without unintentionally affecting other factors.

Why Not Just Increase the Dimensionality of z?

A natural question arises: could increasing the dimensionality of the original latent vector z achieve
the same effect as using a mapping network? In practice, the answer is no — the limitation lies not
in the capacity of z, but in its geometry.

Latents drawn from .47(0,1) are distributed isotropically: all directions in 2 are equally likely,
with no preference for meaningful directions of variation. This forces the generator to learn highly
nonlinear transformations to decode useful structure from z, often leading to entangled image features.
Merely increasing the dimension expands the space without addressing this fundamental mismatch.

By contrast, the mapping network explicitly learns to warp 2 into %/, organizing it such that
different axes correspond more closely to semantically interpretable changes. While not theoretically
guaranteed, this empirically observed disentanglement leads to significant improvements in image
control, interpolation quality, and latent traversal. Karras et al. [278] demonstrate that using w € #
consistently outperforms direct use of z — even with larger dimension — in terms of editability and
semantic structure.

(2) Modulating Each Layer via AdalN (Block A):

In ProGAN, the latent code z is injected only once at the input. To prevent signal magnitude
escalation, ProGAN uses PixelNorm, which forces every feature vector to unit norm. While stable,
this is rigid: it applies the same normalization rule to every image, denying the latent code the ability
to emphasize or suppress specific features sample-by-sample.

The Feature Statistics Hypothesis: What is *“‘Style’’? To understand StyleGAN’s solution, we
must first define what “style” means in the context of Convolutional Neural Networks. Building on
insights from neural style transfer [248], StyleGAN relies on the Feature Statistics Hypothesis:
* Spatial Layout (Content): The relative spatial locations of peaks and valleys in a feature map
encode geometry (e.g., “an eye is at pixel (10,10)”).
* Global Statistics (Style): The channel-wise mean and variance encode the texture or appear-
ance (e.g., “how strong are the edges globally?” or “what is the background lighting?”).
Under this hypothesis, we can alter the “style” of an image simply by overwriting its feature map
statistics, without needing to modify the spatial layout directly.

20.6 Enrichment 20.6: The StyleGAN Family 1097

The “Wash and Paint” Mechanism (AdalN). StyleGAN replaces PixelNorm with Adaptive
Instance Normalization (AdalN), turning each synthesis layer into a latent-controlled feature-
styling module.

Unlike neural style transfer, which borrows statistics from a reference image, StyleGAN predicts
the target statistics from the intermediate latent code w. The operation proceeds in two steps:

Step 1: The Wash (Instance Normalization). First, we strip the input features of their current style
statistics. Let x, € RV*CoxHixWe be the activation tensor at layer £. For each sample i and channel c,
we compute the spatial mean y and standard deviation ¢ across the dimensions (Hy, Wy):

Xpic— Meic
Norm(x¢;.) = Xic ~ Bic e,
Ovic

This “wash” removes the global energy and offset from the feature map while preserving its relative
spatial structure. 1deally, the network retains where the features are (the layout), but forgets how
strong they are.

Step 2: The Paint (Latent-Driven Modulation). Next, StyleGAN “paints” new statistics onto this
canonical canvas. The latent w is projected via a learned affine transform A, into style parameters:

(v (W), Be(w)) =Ae(w), . Br € RS

These parameters are broadcast across the spatial dimensions (Hy, Wy) to modulate the normalized
features:

AdalN(x;,w) = MGNorm(Xg) —i-w.

Scale Bias

Why does this work? (Mathematical Derivation). We can prove that this operation forces the
output features to have exactly the statistics dictated by w. Let £ = Norm(x). By construction, its
spatial mean is 0 and variance is 1. The statistics of the output y = vt + 8 are:

E[y| = E[yt+ B] = YE[£] + B = B,

VVarly] = v/Var[yt + B] = \/y?Var[f] = v.

Thus, for every layer ¢, the pair (B;(w),v,(w)) is precisely the layer’s “style”: it directly dictates
the baseline and contrast of every feature channel.

Intuition: The “Global Control Panel” Analogy. Imagine each channel c is a specific feature
detector (e.g., Channel 42 detects “vertical wrinkles”). The AdaIN parameters act as a global control
panel for these detectors:
* Scale ¥, . (The Volume Knob): This controls the gain or contrast.
— High y: The volume is up. The detector’s response is amplified. Deep, sharp wrinkles
appear wherever the layout indicates.
— Low y: The volume is down. The feature is muted or washed out.
* Bias 3, (The Offset Slider): This controls the baseline presence.
— High B: The feature is active everywhere (e.g., brightening the global lighting condition).
— Low B: The feature is suppressed below the activation threshold.

1098 Chapter 20. Lecture 20: Generative Models Il

Key Limitations: Spatially Uniform and Channel-Wise Control. While powerful, the AdaIN
mechanism imposes two strict algebraic constraints on how the latent code w can influence the
image:

* Spatially Uniform Control: The parameters ¥, (w) and ;(w) are scalars that are broadcast
over all spatial locations (H;, W;). This means w cannot directly specify “brighten the top-left
corner” differently from the bottom-right. It can only modulate the entire feature detector
globally. (Note: Localized effects like a glint can still be produced via the spatial layout of the
input features xy, but w cannot selectively target them).

* Channel-Wise (Diagonal) Control: The modulation acts on each channel independently. The
affine transformation scales and shifts individual feature detectors but cannot mix or rotate
them based on the latent code. Any coordination between channels must be handled implicitly
by the convolutional weights.

The Downside: Normalization Artifacts (“Droplets”). These limitations—specifically the In-
stance Normalization step (The “Wash”)—are the primary motivation for StyleGAN2. Because
AdalN re-normalizes every feature map to unit variance, it discards the relative signal strength
between channels. To bypass this, the generator learns to create localized spikes in signal magnitude
(blobs or “droplets”) in the background. These spikes inflate the variance o, allowing the generator
to manipulate the normalization constant and effectively preserve signal magnitude elsewhere. Style-
GAN2 resolves this by removing explicit normalization in favor of a new weight demodulation
scheme, which preserves the benefits of style modulation without causing these artifacts.
Why this matters (Hierarchical Control): Despite the limitation, this mechanism yields the
disentanglement properties StyleGAN is famous for:
* Explicit separation of layout and appearance: The spatial arrangement flows through the
convolutions (the “content”), while w acts as an external controller that overwrites the statistics
(the “style™).
» Sample-dependent behavior: The same convolutional filters behave differently for different
images because their operating points are modulated by w.
* Coarse-to-fine control: By modulating early layers, w controls the statistics of coarse features
(pose, shape). By modulating deeper layers, it controls fine details (colors, micro-textures).

(3) Fixed Learned Input (Constant Tensor):

A second innovation in StyleGAN is the use of a fixed learned input tensor: a constant trainable
block of shape 4 x 4 x C, shared across all samples. Unlike earlier GANs, where z or w was reshaped
into an initial feature map, StyleGAN treats this constant as a base canvas.

All variation is introduced after this tensor, via style-based AdaIN modulation and additive noise.
This decoupling is only viable because AdalN provides a mechanism to inject sample-specific
statistics into every layer. Without such modulation, a fixed input would collapse to identical outputs;
with AdalN, global structure emerges from the constant canvas, while semantic and stylistic variation
is progressively layered in.
This design enforces:
* Consistent spatial structure: A shared input encourages stable layouts (e.g., facial geometry),
while variations arise from modulation.
* Stronger disentanglement: Since w no longer defines spatial structure, it can focus on
semantic and appearance attributes.

20.6 Enrichment 20.6: The StyleGAN Family 1099

(4) Stochastic Detail Injection (Block B):

To introduce variation in fine-grained details, StyleGAN adds Gaussian noise per spatial location.
A single-channel noise map is drawn from .#"(0, 1), broadcast across channels, scaled by learned
per-channel strengths, and added:

x' =x+7-noise, y € RE.

This stochastic injection (Block B) allows natural variability (e.g., freckles, hair strands) without
affecting global style.

Together, Blocks A and B mark a conceptual shift. Instead of mapping latent codes directly into
images, StyleGAN decomposes generation into:

* Global, semantic variation: style-modulated via affine AdalIN.

* Local, stochastic variation: injected via per-layer noise.
Summary of changes from the original AdaIN: In Huang & Belongie’s work, AdalN is a non-
parametric alignment of statistics between two images [248]. StyleGAN modifies it into a parametric
operator: style statistics are no longer extracted but predicted from latent codes. This repurposing
enables a constant input tensor, because all per-sample variation is reintroduced through AdaIN and
noise.

(5) Style Mixing Regularization: Breaking Co-Adaptation Across Layers

A key goal of StyleGAN is to enable disentangled, scale-specific control over the synthesis process:
early generator layers should influence coarse structure (e.g., face shape, pose), while later layers
refine medium and fine details (e.g., eye color, skin texture). This structured control relies on the
assumption that styles injected at each layer should work independently of one another.

However, if the generator always receives the same latent vector w € # at all layers during
training, it may fall into a form of co-adaptation: early and late layers jointly specialize to particular
combinations of attributes (e.g., blond hair only appears with pale skin), resulting in entangled
features and reduced diversity.

Style Mixing Regularization disrupts this overfitting by occasionally injecting two distinct styles
into the generator during training:

* Two latent codes z1,z, ~ Z are sampled and mapped to w; = f(z1), wo = f(22).
* At a randomly chosen resolution boundary (e.g., 16 x 16), the generator applies w; to all earlier
layers and switches to wy for the later layers.

Why this works: Because the generator is trained to synthesize coherent images even when style
vectors abruptly change between layers, it cannot rely on tight correlations across resolutions. Instead,
each layer must learn to independently interpret its style input. For example:

* If early layers specify a round face and neutral pose (from wy), then later layers must correctly
render any eye shape, hair color, or lighting (from w;), regardless of what w; “would have”
dictated.

* This prevents the network from implicitly coupling attributes (e.g., enforcing that a certain pose
always goes with a certain hairstyle), which helps achieve true scale-specific disentanglement.

Result: Style Mixing acts as a form of regularization that:
» Improves editing robustness, as individual w vectors can be manipulated without unexpected
side effects.

1100 Chapter 20. Lecture 20: Generative Models Il

* Enables style transfer and recombination, where coarse features can be swapped indepen-
dently of fine features.

* Encourages the generator to learn modularity, treating layer inputs as semantically indepen-
dent rather than jointly entangled.

(6) Perceptual Path Length (PPL): Quantifying Disentanglement in Latent Space

One of the defining features of a well-disentangled generative model is that interpolating between
two latent codes should cause predictable, semantically smooth changes in the generated output. To
formalize this idea, StyleGAN introduces the Perceptual Path Length (PPL) — a metric designed
to measure the local smoothness of the generator’s mapping from latent codes to images.

PPL computes the perceptual distance between two very close interpolated latent codes in # -space.
Specifically, for two samples wi,w, ~ #, we linearly interpolate between them and evaluate the
visual difference between outputs at a small step:

PPL = Ey, oy é-LPIPS(G(w(s)),G(w(O))) w(E) = (1—&)wi +ews,

where € < 1 (e.g., € = 107*) and G(w) is the image generated from w.

What Is LPIPS?

The Learned Perceptual Image Patch Similarity (LPIPS) metric [778] approximates human-
perceived visual differences by comparing the feature activations of two images in a pretrained deep
network (e.g., VGG-16). Unlike pixel-wise distances, LPIPS captures semantic similarity (e.g.,
facial expression, lighting) and is insensitive to small, perceptually irrelevant noise. This makes it
especially suitable for assessing smoothness in generated outputs.

Why PPL Matters — and How It Relates fo Training

PPL serves two key roles:

* Evaluation: A low PPL score implies that the generator’s mapping is smooth — small steps
in # lead to controlled, localized changes in the image. High PPL values, in contrast, signal
entanglement — for example, where a minor shift might simultaneously change pose and hairstyle.

* Regularization (StyleGAN2): StyleGAN2 adds a path length regularization term that en-
courages consistent image changes per unit movement in . This is implemented by randomly
perturbing latent codes and penalizing variance in the image-space response, pushing the generator
toward more linear and disentangled behavior.

Crucially, PPL also helps diagnose the effectiveness of the generator’s latent modulation mechanisms,
including AdalN and noise injection. Improvements in PPL correlate with better interpretability and
higher-quality style control. In this sense, PPL provides a complementary lens to adversarial loss
functions — it doesn’t measure realism per se, but rather semantic coherence under manipulation.

(7) Loss Functions: From WGAN-GP to Non-Saturating GAN + R;
While StyleGAN’s architecture is central to its performance, stable training dynamics are equally
crucial. To this end, the authors explored two major loss formulations across different experiments
and datasets:
* WGAN-GP [194] — used for datasets like CelebA-HQ and LSUN, following the ProGAN
pipeline. This loss minimizes the Wasserstein-1 distance while enforcing 1-Lipschitz continuity
of the critic via a soft gradient penalty on interpolated samples.

20.6 Enrichment 20.6: The StyleGAN Family 1101

* Non-Saturating GAN with Ry Regularization [424] — used in more recent experiments with
the FFHQ dataset. This formulation applies a gradient penalty only to real samples, improving
local stability and enabling deeper generators to converge reliably. To reduce computational
overhead, the penalty is often applied lazily (e.g., every 16 steps).

These loss functions are not mutually exclusive with the perceptual evaluation tools like PPL. In fact,
StyleGAN’s most robust results — especially in FFHQ — combine:
1. Rj-regularized non-saturating loss for stable GAN convergence,

2. Path length regularization to encourage disentangled and smooth latent traversals (i.e., low
PPL),

3. And LPIPS-based evaluation for empirical disentanglement measurement.
Together, these tools enable StyleGAN to not only generate photorealistic images, but also produce

consistent, interpretable, and user-controllable latent manipulations — a key departure from earlier
GANSs where realism and control often conflicted.

1102 Chapter 20. Lecture 20: Generative Models Il

Summary and Additional Contributions

Beyond its architectural innovations — such as intermediate latent modulation, per-layer AdalN,
and stochastic noise injection — StyleGAN owes part of its success to the introduction of the
Flickr-Faces-HQ (FFHQ) dataset. Compared to CelebA-HQ, FFHQ offers higher quality and
broader diversity in age, ethnicity, accessories, and image backgrounds, enabling more robust and
generalizable training.

This combination of structural disentanglement and dataset diversity allows StyleGAN to generate
not only high-fidelity images, but also provides fine-grained control over semantic and local attributes.
These advances collectively position StyleGAN as a foundational step toward interpretable and
high-resolution image synthesis.

GAN Improvements: Higher Resolution

512 x 384 cars 1024 x 1024 faces

Figure 20.32: StyleGAN results on high-resolution image synthesis. The model can generate diverse,
photorealistic outputs for both faces and cars at resolutions up to 1024 x 1024. These images are
synthesized from latent codes using layerwise style modulation and stochastic detail injection. From
Karras et al. [278].

Emerging Capabilities
By separating global structure and local texture, StyleGAN enabled applications previously difficult
in traditional GANs:

* Interpolation in latent space yields smooth, identity-preserving transitions.

* Truncation tricks can improve image quality by biasing w toward the center of #'.

 Latent space editing tools can manipulate facial attributes with high precision.
This architectural shift — from latent vector injection to layer-wise modulation — laid the foundation
for follow-up work on improved realism, artifact removal, and rigorous disentanglement.

20.6 Enrichment 20.6: The StyleGAN Family 1103

Enrichment 20.6.3: StyleGAN2: Eliminating Artifacts, Improving Training Stability

StyleGAN2 [280] fundamentally refines the style-based generator framework, resolving key lim-
itations of the original StyleGAN—most notably the so-called water droplet artifacts, excessive
dependence on progressive growing, and training instabilities in high-resolution image synthesis. By
removing or carefully restructuring problematic normalization modules, and by rethinking how noise
and style manipulations are injected, StyleGAN?2 achieves higher fidelity, improved consistency, and
better disentanglement.

Enrichment 20.6.3.1: Background: From StyleGAN1 to StyleGAN2

StyleGANT (often termed StyleGANI) introduced Adaptive Instance Normalization (AdalN)
in multiple generator layers, thereby allowing each feature map to be rescaled by learned style
parameters. While this unlocked highly flexible style control and improved image quality, it also
produced characteristic water droplet-like artifacts, most evident beyond 64 x 64 resolution.
According to [280], the culprit lies in channel-wise normalization. AdalN standardizes each
feature map independently, removing not just its absolute magnitude but also any cross-channel
correlations. In many cases, these correlations carry important relational information, such as spatial
coherence or color harmony. By discarding them, the generator loses a mechanism to maintain
consistent patterns across channels. In an effort to “sneak” crucial amplitude information forward,
the network learns to insert extremely sharp, localized activation spikes. These spikes dominate the
channel statistics at normalization time, effectively bypassing AdaIN’s constraints. Unfortunately,
the localized spikes persist as structured distortions in the final images, creating the recognizable
“droplet” effect.

Figure 20.33: Systemic artifacts in StyleGAN1 (“droplets”). Because AdalN normalizes feature
maps per channel, the generator injects localized spikes that skew normalization statistics. These
spikes ultimately manifest as structured artifacts. Source: [280].

To resolve these issues, StyleGAN2 reexamines the generator’s foundational design. Rather than
normalizing activations via AdalN, it shifts style control to a weight demodulation paradigm, ensuring
that channel relationships remain intact. By scaling weights before convolution, the generator can
preserve relative magnitudes across channels and avoid the need for spurious spikes.

Beyond demodulation, StyleGAN?2 also relocates noise injection, removes progressive growing, and
employs new regularization strategies, leading to improved stability and sharper image synthesis.
We outline these core innovations below.

1104 Chapter 20. Lecture 20: Generative Models Il

Context and Motivation: In the original StyleGAN (StyleGAN1), each layer applied Adaptive
Instance Normalization (AdalN) to the activations post-convolution, enforcing a learned mean
and variance on each channel. This eroded cross-channel relationships and caused the network to
insert “activation spikes” to reintroduce lost amplitude information, giving rise to “droplet” artifacts.
StyleGAN?2 addresses this by normalizing the weights instead of the activations, thereby preserving
channel coherence and eliminating those artifacts.

High-Level Flow in a StyleGAN2 Generator Block:

1. Input Feature Map and Style Code. Each block receives:

* The input feature map from the preceding layer (or from a constant input if it is the first
block).

* A latent code segment Wiyen Specific to that layer, from the block A. In practice, Wiagent
is generated by an affine transform applied to W (the style vector shared across layers,
typically after a learned mapping network).

2. Optional Upsampling (Skip Generator): Before passing the feature map into the convolution,
StyleGAN2 may upsample the spatial resolution if this block operates at a higher resolution
than the previous one. In the simplified “skip-generator” design, upsampling occurs right
before the convolution in each block (rather than as a separate training phase, as in progressive
growing).

3. Weight Modulation:

/
Wi = Si-wijk, Wheres; = affine (wlatem)[.

The style vector Wiaen is used to generate a set of scale factors {s;}. These factors modulate
(i.e., rescale) the convolution’s filter weights by channel i. As a result, each channel’s influence
on the output can be boosted or suppressed depending on the style.

4. Weight Demodulation:

/
Wik

VI e

Z

Wik =

After modulation, each output channel j is normalized so that the final “modulated+demodulated”
filter weights {w}; } remain in a stable range. Crucially, this step does not standardize the ac-
tivations channel-by-channel; it only ensures that the overall filter magnitudes do not explode
or vanish.

5. Convolution:

output = Conv(input, w)

The network now applies a standard 2D convolution using the newly modulated-and-demodulated
weights wg;k. The resulting activations reflect both the incoming feature map and the style-
dependent scaling, but without discarding cross-channel relationships.

20.6 Enrichment 20.6: The StyleGAN Family 1105

Why This Avoids the Pitfalls of AdalN.

* No Post-Activation Reset: Unlike AdalN, where each channel’s mean/variance is forcibly
re-centered, weight demodulation never re-normalizes each activation channel in isolation.

* Preserved Relative Magnitudes: Because the filters themselves incorporate style scaling before
the convolution, the resulting activations can naturally maintain the relationships among
channels.

* Prevents “Spikes”: The generator no longer needs to create sharp activation peaks to reintro-
duce magnitude differences lost by AdalN’s normalization.

'
combined as W, = 8§; * Wik
7 : ijk ;3 ijk

\\' ‘i mg-*._ = 'n.‘:-j-k/vfl Z‘u:;j,‘__g +€
/ ik

Wy

(c) Revised architecture (d) Weight demodulation

Figure 20.34: In StyleGAN2, style control moves from post-convolution (AdalN) to a weight-centric
approach: each block uses (1) an affine transformation of the latent code, (2) weight modulation,
(3) weight demodulation, and (4) a normal convolution. Adapted from [280], figure by Jonathan
Hui [250].

Maintaining Style Control: Even though the normalizing step moves from the activation space to
the weight space, the style vector (Wiaen) still dictates how each channel’s contribution is scaled. This
ensures layer-wise flexibility over high-level attributes (e.g., color palettes, facial geometry, textures)
without imposing uniform channel normalization. By avoiding activation-based standardization,
StyleGAN2 preserves rich inter-channel information, thus enabling more stable and artifact-free
synthesis.

Enrichment 20.6.3.3: Noise Injection Relocation: Separating Style and Stochasticity

In StyleGANT1, spatially uncorrelated Gaussian noise was injected within the AdalN block — directly
into normalized activations. This setup caused the style vector w and the random noise to interfere
in ways that were hard to control. Because both types of signals shared the same normalization
path, their effects were entangled, making it difficult for the generator to cleanly separate structured
semantic features (e.g., pose, facial shape) from fine-grained randomness (e.g., freckles, skin pores).

StyleGAN2 resolves this by moving the noise injection outside the style modulation block.
Now, the noise is added after convolution and nonlinearity, as a purely additive operation. This

1106 Chapter 20. Lecture 20: Generative Models Il

isolates noise from the style-driven modulation, allowing each component to play its role without
interference:

* Noise: Adds per-pixel stochastic variation — capturing non-deterministic, high-frequency

effects like hair placement, pores, or skin texture.

 Style (via w): Encodes global, perceptual properties such as pose, identity, and illumination.
By decoupling noise from normalization, the generator gains more precise control over where and
how randomness is applied. This reduces unintended amplification of pixel-level variation, improves
training stability, and enhances interpretability of the learned style representation.

While StyleGANT introduced the perceptual path length (PPL) as a metric — using LPIPS [778] to
quantify how much the image changes under latent interpolation — StyleGAN?2 builds on this idea
by turning it into a regularization objective. Crucially, however, the authors abandon LPIPS (which
depends on pretrained VGG features) and instead compute the gradient directly in pixel space.

Why the change? Although LPIPS correlates well with human perception, it has several drawbacks
when used for regularization:
* It is computationally expensive and requires forward passes through large pretrained networks
(e.g., VGG16).
* It is non-differentiable or inefficient to backpropagate through, complicating training.
* It introduces a mismatch between the generator and the external perceptual model, which may
bias optimization in unintended ways.

Instead, StyleGAN?2 proposes a simpler yet effective solution: directly regularize the Jacobian norm
of the generator with respect to the latent vector w € %', computed in pixel space. The goal is to
ensure that small perturbations in latent space result in proportionally smooth and stable changes in
the image. The proposed path length regularization loss is:

Zpan = Ewy [(IVWG(W) -y, —a)’]

where:
e y~ 4(0,I) is a random direction in latent space.
* ais a running average of the expected gradient norm, which centers the loss to avoid shrinking
gradients to zero.

Benefits of this formulation:
» Lightweight: No need to rely on external networks or pretrained feature extractors.
* Differentiable: The pixel-space gradient is fully backpropagatable through the generator.
* Tightly coupled to training: The regularization adapts directly to the generator’s own dynamics
and feature statistics.

Although pixel-space distances are not perfectly aligned with human perception (as LPIPS aims to
be), as it turns out, this gradient-based regularizer effectively captures smoothness in practice. It
ensures that the generator’s output changes at a steady rate along latent directions, leading to better
interpolations and more reliable latent editing.

Outcome: Latent walks in StyleGAN2 produce continuous, identity-preserving morphs with reduced
topological discontinuities — a key improvement over the sometimes jerky transitions seen in
StyleGAN1. This lightweight regularizer thus preserves the spirit of perceptual path length while
avoiding its practical limitations.

20.6 Enrichment 20.6: The StyleGAN Family 1107

Enrichment 20.6.3.5: Lazy R; Regularization and Evolved Loss Strategy

StyleGAN1 explored a mix of loss strategies, including Wasserstein loss with gradient penalty
(WGAN-GP) [194] and the non-saturating GAN loss with Ry regularization [424]. StyleGAN2
formalizes and stabilizes this setup, adopting a consistent combination of:

* Non-saturating GAN loss for both generator and discriminator.

* Lazy one-sided gradient penalty (R;) on real samples.

* Optional path length regularization on the generator.

Discriminator Loss:
The full discriminator objective is given by:

L = By 102 D()] By llog(1 = D(R))] + 81 mod N =0)- 2By, VD3],
where the final term is the R; gradient penalty, applied only every N steps (typically N = 16) to
reduce computational overhead.

Generator Loss:
The generator minimizes the standard non-saturating loss:

L6 = —EngG [lOgD(f)] + Afpath : gpatm

where Za is the path length regularization term:

Ly = Ewy |(IVwG(W) -yl ~)]
with 'y ~ .#7(0,1) and a a running exponential average of gradient magnitudes.

Joint Optimization Logic:
Despite having different loss functions, the generator G and discriminator D are trained alternatingly
in an adversarial setup:
* In each training iteration, the discriminator is first updated to better distinguish real samples x
from generated ones X = G(W), using .%p.
* Then, the generator is updated to fool the discriminator, i.e., to maximize D(%), via ..
* Regularization terms like R and path length are applied at different frequencies to avoid
computational bottlenecks.
This adversarial training loop leads both networks to co-evolve: the generator learns to produce
realistic images, while the discriminator sharpens its ability to detect fake ones — with each providing
a learning signal to the other.

Why this setup works:
* Rj avoids the interpolation overhead of WGAN-GP while regularizing gradients only near
real data points.
* Lazy application of both Ry and .Z},,, allows training to scale to higher resolutions without
excessive cost.
* Path length regularization improves the smoothness and predictability of the generator’s
latent-to-image mapping, aiding inversion and editing tasks.

Takeaway: StyleGAN2’s adversarial training framework and especially its modular loss design —
non-saturating adversarial loss, lazy R;, and optional path regularization — has become the de facto
foundation for modern high-resolution GANSs.

1108 Chapter 20. Lecture 20: Generative Models Il

Enrichment 20.6.3.6: No Progressive Growing

Moving Away From Progressive Growing. In ProGAN and StyleGAN1, progressive growing
gradually adds higher-resolution layers during training, aiming to stabilize convergence and manage
memory. Despite its initial success, this approach can fix early spatial layouts in ways that cause
phase artifacts, such as misaligned facial geometry (e.g., teeth remain centered to the camera rather
than following the head pose). These artifacts emerge because the network’s lower-resolution layers
hard-code specific spatial assumptions that later layers struggle to correct.

Figure 20.35: Phase artifact from progressive growing in StyleGANI1: teeth alignment remains fixed
relative to the camera view rather than following head pose. Source: [280].

StyleGAN2 addresses these issues by removing progressive growing entirely and training directly
at the target resolution from the outset. The architecture achieves the same coarse-to-fine benefits
through more transparent and robust mechanisms:

1. Multi-Scale Skip Connections in the Generator

* RGB at Every Resolution. Each generator block outputs an RGB image at its own resolution
(e.g., 8 x8, 16 x 16, ..., 1024 x 1024). These partial images are upsampled and summed to
form the final output.

* Coarse to Fine in a Single Pass. Early in training, low-resolution blocks dominate the
composite image, while higher-resolution blocks contribute less. As the network learns, the
high-resolution outputs become more significant, refining details.

* No Opaque Fade-Ins. Instead of abruptly fading in new layers, each resolution’s contribution
smoothly increases as training progresses, maintaining consistent alignment.

2. Residual Blocks in the Discriminator
* Residual Connections. The StyleGAN2 discriminator adopts a residual design, allowing inputs
to bypass certain convolutions through identity (or 1 x 1) paths.
* Smooth Gradient Flow. The shortcut paths let gradients propagate effectively, even in early
training, before higher-resolution features are fully meaningful.
* Flexible Depth Usage. Over time, the network learns to leverage high-resolution filters more,
while the early residual connections remain available for coarse discrimination.

20.6 Enrichment 20.6: The StyleGAN Family 1109

3. Tracking Per-Resolution Conftributions
The authors in [280] analyze how each resolution block affects the final output by measuring the
variance of its partial RGB contribution through training. They observe:
* Early Dominance of Low-Res Layers. Initially, low-res blocks define major global structures.
* Increasing Role of High-Res Layers. As learning continues, high-resolution blocks (especially
those with more channels) add finer details and sharper edges.
* Adaptive Shift Toward Detail. The model naturally transitions from coarse shapes to intricate
textures without any manual “fade-in” scheduling.

100% 1005

: 1024x1024
1 B0% 4

G0% o

80%
10241024

606
512x512

40% 40%:

512x512

20% A 205

256%256

15 0%

———— T 7T *© 1 T T T T T rrrrrrrrrrrrrt T —
0 I % 35 o 15 20 25 0 1 2345 o 15 20 25

(a) StyleGAN-sized (config E) (b) Large networks (config F)

Figure 20.36: Resolution-wise contribution to the generator output during training. Left: a baseline
network; Right: a network with doubled channels for higher resolutions. The additional capacity
yields more detailed and robust high-res features. Adapted from [280].

Why This Redesign Matters
* Avoids Locked-In Artifacts. Without progressive growing, low-resolution layers no longer
imprint rigid spatial biases that cause geometry misalignment.
* All Layers Co-Adapt. The network learns to distribute coarse and fine features simultaneously,
improving semantic consistency.
* Sharper and More Stable. Multi-resolution skip connections and residual blocks make training
smoother, boosting final image fidelity and detail.
* Scalable to Deep/High-Res Models. Eliminating progressive phases simplifies training when
moving to ultra-high resolutions or deeper networks.
Overall, StyleGAN2’s skip+residual generator and discriminator retain the coarse-to-fine advantage
of progressive growing without succumbing to phase artifacts. This shift enables more stable training
and sharper, better-aligned outputs at high resolutions.

1110 Chapter 20. Lecture 20: Generative Models Il

Enrichment 20.6.3.7: StyleGAN3: Eliminating Texture Sticking

StyleGAN2 excels at photorealistic image synthesis but suffers from a subtle defect: texture sticking.
When performing latent interpolations or spatial transformations (e.g., translation, rotation), textures
like hair or skin do not follow the global object motion. Instead, they appear anchored to fixed pixel
coordinates, leading to a breakdown of equivariance—the property that image content transforms
consistently with object movement.

StyleGAN3 [279] re-engineers the entire generator pipeline to ensure alias-free behavior, eliminat-
ing unintended pixel-grid reference points that cause sticking. This is achieved by treating feature
maps as bandlimited continuous signals and filtering all frequency components throughout the model.
As aresult, StyleGAN3 generates content that moves smoothly under sub-pixel shifts and rotations,
making it suitable for video, animation, and neural rendering applications.

StyleGAN2 Ours

+— latent interpolation — +— lutent interpolation —

§ V0618 88

StyleG

Ours

Averaged Central

Figure 20.37: Texture Sticking in StyleGAN2 vs. StyleGAN3. Top: Average of jittered outputs.
StyleGAN?2 exhibits fixed detail artifacts, while StyleGAN3 blurs them correctly. Bottom: Pixel-strip
visualization of interpolations. StyleGAN2 “locks” details to absolute positions (horizontal stripes);
StyleGAN3 allows coherent texture motion. Adapted from [279].

Why Does Texture Sticking Occur?

The root cause lies in how the generator in StyleGAN2 implicitly uses positional information—especially
during upsampling and convolution—introducing unintentional alignment with the image grid. The
generator effectively creates textures based on pixel coordinates, not object-relative positions. This
limits spatial generalization and causes artifacts when the generator is expected to simulate camera
motion or rotation.

How StyleGANS Fixes It: Core Innovations

1. Bandlimited Filtering at All Resolutions: In earlier architectures, upsampling operations
(e.g., nearest-neighbor, bilinear) introduced high-frequency artifacts by duplicating or interpo-
lating values without controlling the spectral content. These artifacts then propagated through
the network, causing textures to become “anchored” to pixel grid positions. StyleGAN3 re-
solves this by replacing standard up/downsampling with windowed sinc filters—true low-pass
filters designed to attenuate high-frequency components beyond the Nyquist limit. The filter
parameters (e.g., cutoff frequency, transition bandwidth) are tuned per resolution level to retain
only the frequencies that the current scale can represent reliably. This ensures that spatial
detail is consistent and alias-free across all scales.

20.6 Enrichment 20.6: The StyleGAN Family 1111

2. Filtered Nonlinearities: Pointwise nonlinearities like LeakyReLLU are known to introduce
sharp spectral edges, generating high-frequency harmonics even when their inputs are smooth.
These harmonics can cause aliasing when passed into lower-resolution branches or subsequent
convolutions. StyleGAN3 inserts a filtering step around each nonlinearity:

Upsample — Activate — Low-pass Filter — Downsample.

This structure ensures that the nonlinear transformation doesn’t introduce frequency com-
ponents that cannot be represented at the given resolution. As a result, each block only
processes and propagates bandlimited signals, preserving translation and rotation equivariance
throughout the network.

3. Fourier Feature Input and Affine Spatial Transforms: In StyleGAN?2, the generator begins
from a fixed, learnable 4 x 4 tensor, which is inherently tied to the pixel grid. This gives
the network a built-in “origin” and orientation, which can subtly leak positional information
into the generated image. StyleGAN3 replaces this with a set of Fourier features—spatially
continuous sinusoidal patterns encoding different frequencies. These features are not fixed
but undergo an affine transformation (rotation and translation) controlled by the first latent
vector wy. This change removes the generator’s reliance on the pixel grid and introduces a
trainable coordinate system based on object geometry. As a result, spatial operations (like
rotating or translating the input) correspond to smooth, meaningful changes in the generated
image, supporting equivariant behavior even under subpixel movements.

4. Equivariant Kernel Design: In rotationally equivariant variants (e.g., StyleGAN3-R), convo-
lutions are restricted to 1 x 1 or radially symmetric kernels, ensuring that learned filters do not
introduce directionality or grid-aligned bias.

5. No Skip Connections or Noise Injection: Intermediate skip-to-RGB pathways and stochastic
noise injection are removed, both of which previously introduced fixed spatial bias. Instead,
StyleGAN3 allows positional information to flow only via controlled transformations.

Training Changes and Equivariance Goals
* The Perceptual Path Length regularization (.%),:) from StyleGAN2 is removed, since it
penalizes motion-equivariant generators by enforcing consistent change magnitudes in pixel
space.
* StyleGAN3 achieves translation equivariance in the “T” configuration and rotation+translation
equivariance in “R”. This makes it ideal for unaligned datasets (e.g., FFHQ-Unaligned) and
motion synthesis.

Latent and Spatial Disentanglement
While StyleGAN3 retains the original 7 and StyleSpace (.) representations, studies (e.g., [4])
show that:
* Editing in . remains the most disentangled.
» Unaligned generators tend to entangle pose with other attributes, so pseudo-alignment (fixing
wp) or using an aligned generator with explicit spatial transforms (1,1,) is recommended for
editing.

1112 Chapter 20. Lecture 20: Generative Models Il

Impact in Practice

* In videos: Texture sticking is almost entirely gone. Hairs, wrinkles, and facial features follow
object movement.

* In interpolation: Latent traversals produce realistic and continuous changes, even under
subpixel jitter.

* In inversion and editing: Real images can be reconstructed and manipulated with higher
spatial coherence using encoders trained on aligned data and StyleGAN3’s affine spatial
parameters.

Official code and models: https://github.com/NVlabs/stylegan3

Takeaway

StyleGAN3 resolves one of the most persistent issues in GAN-generated motion: positional artifacts
caused by grid alignment. Through a careful redesign grounded in signal processing, it enables truly
equivariant, high-quality, and temporally consistent image generation—laying the foundation for
advanced video editing, scene control, and neural rendering.

https://github.com/NVlabs/stylegan3

20.7 Enrichment 20.7: Conditional GANs: Label-Aware Image Synthesis 1113

Enrichment 20.7: Conditional GANs: Label-Aware Image Synthesis

Conditional GANs (cGANSs) [435] enhance the classic GAN framework by incorporating structured
inputs—such as class labels—into both the generator and discriminator. The motivation is clear:
standard GANs produce samples from a learned distribution without any explicit control. If one
wants to generate, say, only images of cats or digit “3” from MNIST, standard GANs offer no direct
way to enforce that condition.

By injecting label information, cGANs enable class-conditional synthesis. The generator learns
to produce samples G(z | y) that match a desired label y, while the discriminator learns to assess
whether a given sample is both real and label-consistent. This label-aware feedback significantly
enhances training signals and improves controllability, quality, and diversity of generated samples.

Conditional GANs

Recall: Conditional Generative Models learn p(x|y) instead of p(x)
Make generator and discriminator both take label y as an additional input!

Project and reshape

Figue credit Rociod 22 21 ‘Lreupenied Rapressrtzsion Leaming wibn Dcq Coveal.slanal Senaratlve Sdversaral Herwarks, ICLF 2315

Justin Johnson Lecture 20 - 105 March 30, 2022

Figure 20.38: Conditional GAN setup: the class label y is injected into both the generator and
discriminator, enabling generation of samples conditioned on class identity.

Enrichment 20.7.1: Conditional Batch Normalization (CBN)

Conditional Batch Normalization (CBN) [136] is a key technique that enables GAN to incorporate
class information not just at the input level, but deep within the generator’s layers. Unlike naive
conditioning methods—such as concatenating the label vector y with the latent code z—CBN injects
label-specific transformations throughout the network, significantly improving class control and
generation quality.

Motivation

In the vanilla GAN setup, the generator learns a mapping from noise z to image x, i.e., G(z) ~ x.
But what if we want G(z | y) ~ x,, an image from a specific class y? Concatenating y with z
only conditions the generator’s first layer. What happens afterward is left unregulated—there is
no guarantee that the network will retain or meaningfully use the label signal. This is especially
problematic in deep generators. CBN solves this by embedding the label y into every normalization
layer of the generator.

1114 Chapter 20. Lecture 20: Generative Models Il

This ensures that class information continually modulates the internal feature maps across layers,
guiding the generation process at multiple scales.

How CBN Works
Let x be the input feature map to a BatchNorm layer. In standard BatchNorm, we normalize and
then apply learned scale and shift:

BN()=7- == +p

CBN replaces the static ¥ and with label-dependent values ¥, and f3,, often produced via a
small embedding or MLP based on y:

CBN(x|y) =7 *_F+B,

Here, each class y learns its own affine transformation parameters. This leads to class-specific

modulation of normalized features—effectively injecting semantic "style" throughout the generator.

* CBN allows for a shared generator backbone, with only minor per-class differences through ¥,
and B,.

* During training, these class-specific affine parameters are learned jointly with the generator
weights.

* CBN does not increase the number of convolutions but dramatically boosts the expressiveness
of conditional generation.

Conditional GANs: Conditional Batch Normalization

Batch Normalization Conditional Batch Normalization
1% 1w
Hi =ﬁzxu N =sza‘.j
i=1 i=1
, 1 N , Learnaseparate 1)
o = NZ(%‘.;’ o) scale and shift of = NZ(XU)]
i=1 =1
o Y Hi f(?r each o Tl
Ll = different label y i T T/
(7;2 te sz +€
yi]_J,}x!}+ﬁj Yi,j—)’?fu"'ﬁ}?

tarnaulin at &, & learnad tatinn far atstic stde’, 101K 2017

Justin Johnson Lecture 20 - 106 March 30, 2022

Figure 20.39: Conditional Batch Normalization (CBN): the label y determines a class-specific
affine transformation applied to normalized activations. This allows each class to modulate network
features differently.

CBN in the Generator

Conditional Batch Normalization (CBN) introduces class information deep into the generator. At
each layer /, the activations are batch-normalized and then rescaled using label-specific parameters
}/f , ﬁy[, allowing each class to modulate the feature flow independently across scales.

20.7 Enrichment 20.7: Conditional GANs: Label-Aware Image Synthesis 11156

Enrichment 20.7.1.1: Projection-Based Conditioning in Discriminators

While Conditional Batch Normalization (CBN) is highly effective for injecting label information
into the generator, it is rarely applied in the discriminator. The discriminator’s primary responsibility
is to distinguish real from fake images and verify that they match the target label y. Rather than
applying class-specific transformations to every layer, conditional information is typically injected
via architectural conditioning, using either:

* Concatenation-Based Conditioning: The one-hot label y is spatially expanded and concate-
nated to the input image x € R3*#*W resulting in a combined tensor [x;y'] € RG+C)xHxW
where C is the number of classes. While simple, this method weakens in deeper layers, where
the label signal may vanish.

* Projection Discriminator [438]: A more robust alternative that introduces label conditioning
directly into the discriminator’s output logit. The logit is defined as:

-
D(x,y) = blx) +hx) e(y),
N—— ~—~ N—_——
class-aware score realism term semantic match
where:
— h(x) € R? is a global feature vector extracted from the image (after convolution and
pooling).

— e(y) € R is a learned embedding vector for the class label y.
— b(x) = w'h(x) is a standard linear layer predicting the realism of x, independent of label.
This design cleanly separates visual quality from semantic alignment.

Advantages of Projection-Based Conditioning:
* Efficiency: Requires only one additional dot product at the final layer, with minimal parameter
overhead.
* Interpretability: Clearly decomposes the output into realism and semantic compatibility
terms.
* Scalability: Works well for large-scale datasets and deep discriminators (e.g., BigGAN which
we’ll cover later).

By combining this strategy with techniques like Spectral Normalization (discussed next), projection-
based discriminators remain stable even under high capacity settings and offer strong guidance for
conditional image synthesis.

Enrichment 20.7.1.2: Training Conditional GANs with CBN

Conditional GANs (cGANSs) trained with Conditional Batch Normalization (CBN) aim to syn-
thesize images that are not only visually realistic, but also semantically aligned with a given class
label y. To achieve this, the generator and discriminator are trained in tandem, each using label
information differently.

Generator G(z,y): Label-Aware Synthesis

The generator receives a latent code z ~ .47(0,7) and a class label y. The label modulates every
normalization layer via CBN:
U

x_
CBN(x|y) =% +5,

1116 Chapter 20. Lecture 20: Generative Models Il

This injects label-specific transformations into the generator’s internal feature maps, allowing class
control at multiple spatial scales. The output image is:

¥=G(z,y)

Discriminator D(x,y): Realness and Label Consistency
The discriminator receives both an image x and its associated label y, and outputs a scalar score that
jointly reflects:

* Whether the image looks real (i.e., sampled from pga, rather than the generator).

* Whether it is semantically consistent with the provided label y.

This dual-role is often realized using a projection discriminator [438], where the label is
embedded and combined with the discriminator’s internal features:

D(x,y) = b(x) +h(x) "e(y)

Here, h(x) is a learned feature embedding from the image, e(y) is the learned embedding of the
label y, and b(x) is a base logit representing the visual realism of x. The dot product term encourages
semantic agreement between the image and the label — if /4 (x) and e(y) align well, D(x,y) increases.

Training Pipeline with CBN Conditioning:

The Conditional GAN training loop is fully differentiable and jointly optimizes two objectives: (1)
realism — fooling the discriminator into classifying fake images as real, and (2) semantic alignment
— ensuring that generated images match the assigned class label. Conditional Batch Normalization
(CBN) plays a key role in achieving this alignment by embedding the label y throughout the generator.

1. Sample Inputs: For each batch:
« Sample latent codes z\¥) ~ .#7(0,1) and corresponding labels y) € {1,... K}.
2. Generate Conditioned Fakes: For each (z(),y(!)), generate a fake image:

20 = G710,y

The generator uses CBN at every layer to condition on y(), ensuring class-relevant features
are injected at all depths.
3. Discriminator Update:
« For real images x) ~ pyaa(x | y\9), the discriminator D(x(),y()) should output a high
value, indicating high confidence that the image is real and belongs to class y(¥).
« For fake images /), the discriminator D(z), y())) should output a low value, identifying
them as generated (and potentially misaligned with y(9).
4. Loss Functions:
* Discriminator:

Zp = L ilogD(x(i) yy — 1 ilog (1 — Dz y(i))>
’ NS 7 NS 7

The first term is minimized when real samples are confidently classified as real (D(x,y) —
1), while the second is minimized when fake samples are correctly rejected (D(%,y) — 0).

20.7 Enrichment 20.7: Conditional GANs: Label-Aware Image Synthesis 1117

¢ Generator:
¥ 1ZN (i) (i)
G:—NiZIIOgD(X Y)

The generator is optimized to maximize the discriminator’s belief that its outputs are real
and consistent with label y) — hence minimizing the negative log-likelihood encourages
D(x,y) — 1.

5. Backpropagation: Gradients are computed and propagated through both the standard network
layers and the label-conditioned affine parameters in CBN. This teaches the generator to match
label semantics at multiple feature levels, and the discriminator to enforce both realism and
label consistency.

Log-Loss Intuition:
* The logarithmic terms act as soft penalties:

logD(x,y) — 0if D(x,y) — 1 (real images correct)

log(1 —D(&,y)) — 0if D(%,y) — 0 (fake images rejected)

* Similarly, the generator aims to push D(%,y) — 1, making log D(%,y) — 0, which occurs
when the discriminator is fooled — i.e., when the generated image is both realistic and
label-consistent.

This adversarial setup enforces both high-fidelity and class-conditioned generation. However,
without regularization, it can suffer from unstable gradients, overconfident discriminators, and poor
generalization — issues we’ll now get into.

Limitations of CBN-Only Conditioning
While CBN provides powerful class control, it comes with caveats:
» Shortcut Learning: The generator might ignore the noise vector z, reducing output diversity.
* Overfitting to Labels: CBN parameters (7, [3,) may overfit when class distributions are
imbalanced.
* Training Instability: Without constraints, the discriminator may overemphasize labels at the
cost of visual quality.

To address these issues, the next section introduces Spectral Normalization [438]—a principled
method for controlling the discriminator’s capacity and improving the stability of conditional GAN
training.

1118 Chapter 20. Lecture 20: Generative Models Il

Enrichment 20.7.2: Spectral Normalization for Stable GAN Training

Spectral Normalization (SN) [438] is a technique designed to stabilize GAN training by constraining
the Lipschitz constant of the discriminator. This is achieved by directly controlling the largest
singular value—also known as the spectral norm—of each weight matrix in the network. By
normalizing the spectral norm to a fixed value (typically 1), SN ensures that no layer can amplify the
norm of its input arbitrarily.

Why Lipschitz Constraints Help. The training of GANs involves a two-player minimax game
between a discriminator D and a generator G. The discriminator is trained to distinguish real data
from fake samples generated by G, using an objective such as:

Zp = ~Expg,,[10gD(x)] = Epry[log(1 = D(G(2)))].

If the discriminator is too flexible—particularly if its output varies too rapidly in response to small
input perturbations—it can easily overfit, confidently separating real and fake data. In this regime,
the generator receives vanishing gradients: once D becomes near-perfect, it ceases to provide useful
learning signals, and Vs & 0. This leads to generator collapse and training instability.

To prevent this, we can restrict the class of discriminator functions to those with bounded
sensitivity. More formally, we enforce a 1-Lipschitz (or K-Lipschitz) constraint: for all inputs x;,x»,

|D(x1) = D(x2)[| < K[[x1 — x2]

This condition ensures that the discriminator behaves smoothly—its outputs cannot change faster
than a controlled rate with respect to input variation. Under such a constraint, gradients passed to the
generator remain informative and well-scaled throughout training.

But how can we impose this constraint practically, especially when the discriminator is a deep
neural network composed of many weight matrices? The answer lies in analyzing how each linear
layer scales input vectors—and that leads us directly to a set of mathematical tools designed to
measure such transformations: eigenvalues, singular values, and ultimately, the spectral norm.

To understand these ideas rigorously, we begin by revisiting a fundamental concept from linear
algebra: eigenvalues and eigenvectors.

Enrichment 20.7.2.1: Spectral Normalization - Mathematical Background

Eigenvalues and Eigenvectors: Invariant Directions in Linear Mayps

Given a square matrix A € R"*", an eigenvector v € R”" is a non-zero vector that, when transformed
by A, results in a scaled version of itself:

Av = Av

where A € R (or C) is the corresponding eigenvalue. Geometrically, this means that the action of A
leaves the direction of v unchanged—only its length is scaled by A. In contrast to general vectors that
may be rotated, skewed, or fully transformed, eigenvectors identify the matrix’s “fixed” directions of
behavior, and eigenvalues quantify how strongly each of those directions is scaled.

These pairs (A,v) play a fundamental role in understanding the internal structure of linear
transformations. For example, they describe the principal modes along which a system stretches
or compresses space, and they allow us to determine whether a transformation is stable, reversible,
or diagonalizable. In systems theory, optimization, and neural network analysis, they reveal how
signals are amplified or attenuated by repeated application of a layer or operator.

20.7 Enrichment 20.7: Conditional GANs: Label-Aware Image Synthesis 1119

To compute eigenvalues, we rearrange the eigenvector equation as (A — AI)v = 0, which admits
non-trivial solutions only when det(A —AI) = 0. This gives the characteristic polynomial of
A, whose roots are the eigenvalues. Once we solve for A, we can substitute it back and solve
(A — AI)v = 0 to find the corresponding eigenvectors v.

Here is a basic numerical example in Python:
import numpy as np

A = np.array([[2, 1],
[1, 211D

eigvals, eigvecs = np.linalg.eig(A)

Print etgenvalues
print("Eigenvalues:")

10 for i, val in enumerate(eigvals):
1 print(f" lam{i + 1} = {val:.6f}")

13 # Print eigenvectors

14 print("\nEigenvectors (each column is a vector):")
15 for i in range(eigvecs.shape[1]):

16 vec = eigvecs[:, il

17 print(£f" v{i + 1} = [{vec[0]:.6f}, {vec[1]:.6£}]1")

Results for this:

Eigenvalues:
laml = 3.000000
lam2 = 1.000000

Eigenvectors (each column is a vector):
vl = [0.707107, 0.707107]
v2 = [-0.707107, 0.707107]

B Y N

Why is this relevant to GANS, or to neural networks more broadly? Each linear layer in a network
is defined by a weight matrix W, which transforms input vectors as x — Wx. The key question is:
how much can W amplify the norm of its input? If certain directions are stretched excessively, the
network becomes unstable—gradients may explode, and outputs may become overly sensitive to
small input changes. If other directions are collapsed, information is lost and gradients vanish.

Eigenvalues help quantify this behavior in square, symmetric matrices: the largest eigenvalue
reflects the maximum scaling factor applied in any direction. In such cases, bounding the largest
eigenvalue effectively bounds the transformation’s ability to distort inputs. This idea connects directly
to the concept of Lipschitz continuity, which constrains how sensitive a function is to perturbations
in its input. For a function f to be K-Lipschitz, we must have || f(x;) — f(x2)|| < K||x; — x2|| for all
x1,x2. In the case of the WGAN-GP optimization objective, being constrained in that way is crucial
for ensuring gradient stability and generalization.

In the case of a linear transformation, the Lipschitz constant is exactly the operator norm of the
matrix W, i.e., the maximum value of ||Wx||/||x|| over all non-zero x.

1120 Chapter 20. Lecture 20: Generative Models Il

For square matrices, this coincides with the largest singular value. Spectral normalization
leverages this insight: by explicitly normalizing W so that its largest singular value—also called its
spectral norm—is 1, we guarantee that the linear component of the layer is 1-Lipschitz.

A natural follow-up question is whether this guarantee still holds after applying the layer’s
nonlinearity, such as ReLU. Indeed, activation functions also influence the Lipschitz constant. Some
nonlinearities, like sigmoid or tanh, can shrink or saturate outputs, leading to norm compression or
gradient vanishing. However, ReLU and most of its variants (e.g., Leaky RelLU) are /-Lipschitz
compliant: applying them to a vector cannot increase its norm. Therefore, when using ReL.U-based
activations in conjunction with spectrally normalized linear layers, the composition preserves the
Lipschitz bound. This makes the entire layer (linear + activation) 1-Lipschitz, ensuring stable
gradients and reliable signal propagation.

Since eigenvalue analysis provides a structured way to understand how matrices scale vectors, it
serves as the conceptual precursor to the singular value decomposition (SVD)—a generalization
that extends these ideas to arbitrary matrices, including those that are non-square and non-symmetric.
SVD and spectral norm estimation will form the mathematical core of spectral normalization, and
enable its application to deep convolutional networks and GAN discriminators.

Singular Value Decomposition (SVD): Structure and Signal in Data

Singular Value Decomposition (SVD) is one of the most widely used and interpretable tools in linear
algebra, especially when applied to data analysis. It provides a principled way to factorize any real
matrix X € R into three matrices that expose its internal structure—how it stretches, rotates, and
reprojects the data. SVD serves as a foundation for many modern machine learning algorithms and
dimensionality reduction techniques.

At a high level, SVD can be seen as a data-driven generalization of the Fourier Transform.
Whereas the Fourier basis decomposes signals into global sinusoidal modes that are independent
of the data, the SVD basis is tailored to the actual dataset. It adapts to the underlying structure of
X, identifying key directions—patterns, features, or modes—that explain most of the variation in
the data. This same decomposition underlies Principal Component Analysis (PCA), where the
goal is to find orthogonal directions (principal components) along which the data exhibits maximum
variance. While PCA specifically centers and projects the data to find these components, SVD
applies to any matrix directly—making it more general.

The utility of SVD goes far beyond mathematical elegance. It is used everywhere: in image
compression, facial recognition, search engine ranking algorithms, natural language processing, and
recommendation systems like those at Amazon or Netflix. There, rows may represent customers,
columns may represent movies, and the entries in X quantify viewing history. SVD can identify latent
structures—such as genres or interest patterns—that drive behavior. What makes SVD powerful is
not just that it works, but that the components it reveals are often understandable and interpretable.
It transforms complex, high-dimensional data into structured modes we can visualize, analyze, and
act on. Even better, it is scalable to massive datasets through efficient numerical algorithms.

For a practical and intuitive introduction to these concepts, including real Python code and visual
explanations, we highly recommend Steve Brunton’s excellent video series on Singular Value
Decomposition and PCA from the University of Washington. The following summary builds on
most of its ideas.

https://www.youtube.com/watch?v=gXbThCXjZFM&list=PLMrJAkhIeNNSVjnsviglFoY2nXildDCcv&ab_channel=SteveBrunton
https://www.youtube.com/watch?v=gXbThCXjZFM&list=PLMrJAkhIeNNSVjnsviglFoY2nXildDCcv&ab_channel=SteveBrunton

20.7 Enrichment 20.7: Conditional GANs: Label-Aware Image Synthesis 1121

SVD: Structure, Meaning, and Application fo Real-World Data

To make this concrete, consider two real-world examples of data matrices X. In the first, suppose we
have a dataset consisting of face images, each stored as a column vector. If each image is grayscale
and of size H x W, then after flattening, each column x; € R", where n = H - W. Stacking m such
vectors side by side yields a matrix X € R™™ where n > m. This is a “tall and skinny” matrix
where each column represents one person’s face. Performing SVD on this matrix allows us to extract
spatial modes across all the faces—patterns like edges, contours, or lighting variations—allowing
for data compression, denoising, and the generation of new faces from a reduced latent basis.

In the second example, consider a simulation of fluid flow past a circular object. Each column
of the matrix X € R"*" now represents the velocity field (or pressure field) at a particular time
step, flattened into a vector. As the fluid evolves in time, the state changes, so each column x;
captures the system’s dynamics at time ;. Here, SVD reveals the dominant coherent structures in the
flow—vortex shedding patterns, boundary layer oscillations, and so on—distilled into interpretable
spatial modes. In both cases, SVD helps convert a high-dimensional system into a compact and
meaningful representation.

The SVD of any real matrix X € R"*" (with n > m) always exists and takes the form:

X=Uxv'

Here, U € R™" and V € R™*"™ are orthonormal matrices, meaning their columns are orthogonal,
and they have a unit length. Algebraically, this means:

U'U=UU" =L, VIV=VVT=1Lim

Each set of vectors in U and V forms a complete orthonormal basis for its respective space. The
columns of U span the column space of X, and the columns of V span the row space. While these
matrices can be interpreted geometrically as rotations or reflections that preserve norms and angles,
their real significance lies in the fact that they provide a new basis tailored to the data itself.

The left singular vectors in U have the same dimensionality as the columns of X, and they
can be thought of as data-specific “eigen-basis” elements. In the face image example, the vectors
uy,uy,... correspond to eigenfaces—representative spatial patterns that appear repeatedly across
different faces. These might reflect things like lighting patterns, face shape contours, or common
structural differences. In the fluid dynamics example, the u; represent eigen flow-fields—dominant
patterns in how fluid velocity or pressure changes over time. These basis vectors are not arbitrary:
they are orthonormal directions derived from the data that best capture variance across the dataset.
Crucially, only the first m columns of U are used in the decomposition, since the rank of X € R"*" is
at most m. These u; vectors are sorted according to their importance in capturing variance, meaning
u; is more important than u;, and so on.

The matrix X € R"*" is diagonal and contains the singular values oy, ..., G, followed by trailing
zeros if n > m. It has the form:
-01 0 0 i
0 (o) 0
=10 O Om , withoy >0, >--- >0, >0
0 O 0
0 O 0

- nXxXm

1122 Chapter 20. Lecture 20: Generative Models Il

These singular values tell us how much variance or “energy” each corresponding mode captures
from the data. In fact, the total energy in the matrix—measured as the squared Frobenius norm—is
the sum of the squared singular values:

m
X[=} of
i=1

Hence, the first few singular values usually dominate, and 62/||X||% gives the fraction of total
variance captured by the first mode.
We can express the full decomposition explicitly as a sum of rank-one outer products:

’
X = Z G,'l/l,'vlT
i=1

where r = rank(X), and u; € R", v; € R™ are the i-th left and right singular vectors. Each term
ou;v; represents a matrix of rank one that contributes to reconstructing X. These terms are not just
additive: they are ordered so that each successive mode contributes less to the matrix’s variance.

To reconstruct a specific data point x;,—that is, the i-th column of the data matrix X—we combine
the shared spatial modes uj, ..., u,, using weights derived from the matrix product £V ". Each vector
u; contributes a particular spatial pattern, and the coefficients that determine how to mix them to
recover x; are drawn from the i-th column of £V ". This can be written explicitly as:

m
Xi= Y, Ojuvji
=

where v; ; is the entry in row j, column i of V, and o;v;; reflects the scaled contribution of mode u;
to sample x;. This formulation always holds, but its interpretation depends on the nature of the data
encoded in X.

In static datasets like facial images—where each column x; represents a different face—the
interpretation is sample-centric. The vectors uy, ..., u,, are shared spatial modes, or eigenfaces, and
each face x; is a specific mixture of them. The weights that determine this mixture are found in
the i-th column of V' ', or equivalently the i-th row of V. Each such row tells us how much of each
spatial mode to include when reconstructing the corresponding face. The singular values in X scale
these weights to reflect the global importance of each mode. In other words, V' tells us how to
linearly combine the shared features u1,...,u, to form each image in the dataset.

In time-evolving physical systems, such as fluid flow simulations, the interpretation is reversed:
the dataset X consists of snapshots of the system’s state at different times. Each column x; corresponds
to the system’s configuration at time #;. In this setting, the i-th column of V describes how strongly
the i-th spatial mode u; is activated at each time step. That is, each v; € R™ forms a temporal
profile—or an eigen time-series—that quantifies how mode u; varies throughout time. In this case,
each u; represents a coherent spatial structure (e.g., a vortex or shear layer), and the corresponding v;
tells us when and how that structure appears across the sequence of system states.

In both interpretations, the combination of U, X, and V enables a powerful and interpretable
reconstruction of the original data. The matrix U defines spatial structures shared across samples or
time, the matrix V tells us either how to mix those structures for each observation (static data) or
how the structures evolve temporally (dynamic data), and X modulates their importance.

20.7 Enrichment 20.7: Conditional GANs: Label-Aware Image Synthesis 1123

This distinction is crucial for understanding SVD as a data-driven basis decomposition tailored to
the geometry and temporal structure of the dataset.

When some singular values o; are very small—indicating low energy or negligible contribu-
tion—we can truncate the decomposition to retain only the top r modes:

r
X~ Z G,-u,-viT
i=1

This yields a rank-r approximation of X that captures the dominant structure while ignoring
negligible details. This approximation is not just convenient—it is provably optimal in the Frobenius
norm sense. That is, among all rank-r matrices X € R, the truncated SVD minimizes the squared
error:

IX = Xllp >

r
X — Z Giuiv;r
i=1

F

This optimality is fundamental to many applications in data science, including dimensionality
reduction, matrix compression, and feature extraction.

Spectral Structure via XX and XX "
To better understand why the SVD always exists and how it connects to fundamental linear algebra
operations, recall that for any real matrix X € R™" both X 'X € R™" and XX ' € R™" are
symmetric and positive semi-definite. This means:

* They can be diagonalized via eigendecomposition: X ' X = VAV, XX =UAU".

* Their eigenvalues are real and non-negative.

The Singular Value Decomposition leverages these eigendecompositions. Specifically, the right
singular vectors V are the eigenvectors of X ' X, while the left singular vectors U are the eigenvectors
of XX . The non-zero eigenvalues A; of either matrix are equal and relate to the singular values as

o =V

Economy (or Truncated) SVD
When rank(X) = r < min(m,n), we can simplify the decomposition by using only the top r singular
values and their associated singular vectors. This yields the so-called economy SVD:

X~Usv'

where:

« U € R™ contains the top r left singular vectors (columns of U),

« £ € R™ is a diagonal matrix with the top r singular values,

* V € R™ " contains the top r right singular vectors (columns of V).
This truncated representation captures the most significant directions of variance or information in
X, and is especially useful in dimensionality reduction, PCA, and low-rank approximations.

1124 Chapter 20. Lecture 20: Generative Models Il

How is SVD Computed in Practice?

Although the SVD is defined mathematically via the factorization X = UXV ", computing it in
practice follows a conceptually clear pipeline that is closely tied to eigendecomposition. Here is a
high-level outline of how the singular values and vectors of a real matrix X € R”*" can be computed:

1. Form the symmetric, positive semi-definite matrices X ' X € R"" and XX ' € R™™,
2. Compute the eigenvalues A1, ..., A, of X ' X by solving the characteristic equation:

det(X"X —2AI)=0

This polynomial equation of degree n yields all the eigenvalues of X ' X. In most practical
algorithms, direct determinant expansion is avoided, and iterative numerical methods (e.g., the
QR algorithm) are used for greater stability.

3. For each eigenvalue A;, compute the corresponding eigenvector v; € R” by solving the homo-
geneous system:

(XTX =Xl =0

This involves finding a nontrivial solution in the nullspace of the matrix X "X — A,I.
4. The singular values o; are then obtained as the square roots of the eigenvalues:

Gi:\/)Ti

These are placed in decreasing order along the diagonal of X, capturing how strongly X
stretches space along each mode.
5. The right singular vectors v; form the columns of V. To recover the corresponding left singular

vectors u;, we use the relation:

1

up —= —X Vi

Oi
for all o; # 0. This ensures orthonormality between the columns of U and links the left and
right singular vectors through the action of X.

While this approach is instructive, explicitly computing X ' X or XX ' is rarely done in modern
numerical practice, especially for large or ill-conditioned matrices, because squaring the matrix
amplifies numerical errors and can destroy low-rank structure.

Instead, standard libraries use more stable and efficient algorithms based on bidiagonalization.
The most prominent is the Golub—Kahan SVD algorithm, which proceeds in two stages:

* First, X is orthogonally transformed into a bidiagonal matrix using Householder reflections.

* Then, iterative eigen-solvers (such as the QR algorithm or Divide-and-Conquer strategy) are

applied to the bidiagonal form to extract the singular values and vectors.

Other methods include the Golub—Reinsch algorithm for computing the full SVD and Lanczos
bidiagonalization for sparse or low-rank approximations.

Curious readers who want to dive deeper into these techniques are encouraged to consult:

* Matrix Computations by Golub and Van Loan — especially Chapters 8—10 (full SVD, QR-

based bidiagonalization, and Divide-and-Conquer methods).

* Numerical Linear Algebra by Trefethen and Bau — particularly the discussion on the numerical

stability of SVD versus eigendecomposition.

20.7 Enrichment 20.7: Conditional GANs: Label-Aware Image Synthesis 1125

* LAPACK’s online documentation — detailing routines like dgesvd (full SVD) and dgesdd
(Divide-and-Conquer SVD).

Understanding how these algorithms work and when to apply them is critical for large-scale
scientific computing, dimensionality reduction, and neural network regularization techniques like
spectral normalization.

Nevertheless, for practitioners who simply want to apply SVD in real-world problems—having
understood its purpose and how to interpret its results—modern scientific computing libraries make
it easy to compute with just a few lines of code.

For example, in Python with NumPy or SciPy:
import numpy as np

Create an example matriz X
X = np.random.randn(100, 50) # Tall-and-skinny matriz

Compute the full SVD
U, S, Vt = np.linalg.svd(X, full_matrices=True)

U: left singular vectors (100z100)
10 # S: singular values (vector of length 50)
u # Vt: transpose of right singular vectors (50z50)

Alternatively, to compute a truncated or low-rank approximation (economy SVD), you can use:
from scipy.linalg import svd

1
2
3 # Compute economy-sized SVD (faster for large problems)
4 U, S, Vt = svd(X, full_matrices=False)

This approach is widely used in machine learning pipelines, signal processing, recommendation
systems, and dimensionality reduction algorithms such as PCA. Efficient and scalable variants also
exist for sparse or streaming data matrices.

Finally, we also get why SVD is guaranteed to exist for any real matrix. Another interesting
property of SVD is that it is unique up to signs: for each pair (u;,v;), flipping their signs simultane-
ously leaves the outer product u,‘viT unchanged. This sign ambiguity does not affect reconstruction,
but it is important to be aware of when analyzing the components numerically.

In the context of deep learning, these insights become practically useful. The largest singular
value o7, also known as the spectral norm, determines the maximum amplification that a linear
transformation can apply to an input vector. Spectral normalization takes advantage of this by
enforcing an upper bound on the spectral norm of a weight matrix—ensuring that networks remain
stable, gradients do not explode, and the Lipschitz continuity of the model is preserved. This plays a
critical role in training robust GANs and other adversarial models.

Finally, we also get why SVD is guaranteed to exist for any real matrix. Another interesting
property of SVD is that is unique up to signs: for each pair (u;,v;), flipping their signs simultaneously
leaves the outer product u;v; unchanged. This sign ambiguity does not affect reconstruction, but it is
important to be aware of when analyzing the components numerically.

1126 Chapter 20. Lecture 20: Generative Models Il

In the context of deep learning, these insights become practically useful. The largest singular
value o7, also known as the spectral norm, determines the maximum amplification that a linear
transformation can apply to an input vector. Spectral normalization takes advantage of this by
enforcing an upper bound on the spectral norm of a weight matrix—ensuring that networks remain
stable, gradients do not explode, and the Lipschitz continuity of the model is preserved. This plays a
critical role in training robust GANs and other adversarial models.

Spectral Norm of a Weight Matrix
Let W € R™ " be the weight matrix of a NN layer. Its spectral norm o (W) is its largest singular
value:

oc(W) = thax IWv]|2.
v||=1

To constrain 6(W) to 1, spectral normalization reparameterizes W as W = % This ensures that
the layer cannot amplify an input vector’s norm by more than 1, thus bounding the discriminator’s
Lipschitz constant.

Fast Spectral-Norm Estimation via Power Iteration

What is the spectral norm and why that inequality is true? For any matrix W the spectral norm
is defined as

oc(W) = |W|2 = max [Wx][2.

[Ix]l2=1

It is the largest factor by which W can stretch a vector. If x # 0 is arbitrary, write x = ||x||» £ with
||€]|2 = 1. Then

|Wxll2 [Wx]2
= < max |Wy|l, = o (W).
[l x[|2 1 lyll=1

Equality is achieved when X is the right singular vector v corresponding to the largest singular value
01. Thus o (W) is the supreme stretch factor and every individual ratio |[Wx||»/|/x||2 is bounded by
it.

What power iteration is and why it works? Repeatedly multiplying any non-orthogonal vector by
W and renormalising pushes the vector toward v;; equivalently, repeatedly multiplying by the sym-
metric positive-semi-definite matrix W W pushes toward v| even faster, because v; is its dominant
eigenvector with eigenvalue 612. Forming W TW explicitly is expensive and unnecessary—alternating
WT and W gives the same effect using only matrix—vector products.

Step-by-step (one iteration per forward pass)

1. Persistent vector: Keep a single unit vector u € R™. Initialise it once with random entries;
after that recycle the updated u from the previous mini-batch.
2. Right—vector update. Compute

WTu

V = ————
W Tull2

(veR" |v]2=1).

20.7 Enrichment 20.7: Conditional GANs: Label-Aware Image Synthesis 1127

This is one gradient-free step toward the dominant right singular vector.
. Left—vector update: Compute

Wv
u=——-— (ful2=1).
Wl

After this pair of operations, u and v are better aligned with the true singular vectors u; and v;.
. Singular-value estimate: Evaluate

6 = u' Wy = ||Wy|s,.

With the recycled u the estimate is already very accurate; a single sweep is enough in practice.
. Weight normalisation: Scale the weight matrix once per forward pass:
~ w
W - <.
(9

Now ||[W||, & 1, so the layer is approximately 1-Lipschitz.

Why alternate WT and W? From the SVD W = UZV T we have Wy, = oju; and W Tu; = oyvy.
Composing the two maps gives W Wy, = Glzvl. Power iteration on W TW would therefore converge
to v; carrying it out implicitly via WT/W multiplication avoids the &(mn?) cost of forming the
normal matrix.

Cost in practice Each layer pays for two extra matrix—vector products and a few normalisations—tiny
compared with convolution operations—yet gains a reliable on-the-fly o(W) estimate that keeps
gradients and adversarial training under control.

© ® 9 WU R W N =

- o

def spectral_norm_update(W, u, num_iterations=1):
W: Weitght matriz shaped [out_features, in_features]
u: Approzimated top singular vector (shape = [out_features])
for _ in range(num_iterations):
v: top right singular vector approzimation
= W.t() .mv(u)
_norm = v.norm()
= v / (v_norm + le-12)

u: top left singular vector approxzimation
u_new = W.mv(v)

u_new_norm = u_new.norm()

u = u_new / (u_new_norm + le-12)

sigma = u.dot(W.mv(v))
Return normalized weights and updated vectors
return W / sigma, u, v

1128 Chapter 20. Lecture 20: Generative Models Il

Conditional GANs: Spectral Normalization

Welsh springer spaniel Fire truck Daisy

B & MW

128x128 images on ImageNet

Justin Johnson

Figure 20.40: Spectral Normalization constrains the Lipschitz constant by bounding the spectral
norm of each layer’s weights. This ensures smoother gradient flow, preventing the discriminator
from learning overly sharp decision surfaces.

Alfernative Loss: Hinge Loss Formulation

While the non-saturating GAN loss is commonly used in conditional GANs with CBN, another
widely adopted objective—especially in more recent setups such as this work and BigGANs—is the
hinge loss we’ve covered previously with SVMs 3.6.4. It replaces the cross-entropy terms with a
margin-based objective, helping the discriminator focus on classification margins and improving
gradient stability.

Hinge loss (for conditional GANs)

L = Exepyy [max (0,1~ D(x,y))] +Ep() [max(0, 1+ D(G(z.y).))]
26 =B () [D(G(z,7),y)]

Intuition:
* The discriminator learns to assign a positive score (ideally > 1) to real images (x,y), and a
negative score (ideally < —1) to generated images G(z,y).
* If a sample is already on the correct side of the margin (e.g., a real image with D(x,y) > 1),
the loss is zero — no gradient is applied.
* The generator is trained to maximize the discriminator’s score for its outputs (i.e., make fake
images look real to the discriminator).
Why hinge loss helps
* Avoids vanishing gradients when the discriminator becomes too confident (a problem with
—log(1—D(G(z))) in early GANG).
» Simplifies optimization with piecewise-linear objectives.
* Empirically improves convergence speed and stability, particularly when combined with
spectral normalization.

20.7 Enrichment 20.7: Conditional GANs: Label-Aware Image Synthesis 1129

Interpretation and Benefits
* Stable Training: With a 1-Lipschitz constraint, the discriminator avoids extreme gradients;
the generator receives more reliable updates.
* No Extra Gradient Penalties: Unlike methods (e.g., WGAN-GP) that add penalty terms, SN
modifies weights directly, incurring lower overhead.
* Enhanced Diversity: By preventing the discriminator from collapsing too fast, SN often
yields more diverse generated samples and mitigates mode collapse.
In practice, Spectral Normalization integrates neatly with standard deep learning frameworks,
requiring minimal changes to existing layers. It has become a mainstay technique for reliably
training high-quality GANSs, used in both unconditional and conditional setups.

1130 Chapter 20. Lecture 20: Generative Models Il

Enrichment 20.7.3: Self-Attention GANs (SAGAN)

While convolutional GANs operate effectively on local patterns, they struggle with modeling long-
range dependencies, especially in complex scenes. In standard convolutions, each output pixel
is influenced only by a small neighborhood of input pixels, and even deep networks require many
layers to connect distant features. This becomes problematic in global structure modeling — e.g.,
maintaining symmetry across a face or coherence across distant body parts.

Self-Attention GANs (SAGAN) [763] address this limitation by integrating non-local self-attention
layers into both the generator and discriminator. This allows the model to reason about all spatial
locations simultaneously, capturing long-range dependencies without requiring deep, inefficient
convolutional hierarchies.

Conditional GANs: Self-Attention

Goldfish

Indigo
bunting

Redshank

Saint
Bernard

Justin Johnson

Figure 20.41: Self-Attention enables long-range spatial dependencies in GANS, yielding improved
structure and realism.

Architecture Overview
The self-attention block follows the "query—key—value" formulation:
« Given an input feature map X € R#*W ‘three 1 x 1 convolutions produce: f(X) (queries),
g(X) (keys), and h(X) (values).
* Queries and keys are reshaped to C' x N (with N = H - W) and multiplied, yielding a N x N
attention map.
* A softmax ensures attention scores sum to 1 across each row (normalized over keys).
* The result is multiplied with values /(X) and reshaped back to the spatial layout.
* A learnable scale parameter 7, initialized to zero, controls the strength of the attention output:
Output = - SelfAttention(X) +X.

Why It Helps
* Facilitates global reasoning — e.g., the left eye can align symmetrically with the right, even if
they are spatially far apart.
* Improves texture consistency and fine-grained detail preservation in images.
» Enhances expressiveness in multi-class generation tasks like ImageNet.

20.7 Enrichment 20.7: Conditional GANs: Label-Aware Image Synthesis 1131

Training Details and Stabilization
SAGAN adopts two key techniques for stable training:

1. Spectral Normalization [438] applied to both generator and discriminator (unlike earlier
approaches which only normalized the discriminator). This constrains each layer’s Lipschitz
constant, preventing exploding gradients and improving convergence.

2. Two Time-Scale Update Rule (TTUR): The generator and discriminator are updated with
separate learning rates. This allows the discriminator to stabilize quickly while the generator
catches up.

Their combination leads to faster convergence, improved stability, and better FID/IS scores.

Loss Function
SAGAN uses the hinge version of the adversarial loss:

Zp = Evepy [max(0,1 — D(x))] +E.p) [max (0,14 D(G(z)))]

L6 = _Ezwp(z) [D(G(Z))]

This formulation improves gradient behavior by clearly separating the penalties for incorrect real/fake
classification.

Quantitative Results
SAGAN significantly improves generative performance:
* Achieves state-of-the-art FID and IS scores on ImageNet (128x128).
* Produces semantically consistent outputs, outperforming convolution-only GANSs especially
on complex classes like “dog” or “person”.

Summary

Self-attention enables the generator and discriminator to capture global structures efficiently, help-
ing GANs go beyond local textures. This innovation inspired later models like BigGAN [52],
which combine attention, large-scale training, and class conditioning to achieve unprecedented
photorealism.

BigGAN [52] marks a major milestone in the progression of class-conditional GANs by demon-
strating that simply scaling up the model and training setup—when coupled with key stabilization
techniques—yields state-of-the-art performance across resolution, sample fidelity, and class diversity.
Developed by Brock et al., BigGAN pushes the frontier of GAN-based image synthesis, particularly
on challenging datasets like ImageNet and JFT-300M.

Key Innovations and Techniques
* Conditional Batch Normalization (CBN): Class labels are incorporated deep into the gen-
erator via Conditional BatchNorm layers. Each BatchNorm is modulated by gain and bias
vectors derived from a shared class embedding, enabling class-conditional feature modulation.
* Projection-Based Discriminator: The discriminator uses projection [438] to incorporate
class information, effectively learning to assess whether an image is both real and aligned with
its target class.

1132 Chapter 20. Lecture 20: Generative Models Il

* Spectral Normalization (SN): Applied to both G and D, SN constrains the Lipschitz constant
of each layer, enhancing training stability by regularizing weight scales.

* Large-Scale Batch Training: Batch sizes as large as 2048 are used, significantly improving
gradient quality and enabling more stable optimization trajectories. Larger batches cover more
modes and support smoother convergence.

» Skip-z Connections: Latent vectors are not only injected at the generator input but also
directly routed to multiple residual blocks at various resolutions. These skip connections
facilitate hierarchical control over spatial features.

* Residual Architecture: Deep residual blocks enhance gradient flow and feature reuse.
BigGAN-deep further expands the architecture using bottleneck ResBlocks and additional
layers per resolution.

* Orthogonal Regularization: To support the fruncation trick, orthogonal regularization [55]
ensures the generator’s mapping from latent space is smooth and well-conditioned. This
regularization minimizes cosine similarity between filters while avoiding norm constraints.

* Truncation Trick: During inference, samples are drawn from a truncated normal distribution,
i.e., z~ A (0,I) with resampling of values exceeding a fixed magnitude threshold. This
concentrates latent inputs around the distribution’s mode, improving visual fidelity at the
cost of diversity. The truncation threshold serves as a dial for post-hoc control over the
quality—variety tradeoff.

* Exponential Moving Average (EMA): The generator weights are averaged across training
steps using an EMA with a decay of 0.9999, improving the quality and consistency of generated
samples during evaluation.

* Orthogonal Initialization: All layers in G and D are initialized with orthogonal matri-
ces [552], promoting stable signal propagation in very deep networks.

* Hinge Loss and Self-Attention: The architecture adopts hinge loss for adversarial training and
includes self-attention modules [763] to improve long-range dependency modeling, especially
in higher-resolution images.

Conditional GANs: BigGAN

Figure 20.42: BigGAN: high-fidelity, class-conditional samples across resolutions (128-512 px) on
ImageNet.

20.7 Enrichment 20.7: Conditional GANs: Label-Aware Image Synthesis 1133

Beyond the primary components discussed in earlier parts of this lecture such as label conditioning,
spectral normalization, and self-attention—BigGAN incorporates several additional architectural
and training innovations that play a crucial role in achieving high-fidelity, scalable synthesis. In what
follows, we elaborate on these techniques, mainly those which were not previously covered in depth.

Enrichment 20.7.4.1: Skip-z Connections: Hierarchical Latent Injection

In conventional conditional GANS, the latent code z € R is typically introduced at the generator’s
input layer and optionally used to initialize class-conditional batch normalization (CBN) in a uniform
way. However, this limits the model’s ability to control spatially localized features in a deep generator
architecture.

BigGAN implements a refined variant of latent conditioning, referred to as skip-z connections.
The latent vector z is evenly split into L chunks—each assigned to one of the generator’s L residual
blocks. Each block uses its assigned chunk z, € R%/% in combination with the shared class embedding
¢ € R% to compute block-specific conditional normalization parameters.

Mechanism:
For each block:

1. Concatenate z, with c.
2. Project this vector using two linear layers to produce the gain and bias for CBN.
3. Apply those to modulate the BatchNorm activations within the residual block.

This process occurs twice per block (once for each BatchNorm layer), and is implemented via
reusable layers inside each residual block.

From BigGAN-PyTorch: ConditionalBatchNorm2d

class ConditionalBatchNorm2d(nn.Module) :

def __init__(self, num_features, cond_dim):
super () .__init__()

self.bn = nn.BatchNorm2d(num_features, affine=False)
self.gain = nn.Linear(cond_dim, num_features)

self.bias = nn.Linear(cond_dim, num_features)

© o N W R W N =

def forward(self, x, y): # y = [z_chunk, class_embedding]
10 out = self.bn(x)

11 gamma = self.gain(y) .unsqueeze(2).unsqueeze(3)

12 beta = self.bias(y).unsqueeze(2) .unsqueeze(3)

13 return gamma * out + beta

Each residual block in the generator stores its own ‘ConditionalBatchNorm2d* instances and
receives its dedicated chunk of z. This allows each layer to capture different aspects of semantic
control—for example, coarse structures at lower resolution, textures and edges at higher ones.

1134 Chapter 20. Lecture 20: Generative Models Il

Comparison to Standard CBN:

In standard conditional normalization, the generator is conditioned on a single global class embedding
¢, which is reused across all layers. This provides semantic conditioning but lacks spatial specificity.
In BigGAN, the class embedding ¢ remains global and shared, but the latent vector z is partitioned
into chunks z(!), one per generator block. Each chunk influences a different spatial resolution by
being fed into that block’s conditional batch normalization (CBN) layer.

This design allows different parts of the latent code to control different levels of the image
hierarchy — from coarse global structure to fine-grained texture. As a result, the generator gains
more expressive power and learns a hierarchical organization of semantic and stylistic attributes
without modifying the way c is handled.

BigGAN-deep Simplification:

In BigGAN-deep, the latent vector z is not split. Instead, the full z vector is concatenated with the
class embedding and injected identically into every residual block. While this sacrifices per-layer
specialization of z, it simplifies parameter management and works effectively in deeper, bottlenecked
architectures.

A cornerstone of BigGAN’s scalability is its reliance on deep residual networks in both the generator
and discriminator. Inspired by ResNet-style design [206], BigGAN structures its generator using
stacked residual blocks, each of which learns a refinement over its input, enabling stable and
expressive function approximation even at hundreds of layers.

Motivation and Design:
GAN training becomes increasingly unstable as model capacity grows. Residual blocks counteract
this by providing shortcut (identity) connections that facilitate gradient propagation and feature reuse.
Each residual block contains:
* Two 3 x 3 convolutions (optionally bottlenecked).
* Two conditional batch normalization layers (CBN), conditioned via skip-z as described earlier.
* A ReLU activation before each convolution.
* A learned skip connection (via 1 x 1 conv) when input/output shapes differ.
This design supports deep, expressive generators that do not suffer from vanishing gradients.

BigGAN vs. BiQgGAN-deep:
BigGAN uses relatively shallow residual blocks with a single block per resolution stage. In contrast,
BigGAN-deep significantly increases network depth by introducing:
* Two residual blocks per resolution (instead of one).
* Bottlenecked residual layers: each block includes 1 x 1 convolutions before and after the main
3 x 3 convolution to reduce and restore the channel dimensionality.
* Identity-preserving skip connections: in the generator, excess channels are dropped to match
dimensions, while in the discriminator, missing channels are padded via concatenation.
These architectural changes enable deeper networks with better training stability and more
efficient parameter usage.

20.7 Enrichment 20.7: Conditional GANs: Label-Aware Image Synthesis 1135

(a) () (©

Figure 20.43: BigGAN architectural layout and residual blocks [52]. (a) Generator architecture
with hierarchical latent injection via skip-z connections. (b) Residual block with upsampling in the
generator (ResBlock up). (c) Residual block with downsampling in the discriminator (ResBlock
down).

1136 Chapter 20. Lecture 20: Generative Models Il

= Class

Linear
— 4x4x16¢ch

Image

(b) (c)

Figure 20.44: BigGAN-deep architectural layout and residual blocks [52]. (a) Generator structure
with deeper residual hierarchies and full latent conditioning. (b) Residual block with upsampling
in the generator. (c) Residual block with downsampling in the discriminator. Blocks without
up/downsampling are identity-preserving and exclude pooling layers.

20.7 Enrichment 20.7: Conditional GANs: Label-Aware Image Synthesis 1137

These deeper and more modular residual structures help BigGAN-deep outperform its shallower
predecessor across all resolutions and evaluation metrics (e.g., FID and IS), while often using fewer
parameters due to the bottlenecked design.

The truncation trick is a sampling technique introduced in BigGAN [52] to improve image quality
during inference. It restricts latent vectors to lie within a high-density region of the standard normal
distribution, where the generator is more likely to produce stable and realistic outputs.

Truncated Normal Distributions in Latent Space

During training, the latent code z € R? is drawn from a standard normal distribution, z; ~ .47(0,1).
At test time, the truncation trick samples each component from the same distribution but only accepts
values within an interval [—7, t|. Formally:

zi~ A4 (0,1) conditionedon |z;| <7

Samples exceeding 7 are rejected and resampled. This results in a truncated normal distribution
with increased density near the origin and zero probability beyond the cutoff. The distribution is
renormalized so that it still integrates to 1.

Why Truncate?
In high-dimensional Gaussian space, most probability mass is concentrated in a thin spherical shell
around ||z||2 ~ v/d. These high-norm vectors are often mapped by the generator to unstable or
low-quality outputs. Truncation focuses sampling on lower-norm vectors near the origin—regions
where the generator has been well-trained. This leads to:

* Cleaner and sharper images.

* Reduced artifacts.

 Stronger alignment with class-conditional structure.

How Is t Chosen?

The truncation threshold 7 is a tunable hyperparameter. Smaller values yield higher quality but
reduce diversity. Common values include 7 = 2.0, 1.5, 1.0, or 0.5. In practice, a truncation sweep
is performed to empirically select the best trade-off. BigGAN reports IS and FID for multiple
truncation levels, revealing the tradeoff curve between sample quality and variety.

Implementation in Practice
Truncated sampling is implemented via per-dimension rejection sampling:

from scipy.stats import truncnorm

1
2

3 def truncated_z(dim, tau):

4 return truncnorm.rvs(-tau, tau, loc=0, scale=1, size=dim)

This procedure generates a latent vector z € R? with each component sampled independently
from .#7(0,1), truncated to [—7, T].

1138 Chapter 20. Lecture 20: Generative Models Il

Tradeoffs and Limitations
Truncation improves sample fidelity but comes with costs:
* Reduced Diversity: A smaller volume of latent space is explored.
* Possible Instability: Generators not trained to handle low-norm regions may produce col-
lapsed or saturated outputs.

When Truncation Fails

If the generator lacks smoothness near z = 0, truncation can trigger saturation artifacts or mode
collapse. This happens when the model overfits to high-norm training inputs and generalizes poorly
to low-norm regions. Thus, truncation should be used only with generators that have been explicitly
regularized for this purpose.

How to Make Truncation Work Reliably

To ensure that the generator behaves well under truncation, BigGAN applies orthogonal regu-
larization, which promotes smoothness and local isometry in the latent-to-image mapping. This
regularization term discourages filter redundancy and ensures the generator responds predictably to
small latent variations—especially those near the origin.

Orthogonal regularization is a key technique introduced in BigGAN to ensure that the generator
remains well-behaved in low-norm regions of latent space—regions emphasized by the truncation
trick. While truncation improves sample quality by concentrating latent inputs near the origin, this
strategy only works reliably if the generator maps these inputs smoothly and predictably to images.
Without this property, truncation may lead to artifacts, over-saturation, or even complete mode
collapse.

To address this, BigGAN introduces a soft form of orthogonality constraint on the generator’s
weight matrices. The goal is to encourage the columns of each weight matrix to be approximately or-
thogonal to each other. This makes each layer in the generator act as a near-isometric transformation,
where similar inputs lead to similar outputs. As a result, local neighborhoods in latent space map to
locally coherent image regions.

The standard orthogonal regularization term penalizes deviations from strict orthogonality by
minimizing the squared Frobenius norm of the off-diagonal entries in W W, where W is a weight
matrix:

2
.,%nho:?LHWTW—IHF

However, in practice, this constraint is too strong and can limit model expressiveness. Instead,
BigGAN uses a relaxed variant that excludes the diagonal entries, focusing only on reducing
correlations between filters while allowing their norms to vary. The regularization term becomes:

2
,,%nho:zHWTW@u—I)HF

where [is the identity matrix and ® denotes element-wise multiplication. This version of the penalty
preserves the desired smoothness properties without overly constraining the generator’s capacity.

Empirical results show that orthogonal regularization dramatically increases the likelihood that a
generator will remain stable under truncated sampling. In the BigGAN paper, only 16% of large
models were truncation-tolerant without orthogonal regularization.

20.7 Enrichment 20.7: Conditional GANs: Label-Aware Image Synthesis 1139

When this penalty was included, the success rate increased to over 60%. These results confirm
that enforcing orthogonality improves the conditioning of the generator and mitigates gradient
pathologies that would otherwise arise in narrow latent regions.

In implementation, orthogonal regularization is applied as an auxiliary term added to the gen-
erator’s loss during training. It is computed across all linear and convolutional weight matrices
using simple matrix operations. Its computational overhead is negligible compared to the benefits
it provides in stability, generalization, and quality at inference time—particularly when truncated
latent vectors are used.

Orthogonal regularization should not be confused with orthogonal initialization, although both
arise from the same geometric motivation: preserving distance and structure through linear trans-
formations. Orthogonal initialization sets the initial weights of a neural network to be orthogonal
matrices, satisfying W 'W = [at initialization time. This technique was introduced in the context
of deep linear and recurrent networks [552] to maintain variance propagation and avoid gradient
explosion or vanishing.

BigGAN applies orthogonal initialization to all convolutional and linear layers in both the
generator and the discriminator. This initialization ensures that the model starts in a well-conditioned
regime where activations and gradients are stable across many layers. However, during training,
weight matrices are updated by gradient descent and quickly deviate from orthogonality. This is
where orthogonal regularization becomes essential—it continuously nudges the model back toward
this structured regime.

Thus, orthogonal initialization provides a favorable starting point, while orthogonal regularization
acts as a guiding prior during optimization. Their combination is especially effective in large-scale
GANES: initialization alone may be insufficient to prevent pathological gradients, and regularization
alone may be ineffective if starting from arbitrary weights. Together, they enable BigGAN to
maintain spatial smoothness and local isometry throughout training, which is critical for its ability to
support low-norm latent vectors and reliably generate high-quality images under truncation.

Another subtle but powerful technique used in BigGAN is the application of an exponential moving
average (EMA) over the generator weights during training. Although it does not influence the
optimization process directly, EMA plays a critical role during evaluation and sample generation.
It acts as a temporal smoothing mechanism over the generator’s parameter trajectory, helping
to counteract the noise and instability of high-variance gradient updates that occur throughout
adversarial training.

The EMA maintains a running average of the generator’s weights 6, according to the update rule:

OMA = - 0N+ (1—a) - 6,

where o € (0,1) is the decay rate, often set very close to 1 (e.g., & = 0.999 or 0.9999). This
formulation gives exponentially more weight to recent updates while slowly fading out older values.
As training progresses, the EMA model tracks the moving average of each parameter across steps,
effectively producing a smoothed version of the generator that is less affected by momentary
oscillations or adversarial instability.

In practice, EMA is not used during training updates or backpropagation. Instead, a shadow copy
of the generator is maintained and updated using the EMA formula after each optimization step.

1140 Chapter 20. Lecture 20: Generative Models Il

Then, when it comes time to evaluate the generator—either for computing metrics like Inception
Score or FID, or for sampling images for qualitative inspection—BigGAN uses this EMA-smoothed
generator instead of the raw, most-recent checkpoint.

The benefits of this approach are particularly visible in high-resolution settings, where adversarial
training can produce noisy or unstable weight fluctuations even when the model as a whole is
converging. The EMA model filters out these fluctuations, resulting in visibly cleaner and more
coherent outputs. It also improves quantitative metrics across the board, with lower FID scores and
reduced sample variance across random seeds.

The idea of averaging model parameters over time is not unique to GANs—it has a long history
in convex optimization and stochastic learning theory, and is closely related to Polyak averaging.
However, in the context of GANS, it gains particular significance due to the non-stationary nature of
the loss surface and the adversarial updates. The generator is not optimizing a static objective but is
instead constantly adapting to a co-evolving discriminator. EMA helps decouple the generator from
this shifting target by producing a more stable parameter estimate over time.

It is also worth noting that EMA becomes increasingly important as model size and capacity
grow. In very large generators, even small perturbations to weight matrices can lead to visible
differences in output. This sensitivity is amplified when using techniques like truncation sampling,
which further constrain the input space. The EMA generator mitigates these issues by producing a
version of the model that is representative of the broader training trajectory, rather than any single
volatile moment in optimization.

In BigGAN, the EMA weights are typically stored alongside the training weights, and a final
evaluation pass is conducted exclusively using the averaged version. This ensures that reported
metrics reflect the most stable version of the model. As a result, EMA has become a de facto standard
in high-quality GAN implementations, extending well beyond BigGAN into diffusion models, VAEs,
and other generative frameworks that benefit from stable parameter averaging.

A key practical detail in BigGAN’s training strategy is its use of an asymmetric update schedule
between the generator and discriminator. Specifically, for every generator update, the discriminator
is updated twice. This 2:1 update ratio, while simple, has a significant impact on training stability
and convergence—particularly during early stages when the generator is still producing low-quality
outputs and lacks meaningful gradients.

This design choice arises from the fundamental nature of GANSs as a two-player minimax game
rather than a supervised learning problem. In the standard GAN objective, the generator relies on
the discriminator to provide gradients that guide it toward producing more realistic samples. If the
discriminator is undertrained or inaccurate, it fails to deliver informative gradients. In such cases,
the generator may either receive gradients with very low magnitude (i.e., saturated) or gradients that
are inconsistent and directionless. Either scenario leads to unstable training, poor convergence, or
mode collapse.

Updating the discriminator more frequently ensures that it can closely track the current distribu-
tion of fake samples produced by the generator. In early training, this is especially important: the
generator often outputs near-random images, while the discriminator can quickly learn to distinguish
these from real samples. However, the generator can only learn effectively if the discriminator pro-
vides non-saturated gradients—responses that are confident yet not flat. By giving the discriminator
extra updates, the model maintains a discriminator that is sufficiently strong to provide meaningful
feedback but not so dominant that it collapses the generator.

20.7 Enrichment 20.7: Conditional GANs: Label-Aware Image Synthesis 1141

This update schedule also compensates for the relatively high gradient variance and weaker
signal that the generator typically receives. Since the generator’s loss depends entirely on how the
discriminator scores its outputs, and because these outputs change with each batch, the gradient
landscape faced by the generator is inherently less stable. Additional discriminator updates help
mitigate this instability by ensuring that the discriminator has time to adapt to the generator’s latest
distribution before a new generator step is taken.

Importantly, this strategy only works in combination with proper regularization. BigGAN uses
spectral normalization in both G and D to constrain the discriminator’s Lipschitz constant and prevent
overfitting. Without such constraints, training the discriminator more aggressively could lead it
to perfectly memorize the training data or overpower the generator entirely, resulting in vanishing
gradients.

While BigGAN settles on a 2:1 update ratio, other GAN variants may use different values
depending on model complexity and the chosen loss function. For example, WGAN-GP updates
the discriminator five times for every generator update to approximate the Wasserstein distance
reliably. In contrast, StyleGAN2-ADA uses a 1:1 schedule but includes strong regularization and
adaptive data augmentation to stabilize training. Ultimately, the ideal update frequency is a function
of architectural depth, dataset difficulty, and the adversarial loss landscape. In BigGAN’s case,
the 2:1 ratio is a well-calibrated compromise that supports rapid discriminator adaptation without
overwhelming the generator.

Results and Legacy

Trained on ImageNet, BigGAN models achieved an Inception Score (IS) of 166.5 and FID of 7.4 at
128 x 128 resolution—substantially surpassing previous benchmarks. The models generalize well to
larger datasets such as JFT-300M and have inspired a cascade of follow-up works, including:

* BigBiGAN [130], which extends BigGAN with an encoder network, enabling bidirectional

mapping and representation learning;

* ADM-G [123], whose strong results in class-conditional image synthesis with diffusion

models were, in part, motivated by BigGAN’s performance ceiling;

* StyleGAN-T [321], a transformer-based GAN combining BigGAN-style residual backbones

with Vision Transformer decoders;

* Consistency Models [581], which revisit training efficiency, stability, and realism tradeoffs

using simplified objectives beyond GANS.

These extensions signal BigGAN’s long-standing impact—not merely as a powerful model, but
as a catalyst for the generative modeling community’s move toward scalable, stable, and controllable
synthesis. Its emphasis on architectural regularization, batch scaling, and sample quality—diversity
tradeoffs continues to shape SOTA pipelines.

1142 Chapter 20. Lecture 20: Generative Models Il

StackGAN [765] introduced a pivotal advancement in text-to-image generation by proposing a
two-stage architecture that decomposes the synthesis process into coarse sketching and progressive
refinement. This design is inspired by how human artists typically work: first sketching global
structure, then layering fine-grained detail. The central insight is that generating high-resolution,
photorealistic images directly from text is extremely difficult—both because modeling fine detail in
a single forward pass is computationally unstable, and because the generator must preserve semantic
alignment with the conditioning text at increasing resolutions.

Earlier works such as GAN-INT-CLS [519] and GAWWN [520] introduced conditional GANs
based on text embeddings. GAN-INT-CLS used a pre-trained RNN to encode descriptive captions
into fixed-size vectors, which were then concatenated with noise and passed through a generator to
produce 64 x 64 images. While conceptually sound, it failed to capture high-frequency details or
generate sharp textures. GAWWN added spatial attention and object location hints, but similarly
struggled at scaling beyond low resolutions or preserving semantic richness.

StackGAN addresses these challenges by introducing a two-stage generator pipeline. But
before either stage operates, StackGAN applies a crucial transformation called Conditioning
Augmentation (CA). Instead of feeding the text embedding ¢, € R” directly into the generator, CA
maps it to a Gaussian distribution .4 (u(¢;),X(¢)) using a learned mean and diagonal covariance.
A conditioning vector é ~ .4 (u,X) is then sampled and used as the actual conditioning input.

This stochastic perturbation serves several purposes:

* It encourages smoothness in the conditioning manifold, making the generator less brittle to
small changes in text.

* It introduces variation during training, acting like a regularizer that improves generalization.

* It helps overcome mode collapse by encouraging the generator to explore nearby conditioning
space without drifting far from the intended semantics.

With CA in place, StackGAN proceeds in two stages:

» Stage-I Generator: Takes as input the sampled conditioning vector ¢ and a random noise
vector z, and synthesizes a coarse 64 x 64 image. This image captures the global layout, color
palette, and rough object geometry implied by the text. However, it typically lacks sharpness
and fine-grained texture.

» Stage-II Generator: Refines the low-resolution image by conditioning again on the original
text embedding (not the sampled ¢) and the Stage-I output. It corrects distortions, enhances
object boundaries, and synthesizes photorealistic detail. This generator is built as a residual
encoder—decoder network, with upsampling layers and deep residual connections that allow
semantic feature reuse. The discriminator in this stage is also enhanced with matching-aware
supervision to ensure image—text consistency.

20.7 Enrichment 20.7: Conditional GANs: Label-Aware Image Synthesis 1143

This bird has a This flower has
This bird is white ~ yellow belly and overlapping pink
with some black on tarsus, grey back, pointed petals
its head and wings, wings, and brown surrounding a ring
and has a long throat, nape with of short yellow
orange beak a black face filaments

(a) StackGAN
Stage-I
64x64
images

(b) StackGAN
Stage-II
256x256
Images

(c) Vanilla GAN
256x256 ’
images

Figure 20.45: Comparison of StackGAN and a one-stage 256 x256 GAN [765]. (a) Stage-I produces
low-resolution sketches with basic color and shape. (b) Stage-II enhances resolution and realism. (c)
One-stage GAN fails to produce plausible high-resolution outputs.

The effect of this staged generation is illustrated in Figure 20.45. While one-stage GANs
struggle to produce realistic 256 x 256 images—even when equipped with deep upsampling lay-
ers—StackGAN’s sketch-and-refine paradigm achieves significantly better visual fidelity. Stage-I
outputs provide rough structure, and Stage-II convincingly improves resolution, texture, and align-
ment with text cues.

The architectural overview illustrates the interaction between text embeddings, conditioning
augmentation, and residual refinement. The text embedding is used at both stages to ensure that
conditioning information is not lost in early transformations. Residual blocks in Stage-II integrate
features from both the coarse image and the original text to construct plausible details aligned with
the semantics of the prompt.

1144 Chapter 20. Lecture 20: Generative Models Il

| Conditioning | | Stage-| Generator G, |
| Augmentation [ca) | | for sketch |
Text descriptiont Embedding | |

B4 x G4
results

This i
white

B4 w64
£ N0, 1) | | 1 real images

Compression and
Spatial Replication

|

|

|

123 |

. 512 |
— . 10, 13
|

|

|

| — 256 %256
| Conditioning real images
| Augmentation X - 4

4

2561250
2 Stage-ll Generator G for refinement | resulls Stage-ll Discriminator D I

Figure 20.46: Architecture of StackGAN [765]. Stage-I generator synthesizes low-resolution images
from text embedding and noise. Stage-II generator refines Stage-I outputs by injecting additional
detail using residual blocks and upsampling layers.

This two-stage framework offers several advantages:

* It decomposes the generation task into manageable subgoals: layout and detail.
* It maintains semantic consistency by conditioning both stages on the text.

It improves training stability and image diversity through CA.

From Overview to Components:

We now examine each of StackGAN’s core components in detail. The entire system is built on a
simple but powerful idea: rather than attempting to generate high-resolution images in a single step,
StackGAN decomposes the process into well-defined stages. Each stage plays a specialized role in
the pipeline, and the quality of the final output hinges critically on the strength of the conditioning
mechanism that feeds it.

We begin by studying Conditioning Augmentation (CA), which precedes both Stage-I and
Stage-II generators and provides the stochastic conditioning vector from which the entire synthesis
process unfolds. This module acts as the semantic foundation of StackGAN, and understanding it
will clarify how subsequent stages achieve stability, diversity, and realism.

20.7 Enrichment 20.7: Conditional GANs: Label-Aware Image Synthesis 1145

A central challenge in text-conditioned GANS is that each natural language caption is mapped to
a fixed high-dimensional embedding vector ¢, € RP, typically obtained via an RNN-based text
encoder. While these embeddings successfully encode semantics, they pose three major problems
for image generation:
* Determinism: A single text embedding maps to a single point in feature space, limiting image
diversity for the same caption.
» Sparsity and Interpolation Gaps: Fixed embeddings lie on a sparse, irregular manifold,
making interpolation and smooth generalization difficult.
* Overfitting: The generator may memorize how to map a specific caption embedding to a
specific image, risking mode collapse.

Solution: Learn a Distribution Over Conditioning Vectors

StackGAN addresses these issues with Conditioning Augmentation (CA), which models a distri-
bution over conditioning vectors rather than using a single deterministic embedding. Given a text
embedding ¢, CA learns the parameters of a Gaussian distribution:

&~ N (u(9r), diag(c?(91)))

where i (¢;) € RN and log 62(¢;) € Rz are the outputs of two fully connected layers applied to ¢;.
This distribution introduces controlled randomness into the conditioning process.

Sampling via Reparameterization Trick
To ensure end-to-end differentiability, CA uses the reparameterization trick—first introduced in
variational autoencoders:

é:“(¢t)+6(¢t)®87 SNf/V(Oal)

where ¢ € RVs becomes the actual conditioning input for the generator, and ® denotes elementwise
multiplication. This trick enables gradients to propagate through the stochastic sampling process
during training.

KL Divergence Regularization
To avoid arbitrary shifts in the learned distribution and ensure it remains centered and stable, CA
includes a regularization term:

i = DxL (A (1(9r), diag(c?(9))) | 4(0,1))

This KL divergence penalizes deviations from the standard normal distribution, thereby encouraging
the learned p to stay near zero and ¢ near one. This regularization discourages degenerate behavior
such as collapsing the variance to zero (making CA deterministic again). The KL loss is added to the
generator’s total loss during training.

Benefits of Conditioning Augmentation
* Diversity from Fixed Input: Sampling ¢ from a learned Gaussian allows multiple plausible
images to be generated from a single caption ¢;.
* Smooth Latent Manifold: The conditioning space becomes more continuous, improving
interpolation, generalization, and gradient flow.
* Robustness and Regularization: The KL penalty prevents the conditioning distribution from
drifting arbitrarily far from the origin, which stabilizes training.

1146 Chapter 20. Lecture 20: Generative Models Il

Summary Table: Conditioning Augmentation
Component | Role

o Sentence embedding from text encoder
w(d,),0%(¢;) | Parameters of a diagonal Gaussian

¢ Sampled conditioning vector fed to the generator
LKL Regularizer to keep .4 (t,62) close to .4 (0,1)

Having established a robust and diverse conditioning vector ¢ via CA, we now turn to the first stage
of generation: a low-resolution GAN that translates this semantic vector into a coarse but globally
coherent image layout.

After sampling a stochastic conditioning vector ¢ € RV via Conditioning Augmentation (CA), the
Stage-I generator synthesizes a coarse 64 x 64 image that captures the global layout, dominant colors,
and rough object shapes. This stage is intentionally lightweight, focusing not on photorealism, but
on producing a semantically plausible sketch aligned with the text description.

Motivation: Why Two Stages?
Generating high-resolution images (e.g., 256 x 256) directly from noise and text is challenging due
to multiple factors:
* Gradient instability: GAN training at large resolutions often suffers from unstable optimiza-
tion.
» Complex mappings: A direct mapping from (z,¢) — image must simultaneously learn
global structure and fine-grained detail.
* Mode collapse: High-resolution generation without strong inductive structure can lead to
poor sample diversity or overfitting.
To mitigate these issues, StackGAN breaks the synthesis process into two distinct tasks:
 Stage-I: Learn to generate a coarse image from the conditioning vector.
» Stage-II: Refine that image into a high-fidelity result using residual enhancement.
This decomposition improves modularity, training stability, and sample quality, following the
same coarse-to-fine approach used in human drawing.

Architecture of Stage-I Generator
The generator takes as input:

2~ N(00), e~ N (u(9),0%($))

where z € RM is a standard Gaussian noise vector and ¢ € RM: is the sampled conditioning vector.
These vectors are concatenated to form a combined input:

ho = [z:¢] € R+
The forward pass proceeds as follows:

1. Fully connected layer: /4 is mapped to a dense feature vector and reshaped to a spatial tensor
(e.g.,4 x4 x512).

20.7 Enrichment 20.7: Conditional GANs: Label-Aware Image Synthesis 1147

2. Upsampling blocks: A series of convolutional blocks upsample this tensor progressively to
64 x 64, each consisting of:
* Nearest-neighbor upsampling (scale factor 2)
* 3 x 3 convolution to reduce channel dimensionality
* Batch Normalization
* ReLU activation
3. Final layer: A 3 x 3 convolution maps the output to 3 channels (RGB), followed by a Tanh
activation:

Liage-1 = tanh(Convrgg (h)) € [RO4x64x3

Output Normalization: Why Tanh?

The Tanh function ensures that pixel values lie in the range (—1, 1). This matches the normalized
data distribution used during training and avoids vanishing gradients more effectively than the
Sigmoid function, which squashes values into [0, 1] and saturates near boundaries. Moreover, Tanh is
zero-centered, which harmonizes well with BatchNorm layers that follow a zero-mean distribution.

From Latent Tensor to Displayable Image
At inference time, the generated image I € [—1,1]//>*W>3

I+1
image ;s = (;) x 255

This rescaling is not part of the generator architecture—it is applied externally during image saving
or visualization.

is rescaled to displayable RGB format via:

How Channel Reduction Works in Upsampling Blocks
A common misconception is that upsampling reduces the number of channels. In fact:
» Upsampling (e.g., nearest-neighbor or bilinear) increases spatial resolution, but preserves
channel depth.
* Convolution that follows upsampling reduces channel dimensionality via learned filters.
Thus, a typical stack in Stage-I looks like:

4x4x512—8x8x256
— 16 x 16 x 128
—32x32x64
— 64 x64 x3

Each transition consists of: upsample — convolution — BatchNorm — ReLU.

Summary of Stage-l Generator

Component Role

7~ A (0,1) Random noise to seed diversity

¢~ N (1,0?%) Conditioning vector from CA

FC layer Projects input into spatial feature map

Upsampling + Conv blocks | Build image resolution step-by-step

Final Tanh activation Constrains pixel values to [—1, 1]

1148 Chapter 20. Lecture 20: Generative Models Il

This completes the first stage of StackGAN. The output image Isage-1 S€rves as a rough semantic
sketch that is then refined in Stage-II, where texture, edges, and class-specific details are injected in
a residual encoder—decoder framework.

The Stage-I Generator outputs a low-resolution image Ige-1 € -1, 1]64X64X3 that captures the
coarse spatial layout and color distribution of the target object. However, it lacks photorealistic
texture and fine-grained semantic details. To address this, StackGAN introduces a Stage-II Gen-
erator that refines Jige 1 into a high-resolution image (typically 256 x 256) by injecting residual
information—guided again by the original text description.

Why Two Stages Are Beneficial
The division of labor into two stages is not arbitrary. It allows the model to separate:

* Global coherence and layout (handled by Stage-I)

* Local realism, edges, and fine detail (handled by Stage-II)

This decomposition mimics human drawing: a rough sketch is laid down first, then detail is
added in successive refinement passes. The result is more stable training, higher sample fidelity, and
clearer semantic grounding.

Inputs to Stage-ll Generator
Stage-II receives:

Istage-l c R64X64X3, é\ c RNg

where ge-1 18 the output from Stage-1, and ¢ is the same conditioning vector sampled from the CA
module.

Network Structure and Residual Design
The Stage-II Generator follows an encoder—decoder architecture with residual connections:

1. Downsampling encoder: The 64 x 64 image is downsampled through strided convolutions,
extracting a hierarchical feature representation.

2. Text-aware residual blocks: The encoded features are concatenated with the text conditioning
vector ¢ and processed through multiple residual blocks:

x+—x+F(x,¢)

where F is a learnable function composed of BatchNorm, ReL.U, and convolutions, modulated
by the text embedding.

3. Upsampling decoder: The enhanced feature map is upsampled through nearest-neighbor
blocks and convolutions until it reaches size 256 x 256 x 3.

4. Tanh activation: A final 3 x 3 convolution followed by Tanh ensures output pixel values are
in [—1,1].

Semantic Reinforcement via Dual Conditioning

One subtle but critical detail is that Stage-II does noft rely solely on the coarse image. It also reuses
the original caption embedding ¢, via the CA vector ¢, allowing it to reinterpret the initial sketch
and enforce textual alignment. This reinforcement ensures that Stage-II does not merely sharpen the
image, but corrects and realigns it to better reflect the input caption.

20.7 Enrichment 20.7: Conditional GANs: Label-Aware Image Synthesis 1149

Discriminator in Stage-ll
The Stage-II Discriminator is also conditioned on text. It takes as input:

D Stage-II (I fake ¢t)

and is trained to distinguish between real and generated images given the caption. It follows a
PatchGAN-style architecture and applies spectral normalization to improve convergence.

Overall Effect of Stage-l
Compared to naive GANs that attempt high-resolution synthesis in a single pass, StackGAN’s
residual refinement strategy in Stage-II enables:

» Sharper object boundaries and fine-grained textures (e.g., feathers, eyes, flower petals)

* Fewer artifacts and better color consistency

* Improved semantic alignment between caption and image

Summary of Stage-Il Generator
Component Role

Ltage1 € RO4x64x3 | Coarse layout from Stage-I

¢ € RMs Conditioning vector from CA (reused)

Encoder network | Extracts low-res image features

Residual blocks Refine features using text-aware transformation
Decoder network | Upsamples features to 256 x 256

Final Tanh Outputs image in [—1, 1] range

Together with CA and Stage-I, this final refinement stage completes the StackGAN architecture,
establishing a blueprint for many follow-up works in text-to-image synthesis that adopt coarse-to-fine
generation, residual conditioning, and staged refinement.

StackGAN is trained in two sequential stages, each consisting of its own generator—discriminator
pair and loss functions. The Conditioning Augmentation (CA) module is shared and optimized
during both stages via an additional KL divergence penalty.

Stage-I Training: The Stage-I generator Gy receives noise z ~ .4"(0,1) and a sampled conditioning
vector ¢ ~ A (u(¢;),6%(¢;)) from the CA module, and outputs a coarse image Ltage-1 € [RO4x64x3
A discriminator Dy is trained to classify whether this image is real and whether it corresponds to the
conditioning text embedding ¢;. The training losses are:

» Stage-I Discriminator Loss:

"?DO = E(x,d),) [IOgD()()C, ¢l)] +E(z,6) [lOg(l _DO(GO(Zvé)’ ¢l))]

where x is a real image and Gy (z,¢) is the generated fake image.
» Stage-I Generator Loss:

L — B [log Do(Go(2,¢),)] + Akt - L

where the KL divergence term is:

L) = Do (A (1(0).6%(8)) || A (0.1))

1150 Chapter 20. Lecture 20: Generative Models Il

The generator Gy and the CA module are updated together to minimize .i”g(’)tal, while the
discriminator Dy is trained to minimize .#p,.

Stage-II Training: After Stage-I has converged, its generator Gy is frozen. The Stage-II generator
G takes Iyge1 and a new sample ¢ ~ A (1 (¢r),02(¢;)), and refines the image to high resolution
Litage11 € [R26%256x3 - A second discriminator D is trained to distinguish between real and generated
high-resolution images, given the same conditioning text.

 Stage-II Discriminator Loss:

ng = E(x@,[) [10gD1 ()C, ¢t)] +E(f7¢[) [10g(1 _Dl(Gl (Istage—bé)v ¢t))]

where x is a real 256 x 256 image and £ = G| (Istage_l, ¢) is the generated refinement.
» Stage-II Generator Loss:

L0 Z R o log Dy (G (Faget), 00)] + Akt - £

with the KL regularization again encouraging the conditioning distribution to remain close to
standard normal.

Training Alternation: For each stage, training proceeds by alternating updates between:

* The generator G;, which minimizes .Zé‘?tal

* The discriminator D;, which minimizes .%p,

* The CA module (through shared gradients with G;)

Stage-I and Stage-II are not trained jointly but in sequence. This modular strategy prevents
instability, improves sample fidelity, and mirrors a hierarchical refinement process—first capturing
scene layout, then enhancing texture and semantic alignment.

StackGAN'’s core contribution is not merely architectural, but conceptual. By recognizing that text-
to-image generation is inherently hierarchical, it introduced a modular, interpretable strategy that has
since become foundational. Many subsequent works—such as StackGAN++ [766], AttnGAN [715],
and DM-GAN [806]—build directly on its key innovations in conditioning augmentation, multi-
stage generation, and residual refinement.

StackGAN++ generalizes the two-stage approach of StackGAN into a more flexible and scalable
multi-branch architecture. Instead of just two stages, StackGAN++ supports an arbitrary number
of generators operating at increasing resolutions (e.g., 64 x 64, 128 x 128, 256 x 256), all trained
jointly in an end-to-end fashion. Unlike StackGAN, where the second stage generator is trained after
freezing the first, StackGAN++ employs shared latent features and hierarchical skip connections
across all branches—enabling simultaneous refinement of low-to-high resolution details. It also
removes explicit Conditioning Augmentation and instead integrates conditional information at each
scale using residual connections and shared text embeddings. This makes training more stable and
improves semantic alignment across resolutions. Additionally, each generator stage in StackGAN++
has its own dedicated discriminator, enabling finer gradient signals at every level of resolution.

These changes make StackGAN++ more robust to training instabilities and better suited to
modern high-resolution synthesis tasks. By enabling joint optimization across scales and conditioning
paths, it sets the stage for more sophisticated architectures like AttnGAN, which further introduces
word-level attention mechanisms to ground visual details in fine-grained linguistic tokens.

20.7 Enrichment 20.7: Conditional GANs: Label-Aware Image Synthesis 1151

Enrichment 20.7.6: VQ-GAN: Taming Transformers for High-Res Image Synthesis
Enrichment 20.7.6.1: VQ-GAN: Overview and Motivation

VQ-GAN [148] combines the efficient compressive abilities of Vector Quantized Variational Autoen-
coders (VQ-VAE) with the powerful generative capabilities of transformers. It introduces a hybrid
architecture where a convolutional autoencoder compresses images into spatially structured discrete
visual tokens, and a transformer models the distribution over these tokens to enable high-resolution
synthesis. Unlike VQ-VAE-2 [514], which uses hierarchical convolutional priors for modeling,
VQ-GAN incorporates adversarial and perceptual losses during training to enhance visual fidelity
and semantic richness in the learned codebook.

This section builds upon the foundation set by VQ-VAE-2 (§20.3.1) and now turns to a detailed ex-
amination of the VQ-GAN’s key innovations—beginning with its codebook structure and perceptual
training objectives. It is highly suggested to read the VQ-VAE2 part prior continuing if you haven’t
done so already.

The design of VQ-GAN addresses a core trade-off in image synthesis: transformers are well-
suited to modeling global, compositional structure but are computationally expensive when applied
directly to high-resolution pixel grids due to their quadratic scaling. In contrast, convolutional neural
networks (CNNs) are highly efficient in processing local image features—such as textures, edges,
and short-range patterns—because of their spatial locality and weight-sharing mechanisms. While
this practical strength is sometimes referred to as an inductive bias, the term itself is not precisely
defined; in this context, it reflects the empirical observation that CNNs excel at capturing local
correlations in natural images. However, they often fail to model long-range dependencies without
additional architectural support or stacking many layers one after the other, creating very deep and
computationally expensive architectures.

VQ-GAN bridges this gap by:

» Using a CNN-based encoder—decoder to transform images into discrete tokens arranged on a

spatial grid.

* Employing a transformer to model the autoregressive distribution over these tokens.

The result is a generator that is both efficient and expressive—capable of scaling to resolutions
like 256 x 256, 512 x 512, and beyond. This overall pipeline proceeds in two stages. First, a
convolutional encoder maps the image x € R7*%">3 into a low-resolution latent feature map 2 €
Rm*wxd Each feature vector 3; ; is then quantized to its nearest code zx € 2 = {z1,...,zx} from a
learned codebook 2 C RY. The decoder reconstructs the image £ = G(z4) from this quantized map
Z4- Unlike VQ-VAE, which minimizes pixel-level MSE, VQ-GAN uses a combination of perceptual
loss Zperc (measured between VGG features) and a patch-based adversarial loss .Zgan to enforce
both high-level semantic similarity and local realism. These losses enhance the codebook’s ability to
capture visually meaningful features.

Once the autoencoder and codebook are trained, they are frozen, and a transformer is trained on
the flattened sequence of codebook indices. The goal is to learn the joint distribution:

N
p(s) = HP(Si | s<i)

where s € {1,...,K}" is the raster-scanned sequence of codebook entries for an image. Training
proceeds via standard teacher-forced cross-entropy.

1162 Chapter 20. Lecture 20: Generative Models Il

At inference time, sampling is performed autoregressively one token at a time. To mitigate the
computational cost of modeling long sequences (e.g., 1024 tokens for 32 x 32 maps), VQ-GAN
adopts a sliding window self-attention mechanism during sampling, which limits the receptive field
at each generation step. This approximation enables tractable synthesis at high resolutions while
preserving global structure.

In summary, VQ-GAN decouples local perceptual representation from global autoregressive
modeling, yielding a scalable and semantically rich architecture for image generation. The full
generation pipeline can be interpreted in two training stages:

» Stage 1: Discrete Tokenization via VQ-GAN. An image is encoded into a grid of latent
vectors by a convolutional encoder. Each vector is quantized to its nearest neighbor in a learned
codebook. A CNN decoder reconstructs the image from these discrete tokens. The training
objective incorporates adversarial realism, perceptual similarity, and vector quantization
consistency.

» Stage 2: Autoregressive Modeling. A transformer is trained on token indices to model their
spatial dependencies. It learns to predict each token based on preceding ones, enabling both
unconditional and conditional sampling during generation.

This decoupling of local perceptual encoding from global generative modeling enables VQ-GAN

to achieve the best of both worlds: localized feature accuracy and long-range compositional control.

Transformer

I B r
-"I "Il tlrfr|r
} 4 »

=

pls) =1 plss

" B & 1
argmin, .z [|2 — 2|

-

quantization

Ezzer et al, “Taming Transformers for High-Resolution Image Synthesis”, VPR 2021

Justin Johnson Lecture 20- 117 March 30, 2022

Figure 20.47: Architecture of VQ-GAN. The convolutional encoder compresses input images
into discrete latent tokens using a learned codebook. The decoder reconstructs from tokens. A
transformer autoregressively models the token distribution for high-resolution synthesis. Image
adapted from [148].

Enrichment 20.7.6.2: Training Objectives and Losses in VQ-GAN

The training of VQ-GAN centers around a perceptually informed autoencoding task. The encoder
E maps an input image x € R¥*">3 to a latent map 2 = E(x) € R""*4_which is then quantized
toz, € Z "W by nearest-neighbor lookup from a codebook of learned prototypes. The decoder G
reconstructs the image £ = G(z,). While this process resembles the original VQ-VAE [460], the loss
function in VQ-GAN is significantly more expressive.

20.7 Enrichment 20.7: Conditional GANs: Label-Aware Image Synthesis 1153

Total Loss
The total objective used to train the encoder, decoder, and codebook jointly is:

L4Q-GAN = Aeec * Lrec + AGAN - -ZGAN + L0

where each term is detailed below, and Aec, Agan are hyperparameters (typically A = 1.0, Agan =
1.0).

1. Perceptual Reconstruction Loss ZLrec
Rather than minimizing pixel-wise MSE, VQ-GAN uses a perceptual loss based on deep feature
activations:
1 a2

o%ec = m ||(P](X) - (Pl(x)HZ
Here, ¢;(-) denotes the activation map of a pre-trained VGG network at layer /, and C;, H;, W, are its
dimensions. This encourages reconstructions that preserve semantic and texture-level similarity even
if pixel-level details vary, helping avoid the blurriness seen in VQ-VAE outputs.

2. Adversarial Patch Loss Zgan

To further enhance realism, VQ-GAN adds an adversarial loss using a multi-scale PatchGAN
discriminator D. This discriminator classifies local image patches as real or fake. The generator (i.e.,
encoder + quantizer + decoder) is trained with the hinge loss:

ZLoan = ~Es[D(R)] , ZGan = Ee[max(0,1+D(%))] +Ex[max(0, 1 - D(x))]

This formulation stabilizes adversarial training and ensures that reconstructions match the patch
statistics of real images.

3. Vector Quantization Commitment and Codebook Loss %yq
The standard VQ loss is used to train the codebook and encourage encoder outputs to commit to
discrete codes. Following [460], the loss is:

Lq = [[selEW)] — 2|3 +B - || E(x) - selzl|2

Codebook loss Commitment loss

where sg[-] is the stop-gradient operator, and 3 controls the strength of the commitment penalty
(typically B = 0.25).

Combined Optimization Strategy

During training, the encoder, decoder, and codebook are updated to minimize %y q.gan, While the
discriminator is trained adversarially via fé)AN. Optimization alternates between these two steps
using Adam with a 2:1 or 1:1 update ratio. The perceptual loss and discriminator feedback reinforce
each other: one encourages semantically faithful reconstructions, the other pushes the generator to
produce images indistinguishable from real data.

Why This Loss Works

The combination of perceptual and adversarial losses compensates for the main weaknesses of prior
methods. While VQ-VAE reconstructions are often blurry due to MSE, the perceptual loss helps
match high-level content, and adversarial feedback ensures photo-realistic textures. This makes the
quantized codebook entries more semantically meaningful, resulting in compressed representations
that are useful for downstream transformer modeling.

1154 Chapter 20. Lecture 20: Generative Models Il

Training Summary
VQ-GAN training proceeds in two stages:

1. Stage 1: Autoencoding. The encoder, decoder, codebook, and discriminator are trained jointly
using the perceptual, adversarial, and quantization losses. The model learns to represent images
as discrete token grids with high perceptual quality.

2. Stage 2: Transformer Language Modeling. The autoencoder is frozen, and a transformer is
trained on the flattened token sequences z, using standard cross-entropy loss for next-token
prediction.

This dual-stage training ensures that VQ-GAN not only compresses visual information effectively,
but also produces discrete codes that are highly suitable for transformer-based generation.

A central innovation in VQ-GAN lies in its use of a discrete latent space, where each spatial
location in the encoder output is assigned an index corresponding to a learned codebook entry. This
mechanism—first introduced in VQ-VAE [460]—forms the foundation for compressing images into
compact, semantically meaningful tokens suitable for transformer-based modeling.

Latent Grid and Codebook Structure

Let x € R*">3 denote an image. The encoder E transforms it into a continuous latent map

2= E(x) € R4 where each spatial position (i, j) corresponds to a d-dimensional vector. The

spatial resolution 4 X w is typically much smaller than H x W, e.g., 16 x 16 for 256 x 256 images.
This latent map is then quantized into a discrete tensor z, € 2 W using a codebook 2 = {e; €

RY|k=1,...,K} containing K learnable embeddings (e.g., K = 1024).

Nearest-Neighbor Quantization
For each location (i, j), the vector Z; ; € R? is replaced by its closest codebook entry:

2
2

24(i,j) = ex where k= argn}gn Hii.,j — ey

This lookup converts the continuous feature map into a grid of discrete embeddings, each pointing to
one of the K learned codebook vectors.

Gradient Flow via Stop-Gradient and Codebook Updates

Because the argmin operation is non-differentiable, VQ-GAN uses the same trick as VQ-VAE: it
copies the selected embedding e into the forward pass and blocks gradients from flowing into the
encoder during backpropagation. Formally, the quantized output is written as:

zq = sg(ex) + (2 —sg(2))

where sg(-) denotes the stop-gradient operator.

To update the codebook entries {e}, the gradient is backpropagated from the reconstruction
loss to the selected embeddings. This allows the codebook to adapt over time based on usage and
reconstruction feedback.

20.7 Enrichment 20.7: Conditional GANs: Label-Aware Image Synthesis 1155

Codebook Capacity and Token Usage

The number of entries K in the codebook is a key hyperparameter. A small K leads to coarse
quantization (less expressiveness), while a large K may overfit or lead to infrequent usage of some
codes. VQ-GAN monitors token usage statistics during training to ensure that all codes are being
used (via an exponential moving average of codebook assignments). This avoids codebook collapse.

Spatial Token Grid as Transformer Input

After quantization, the grid z, € R/>wxd s flattened into a sequence of token indices {ki,...,kp,} €
{1,...,K}"™, forming the input for the transformer. The transformer learns to model the autoregres-
sive distribution over this sequence:

hw
plki,... ko) =[] Pk [K1, ki)

t=1

These discrete tokens serve as the vocabulary of the transformer, analogous to word tokens in natural
language processing.

Comparison to VQ-VAE-2

Unlike VQ-VAE-2, which uses multiple hierarchical codebooks to represent coarse-to-fine visual
features, VQ-GAN uses a single spatially aligned codebook and compensates for the lack of hierarchy
by injecting a stronger perceptual and adversarial training signal. This results in tokens that are
rich in local structure and semantically coherent, making them more suitable for transformer-based
modeling.

Summary

The quantization mechanism in VQ-GAN compresses an image into a spatial grid of discrete tokens
drawn from a learned embedding table. This enables efficient transformer training by decoupling
high-resolution pixel processing from global token modeling. The next section explains how the
transformer is trained on these token sequences to generate new images.

Once the VQ-GAN encoder and decoder are trained and the discrete codebook is stabilized, the
model proceeds to its second stage: learning a generative model over token sequences. Rather than
modeling images at the pixel level, this stage focuses on learning the probability distribution of the
codebook indices that describe compressed image representations.

Token Sequence Construction

After quantization, the encoder yields a spatial grid of token indices z, € {1,...,K MW To apply
sequence modeling, this 2D array is flattened into a 1D sequence k = [ky,...,ky]|, where N = h- w.
Typically, this flattening is performed in row-major order, preserving local spatial adjacency as much
as possible.

Autoregressive Training Objective
A transformer decoder is trained to predict the next token given all previous ones. The learning
objective is to maximize the log-likelihood of the true sequence:

N
fAR = —Zlng(kt ’kl,...,ktfl)
t=1

1156 Chapter 20. Lecture 20: Generative Models Il

This objective is optimized using teacher forcing and standard cross-entropy loss. During training,
the model is exposed to full sequences (obtained from the pretrained encoder) and learns to predict
the next index at each position.

Positional Encoding and Embedding Table

To preserve spatial context in the flattened sequence, each token is augmented with a positional
encoding. This encoding PE(¢) € R is added to the learned embedding ¢;,, yielding the input to the
transformer:

Xt = €k, +PE(t)

The transformer layers then process this sequence via multi-head self-attention and feed-forward
blocks.

Sampling for Image Generation
At inference time, the transformer generates a new image by sampling from the learned token
distribution:

1. Initialize with a special start token or random first token.
2. Fort =1to N, sample:

ke ~ p(ki | kiy.o k1)

3. After all tokens are generated, reshape the sequence into a grid z, € R look up their
embeddings from the codebook, and decode using the frozen VQ-GAN decoder.

Windowed Aftention for Long Sequences

Modeling large images requires long token sequences (e.g., 32 x 32 = 1024 tokens for 256 x 256
images). This creates a memory bottleneck for standard transformers due to the quadratic cost of
self-attention. To address this, VQ-GAN adopts a sliding window or local attention mechanism:
the transformer only attends to a fixed-size neighborhood of preceding tokens when predicting the
next one. This approximation reduces computational complexity while preserving local coherence.

Comparison with Pixel-Level Modeling
Unlike models that operate directly on pixels (e.g., PixeICNN or autoregressive GANs), this token-
based approach offers:
* Lower sequence length: Tokens are downsampled representations, so fewer steps are needed.
* Higher abstraction: Each token represents a meaningful visual chunk (e.g., a part of an
object), not just an individual pixel.
* Improved generalization: The transformer learns compositional rules over high-level image
structure, rather than low-level noise.

Transformer Variants: Decoder-Only and Encoder-Decoder
The VQ-GAN framework employs different types of transformer architectures depending on the
downstream task—ranging from autoregressive image generation to conditional image synthesis
from natural language. The two primary transformer types are:
* Decoder-only (GPT-style) Transformers: For unconditional and class-conditional image
generation, VQ-GAN uses a causal decoder transformer inspired by GPT-2 [496]. This

20.7 Enrichment 20.7: Conditional GANs: Label-Aware Image Synthesis 1157

architecture models the token sequence left-to-right, predicting each token conditioned on the
preceding tokens 1,...k. It consists of stacked self-attention blocks with masked attention to
preserve causality. The output is a probability distribution over codebook indices for the next
token, enabling sequence generation via sampling. This design supports:
— Unconditional generation from a start-of-sequence token
— Class-conditional generation by appending a class token or embedding
* Encoder-Decoder Transformers (Text-to-Image): For conditional generation from textual
descriptions, the authors adopt a full Transformer encoder—decoder architecture—popularized
by models like TS5 [501] and BART [324]. Here, the encoder processes a sequence of text
tokens (from a caption), typically encoded via pretrained embeddings (e.g., CLIP or BERT).
The decoder then autoregressively generates image token sequences conditioned on the encoder
output. This setup allows for:
— Cross-modal alignment between text and image
— Rich semantic guidance at every generation step
— Enhanced sample quality and relevance in text-to-image tasks
In both cases, the transformer operates over a compressed latent space of visual tokens, not pixels.
This architectural choice drastically reduces sequence length (e.g., 16 x 16 = 256 16x16=256 tokens
for 256 x 256 256x256 images), enabling efficient training while preserving global structure.
The authors also explore sliding-window attention during inference to reduce quadratic attention
costs for long token sequences. This allows the model to scale beyond 256x256 resolution while
maintaining tractability.

Training Setup

All transformer variants are trained after the VQ-GAN encoder and decoder are frozen. The
transformer is optimized using standard cross-entropy loss over codebook indices and trained to
minimize next-token prediction error. This decoupling of training stages avoids instability and allows
plug-and-play use of any transformer model atop a trained VQ-GAN tokenizer.

Summary

The transformer in VQ-GAN learns an autoregressive model over discrete image tokens produced by
the encoder and codebook. Its outputs—sequences of token indices—are used to synthesize novel
images by decoding through the frozen decoder. In the next subsection, we explore the sampling
process in detail and the role of quantization grid size in the fidelity and flexibility of the model.

Once a transformer has been trained to model the distribution over token sequences, we can generate
new images by sampling from this model. This process involves autoregressively generating a
sequence of discrete token indices, reshaping them into a spatial grid, and then decoding them
through the frozen decoder network.

11568 Chapter 20. Lecture 20: Generative Models Il

Autoregressive Sampling Pipeline
At inference time, generation proceeds as follows:

1. Start from a special start token or a randomly selected token index.
2. For each timestep ¢ € {1,...,N}, sample the next token index from the model’s predicted
distribution:

kf Np(kl‘ ’ klv"'7kf—1)

3. After all N = h - w tokens have been generated, reshape the sequence back to a 2D spatial grid.
4. Look up each token’s codebook embedding and pass the resulting tensor through the decoder
to obtain the final image.

This sampling process is computationally expensive, as each new token depends on all previously
generated tokens. For longer sequences (e.g., 32 x 32 = 1024 tokens), decoding can be slow,
especially without optimized parallel inference.

Impact of Latent Grid Resolution

The spatial resolution of the latent token grid z, € R>" is determined by the encoder’s downsampling
factor. For instance, with a 4 x downsampling per spatial dimension, a 256 x 256 image is compressed
into a 64 x 64 token grid. Larger & x w grids provide finer granularity but also lead to longer token
sequences for the transformer to model.

There is a trade-off here:

* Higher spatial resolution allows for more detailed reconstructions, especially at high image

resolutions.

* Lower spatial resolution results in faster training and sampling but may lead to coarser

images.

The authors of VQ-GAN found that using a 16 x 16 token grid worked well for 256 x 256
images, balancing model efficiency and output quality. However, when working with higher-
resolution images, grid size becomes a bottleneck: the more aggressively the encoder downsamples,
the more difficult it becomes to preserve fine spatial detail. On the other hand, increasing token
count burdens the transformer with longer sequences and higher memory demands.

Sliding Window Attention (Optional Variant)

To scale to longer sequences without quadratic memory costs, VQ-GAN optionally uses a sliding
window attention mechanism. Rather than attending to all previous tokens, each position attends
only to a fixed-size window of previous tokens (e.g., the last 256). This approximation significantly
reduces memory requirements while preserving local consistency during generation.

Summary

Sampling in VQ-GAN is a two-stage process: a transformer generates a sequence of codebook
indices that are then decoded into an image. The grid resolution of the quantized latent space
plays a critical role in the visual fidelity of outputs and the computational feasibility of training.
While smaller grids reduce complexity, larger grids improve detail—highlighting the importance of
choosing an appropriate balance for the task at hand.

20.7 Enrichment 20.7: Conditional GANs: Label-Aware Image Synthesis 1159

VQ-GAN [148] represents a pivotal step in the evolution of generative models by bridging the
efficiency of discrete latent modeling with the expressive power of transformers. Its design merges
the local inductive strengths of convolutional encoders and decoders with global autoregressive
modeling in latent space, enabling synthesis of high-resolution and semantically coherent images.
The key ingredients of this system include:
* A convolutional autoencoder with vector quantization to compress high-dimensional images
into discrete token grids.
* A codebook trained using perceptual and adversarial losses to produce reconstructions that
are sharp and semantically rich.
* An autoregressive transformer that learns to model spatial dependencies among tokens in
the latent space, enabling sample generation and manipulation.

Why VQ-GAN Works
By introducing adversarial and perceptual supervision into the training of the autoencoder, VQ-GAN
overcomes a major limitation of previous models like VQ-VAE and VQ-VAE-2: the tendency toward
blurry or oversmoothed reconstructions. The perceptual loss aligns high-level features between
generated and ground-truth images, while the patch-based adversarial loss encourages fine detail,
particularly texture and edges. Meanwhile, transformers provide a mechanism for globally coherent
synthesis by modeling long-range dependencies among latent tokens.

This decoupling of low-level reconstruction and high-level compositionality makes VQ-GAN
not only effective but modular. The decoder and transformer can be trained separately, and the
codebook can serve as a compact representation for a wide range of downstream tasks.

Future Directions and Influence
The modular, tokenized view of image generation introduced by VQ-GAN has had wide-reaching
consequences in the field of generative modeling:

* It laid the foundation for powerful text-to-image models like DALLE [509] and followup
versions of it, which leverage learned discrete tokens over visual content as a bridge to
language.

* The taming-transformers framework became a baseline for generative pretraining and fine-
tuning, influencing both the latent diffusion models (LDMs) [531] and modern image editing
applications like Stable Diffusion.

* Its discrete latent representation also enabled efficient semantic image manipulation, in-
painting, and zero-shot transfer by training lightweight models directly in token space.

In conclusion, VQ-GAN exemplifies how a principled integration of discrete representation
learning, adversarial training, and autoregressive modeling can lead to scalable, controllable, and
high-fidelity generation. It forms a crucial bridge between convolutional perception and tokenized
generative reasoning, and it remains a foundational method in modern generative visual pipelines.

1160 Chapter 20. Lecture 20: Generative Models Il

In addition to general-purpose GANSs and high-resolution synthesis frameworks, many architectures
have been proposed to address specific structured generation tasks—ranging from super-resolution
and paired image translation to semantic layout synthesis and motion trajectory forecasting. These
models extend adversarial learning to incorporate spatial, semantic, and temporal constraints, often
introducing novel conditioning mechanisms, domain priors, and loss formulations.

We begin with seminal architectures such as SRGAN [317] for perceptual super-resolution,

pix2pix [255] and CycleGAN [805] for paired and unpaired image translation, SPADE [470]
for semantic-to-image generation via spatially-adaptive normalization, and Social GAN [198] for
trajectory prediction in dynamic social environments. These models exemplify how GANs can be
tailored to specific applications by redesigning generator—discriminator objectives and conditioning
pipelines.
If further exploring recent innovations is of interest, we also recommend reviewing cutting-edge
hybrid architectures such as GauGAN2, which fuses semantic maps with text prompts for fine-grained
control over scene layout and appearance, and Diffusion-GAN hybrids [313], which combine score-
based denoising processes with adversarial training for enhanced realism and robustness. These
models reflect emerging trends in generative modeling—blending expressive priors, multimodal
conditioning, and stable learning strategies across increasingly complex synthesis domains.

We now proceed to analyze the foundational task-specific GANSs in greater depth, each marking a
significant step forward in aligning generative modeling with real-world objectives.

SRGAN [317] introduced the first GAN-based framework for perceptual single-image super-
resolution, achieving photo-realistic results at 4 x upscaling. Rather than optimizing conventional
pixel-level losses such as Mean Squared Error (MSE), which are known to favor high PSNR but
overly smooth outputs, SRGAN proposes a perceptual training objective that aligns better with
human visual preferences. This objective combines adversarial realism with deep feature similarity
extracted from a pre-trained classification network (VGG16).

Motivation and Limitations of Pixel-Wise Supervision

Pixel-based metrics such as MSE or L2 loss tend to produce blurry reconstructions, particularly at
large upscaling factors (e.g., 4 X), because they penalize even slight misalignments in fine details. If
multiple plausible high-resolution reconstructions exist for a single low-resolution input, the network
trained with MSE will learn to output the average of those possibilities—resulting in smooth textures
and a loss of perceptual sharpness.

While pixel-wise accuracy is mathematically well-defined, it does not always reflect visual
fidelity. To address this, SRGAN replaces the MSE loss with a perceptual loss that compares images
in a feature space defined by deep activations of a pre-trained VGG16 network. These intermediate
features reflect higher-level abstractions (edges, textures, object parts), which are more aligned with
how humans perceive image realism.

Why Use VGG-Based Perceptual Loss?
The VGG-based content loss compares the reconstructed image Isg and the ground truth image Iyg
not at the pixel level, but in the feature space of a neural network trained for image classification.

20.8 Enrichment 20.8: Additional Important GAN Works 1161

Concretely, if ¢; ;(-) represents the activations at the (i, j)-th layer of VGG16, then the perceptual
loss is defined as:

1 N
GG = ﬁ XZ; H‘PL/(IHR)W - ‘Phj(ISR)x,yHi

This loss better preserves fine-grained textures and edges, as it penalizes semantic-level mismatches.
Although this approach sacrifices raw PSNR scores, it substantially improves perceptual quality.

Architecture Overview
The SRGAN generator is a deep convolutional network consisting of:

* An initial 9 x 9 convolution followed by Parametric ReLU (PReLU).

* 16 residual blocks, each comprising two 3 x 3 convolutions with PReLLU and skip connections.

* A global skip connection from the input to the output of the residual stack.

* Two sub-pixel convolution blocks (pixel shuffling [564]) to increase spatial resolution by a
factor of 4 in total. Each block first applies a learned convolution that expands the number of
channels by a factor of 2, where r is the upscaling factor. Then, the resulting feature map is
rearranged using a pixel shuffle operation that reorganizes the channels into spatial dimensions.
This process allows efficient and learnable upsampling while avoiding checkerboard artifacts
commonly associated with transposed convolutions. The rearrangement step transforms a
tensor of shape H x W x (r*-C) into (rH) x (rW) x C, effectively increasing image resolution
without introducing new spatial operations.

* A final 9 X 9 convolution with Tanh activation to produce the RGB image.

Skip connections are critical to the generator’s stability and learning efficiency. They allow
the network to propagate low-frequency structure (e.g., colors, global layout) directly from the
input to the output, enabling the residual blocks to focus solely on learning high-frequency textures
and refinements. This decomposition aligns well with the structure-versus-detail duality in image
synthesis.

Upsampling Strategy: Sub-Pixel Convolution Blocks

A core challenge in super-resolution is learning how to upscale low-resolution inputs into high-
resolution outputs while preserving structural integrity and synthesizing high-frequency texture. Tra-
ditional interpolation methods such as nearest-neighbor, bilinear, or bicubic are non-parametric—they
ignore image content and apply fixed heuristics, often producing smooth but unrealistic textures.
Learnable alternatives like transposed convolutions introduce adaptive filters but are known to suffer
from checkerboard artifacts due to uneven kernel overlap and gradient instability.

To address these limitations, SRGAN employs sub-pixel convolution blocks, first introduced
in ESPCN [564]. Rather than directly increasing spatial resolution, the network instead increases
the channel dimension of intermediate features. Specifically, given a desired upscaling factor r, the
model outputs a tensor of shape H x W x (C-r?). This tensor is then passed through a deterministic
rearrangement operation called the pixel shuffle, which converts it to a higher-resolution tensor of
shape rH x rW x C. This process can be visualized as splitting the interleaved channels into spatial
neighborhoods—each group of 7 channels at a given location forms a distinct r x r patch in the
upsampled output.

Formally, for a given low-resolution feature map F € RF*Wx(Cr !)

rearranges it into ' € R™#>WxC yig:

, the pixel shuffle operation

F(r-i+a,r-j+b,c)=F(i,j,c-r’+a-r+b)

1162 Chapter 20. Lecture 20: Generative Models Il

forie [0,H—1],j€[0,W —1],a,b € [0,r—1],c € [0,C— 1]. This operation is non-parametric and
fully differentiable.

This upsampling strategy provides several key benefits:
* It keeps most computation in the low-resolution domain, improving speed and memory
efficiency.
» Unlike transposed convolutions, it avoids overlapping kernels, which reduces aliasing and
checkerboard artifacts.
* Because the convolution preceding the pixel shuffle is learned, the network can generate
content-aware and semantically rich upsampling filters.

However, sub-pixel convolution is not without drawbacks. The hard-coded spatial rearrangement
makes it less flexible for modeling long-range spatial dependencies, which must be learned indirectly
by preceding convolutional layers.

This mechanism is now widely adopted in modern super-resolution networks, where it strikes an
effective balance between learnability, visual quality, and computational efficiency.

Discriminator Design
The discriminator is a VGG-style fully convolutional network that:
» Applies a sequence of 3 x 3 convolutions with increasing numbers of filters.
* Reduces spatial resolution using strided convolutions (no max pooling).
* Uses LeakyReL.U activations and BatchNorm.
* Ends with two dense layers and a final sigmoid activation to classify images as real or fake.

Generator Network B residual blocks
L
konG4s1 | kanBds1 k3nbds1 ' kang4s1 k3n256s1 kan3s1

|- e

Discriminator Network kan128s2 kan256s2 kans12s2
KinBds1 k3nbds2 kan128s1 Kan256s1 kans12s1

o
o
z
i
[

Pi

skip connection

Leaky RelU
Dense (1024}

 LeakyRelU

Figure 20.48: SRGAN architecture. Top: generator network with deep residual blocks and sub-pixel
upsampling layers. Bottom: discriminator composed of convolutional blocks with increasing channel
width and spatial downsampling. Figure adapted from [317].

Together, the generator and discriminator are trained in an adversarial framework, where the discrim-
inator learns to distinguish between real and super-resolved images, and the generator learns to fool
the discriminator while also minimizing perceptual content loss.

20.8 Enrichment 20.8: Additional Important GAN Works 1163

Image Super-Resolution: Low-Res to High-Res

bicubic SRResNet SRGAN original
(21.59dB/0.6423) (21.15dB/0.6868)

=

Figure 20.49: Comparison of reconstruction results for 4 x super-resolution: bicubic, SRResNet
(optimized for MSE), SRGAN (optimized for perceptual loss), and ground-truth. Despite lower
PSNR, SRGAN achieves significantly better perceptual quality. Image adapted from [317].

In summary, SRGAN’s perceptual training framework—rooted in feature-level losses and adversarial
feedback—transformed the super-resolution landscape. It shifted the focus from purely quantitative
fidelity (e.g., PSNR) to perceptual realism, influencing numerous follow-up works in both restoration
and generation.

Perceptual Loss Function
Let ¢; ;(-) denote the feature maps extracted from the (i, j)-th layer of the pretrained VGG19 network.
The total perceptual loss used to train SRGAN is:

1 A A
Ziw = g7 R 1900} = 00)i -+ Zlog Dl

Adversarial Loss

Content Loss (VGG Feature Matching)

where A = 103 balances the two terms.

Training Strategy

* Phase 1: Pretrain the generator G as a ResNet (SRResNet) with MSE loss to produce strong
initial reconstructions.

* Phase 2: Jointly train G and the discriminator D using the perceptual loss above.

* Generator uses ParametricReLU activations and sub-pixel convolutions [564] for efficient
upscaling.

* Discriminator architecture follows DCGAN [495] conventions: LeakyReLU activations,
strided convolutions, and no max pooling.

Quantitative and Perceptual Results

Despite having lower PSNR than SRResNet, SRGAN consistently achieves higher Mean Opinion
Scores (MOS) in human evaluations, indicating more photo-realistic outputs. Tested in experiments
on datasets like Set5, Set14, and BSD100.

1164 Chapter 20. Lecture 20: Generative Models Il

Enrichment 20.8.2: pix2pix: Paired Image-to-Image Translation with cGANs

Motivation and Formulation

The pix2pix framework [255] addresses a family of image-to-image translation problems where we
are given paired training data {(x;,y;)}, with the goal of learning a mapping G : x — y from input
images x (e.g., segmentation masks, sketches, grayscale images) to output images y (e.g., photos,
maps, colored images).

While fully convolutional neural networks (CNNs) can be trained to minimize an L2 or L1
loss between the generated output and the ground truth, such approaches tend to produce blurry
results. This is because the pixel-wise losses average over all plausible outputs, failing to capture
high-frequency structure or visual realism.

Instead of hand-designing task-specific loss functions, the authors propose using a conditional
GAN (cGAN) objective. The discriminator D is trained to distinguish between real pairs (x,y) and
fake pairs (x, G(x)), while the generator G learns to fool the discriminator. This adversarial training
strategy encourages the generator to produce outputs that are not just pixel-wise accurate, but also
indistinguishable from real images in terms of texture, edges, and fine details.

Image-to-Image Translation: Pix2Pix

Labels 1o Streat Scene Labels o Facada BW to Calor
i R —|

Edges to Photo

"l

Figure 20.50: pix2pix image-to-image translation results on various tasks using paired datasets: (left
to right) labels to street scene, aerial photo to map, labels to facade, sketch to photo, and day to night.
All results use the same underlying model. Image adapted from [255].

inpul

sola et al, "

This general-purpose approach enables the same model and training procedure to be applied
across a wide range of problems—without modifying the loss function or architecture—highlighting
the power of adversarial learning to implicitly learn appropriate loss functions that enforce realism.

20.8 Enrichment 20.8: Additional Important GAN Works 1165

Generator Architecture: U-Net with Skip Connections

The pix2pix generator adopts a U-Net-style encoder—decoder architecture tailored for structured
image-to-image translation. Its goal is to transform a structured input image x (such as an edge
map, semantic label mask, or sketch) into a realistic output y, preserving both spatial coherence and
semantic fidelity.

A common failure mode of vanilla encoder-decoder CNNss is their tendency to blur or oversmooth
outputs. This is because spatial resolution is reduced during encoding, and then the decoder must
regenerate fine details from heavily compressed features—often losing important low-level cues
such as edges and textures.

To overcome this, pix2pix integrates skip connections that link each encoder layer to its
corresponding decoder layer. This structure is inspired by the U-Net architecture originally designed
for biomedical segmentation tasks (see 15.6). The idea is to concatenate feature maps from early
encoder layers (which contain high-frequency, low-level spatial information) directly into the decoder
pathway, providing detailed cues that help the generator synthesize accurate textures, contours, and
spatial alignment.

While the architecture is based on U-Net, pix2pix introduces several important differences:

* The generator is trained adversarially as part of a conditional GAN setup, rather than with a

pixel-wise classification or regression loss.

* The input—output pairs often differ semantically (e.g., segmentation maps vs. RGB images),

requiring stronger representational flexibility.

* Noise is not injected through a latent vector z; instead, pix2pix introduces stochasticity via

dropout layers applied at both training and inference time.

This design allows the generator to be both expressive and detail-preserving, making it well-
suited for translation tasks where structural alignment between input and output is critical.

The Role of L1 Loss
In addition to the adversarial objective, pix2pix uses a pixel-wise L1 loss between the generated
image G(x) and the ground truth image y. Formally, this term is:

Z11(G) = Exy [lly = G()|1]

This loss encourages the generator to output images that are structurally aligned with the target and
reduces the risk of mode collapse. The authors argue that L1 is preferable to L2 (mean squared error)
because it encourages less blurring. While L2 loss disproportionately penalizes large errors and
promotes averaging over plausible solutions (leading to overly smooth results), L1 penalizes errors
linearly and retains sharper detail.

The addition of L1 loss provides a simple yet powerful inductive constraint: while the adversarial
loss encourages outputs to “look real,” the L1 loss ensures they are aligned with the target. This
combination was shown to reduce blurring substantially and is critical for tasks where pixel-level
structure matters.

Why Not WGAN or WGAN-GP?

While more theoretically grounded adversarial objectives—such as the Wasserstein GAN [14] or
WGAN-GP [194]—had already been introduced by the time of pix2pix’s publication, the authors
found these alternatives to underperform empirically in their setting.

1166 Chapter 20. Lecture 20: Generative Models Il

Specifically, they observed that standard GAN training with a conditional discriminator resulted
in sharper edges and more stable convergence across a range of datasets. Therefore, pix2pix adopts
the original GAN loss [180], modified for the conditional setting (described in detail in a later
section).

Discriminator Design and Patch-Level Realism (PatchGAN)

In pix2pix, the discriminator is designed to operate at the level of local patches rather than entire
images. This design—known as the PatchGAN discriminator—focuses on classifying whether
each local region of the output image y is realistic and consistent with the corresponding region in the
input x. Instead of outputting a single scalar value, the discriminator produces a grid of probabilities,
one per patch, effectively modeling image realism as a Markov random field.

Architecture: The PatchGAN discriminator is a fully convolutional network that receives as input
the concatenation of the input image x and the output image y (either real or generated), stacked
along the channel dimension. This stacked tensor [x,y] € R¥ *Wx(G:+G) is then processed by a series
of convolutional layers with stride 2, producing a downsampled feature map of shape N x N, where
each value lies in [0, 1]. Each scalar in this output grid corresponds to a specific receptive field (e.g.,
70 x 70 pixels in the input image) and reflects the discriminator’s estimate of the realness of that
patch—i.e., whether that patch of y, given x, looks realistic and properly aligned.
What the Discriminator Learns: Importantly, the patches that are judged “real” or “fake” come
from the output image y, not the input x. The conditioning on x allows the discriminator to assess
whether each region of y is not only photorealistic but also semantically consistent with the structure
of x. This conditioning mechanism is crucial in tasks such as label-to-image translation, where the
spatial alignment of objects is important.
Benefits: The PatchGAN discriminator has several advantages:

* It generalizes across image sizes since it is fully convolutional.

* It promotes high-frequency correctness, which encourages the generator to focus on local

realism such as textures and edges.

Thus, rather than making a holistic judgment over the entire image, the discriminator acts as a texture
and detail critic, applied densely across the image surface.

Objective: The discriminator in pix2pix is trained using the original GAN objective [180], adapted
to the conditional setting. The discriminator D receives both the input image x and the output
image—either the real y ~ pgan(y | x) or the generated output G(x). The discriminator is fully
convolutional and produces a spatial grid of predictions rather than a single scalar, making it a
PatchGAN.

Each element in the discriminator’s output grid corresponds to a local patch (e.g., 70 x 70 pixels)
in the image, and represents the discriminator’s estimate of whether that patch is “real” or “fake,”
conditioned on x. The overall discriminator loss is averaged across this grid:

DE/ﬂD = IEx,y [logD(x,y)] + IE}c [IOg(l - D(xa G(X)))]
Likewise, the adversarial component of the generator’s objective is:
L5 = Ex [log(1 - D(x,G(x)))]

Since the outputs of D are now grids of probabilities (one per receptive field region), the log terms
are applied elementwise and the expectation denotes averaging across the training batch and spatial
positions. In implementation, this is usually done using a mean over the entire N x N output map.

20.8 Enrichment 20.8: Additional Important GAN Works 1167

Benefits of Patch-Based Discrimination:
* Reduced complexity: PatchGAN has fewer parameters and is easier to train than a global
discriminator.
* High-frequency sensitivity: It is particularly good at enforcing local texture realism and
preserving fine-grained detail.
* Fully convolutional: Since the model operates locally, it can be seamlessly applied to images
of varying resolution at test time.

In the pix2pix paper, a 70 x 70 receptive field is used, referred to as the 70-PatchGAN, which
balances context and texture fidelity. Smaller receptive fields may ignore global structure, while
larger fields increase training difficulty and instability.

Having established the adversarial loss, we now examine the L1 reconstruction loss, which com-
plements the discriminator by promoting spatial alignment and reducing blurriness in the generator
output. Let me know when you’re ready to continue.

Generator Loss: Combining Adversarial and Reconstfruction Objectives
While adversarial training encourages realism in the generated outputs, it does not ensure that
the output matches the expected ground truth y in structured tasks such as semantic segmentation
or image-to-image translation. For example, without additional supervision, the generator could
produce an image that looks realistic but fails to reflect the precise layout or identity present in the
input x.

To address this, pix2pix adds an L1 loss between the generated output G(x) and the target image
y. The full generator loss becomes:

Lo=L2+ A A

with 2 =Eey[[ly— G(x)l1]

Here, A is a hyperparameter (typically set to A = 100) that balances the trade-off between fidelity
to the ground truth and perceptual realism. The L1 loss is preferred over L2 (MSE) because it
produces less blurring—a crucial feature for preserving edges and structural alignment.

This combined objective offers the best of both worlds:
* The adversarial loss encourages outputs that reside on the manifold of natural images.
* The L1 loss ensures spatial and semantic coherence between the prediction and the actual
output.
The final optimization problem for the generator is:

G" =arg mén max Z6an(G, D)+ A - £.1(G)
where .Z.gan denotes the conditional GAN loss using the PatchGAN discriminator:
2:6AN(G, D) = Eyy [log D(x,y)] + E, [log(1 — D(x, G(x)))]

Together, this objective promotes outputs that are not only indistinguishable from real images but
also tightly aligned with the conditional input. The addition of L1 loss proved essential for stabilizing
training, especially early in optimization when adversarial feedback is still weak or noisy.

We now conclude this overview of pix2pix with a summary of the use cases and real-world applica-
tions from the original paper.

1168 Chapter 20. Lecture 20: Generative Models Il

Enrichment 20.8.2.4: Summary and Generalization Across Tasks

The core insight of pix2pix [255] is that many structured prediction tasks in computer vision—such
as semantic segmentation, edge-to-photo conversion, and sketch-to-image generation—can be unified
under the framework of conditional image translation. Rather than hand-designing task-specific loss
functions, the GAN-based strategy learns a loss function implicitly through the discriminator, trained
to judge how well an output image matches the target distribution given the input.

This conditional GAN setup—combined with a strong L1 reconstruction prior and a Patch-
GAN discriminator—proved surprisingly effective across a wide variety of domains. Figure 20.50
showcases representative examples from the original paper across multiple datasets and tasks.
Importantly, the pix2pix framework assumes access to paired training data—i.e., aligned in-
put-output image pairs (x,y). In practice, however, such datasets are often expensive or infeasible
to collect. For instance, we might have access to photos of horses and zebras, but no one-to-one
mapping between them.

This limitation motivated a follow-up line of research into unpaired image-to-image translation,
where models learn to transfer style, texture, or semantics between two domains without explicitly
aligned data. The seminal work in this space is CycleGAN [805], which we explore next. It
introduces a cycle-consistency loss that allows training without paired examples, opening the door to
powerful translation tasks such as horse-to-zebra, summer-to-winter, and Monet-to-photo.

Enrichment 20.8.3: CycleGAN: Unpaired Image-to-Image Translation

Enrichment 20.8.3.1: Motivation: Beyond Paired Supervision in Image Translation

While pix2pix (see 20.8.2) demonstrated the power of conditional GANSs for paired image-to-image
translation, its applicability is fundamentally limited by the need for aligned training pairs (x,y)—that
is, input images and their exact corresponding target images. In many practical domains, such as
translating between artistic styles, seasons, or weather conditions, paired data is either unavailable or
prohibitively expensive to collect.

Paired Unpaired

Y
..."!’._:

Figure 20.51: Paired vs. Unpaired Training Data. Left: Paired setting — each source image x; € X
is matched with a corresponding target image y; € Y, providing explicit supervision for translation.
Right: Unpaired setting — source set {x;} , and target set {y J}ZJ"I: | are given independently, with
no direct correspondence between x; and y;. Figure adapted from [805].

20.8 Enrichment 20.8: Additional Important GAN Works 1169

CycleGAN [805] tackles this challenge by proposing an unsupervised framework that learns
mappings between two visual domains X and Y using only unpaired collections of images from each
domain. The central question becomes: How can we learn a function G : X — Y when no direct
correspondences exist?

Key Insight: Cycle Consistency

At the heart of CycleGAN is the cycle consistency constraint, a principle that enables learning
from unpaired datasets. The system consists of two generators: G : X — Y, which maps images
from domain X to domain Y, and F : Y — X, which learns the reverse mapping.

The intuition is that if we start with an image x from domain X, translate it to Y via G, and
then map it back to X via F, the reconstructed image F (G(x)) should closely resemble the original
x. Likewise, for any y € Y, G(F(y)) ~ y. This cycle consistency enforces that neither mapping
is allowed to lose or invent too much information: the transformations should be approximately
invertible and content-preserving.

Why does this help with unpaired data? Without paired supervision, there are infinitely many
functions that can map the distribution of X to Y in a way that fools a GAN discriminator. However,
most such mappings would destroy the underlying content, yielding images that are realistic in
appearance but semantically meaningless. By explicitly requiring F(G(x)) ~ x and G(F(y)) ~ y,
CycleGAN dramatically restricts the space of possible solutions.

The network learns to transfer style while keeping the essential structure or identity intact,
making unsupervised image-to-image translation feasible.

Enrichment 20.8.3.2: Typical Use Cases

CycleGAN’s framework has been widely adopted in domains where paired data is scarce or unavail-
able, including:

* Artistic style transfer (e.g., photographs <+ Monet or Van Gogh paintings)

* Season or weather translation (e.g., summer <+ winter, day <> night)

* Object transfiguration (e.g., horse <+ zebra, apple <> orange)

Unpaired Image-to-Image Translation: CycleGAN

Monet 5 Photos

Fhitogrsah

Thuctal, "Un

Figure 20.52: Unpaired image-to-image translation with CycleGAN. The model learns bidirectional
mappings between domains without access to paired examples, enabling high-quality translation in
applications. Image adapted from [805].

1170 Chapter 20. Lecture 20: Generative Models Il

Caution: Although CycleGAN and similar generative methods have attracted attention in medical
imaging (e.g., MRI > CT translation), their use in this context is highly controversial and potentially
dangerous. There is growing evidence in the literature and community commentaries that generative
models can hallucinate critical features—such as tumors or lesions—that do not exist in the real
patient scan, or fail to preserve vital diagnostic information. Thus, care must be taken to avoid
uncritical or clinical use of unpaired translation networks in safety-critical domains; for further
discussion, see [110, 736].

This motivation sets the stage for the architectural design and learning objectives of CycleGAN,
which we discuss next.

Enrichment 20.8.3.3: CycleGAN Architecture: Dual Generators and Discriminators

CycleGAN consists of two generators and two discriminators:

* Generator G : X — Y: Translates an image from domain X (e.g., horse) to domain Y (e.g.,

zebra).

* Generator F : Y — X: Translates an image from domain Y back to domain X.

* Discriminator Dy: Distinguishes between real images y in domain Y and generated images

G(x).
* Discriminator Dy: Distinguishes between real images x in domain X and generated images
F(y).

Each generator typically uses an encoder—decoder architecture with residual blocks, while the
discriminators are PatchGANS (see enrichment 20.8.2.2), focusing on local realism rather than global
classification.

The dual generator—discriminator setup allows CycleGAN to simultaneously learn both forward
and reverse mappings, supporting unsupervised translation in both directions.

Enrichment 20.8.3.4: CycleGAN: Loss Functions and Training Objectives
Adversarial Loss: Least Squares GAN (LSGAN)

A central goal in CycleGAN is to ensure that each generator produces images that are indis-
tinguishable from real images in the target domain. Rather than relying on the standard GAN
log-likelihood loss, CycleGAN adopts the Least Squares GAN (LSGAN) objective [416], which
stabilizes training and yields higher-fidelity results.

For generator G : X — Y and discriminator Dy, the LSGAN adversarial loss is:

LGan(G: Dy X, Y) =By) [(Pr () = 1] + Bap) [(Dr (G)))?]

This encourages the discriminator to output 1 for real images and O for fake (generated) images.
Simultaneously, the generator is trained to fool the discriminator by minimizing:

L5 = B pyat) [(Dr(G(x)) = 1)7]

An identical adversarial loss is used for the reverse mapping (F : Y — X, Dx). The least squares
loss is empirically more stable and less prone to vanishing gradients than the original log-loss
formulation.

20.8 Enrichment 20.8: Additional Important GAN Works 1171

Cycle Consistency Loss

The cycle consistency loss is what enables learning with unpaired data. If we translate an
image from domain X to Y via G, and then back to X via F, we should recover the original image:
F(G(x)) =~ x. The same logic holds for the reverse direction, G(F(y)) ~ y. This is enforced via an
L1 loss:

Leye(G,F) = By (o) 1F (G)) = x[1] + By) IGF () = yl1]

The use of L1 loss (mean absolute error) in CycleGAN is deliberate and particularly suited for image
reconstruction tasks. While L2 loss (mean squared error) is commonly used in regression settings, it
has the tendency to penalize large errors more harshly and to average out possible solutions. In the
context of image translation, this averaging effect often leads to over-smoothed and blurry outputs,
especially when multiple plausible reconstructions exist.

In contrast, L1 loss treats all deviations linearly and is less sensitive to outliers, which makes it
better at preserving sharp edges, fine details, and local structure in the generated images. Empirically,
optimizing with L1 encourages the network to maintain crisp boundaries and avoids the tendency of
L2 to "wash out" high-frequency content. As a result, L1 loss is a better fit for the cycle consistency
objective, promoting reconstructions that are visually sharper and closer to the original input.

o & e
'\.,__ﬁ_,/ cyeln ,r:::h”” \i_) <:3\f fo+e fuse

(n) ' (h) : ()

Figure 20.53: CycleGAN architecture and cycle consistency losses. (a) The model contains two
mapping functions: G: X — Y and F : Y — X, with corresponding adversarial discriminators Dy and
Dy . Each discriminator ensures its generator’s outputs are indistinguishable from real samples in its
domain. (b) Forward cycle-consistency loss: x — G(x) — F(G(x)) ~ x — translating to domain Y
and back should recover the original x. (c) Backward cycle-consistency loss: y — F(y) — G(F(y)) =~
y — translating to domain X and back should recover the original y. Figure adapted from [805].

Identity Loss (Optional)
To further regularize the mappings—especially when color or global content should remain
unchanged (e.g., in style transfer)—CycleGAN optionally employs an identity loss:
ﬁdentity(GJ?) = Eywpdm(y) [HG()}) _yHI] +Ex~pda[a(x) [HF(X) _XH1]
This penalizes unnecessary changes to images already in the target domain.

Summary

The adversarial losses ensure that generated images in both directions are indistinguishable from
real samples, while the cycle consistency and (optionally) identity losses force the learned mappings
to preserve core content and structure. The overall objective is a weighted sum of these components:

oﬁotal(GaF)DXJ)Y) :g(l}ﬁN(GaDhX)Y)+$CI}‘1§N(F7DX7Y7X)+kcyc%yc(GaF)+lido%demity(GaF)

where Acyc and Ajq are hyperparameters.

1172 Chapter 20. Lecture 20: Generative Models Il

Generator and Discriminator Architectures

Generators: CycleGAN employs a ResNet-based generator forboth G: X — Y and F: Y — X.
Each generator typically consists of an initial convolutional block, followed by several residual
blocks (commonly 6 or 9, depending on image size), and a set of upsampling (deconvolution)
layers. Instance normalization and ReLU activations are used throughout to stabilize training and
promote style flexibility. The design is chosen to enable both global and local transformations while
maintaining content structure.

Discriminators: Both Dx and Dy use a PatchGAN architecture—identical in spirit to the discrim-
inator design in pix2pix (see Section 20.8.2). Instead of classifying the entire image as real or
fake, PatchGAN outputs a grid of real/fake probabilities, each associated with a spatial patch (e.g.,
70 x 70 pixels) in the input. This local focus encourages preservation of texture and style across the
translated images, without requiring global image-level pairing.

Normalization and Activation: CycleGAN replaces batch normalization with instance normal-
ization (see 7.14.6), which is especially beneficial for style transfer and image translation tasks.
Unlike batch normalization, which normalizes feature statistics across the batch dimension, instance
normalization computes the mean and variance independently for each sample and each channel,
but only across the spatial dimensions (H x W). Specifically, for a given sample n and channel c,
instance normalization calculates:

1 H W 5 1 H W)
Hpe = ﬁ ;; Wg,l Xn,c,h,ws Ope= W ;; WZ:,l (xn,c,h,w - .un,c)

and normalizes accordingly. This operation decouples the feature scaling from the batch and instead
focuses normalization on the statistics of each individual sample and channel. As a result, instance
normalization improves the consistency of style adaptation and translation, making it particularly
well-suited for CycleGAN and similar works.

Training Strategy and Hyperparameters

The training procedure alternates between updating the generators (G, F') and the discriminators
(Dx, Dy). The total objective is a weighted sum of adversarial loss, cycle-consistency loss, and
(optionally) identity loss:

ZLeyeleGan = Z6an(G, Dy, X, Y) + ZLoan(F, Dx Y, X) + Acye-Zeye (G, F) + Aid-Lidentity (G, F)

where Acyc and Aig are hyperparameters controlling the importance of cycle and identity losses.
Empirically, Acyc = 10 is standard, and Aiq is set to 0 or 0.5 depending on the task.

Optimizers: CycleGAN uses the Adam optimizer, with §; = 0.5 and 3, = 0.999, which are well-
suited for stabilizing adversarial training.

Unpaired Data Setup: During each epoch, the model draws random samples from unpaired sets X
and Y, so every batch contains independently sampled images from both domains. This setup, along
with cycle-consistency, enables effective learning without paired supervision.

Stabilizing Discriminator Training with a Fake Image Buffer To further stabilize adversarial
training, CycleGAN maintains a buffer of previously generated fake images (typically 50) for each
domain. When updating the discriminator, a random sample from this buffer is mixed with the most
recent generated images. This approach prevents the discriminator from overfitting to the generator’s
most current outputs, introduces greater diversity in the fake set, and improves convergence.

20.8 Enrichment 20.8: Additional Important GAN Works 1173

A comprehensive ablation study in CycleGAN systematically investigates the roles of the GAN loss,
cycle-consistency loss, and their combinations. The results, as reported in the original CycleGAN
paper [805], demonstrate that both adversarial (GAN) and cycle-consistency losses are critical for
successful unpaired image-to-image translation.

Effect of Removing Loss Components

* Removing the GAN loss (using only cycle-consistency) produces outputs with preserved
content but poor realism; the results lack natural appearance and often fail to match the target
domain visually.

* Removing the cycle-consistency loss (using only adversarial loss) leads to mode collapse
and lack of content preservation. The model may generate realistic-looking images, but they
are often unrelated to the input and fail to capture the source structure.

* Cycle loss in only one direction (e.g., forward F(G(x)) =~ x or backward G(F(y)) ~y) is
insufficient and frequently causes training instability and mode collapse. The ablation reveals
that bidirectional cycle consistency is essential for learning meaningful mappings without
paired data.

Quantitative Results (from the CycleGAN Paper)

The ablation is quantified using semantic segmentation metrics (per-pixel accuracy, per-class accu-
racy, and class IoU) evaluated on the Cityscapes dataset for both labels — photo and photo — labels
directions. Tables 20.4 and 20.5 are directly reproduced from [805].

Table 20.4: Ablation study: FCN-scores for different loss variants, evaluated on Cityscapes (labels
— photo). Results from [805].

Loss Per-pixel acc. Per-class acc. Class IOU
Cycle alone 0.22 0.07 0.02
GAN alone 0.51 0.11 0.08
GAN + forward cycle 0.55 0.18 0.12
GAN + backward cycle 0.39 0.14 0.06
CycleGAN 0.52 0.17 0.11

Table 20.5: Ablation study: classification performance for different loss variants, evaluated on
Cityscapes (photo — labels). Results from [805].

Loss Per-pixel acc. Per-class acc. Class IOU
Cycle alone 0.10 0.05 0.02
GAN alone 0.53 0.11 0.07
GAN + forward cycle 0.49 0.11 0.07
GAN + backward cycle 0.01 0.06 0.01

CycleGAN 0.58 0.22 0.16

1174 Chapter 20. Lecture 20: Generative Models Il

Qualitative Analysis

The following figure visually compares the effects of different loss combinations. Removing either
the GAN or cycle-consistency component leads to images that either lack realism (cycle alone) or
ignore input structure (GAN alone, or single-direction cycle loss). The full CycleGAN model (with
both losses in both directions) produces outputs that are both photorealistic and semantically aligned
with the input.

Ground truth

I
I
B
I
="
I
|
'-
I

Enpul Cyele alone GANalone GAN+forward GAN+buckward — CycleGAN

Figure 20.54: Ablation study: Visual results of different loss variants for mapping labels <+ photos
on Cityscapes. From left to right: input, cycle-consistency loss alone, adversarial loss alone,
GAN + forward cycle-consistency loss (F(G(x)) =~ x), GAN + backward cycle-consistency loss
(G(F(y)) =), CycleGAN (full method), and ground truth. Cycle alone and GAN + backward fail
to produce realistic images. GAN alone and GAN + forward exhibit mode collapse, generating
nearly identical outputs regardless of input. Only the full CycleGAN yields both realistic and
input-consistent images. Figure adapted from [805].

Summary

The ablation study conclusively shows that both adversarial and cycle-consistency losses are indis-
pensable for successful unpaired image-to-image translation. The combination ensures the generated
outputs are realistic, diverse, and semantically faithful to their source images, while avoiding mode
collapse and degenerate mappings.

Enrichment 20.8.3.7: Summary and Transition to Additional Generative Approaches

The innovations introduced by CycleGAN have inspired a diverse ecosystem of task-specific GAN
models, each adapting adversarial training to new modalities and challenges. Notable such works we
won’t cover in-depth include:
* SPADE [470]: Semantic image synthesis using spatially-adaptive normalization, which
achieves high-resolution generation from segmentation maps.
* Social GAN [198]: Multimodal trajectory forecasting for socially-aware path prediction in
crowds.
* MoCoGAN/VideoGAN [107]: Adversarial video generation architectures for modeling
temporal dynamics in complex scenes.
Together, these models demonstrate the flexibility of adversarial learning in structured generation
tasks. In the following sections, we broaden our view beyond GANS to introduce new families of
generative approaches—including diffusion models and flow matching—that are rapidly advancing
the state of the art in image, video, and sequential data synthesis.

20.9 Enrichment 20.9: Diffusion Models: Modern Generative Modeling 1175

Enrichment 20.9: Diffusion Models: Modern Generative Modeling

Enrichment 20.9.0.1: Motivation: Limitations of Previous Generative Models

Diffusion models have emerged as a powerful and principled approach to generative modeling,
effectively addressing several longstanding challenges found in earlier generative paradigms. To
appreciate their significance, it helps to briefly revisit these earlier approaches and clearly identify
their main limitations:

Autoregressive Models (PixelCNN, PixelRNN, ...)

Autoregressive models factorize the joint probability distribution into sequential conditional pre-
dictions, enabling exact likelihood computation and precise modeling of pixel-level dependencies.
However, their inherently sequential nature severely limits sampling speed, making high-resolution
synthesis prohibitively slow. Moreover, their reliance on local receptive fields often restricts global
coherence and makes long-range dependencies difficult to model efficiently.

Variational Autoencoders (VAEs)

VAEs provide efficient inference through latent variable modeling and offer stable training and
sampling. Nonetheless, the assumption of independent Gaussian likelihoods at the output leads to
blurred images and limited sharpness. Additionally, VAEs are vulnerable to posterior collapse, where
the latent representation becomes underutilized, reducing expressivity and diversity in generated
outputs.

Generative Adversarial Networks (GANS)

GAN:Ss achieve impressive realism by optimizing an adversarial objective, bypassing explicit likeli-
hood computation. Despite their success, GANs notoriously suffer from instability during training,
sensitivity to hyperparameters, and mode collapse, where the generator focuses on a narrow subset of
the data distribution. Furthermore, their lack of explicit likelihood estimation complicates evaluation
and interpretability.

Hybrid Approaches (VQ-VAE, VQ-GAN)

Hybrid models such as VQ-VAE and VQ-GAN combine discrete latent representations with au-
toregressive or adversarial priors. These methods partially address the shortcomings of VAEs and
GANSs but introduce their own issues, such as quantization artifacts, limited expressivity due to often
codebook collapse, and computational inefficiency in latent space sampling.

The Case for Diffusion Models
Diffusion models naturally overcome many of the above limitations by modeling data generation as
the gradual reversal of a diffusion (noise-adding) process. Specifically, they offer:
* Stable and Robust Training: Diffusion models avoid adversarial training entirely, leading to
stable and reproducible optimization.
» Explicit Likelihood Estimation: Their probabilistic framework supports tractable likelihood
estimation, aiding interpretability, evaluation, and theoretical understanding.
» High-Quality and Diverse Generation: Iterative refinement through small denoising steps
enables sharp, coherent outputs comparable to GANs, without common GAN instabilities.
* Flexible and Parallelizable Sampling: Recent advances (e.g., DDIM [580]) have accelerated
inference significantly, improving practical utility compared to autoregressive and hybrid
approaches.

1176 Chapter 20. Lecture 20: Generative Models Il

Diffusion models represent a rigorous class of probabilistic generative models that transform
data generation into the problem of reversing a gradual, structured corruption process. Inspired
by nonequilibrium thermodynamics [578], these models define a stochastic Markov chain that
systematically injects noise into a data sample over many steps—the forward process—until the data
is fully randomized. The core learning objective is to parameterize and learn the reverse process:
a denoising Markov chain capable of synthesizing realistic data by iteratively refining pure noise
back into structured samples. This framework elegantly sidesteps many pitfalls of earlier generative
models—such as adversarial collapse in GANs and latent mismatch in VAEs—by relying on explicit,
tractable likelihoods and theoretically grounded transitions.

Mathematical Foundation and Dual Processes
At the heart of diffusion models are two complementary stochastic processes, each defined with
mathematical precision:
* Forward Process (Diffusion, Corruption):
Let x be a clean data sample (such as an image). Diffusion-based generative models transform
this data into pure noise through a gradual, multi-step corruption process. This is implemented
as a Markov chain :

Xo — X| — - —> X7,

where at each timestep ¢, Gaussian noise is added to slightly degrade the signal. The transition
kernel ¢(x; | X;—1) is a probability density function, not a discrete probability. It assigns a
scalar density value to a potential noisy state X;; a high density indicates that X, is a likely
result of adding noise to x;_1, while a low density implies it is statistically inconsistent with
the noise model.

Formally, this transition is defined as a multivariate Gaussian:

q(X, ‘Xt_]):JV Xf; \/ I—B[Xt_]7 BII . (2016)
~—_———— ~—
Mean u Covariance £

This notation specifies three key components:

1. Subject (x;): The variable whose likelihood we are measuring.

2. Mean (u = /1 — B, x;_1): The expected value of the new state. Note that the previous
state x,_ is scaled down by /1 — ;.

3. Covariance (X = 3,I): The spread of the injected noise, controlled by the scalar 3, €
(0, 1) and the identity matrix I.

Design Choices: Stability, Structure, and Tractability

The specific mathematical formulation of the forward process is not arbitrarys; it relies on care-
ful design choices that ensure the process is stable, computationally tractable, and theoretically
sound.

20.9 Enrichment 20.9: Diffusion Models: Modern Generative Modeling 1177

— Why Diagonal Covariance (,I)? The covariance term S,I signifies that noise is
added independently to every pixel (or feature dimension) with equal intensity. The
identity matrix I ensures zero off-diagonal elements, meaning no spatial correlations are
introduced. This is essential because the goal is to degrade structure, not create it; if we
used a correlated covariance matrix, we would be effectively painting new, structured
patterns onto the image rather than dissolving the original signal into pure noise.

— Why Variance Preservation? (The Scaling Factor /1 — 3;) One might intuitively
assume that to make an image "noisier", we should simply add noise on top: x; = X,_1 + €.
While this does degrade the image, it increases the total energy of the signal at every
step:

Var(x;) = Var(x;_1) + f:.

Repeated over T = 1000 steps, the pixel values would explode to huge numbers, causing
numerical instability and making neural network training impossible.

Instead, diffusion models are designed to be variance-preserving. We want the dis-
tribution of pixel values to stay within a standard dynamic range (e.g., unit variance)
throughout the entire process. To achieve this, we must "make room" for the incoming
noise by shrinking the current signal.

The factor /1 — JB; contracts the signal variance exactly enough to counterbalance the
added noise variance:

Var(x;) = (1 — ;) Var(x,—1)+ B
N , ~—

~1 Signal Attenuation Noise Injection

Intuition: Imagine mixing a cocktail in a glass of fixed volume. You cannot simply keep
adding mixer (noise) to the spirit (signal), or the glass will overflow (exploding variance).
Instead, at each step, you pour out a small fraction of the current mixture (attenuation)
and top it back up with fresh mixer. By the end, the glass is still full, but the content has
transitioned from pure spirit to pure mixer.
This ensures that the final state X7 converges to a standard Gaussian ./ (0,I)—a fixed,
well-behaved distribution that serves as a simple starting point for the reverse generation
process.

— Why Gaussian Noise? The choice of a Gaussian kernel is motivated by both physical
intuition and mathematical convenience.

1. Maximum Entropy: For a fixed variance, the Gaussian distribution has the max-
imum entropy. This means it makes the fewest structural assumptions about the
noise, representing "pure" information loss.

2. Analytical Tractability: Gaussians possess unique algebraic properties—the prod-
uct of two Gaussians is a Gaussian, and the convolution of two Gaussians is a
Gaussian. This allows us to derive closed-form expressions for the marginals
q(x; | xo) and the posteriors, enabling efficient training without expensive Monte
Carlo sampling at every step.

3. Universality: By the Central Limit Theorem, the sum of many independent noise
events tends toward a Gaussian distribution. Thus, modeling the corruption as a
sequence of Gaussian steps is a natural approximation for many physical degradation
processes.

1178 Chapter 20. Lecture 20: Generative Models Il

— Why a Gradual Multi-Step Process? Why not jump from data to noise in one step

(like a VAE) or learn the mapping directly (like a GAN)? The power of diffusion lies in
breaking a difficult problem into many easy ones.
Mapping pure noise xr directly to a complex image Xo is a highly non-linear and
difficult transformation to learn. However, if the steps are small enough (i.e., ; is
small), the reverse transition x; — X;_; is a very simple denoising task that can be
locally approximated by a Gaussian. This transforms the generative modeling problem
from learning one complex map into learning a sequence of simple, stable denoising
corrections.

Noise Schedules: How Fast Should the Dafa Be Destroyed?

A crucial design choice in this process is the variance schedule {B;}_,, which controls the
pace of corruption. Each f; determines the noise magnitude at step ¢: small values preserve
structure, while larger values accelerate signal destruction.

One of the earliest and most influential diffusion frameworks, the Denoising Diffusion Proba-
bilistic Model (DDPM) by Ho et al. [223], proposed a simple linear schedule:

B; = linspace(1074,0.02,T),

where T is the total number of diffusion steps (typically 1000). This linear progression ensures
that noise is added slowly and evenly, facilitating the learning of the reverse process.
Later works proposed nonlinear schedules to allocate noise more strategically:

— Cosine schedule: Proposed by Nichol and Dhariwal [449], this schedule defines signal
decay using a clipped cosine function. It slows down early corruption to preserve
information longer and concentrates noise injection toward later steps, improving sample
quality.

— Sigmoid or exponential schedules: Other heuristics adopt S-shaped or accelerating
curves, delaying heavy corruption until later timesteps to preserve fine details in early
latent representations.

The choice of noise schedule significantly affects the signal-to-noise ratio at each step and
determines the difficulty of the denoising task.

Diffused Data Distributions)
Data Noise

o) ax) b abks) = al)

Figure 20.55: What happens to a distribution in the forward diffusion process? The forward
noising process progressively transforms the original data distribution g(xo) into a standard Gaussian
q(xr) through a sequence of small Gaussian perturbations. As the noise level increases, intermediate
distributions g(x;) become increasingly blurred and entropic, eventually collapsing into an isotropic
normal distribution. This transition enables generative modeling by allowing the use of a simple
prior at sampling time. Source: Adapted from the CVPR 2022 diffusion models tutorial [582].

20.9 Enrichment 20.9: Diffusion Models: Modern Generative Modeling 1179

Trajectory Properties and Convergence

While the step-by-step Gaussian transitions defined in Eq. 20.16 describe the local behavior
of the diffusion process, understanding the global behavior of the entire trajectory xg.r is
essential for both efficient training and theoretical justification.

The Joint Distribution and Markov Property The corruption process is explicitly designed
as a Markov chain, meaning the probability of state x, depends solely on the immediate prede-
cessor X, and not on the earlier history xo.,—>. This conditional independence assumption
allows the joint distribution of the entire forward trajectory to factorize cleanly into a product
of local transitions:

~

q(xi.7 [x0) = [Ja(x [xi-1). (20.17)

t=1

This factorization is computationally advantageous: it implies that the complex transformation
from data to noise is composed of simple, independent sampling steps, making the process
analytically manageable.

Closed-Form Marginals: The '"Shortcut'" Property A critical property of Gaussian
diffusion is that we do not need to simulate the chain step-by-step to obtain a sample at an
arbitrary timestep #. Because the convolution of two Gaussians is another Gaussian, we can
derive a closed-form expression for the marginal distribution ¢(x, | Xo) directly.

To simplify the notation, we define the signal retention schedules:

(X[:Zl—ﬁt, 66, ::HO!X.

s=1

Here, ¢, represents the cumulative signal variance remaining after ¢ steps. By recursively
applying the reparameterization trick x; = /otX;—1 + /1 — 04€, we can express X; as a linear
combination of the original data xo and a merged noise term:

q(x; | Xo) = A (X3 V@ X0, (1 —04)T). (20.18)

This identity is fundamental to the efficiency of diffusion models. It allows us to sample
training data pairs (Xo,X,) instantly for any ¢ without running the forward process loop,
enabling highly efficient parallel training.

Asymptotic Convergence to Pure Noise The endpoint of the forward process is determined
by the limit behavior of &. For a properly chosen schedule where Y f; — oo, the cumulative
signal oy approaches 0 as T — . Consequently, the mean /07X vanishes, and the variance
(1 — o)I approaches identity:

q(XT ‘ X()) ~ JV(O,I)

1180 Chapter 20. Lecture 20: Generative Models Il

This convergence is theoretically grounded in two perspectives:

1. Central Limit Theorem (CLT): The final noise xr is effectively the sum of many
independent, scaled noise injections from previous steps. Even if the local transitions
were not perfectly Gaussian, the CLT suggests the cumulative result would tend toward
a Gaussian distribution.

2. Ornstein—Uhlenbeck Process: The discrete steps can be viewed as a discretization of a
continuous-time stochastic differential equation (SDE) known as the Ornstein—Uhlenbeck
process, which is a mean-reverting process that converges to a stationary Gaussian
distribution regardless of the starting state.

This ensures that the generative reverse process can always begin from a standard, easy-to-
sample prior .4"(0,I), decoupled from the complexities of the data distribution.

Preparing for the Reverse Process The properties derived above—stable variance, closed-
form marginals, and guaranteed convergence—define a known corruption path that is mathe-
matically invertible. By defining the forward process as a fixed, tractable Markov chain, we
create a supervised learning setup: if we know the exact distribution g(x,;—1 | X;,Xo), we can
train a model to approximate it. This paves the path for the reverse process, where the model
learns to synthesize realistic data by iteratively denoising pure Gaussian noise.

20.9 Enrichment 20.9: Diffusion Models: Modern Generative Modeling 1181

* Reverse Process (Denoising, Generation)
The reverse (generative) process in diffusion models starts from pure Gaussian noise, X7 ~
A(0,I), and iteratively denoises it into a structured sample X via a Markov chain:

X7 > X171 —> - —>Xp. (20.19)

In an ideal world, each transition would sample from the frue reverse conditional g(x,—1 | X;).
The core difficulty is that this unconditional reverse is not available in closed form for real
data.

Why the True Reverse Step q(x;—1 | x;) Is Infractable
To generate data, we wish to sample from the reverse transition ¢(x,—; | ;). Let us attempt to
derive this distribution analytically using Bayes’ rule. By definition:

q(X: [X-1)q(xi—1)
q(x:) '

q(Xi—1 | %) = (20.20)

The first term in the numerator, g(X; | X,—1), is simply the forward diffusion kernel, which is a
known Gaussian defined in Eq. 20.16.

However, the calculation breaks down when we examine the marginal probabilities g(x;—)
and ¢(x,). To compute the marginal density of a noisy sample x; , we must integrate over
every possible clean image X that could have started the chain:

q(x;) = / q(x: | x0) q(xo) dxo. (20.21)

Data dist.

Here lies the fundamental problem:

1. Dependence on the Unknown Data Distribution: The term g(xo) represents the true
underlying distribution of natural images (or the specific dataset). This distribution is
highly complex, multimodal, and analytically unknown. We do not have a mathematical
formula for "the probability of a picture of a cat".

2. Intractable Integration: Because we cannot write down ¢(X¢) in closed form, we
cannot perform the integration in Eq. 20.21. Consequently, we cannot calculate the
normalization constant g(x,) required for Bayes’ rule.

Intuition: Asking "What is the previous step given this noisy image?" is equivalent to asking
"Which clean image is this noisy blob most likely to have come from?". Without knowing
the distribution of clean images (the prior), we cannot distinguish between a "likely" noisy
version of a real object and a "likely" noisy version of random static. Since evaluating the
probability of every possible real-world image is impossible, the exact reverse step g(X,—1 | X;)
remains intractable.

1182 Chapter 20. Lecture 20: Generative Models Il

A tractable “teacher” posterior during training

During training, we observe the clean data sample Xg ~ pgata from the dataset. This distinction
is critical: the unconditional reverse transition ¢(X,_; | X;) is intractable in the data setting
because it marginalizes over the unknown data distribution. Concretely, by the law of total
probability,

g1 | %) = / g(%e_1 | X,%0) g(%o | ;) d%. (20.22)

Evaluating this integral would require the posterior g(X¢ | X;), which depends on the unknown
prior pga (Xo) via Bayes’ rule: g(xo | X;) o< q¢(X; | X0) Pdata (X0)-

However, if we condition on the specific ground-truth xp used to generate X, during training,
the reverse posterior becomes fully analytic:

q(X;—1 | X¢,Xo). (20.23)

We will treat this tractable posterior as a teacher target: it is the “correct” denoising distribu-
tion (under the forward process assumptions) that a neural network (the student) should learn
to approximate without access to X at inference time.

Visual Intuition

p(xolz1) plre—i]re) plwe]wesy) plzr_y|zy)
TN VY N\
A a B N
{ Zo) L /Tr—l\ /:Bf , |§;+y lGD
@ - W W -
N7 N~—T ~_7 N7

fJ"(.iI'1|-I‘u) Q'{‘?‘r|i1'f—l) qlzy -H|~i:r.} (J’(ll:’f'|-l-"?'—1)

2 o N(0,1)

Figure 20.56: Visual intuition for the diffusion process. An input image is progressively corrupted
with Gaussian noise over multiple steps (left to right), ultimately yielding pure noise. The learned
denoising process (right to left) reverses this trajectory. Conditioning on X makes the reverse-step
posterior ¢(X;—1 | X¢,Xo) a simple Gaussian with closed-form mean and variance, providing an exact
training-time target. Adapted from [402].

y

Derivation of the Posterior q(x,—1 | X¢,Xo)
We assume the standard DDPM forward process [223, 578]:

g% | x-1) = A (X Varx—1, BI), o :=1-p,. (20.24)

Recall the closed-form marginal:

t
q(x; | X0) = A (X3 V& X0, (1 - 0)I), o =[] o (20.25)
s=1

20.9 Enrichment 20.9: Diffusion Models: Modern Generative Modeling 1183

Step 1: Bayes’ Rule and the Proportionality Argument

We aim to find the posterior distribution ¢(X,_; | X;,Xo). Mathematically, we treat x,_; as the
variable of interest, while X, and X are fixed observed values.

Using the definition of conditional probability, we expand the posterior:

q(x; | X,—1,%0) q(X;—1 | X0)
q(x; | xo)

q(X—1 | X¢,X0) = (20.26)
First, we apply the Markov property to the first term in the numerator. Given the immediate
past x;_1, the future state x, depends only on the noise added at that step and is independent of
the distant past xg. Thus, ¢(X; | X;—1,Xo) simplifies to g(x; | x,—1).

Second, consider the denominator, g(X; | Xo). Notice that this term depends only on X, and Xj.
Crucially, it does not contain the variable x;_;. From the perspective of a function over x,_1,
the denominator is merely a constant scaling factor (often denoted as Z or C). In Gaussian
derivation, it is standard practice to ignore such normalization constants and focus on the
functional form (or kernel) of the distribution. If we can show that the exponent is quadratic
in X;,_1, we define the distribution as Gaussian and calculate the normalization later (or infer it
from the variance).

Therefore, we replace the equality with a proportionality sign (<), retaining only the terms
that shape the distribution of x,_;:

q(Xi—1 | X¢,Xp) o q(X; | X—1) ~q(X—1 | X0) - (20.27)
| ~—_——

Likelihood (Forward Step) Prior (Marginal)

Step 2: Analyzing the Gaussian Factors

We now define the explicit forms of these two factors using the forward process definitions.
1. The Prior Term (Marginal): This is the distribution of x,_; given the starting data Xg.
From the closed-form marginal property, we know:

q(X—1 | x0) =N <thl§ V041X, (1 — 56:71)1) : (20.28)

where &;_ = H’S;ll(l — Bs) is the cumulative signal variance.
2. The Likelihood Term (Transition): The forward transition is defined as a conditional
distribution over the next step x;:

q(%¢ | x—1) = N (X57/06%,—1,BI), where oy =1—f,.

To combine this with the prior (a distribution over x,_1), we need to multiply them. Since the
prior is a function of x;_, it is mathematically convenient to also view this likelihood term as
a function of x,_ (treating X, as a fixed observation).

Detailed Derivation: Inverting the Gaussian View
Recall that the probability density function (PDF) of a Gaussian .4 (y; i, 6°I) is determined
entirely by the term inside its exponent:

1 2
)< exp (—5oslly—wl?).

1184 Chapter 20. Lecture 20: Generative Models Il

Any expression we can rearrange into the form exp(—~||x —m||?) implies a Gaussian distri-
bution over x with mean m and variance C.

Let us analyze the exponent of g(x; | x,—1):

x|
2C

E =[x — x|

L
2B,

Our goal is to isolate X, 1 so that it looks like ||, 1 —...|]%.

1. Symmetry of the Norm: The squared Euclidean distance is symmetric (||a — b||> =
|b — a|?). We swap the terms to put our variable of interest, x,_1, first:

% = verxe—1|1* = [lv/erxe—1 — x|

2. Factoring out the Scalar: We want the coefficient of x,_; to be 1. We factor /¢ out of
the vector subtraction inside the norm:

1
VX =% =T <x,_1 - ﬁf") |

3. Squaring the Factor: Recall the norm property ||c - v||? = ¢?||v||*>. When we pull /&,
outside the squared norm, it becomes (/&)? = 0:

1 1
v (x-1-) v

4. Substituting Back: Now we plug this transformed norm back into the original exponen-
tial expression:
2)

5. Identifying Variance: We group the scalars to match the standard Gaussian form —

2
:at

2

Xi—1—

1
—X
NG

Xr—1—

1
exp(E) = exp 35 o
t
1
202°

o 1

727& B 2(B/ou)

This identifies the effective variance 62 as g—’[.

Conclusion: The functional form with respect to x,_ is:

1 :
exp <_2(B)\)

By inspection, this is proportional to a Gaussian density with:
— Mean: \/%x, (the observed next step, scaled backwards).

1
—=X
/—al t

Xi—1—

— Variance: %I (the forward noise scaled by the inverse signal factor).

20.9 Enrichment 20.9: Diffusion Models: Modern Generative Modeling 1185

Thus, we write the proportionality:

q(X; | X,—1) o< AN (x,_l; Xy, BII> . (20.29)

1
\/Et o
Step 3: Calculating Posterior Precision and Mean

We now multiply the two Gaussians derived above. The product of two Gaussians .4 (1 ;,X;)
and .4 (,,%,) is a new Gaussian .4 (fi,£), where the precisions (inverse variances) add:

1 _ _ L & e _
E=ntnt p=E(E e 45). (20.30)
Substituting our specific variances | = %I and Xy = (1 — oy)L:

b i ()

Using the identity & = o4 @ and 3, = 1 — o, the numerator simplifies to 1 — &. Inverting
the result gives the closed-form posterior variance:

N 1 —04—
ﬁ"l—@

Similarly, computing the weighted mean yields:

vV &zflﬁtx + \/Et(l - atfl)

T—a ° 1—a,

B (20.32)

i, (X, Xo) = X;. (20.33)
This gives us the final tractable distribution g(x,_| | X;,Xo) = .4 (i,, B,I), which acts as the
target for our neural network.

Reparameterizing the Posterior via Noise Prediction

While the closed-form expression for the posterior mean fi,(x;,Xo) derived in Eq. (20.33)
is mathematically exact, it presents a practical difficulty: it depends explicitly on the clean
image Xg. At inference time, Xg is exactly what we are trying to generate and is therefore
unknown. To make this posterior useful for a generative model, we must re-express it in terms
of quantities available to the network.

Recall the reparameterization of the forward marginal g(x, | X¢), which relates the noisy state
X; to the clean data X and the cumulative noise €:

X, = VX ++/1— e, wheree~ 4 (01).

We can invert this relationship to express the unknown xg as a function of the current noisy
state X; and the noise vector &€:
Xy — 1— (_th
Vo,
Substituting this expression back into the formula for the posterior mean fi, (Eq. (20.33))

allows us to eliminate x¢. After algebraic simplification, we arrive at an implementation-critical
identity that depends only on x; and &€:

i/ B
i, (X, X0) = ﬁ (x, = £>) (20.34)

X0 =

1186

Chapter 20. Lecture 20: Generative Models Il

Key Insight: This equation reveals that the optimal denoising step is just a scaled version
of the input x; minus a scaled version of the noise €. Since X, is known at the current step,
the only unknown quantity required to compute the optimal reverse trajectory is the noise €
itself. Therefore, learning to approximate the posterior mean is mathematically equivalent to
learning to predict the noise present in the image.

Teacher-Student Learning: Matching the Posterior

To perform generation, we introduce a learnable “student” model pg designed to approximate
the true time-reversed process. Since the true posterior ¢(x,—1 | X;,Xg) is Gaussian, we
parameterize the student transition also as a Gaussian:

Po(Xe—1 | %) = A (Xi—15 P (Xr,1), 67T). (20.35)

Here, 4 is a neural network (typically a U-Net) that predicts the mean of the next state, and
o is the variance (often set to a fixed schedule such as 3, or ﬁ,).

We train this model using a Teacher—Student framework. During training, we have access to
the ground truth data, so the exact posterior g(x;—; | X,Xo) (the “teacher”) is computable. We
optimize the student parameters 0 to match the teacher by minimizing the Kullback-Leibler
(KL) divergence at every timestep:

Z(0) =KL(q(X—1 | X¢,X0) || po(Xi—1 | X)) (20.36)

Because the KL divergence between two Gaussians is dominated by the squared Euclidean
distance between their means, minimizing this objective is equivalent (up to scaling factors) to
minimizing the Mean Squared Error (MSE) between the teacher’s mean fi, and the student’s
predicted mean L.

The Noise-Prediction Objective

Leveraging the insight from Eq. (20.34), we parameterize the student network not to predict
the mean directly, but to predict the noise €. We define the network output €¢(x,,7) and
construct the mean prediction as:

L (B
Ne(xzﬂ)-—m<t -

By substituting this parameterization into the KL divergence objective, the loss function
simplifies significantly. The complicated coefficients describing the mean collapse into a
single time-dependent weight, and the target becomes simply the true noise vector € sampled
during the forward process:

se(x,,t)> . (20.37)

B’

_— (20.38)
20704 (1 — &)

2
£(0) =Exe | A [|e o (xir)[[3] - where 2 =
This result is profound: complex generative modeling is reduced to a sequence of denoising
autoencoder tasks. The network simply learns to look at a noisy image x; and estimate the
noise € that corrupted it.

20.9 Enrichment 20.9: Diffusion Models: Modern Generative Modeling 1187

Theoretical Justification: The Variational Lower Bound (ELBO)

One might ask: is matching the posterior at each step strictly equivalent to maximizing the
likelihood of the generated data? The answer is yes, provided we consider the entire trajectory.
The local teacher—student objectives .%; arise naturally from maximizing the Evidence Lower
Bound (ELBO) on the log-likelihood log pg (Xo). Just as in VAEs, where we optimize a bound
on the marginal likelihood of the data, diffusion models optimize a bound derived from the
joint distribution of the forward and reverse chains:

(20.39)

X0)-
log pe(x0) > ZeLBO = E4 [log pe(o.T)} .

q(x1.7 | X0)

When expanded, this global objective decomposes into a sum of local terms corresponding
exactly to the objectives we derived heuristically:

T
Lo = —KL(gq(x7]%0) || p(x1)) — Y Eq[KL(g(x,—1]%:,X0) || po(x/—11%:))] + Eqy[log pe (xox1)].
Prior h?l;tching =2 Denoising Matchir?g (Teacher-Student) Reconstruction
(20.40)

This decomposition proves that by training the model to match the teacher posterior (de-
noising matching) and ensuring the final latent matches the prior (prior matching), we are
mathematically maximizing the likelihood of the generated data.

In the following section, we will explore the specific algorithm that instantiates this frame-
work—the Denoising Diffusion Probabilistic Model (DDPM)—and detail the practical
simplifications, such as discarding the weighting term A, that lead to a practical diffusion
approach for image generation.

1188 Chapter 20. Lecture 20: Generative Models Il

Enrichment 20.9.2: Denoising Diffusion Probabilistic Models (DDPM)

Denoising Diffusion Probabilistic Models (DDPM) [223] represent a seminal advance in the
development of practical and highly effective diffusion-based generative models. DDPMs distill the
general diffusion modeling framework into a concrete, efficient, and empirically powerful algorithm
for image synthesis—transforming the theoretical appeal of diffusion into state-of-the-art results on
real data.

Enrichment 20.9.2.1: Summary of Core Variables in Diffusion Models

Purpose and Motivation

Before deriving the ELBO-based training objective of DDPMs, it is critical to clearly understand
the set of variables and coefficients that structure both the forward and reverse processes. The loss
function ultimately minimized in DDPMs is derived from the KL divergence between a true posterior
and a learned reverse process. Both of these distributions depend intimately on Gaussian means and
variances computed using scalar quantities such as f;, o, &, and B,. Without explicitly recalling
what these mean—and how they interact—the derivation of the objective risks becoming opaque or
unmotivated.

Practical Implementation: Reverse Variance and Sampling
While the mean 4 (X;,7) is learned via the noise prediction objective, the reverse process variance
o7 must also be defined to perform sampling.
1. Choices for Reverse Variance ¢/ The full reverse transition is
po(X—1| %) = A (X_15 lg(Xs,1), 621). Two common strategies exist for setting 67

* Posterior-matching (Gt2 = B,): Sets the variance to the true posterior variance derived in
Eq. (20.32). This aligns the model with the theoretical reverse process and is analytically
precise.

* Forward-matching (crt2 = B): Sets the variance to the forward noise schedule. This is often
empirically stable and simpler to implement. Ideally, B, ~ B; when sampling steps are small,
making them interchangeable in practice [223].

2. The Role of Stochasticity (Why Inject Noise?) The sampling update rule is:

X;_1 = Wg(X,t) + 0z, wherez~ .4 (0,I).

Why do we add the random noise term 6;z instead of just taking the predicted mean?

* Generative Diversity: The noise injection ensures the process remains stochastic. It allows
the model to generate multiple distinct outputs Xo from the same starting noise X7, exploring
the full diversity of the data distribution.

* Correcting Errors: Without noise, the process would collapse into a deterministic trajectory
that might drift off the data manifold. The noise corrects small errors in the mean prediction,
keeping the trajectory “fuzzy” enough to land in a valid high-probability region.

Note: In the final step (f = 1), noise is typically omitted (z = 0) to output the best clean estimate
without adding residual grain.

20.9 Enrichment 20.9: Diffusion Models: Modern Generative Modeling 1189

Intuitive Summary of Core Variables

To navigate the derivation and implementation of diffusion models, it is essential to build a strong
intuition for the four scalar schedules and tensor quantities that govern the process. We summarize
them here as functional components of the generative engine:

» The Corruption Schedule (;): Controls the rate of information destruction. A small 3
implies a gentle diffusion step where image structure is preserved, whereas a large f3; represents
aggressive corruption. The schedule { ﬁt}thl is monotonically increasing to ensure data is
slowly dissolved into noise rather than destroyed abruptly [223].

¢ Cumulative Signal Health (&;): Quantifies the remaining signal strength of X inside the
noisy state x,. Defined as [T,_, (1 — fB;), it acts as a “signal-to-noise” ratio indicator. When
0y ~ 1 (early t), the sample is pristine; when & — 0 (late t), the sample is effectively pure
Gaussian noise. This scalar allows us to jump directly to any timestep during training without
simulating intermediate steps.

* The Ideal Reverse Target (fi,): Represents the optimal denoising destination. 1f we had
access to the ground truth xo, fi, is exactly where we should move x; to optimally reverse the
last noise injection. It is a weighted blend of the noisy observation (what we see) and the
clean signal (what we know). Training essentially forces the model to guess this target without
seeing Xg.

* The Learned Gradient (¢g9): The engine of generation. Instead of predicting the image
directly, the network estimates the noise vector pointing “away” from the data manifold.
Subtracting this estimated noise from X, (scaled appropriately) pushes the sample effectively
“towards” the clean data distribution, approximating the score function (gradient of the log-
density).

Maximum Likelihood with a Latent Diffusion Trajectory
A DDPM functions as a latent-variable generative model, but with a distinct structure: its latent
variables are the sequence of intermediate noisy states x;.7 rather than a single compressed vector.
Notably, each latent x, € RP maintains the same dimensionality as the input data xo € RP.

The generative process is defined as a reverse Markov chain that begins with pure noise X7 and
progressively removes it to synthesize data:

~

po(xo.r) = p(xr) [po(xi—1 | x), p(xr) =A4(0,I). (20.41)

t=1

Here, each transition pg(x,_1 | X,) is typically modeled as a time-conditional Gaussian
N (Xe—15 Mg (Xs,1),Lg (1)), Where the mean is parameterized by a neural network.

Training this model by maximum likelihood requires optimizing the marginal log-likelihood of
the observed data xg:

log po(xp) = log / po(Xo.r) dXi.1. (20.42)

This integral necessitates marginalizing over all possible high-dimensional trajectories x;.7 that
could have collapsed into xy. Due to the depth of the chain (T ~ 1000) and the complex, learned
nature of the reverse transitions, this computation is analytically intractable.

1190 Chapter 20. Lecture 20: Generative Models Il

Introducing the Forward Process as a Variational Distribution

To obtain a tractable objective, we introduce an auxiliary distribution g(x;.7 | X9) and apply variational
inference. In diffusion models, the key design choice is to set g to the fixed forward noising
process [223, 578]:

~

q(xi:7 | x0) = [[a(x [%i-1), q(X; | X—1) = A (X3 /0% 1, B 1) - (20.43)

t=1

This distribution is defined by a fixed noise schedule f; € (0,1) and o := 1 — ;. Because each
transition is Gaussian, g(x.7 | Xo) spans the entire space RP7, ensuring that the log-ratios in the
objective are well-defined for any possible trajectory.

From the “Missing Integral” to a Tractable Expectation

To make the marginal likelihood log pg (xo) computable, we transform the integration problem into
an expectation problem. We multiply and divide the term inside the integral by our chosen variational
distribution g(x;.7 | Xo):

Po(Xo.T)

log pe(xo) = log / q(X1.1 | X0) 2017 | %0) dxi.r (20.44)
_ _po(Xor)
= 108 Eq(xi.1[x) [e XO)] : (20.45)

Why is this transformation useful? The move from Eq. (20.44) to Eq. (20.45) leverages the
definition of the expected value: E,[f(x)] = [¢(x)f(x)dx. While the original integral requires
evaluating all possible noise trajectories (an infinite and intractable set), the expectation form allows
us to use Monte Carlo estimation.

Instead of analytically solving the integral, we can approximate the expectation by sampling
a single trajectory x;.7 from the forward process g. Since ¢ is a fixed Gaussian Markov chain,
generating these samples is computationally trivial. This transforms the problem from impossible
high-dimensional integration to simple stochastic sampling.

Jensen’s Inequality and the ELBO
Because log is concave, Jensen’s inequality (log E[X] > E[log X]) gives a lower bound:

po(xXo:r) | :
logpe(X0) > Eq(x,.rIxo) {bg axir | XO)] =: ZE1B0(0:X0). (20.46)
Maximizing Zg1po is therefore a principled surrogate for maximizing log pg (Xo).

Expanding the ELBO: Products Become Sums
Substituting the Markov factorizations from Eqgs. (20.41)-(20.43) into Eq. (20.46) and using log[], a; =
Y loga, yields

T T
Zr1Bo(0;x0) =E, [logp(xr) + Z log po(X—1 | X;) — Z logg(x; | x,_l)}) (20.47)
=1 t=1

where ¢ is shorthand for ¢(x.7 | Xo). This form is correct but not yet aligned with the backward-time
conditionals that will appear in KL divergences.

20.9 Enrichment 20.9: Diffusion Models: Modern Generative Modeling 1191

The Posterior Trick: Aligning the Forward and Reverse Directions
We face a structural mismatch in the ELBO derived so far (Eq. 20.47). The ELBO contains a sum
of forward transitions log g(X; | x;—1), which describe the diffusion process going forward in time.
However, our generative model pg(x,_; | X;) operates backward in time. To define a meaningful
loss function (like a KL divergence), we must compare distributions that define the same transition
direction (t —t—1).

To fix this, we do not "solve" for an unknown; rather, we use Bayes’ rule to rewrite the forward
term logg(X; | X,—1) into an equivalent expression involving the reverse posterior.

1. Inverting the arrow with Bayes’ Rule

Recall that for the Markov chain conditioned on Xy, the reverse posterior is defined as:

q(x; | X—1,%0) q(X;—1 | X0)
q(x: [Xo) '

q(Xi—1 | %,X0) =

Using the Markov property g(X; | X;—1,Xo) = q(X; | X,—1), we can rearrange this identity to isolate
the forward term found in our ELBO:

logq(x; | X;—1) = logq(X;—1 | X;,X0) +logq(x | Xo) —logq(x/—1 | Xo)- (20.48)

Aligned Reverse Posterior Normalization Constants

Why do this? We have successfully replaced a term pointing "forward" (which we cannot compare
to pg) with a term pointing "backward" (which we can compare to pg) plus some residual marginals.

2. The Telescoping Sum
When we sum this substitution over all timesteps t =2...T, the residual marginal terms cancel each
other out in a cascading (telescoping) series:

T

;[IOgQ(Xt’XO) —logg(x/—1[x0)] = (logg(x2[x0) — log g(x1[xo))

+ (logg(x3|x0) —logg(xa(%0))

+ ...
+ (logg(xr[xo) —logg(xr—1[x0))
=logq(xr | X9) —logg(x | Xo). (20.49)

This effectively removes all intermediate marginals from the loss function. When we combine this
result with the ¢ = 1 term from the original sum, the final expression simplifies to just the sum of
reverse posteriors plus the endpoint at 7'

T

T
Zlogq(x, | X—1) = Zlogq(x,_l | X;,%0) +logg(xr | Xo). (20.50)
=1 =2

1192 Chapter 20. Lecture 20: Generative Models Il

ELBO Decomposition into the Standard DDPM Terms
We now consolidate the terms to reveal the final objective. Recall our starting point: the expanded
ELBO from Eq. (20.47).

T T
ZE1Bo = Ey(x,.1 /%) | 10g P(X7) + Zlogpg(x,,l | %) — Zlogq(x, | X1) |-

=1 t=1
The Obstacle (Direction Mismatch): We want to train the reverse model pg(x;—_ | x;). Ideally,
we would minimize a distance (like KL. divergence) between this model and some ground truth.
However, the ELBO currently contains the forward terms logg(x; | x,—1). These point in the wrong
direction (time r — 1 — ¢). We cannot directly compare a forward transition g to a reverse transition
po. To fix this, we must replace the forward sum with terms that point backwards in time.
Step 1: Applying the Telescoping Substitution
We substitute the forward sum using the telescoping identity derived in Eq. (20.50):

T T
Y logq(x; | x,—1) =logq(xr | X0) +) 1ogq(Xi—1 | X;,%o)-
t=1 =2

Notice that the terms inside the sum, g(X,—; | X;,Xo), now point backwards (from ¢ to r — 1),
conditioned on x. This aligns perfectly with our generative model pg (x;—1 | X/).

Step 2: Regrouping the ELBO

Substituting this back into the ELBO and grouping matching terms (prior with prior, transition with
transition):

ZrLBo = Ey(x,.1 /%) [log pg(xo | x1)
Reconstruction (r=1)
+ (log p(x7) —logq(xr | X0))
Prior Matching (¢=T)

T
+Y (logpe(xi—1 | %) —logg(x, 1 | Xt7x0))] : (20.51)
=2

Denoising Matching (1=2...T")

Step 3: From Global Expectation to Local KLs
The expectation E,y, ,|x,) 1s an integral over the entire trajectory. However, each grouped term
depends on only a few variables. We can simplify the expectations by marginalizing out the
irrelevant variables.

* Prior Term: Depends only on x7.

p(xr) p(xr)

E 1 =E 1 = —KL .
q(X1:7]X0) [Og q(xr | XO)] q(xr[X0) |:0g q(xr | XO)] (q(xr | x0) || p(xT))

* Denoising Terms (r > 1): The term at step ¢t depends on x; and x,_;. We can split the
expectation using the chain rule ¢(x;,X,— | Xo) = q(X,—1 | X;,X0)q(X; | X0):

Po(i-1 | %) H

E ...]=E E 1
q(X1;T\X0)[] q(x|x0) [q(X—1[%r,%0) [Og q(Xzfl ’XnXO)

~~

—KL(g(X—1x¢,X0) || po (Xi—1[xr))

20.9 Enrichment 20.9: Diffusion Models: Modern Generative Modeling 1193

The inner expectation is exactly the negative KL divergence between the posterior and the
model. The outer expectation averages this KL over all possible noise levels x; sampled from

q(x: [xo).

The Standard Variational Bound Decomposition
We customarily minimize the negative ELBO (denoted L). Combining the results above yields the
canonical decomposition from the DDPM paper [223]:

T

L= L+ Lo +Y L (20.52)
~~ ~~ = ~~
Reconstruction ~ Prior Matching Denoising Matching

where the individual loss terms are defined as:

Lo := —logpe(xo | X1), (20.53)
Ly :=KL(q(xr | x0) || p(x7)), (20.54)
L= Eq(x,\xo) [KL(‘](Xt—l | x:,%0) || P (Xe—1 X)) |- (20.55)

Why is this powerful? Because we chose Gaussian transitions for both the forward process ¢ and
the reverse model pg, every KL divergence inside L; and L,_; can be computed in closed form.
This avoids high-variance Monte Carlo estimates for the KL terms themselves. We only need to
sample the outer expectation [|x,), Which is efficiently handled by sampling a single X, during
each training step.

Interpretation: What Each Term Is Doing (and What Actually Trains 6)
Eq. (20.52) isolates exactly where learning happens:

» Stepwise denoising KLs .%;_; (the main trainable supervision). For each ¢ > 2, the model
transition pg(x;—1 | X;) is trained to match the true posterior g(x,—1 | X;,Xo) induced by the
forward process. This is the core “analytic teacher / learned student” mechanism: during
training X is known, so the teacher posterior is tractable; at sampling time X¢ is unknown, so
only pg remains.

* Prior KL .4 (typically 0-independent). With a fixed forward schedule and fixed prior
p(x7), Zr depends only on g and p, and contributes no gradient to 6. Conceptually, it
accounts for matching the endpoint distribution of the forward chain to the chosen prior.

* Decoder / reconstruction .. This term trains the final step mapping a lightly noised x;
back to data xg. It plays the same role as a VAE decoder likelihood term: its exact form is an
implementation choice (e.g., a discretized Gaussian when Xy is integer-valued pixel data).

Why This Matters for Implementation

This decomposition is not a heuristic: it is the variational identity that converts an intractable
marginal likelihood objective into a sum of tractable per-timestep losses. In practice, we estimate
these expectations by sampling a minibatch xo, drawing a timestep ¢, sampling X, ~ ¢(X; | Xo), and
evaluating the corresponding term. Once we choose a parameterization of the reverse Gaussian
mean (e.g., predicting € or Xg), the denoising KLs .Z}_; reduce (up to 6-independent constants and
known timestep-dependent weights) to the simple regression objectives used in modern implementa-
tions [223, 449].

1194 Chapter 20. Lecture 20: Generative Models Il

Denoising diffusion probabilistic models (DDPMs) learn to reverse a fixed, gradually destructive
noise process. The forward process perturbs a clean sample xy by injecting Gaussian noise over
T steps, transforming it into a nearly pure noise vector xr. The model is trained to invert this
process: starting from x7 ~ .47(0,1), it denoises step-by-step, ideally recovering a sample on the
data manifold.

Training Phase. Instead of directly reconstructing the clean image x(, the model is trained to predict
the exact noise € ~ .47(0,I) used to generate a corrupted sample x; at a randomly selected timestep.
This is done using the closed-form reparameterization:

xt:\/O_Tth—i- \/1—56,8.

This formula defines the marginal distribution g(x; | x9), which is analytically tractable because
the forward process adds Gaussian noise at each step. Thanks to the Gaussian structure, we can
bypass the full Markov chain xy — x; — - - - — x; and sample x; directly from xq. Since xy is available
during training, we know both the corrupted image x; and the noise € used to produce it — giving us
a clean, fully supervised learning signal at every step.

A new timestep ¢ ~ Uniform(1,7) is sampled independently for each training example in every
iteration. This stochastic scheduling ensures that the model is exposed evenly to all levels of noise —
from lightly perturbed images (¢ small) to highly corrupted ones (¢ large). As a result, the network
learns to denoise across the entire corruption spectrum, handling both subtle and extreme distortions.

Crucially, the model is not trained to perform full denoising in a single step. Rather, it learns a
local denoising direction at a specific timestep — the vector that reduces the noise level just slightly.
These local predictions are later chained together during inference, gradually converting pure noise
xr ~ A (0,1) into a coherent image. In this way, the global generative trajectory is composed of
small, timestep-specific updates, each learned with direct supervision.

The objective is a simple mean squared error:

Zo(1) = e —ea (x|,

where € is the model’s noise estimate given the noisy input and timestep. Because € ~ .47(0,1)
has a time-invariant distribution, this formulation provides uniformly scaled gradients and avoids
timestep-dependent loss reweighting.

Training Loop
 Sample minibatch {x(()i) B ~qlxo)
* For each sample, draw 7 ~ Uniform({1,...,T})
 Sample € ~ 47(0,1)
* Generate corrupted input:

xt=\/67txO+v1—66z8

Update 6 by minimizing:

;Ii e - 89<X§i)7t(i))”2

20.9 Enrichment 20.9: Diffusion Models: Modern Generative Modeling 1195

Sampling Phase. Once training is complete, DDPMs generate new data by sampling from the
learned reverse process. The generative trajectory begins with a latent x; ~ .47(0,1) and iteratively
denoises it using the model’s predictions until a final sample xg is obtained.

Connection fo the Model Distribution pg(x;—1 | x;).
During inference, each reverse step samples from a parameterized Gaussian:

PG(Xt—l ‘xf) = ('xl‘—l; nu9<xt7t)7 0-12]1))

where the mean g (x;,7) is derived from the model’s noise prediction:

1 1—o
pots) = —= (3= =2l).

and o/ is either fixed (e.g., set to the posterior variance Et) or learned.

Interpreting the Update.

This formula is a direct consequence of substituting the predicted noise into the reparameterized
form of the posterior mean. Intuitively, the model estimates the direction that locally increases the
probability density of the data at each step — a learned score-like vector pointing toward higher
likelihood under the evolving distribution p; (x;).

Stochasticity and Sample Diversity.

The added noise o;z, where z ~ .47(0,1), ensures that the process remains stochastic for all # > 1.
This stochasticity is crucial for generating diverse outputs: even with a fixed starting point x7, the
sampled trajectory may differ based on the random noise added at each step, enabling the model to
explore multiple valid reconstructions from the same latent seed.

Final Step Refinement.
To ensure a clean and stable output, the final step at t = 1 is typically performed deterministically:

ol 1) = (3= = a1)
Xo=Ho\X1, 1) = —F— | X1 — —F/——== &0\ X1, .
N7 V1i—0oy
This prevents reintroducing noise into the final output and produces the model’s best estimate of a
sample from the data distribution.

Sampling Loop
* Initialize xr ~ .47(0,1)
e Fort=T,...,1:
- Ift > 1, sample z ~ 47(0,1); else set z =0
— Compute:

Xi—1 = Mo (X¢,1) + 0z

* Return final sample xg

Each step applies the learned mean g (x;,7) and injects a calibrated amount of noise oz,
gradually transforming white noise into a structured output. This aligns training and sampling:
the same noise prediction €y (x;,7) used in the objective is used here to parameterize pg (x,—1 | x;),
ensuring behavioral consistency and high-fidelity synthesis.

1196 Chapter 20. Lecture 20: Generative Models Il

Backbone Architecture: Why U-Net Fits Denoising in Diffusion Models

At the heart of Denoising Diffusion Probabilistic Models (DDPMs) is the noise prediction network
€o(xz,1), which learns to estimate the additive Gaussian noise present in a noisy image x; at a given
diffusion timestep ¢. The model’s objective is not to directly recover the clean image xp, but to
predict the noise € that was added to it—a simpler and more stable residual formulation that exploits
the additive structure of the forward process.

In nearly all implementations, this network adopts a modernized U-Net architecture [532], an
encoder—decoder design with skip connections. Originally introduced for biomedical image segmen-
tation, U-Net embodies architectural principles that are highly compatible with denoising: multiscale
abstraction, spatial alignment preservation, and residual refinement. For foundational architectural
background, refer to 15.6.

Why an Encoder-Decoder? Even though the goal is to produce an output of the same shape as
the input—namely, a per-pixel noise estimate & (x;,¢) € RF>*W*C_a plain convolutional stack is
inadequate. To accurately predict structured noise, the model must:

» Understand global layout and semantic structure, which is necessary at high noise levels.

* Recover fine-grained spatial details and local noise textures, which dominate at low noise

levels.

The encoder—decoder design serves precisely this purpose. The encoder compresses the input into
an abstract, low-resolution representation that captures global context. The decoder then expands
this representation back to full resolution, guided by high-resolution activations passed through skip
connections. This configuration allows the model to infer both where and how much noise is present
across scales, producing a high-fidelity noise map to subtract from x;, yielding the denoised estimate
Xt—1-

Multiscale Hierarchy and Architectural Intuition The forward diffusion process corrupts an
image gradually and hierarchically: fine textures and high-frequency details vanish early in the
process, while coarse shapes and global structure persist longer but are eventually lost as the timestep
increases. The U-Net mirrors this hierarchy in its encoder—decoder structure, enabling effective
prediction of structured noise across all scales.

¢ Encoder (Global Noise Pattern Extractor): The encoder consists of convolutional and
residual blocks, each followed by downsampling via strided convolutions or pooling. These
stages progressively reduce spatial resolution and increase the receptive field. As a result,
the encoder extracts increasingly abstract features that capture global noise patterns—broad,
low-frequency components of the corruption that dominate at high noise levels (large 7). These
features help the model reason about the type and spatial layout of large-scale noise.

* Bottleneck (Compressed Noise Signature): At the coarsest resolution, the bottleneck fuses
information across the entire image. It often includes attention layers to model long-range
dependencies, forming a compact semantic summary of the noise. Rather than focusing on
local details, this stage encodes a global noise signature that allows the model to estimate how
structured or unstructured the corruption is throughout the image.

20.9 Enrichment 20.9: Diffusion Models: Modern Generative Modeling 1197

* Decoder (Localized Noise Detail Refiner): The decoder reverses the downsampling process
by progressively upsampling the bottleneck features back to the original resolution. At each
scale, upsampled features are concatenated with the corresponding encoder outputs through
skip connections, enabling the model to reconstruct the spatial pattern of the noise with
pixel-level precision. This is especially important at small #, where most signal remains and
the model must predict subtle residual noise components for fine denoising.

* Skip Connections (High-Fidelity Noise Anchors): These direct links transmit high-resolution
features from the encoder to the decoder, bypassing the lossy bottleneck. They preserve local
structure from the input x; and act as spatial anchors, helping the model retain and refine
localized noise patterns without needing to regenerate them from coarse representations. In
essence, skip connections allow the decoder to focus on correcting residual noise at each pixel,
not reconstructing structure from scratch.

This architectural design aligns naturally with the multiscale nature of the denoising task. The
encoder and bottleneck guide the model at early timesteps (large ¢), when noise dominates and global
structure must be inferred. The decoder and skip connections specialize in late timesteps (small 7),
where fine details are visible and precise noise subtraction is required.

Walkthrough: Layer-by-Layer Data Flow A DDPM U-Net processes its input as follows:

1. Input: A noisy image x, € R¥”*W>C and scalar timestep ¢ are provided.

2. Timestep Embedding: The timestep is encoded via sinusoidal or learned embeddings, then
added to or modulates each residual block throughout the network. This enables conditional
denoising behavior based on the current noise level.

3. Encoder Path: Residual blocks compress the spatial resolution stage-by-stage while enriching
the semantic representation. Intermediate activations are stored for later skip connections.

4. Bottleneck: A central residual block—often augmented with self-attention—integrates global
context across the latent space.

5. Decoder Path: Each upsampling stage increases spatial resolution and concatenates the
corresponding encoder feature map. Residual blocks then refine the merged features.

6. Output Projection: A final convolution reduces the output channels to match the input image
dimensions, producing the predicted noise map &g (x;,1) € RI>*WxC,

Why U-Net Matches the Diffusion Objective The U-Net is ideally suited to the demands of
iterative denoising:
* At high ¢, the model must infer missing structure from context—enabled by the encoder and
bottleneck’s large receptive field.
* Atlow ¢, it must restore subtle noise patterns and textures—achieved through decoder refine-
ment and skip connections.
* The model’s residual nature matches the objective of DDPMs: instead of “generating from
nothing,” it incrementally removes noise, learning what to subtract.
This architectural symmetry between noise corruption and hierarchical reconstruction makes U-Net
a natural backbone for DDPMs, explaining its ubiquity in both pixel-space and latent-space diffusion
models.

1198 Chapter 20. Lecture 20: Generative Models Il

Resolution and Depth Scaling
The model scales its architecture to accommodate input resolution. This adjustment is often described
as a resolution—depth tradeoff: deeper U-Nets are used for higher-resolution datasets to ensure that
the receptive field covers the full image, while shallower variants suffice for low-resolution images:
* CIFAR-10 (32 x 32): Uses 4 resolution levels, downsampling by factors of 2 from 32 x 32 —
4x4.
* LSUN, CelebA-HQ (256 x 256): Use 6 resolution levels, down to 4 x 4, which allows deeper
processing and more extensive multi-scale aggregation.
This scaling ensures a balance between global context (captured at coarser resolutions) and
fine-grained detail (preserved by skip connections and upsampling paths), and prevents over- or
under-modeling at different scales.

Time Embedding via Sinusoidal Positional Encoding

Each diffusion step is associated with a timestep index ¢ € {1,...,T}, which determines the noise
level in the corrupted image x;. Rather than inputting ¢ directly as a scalar or spatial channel,
DDPMs encode this index using a sinusoidal positional embedding, as introduced in the Transformer
architecture [644]. For details, see Section 17.5.5.

The embedding maps ¢ to a high-dimensional vector:

Embed(7)[2i] = sin () , Embed(7)[2i+ 1] = cos (

_ ;>
100002i/4 100002/)’

where d is the embedding dimension. This yields a rich multi-scale representation of ¢ that provides
smooth variation and relative ordering across timesteps.

How the Time Embedding is Used
The sinusoidal vector Embed(t) € R? is passed through a small multilayer perceptron (MLP),
typically a two-layer feedforward network with a nonlinearity (e.g., SiLU). The output of the MLP
is a transformed time embedding 7 € RY where d’ matches the number of feature channels in the
current resolution level of the network.

This transformed vector 7 is then used as follows:

* In each residual block of the U-Net, 7 is broadcast across the spatial dimensions and added to

the activations before the first convolution:

h < h+ Broadcast(7),

where 1 € ROH>W ig the intermediate feature map and Broadcast(t) € RE#*W repeats ©
across spatial locations.

* This additive conditioning modulates the computation in every block with timestep-specific
information, allowing the network to adapt its filters and responses to the level of corruption
n x;.

* The time embedding is reused across multiple resolution levels and is injected consistently at
all depths of the U-Net.

Why Not Simpler Alternatives?
Several naive strategies for injecting time ¢ into the network fail to match the effectiveness of
sinusoidal embeddings:

20.9 Enrichment 20.9: Diffusion Models: Modern Generative Modeling 1199

* Feeding ¢ as a scalar input: Adding a scalar value lacks expressivity and does not capture
periodicity or multi-scale structure in the diffusion process.

* Concatenating as a spatial channel: Appending a constant-valued image channel represent-
ing t adds no location-specific structure and forces the network to learn to decode the meaning
of the timestep from scratch, which is inefficient and unprincipled.

* Learned timestep embeddings: While possible, they tend to overfit to the training schedule.
In contrast, sinusoidal embeddings are fixed and continuous, allowing generalization to unseen
timesteps or schedules.

Hence, sinusoidal positional encoding provides a continuous, high-capacity representation of
the timestep index ¢, and its integration into every residual block ensures the network remains
temporally aware throughout the forward pass. This architectural choice is central to DDPMs’ ability
to generalize across the full noise schedule and to specialize behavior for early vs. late denoising
stages.

1200 Chapter 20. Lecture 20: Generative Models Il

Model Scale and Dataset Diversity

DDPMs have been shown to scale effectively across a range of standard image generation bench-
marks, with model capacity adjusted to match dataset complexity and resolution. The success
of diffusion models across these diverse datasets underscores their flexibility and robustness for
modeling natural image distributions:

* CIFAR-10: A 32 x 32 low-resolution dataset of natural images across 10 object categories
(e.g., airplanes, frogs, trucks). The DDPM trained on CIFAR-10 uses a relatively compact
architecture with 35.7 million parameters.

* LSUN (Bedrooms, Churches): High-resolution (256 x 256) scene-centric datasets focused
on structured indoor and outdoor environments. These demand greater capacity to model
texture, lighting, and geometry. DDPMs trained on LSUN use 114 million-parameter models.

* CelebA-HQ: A curated set of high-resolution (256 x 256) face images with fine details in
skin, hair, and expression. The model architecture is the same as for LSUN, with 114 million
parameters.

* Large LSUN Bedroom Variant: To push fidelity further, a 256 million-parameter model is
trained by increasing the number of feature channels. This variant improves texture quality
and global coherence in challenging scene synthesis.

Together, these results demonstrate that DDPMs can successfully generate images across a

variety of domains—ranging from small-object classification datasets to high-resolution indoor
scenes and human faces—by appropriately scaling model depth and width to meet data complexity.

Summary

In summary, the DDPM network combines a modernized U-Net backbone with residual connections,
attention, group normalization, and sinusoidal time embeddings to robustly model the denoising
process at all noise levels. These design choices reflect a convergence of innovations from generative
modeling, deep CNNs, and sequence-based architectures, resulting in a stable and expressive
architecture well-suited for diffusion-based generation.

20.9 Enrichment 20.9: Diffusion Models: Modern Generative Modeling 1201

Enrichment 20.9.2.5: Empirical Evaluation and Latent-Space Behavior

Noise Prediction Yields Stable Training and Best Sample Quality

The DDPM training objective can be formulated in multiple ways — most notably by regressing the
true posterior mean fi,, the original image xg, or the noise € used to corrupt the data. An ablation
from [223] highlights the empirical advantage of predicting &, especially when using the simplified
loss:

Liimple(8) = By e 1€ — €9 (x1,1) ||

In Table 2 of the original paper, DDPMs trained to directly predict noise and using a fixed isotropic
variance achieve a FID score of 3.17 on CIFAR-10, outperforming all other parameterizations.
Notably:
* Mean prediction with fixed variance reaches FID 13.22, but training with learned variance is
unstable.
* Noise prediction stabilizes training and achieves state-of-the-art performance.

Image Interpolation in Latent Space
Interpolating images in pixel space typically leads to distorted, unrealistic samples. However,
interpolating in the diffusion latent space allows for smooth transitions while maintaining realism.

Diffused source Source Rec. A=D1 A=02 A=03 A=04 A=05 A=0.6 A=0.7 A=0.8 A=0.9 Rec. Source

oens, P S5
Figure 20.57: Interpolation between two CelebA-HQ images xo and x{, using latent space diffusion
embeddings.

Let xo,x, ~ p(xo) be two real samples and define their noised versions x; ~ g(x; | xo) and x; ~ g(x; |
xy)- Interpolation in pixel space between xo and x{, yields low-quality results, as such mixtures are
not on the data manifold.

Instead, the DDPM first encodes both inputs into latent noise space via the forward process. It
then linearly interpolates the latent pair:

.ft = (1 — k)x; -+ Ax;,
and decodes this interpolated noise via the learned denoising process:
Xo ~ Do (X() ‘)f,).

The results are realistic samples that blend semantic attributes from both source images — such
as hairstyle, pose, and identity features. The rec columns (i.e., A =0 and A = 1) show faithful
reconstructions of xy and x;, confirming that the process remains semantically grounded.

1202 Chapter 20. Lecture 20: Generative Models Il

Coarse-to-Fine Interpolation and Structural Completion

Unlike the previous interpolation experiment — where two images were encoded to the same noise
level ¢ and interpolated under varying weights A — this experiment investigates a different axis of
generative control: the impact of interpolating at different diffusion depths.

The idea is to fix two source images xo,x, ~ p(xo), encode them to different levels of corruption
x;,x}, perform latent-space interpolation as before:

ft = (1 —l)x,—f—lx;,

and decode %, ~ pg(xo | X;) via DDPM. But here, the timestep ¢ itself is varied to control the
granularity of information being destroyed and recombined.

Source Rec. A=0.1 A=0.2 A=0.3 A=0.4 A=0.5 A=0.6 A=0.7 A=0.8 A=0.9 Rec. Source
i 4 s - g | 4 |'I N g
o Steps ﬂﬁ.@ . Ak v | : V% :—.
875 steps . ~ | i - -

750 steps

625 steps

500 steps

375 steps

v9
99

250 steps

125 steps

0 steps

Figure 20.58: Interpolations between two CelebA-HQ images performed after different numbers of
forward diffusion steps. Small ¢ preserves structure; large ¢ results in novel completions.

As shown in Figure 20.58, we observe:

* ¢t = 0: Interpolation occurs directly in pixel space. The resulting images are unrealistic and far
off-manifold, suffering from blurry blends and unnatural artifacts.

* t = 250: Fine-grained attributes (like expression, or hair texture) blend smoothly, but core
identity remains distinct.

* t = 750: High-level semantic traits such as pose, facial structure, and lighting are interpolated.
The model effectively recombines partial semantic cues from both images.

* t = 1000: The forward diffusion has fully erased both source images. The interpolated latent
lies near the prior, and the reverse process generates novel samples that do not resemble either
input — underscoring the destructive nature of high ¢.

20.9 Enrichment 20.9: Diffusion Models: Modern Generative Modeling 1203

This experiment demonstrates that the forward diffusion process acts as a tunable semantic bottleneck.
Small ¢ values retain local details, enabling fine-grained morphing, while large ¢ values eliminate
low-level information, allowing the model to semantically complete or reinvent samples during
denoising. Crucially, it reveals how diffusion models naturally support interpolation at different
abstraction levels — from texture to structure — within a single framework.

Progressive Lossy Compression via Reverse Denoising

Beyond interpolation, DDPMs enable an elegant form of semantic compression. By encoding
images to a latent x; via forward diffusion and decoding with pg(x | x;), one can interpret x; as a
progressively degraded version of the original — retaining coarse structure at high ¢, and finer details
at lower ¢.

Share ¥, Shara x,,, Shara x,,, Shara x,

Figure 20.59: Samples xo ~ pg(xo | x;) from the same x,, with varying ¢. As ¢ decreases, more
high-frequency detail is recovered.

Figure 20.59 illustrates this behavior by fixing a latent x, from a given source image and sampling
multiple reconstructions at different noise levels. We observe:

* High (e.g., 1000): Almost all detail is destroyed. Yet, all samples from pg (xo | x;) consistently
reflect global properties such as face orientation and head shape — traits that persist deep into
the diffusion process.

* Intermediate 7 (e.g., 750): Mid-level features like sunglasses, skin tone, or background begin
to reemerge — attributes not present at ¢t = 1000, but encoded in the intermediate latent.

* Low? (e.g., 500): Fine texture and local details (e.g., wrinkles, clothing patterns, eye sharpness)
are reconstructed. The samples are perceptually similar and show near-lossless decoding.

This complements the earlier latent interpolation experiments: while Figure 20.57 and Figure 20.58
showed how DDPMs mix image content by interpolating between latents, Figure 20.59 focuses on
what semantic content is recoverable from a given latent. Together, these experiments reveal that:
* The forward process acts as a progressive semantic bottleneck — discarding detail layer by
layer, akin to a lossy compression encoder.
* The reverse process serves as a generative decoder, robustly reconstructing from incomplete
information while respecting semantic priors.
* DDPMs naturally support multiple levels of abstraction — from global pose to pixel-level
texture — controllable by the timestep ¢.
Critically, these findings also validate the choice of noise prediction and fixed-variance reverse
transitions (as shown in the ablation table): DDPMs not only achieve strong FID scores but exhibit
robust, controllable behavior across a range of generation and compression tasks — without the need
for external encoders or separate latent spaces.

1204 Chapter 20. Lecture 20: Generative Models Il

Motivation

While DDPMs produce high-quality samples, their sampling procedure is slow: generating each
image requires thousands of iterative steps, each injecting noise and resampling from a Gaussian.
Denoising Diffusion Implicit Models (DDIM) [580] propose a faster, possibly deterministic
(depending on our choice), alternative that reuses the noise trajectory learned during DDPM training.
Thus, allowing fewer, non-randomized reverse steps — without retraining the model.

The DDIM construction hinges on the forward diffusion process and its reparameterization, offering
a principled method to interpolate or skip timesteps using the same noise that corrupted the clean
sample. This enables sparse, deterministic or stochastic generation, with controllable speed and
sample diversity.

From DDPM Sampling to DDIM Inversion

To understand DDIM, we begin by revisiting a key property of the forward diffusion in DDPMs: the
fact that it admits a closed-form Gaussian marginal at each timestep ¢, conditioned on the original
sample xo. This allows any noisy sample x; to be written deterministically in terms of x¢ and a latent
noise variable €.

Importantly, this deterministic reparameterization can be inverted if we have access to x; and
the corresponding noise €. DDIM leverages this observation by proposing a new reverse sampling
mechanism: instead of sampling x;_; ~ pg(x,— | x;) using stochastic transitions, DDIM determinis-
tically reconstructs a denoised signal estimate Xy, then reuses the same noise to compute x; for some
s < t, bypassing the need for Gaussian resampling.

The result is a non-Markovian, deterministic sampling trajectory defined entirely by the model’s
noise prediction &g (x;,), which acts as a proxy for the latent variable governing the entire diffusion
path. This insight allows DDIM to:

* Reconstruct xp from a noisy x; using a single inference pass.

* Reuse the predicted noise to deterministically compute earlier samples x;.

* Support arbitrary skip steps and non-uniform timestep schedules.

* Eliminate stochasticity from the reverse process (optionally reintroducing it with a tunable

variance, to enhance the outputs variety).

We now derive the DDIM reverse (denoising) formula by walking through each conceptual and
mathematical step.

1. From Forward Diffusion to Inversion
The DDPM forward process defines a tractable Gaussian marginal at each timestep:

q(x: | x0) = A (VO xo, (1 —)1,
which admits the following reparameterization:
X =vVaxg++1—0oy¢€, e~ A (0,1).

This expression shows that x; lies on a deterministic path defined by the clean sample xy and
the noise variable €. If both x; and € are known, we can recover the original sample using:

X0 = \/1d>,<%_m'8)'

20.9 Enrichment 20.9: Diffusion Models: Modern Generative Modeling 1205

However, during sampling, we only observe the noisy sample x;. The clean image xg is unknown.
To address this, the model is trained to approximate the injected noise:

€=~ gg(xs,1),

allowing us to estimate the clean sample as:
. 1 T
xo:ﬁ(xt— 1—06,-89()6,,1‘)).

This single-step estimate £y may be inaccurate when ¢ is large — that is, when x; is heavily corrupted
by noise and the denoising task is most difficult. Hence, DDIM continues with a multi-step procedure:
starting from pure noise xr, it progressively refines samples x;, . .. Xs<, . . ., Xp using noise prediction
and noise reuse. We now derive the mechanism that enables this recursive denoising.

2. Reverse Step to Arbitrary s <t
In DDPM, the reverse process is modeled as a Markov chain:

XT —> XT—1 7> XT—2 —> *** — X0,

where each step involves sampling from a Gaussian distribution conditioned only on the previous
timestep. This formulation requires a long sequence of small, incremental denoising updates —
typically 1000 steps — to reach high-quality samples.

DDIM generalizes this by allowing non-Markovian jumps: it permits transitions from any
timestep x; to any earlier timestep x; (with s < f), skipping over intermediate states. This defines a
shortened inference path of the form:

XT —>th —>x12—>"'—>.x0,

with T >t} >, > --- >0, often using just 25, 50, or 100 steps — significantly accelerating sampling.

This is possible because DDIM leverages the closed-form marginals of the forward process:

)Cs:\/(jTSXOWL V1—0-€,

where 0, = Hj’:l o is the cumulative signal retention up to step s, and € ~ .47(0,1) is the latent
noise variable that parameterizes the entire corruption trajectory.
At inference time, since we do not have access to xg, we use the estimated denoised sample:

. 1 -

Xo = ﬁ (Xt VA Oc,~89(x,,t)>)

t

and reuse the predicted noise vector €g(x;,) to compute a deterministic transition to the earlier
timestep X;:

Xy =0 Xo+ V 1—(75-89()6[,1).

1206 Chapter 20. Lecture 20: Generative Models Il

This formulation has several key benefits:
* It allows coarse timestep schedules without retraining — e.g., using 50 steps instead of 1000.
* The predicted noise €g(x;,7) acts as a global direction, reused to guide the entire trajectory.
* The sampling process becomes non-Markovian — each step is computed from shared global
information rather than local noise.

DDPM: Xy = X7_1 = X7_2 — -+ —> X1 = X9 (I-step Gaussian update per transition)

DDIM: XT —> Xy —> Xy —> *++ —> X = X0 (larger steps, no sampling noise)

Figure 20.60: Comparison of reverse trajectories. DDIM reduces the number of steps by using a
deterministic mapping with shared noise.

Finally, note that directly jumping from x7 to Xy in one step is highly unstable: for large 7', the sample
xr ~ A (0,I) contains no useful structure. DDIM’s stepwise refinement — using intermediate
predictions of £y — enables better signal recovery through multiple corrections, while still avoiding
the full 1000-step path of DDPM.

This construction motivates the next question: how is it valid to reuse the same noise vector
across the entire trajectory? We now formalize that in the next part.

(a7 /—N-I
e~ i, T iy,
DDIM: (3) (XL} (1) — (o)

fl(ﬂf?:;|33| s ?1’3(1)

Figure 20.61: Graphical comparison of DDPM and DDIM inference models. 7op: In DDPM,
the generative process is a Markov chain: each reverse step x;_; depends only on the previous x;.
Bottom: DDIM defines a non-Markovian process, where each x; can be computed directly from x;
using the predicted noise &g (x;,7), enabling accelerated, deterministic inference.

Adapted from [580].

20.9 Enrichment 20.9: Diffusion Models: Modern Generative Modeling 1207

3. Why the "single-noise” picture is still correct

The DDPM forward process injects fresh Gaussian noise at every step, defining a Markov chain
q(x; | x,—1). This structure may suggest that different noise variables govern each transition. However,
DDIM reveals that this is not necessary.

Key insight: forward marginals are closed-form. Despite the forward process being implemented
as a chain of conditional Gaussians, its marginal at any timestep 7 is analytically tractable:

q(x; | x0) = AN (\/Exm (1 _(_XI)H))

which can be reparameterized as:

X =V0xo++/1—0a-&, e~ 4(0,I).

Thus, every sample x; lies on a deterministic trajectory parameterized by a single global noise vector
€, which DDIM aims to recover at test time.

DDPM training predicts this global noise. The model is trained using:
wgsimple = Exo,t,S HS —&p (xf’t)Hz)

meaning that the network learns to recover the same underlying € that generated x;, regardless of the
Markov structure used in implementation.

DDIM reuses this noise in reverse. Using the prediction &g (x;,7), we estimate the clean image:

£o= \/107, (xt— V1 —wee(xz,t)),

and reconstruct an earlier point x; along the same trajectory as:

xS:\/éTS')?o—i—\/1—565—6,2-89(x,,t)+6t-z, ZNJV(O,H)

In the deterministic case (o; = 0), this constructs a smooth, invertible path backward. When o; > 0,
stochasticity is added — not to resample new noise, but to reflect posterior uncertainty.

Why this reuse is consistent. At every new step x,, we pass the new pair (xs,s) into the network
and obtain a fresh prediction &g (xs,s), which again approximates the same global noise vector &.
Although DDIM reuses noise directionally from step to step, it still recomputes it from scratch at
each stage — preserving consistency with the learned denoising function.

Conclusion:
* DDPM marginals are governed by a single noise vector €, not per-step randomness.
* DDPM training teaches the model to recover this latent vector from any x;.
* DDIM sampling reuses this direction — deterministically or stochastically — along a consis-
tent generative trajectory.
* This makes DDIM both theoretically sound and fully compatible with DDPM training.

1208 Chapter 20. Lecture 20: Generative Models Il

4, Optional Stochastic Extension
DDIM supports a stochastic generalization of its reverse process, allowing a smooth tradeoff between
determinism and diversity. For any reverse step t — s with s < ¢, the update becomes:

Xs = v Oy - Xo —l—\/l—O_Cs—Gth-Ee(xt,l)—i- Or—s 2 ZNJV(O,H),
—— ——

stochastic noise

projected clean signal denoising direction

550 = \/167t (xt — 1/ 1-— 0_6, ~89<X,,l‘)) .
Term-by-Term Intuition:
* Projected clean signal: The model’s estimate % is projected from step ¢ back to step s using
the forward process statistics 0.
* Denoising direction: The score estimate €q(x;,#) points back toward x;; scaling it reintroduces
the appropriate amount of noise compatible with the forward marginal at step s.
* Stochastic noise: The final term injects fresh Gaussian noise of variance 67 ,. When o;_,; =0,
the process is fully deterministic. When 67, = B }:—g‘;‘, the update recovers the DDPM
reverse step.

Why This Works:
* Flexible yet faithful reverse step: The reverse mean is defined using the learned score (via
£0), while the variance 672, is a tunable hyperparameter. Every choice in the interval

O-t2—>s € [07 Bt : }:%]

yields a valid generative step with unchanged forward marginals and training objective. In
practice, most works set s =7 — 1, reducing the bound to 3.
* Preserved training semantics: The forward process and training objective are left unchanged:

q(x | x0) = A (Vauxo, (1-)1),

and the model is trained to predict the noise € ~ .47(0,I) that produced x;. At inference time,
this same prediction is reused, regardless of the stochasticity level o;_;.
* Unbiased noise injection: The stochastic term z ~ .47(0,1) is added after the model predicts

the denoising direction €¢(x;,#). This ensures that:

— The model prediction remains unchanged regardless of the noise realization.

— The expectation over samples is centered on the deterministic prediction.
Thus, the added noise does not degrade the learned signal path but simply introduces controlled
variation. This behavior approximates the uncertainty inherent in the true posterior g(X; |
X,X), even though X is not available at test time. As a result, DDIM allows stochasticity
without biasing or corrupting the generation trajectory.

20.9 Enrichment 20.9: Diffusion Models: Modern Generative Modeling 1209

* Robustness to training mismatch: The only approximation is that future steps are now
fed states x; that include artificial noise o;_,sz, not produced via the original forward chain.
Nevertheless:

— This noise is still Gaussian and isotropic, matching the training distribution.
— For moderate o;_,y, the deviation is small. Empirically, DDIM sampling remains stable
and yields accurate denoising, as shown in Table 2 of [580].

Practical Implications:

* Deterministic vs. stochastic sampling: DDIM enables a continuum of generative behaviors,
controllable via the noise parameter o;_,;. Setting ;s = 0 yields fully deterministic sampling
trajectories, ideal for tasks such as image editing, latent space interpolation, and reproducible
evaluation. In contrast, using o, ,; = /1 — @ or 6; ,; = [§, restores stochasticity, producing
diverse samples comparable to those from DDPM.

* Model reuse without retraining: The added noise term o;z, where z ~ .#(0,1), is injected
after the network has predicted the denoising direction. Since this perturbation does not affect
model outputs during training, DDIM sampling remains fully compatible with DDPM-trained
networks. It requires no architectural changes or retraining and can be applied as a post-hoc
modification at inference time.

* Flexible speed—diversity trade-off: DDIM supports coarser inference schedules (e.g., 50 or
100 steps) compared to the original 1000-step DDPM, significantly accelerating generation.
Smaller values of o; lead to crisp, high-fidelity samples, while larger values increase diversity.
Since oy is selected at test time, this trade-off remains fully user-controlled.

5. Advantages of DDIM Sampling

* Deterministic inference: High-quality samples can be generated without randomness.

* Speedup: Fewer timesteps (e.g., 25, 50, or 100 instead of 1000) yield strong results.

* No retraining required: DDIM reuses DDPM-trained noise predictors.

* Trajectory consistency: Sampling follows the learned denoising direction.

* Tunable diversity: Optional variance allows DDPM-like diversity when needed.
The result is a more flexible sampling framework that enables both efficient and expressive image
generation — a critical step toward scaling diffusion models in practice.

For further insights and ablations, we refer the reader to [580], which introduces DDIM and
empirically benchmarks its improvements.

1210 Chapter 20. Lecture 20: Generative Models Il

Diffusion models offer a flexible generative framework, but in their basic formulation, sample
generation proceeds unconditionally from Gaussian noise. In many real-world settings, we want to
steer this generation process — for example, to condition on class labels, textual prompts, or other
forms of side information. This general strategy is known as guidance.

Guidance techniques modify the reverse diffusion process to bias samples toward desired outcomes
while retaining high sample quality. These approaches do not alter the forward noising process, and
instead inject additional directional information into the sampling dynamics — often by adjusting
the reverse transition rule.

We now explore several influential guidance strategies, beginning with the original classifier guid-
ance method introduced by Dhariwal and Nichol [122].

Classifier Guidance

The first major form of guidance was introduced by Dhariwal and Nichol [122] under the name
classifier guidance. It extends DDPMs to class-conditional generation by injecting semantic feedback
from a pretrained classifier into the sampling dynamics of the reverse diffusion process.

During training, the denoising network &g (x;,?) is trained as usual to predict the noise added at each
timestep, following the standard DDPM objective. Separately, a classifier py (y | x,) is trained to
predict labels from noisy images x; at various timesteps # € [0, T']. This is achieved by minimizing a
standard cross-entropy loss over samples from the noising process. The classifier is trained after or
in parallel with the diffusion model, and remains fixed during guided generation.

At inference time, we generate a trajectory by progressively denoising x7 ~ .4(0,1) toward xy, using
the reverse Gaussian transitions modeled by the network. To bias generation toward a particular
class y, we modify the reverse step by incorporating the gradient of the log-probability log py (v | x;)
with respect to the current sample x;. This yields a modified score function via Bayes’ rule:

Vi logp(x: | y) = Vi logp(x;) + Vi logp(y | x:),

where the first term is the score of the unconditional model, and the second term comes from the
classifier. Since DDPMs already learn an approximation to V,, log p(x;), we can guide sampling by
simply adding the classifier gradient.

In score-based language, the noise prediction is adjusted as:

Equided (X71,1) = E9(x1,1) —5- X,V log py (v | x¢),

where:
* £g(x,1) is the denoiser’s prediction of the added noise,
* Y, is the variance of the reverse diffusion step at time ¢,
* s> 01is a tunable guidance scale that controls how strongly the generation is biased toward
class y.

In practice, the classifier gradient V, logpy(y | x;) is computed by backpropagating through the
logits of a pretrained classifier py (y | /), using automatic differentiation.

20.9 Enrichment 20.9: Diffusion Models: Modern Generative Modeling 1211

During sampling, this is done as follows:

1. Given the current noisy sample x; and the desired class y, compute the classifier’s logit vector
U= fo(x) € R€, where C is the number of classes.

2. Extract the log-probability of the target class: log py (v | x;) = logsoftmax(¢),.

3. Backpropagate this scalar with respect to the input x; (not with respect to the model weights)
to obtain the gradient:

Vi logpy (v | x:).

4. Add this gradient to the score function, scaled by the guidance factor s, to steer the reverse
update toward class y.

At first glance, it may seem problematic to alter the denoising trajectory learned by the model. After
all, the diffusion model is trained to predict noise that reverses the corruption process from x; to x;_1,
and adding arbitrary gradients could in principle interfere with that process.

However, the addition of the classifier gradient is not arbitrary—it is theoretically grounded. We
remind that the reverse diffusion process samples from the conditional distribution p(x, |), and its
associated score function is:

Vi logp(x: | y) = Vi logp(x;) +Vy log p(y | x:),

by Bayes’ rule. The unconditional model learns to approximate V,, log p(x;) through score estimation
or noise prediction. Adding V,, logp(y | x;), which comes from the classifier, completes the full
class-conditional score.

Thus, the classifier gradient is not changing the direction arbitrarily—it is restoring a missing
piece of the full score function required for class-conditional generation. The classifier acts like
a plug-in module that injects semantic preference into the learned dynamics, gently pulling the
sample trajectory toward regions where x; is likely to belong to class y, without disrupting the overall
denoising process.

Empirically, this simple mechanism has been shown to substantially improve both perceptual quality
and class accuracy, particularly at moderate-to-high guidance scales s € [1, 15]. It steers trajectories
toward semantically meaningful modes in the conditional distribution, leading to clearer, sharper
outputs—often at the cost of some diversity, which can be tuned via the scale s.

This mechanism makes classifier guidance a plug-and-play enhancement: any differentiable classifier
can be used, and the guidance strength s can be tuned at inference time to balance fidelity and
diversity.

Although classifier guidance is simple to implement and produces significantly sharper and more
class-consistent samples, it does come with two practical drawbacks: it requires training and storing
a separate classifier over noisy images, and it introduces extra computation at sampling time due to
gradient evaluations at every timestep. These limitations motivate the development of classifier-free
guidance, which we discuss next.

1212 Chapter 20. Lecture 20: Generative Models Il

Classifier-Free Guidance

While classifier guidance enables powerful class-conditional generation, it comes with practical
drawbacks: it requires training and storing a separate classifier, and incurs additional gradient
computations at each sampling step. To overcome these limitations, Ho and Salimans [224] proposed
a remarkably simple alternative: classifier-free guidance.

The key idea is to let the denoising model itself learn both the unconditional and class-conditional
scores. That is, instead of training a separate classifier to inject V,, logp(y | x;), we extend the
model input to optionally accept conditioning information and teach it to interpolate between both
behaviors.

Training Procedure

Let €g(x;,t,y) denote a noise prediction model that is explicitly conditioned on a class label y. The
classifier-free guidance technique trains this model to operate in both conditional and unconditional
modes using a simple dropout strategy on the conditioning signal.

Concretely, during training we sample a data-label pair (xo,y) ~ ¢(x,y), and select a timestep
t € {1,...,T}. We generate a noisy input x, = /0xo + /1 — &€ where € ~ .4#°(0,1), and then
choose a conditioning label as:

. Jy with probability 1 — parop,
Y @ with probability pgrop,

where @ denotes an empty or null token indicating that no label is provided.
We then minimize the standard DDPM loss:

Exsey |ll€o(.1,9) ¢l

thus training the model to perform both conditional and unconditional denoising, depending on
whether ¥ is real or masked. In practice, pgrop € [0.1,0.5] provides a good trade-off between learning
both behaviors.

How the Conditioning y is Incorporated. The conditioning variable y must be integrated into
the denoising model in a way that allows the network to modulate its predictions based on class
information (or other forms of conditioning such as text). The implementation depends on the nature
of y:
* Fordiscrete class labels (e.g., in class-conditional image generation), y € {1,...,C} is typically
passed through a learnable embedding layer:

ey = Embed(y) € RY.

This embedding is then added to or concatenated with the timestep embedding ¢, = Embed(t)
and used to modulate the network. A common design is to inject e, into residual blocks via
adaptive normalization (e.g., conditional BatchNorm or FILM [479]) or as additive biases.

* For richer conditioning (e.g., language prompts or segmentation masks), y may be a sequence
or tensor. In such cases, the network architecture includes a cross-attention mechanism to
allow the model to attend to the context:

gk’
CrossAttn(g,k,v) = softmax | — | v,

Vd

20.9 Enrichment 20.9: Diffusion Models: Modern Generative Modeling 1213

where the keys k and values v come from an encoder applied to the conditioning input y, and
the queries ¢ are derived from the image representation.
These mechanisms allow the model to seamlessly switch between conditional and unconditional
modes by simply masking or zeroing out the embedding of y during classifier-free training.

Sampling with Classifier-Free Guidance
At inference time, we leverage the model’s ability to perform both conditional and unconditional
denoising. Given a noisy input x; at timestep ¢, we evaluate the model under two scenarios:

Econd = Sg(x,,t,y),
Euncond = €0 (xtvta @),

where y is the conditioning label (e.g., a class or prompt), and @ denotes an unconditional (empty)
input. These predictions are combined using the interpolation formula:

£guided = &uncond +s- (gcond - 8unc0nd) ’

where s > 1 is the guidance scale controlling the strength of conditioning. This can also be written
as:

Eguided = (1 + S) *€cond — S * Euncond-

The following piece of code illustrates how class labels are embedded and applied inside a diffusion
architecture (e.g., U-Net):

import torch
from tqdm import tqdm

Assumes the following are pre-initialized:

- model: diffusion model (e.g., U-Net)

- texzt_encoder: a frozen CLIP/T5-style encoder
tokenizer: matching tokenizer

- scheduler: DDPM or DDIM scheduler with .step()
- guidance_scale: e.g., 7.5

- H, W: image dimensions (e.g., 64x64)

1
2
3
4
5
6
7
8
9

BHOR R R R "R
1

12 # Step 1: Define prompt(s)

13 prompts = ["a photo of a dog"l # List of texzt prompts

14 batch_size = len(prompts)

15 device = torch.device('"cuda" if torch.cuda.is_available() else "cpu")

17 # Step 2: Tokenize conditional and unconditional prompts
18 cond_tokens = tokenizer (prompts, padding=True, return_tensors="pt")
19 uncond_tokens = tokenizer ([""] #* batch_size, padding=True,
< return_tensors="pt")
20

1214 Chapter 20. Lecture 20: Generative Models Il

21 # Step 3: Encode prompts into embeddings

2 text_cond = text_encoder (

23 input_ids=cond_tokens.input_ids.to(device),

24 attention_mask=cond_tokens.attention_mask.to(device)

25).last_hidden_state # Shape: (B, T, D)

26

27 text_uncond = text_encoder (

28 input_ids=uncond_tokens.input_ids.to(device),

29 attention_mask=uncond_tokens.attention_mask.to(device)

30).last_hidden_state # Shape: (B, T, D)

31

32 # Step 4: Concatenate for a single forward pass

33 text_embeddings = torch.cat([text_uncond, text_cond], dim=0) # Shape: (2B, T,
D)

34

35 # Step 5: Initialize Gaussian noise

36 X = torch.randn((2 * batch_size, model.in_channels, H, W), device=device)

37

33 # Step 6: Reverse sampling loop

39 for t in tqdm(scheduler.timesteps):

40 t_batch = torch.full((2 * batch_size,), t, device=device,

< dtype=torch.long)
41

) with torch.no_grad():
43 noise_pred = model(x, t_batch,
- encoder_hidden_states=text_embeddings) .sample
44 noise_uncond, noise_cond = noise_pred.chunk(2) # Split into (B, ...)

< chunks
45
46 # Apply classifier-free guidance
47 guided_noise = noise_uncond + guidance_scale * (noise_cond -
—~ noise_uncond)
48
49 # Step the scheduler using only gutded samples
50 x = scheduler.step(guided_noise, t, x[:batch_size]).prev_sample # Shape:
~ (B, C, H, W)

This simple pattern is powerful and generalizes across different modalities. In more complex systems
such as Stable Diffusion [531], the conditional input y is often a text prompt embedded using a
frozen transformer like CLIP [498], and passed through multiple layers of cross-attention throughout
the U-Net decoder.

Why Classifier-Free Guidance Works: A Score-Based and Intuitive View

Classifier-Free Guidance (CFG) builds on a simple yet powerful idea: train a single diffusion model
to support both unconditional and conditional denoising behaviors. By exposing the model to both
kinds of inputs during training, it becomes possible to steer generation toward a semantic target y
without relying on a separate classifier.

To understand this, consider the decomposition of the conditional log-probability using Bayes’ rule:

log p(x; | y) =log p(x;) +log p(y | x;). (20.56)

20.9 Enrichment 20.9: Diffusion Models: Modern Generative Modeling 1215

Taking the gradient with respect to x; yields:

Vi logp(x: | y) = Vi logp(x;) + Vi logp(y | x/). (20.57)

This tells us that the conditional score consists of two components:
* an unconditional score V,, 1og p(x;), which represents the direction that increases likelihood
under the overall data distribution;
* alabel-specific influence V,, 1og p(y | x;), which corrects the direction based on the condition-
ing variable y.
In classifier guidance, the second term is approximated by a trained classifier. In classifier-free
guidance, however, both terms are learned by the same model through a clever training trick:
randomly dropping the conditioning label y (e.g., with 10% probability) and training the model to
denoise in both settings.
Specifically:
* When y = "dog", the model sees noisy dog images x; and learns to denoise them toward clean
images xo, guided by the label.
* When y is dropped, the model learns unconditional denoising: predicting xo without any
external label.
As a result, the model implicitly learns:

so(x¢,y,t) =V logp(x: | y), (conditional score) (20.58)
so(x;,@,t) =V, logp(x;), (unconditional score) (20.59)

Subtracting these gives an approximation of the label’s effect:
s@(xt7y7t) - Se(xta @,I) ~ Vx, logp(y | xt)- (20.60)

Intuition: This subtraction isolates the direction in feature space that pushes a sample toward better
alignment with label y. It’s as if we are extracting the “semantic vector field” attributable to the label
alone. By multiplying this vector by a scale factor s, we can amplify movement in the direction of
the conditioning label.

Substituting into Bayes’ decomposition gives:
Vi logp(x; | y) = sg(x,@,t)+s- (so(x:,7,1) —s0(x:,2,1)), (20.61)

where s € R>(is a user-defined guidance scale.

In practice, most diffusion models are trained to predict noise € rather than the score directly. This
reasoning therefore translates into the widely-used noise prediction rule:

€guided = Euncond T * <Scond - 8uncond> s (20.62)

where €.onqa = €9 (x,,t,y) and Euncond = o (X;,l, @)-

Conclusion. By training the model on noisy samples paired with and without the label, it learns how
the presence of y modifies the denoising direction. At inference time, we explicitly compute and
amplify this direction by subtracting the unconditional prediction and scaling the result. This lets us
generate samples that are more aligned with the target concept, while preserving the stability of the
underlying diffusion process.

1216 Chapter 20. Lecture 20: Generative Models Il

Interpretation

The difference €.ond — Euncond approximates the semantic shift introduced by conditioning on y.
Scaling this difference by s amplifies the class- or prompt-specific features in the output, steering the
model’s trajectory toward the desired mode. Larger values of s increase class adherence but may
reduce diversity, reflecting a precision-recall trade-off in generation.

Typical Settings

Empirically, guidance scales s € [7.5, 10] often strike a good balance between fidelity and variation.
Values s > 10 can produce oversaturated or collapsed samples, while s = 0 corresponds to pure
unconditional generation.

Figure 20.62: Effect of Guidance Scale in Classifier-Free Guidance (Stable Diffusion v1.5).
Each column shows images generated from the same prompt using different guidance scales. As the
scale increases from left to right (values: —15 ~ 1, 3, 7.5, 10, 15, 30), the outputs transition from
weakly conditioned or incoherent samples to more strongly aligned and vivid ones. However, overly
high values (e.g., 30) may introduce distortions or oversaturation. Guidance scales 7.5/10 typically
produce the most realistic and semantically faithful results. Adapted from [18].

Advantages
Classifier-free guidance has become a cornerstone of modern diffusion-based systems because:
* It requires no auxiliary classifier: Conditioning is integrated directly into the denoiser,
making the architecture self-contained.
* It avoids expensive gradient computations: No backward pass is needed during sampling.
* It enables dynamic guidance strength: Users can modulate s at test time without retraining
the model.
It generalizes beyond classes: The same technique applies to text prompts, segmentation
maps, audio inputs, or any other conditioning.

Adoption in Large-Scale Models
Classifier-free guidance is now standard in most large-scale diffusion pipelines, including:

* Imagen [540], which uses language conditioning on top of a super-resolution cascade,

* Stable Diffusion [531], where text embeddings from CLIP guide an autoencoding UNet,

* DALLE-2 [508], which uses CFG to synthesize and refine images from textual prompts.
This generality makes it one of the most practical and powerful tools for guided generative modeling
with diffusion models.

20.9 Enrichment 20.9: Diffusion Models: Modern Generative Modeling 1217

Enrichment 20.9.5: Cascaded Diffusion Models

Motivation and Overview

Diffusion models have achieved state-of-the-art results in image synthesis, but generating high-
resolution samples directly (e.g., 256 x 256 or larger) poses serious challenges. Large images require
significantly more memory and computational resources, and a single generative model must capture
both global structure and fine-grained detail. Additionally, standard denoising processes often
struggle to coordinate long-range dependencies at such scales.

Cascaded Diffusion Models (CDMs), introduced by Ho et al. [225], address this issue by breaking
the generation task into multiple stages. Instead of training a single large diffusion model for
full-resolution synthesis, CDMs train a sequence of models:

1. A low-resolution base model generates a small image (e.g., 64 x 64) from Gaussian noise,
conditioned on a class label y.

2. One or more super-resolution models then refine this image, increasing resolution step-by-
step (e.g., 64 — 128 — 256) while maintaining semantic consistency and adding detail. Each
model conditions on both the noisy image x; and a low-resolution context image obtained by
upsampling the previous model’s output.

256X 256

Gdx G4

32x32

Class ID — 213 ’
“Irish Setter” =
o — _

Madel 1 Maodel 2[

Figure 20.63: Overview of a Cascaded Diffusion Pipeline. The first model generates a low-
resolution sample from noise (left). Subsequent models condition on this sample (upsampled) to
generate higher-resolution versions. At each stage, the model receives x; (the noisy image), the class
label y, and a low-resolution guidance image. This modular design enables each model to specialize
at a given scale. Figure adapted from [225].

This decomposition solves several problems:

* Scalability. Each model only needs to process a manageable resolution.

* Efficiency. Super-resolution models reuse coarse structure, focusing computation on adding

detail.

* Modularity. Models can be trained and evaluated independently.
In the following parts, we describe the architectural design (U-Net-based blocks with multi-scale
fusion), the training pipeline for both base and super-resolution models, and evaluation strategies for
high-resolution cascaded generation.

1218 Chapter 20. Lecture 20: Generative Models Il

Architecture: U-Net Design for Cascaded Diffusion Models

Each component in the CDM pipeline—whether base generator or super-resolution model—uses
a U-Net architecture tailored to its resolution level. This backbone supports spatial fidelity via
multi-scale representations and skip connections.

(392, AL (292 2% My

(x,2) N2, M N 2w Af Tl

Figure 20.64: U-Net architecture used in CDMs. The first model receives a noisy image x; ~
q(x; | x0) and class label y. Subsequent models (super-resolution stages) additionally take a lower-
resolution guide image z, which is the upsampled output of the previous stage. All inputs are
processed through downsampling and upsampling blocks with skip connections. Timestep ¢ and
label y are embedded and injected into each block (not shown). Figure adapted from [225].

Inputs and Their Roles in CDM Super-Resolution Models

Each super-resolution stage in a Cascaded Diffusion Model (CDM) functions as a conditional
denoiser. Unlike naive super-resolution, which might learn a direct mapping from low-res to high-res,
CDM stages begin from noise and learn to sample a distribution over plausible refinements, guided
by a coarser input.

* Noisy high-resolution image x;: This is a sample from the standard forward diffusion process:

xt:\/aitxO+\/1*5Ct8, ENJV(O,I)

Here, xj is a clean high-resolution image from the dataset, and 7 € [0, 1] is a timestep. The
model is trained to denoise x; using information from the timestep ¢, the class label y, and a
coarse guidance image z. This preserves the probabilistic nature of generation: the network
learns to sample detailed content rather than deterministically sharpen z.

* Low-resolution guide z: This is a fixed, non-noisy input that anchors the high-resolution
output to a previously generated image. It is computed as:

1. Downsample x to the previous stage’s resolution (e.g., from 128 x 128 to 64 x 64),
2. Then upsample it back to the current resolution using a deterministic interpolation
method (e.g., bilinear upsampling).

20.9 Enrichment 20.9: Diffusion Models: Modern Generative Modeling 1219

The purpose of this two-step operation is to strip out high-frequency detail while retaining
global structure and composition. The result z looks like a smoothed, coarse sketch of the final
target image xo. During training, this allows the network to learn how to "fill in" fine details
that are consistent with the structure in z. During inference, the same structure is provided by
upsampling a generated image from the previous resolution stage.

* Timestep embedding 7: The scalar ¢ € [0, 1] controls the level of corruption in x;. It is encoded
using sinusoidal positional encodings or a learned MLP, and its embedding is added to feature
maps at every layer of the U-Net. This informs the network about "how much noise" remains
in the input, and thereby how much denoising should be performed. Without this conditioning,
the network would be unable to correctly localize the sample along the reverse trajectory.

* Class label y: In class-conditional setups, the label is embedded (e.g., via a learned embedding
table or projection) and added to intermediate layers in the U-Net—often by adding it to the
same intermediate representation as t. This helps guide the generation toward the correct
semantic category.

Why Are Both x; and z Needed?

Super-resolution diffusion models are trained to sample diverse, high-resolution outputs consis-
tent with a low-res guide. These two inputs serve complementary roles:

* x; introduces stochasticity—the model learns a distribution over high-res reconstructions, not

a fixed sharpening process. Sampling from noise also enables diversity in outputs.

* z provides structural anchoring—it ensures that sampled outputs respect the layout, pose, and

semantic structure already determined at the previous stage.

While it may seem redundant to denoise xy (which is already high-res), recall that we are
not simply reconstructing xo deterministically—we are learning to sample high-resolution images
consistent with z. This formulation ensures that each CDM stage acts like a generative model in its
own right, capable of producing diverse samples even when guided.

Training Procedure:
Each super-resolution model is trained independently as follows:

1. Sample a clean image xy € R *W>C from the dataset at the target resolution (e.g., 128 x 128).
2. Downsample xq to a lower resolution (e.g., 64 x 64), then upsample back to 128 x 128 using
bilinear interpolation to form the guide z.

Sample a timestep ¢ ~ % [0, 1] and generate x; ~ g(x; | xo).

4. Train the model to predict € using a DDPM-style loss:

(98]

Exo.,ue,z,y U|89 (x,,t,z,y) - SHZ] .

Inference Pipeline:

Cascaded Diffusion Models (CDMs) generate high-resolution images by factorizing the genera-
tion process into a sequence of resolution-specific stages. Each stage operates at a different image
resolution, beginning with a low-resolution semantic layout and progressively adding detail and
refinement. Importantly, each stage follows its own denoising loop conditioned on the output of the
previous stage.

1220 Chapter 20. Lecture 20: Generative Models Il

1. Base generation stage (e.g., 64 x 64):

» Sample Gaussian noise: x(T64) ~ A (0,1).
(64)

* Apply a class-conditional diffusion model to denoise x> over a sequence of reverse
steps:
— For DDPM: iterate through all steps t = 7,7—1,...,1 using a stochastic update
rule.

— For DDIM: select a subset of timesteps (e.g., 50) and apply a deterministic update
rule with larger jumps in time.
* This produces a coarse but semantically correct image:)Z(()64) ~ pffjgel (x0 | y).
2. Super-resolution stages (e.g., 128 x 128, 256 x 256):
* For each higher resolution:
(a) Upsample: Resize)Z(()prev) (e.g., bilinearly) to the current resolution to obtain the
conditioning image z.
(b) Sample noise: Draw ngarget) ~ A4(0,1) at the target resolution.
(c) Denoise: Apply a class-conditional super-resolution diffusion model, conditioned

on z and the class label y, to iteratively denoise x(Ttargeo over its own timestep schedule

(full or reduced), resulting in i(()target).

Each stage performs a complete generation pass at its resolution: the base model synthesizes the
semantic structure, and subsequent models enhance visual fidelity and fine details. Because the input
noise x7 is sampled independently at each stage, and the conditioning image z is fixed throughout the
reverse process, the pipeline is modular and supports parallel improvements at each resolution level.

Empirical Performance of CDMs

Cascaded Diffusion Models (CDMs), proposed by Ho et al. [225], achieve strong performance in
class-conditional image generation across multiple resolutions. On ImageNet at 64 x 64, CDMs
attain a Fréchet Inception Distance (FID) of 1.48 and an Inception Score (IS) of 67.95, outperforming
prior baselines including BigGAN-deep (FID 4.06), Improved DDPM (FID 2.92), and ADM (FID
2.07). At higher resolutions, CDMs continue to excel: at 128 x 128, they achieve an IS of 128.80 and
FID of 3.52, while at 256 x 256, they reduce FID to 4.88—beating Improved DDPM (FID 12.26),
SR3 (FID 11.30), and ADM+upsampling (FID 7.49).

Beyond sample quality, CDMs demonstrate strong semantic alignment. At 128 x 128, their generated
samples achieve a Top-1 classification accuracy of 59.84% and Top-5 of 81.79%, substantially higher
than BigGAN-deep (40.64% / 64.44%). At 256 x 256, CDMs further narrow the gap to real data,
achieving Top-1 / Top-5 scores of 63.02% / 84.06%, approaching the classification scores of real
ImageNet samples (73.09% / 91.47%). These results underscore the effectiveness of CDMs as a
scalable, modular pipeline for high-resolution image synthesis.

20.9 Enrichment 20.9: Diffusion Models: Modern Generative Modeling 1221

Motivation

Diffusion models have demonstrated exceptional generative capabilities, but suffer from a major
limitation: slow sampling. Generating a single high-quality image typically requires hundreds to
thousands of sequential steps, each invoking a deep neural network. This bottleneck arises from the
structure of the reverse diffusion process — a Markov chain where each x;_; depends on denoising
X;, One step at a time.

A natural idea is to reduce sampling cost by skipping steps: instead of taking N fine-grained steps
(e.g., 1000), why not just train a model to denoise using N/2, N/4, or even just a single step? The
challenge lies in choosing how to perform these larger transitions. There are many possible denoising
trajectories between xy ~ .4 (0,1) and a final sample x, and naively training a network to bridge
them directly — without a clear path structure — often leads to poor results. The most common
failure is blurry samples: the model learns to average over all plausible denoising paths, resulting in
washed-out images that fail to capture sharp details or semantics.

This is where progressive distillation enters. Instead of learning an arbitrary large-step denoiser
from scratch, we begin with a high-quality sampler — typically a DDIM — that already generates
realistic images over many fine-grained steps. We then train a student model to imitate this specific
sampling trajectory in fewer steps. Crucially, the student does not discover its own path; it learns to
follow the teacher’s dynamics — a trajectory known to yield clean, sharp results.

Hence, instead of training from scratch, each student is supervised by a teacher that already performs
high-quality generation. By repeating this process—e.g., distilling a 1000-step sampler into 500,
then into 250, etc.—we amortize the cost of integration into fewer and fewer learned steps.
Each round learns to approximate an already successful denoising schedule, which avoids
mode averaging and retains the crispness of the teacher model’s outputs. This structured
guidance is the key: we reduce sampling cost without sacrificing sample quality, achieving up to
2048 x speedups by compressing an 8192-step process into as few as 4 steps.

=1

I

€ €

Z3/q = Tz ?;’)k
{\/ Distillatlo>
[
1

~

14

Y Distiuation> =x= f(z;0)

! L |
2 \;/ Disﬁilati:}>

& b 4 b &
X X X

Figure 20.65: Progressive Distillation Process. Each iteration compresses the original sampling
schedule into fewer steps. A 4-step DDIM sampler f(z;7) is distilled into a 1-step student f(z;0)
that mimics its behavior. Distillation can be viewed as amortizing ODE integration across fewer
steps. Figure adapted from [542].

1222 Chapter 20. Lecture 20: Generative Models Il

Pseudocode: Progressive Distillation Loop
Inputs: Pretrained teacher model £, (z,1); dataset Z; learning rate y; loss weighting function w(4,);
initial number of sampling steps N; cosine schedule o; = cos(5t), o; = sin(5t).

1. Initialize student model by copying the teacher: £g < £y
2. Repeat until N = 4:

(a) Halve the number of steps: N < N/2
(b) Train the student:

i. Sample dataxg ~ 2

ii. Sample index i ~ Uniform{1,...,N}, compute t = i/N
iii. Sample noise € ~ .A47(0,1)
iv. Generate noisy input:

Zr = O04X0 =+ 0;€

v. Generate teacher trajectory (two DDIM steps):
Step 1: Lets =¢—0.5/N. Then:

N Oy N
20 = Oy (z,1) + ;t (2 — o (z,1))
t

Step 2: Lets” =t—1/N. Then:

(o
= (XZ//xAn (Ztlat/) + 67[” (Zz’ — at/.fn (Zt/7[/))
t/

Inversion to get student target: Solve for the denoised estimate that would pro-
duce z,» in one coarse step from z;:

(%
h — ra 2t
x~0 e
O — (%) o

vi. Train the student model:
Log-SNR:

a2
_log (%
A = log (Gt2>

Lo =w(h)-||R6(z.1) — Fo|)?

Gradient update:

Loss:

0 Q—YVQ,,%Q

(c) Promote student to teacher: £, < £

20.9 Enrichment 20.9: Diffusion Models: Modern Generative Modeling 1223

Prerequisites Required fo Understand The Progressive Distillation Loop
In diffusion models, the forward process gradually corrupts a clean input xp by adding Gaussian
noise across time steps. At diffusion step ¢ € {1,...,T}, the noisy sample x; is defined as:

X =V xo+\/1-a-€ €~N(0,]),

where the parameters &, ¢4, and o; follow a predefined noise schedule. We now clarify their

definitions and explain their role:

* Instantaneous noise factor: o, = /1 —f3;, with B, € (0,1) being the per-step noise variance.
This coefficient determines how much of the current sample x;_; is retained during the forward
transition x,_; — x;: X, = 04X 1 + /1 — a? - €.

* Cumulative signal retention:

~ 2
a=1la
s=1
This is the total fraction of the original signal xg that survives up to step ¢. It appears in the
closed-form expression for direct sampling of x; from xy.
* Cumulative noise variance:

6,221—56,, G[:\ll—a[.

These describe the total noise variance and standard deviation added by time ¢. The form
ensures that x;, ~ .47(0,I) when t = T and the original signal is fully destroyed.

Cosine Formulation and Angular Parameterization (Continuous-Time)
In continuous-time diffusion models—such as DDIM [580] and progressive distillation—the forward
noising process is often rewritten using a unit-norm angular parameterization:

% = O4xo+ OL€, where o> + 67 =1, &~ .4(0,1).

This formulation treats (¢4, 0;) as a point on the unit circle in 2D signal-noise space. The
coefficients are defined via a cosine-based schedule [449]:

T (T
04 = COS (§t> , O; = sin (Et) , t€1[0,1].

This setup has several important properties and motivations:

* Variance Preservation: The identity o + 62 = 1 ensures that z; ~ .4°(0,1) for any ¢ if
xo ~ A(0,1). This keeps the total energy constant throughout the forward process.

* Smooth Signal-Noise Transition: As ¢t — 0, we have oy = 1, oy = 0, so zo = x¢ (fully clean).
Ast— 1,0, =0, 01 =1,s0z; =€~ A(0,I) (fully noisy). The cosine schedule smoothly
interpolates between these extremes.

* Uniform Angular Spacing: The cosine function parameterizes a half-circle, so linear values
of ¢ € [0,1] correspond to evenly spaced angular positions 6; € [0,7]. This gives simple
geometric control over the signal-to-noise tradeoff, which is particularly useful for reverse-
time interpolation in distillation.

This angular schedule underlies the reparameterized sample construction and simplifies both training
and inference in distillation frameworks. It also facilitates velocity-parameterized losses, cosine-
SNR analysis, and efficient teacher-student approximation schemes—all of which are explored in
subsequent sections.

1224 Chapter 20. Lecture 20: Generative Models Il

What Is SNR and Why Use It?
The signal-to-noise ratio (SNR) at time ¢ quantifies how much of z; comes from signal xy versus
noise €. Since both xy and € are standard Gaussian and independent, their variances scale as:

Var[oyxo] = of, Var[o,€] = 7.

Thus, SNR is defined as:

_ Signal Variance o?

SNR(t) = =—.
®) Noise Variance ¢

This ratio captures the amount of recoverable information at each timestep and naturally guides loss

weighting: larger SNR implies more signal (thus lower error tolerance), while smaller SNR implies

more noise.

Instead of using raw SNR, the training loss is often weighted by log-SNR:

2
«
=log| =%),

which stabilizes training and improves numerical behavior over a wide range of ¢.

Cosine Schedule and Angular Construction
In progressive distillation, the pair (¢, 0;) is chosen from an angular cosine schedule:

= cos (—nt) O; = sin (—ﬂt>
= =si
O 2/’ ! 2/’

so that:
* o =1, op =0 at clean input,
e a1 =0, o1 =1 at full noise,
* a?+ 0?7 = 1 (variance-preserving).
The angle ¢, = arctan (%) linearly spans [0, /2], enabling tractable interpolation over time and

across sampled points 7,7 — 8, etc. This smooth interpolation is critical for trajectory matching during
teacher-student distillation.

Teacher Trajectory Construction via Two DDIM Steps

Progressive distillation [542] accelerates the denoising process by training a student model to mimic
multiple steps of a teacher sampler in one. Specifically, the student learns to match the result of
two consecutive DDIM steps taken by the teacher — compressing them into a single coarse jump.
This requires constructing a deterministic trajectory using the teacher and inverting it to generate a
suitable training target for the student.

DDIM Reverse Update Rule.
In DDIM [580], the denoising process is deterministic and parameterized by the model’s predic-
tion of the clean sample £. The reverse update from timestep r — ¢’ is given by:
G[/

7 = O Xo + = (z — ko),
t

where o; = cos(51), o; = sin(Jt), and z; = 04xo + 0;€ is the noisy latent at normalized time 7 € [0, 1].

20.9 Enrichment 20.9: Diffusion Models: Modern Generative Modeling 1225

This formula arises from analytically rewriting the DDPM forward process and selecting a
particular sampling path that preserves total variance. It provides a time-scaled interpolation between
the current noisy sample z; and the predicted denoised image Xy, allowing a smooth deterministic
trajectory from noise to signal.

Constructing the Two-Step Teacher Trajectory.

Let 7 € [0, 1] be a coarse timestep from the student’s schedule, where N is the total number of
denoising steps in the current distillation round. To simulate how the teacher would behave with
finer resolution, we define two intermediate substeps:

These are symmetrically spaced between ¢ and the next coarse timestep in the student’s schedule. In
other words, if the student will jump from ¢ — ¢”, then the teacher simulates two finer-grained hops
t — ' — 1" that evenly divide the interval. This alignment ensures that the student’s coarse step has
a faithful, high-resolution trajectory to imitate.

Step 1: From z to z,.
We begin with a deterministic DDIM update, using the teacher’s prediction £y (z;,¢). This
quantity corresponds to the predicted clean image %y in the DDIM update rule:
G[/

zr = O X0+ — (2 — 04 Xp).
O;

Substituting £y (z,#) in place of £y, we compute:

N Oy N
Zt/ = (X,/xn(zt,l‘) + ;t (Zt — (thn (Zt,t)) .
t

Step 2: From z, to z;».

After reaching z,, the teacher performs a second deterministic DDIM step, using a fresh denoised
prediction at the new timepoint. Specifically, it computes £y, (z,,¢’), which—just like before—plays
the role of Xp in the standard DDIM formulation. The update becomes:

O,

i = OC,//)?n (Zz'yf/) + (Zt’ - Ot,/)?n (Zt’at/)) :

Oy

This completes the teacher’s fine-grained trajectory from z; — z» — z;», constructed entirely from

deterministic DDIM steps. It is important to emphasize that although both £y, (z;,7) and £y (z,,1’) are

predictions of the clean image, each corresponds to a different timepoint and is used independently

in its respective update. No change to the DDIM formula is required—the teacher simply follows
two consecutive applications of the same rule.

Inverting the Trajectory: Computing the Student’s Target X,

To mimic the teacher’s fine-grained two-step path z; — z» — z,» using only a single coarse step, the
student must predict a clean image Xy such that its own DDIM update lands exactly at z;». Assuming
the student uses the same deterministic DDIM update rule, we require:

t”

p= (Z[— a[f())

t

L = (XZ//_X~O =+

1226 Chapter 20. Lecture 20: Generative Models Il

Solving for %y gives a closed-form expression:

[
_ ph — o 3t

X = .
0 O
Oc,// - ?r (Xt

What £y and %, represent
* Xp: A predicted denoised image produced by either the teacher or student at a given timepoint
—e.g., £ (z,t) — used to advance the DDIM trajectory.
* Xp: An artificial target constructed via DDIM inversion, guiding the student to match the full
two-step path of the teacher using a single update.

How this resolves DDPM’s low-SNR limitations
In standard DDPM training [223], the model is trained to predict the additive noise € via:

Zbppm = ||€ — €9 (Zr,f)sz

which is equivalent to denoising supervision when rewritten as:

2
A 2 O N 2
[0 — %o (z,1) | ';’ZZW(%)-IIXO—Xe(zt,t)II ,
3

with
2

Ao = log ("2) L wl) = exp(h).

O;

This weighting scheme is effective for long diffusion schedules where denoising starts in
moderate-to-high SNR regions. But in progressive distillation — where the student starts from high
t values and the number of steps is drastically reduced (e.g., 1000 — 4) — the student must denoise
from latents z; ~ .47(0,1) with virtually no remaining signal. That is:

a2
SNR(1) = =5 <1 asr— 1.

O;
Failure Modes at Low SNR
This low-SNR regime is not inherently problematic in standard DDPM/DDIM settings, where
sampling begins from noise but proceeds through many finely spaced steps. Each reverse update
makes a small correction, gradually increasing signal and enabling stable recovery of xg.

However, in progressive distillation, the sampling path is aggressively compressed. The student is
expected to perform large denoising jumps — often starting from high values of r where z, ~ .47(0,1),
but reaching nearly clean states in just a few steps. Without the benefit of a gradual signal buildup,
this one-step transition from low to high SNR introduces two key failure modes:

1. Exploding Gradients: In noise-prediction formulations, the model outputs an estimate

€9(z,t), which is later transformed into a clean reconstruction via:

N % — O; - €0(2)

Xo=—"7—7".

0y

However, when ¢ < 1, this division magnifies even small prediction errors in &g, leading
to unstable gradients during training. This effect worsens at large ¢, where the latent z; is
dominated by noise and provides limited information about the underlying signal.

20.9 Enrichment 20.9: Diffusion Models: Modern Generative Modeling 1227

2. Vanishing Supervision: Standard DDPM training implicitly scales the regression loss in
image space by the log-SNR-based factor:

o

W) = exp(A) = 2.
GI

As A, — —oo (i€, Oltz — 0), this weight shrinks to zero, diminishing the contribution of early,
noisy timesteps to the overall training objective. Yet these are precisely the timesteps where
strong supervision is most crucial, since the model must perform large, uncertain denoising
transitions.

How Progressive Distillation Addresses These Issues
* Numerically Stable DDIM Inversion Target %p: Rather than recovering xy from predicted
noise — which involves division by small o — progressive distillation sidesteps the instability
by directly supervising the student with an analytically computed target:

where z,» is obtained from the teacher’s deterministic two-step DDIM trajectory. This inversion
expresses Xy purely in terms of known latents and schedule parameters, ensuring that it
remains well-scaled even when ¢ — 0. Crucially, this avoids reliance on unstable backward
conversions of predicted noise into signal.

* Loss Weighting That Remains Active at Low SNR: To preserve supervision across all
timesteps — including those where the signal is weak — progressive distillation replaces the
conventional SNR-based weight w(A,) = exp(A,) with more robust alternatives:

— Truncated Log-SNR Weighting:

w(t) = max <log (Z’j) ,Min) ,

where A, is a tunable floor that prevents the weight from collapsing to negative infinity.
This ensures that gradients remain non-negligible even in the most noise-dominated
steps.

— SNR+1 Weighting:

2
%
o + o7’

w(t) =

which is bounded between 0 and 1 and smoothly transitions as a function of time. Unlike
exponential decay, this formulation retains meaningful weight even at low SNR, while
still emphasizing timesteps with stronger signal.
Both weighting strategies are designed to prevent early training steps from being overwhelmed
by numerical instability or under-emphasized due to vanishing loss terms — two common
failure points in highly compressed denoising schedules.

1228 Chapter 20. Lecture 20: Generative Models Il

Conclusion
Progressive distillation introduces unique challenges due to its compressed sampling schedule, where
the model must denoise aggressively from extremely noisy latents in just a few steps. To address the
resulting low-SNR difficulties, the training procedure incorporates two key modifications:
It mitigates exploding reconstruction errors by replacing unstable noise-to-image inversions
with a direct and well-conditioned target Xy, avoiding any division by o.
* It avoids supervision collapse by modifying the loss weighting scheme to remain active even
when SNR(7) = 0, ensuring meaningful gradients in the earliest and noisiest student steps.
These innovations make it possible to train compact student samplers that achieve high-fidelity
generation in as few as 2—4 steps — a remarkable improvement in diffusion model efficiency.

Empirical Results and Sample Quality

The effectiveness of progressive distillation is best understood through its impact on both sample
quality and inference efficiency. The following figure compares the Fréchet Inception Distance (FID)
scores achieved by distilled samplers on several datasets and resolution settings, evaluated at various
sampling step budgets.

CIFAR-10 64x64 ImageNet
20 — - - 20 — T -
\ —<— Distilled . \ —«— Distilled
\ —— DDIM \ \ —« DDIM
\ —— Stochastic \ \ —— Stochastic
10 10)
9 9
8 8
a7 a7 3
= 6 E 6
5 \ 5
X
4t \ 1 4+ .

3l M \ 1 3t e

7 L L L 2 L L L T
1 2 4 8 16 32 64 128 256512 1 2 4 8 16 32 64 128256512
sampling steps sampling steps
128x128 LSUN Bedrooms 128x128 LSUN Church-Outdoor
20 L T - 20 T T I
\ Distilled . \ «— Distilled
—— DDIM A \ —— DDIM
—=— Stochastic \ \ —=— Stochastic
10 |- 2l 10 B
9 9
8 8
8 7r % 1a 7+ R
=~ 6 4 6 i
5t st
4 \ 4 .
h
3 \»_ 3 B
1 L 1 ! L 1 1
1 2 4 8 16 32 64 128 256 512 1 2 4 8 16 32 64 128256512
sampling steps sampling steps

Figure 20.66: Sample quality vs. number of steps for distilled vs. baseline samplers. Shown
are FID scores across 4 benchmark settings: unconditional CIFAR-10, class-conditional ImageNet
64 x 64, LSUN Bedrooms 128 x 128, and LSUN Churches 128 x 128. Distilled samplers match or
outperform DDIM and stochastic samplers with far fewer steps.

20.9 Enrichment 20.9: Diffusion Models: Modern Generative Modeling 1229

Key observations:
* On all datasets, the distilled model converges to comparable or better FID than DDIM with
only a fraction of the steps.
* In unconditional CIFAR-10, the distilled sampler with just 4 steps achieves FID ~2.1 —
competitive with 50-100 step DDIM samplers.
These results validate the intuition behind distillation: rather than relying on numerical integration
of the reverse-time SDE or ODE, we amortize this trajectory into a fixed sampler that mimics the
high-quality path. As a result, inference can proceed in as few as 4-8 steps — reducing cost by more
than an order of magnitude without noticeable degradation in fidelity.

Stochastic vs. Deterministic Baselines. The experiments also include a tuned stochastic sampler,
where variance schedules are optimized via log-scale interpolation between upper and lower bounds
(following Nichol & Dhariwal, 2021). For each number of steps, the interpolation coefficient is
manually tuned to yield the best results. Still, progressive distillation matches or outperforms these
handcrafted alternatives — showing that learning to mimic a deterministic high-quality sampler is
more effective than manually adjusting variance schedules.

Conclusion

Progressive distillation transforms diffusion models from slow, high-fidelity samplers into efficient
generative tools by compressing the sampling process into a small number of learned denoising
steps. Rather than predicting noise in an unstable low-SNR regime, each distilled model learns
to reproduce the behavior of a high-quality sampler using a fraction of the original steps. This
amortized integration not only accelerates generation by orders of magnitude but does so without
sacrificing sample quality — as evidenced across diverse datasets and resolutions. As a result,
progressive distillation provides a principled, scalable solution to one of the most critical bottlenecks
in diffusion-based generative modeling.

1230 Chapter 20. Lecture 20: Generative Models Il

After DDPMs introduced stochastic denoising and DDIMs offered a deterministic alternative by
exploiting the latent-noise parameterization, a natural question arises: can we model the entire
denoising trajectory more directly and efficiently? Velocity-space sampling (V-Space sampling)
offers a compelling answer.

Instead of predicting the noise € added during forward diffusion (as in DDPM) or using it to
reconstruct Xo (as in DDIM), velocity-space sampling proposes to predict a new quantity: the
instantaneous velocity of the sample at time 7. Specifically, the model learns a vector field vg(x;,7) €
R that describes how each point should evolve over time:

d
Ext =vp(X,1).

This transforms sampling into a continuous-time trajectory defined by an ordinary differential
equation (ODE), offering a geometric interpretation of the denoising process as movement along
smooth, learned flow lines in image space.

In practice, the velocity target is derived from the known forward diffusion process. Given the
reparameterized forward sampling:

Xt:\/aXO‘f‘vl—az& SN‘/V(Oal)a
the velocity target becomes:

\/ES@(X;,I)—\/l — O X¢
V@(Xht): d(l—d,) .

This transformation is a linear combination of the predicted residual noise and the input x,, producing
smoother and more temporally stable dynamics than direct noise or image predictions.

During training, the model minimizes the mean squared error between the predicted velocity and the
oracle velocity derived from the forward process:

a%/el(e) = Exm&t [HVG(XHI) _Voracle(xtat)”z] ,

where x; is computed from xg and € as above. This loss replaces the conventional noise-prediction
loss used in DDPMs.

Velocity-based sampling offers several practical and conceptual advantages:

* Smoother dynamics: Velocities vary more smoothly across time than raw noise or image
values, resulting in a more stable back-propagation signal.

* Faster sampling: Models trained in velocity space can generate competitive samples in as
few as 20-35 steps on complex datasets such as ImageNet.

* Compatibility: The network architecture remains unchanged from DDPM; only the training
target shifts from noise to velocity.

* Interpretability: The model learns a continuous flow field, providing a geometric interpreta-
tion of how data points evolve toward the data manifold.

20.9 Enrichment 20.9: Diffusion Models: Modern Generative Modeling 1231

While velocity-space sampling offers a more structured and smoother alternative to raw noise
prediction, it still inherits its supervision targets from the diffusion process. That is, the oracle
velocity Voracle 18 implicitly defined by the reverse-time dynamics of a predefined forward SDE. As
such, training remains dependent on a specific generative trajectory and inherits the inductive biases
of the diffusion process used to define it.

Flow Matching generalizes this idea by decoupling the supervision of the velocity field from any
fixed stochastic process. Instead of learning to imitate a reverse diffusion path, Flow Matching
constructs explicit, analytically-defined velocity fields that transport a source distribution to a target
distribution. This enables direct supervision of the vector field—bypassing both diffusion dynamics
and likelihood estimation—and allows for greater flexibility in how generative trajectories are defined
and optimized.

1232 Chapter 20. Lecture 20: Generative Models Il

Enrichment 20.10: Flow Matching: Beating Diffusion Using Flows

Background and Motivation. Flow Matching is a principled approach to training continuous-time
generative models. It belongs to the broader class of flow-based methods, which generate data by
transforming samples from a simple source distribution pg (e.g., standard Gaussian) into a complex
target distribution p; (e.g., natural images). Rather than applying a fixed sequence of discrete
transformations, Flow Matching models this evolution as a continuous progression of probability
densities over time, forming a smooth probability path (p;);c(o,1) With po = p and p; = q.

Generative Models
U

Flow Models
—_——

ODE-based transformations

U

Flow Matching
| —

learns velocity fields directly

U
Diffusion Models (DDPM/DDIM)

To transform samples from a simple initial distribution pg into more complex samples from a target
distribution pj, we define a continuous path in sample space parameterized by time ¢ € [0, 1]. This
transformation is governed by a deterministic ordinary differential equation (ODE) that describes
how each point x, € R should evolve over time.

At the heart of this dynamic system is a learnable velocity field v, : R¢ — RY, which assigns to every
point x a direction and magnitude of motion at each time 7. The evolution of a sample x; under this
field is given by the initial value problem:

— X = Vi X, X0 .
dt’ t(t): 0~ Po

This differential equation describes a trajectory in space that the sample follows over time, beginning
at an initial point xg. Conceptually, we can think of the sample as a particle moving through a fluid
whose flow is described by v;.

To formalize this idea, we define a time-dependent trajectory map y; : R? — R?, where v, (xp)
denotes the location of the particle at time ¢ that started from position xj at time zero. By the chain
rule, the rate of change of the map is governed by the velocity evaluated at the current position:

%Wt(xo) =i (¥ (x0)), Wo(x0) = Xo.

This equation simply states that the motion of the transformed point y;(xg) is dictated by the velocity
vector at its current location and time. It ensures that the path traced by y; (xo) is consistent with the
flow defined by the velocity field.

20.10 Enrichment 20.10: Flow Matching: Beating Diffusion Using Flows 1233

Under mild regularity conditions—specifically, that v,(x) is locally Lipschitz continuous in x and
measurable in r—the Picard—Lindelof theorem guarantees that the ODE has a unique solution for
each initial point xo and for all # € [0, 1] [480]. This means the trajectory map y; defines a unique
and smooth deformation of space over time, continuously transporting samples from the initial
distribution pg toward the desired target p;.

Yet ensuring well-defined trajectories is not sufficient: we must also guarantee that the distribution
of points evolves consistently. To this end, the time-varying density p, must satisfy the continuity
equation:

)+ (px)w(x)) = 0.

This partial differential equation enforces conservation of probability mass. The term j,(x) =
p:(x)v(x) represents the probability flux at point x, and the divergence V - j,(x) quantifies the net
outflow. Thus, the continuity equation ensures that changes in density arise solely from mass flowing
in or out under the velocity field.

A velocity field v, is said to generate the probability path p; if the pair (v, p;) satisfies this equation
at all times 7 € [0,1). This guarantees that the sample trajectories x, = ¥ (xo), drawn from xo ~ po,
induce an evolving density p, that converges to the desired target p;. This coupling of geometry
and distribution is what makes Flow Matching a distribution-consistent framework for generative
modeling.

Why Flow Matching? Diffusion models such as DDPM and DDIM generate data by simulating a
stochastic process in reverse—starting from Gaussian noise and iteratively denoising across hundreds
or even thousands of discretized timesteps. Although highly effective, this sampling procedure
is computationally expensive. Moreover, training such models involves approximating the score
function V,log p,(x) or optimizing a variational objective (e.g., an ELBO), both of which rely on
intricate reweighting schemes and carefully tuned noise schedules.

Flow Matching [364] offers a deterministic and simulation-free alternative. Rather than estimating a
score or a generative likelihood, it directly learns a time-dependent velocity field v, (x) that transports
mass along a prescribed probability path (pt),e[(m. Once trained, the model generates new samples
by solving a single ODE:

1
xi :x0—|—/0 vi (%) dt, X0 ~ Po-

The training process is simple: a supervised regression loss is used to match the model’s velocity
prediction vg(x,?) to a known target velocity field, analytically derived from the chosen coupling
between source and target samples. No stochastic simulation, score estimation, or variational
inference is needed.

Key Benefits:
» Fast sampling: Generates samples in tens of ODE steps rather than hundreds of reverse
diffusion steps.
 Stable and interpretable training: Based on direct regression rather than variational bounds
or score matching.
* Unified perspective: Recovers DDIM and other diffusion models as special cases under
specific path and velocity choices.

1234 Chapter 20. Lecture 20: Generative Models Il

Further Reading

This section builds upon the foundational principles introduced in [364] and further elaborated
in the comprehensive tutorial and codebase [363]. For visual walkthroughs and intuitive expla-
nations, see [291, 642]. In addition to the vanilla formulation, recent works have extended Flow
Matching to discrete spaces via continuous-time Markov chains [168], to Riemannian manifolds for
geometry-aware modeling [86], and to general continuous-time Markov processes through Generator
Matching [228]. These advances broaden the applicability of Flow Matching to diverse generative
tasks. Readers are encouraged to consult these references for deeper theoretical foundations and
application-specific implementations.

Motivation: From Mapping tfo Likelihood.

Let po denote a known, tractable base distribution (e.g., isotropic Gaussian), and let g denote the
unknown, true data distribution. Our goal is to learn a continuous-time transformation Y that maps
Po to a distribution p; =~ ¢q. More formally, we seek a flow v : R? — R? such that if xo ~ pg, then
x1 = y(xp) ~ p1, and p; is close to ¢ in a statistical sense.

A natural measure of this closeness is the Kullback—Leibler (KL) divergence, defined as:

q(x)
p1(x)

Minimizing this divergence encourages the generated density p; to place high probability mass where
the true data distribution g does. However, since g is unknown, we cannot compute this integral
directly. Instead, we assume access to samples x ~ g, where § ~ ¢ is the empirical distribution
defined by our dataset.

dx.

KL(q|/p1) = /q(X) log

From KL fo Log-Likelihood
Observe that the KL divergence can be rewritten (up to an additive constant independent of p;) as:

KL (gl p1) = —Eivq[log p1 (x)] +Eyy [logg(x)] -

The second term is constant with respect to p1, so minimizing KL is equivalent to maximizing:

EquN [IOgPI ()C)] :

This is precisely the objective used in maximum likelihood estimation (MLE): we want to find
parameters of the transformation y such that the resulting distribution p; assigns high likelihood
to the observed data samples x ~ §. The more likely the generated samples under p;, the closer p
becomes to g in KL divergence.

How Does p; Arise from a Flow?

Let y; : RY — RY denote a time-indexed flow map that transports samples from a known base
distribution py to an intermediate distribution p,, such that x; = y;(xp) for xo ~ pg. We assume
Yo = id and that each y; is a diffeomorphism—that is, smooth and invertible with a smooth
inverse—for all # € [0, 1]. In particular, the terminal map y; transports po to a model distribution py,
with x; = v (x0) ~ p1.

20.10 Enrichment 20.10: Flow Matching: Beating Diffusion Using Flows 1235

Po

q

Figure 20.67: Training Generative Flows to Match Data Distributions. Generative flow models
define a transformation y; that maps samples from a tractable base distribution py (e.g., standard
Gaussian) to a more complex target distribution p;, with x; = y(xo). The goal is to learn y; such
that the model distribution p; matches the data distribution ¢g. During training, we observe data
samples x; ~ g(x), invert the flow to recover latent variables xo = y; ' (x1), and evaluate likelihoods
using the change-of-variables formula. This general framework enables exact maximum likelihood
estimation for flows that are smooth, invertible, and volume-tracking. Later, we extend this idea by
modeling y; as the solution to an ODE parameterized by a velocity field v;(x), leading to continuous
normalizing flows (CNFs) and flow matching. Adapted from [643].

To compute or maximize the exact log-likelihood log pi(x;), we must understand how the flow
reshapes probability mass over time. This relationship is governed by the change-of-variables
formula for differentiable bijections:

Iy
det| =—
¢ <axo

) —1
det(;]xll)‘:PO(XO)‘

where x; = y(xo) and % € R?*4 i the Jacobian matrix of v;. The absolute value ensures
volume is computed without assuming orientation. This formula follows from standard results in
multivariable calculus [536, Theorem 7.26]. In practice, models often optimize the log-density form:

d
det <%> ‘ .

aX()
To understand the derivation, consider a measurable region A C R? and its image B = y;(A). Since
Y is invertible, the mass over A and B must match:

/APO(Xo)dXOZ/Bpl(xl)dxl-

Changing variables in the second integral yields:

—1

p1(x1) = po(xo) -

log p1(x1) = log po(x0) — log

/Bpl(xl)dxl = /Apl(llll(x())) . ‘det]l,,l (xo)} dxg,
where Jy, (xo) = %}'. Equating both sides and canceling the integral over A gives:

po(x0) = p1(w1(x0)) - |detJy, (x0)] ,

and solving for p; recovers the change-of-variables formula.

1236 Chapter 20. Lecture 20: Generative Models Il

Intuitively, this result tracks how a small volume element transforms under y;. The Jacobian
determinant quantifies how the flow locally scales volume: if it expands space near xg, the mass is
diluted and the density decreases at xy; if it contracts space, the density increases. In particular:

d
‘det <8WI> ’ >1 = volume expansion, lower density,
X0

d

det <8W]> ’ <1 = volume compression, higher density.
X0

Hence, evaluating p; (x;) requires tracing the pre-image xo = ;' (x1) and correcting the base density

po(xo) by the inverse local volume scaling.

While exact, this method becomes computationally burdensome in high dimensions. Computing
or differentiating the Jacobian determinant of a general neural network transformation typically
incurs a cost of &(d?), where d is the ambient data dimension. Unless special network structures are
used—such as triangular Jacobians in RealNVP [128], invertible 1 x 1 convolutions in Glow [294],
or Hutchinson’s trace estimators in FFJORD [185]—these costs scale poorly and introduce numerical
instability during training.

To overcome this, modern approaches recast the transformation y; as a solution to an ordinary
differential equation (ODE) governed by a velocity field v,(x). This continuous-time formulation
allows us to express the evolution of log p,(x;) in terms of divergence alone, via the probability flow
ODE [87, 185, 583]. We now explore this perspective, which avoids explicit Jacobian determinants
altogether.

The Role of the Continuity Equation

To avoid computing high-dimensional Jacobian determinants, continuous-time flow models adopt a
differential viewpoint. Instead of working directly with the global transformation y;, we define a
time-indexed velocity field v,(x) that infinitesimally moves samples along trajectories x; = y;(x),
starting from xo ~ po. The evolving distribution p; induced by this flow changes continuously over
time, and its dynamics are governed by the continuity equation:

ap;(x)
ot

This equation formalizes the principle of local conservation of probability mass: the only way for
density at a point x to change is via inflow or outflow of mass from its surrounding neighborhood.

+ V- (pe(x) v (x)) = 0.

To understand this equation precisely, let us examine the structure and roles of each term. We begin
with the product p;(x) - v;(x), often referred to as the probability flux.

Flux: Constructing p;(x)v(x)

 p:(x): R? — R is a scalar field: it represents the probability density at each spatial point x.

* v(x): R? — R? is a vector field: it assigns a velocity vector to each point in space and time.
The product p, (x)v,(x) € R¥ is a vector-valued function defined componentwise:

P(x)ve(x)

(pve)(x) = p’(x)"’t,z(x)

P a(x)

20.10 Enrichment 20.10: Flow Matching: Beating Diffusion Using Flows 1237

This object is called the probability flux vector field. It tells us, for each spatial coordinate direction
i=1,...,d, the rate at which probability mass is moving through space in that direction. If the
domain is R?, the flux encodes how much mass is flowing through each coordinate axis — left/right,
up/down, in/out — at every location and moment in time.

Intuitively, you can picture p,(x) as the “density of fog” at point x, and v;(x) as the wind that moves
the fog. Their product, p,(x)v,(x), describes how strongly the fog is being pushed in each direction.
If the wind is fast but no fog is present, there’s no actual movement of mass. If fog is dense but wind
is still, the same holds. Only when both density and velocity are present do we get mass transport.

Divergence: Understanding V - (p,;v;)

Despite involving the symbol V, the divergence operator is not a gradient. It maps a vector field
F :R? — R to a scalar field, and is defined as:

Z 8x,

Applied to the flux vector p;(x)v,(x), we get:

“(pove)(Za [pe(x) - v i(x)] -

This scalar quantity captures the net rate of mass flow out of point x in all coordinate directions. For
each dimension i, it computes how much probability is flowing in or out through x;, and the sum
tells us whether more mass is entering or exiting the region overall.
In this sense, divergence functions as a "net-outflow meter":

* If V- (p/v¢)(x) > 0, more mass is exiting than entering — density decreases.

* If V- (psvr)(x) < 0, more mass is arriving than leaving — density increases.

* If V- (p/v¢)(x) = 0, inflow and outflow balance — density remains stable.
Unlike the gradient, which returns a vector pointing in the direction of steepest increase of a scalar
field, the divergence is a scalar, that tells us whether the region is acting like a source (positive
divergence) or a sink (negative divergence) of probability mass.

Putting the Continuity Equation in Plain English

Ll s Vauw) =0
t —_—

net probability flowing out of x

temporal change at a fixed point

Think of p,(x) as the density of a colored fog, and v;(x) as a wind field that pushes the fog through
space.
dpi(x)
d

(> 0) or thinner (< 0) as time progresses. This is a temporal derivative: x is held fixed and we
observe how the density changes with ¢.

* Net inflow or outflow: V - (p,(x)v,(x)) measures the net rate at which probability mass exits
an infinitesimal volume surrounding x. Imagine placing a tiny box around x; this term tells you
how much mass escapes from the box minus how much enters it, per unit time.

The equation asserts that these two quantities exactly cancel:

* Local accumulation: asks whether the fog at the fixed location x is getting thicker

rate of local buildup + rate of escape = O.

1238 Chapter 20. Lecture 20: Generative Models Il

No probability mass is created or destroyed—only transported. This is a local conservation law, the
probabilistic analogue of classical principles like:

* conservation of mass in fluid dynamics,

* conservation of charge in electromagnetism.
For continuous-time generative models, the continuity equation provides a conceptual bridge between
the microscopic law—how individual particles move under the velocity field v,—and the macroscopic
law—how the overall distribution p; evolves over time.

Crucially, it allows us to reason about global changes in the distribution without explicitly computing
expensive Jacobian determinants: the continuity equation already captures the effect of the full flow
through a compact, pointwise identity.

Broader Implications for Continuous-Time Generative Models
The continuity equation

ap:(x)
ot

is the probabilistic analogue of mass conservation in fluid dynamics. Any continuous-time generative
model that defines trajectories via the ODE

+ V- (p(x)vi(x)) =0 (CE)

EX[=V (Xt)
must respect this equation to ensure that probability mass is preserved under the flow. Notable
examples include Neural ODEs [87], FFJORD [185], and probability flow ODEs [583].

One of the most important consequences of this formulation is that it allows us to track the evolu-
tion of the log-density along a sample trajectory x, without computing high-dimensional Jacobian
determinants.

Step-by-step: How Log-Density Evolves Along the Flow
Let x, be the solution to the ODE x; = v;(x;). To understand how the density p;(x;) changes
along this trajectory, we apply the chain rule for total derivatives to the composition 7 — log p;(x;):

dxt

X=X;

d 0
dr log pi(x;) = 2 logp;(x) 4 Vilogp:(x)

explicit time dependence ~ motion along the path

The first term captures how the log-density at a fixed spatial location changes over time. The second
term accounts for how the log-density changes as the point x, moves through space.

We now turn to the continuity equation:

3Pt (x)
ot

V- (P v (x)) = 0.

Assuming p,(x) > 0, we divide through by p;(x) to rewrite the equation in terms of log p,(x):

L_opd) : (p(x) v, (x)) =
pi(x) ot +p;(x)v (pe(x)ve(x)) = 0.

20.10 Enrichment 20.10: Flow Matching: Beating Diffusion Using Flows 1239

Using the identities:

Elogpt(x) = p;(X) ot V. (Ptvt) =Vp,-vi+pVev,

we substitute and rearrange:
d
EIOgPt(X) = =V (x) = Vilog py(x) - v (x).
Substituting this into the total derivative expression (and using %, = v (x;)) gives:

%logpt(x,) = [=V i (x) = Vilog pi (x) - vi (x)] + Vi log py (x) - vi (x) B

The inner product terms cancel, leaving:

d
Elogpt(x,) =—V.v(x).

This is the celebrated Liouville identity, which relates log-density dynamics to the divergence of the
velocity field:

d
E logpt (xt) — _V *Vy (x,) (2063)

Interpretation

This equation reveals that the rate of change of log-density along the path of a particle is governed
entirely by the local divergence of the velocity field at that point. If V- v, > 0, the flow is expanding
locally: volumes grow, so density must decrease. If V -v, < 0, the flow is compressing: volumes
shrink, so density increases. Hence, divergence acts as a local proxy for log-likelihood adjustment.

From here, we can integrate both sides over time to obtain an exact log-likelihood formula for a
sample transformed through the flow:

1
log i (1) = log po(s0) = | V-wi(u)dr, i =ya(xo).

This shows that to evaluate log p;(x1), we simply need to know the base log-density log po(xo) and
integrate the divergence along the trajectory. No determinant or inverse map is needed.

This identity is the foundation of continuous normalizing flows (CNFs)—a class of generative models
that define invertible mappings by continuously transforming a base distribution pg via a learned
differential equation %x, = v (x).

CNFs generalize discrete normalizing flows by replacing sequences of invertible layers with a

smooth velocity field, and they compute log-likelihoods exactly via the Liouville identity. This
makes maximum-likelihood training in continuous-time models theoretically elegant and tractable,
using numerical ODE solvers to trace sample trajectories and trace estimators (e.g., Hutchinson’s
method) to approximate divergence.

1240 Chapter 20. Lecture 20: Generative Models Il

Why Pure CNF-Likelihood Training Is Not Scalable?
The Liouville identity provides an exact formula for the model likelihood in continuous-time
generative models governed by an ODE x; = v,(x;):

1
log p1 (x1) = log po(x0) — /0 Veov(o)ds, x1 =y (xo).

In theory, this makes continuous normahzlng flows (CNFs) ideal candidates for maximum likelihood

estimation. For a dataset of samples {xdata} one could train the model by maximizing this likelihood
with respect to the parameters of v;, using standard gradient-based optimization.

How training works in principle:

(i)

Jata> SOIVE the reverse-time ODE

1. Reverse ODE step: For each data point x; = x

d
Ext = _Vlft(xt)

backward from # = 1 to t = 0, yielding the latent code xo = y; ' (x1).

2. Divergence accumulation: Along this trajectory, compute or estimate the integral

1
/ V'V[(xt)dt
0

using numerical quadrature.

3. Likelihood computation: Combine with the known base density po(xp) to evaluate

1
log i (1) = log po(io) = [V-vi(x) s

4. Optimization: Backpropagate through all of the above to update the parameters of v; to maximize
the total log-likelihood over the dataset.

While theoretically elegant, this “textbook” maximum likelihood strategy faces major barriers in
practice—especially when scaling to high-dimensional data such as natural images.

Where the computational cost comes from:

1. Trajectory integration. Every forward (or reverse) pass requires numerically solving the ODE x; =
vi(x;) over t € [0, 1]. Adaptive solvers like Runge—Kutta may need 30-200 function evaluations,
depending on the stiffness and complexity of v;.

2. Divergence computation. The divergence V -v,(x;) is the trace of the Jacobian V,v, € R¥*4,
Estimating this exactly costs &(d?), or up to &'(d*) with autodiff. Hutchinson’s stochastic trace
estimator [185] reduces the cost to &'(d) but introduces variance that must be averaged out over
multiple random vectors.

3. Backpropagation. Training requires gradients of the loss with respect to the parameters of vy,
which depends on the full trajectory. This necessitates differentiating through the ODE solver.
Adjoint sensitivity methods [87] reduce memory use, but can be numerically unstable and roughly
double the runtime.

20.10 Enrichment 20.10: Flow Matching: Beating Diffusion Using Flows 1241

4. Slow sampling. Unlike discrete normalizing flows, CNFs require solving the forward ODE
X = v¢(x;) even at inference time for each latent xo ~ po. Sampling is thus orders of magnitude
slower than a feedforward network.

Additionally: score-based dependencies. Some continuous-time models incorporate score terms
V,log p;(x), either to guide learning or to define velocity fields indirectly. These score functions are
difficult to estimate robustly in high dimensions and often lead to unstable gradients or high variance
during training.

Modern practice. Because of these practical limitations, state-of-the-art CNF-based models often
avoid direct maximum likelihood training altogether:

* FFJORD [185] uses Hutchinson’s trick to estimate the divergence efficiently, but is still limited
to low-resolution datasets like CIFAR-10 (32 x 32).

* Probability flow ODEs [583] sidestep likelihood computation during training by learning the
score function V,log p;(x) using denoising score-matching losses. The ODE is only used at test
time for generation.

* Hybrid methods perform training with diffusion-style objectives and sample deterministically
with few ODE steps (as in DDIM or ODE-based sampling), achieving good sample quality at
lower cost.

Flow Matching: A New Approach

While the Liouville identity enables exact likelihood estimation in continuous normalizing flows
(CNFs), its practical use is limited by the computational cost of integrating trajectories, estimating
divergence, and backpropagating through ODE solvers—especially in high-dimensional settings like
natural images.

This leads to a natural question:

Can we avoid computing densities or their derivatives—and directly learn how to transport mass
from pg to py?

Flow Matching [364] answers this affirmatively. It reframes generative modeling as supervised
learning over velocity fields—sidestepping the need for log-densities, Jacobians, or variational
objectives.

Given pairs xp ~ po and x; ~ pj, a target velocity field v,(x) is computed analytically based on a
known interpolation path. A neural network is then trained to match this field by pointwise regression.
The key advantages:

* No divergence or Jacobian evaluation is needed.

* No density estimation or score functions are involved.

* No integration of log-likelihoods or backward ODE:s is required.
By directly learning how probability flows, Flow Matching enforces the continuity equation in a
weak, sample-based sense—yielding a scalable alternative to CNFs for modern generative tasks.

1242 Chapter 20. Lecture 20: Generative Models Il

Enrichment 20.10.2: Development of the Flow Matching Objective

From Density Path to Viector Field

The Flow Matching objective is rooted in the relationship between a time-evolving probability
distribution {p;(x)};c[0,1] and the velocity field u(x) that transports mass along this path. This
relationship is formalized by the continuity equation:

ap:(x)
ot

+V- (P (x)) = .

This PDE expresses local conservation of probability mass: the change in density at a point is exactly
offset by the net flow of mass in or out.

Crucially, this equation not only constrains u#; when p, and u; are given jointly—it can also be used
in reverse: if we specify a smooth and differentiable path of densities p;(x), then there exists a
corresponding velocity field u, (x) that satisfies this equation. In fact, u,(x) is uniquely determined
(up to divergence-free components) by solving the inverse problem:

V- (p(xX)u(x)) = _alzt()C)‘

Under appropriate regularity conditions, this equation has a constructive solution. In particular, one
can use it to show that the velocity field u,(x) can be expressed as:

Vi (x) _ 9, pi(x) Rvas

() = —Vlog pi(x) + pi(x) pi(x)

)

where V~! denotes the formal inverse divergence operator (e.g., via solving a Poisson equation).
While this expression may not always be tractable to compute directly, it conceptually shows that u,
is entirely determined by p, and its derivatives.

This insight is the foundation of Flow Matching: if the path p, is known or constructed, the generating
vector field u, is fixed by the continuity equation. Thus, in principle, one can train a neural network
v (t,x) to match this true transport field using supervised learning.

The Naive Flow Matching Objective
This motivates the general Flow Matching training loss:

ZLem(0) = Eroar(0,1), 5, [Hv@(t,x) — (x)HZ] , (FM-naive)

where:
* vg(t,x) is a learnable velocity field (e.g., a neural network with parameters 6),
* u,(x) is the ground-truth velocity field that satisfies the continuity equation for the path {p, },
* x ~ p, denotes that samples are drawn from the intermediate distribution at time ¢,
e t ~710,1] is sampled uniformly across time.

Intuitively, this objective trains the CNF vector field vy to reproduce the flow that transports the mass
of po to p; via the path {p, }. If the regression error reaches zero, then integrating vg over time from
t =0tot = 1 recovers the exact map y; that generates the full path, including the final distribution

p1(x) = g(x).

20.10 Enrichment 20.10: Flow Matching: Beating Diffusion Using Flows 1243

Why the Naive Objective Is Infractable
While the Flow Matching loss provides a clean supervised objective, applying it naively in practice
proves infeasible. The loss

gFM(e) = Etw?/[O,l],XNp, [HV@(t,X) - ul(x)Hz]

assumes access to both the intermediate density p, and the corresponding vector field u, at every
point in space and time. But in real-world generative modeling settings, neither of these quantities is
known in closed form.

First, the interpolation path {p, } is fundamentally underdetermined: there are infinitely many ways
to transition from pg to pi, each leading to a different transport behavior. Whether we interpolate
linearly in sample space, follow heat diffusion, or traverse a Wasserstein geodesic, each path implies
a different evolution of probability mass—and a different target field u;.

Even if we fix a reasonable interpolation scheme, we still face two practical barriers:

* We typically cannot sample from p,(x) at arbitrary times.

* We cannot compute u,(x), since it involves inverting the continuity equation—a PDE that

depends on time derivatives and spatial gradients of p;.

In short, the general form of the FM loss assumes a full global picture of how mass moves from pg
to p;—but in practice, we only have endpoint samples: xo ~ po (a known prior) and x; ~ p; ~ ¢(x)
(empirical data). We know nothing about the intermediate distributions p;, nor their generating
vector fields.

A Local Solution via Conditional Paths

To sidestep the intractability of directly modeling a global interpolation path {p,(x)} and its cor-
responding velocity field u, (x), Flow Matching proposes a local, sample-driven construction. The
core idea is to replace the global perspective with conditional trajectories: we define a family of
conditional probability paths p,(x | x;), each anchored at a target point x; ~ p; =~ g(x). These
conditional paths describe how probability mass should evolve from a shared base distribution pg
toward individual endpoints x1, using analytically tractable trajectories.

How are these conditional paths designed? Each path p,(x | x;) is constructed to satisfy the
continuity equation with an explicit, closed-form velocity field u(x | x1). Importantly, the family is
required to obey two boundary conditions:

po(x|x1) =po(x), pi(x|xi)~8(x—x).

The first condition ensures that all paths begin from the same tractable prior pg, independent of x;.
The second condition encodes that each conditional flow must concentrate around its destination. In
practice, since the Dirac delta d(x —x;) is not a true probability density, we approximate it using a
sharply peaked Gaussian:

pi(x|x1) = A (x|x1,062I), for small ¢ > 0.

This reflects the intuition that the flow transitions from initial noise to a highly concentrated distribu-
tion centered at x| as t — 1. All mass should converge to x;, with negligible uncertainty.

1244 Chapter 20. Lecture 20: Generative Models Il

From Conditional Paths to a Marginal Distribution. To construct a global flow from sample-wise
supervision, Flow Matching defines a marginal density path p,(x) as a mixture of conditional flows:

P = [il x) () dx.

This corresponds to Equation (6) in the original Flow Matching paper.

This integral represents the total probability mass at point x and time ¢, as aggregated over all
conditional trajectories, each targeting a different data point x; ~ g. At the final time step = 1, this
becomes:

P = [pilx) gl dn.

which can be made arbitrarily close to the true data distribution g(x) by choosing each terminal
conditional p; (x| x1) to concentrate sharply around x;, e.g., using a small-variance Gaussian. This
mixture construction enables a natural approximation of the data distribution through analytically
controlled flows.

Recovering the Marginal Vector Field
Having defined the marginal path p;(x) as a mixture of conditional densities:

P = [pir [0 () d

it is natural to ask: can we recover the corresponding marginal velocity field u, (x) from the family of
conditional vector fields u, (x | x;) that generate each conditional path?

The answer is yes. A key result from the Flow Matching paper shows that we can construct the
marginal velocity field as:

s [t) e) gy .

u(x) = FXE)

This is Equation (8) in the Flow Matching paper.

Intuitively, this tells us that the velocity at point x is the average of all conditional vector fields
evaluated at x, weighted by how much probability mass each conditional contributes there. In
probabilistic terms, this expression can be rewritten as:

u(x) = Efu (X | X1) | Xo = x],

where (X;,X;) ~ p,(x | x1)g(x1). That is, u, (x) represents the expected direction of flow at location
x, aggregated across all conditionals that pass through x at time ¢.

Why This Identity Is Valid
The expression

1

¢ (%)
is not just a useful identity—it is mathematically necessary if we want the marginal path p,(x)

to satisfy the continuity equation with respect to a single global vector field u,(x). This result is
formalized as Theorem 1 in the Flow Matching paper [364], which states:

[t x0) i) gl

u (x) =

20.10 Enrichment 20.10: Flow Matching: Beating Diffusion Using Flows 1245

If each conditional pair (p;(x | x1),u;(x | x1)) satisfies the continuity equation, then the
marginal pair defined by

1

pt(x):/Pz(x|X1)Q(x1)dX1, ut(X):IT(X)

[l s il x0) gl

also satisfies the continuity equation:

ap(x)
ot

V- () (x)) = 0.

We now sketch the intuition behind this result. Starting from the conditional continuity equation:

(9p,(x]x1)

ot + V- (p (x| x1)u (x| x1)) =0,

we multiply both sides by ¢g(x;) and integrate over x;:

/apt(;tlxl)‘I(X1)dx1+/v'(l9t(x|x1)ut(x’xl))Q(xl)dxl =0.

Assuming regularity (so that we can exchange integration and differentiation), this gives:
d
3 /pt(x | x1)q(x1)dx; | +V- /p,(x | x1)u (x| x1)gq(x1)dx; | =0.

Now we invoke the definition of the marginal density:

pi(x) = /Pt(x \ x1)q(xy)dx;.

This tells us that the first term becomes d; p;(x). However, the second term is not yet in the standard
continuity form V - (p,(x) u,(x)). To get there, we introduce a definition for the marginal velocity
field:

pr(x) u(x) == /P:(X | x1) us (x| x1) q(x1) dxy.

This is a definition, not a derived fact. It says: let u,(x) be the vector such that when multiplied by
p:(x), it reproduces the total flux across all conditionals.
Substituting this into the continuity equation yields:

ap:(x)
ot

+ V- (pe(x) ur(x)) = 0,

which is exactly the continuity equation for the marginal trajectory.

In short: given conditional flows u, (x | x;) that preserve mass individually, the only way to define a
global velocity field u,(x) that preserves mass along the marginal trajectory is to aggregate the flux
contributions and normalize by p;(x). For the full formal proof, see Appendix A of [364].

1246 Chapter 20. Lecture 20: Generative Models Il

From Validity to Practicality: The Need for a Tractable Objective

While the marginalization identity is theoretically elegant—it expresses u, (x) as a weighted average
over analytically defined conditional fields—it remains fundamentally impractical for training. The
core issue lies in its reliance on the marginal density p,(x), which is defined by:

piw) = [pule | x0)glo) .

This expression depends on the true data distribution g(x;), which we only observe through samples,
and involves high-dimensional integration over all conditional paths. As a result, both evaluating
u;(x) and sampling from p,(x) are intractable in practice.

Hence, the original Flow Matching loss,

L = Erewp, (o (t,%) = ()]

is still inaccessible for direct optimization. Even though each conditional pair (p,(x | x1),u (x| x1))
can be formed analytically tractable and mass-preserving, their integration into the marginal field
u;(x) requires quantities we cannot reliably compute.

Conditional Flow Matching (CFM): A Sample-Based Reformulation

The intractability of evaluating the marginal field «, (x) in the original Flow Matching loss motivates
a powerful reformulation: rather than matching the marginal flow u,(x), can we train a model to
match the conditional vector fields u (x | x;), which are analytically known?

This is the central idea behind Conditional Flow Matching (CFM). Instead of supervising the
model using the marginal loss:

Lim = Ey v, () [HV@ (t,x) — ut(x)Hz])

which depends on the inaccessible u, (x), we define a new, tractable conditional loss:

Zorm = EtN%[0,1],x1~q,x~p,(x\x1) [HVG <t7x7x1) - ut(x ‘ xl)Hz}

Every term in this expression is fully accessible:
* x| ~ g: empirical samples from the data distribution.
* pi(x]x;): an analytically chosen, time-dependent conditional path (to be introduced next).
* u;(x | x1): the closed-form velocity field derived from that conditional path.

In this section we do not yet commit to a specific form of p,(x | x;), but crucially, the framework
allows any analytic choice—so long as it satisfies appropriate boundary conditions and yields a
velocity field computable in closed form. In the next section, we explore such constructions explicitly.

Why is this valid? The equivalence between CFM and the original FM objective is formalized in
Theorem 2 of the Flow Matching paper [364], which states:

Assuming p;(x) > 0 for all x € R? and t € [0, 1], and under mild regularity assumptions,
the conditional loss Zcpv and the marginal loss v have identical gradients with
respect to 0:

Vo Zcrm = Vo Lem.

20.10 Enrichment 20.10: Flow Matching: Beating Diffusion Using Flows 1247

The proof relies on rewriting both losses using bilinearity of the squared norm, and applying Fubini’s
Theorem to swap the order of integration over x and x;. The core insight is that the marginal field
u; (x) is itself an average over the conditional fields u,(x | x|), making CFM an unbiased surrogate
for the original objective. For a detailed derivation, see Appendix A of [364].

Why This Is Powerful

The Conditional Flow Matching objective unlocks a practical and scalable method for training
continuous-time generative models. It removes the need to estimate intermediate marginals or evalu-
ate global velocity fields—obstacles that make the original FM loss intractable in high dimensions.

Moreover, this framework is highly flexible: so long as we define a valid conditional path p,(x | x)
with known boundary conditions and an analytic velocity field u, (x | x;), we can train a model using
only endpoint samples (xp,x1) ~ po X ¢. This enables a wide variety of conditional designs, each
inducing distinct training behavior and inductive biases.

In the next part, we introduce several tractable and theoretically grounded choices for the conditional
trajectory p;(x | x1) and its corresponding vector field u;(x | x1), including Gaussian interpolants and
optimal transport-inspired paths.

Motivation

The core idea of Flow Matching is to train a learnable velocity field vy (z,x) by supervising it with
analytically defined transport dynamics. Instead of attempting to construct a global flow that maps an
entire distribution pg into p;, we take a more tractable approach: we define conditional flows from
the base distribution pg to individual target points x; ~ ¢. This formulation enables both analytic
expressions for the evolving conditional densities p;(x | x;) and closed-form velocity fields u, (x | x;),
making the learning objective fully traceable.

In principle, many choices of conditional probability paths are valid—ranging from Gaussian
bridges to more complex nonlinear interpolants—so long as they satisfy the required boundary
conditions and preserve mass via the continuity equation. In what follows, we focus on one
particularly convenient and expressive family: Gaussian conditional paths. These offer a balance of
mathematical simplicity, closed-form expressions, and intuitive behavior, making them a canonical
starting point for Conditional Flow Matching.

Canonical Gaussian Conditional Paths
We begin with a simple yet expressive family of conditional probability paths:

pi(x|x1) = A (x| ,ut(xl),qzl), e (x1) = txq, 6[2 =(1 _t)z-

This path evolves from the standard Gaussian base po(x) = .#7(0,1) to the terminal distribution
pi(x|x1) = 6(x—x;), satisfying the boundary conditions:

po(x|x1) =po(x), pilx|x1)=38(x—x1).

The design is intuitive:
* The mean g, (x;) = rx; moves linearly from the origin to the target x;.
* The variance 6 = (1 —¢)? shrinks quadratically to zero, causing the distribution to contract
into a point mass at x| as t — 1.
This makes it an ideal conditional flow for modeling reverse diffusion processes.

1248 Chapter 20. Lecture 20: Generative Models Il

Deriving the Velocity Field from the Continuity Equation
Using the continuity equation,

d
5P [x) V- (pr(x o) - (x [21)) =0,

we can solve for the velocity field that generates this flow. Since both the time derivative and spatial
divergence of a Gaussian are available in closed form, the solution is:

X —X
1—¢t°

u (x| x1) =

This velocity points linearly from the current location x to the target x|, with increasing strength
as time progresses. As t — 1, the velocity diverges—ensuring all mass arrives precisely at x1, in
accordance with the boundary condition p; (x | x;) = 8(x —x).

This canonical path illustrates the simplest form of analytically traceable conditional flow—where
both the density and velocity field are closed-form, and probability mass moves deterministically
from noise to data.

General Gaussian Conditional Paths and Affine Flow Maps
The linear trajectory described above is a special case of a broader class of flows. Conditional Flow
Matching accommodates any family of Gaussian conditionals:

pi(x | xn) = A (x| (), 07 (1)),

where:
o w(x1): [0,1] x R — R is a time-dependent mean schedule,
* 0;(x1) > 0is a smooth variance schedule.

We require the boundary conditions:

Ho(x1) =0, op(x1) =1, pi(x1) =x1, o1(x;) =0,

so that the paths begin at standard Gaussian noise and converge toward the target x;. The canonical
example from above corresponds to the specific case:

W (x1) = txq, oi(x)=1-1.

The Canonical Affine Flow and Induced Velocity Field
To describe how conditional samples evolve over time, we define an explicit transport map that
pushes noise to data. This map is affine in form:

Vi (x0) = o7 (x1)x0 + iy (x1),

where xg ~ .47(0,) is a standard Gaussian sample. The function y; deterministically transports
xo to x ~ p;(x | x1), and is invertible for all z € [0, 1) as long as o;(x;) > 0. Under this map, the
pushforward satisfies:

(Wil (A(0,1)) = A (x | (1), 07 (x0)T) = pu(x | 1),

which ensures that the conditional path p,(x | x;) evolves according to a known distribution family.

20.10 Enrichment 20.10: Flow Matching: Beating Diffusion Using Flows 1249

To derive the velocity field that generates this flow, we differentiate y; (xo) with respect to time:

d
ZV’I(Xo) = o/ (x1)x0+ 4 (x1),

which describes how points in latent (noise) space evolve over time. However, to express the velocity
field u,(x | x1) in data space, we must write this in terms of x = y;(xp), not xo. Since the map is
invertible, we isolate the preimage:

o — x— py(x1)
7 o (x)

and substitute back to obtain:

d X — g (x
e 0) = GovaGon) = o) RS),
which simplifies to:
o/ (x :
u (x| xp) = (1) (x— e (1)) + 1/ (1) (CFM-velocity)
G[(xl)

Interpretation. This expression reveals two complementary effects:
* The term (x — p(xy)) - %f describes how samples are pulled toward the evolving mean as the
variance decays—capturing contraction of the distribution.
e The term y/(x;) captures the drift of the mean itself, i.e., how the center of the distribution
moves over time.
Together, these components define the precise trajectory of mass under the affine Gaussian flow: a
contraction toward the target x; combined with translation along a smooth path. The result guarantees
mass conservation and adherence to the conditional boundary conditions po(x | x;) = po(x) and
pi(x|x1) = 8(x—x;) as o1 — 0.

This derivation is formalized in Theorem 3 of the Flow Matching Guide, with a full proof provided
in Appendix A.

The Conditional Flow Matching Loss
Once we define the affine flow map v, (xp) = o;(x1)xo + W (x1), and obtain its time derivative
4y, (x0) = 07 (x1)x0 + 1 (x1), we can directly supervise the learnable velocity field ve by comparing
it to the known transport dynamics.

This gives rise to the Conditional Flow Matching (CFM) objective:

2
, (CFM-loss)

Vot ¥i(x0)) — i)

Zerm(0) = By, g xomn (0.1),1~%0,1]

which corresponds to Equation (13) in the original Flow Matching paper [364].

Why this works: The key idea is to reparameterize the regression problem from data space into
latent (noise) space, where samples x ~ p;(x | x1) are expressed as x = y;(xp). Since xo ~ .47(0,1)
and x; ~ g are both directly sampleable, this makes the objective entirely traceable. The CFM
loss thus replaces intractable expectations over marginal densities (as in the original FM loss) with
analytic supervision along known deterministic trajectories.

1250 Chapter 20. Lecture 20: Generative Models Il

From Theory to Practice: Training with Conditional Flow Matching
We now summarize how the Conditional Flow Matching (CFM) framework translates into an efficient,
fully traceable training algorithm. Recall that our supervised objective is:

d 2

ve(t, Wi (x0)) — Ev/t(xo) (CFM-loss)

Zerm(0) = B (0,1],x1 ~q,x0~ 4 (0,1)

This formulation enables gradient-based optimization using only sample pairs from g and pg =
A(0,1), along with the known closed-form target velocity field. We now describe the training loop
explicitly.
Conditional Flow Matching Tralnlng Loop
* Sample minibatch of data: {x1 1 ~q
* For each sample:
— Sample time t ~ 2 ([0, 1])
— Sample noise vector xé’) ~ A(0,I)
— Compute interpolated point:

A =y (e) = 6, () D gy, (1)

— Compute target velocity:

i d i i i
0 = () = ol ())+ (1)

* Compute batch loss:

2

B
gCFM Z HVQ l‘ x, ,)C1 x(l)
:1

* Update model parameters 6 via gradient descent.

Implementation Notes

* Natural Extension to Images: Conditional Flow Matching is particularly well-suited to
image generation. In this setting, both noise samples xy and target data x; are tensors of
shape ROH>*W (e g, 3 x 64 x 64). The learned velocity field vg(z,x,x;) is implemented as
a time-conditioned convolutional neural network that predicts a velocity tensor of the same
shape. During training, the model learns how to morph isotropic Gaussian noise into sharp,
structured images.

» Sample-Based Supervision: Training involves sampling a triplet (xo,x,#), computing x =
W, (xo | x1), and supervising vg to match the analytic flow velocity %u/,(xo). For instance, with
the canonical Gaussian path, the model learns to push blurry noise blobs into semantically
coherent images over time.

* Efficient Data Pipeline: There is no need to evaluate densities or simulate stochastic trajec-
tories. Each sample is generated in a single forward pass using the affine flow map y;. This
allows for efficient minibatch training using standard image augmentation pipelines.

20.10 Enrichment 20.10: Flow Matching: Beating Diffusion Using Flows 1251

* Avoiding Score Estimation: Unlike diffusion models that require regressing to noisy gradients
V. log p;(x), CFEM provides an explicit, closed-form supervision target. This sidesteps the
need for score networks or denoising-based estimators, which are often difficult to tune and
computationally expensive.

* No Marginal Modeling Required: Importantly, the global marginal distribution p;(x) is
never required—neither for sampling nor for loss evaluation. This makes CFM far easier to
scale to high-dimensional outputs like images, where intermediate marginals are intractable to
estimate or store.

* Flexible Trajectories: The affine flow map y;(xo) = o;(x1)x0 + t; (x1) allows for expressive
and interpretable design of the probability paths. For instance, one can interpolate linearly
toward the data, or follow an optimal transport displacement. These different trajectories
influence not only the flow geometry, but also how sharp or smooth the intermediate samples
appear during training.

This sample-driven, closed-form supervision strategy makes Conditional Flow Matching highly
effective for learning smooth transitions from noise to data—particularly in structured domains like
image synthesis. In the next section, we explore concrete flow designs using schedules y,(x;) and
o;(x1) that recover known diffusion processes and optimal transport flows as special cases.

Summary

Conditional Flow Matching offers a rare combination of theoretical rigor and computational sim-
plicity. The model learns directly from known flows between isotropic noise and real data, avoiding
any need for adversarial training, log-likelihood computation, or stochastic integration. This sample-
driven design makes CFM an attractive alternative to diffusion and score-based methods—one that
scales naturally to images, supports efficient training, and offers fine control over the geometry of
the learned generative process.

In the following, we explore concrete and historically motivated choices for the mean g, (x;) and
standard deviation o;(x;). These special cases demonstrate how our general CFM framework can
replicate or extend existing methods in generative modeling.

+ Diffusion Conditional Vector Fields: By choosing y,(x;) and o;(x;) to match the forward
processes of classic diffusion models, we recover the conditional probability paths underly-
ing popular score-based generative models. The resulting velocity fields coincide with the
deterministic flows studied in probability flow ODEs, but are here derived directly from the
conditional Gaussian interpolation perspective.

* Optimal Transport Conditional Vector Fields: We also consider choices where the condi-
tional flow y; (xo) matches the displacement interpolant from Optimal Transport theory. These
yield paths where particles move in straight lines with constant speed, offering simple, linear
dynamics that contrast with the curvature seen in diffusion flows.

These examples not only highlight the flexibility of the CFM framework, but also demonstrate
that by directly designing the conditional path p;(x | x;), we gain control over the structure and
complexity of the regression task faced by the model. This perspective frees us from relying on
SDEs or score-matching formulations, and instead empowers us to specify the flow behavior through
deterministic, analytically-defined ingredients.

Let us now examine these special cases in detail.

1252 Chapter 20. Lecture 20: Generative Models Il

Choosing Conditional Paths - Diffusion vs OT
A central design choice in Conditional Flow Matching (CFM) is the specification of the conditional
probability path p,(x | x;) and its associated velocity field u,(x | x;). Since the framework imposes
only minimal constraints—boundary conditions and mass conservation—we are free to define any
smooth, valid interpolation from noise to data. Two prominent families of conditional flows have
emerged:
* Diffusion-inspired paths, derived from time-reversed stochastic processes, follow curvature-
inducing velocity fields and have been widely used in score-based generative models.
* Optimal Transport (OT) paths, defined via displacement interpolation between Gaussians,
yield straight-line trajectories with constant-direction vector fields.
In what follows, we compare these constructions side by side, analyzing their flow geometry,
computational implications, and suitability for CFM training. While diffusion paths align with
existing literature and offer closed-form expressions under strong assumptions, we ultimately adopt
the OT-based path due to its simplicity, numerical stability, and intuitive alignment with direct mass
transport.

Variance Exploding (VE) Conditional Paths
In the VE family of score-based models, the forward diffusion process begins at a data sample x;
and progressively adds Gaussian noise until the distribution becomes nearly isotropic. Inverting this
process defines a conditional flow that transforms noise into data.

For Flow Matching, the reversed VE schedule defines:

Me(x1) = x1, 0:(x1) = 01—,

where o; is an increasing scalar function with oy = 0 and o7 > 1. This yields the conditional
Gaussian:

pi(x) = A (x| x1, 07 0).

Applying Theorem 3 to this path, we obtain the conditional velocity field:

/

01

u (x| x)=— (x—x1).

O1—¢

This field points toward the target x, accelerating as t — 1.

Variance Preserving (VP) Conditional Paths
In the VP family, the diffusion process is defined to preserve total variance while gradually corrupting
signal with noise. In reverse, this defines a tractable flow that interpolates toward data at a controlled
rate.

Let:

0y = exp (—;/Otﬁ(s)ds>, T(t):/otﬁ(s)ds,

where B(¢) > 0 is a noise schedule. Then define:

He(x) =onxi, O(x) =y/1—0f,.

20.10 Enrichment 20.10: Flow Matching: Beating Diffusion Using Flows 1253

This produces the conditional path:
pi(x) = A (x| oy, (1= o)1)

From Theorem 3, the corresponding vector field is:

!/
o

—— (0 X1 — X) .
1—&1271(12‘1)

uy(x | x1) =
This field decays more gradually than VE, producing smoother trajectories that reduce the risk of
numerical instability near t = 1.

Limitations of Diffusion-Based Condiitional Paths
Despite being valid under Flow Matching, diffusion-based paths have several drawbacks:
* Non-convergent endpoints: Since o; — 0 or 6; — oo only asymptotically, the true boundary
distribution pg(x) = .47(0,1) is not reached in finite time.
* Nonlinear trajectories: The vector fields u,(x | x;) vary in both magnitude and direction over
time, producing curved trajectories that are harder to approximate with a neural predictor.
* Overshooting and backtracking: Empirically, diffusion paths can overshoot the target before
reversing course, wasting computation and requiring complex scheduling to stabilize.
These limitations motivate alternative constructions, such as the Optimal Transport conditional
paths, which we explore next.

Optimal Transport Conditional Probability Paths

Flow Matching not only allows flexibility in choosing conditional paths—it also opens the door
to highly principled constructions grounded in optimal transport (OT) theory. In this enrichment,
we describe how the OT interpolation between Gaussians leads to an analytically simple and
computationally superior conditional flow.

What Is Optimal Transport?

Given two probability distributions py and p;, the Optimal Transport (OT) problem seeks the most
efficient way to move mass from pg to p;, minimizing a transportation cost. For quadratic cost, this
defines the Wasserstein-2 distance:

Wepo.pr) = _inf [eylPayixy),
Y€l (po.p1)

where I'(po, p1) is the set of couplings with marginals pg and p;.
McCann’s Theorem [419] shows that the displacement interpolation

Vi) = (L= 1) x+1-y(x)

with y the optimal transport map, defines a geodesic p; = [y;]#po in Wasserstein space. That is, OT
interpolates between pg and p; using straight-line trajectories in distribution space.

1254 Chapter 20. Lecture 20: Generative Models Il

Affine OT Flow Between Gaussians
In the CFM setting, we define each conditional path p,(x | x;) as a Gaussian:

pi(x [x) = A (x| pu(x1), 670),

with linearly evolving parameters:
W (x1) = txq, ;= 1— (1 — Opin)t-

These satisfy the required boundary conditions:
polx|x1) = A (x| 0,1), pi(x|x1)=A(x|x1,000]).

The OT Vector Field
Applying Theorem 3 to this linear Gaussian path yields the closed-form conditional velocity field:

X1 — (1 — O'min)x

This field points directly from the current sample x to the target x;, scaled by a time-dependent factor.
Crucially:

* Its direction remains constant throughout time.

* Only the magnitude changes, increasing as t — 1.

* The flow is affine and invertible.

The Corresponding Flow Map and CFM Loss
The conditional flow map is:

W, (x0) = ox0 + W (x1) = (1 = (1 = Opmin) 1) X0 + 11

Differentiating with respect to time:

%‘l’t(xo) = (1~ Oin) (x1 —x0).-

Plugging this into the CFM loss gives:

Zerm(0) = Eyj g xo~p Ve (£, Wi (x0)) — (1 — Omin) (x1 *x0)||2~

This is a time-independent regression target with linearly interpolated samples and a constant vector
direction per sample pair (xq,x;).

Vector Field Geometry: Diffusion vs. Optimal Transport
We now compare the structure of two commonly used conditional velocity fields in Flow Matching:
* Diffusion-based:
x| x) = —— (¥ —x)
1—1¢
is state and time dependent. As x moves along the trajectory, the direction of x; — x changes dy-
namically, producing curved paths. Moreover, the vector norm explodes as t — 1, introducing
numerical stiffness and instability.

20.10 Enrichment 20.10: Flow Matching: Beating Diffusion Using Flows 1255

* Optimal Transport (OT)-based:

X1 — (1 — Gmin)x

oT _
() = 5= (1 — Guin)t

is an affine vector field in x. The associated flow map solves the ODE:

d
= ulT (x, | x1).

It is easy to verify that the solution has the form:
X = (1 — (1 — Gmin)t)X() +1txy,

which is a convex combination of xy and x;, perturbed slightly by opip.
Why is this a straight line? Because:

— The path x; is a weighted average of two fixed endpoints xg and x;.

— The coefficients are smooth functions of .

— The velocity field u;(x | x;) always points in the same direction — from the current

position x; toward a fixed linear target.

The derivative %xt remains colinear with x; — x¢ at every point in time. Therefore, x; traces
a line segment — a curve whose tangent vector has constant direction (though varying
magnitude). If 6,,;, = 0, the path reduces to:

x = (1—1)xo+1x,

which is exactly a straight-line interpolation with constant speed.
Thus, OT-based vector fields induce linear transport flows in space — each particle follows a
straight ray from x(to x| at time-varying speed.

A
k‘%' ?Mf’/ -

i
Iy

.

Diffusion path — conditional score function OT path — conditional vector field

Figure 20.68: Local vector fields for diffusion (left) and OT (right) conditional paths. Each plot
visualizes how the conditional velocity field u, (x | x;) evolves over time and space. In diffusion-
based flows (left), the velocity direction is state-dependent and becomes increasingly steep as t — 1,
leading to curved sample trajectories and large vector magnitudes near the end. This causes the norm
||us (x)]]2 to spike, resulting in high-magnitude regions shown in blue near the target. In contrast,
OT-based flows (right) define a fixed affine direction from noise to data, inducing straight-line
trajectories with time-constant acceleration. Here, the velocity norm is uniform or gently varying,
yielding mostly red or yellow shades across the field. Color denotes velocity magnitude: blue = high,
red = low. Adapted from Figure 2 in [364].

1256 Chapter 20. Lecture 20: Generative Models Il

Why Optimal Transport Defines a Superior Learning Signal
1. Straight-line trajectories. Solving the ODE
d

Ex’ = “zOT(xt | x1)

yields a linear path:
Xt = (1 — (1 — Gmin)t)X() —+tx1.

This is a straight-line trajectory between source and target. In contrast, diffusion-based paths
accelerate nonlinearly, especially near t = 1, due to the divergence of the vector field.

2. Consistent direction. The OT velocity field maintains a constant direction for each sample
pair (xo,x), regardless of time. This means the neural network only needs to regress a fixed
direction vector rather than learn a time-varying field, making the training signal simpler and
more sample-efficient.

3. Zero divergence. Since u°7T is affine in x, its divergence V - u, is constant. This greatly
simplifies the log-likelihood computation via the Liouville identity:

di log p;(x;) = =V - u; (x;).

4. Efficient ODE integration. The Lipschitz constant of «°T is small and independent of ¢,
while the diffusion vector field u%if behaves like o< %_t As aresult, OT flows require fewer
solver steps, lower memory, and yield more stable gradients.

Diffusion OT

Figure 20.69: Macroscopic sampling trajectories under diffusion and OT vector fields. Left:
Diffusion-based paths tend to overshoot and curve as they approach the target x;, requiring corrective
backtracking and tighter numerical integration tolerances. These nonlinear trajectories are induced by
state- and time-dependent velocity fields. Right: Optimal Transport trajectories follow straight-line
segments from xy to x; with constant direction and time-scaled speed. This linearity enables efficient
sampling using only ~ 10—30 integration steps. Adapted from Figure 3 in [364].

20.10 Enrichment 20.10: Flow Matching: Beating Diffusion Using Flows 1257

OT-based Conditional Flow Matching Inference

Once training has converged, the learned neural velocity field vy (¢,x) defines a time-dependent
transport field capable of moving samples from the base distribution py (typically .4#°(0,1)) to the
learned model distribution p;. At inference time, this field is treated as the right-hand side of an
ODE, and sample generation reduces to solving the initial value problem from a random noise
sample.

OT-based Conditional Flow Matching Inference
* Sample initial noise xo ~ .4(0,1)
* Solve the ODE:
xi=volt.x)
—x; = Vvo(t,X X0 = Xi—
dt t o\lAt), 0 t=0
* Integrate from # = 0 to = 1 using an ODE solver (e.g., midpoint
or Runge—Kutta)
* Return final sample x; = x,=1 ~ p;
In the OT setting, the ground-truth velocity field has an affine structure:

ue () =77 (1— Guin)t

Y

The model learns to approximate this transport field using only the base sample xy. The result-
ing trajectories follow straight paths with consistent direction and smoothly varying magnitude.
Consequently, the learned field vg is smooth and low-curvature, allowing efficient integration with
just 10-30 steps—dramatically fewer than diffusion models, which often require hundreds due to
stiffness near r = 1.

Takeaway
Flow Matching permits any conditional path and velocity field that satisfy the continuity equation
and match the boundary conditions. The Optimal Transport-based construction yields:

* Linear, closed-form trajectories.

* Constant-direction velocity fields.

* Tractable divergence computation.

* Dramatically improved sample efficiency.

For these reasons, OT-based conditional flows are often preferred in practice and form the
foundation of modern CFM implementations.

1258 Chapter 20. Lecture 20: Generative Models Il

Enrichment 20.10.5: Implementation, Experiments, and Related Work

Implementation Details
Practitioners interested in applying Conditional Flow Matching (CFM) to their own datasets can
refer to the following codebases:
* Official Flow Matching:
https://github.com/facebookresearch/flow_matching
This repository provides a clean PyTorch implementation of both continuous and discrete
Flow Matching objectives. It includes examples of defining conditional Gaussian flows and
training vector fields using small NNs.
* Conditional Flow Matching for High-Dimensional Data:
https://github.com/atong01l/conditional-flow-matching
This implementation extends CFM to image datasets like CIFAR-10 and CelebA using U-Net
architectures. It includes training scripts, loss computation, and sampling pipelines. Users can
adapt this repository to train models on their own data by modifying the dataset loader and
network configuration.
Both codebases use the same core principle: sampling (xo,x;) ~ 47(0,1) X g(x), computing x =
W, (xo | x1), and minimizing the supervised loss

2

d
Vg(t,X,Xl) - E%(XO |X1)

This enables scalable training without evaluating score functions or marginal densities.

Empirical Results: OT vs. Diffusion
The original Flow Matching paper [364] shows that using OT-based conditional vector fields leads to
smoother flows, earlier emergence of structure, and more efficient sampling.

Score matching "/ Diffusion

Flow Matching */ Diffusion
Flow Matching */ 0T NFE=4 NFE=E NFE=10) NFE=20

SM ™ Dif

FM "/ Dif

FM "/ OT

O] .!.'

Figure 20.70: Effect of training objective on CNF trajectories. Left: Trajectories of CNFs trained
on 2D checkerboard data. OT-based flows introduce structure earlier, while diffusion-based ones lag
and show less spatial coherence. Right: Midpoint-solver based sampling is much faster and more
stable with OT. Adapted from Figure 4 in [364].

Quantitative Benchmarks

Below is a comparison of Flow Matching with other generative modeling objectives on benchmark
datasets. FM with OT consistently achieves lower negative log-likelihood (NLL), lower Fréchet
Inception Distance (FID), and fewer function evaluations (NFE), outperforming score-based methods
and diffusion-trained models.

https://github.com/facebookresearch/flow_matching
https://github.com/atong01/conditional-flow-matching

20.10 Enrichment 20.10: Flow Matching: Beating Diffusion Using Flows

1259

Table 20.6: Likelihood (NLL), sample quality (FID), and evaluation cost (NFE). Lower is better.

Adapted from Table 1 in [364].

Model CIFAR-10 ImageNet 32x32 ImageNet 64x64
NLL] FID| NFE| |NLL| FID| NFE] |NLL| FID] NFE|
DDPM [223] 3.12 7.48 274 3.54 6.99 262 332 1736 264
Score Matching 3.16 1994 242 3.56 5.68 178 340 19.74 441
ScoreFlow [583] 3.09 20.78 428 355 1414 195 336 2495 601
FM (Diffusion path) 3.10 8.06 183 3.54 6.37 193 333 1688 187
FM (OT path) 2.99 6.35 142 3.53 5.02 122 331 1445 138

Additional Comparisons

For high-resolution datasets such as ImageNet 128x128, FM with OT also outperforms GAN-based
baselines in terms of sample quality and tractability:

Model NLL| FID|
MGAN [226] - 58.9
PacGAN2 [362] - 57.5
Logo-GAN-AE [539] - 50.9
Self-Cond. GAN [401] - 41.7
Uncond. BigGAN [401] - 25.3
PGMGAN [15] - 21.7
FM (OT path) 2.90 20.9

Related Work and Positioning

Flow Matching (FM) connects to and builds upon several influential research directions in generative

modeling:

* Score-Based Generative Models: Denoising Score Matching [647] and probability flow
ODE:s [583] estimate the score V,log p;(x), which can be computationally expensive and
unstable. FM avoids this by directly training on velocity fields derived from known conditional

probability paths.

* Continuous Normalizing Flows (CNFs) and Neural ODEs: CNFs [87, 185] require solving
and differentiating through ODE:s for training, using the instantaneous change-of-variables
formula. Flow Matching replaces this with a regression loss on known vector fields, avoiding
backpropagation through ODE solvers and enabling stable and simulation-free training.

* Vector Field Regression Methods: Approaches such as OT-Flow [621] and Sliced Wasserstein
Flows [718] aim to model transport vector fields but often lack closed-form supervision.
Conditional Flow Matching (CFM) generalizes these ideas with tractable Gaussian paths and
principled supervision over known conditional fields.

1260 Chapter 20. Lecture 20: Generative Models Il

In addition, many works build upon FM to create new SOTA results, and improve training and
inference times. Key such works include:

* Discrete Flow Matching and Language Modeling: Extensions such as Discrete Flow
Matching [168] adapt FM to continuous-time Markov chains over discrete state spaces,
broadening its applicability to structured data and natural language tasks.

* Riemannian Flow Matching: Recent work [86] generalizes FM to curved manifolds (e.g.,
protein structures or 3D geometry) by designing flows on Riemannian spaces. Conditional
paths are constructed via geodesics rather than affine maps, preserving geometric constraints
and enabling applications in biophysics and robotics.

* Multisample Flow Matching: Minibatch OT approaches [486] leverage more efficient
couplings between source and target samples, reducing variance and improving training
stability. These works extend FM to practical, large-batch implementations for real-world
datasets.

* Optimal Flow Matching: Recent methods [302] aim to learn straight trajectories in a single
step, enhancing the efficiency of flow-based generative models.

* Consistency Flow Matching: By enforcing self-consistency in the velocity field, Consistency
Flow Matching [724] defines straight flows starting from different times to the same endpoint,
improving training efficiency and generation quality.

* Bellman Optimal Stepsize Straightening: The BOSS technique [448] introduces a dynamic
programming algorithm to optimize stepsizes in flow-matching models, aiming for efficient
image sampling under computational constraints.

Together, these developments position Flow Matching—and particularly its conditional formu-
lation (CFM)—as a versatile and scalable foundation for continuous-time generative modeling. It
unifies ideas from score-matching, optimal transport, and neural ODEs, while enabling extensions to
discrete, structured, and geometric domains.

Outlook
Flow Matching with OT-based conditional paths currently offers one of the most promising trade-
offs between theoretical clarity, empirical stability, and computational efficiency. Its compositional
design—built around analytically specified conditional paths and closed-form velocity fields—creates
a powerful and flexible foundation for developing future generative models across a wide range of
domains.

Like diffusion models, Flow Matching supports conditioning on structured information (e.g., labels,
prompts, segmentation maps), making it a natural candidate for controlled synthesis tasks. However,
its deterministic trajectories and simulation-free sampling open the door to faster, more interpretable
alternatives to stochastic generation frameworks.

Having now completed our exploration of generative modeling—from diffusion models like DDPM
and DDIM to alternative frameworks such as Flow Matching—we conclude this chapter with
a broader perspective. The field continues to evolve rapidly, driven by innovations in training
stability, controllability, and cross-modal integration. Flow Matching, with its deterministic paths
and modular design, offers a promising foundation for future research. As you continue your journey,
we encourage you to explore how the principles introduced here may extend to new architectures,
modalities, or creative applications yet to be imagined.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1261

Enrichment 20.11: Additional Pioneering Works in Generative Al

The success of diffusion models and flow-based generative techniques has catalyzed a shift from
low-level sample generation toward structured, semantically aligned systems. Today’s frontier
lies not just in generating images, but in doing so under rich forms of control—such as natural
language prompts, user sketches, or structural guidance. These systems are built by combining
three key ingredients: (1) pretrained perceptual encoders (e.g., CLIP [498], TS [501]), (2) structured
conditioning modalities (e.g., text, pose, segmentation maps), and (3) latent-space modeling to
handle high-resolution synthesis efficiently.

We begin our exploration with GLIDE [450], one of the first works to integrate classifier-free
guidance with diffusion models for text-to-image generation. GLIDE marks a turning point in
generative Al—it demonstrated that diffusion models, when paired with learned embeddings and
careful guidance, could outperform prior autoregressive methods such as DALL-E [509] both
in realism and controllability. Building on this, later models introduced latent diffusion [531],
personalization (e.g., DreamBooth [537]), and fine-grained conditioning (e.g., ControlNet [773]),
each extending the flexibility and applicability of the core generative pipeline.

Enrichment 20.11.1: GLIDE: Text-Guided Diffusion with Classifier-Free Guidance

GLIDE [450] marked a turning point in text-to-image generation by demonstrating that high-quality,
controllable synthesis can be achieved using an end-to-end diffusion model conditioned directly on
natural language. Unlike earlier approaches such as DALL-E [509], which was originally built upon
VQ-VAE, and discretized images into token sequences and applied autoregressive modeling, GLIDE
operates in continuous pixel space, leveraging the denoising diffusion paradigm.

A central innovation in GLIDE is its use of a frozen text encoder—specifically a transformer model
trained separately—to inject semantic conditioning into the diffusion process. By guiding each
denoising step with a textual embedding, the model learns to associate complex descriptions with
spatial features, enabling coherent synthesis even for novel or compositional prompts. This not only
enables image generation, but also empowers applications such as text-driven inpainting, sketch
refinement, and iterative editing.

GLIDE also introduced the now-standard technique of classifier-free guidance (CFG), which
provides a tunable trade-off between diversity and fidelity without requiring an external classifier.
This innovation would prove critical in subsequent systems including DALL-E 2, Imagen, and
Latent Diffusion Models.

We now examine the GLIDE architecture, inference strategies, and capabilities—illustrating how
this model served as a blueprint for the modern diffusion stack.

Model Architecture and Conditioning Mechanism

GLIDE is a denoising diffusion probabilistic model (DDPM) that synthesizes images by learning to
reverse a stochastic forward process. In the forward process, a clean image xy € R”*%">3 is gradually
perturbed with Gaussian noise:

X =V0xo++/1— &, e~ N(0,1),

where @, € (0, 1] is the cumulative product of noise schedule coefficients, and x; is the noisy image
at timestep ¢. The model learns to predict the additive noise € using a U-Net denoiser € (x;,7,y),
where y is a natural language prompt describing the image content.

1262 Chapter 20. Lecture 20: Generative Models Il

\W
i 2

N 4

“a hedgehog using “a corgl wearing a red bowlie “robots meditating in a “a Tall landscape with a small
caleulator™ and a# purple party hat™ vipassani retreat” coltage nexi o a lake”

-
\

“a surrcalist dream-like oil “a professional photo of a “a high-quality oil painting “an illustration of albert
painting by salvador dali sunset behind the grand of a psychedelic hamster einstein wearing a superhero
of a cat playing checkers™ canyon” dragon™ costume™

e F 5 i “a painting of a fox in the style “a red cube on top “a stained glass window
4 boat in the canals of venice y e o = e
of starry night of a blue cube of a panda cating bamboo
i .
-

“a crayon drawing of a space elevator™ “a futuristic city in synthwave style™ “a pixel art corgi pizza” “a fog rolling into new york™

Figure 20.71: Selected samples from GLIDE using classifier-free guidance [450]. Prompts include
complex compositions and stylistic renderings. The model accurately generates unseen concepts like
“a crayon drawing of a space elevator” and interprets spatial relationships such as “a red cube on top
of a blue cube,” including plausible shadows and 3D structure.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1263

To condition on y, GLIDE uses a frozen Transformer-based text encoder that converts the prompt
into a sequence of contextual token embeddings. These embeddings are fused into the U-Net
through cross-attention modules inserted at multiple spatial resolutions. This design enables the
image representation at each location to selectively attend to different textual components, enforcing
semantic alignment between visual structure and linguistic content. Two encoder variants are
considered in the paper: a Transformer trained from scratch on image—text pairs, and the CLIP text
encoder [498].

The objective used during training is a conditional variant of the DDPM noise prediction loss:
2
ZoLE = By e/ | |l€ — €0 (xr,1,3) (I,

where the model learns to denoise x; using both temporal and semantic information. This conditional
learning setup allows GLIDE to support tasks like text-to-image synthesis, inpainting, and semantic
image editing with a unified architecture.

As seen in Figure 20.71, GLIDE generalizes beyond literal training examples, demonstrating strong
compositional ability and visual realism. This is made possible by its tight fusion of image-space
diffusion and language semantics via cross-attention, allowing for rich conditional control.

Text Conditioning via Cross-Attention in GLIDE
In GLIDE [450], natural language prompts are embedded using a frozen Transformer encoder, which
maps the input caption y into a sequence of contextualized token embeddings:

y—{eq,...,e.}, e; e RY.

Each vector e; captures the meaning of a specific token (word or subword) in context—e.g., the
vector for “dog” will be different in “a dog” versus “hot dog.” The full sequence {e;} thus encodes
the semantics of the entire caption.

To inject this textual information into the image generation process, GLIDE modifies the self-
attention mechanism inside the U-Net with cross-attention, where visual features act as queries and
the text embeddings as both keys and values. At each attention block, the model computes:

-
Attn(Q,K,V) = softmax (Q\;(E) v,

where:
Q = VVQf7 K= W[(@, V= er.

o f € RIEXWXc: the current spatial feature map from the U-Net, flattened to shape (HW,c) and
linearly projected to form queries Q € RAW >4,

* ¢ € RE%4: the caption token embeddings (from the text encoder), projected to keys K € RE*4
and values V € REX9,

Why this works:

* The query vector Q; at each image location i specifies a directional probe: it "asks" which text
tokens are most semantically relevant to what the model is generating at that pixel or patch.

* The dot-product Q,KjT measures the alignment between image location i and text token j. The
softmax turns this into a probability distribution over tokens—effectively letting each image
region focus on specific language concepts.

1264 Chapter 20. Lecture 20: Generative Models Il

* The final attended feature is a weighted combination of the value vectors V;, which carry
semantic context from the caption and allow the image generator to access and integrate that
information.

This structure allows the model to learn that, for example, when the caption includes “a dog in a red
hat,” the spatial regions depicting the hat should align with the embedding for “hat,” and the dog’s
body with “dog.” No token is “highlighted” in isolation—instead, relevance emerges dynamically as
a function of the image context via learned query-key similarity.

This cross-modal alignment is applied at multiple resolutions within the U-Net, ensuring that
text guidance is accessible across coarse layouts and fine details. The conditioning is thus not
a global label but a dynamic, token-wise modulation of image generation grounded in semantic
correspondence between modalities.

GLIDE’s Multi-Stage Generation Pipeline: A Cascaded Diffusion Strategy

GLIDE [450] employs a cascaded diffusion approach to synthesize high-resolution images from text
prompts. It holds a similar intuition to the one behind Cascaded Diffusion Models (CDMs) [225],
that we’ve previously covered (20.9.5), only this time it is based on a text encoding and not a class
encoding. GLIDE divides the generation task into multiple stages, each operating at a different
spatial resolution. This staged architecture improves quality and efficiency by allowing each model
to focus on a specific aspect of the generation process.

* Base diffusion model (64 x64): A text-conditioned DDPM generates low-resolution 64 x 64
images from captions. It captures coarse global structure, composition, and semantic alignment
with the prompt. Operating at a small scale allows for training on large and diverse datasets.

* Super-resolution model (64—256): A second diffusion model performs resolution upsam-
pling. It takes as input a bilinearly upsampled version of the base output and the same text
embedding. Conditioned on both, it synthesizes a 256 x 256 image with finer visual details
while preserving the semantic intent.

* (Optional) Final upsampler (256—512): An optional third-stage model further increases
resolution and sharpness, generating high-fidelity 512 x 512 images. This stage is particularly
useful in domains requiring photorealism or precise detail.

Why use cascading? GLIDE’s design is consistent with the principles of cascaded diffusion:

* Modularity and separation of concerns: The base model handles semantic composition and
spatial layout. Super-resolution stages specialize in refining texture, edges, and fine-grained
detail. This decomposition simplifies the learning objective at each stage.

» Improved sample quality: Errors and ambiguities in early low-resolution predictions can be
corrected at higher resolutions through guided refinement.

* Efficiency: Lower-resolution generation requires fewer parameters and less computation. Later
stages can reuse a smaller amount of training data focused on resolution pairs.

Each stage is trained independently. The super-resolution models are trained on paired low- and high-
resolution crops, conditioned on both the image and the shared frozen text encoder. This encoder
ensures that semantic alignment with the prompt is preserved across all stages. Cross-attention is
employed at multiple layers in the U-Net, aligning image regions with relevant textual concepts.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1265

Super-Resolution Modules in GLIDE

After producing a coarse sketch using the 64 x 64 base model, GLIDE [450] refines the image
through a sequence of independently trained super-resolution diffusion models, typically for the
resolution upgrades 64 —256 and optionally 256 — 512. Each stage is responsible for enhancing
visual fidelity by introducing higher-frequency detail, guided by both the upsampled coarse image
and the original text prompt.

Each super-resolution module follows a structured training process:

* The input is a low-resolution image x'°%, obtained by downsampling a high-resolution training
image x"€" from the dataset.

« This x'°¥ is bilinearly upsampled to the target resolution (e.g., from 64 — 256).

* Gaussian noise is added to the upsampled image using the forward diffusion schedule for that
resolution stage, yielding a noised version x;.

* The model is trained to denoise x; toward the original high-resolution ground truth x
conditioned on both the noisy image and the associated text prompt y.

high
b

Crucially, the same image-caption pair (x"&" y) is used across all stages of the cascade:
* The base model learns to generate a 64 x 64 approximation of x"€" given y.
* The first super-resolution model refines that to 256 x 256, using the blurred/noised upsampled
64 x 64 image and still supervising against the same x"€",
* The second super-res model (optional) further refines toward 512 x 512, again targeting the

same x"#" now upsampled and re-noised accordingly.

This architecture ensures that all models in the cascade are aligned on a common semantic and
visual goal. While the inputs to each stage differ in resolution and noise level, the supervision target
xMeh and prompt y remain constant throughout. This coherence prevents semantic drift and enables
precise refinement of the coarse image toward the intended final output.

All models share a frozen T5 encoder for text conditioning. The token embeddings {é|,...,&.}
produced by this encoder are injected via cross-attention at multiple U-Net layers, ensuring that
every spatial region in the image remains grounded in the prompt throughout all diffusion steps.

By training each stage to recover the original high-resolution dataset image from progressively
degraded inputs, GLIDE ensures that the final samples are not just upsampled blobs, but semantically
faithful, high-fidelity images—each stage building upon and correcting the previous.

Relationship to Cascaded Diffusion Models (CDMs)
GLIDE [450] and CDMs [225] both follow a multi-stage pipeline: a low-resolution base model
generates coarse images that are progressively refined through super-resolution diffusion stages.
While the overall architecture is similar, the two differ in how they encode conditioning and enforce
robustness during upsampling.

* Conditioning and Guidance:

— GLIDE is conditioned on natural language via a frozen T5 encoder and uses classifier-
free guidance (CFG) at inference. During training, 10% of prompts are dropped, allowing
the model to learn both conditional and unconditional denoising. CFG interpolates their
predictions to enhance prompt alignment.

— CDMs are class-conditioned using learned label embeddings injected into all models.
No classifier-based or classifier-free guidance is used—class identity is always provided
directly to the network.

1266 Chapter 20. Lecture 20: Generative Models Il

* Robustness via Degraded Conditioning:

— Both models degrade the upsampled low-resolution image before denoising. GLIDE
uses fixed methods such as Gaussian blur and BSR, whereas CDMs apply randomized
degradations (e.g., blur, JPEG compression, noise) drawn from a corruption distribution.
This conditioning augmentation is more formally defined in CDMs and proven essential
through ablations.

Summary: GLIDE and CDMs both use resolution-specific diffusion stages. The key differences are
GLIDE’s use of natural language prompts and classifier-free guidance, versus CDMs’ reliance on
class labels and stronger, randomized conditioning augmentation to maintain sample fidelity without
external guidance.

Full Generation Pipeline of GLIDE

1. Base Diffusion Model (64 x 64): A text-conditioned U-Net is trained using noise prediction
loss to generate low-resolution samples that reflect the coarse layout and semantic intent of
the prompt.

2. First Super-Resolution Stage (64 —256): The base image is upsampled and then re-noised.
A second diffusion model is trained to remove the noise, refining texture, geometry, and visual
coherence.

3. Optional Final Upsampler (256 —512): A third model further improves fidelity, handling
fine details and photorealistic rendering. This model is trained with similar supervision but
may use deeper architecture or stronger regularization.

Each model in the pipeline operates independently. All are conditioned on the same frozen T5
embeddings to ensure semantic consistency. Cross-attention is applied at various U-Net layers, so
spatial features in the image are explicitly guided by token-level prompt information.

ADM U-Net Architecture in GLIDE

The architecture of GLIDE [450] is built upon the ADM U-Net backbone introduced by Dhariwal
and Nichol [122]. This network serves as the core denoising model at each stage of the diffusion
cascade. While its layout resembles the canonical U-Net (see enrichment 15.6 and Figure 15.21), the
ADM version integrates time and text conditioning, residual connections, and attention mechanisms
in a more structured and scalable way.

Overall Structure. The U-Net processes a noisy input image x; € R3>*#*W 3 diffusion timestep ,
and a text prompt y. The network is divided into three main components:
* Encoder path (downsampling): Each spatial resolution level includes two residual blocks and,
optionally, a self-attention module. Downsampling is performed via strided convolutions, and
the number of channels doubles after each resolution drop (e.g., 192 — 384 — 768).
* Bottleneck: At the lowest spatial resolution (e.g., 8 X 8), the model uses two residual blocks
and one self-attention layer. This is where global semantic context is most concentrated.
* Decoder path (upsampling): This path mirrors the encoder. Each upsampling level includes
residual blocks and optional self-attention, followed by nearest-neighbor upsampling and
a 3 x 3 convolution. Skip connections from the encoder are concatenated or added to the
decoder at each level to preserve fine-grained detail.
Timestep Conditioning. The scalar diffusion timestep ¢ € {0,...,7} is encoded into a high-
dimensional vector via sinusoidal embeddings, similar to the Transformer [644].

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1267

This vector is passed through a learnable MLP and injected into each residual block via FiLM-style
modulation:

GroupNorm (k) - (1) + B (1),
where ¥(t), B(t) € R¢ are scale and shift vectors derived from the timestep embedding, and / is the
normalized activation.

Text Conditioning via Cross-Attention. The text prompt y is encoded using a frozen T5 encoder,
yielding contextualized token embeddings {€|,...,&.}, with &; € R9. These are injected into the
network via cross-attention in all attention layers. Each attention block computes:

-
Attn(Q,K,V) = softmax (Qfg) vV,

where:
O0=Wyof, K=Wge, V=Wye,

and f € R¥*Wx¢ ig the image feature map at that layer. This mechanism allows each spatial location
in the image to query relevant semantic concepts from the caption.

Implementation Highlights. Key components of GLIDE’s U-Net implementation (adapted from
glide_text2im/unet.py) include:

* Residual Blocks: All convolutional layers are embedded in residual units with FiLM-style
conditioning and GroupNorm. Timestep embeddings and global pooled text embeddings are
both added before nonlinearity.

* Attention Layers: Multi-head attention modules are inserted at intermediate resolutions (e.g.,
64 x 64, 32 x 32, 16 x 16), depending on the stage (base model or super-resolution).

* Resolution Schedule: The base model uses four resolution levels with channel multipliers
[1,2,4,4]. Each resolution contains two residual blocks and an optional attention block. The
total number of attention heads and layer width increases with resolution depth.

» Skip Connections: As in traditional U-Nets, skip connections copy activations from encoder
layers to their corresponding decoder layers, enhancing spatial fidelity and stability during
training.

Final Output. The decoder outputs a tensor &g (x;,¢,y) € R3>*#>*W representing the predicted noise.
This estimate is used in the reverse diffusion step to move from x;, — x;_1, progressively denoising
toward the final image.

Summary of the GLIDE System

GLIDE implements an early form of cascaded diffusion generation with the following key elements.
It employs a text-conditioned U-Net backbone trained to synthesize low-resolution semantic content.
It uses cross-attention mechanisms to maintain semantic alignment between the prompt and evolving
image features. It applies a hierarchical cascade of independently trained super-resolution modules
to improve fidelity and texture. This design enables scalable, prompt-consistent generation of
high-resolution images without requiring auxiliary classifiers, external guidance models, or re-
ranking. GLIDE’s architecture thus laid the foundation for subsequent cascaded frameworks, while
demonstrating strong generalization across a wide range of text prompts and visual concepts.

1268 Chapter 20. Lecture 20: Generative Models Il

Text-Guided Editing and Inpainting Capabilities

Beyond pure text-to-image generation, one of GLIDE’s key contributions is its ability to perform
conditional editing and inpainting through partial noising and constrained denoising steps. By erasing
selected regions of an image, injecting Gaussian noise, and conditioning on both the surrounding
pixels and a new text prompt, the model plausibly fills in missing content that respects the original
style and semantics.

“zebras roaming in the field™ “a girl hugging a corgi on a pedestal™

“*a man with red hair” “a vase of flowers™

A

“an old car in a snowy forest™ “a man wearing a white hat”

Figure 20.72: Text-conditional inpainting with GLIDE [450]. The masked region (green) is filled
based on a new prompt. The model seamlessly aligns with the lighting, texture, and composition of
the original image.

As shown in Figure 20.72, GLIDE performs image inpainting by conditioning the generative process
on both a masked image and a guiding text prompt. To enable this capability, the model is fine-tuned
specifically for inpainting using a dataset of partially masked images. During training, the model
receives images with random rectangular regions removed and learns to denoise these masked regions
while keeping the unmasked content fixed.

At inference time, the masked region is initialized with noise and updated using the standard
diffusion sampling loop, while the known pixels are clamped to their original values at each step.
This partial denoising scheme ensures that the generated content blends smoothly with the unmasked
surroundings and adheres to the text condition.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1269

Compared to GAN-based inpainting—which often requires adversarial losses and may fail to main-
tain semantic or spatial coherence—GLIDE leverages the stability and flexibility of its probabilistic
denoising framework. The iterative nature of diffusion helps preserve global structure and yields
completions that are both context-aware and text-consistent. Techniques such as classifier-free
guidance can be retained during inpainting to further improve alignment with the prompt.

This mechanism also enables iterative refinement, wherein users can repeatedly mask regions, update
the text prompt, and reapply the model to incrementally build complex scenes.

“a painting of a corgi
“a cozy living room” on the wall above
a couch™

“a round coffee table “a vase of flowers on a “a couch in the corner
in front of a couch™ coffee table” of a room”

Figure 20.73: Iterative scene construction with GLIDE. A base image is progressively edited via
masked regions and updated prompts (e.g., adding a coffee table, a vase, or shifting the wall upward).

These capabilities demonstrate that GLIDE functions not just as a generator but as a flexible and
interactive system for creative image manipulation. Its strength lies in preserving spatial coherence,
semantic relevance, and stylistic fidelity across multiple user-guided editing stages.

1270 Chapter 20. Lecture 20: Generative Models Il

Sketfch-Based Conditional Editing with SDEdIt

GLIDE’s diffusion-based formulation enables an additional editing mode: sketch-to-image synthesis.
By combining partial image inputs with language prompts, users can guide the model using both
structure and semantics. This is achieved using a variant of Score-Based Generative Modeling known
as SDEdit [422], which allows starting from a partially structured input and denoising it toward a
visually coherent result.

In this setup, a user provides a crude input sketch or image fragment, alongside a prompt describing
the desired output. The sketch is partially noised using the forward diffusion process (e.g., for 50
steps), and then the model is used to denoise it conditioned on the prompt. This ensures that the final
image aligns with both the provided sketch and the semantic intent of the text.

“a fire in the background”™

“only one cloud in the sky today™

Figure 20.74: Sketch-guided editing with GLIDE, using text-conditional SDEdit [450]. The user
sketches a hat and provides the prompt “a corgi wearing a purple hat and a red tie”. The model
transforms the sketch into a plausible image aligned with both visual and linguistic guidance.

As illustrated in Figure 20.74, this hybrid mode yields outputs that respect the geometric intent
of the sketch while capturing nuanced prompt attributes (e.g., color, material, object integration).
Because using this technique in this setup builds directly on GLIDE’s denoising framework, it
remains versatile and general-purpose—capable of tasks like edge-to-image rendering, stroke-based
painting, and compositional sketching.

This functionality bridges the gap between hand-drawn control and natural language generation,
offering a compelling example of multimodal guidance in diffusion systems.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1271

Classifier-Free Guidance vs. CLIP Guidance

GLIDE introduces two competing strategies for aligning image generation with a textual prompt:
CLIP guidance and classifier-free guidance (CFG). While both aim to steer the sampling trajec-
tory toward semantic fidelity, they differ significantly in implementation, stability, and perceptual
outcomes.

CLIP guidance [498] optimizes the cosine similarity between image and text embeddings produced
by a frozen CLIP model:

max cos (feLr(x), feLe(y)) -

This gradient-based alignment is applied across the diffusion trajectory, encouraging denoised latents
x; to resemble images that CLIP deems semantically close to the prompt y. While conceptually
direct, this approach has several drawbacks:

* Gradient mismatch: CLIP is trained on fully denoised, high-quality images, whereas diffu-
sion models operate over progressively noised latents. Applying CLIP’s gradients to noisy
intermediate states introduces distributional mismatch, often steering the denoising trajectory
off-manifold and resulting in unstable generation.

* Adversarial artifacts: Because CLIP is used both to guide and to evaluate image quality, the
generative model may exploit weaknesses in CLIP’s embedding space. Instead of faithfully
representing the prompt, it may synthesize images that trick CLIP into assigning high similarity
scores—despite the samples being visually implausible or semantically incoherent to humans.
This adversarial overfitting is particularly severe at high guidance scales, where the generator
over-optimizes for CLIP alignment and produces unnatural textures or distorted compositions
that "hack" the metric.

» Tuning sensitivity: Effective use of CLIP guidance requires delicate balancing of the gradient
scale. Weak guidance may yield vague or off-target generations, while overly strong guidance
often causes prompt overfitting, repetitive artifacts, or structural collapse—manifesting as
over-sharpened or corrupted outputs.

To partially address these limitations, GLIDE also experimented with a noised CLIP variant trained
on corrupted images. While this reduced mismatch at early timesteps, it did not eliminate instability
or the reliance on external model supervision.

Classifier-free guidance (CFG) [224], by contrast, is fully embedded into the model’s training
objective. During training, the model randomly receives either a full prompt y or an empty (null)
prompt &, enabling it to learn both conditional and unconditional behaviors. At inference, these
predictions are interpolated to amplify prompt fidelity:

ECFG = €0(X;,1, D) +5- (€0 (x1,1,Y) — €9(X;,1, D)), (20.64)

where s > 1 is the guidance scale.

CFG is simple, robust, and model-native. It requires no additional networks or loss terms, introduces
no adversarial gradient pathways, and scales gracefully across prompts and domains. Although
guidance inevitably reduces output diversity, GLIDE shows that CFG manages the fidelity—diversity
trade-off more favorably than CLIP guidance. While CLIP guidance aggressively sacrifices variation
to maximize alignment scores, CFG maintains perceptual quality without mode collapse.

1272 Chapter 20. Lecture 20: Generative Models Il

oers T— ~8— Classifier-free guidance - ~a— Clamifier-free gudsnce r
e == TR gollanes: 164 |~ CUF guidance 164 ~#— CLIF guigance !
o600 e #- CLIP guidinca / /
0s7s = i
. . " / el /
Zasm e a g é g /
3 ., &1 p yd 8 /
3 . B F o
s \ \; P "
3 2 £ . y £ .
2 0300 e £ & & 4 b
» s .
4TS o ,_/
J.] " 81 P
Q430 pa—— g
056 058 .60 e RE2Y 0.66 17 is 19 20 31 2 23 %5 o 5 tLE] W5
MS-CEHC0 Precson WS-COCO 1S RO CLIP scone
(a) Precision/Recall (b) IS/FID (c) CLIP score/FID

Figure 20.75: Trade-off between diversity and fidelity in GLIDE [450]. Classifier-free guidance
(CFG) achieves sharper, more realistic images while preserving more variation than CLIP-based
guidance.

This superiority is reflected in human preference studies. GLIDE uses Elo scoring—a rating system
adapted from competitive games like chess—to compare pairs of samples from different guidance
methods. Each approach accumulates points based on relative preference in head-to-head matchups.

~#— Classifier-free guidance
200 . #— CLIP guidance
|

relative elo {quality)
3 8

scale

(a) Photorealism

250
Ir‘_/_,,_a

2004

150

100

relative elo icaption|

504

—a— Classifier-free guidarce
& CUP guidgance

0 2 4 B 8 10
scale

(b) Caption Similarity

Figure 20.76: Elo scores for guidance methods in GLIDE [450]. CFG outperforms CLIP guidance
across both photorealism and semantic alignment.

Takeaway: Classifier-free guidance is a foundational technique for modern diffusion-based image
generation. It integrates directly with the model’s architecture, avoids adversarial gaming of external
metrics, and produces samples that are consistently favored by human evaluators. Its success in
GLIDE set the stage for adoption in subsequent systems like Stable Diffusion [531], Imagen [540],
and Parti [742].

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1273

Failure Cases and Architectural Limitations

Despite its strong generative capabilities, GLIDE exhibits clear limitations when tasked with
abstract reasoning, rare object compositions, or spatially intricate prompts. Failure cases include
implausible geometries (e.g., “a car with triangular wheels”), semantic mismatches (e.g., “a mouse
hunting a lion”), and weak attribute binding. Figure 20.77 illustrates such inconsistencies in spatial
relationships, object placement, and compositional coherence.

“an illustration of a cat ““a hieycle that has continucus
that has eight legs” wracks instead of wheels™

*“u mowse hunting 4 lion™ “"a car with triangular wheels™

Figure 20.77: Failure examples from GLIDE [450]. The model exhibits spatial inconsistencies,
compositional errors, or semantic drift.

These challenges stem, in part, from GLIDE’s architectural design. The model operates directly in
pixel space using a cascade of resolution-specific diffusion U-Nets, from a 64 x 64 base model to
higher-resolution super-resolution modules. While this cascade enables high-fidelity output, it incurs
significant computational cost and can propagate or amplify local inconsistencies—especially when
text conditioning is vague or underspecified.

Text conditioning in GLIDE is injected via frozen TS embeddings applied through cross-attention at
each U-Net layer. While effective for common prompts, this mechanism is static and may fail to
capture fine-grained semantics, particularly in rare or compositional settings. Attempts to enhance
conditioning using CLIP guidance led to brittle behavior: though CLIP gradients improved prompt
alignment metrics, they also introduced adversarial artifacts and degraded visual plausibility [450].
Even a noise-aware CLIP variant, trained on noised latents, did not eliminate these issues.

In contrast, classifier-free guidance (CFG) [224] proved more robust, offering sharper, more coherent
samples while maintaining a reasonable fidelity—diversity trade-off. Still, GLIDE’s monolithic design
entangles semantic interpretation and pixel-level synthesis in a single forward trajectory, limiting the
model’s controllability and generalization to atypical prompts.

These limitations motivated a shift in architecture. Rather than generating images directly from text
in pixel space, DALL-E 2 (also known as unCLIP) proposes a modular framework that decouples
semantic modeling from image generation. The design consists of:
* A pretrained CLIP encoder that embeds the text prompt into a dense latent space.
* A prior model—either autoregressive or diffusion-based—that maps the text to plausible
CLIP image embeddings 7;.
* A diffusion decoder that generates the final image conditioned on Z; (and optionally the
original text).
This two-stage pipeline enables specialization: the prior operates in CLIP’s compact semantic
space, improving prompt generalization and sample diversity, while the decoder focuses purely on
photorealistic rendering.

1274 Chapter 20. Lecture 20: Generative Models Il

Unlike GLIDE, guidance does not collapse diversity in unCLIP, since semantic information is already
embedded in Z; and remains fixed during decoding [S508]. As we will see, this architectural decoupling
resolves several of GLIDE’s bottlenecks and introduces new capabilities—such as zero-shot image
editing and text-guided variations.

Before introducing DALL-E 2 in depth, we briefly revisit its predecessor—DALL-E 1 [5S09]—which
pioneered large-scale text-to-image synthesis using discrete visual tokens and an autoregressive
transformer. Although limited in resolution and editability, DALL-E 1 established key ideas—such
as VQ-VAE bottlenecks and joint modeling of image and text tokens—that laid the groundwork for
modern generative systems.

Motivation: Turning Images into Token Sequences for GPI-Style Modelling

DALL-E 1 [509] reframes text-to-image generation as conditional autoregressive sequence modeling.
Inspired by the success of GPT-3 [58], which generates fluent text by predicting one token at a time,
DALL.-E extends this idea to vision: if an image can be represented as a sequence of discrete tokens,
then a transformer could learn to "write" images one token at a time, conditioned on a caption.

Applying GPT-style architectures directly to pixels is infeasible for two key reasons:
* Memory constraints: A 256 x 256 RGB image contains nearly 200,000 pixel values, far
exceeding the context length supported by transformers with quadratic self-attention.
* Low-level fidelity bias: Pixel-wise likelihoods encourage matching short-range visual details
but are poor at capturing global semantic structure aligned with a text prompt.

To address these issues, DALL-E adopts a two-stage pipeline:

1. Stage A — Discrete Visual Tokenization (VQ-VAE).
A Vector-Quantized Variational Autoencoder (VQ-VAE) is trained to compress and reconstruct
images. Specifically:
* The encoder downsamples a 256 x 256 RGB image into a 32 x 32 latent grid.
» Each latent vector is replaced with the nearest of K = 8192 codebook entries, producing
a discrete token map z € {1,...,K}32*%,
* The decoder reconstructs the image from these discrete codes using nearest-neighbor
embeddings.
After training, both the encoder and decoder are frozen. They serve distinct roles:
* The encoder is used to tokenize training images into fixed-length sequences of visual
indices.
* The decoder is used at inference time to reconstruct the final image from the predicted
image tokens.
2. Stage B — Transformer-Based Sequence Modeling.
Once the image-token vocabulary is defined by the VQ-VAE, DALL.-E trains a decoder-only
Transformer to model the conditional distribution over joint text—-image token sequences. The
training input is a single, flattened sequence:

[BPE-encoded caption tokens] || [VQ-VAE image tokens],

~
text context target to predict

where | | denotes concatenation. The model autoregressively learns to predict the next token
given all previous ones, using a standard maximum likelihood objective.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1275

At inference time, the generation process unfolds in three main steps:

(a) The input caption is tokenized using Byte Pair Encoding (BPE).

(b) The Transformer autoregressively generates a sequence of 1024 discrete image to-
kens—each corresponding to a 32 x 32 position in the image grid.

(c) These image tokens are passed to the frozen VQ-VAE decoder, which transforms them
into a full 256 x 256 RGB image.

This stage completes the pipeline: the Transformer acts as a powerful prior over visual token
sequences, and the VQ-VAE decoder serves as the renderer that translates discrete tokens
into pixel-level images. The reuse of pretrained components ensures modularity, while the
tokenized format enables the Transformer to operate over images in exactly the same way it
operates over language—token by token.

This design turns the image generation task into a symbolic language modeling problem. By
discretizing images, DALL-E enables the reuse of scaling laws, architectures, and optimization
methods originally developed for large language models. The VQ-VAE bottleneck plays a critical
role: it reduces the transformer’s sequence length by a factor of 192, enforces a visual vocabulary,
and allows the image generator to focus on semantic structure rather than low-level pixel precision.

Why not use a Vision Transformer (ViT) instead of a VQ-VAE? At the time of DALL-E 1’s
development (early 2020), ViT-style self-supervised encoders (e.g., SimCLR, BYOL, MAE) were
not yet mature enough to support discrete symbolic modeling.

Could a ViT-style encoder work today? Yes—modern systems like VQ-GAN [148], MAE [210],
and DALL-E 2 combine transformer or CLIP-style features with either residual quantization or
diffusion decoders. Advances in scalable mixed-precision training and robust quantization make
ViT-based latent spaces viable. Later parts in this book revisit these improved architectures.

In summary, DALL-E 1’s symbolic bottleneck—powered by a convolutional VQ-VAE—offered
a compact, expressive, and discrete latent space for training GPT-style transformers over images.
While ViT-based alternatives have since become popular, the VQ-VAE’s combination of discrete
representation, efficient decoding, and architectural maturity made it the most practical choice at the
time.

1276 Chapter 20. Lecture 20: Generative Models Il

6.

(a) a tapir made of accordion. (b) an illustration of a baby (c) a neon sign that reads (d) the exact same cat on the
a tapir with the texture of an hedgehog in a christmas “backprop”. a neon sign that top as a sketch on the bottom
accordion. sweater walking a dog reads “backprop”. backprop

neon sign

Figure 20.78: Examples from DALL-E [509]. The model demonstrates the ability to combine
distinct concepts (e.g., “an illustration of a baby hedgehog in a christmas sweater walking a dog”),
anthropomorphize animals, render textual descriptions into stylized lettering, and even perform basic
image-to-image translation. These outputs illustrate DALL-E’s capacity for visual reasoning and
compositional generalization.

How VQ-VAE Enables Discrete Tokenization

The tokenizer in DALL-E 1 [509] is based on a vector-quantized variational autoencoder (VQ-VAE),
which converts high-resolution images into grids of discrete latent tokens. Specifically, it maps each
256 x 256 RGB image into a 32 x 32 grid, where each element indexes one of K = 8192 codebook
vectors. These indices serve as compact image tokens for downstream modeling.

Training the Discrete VAE in DALL-E 1. The VQ-VAE tokenizer used in DALL-E 1 [509] maps
high-resolution input images into a grid of discrete latent tokens, enabling downstream modeling
with autoregressive transformers.

During training, the encoder processes the input image and outputs a spatial grid of logits ¢; ; € RX,
where K is the number of codebook vectors and (i, j) indexes the spatial position in the latent map.
These logits represent unnormalized log-probabilities over the discrete latent variables. A softmax is
applied to yield a categorical distribution:

pi,j(k) = softmax(¢;)i,

which defines the probability of selecting the k-th codebook vector at location (i, j).

Since sampling discrete indices is non-differentiable, the model applies the Gumbel-softmax
relaxation [261] to enable end-to-end training. This technique approximates categorical sampling
using a continuous, differentiable proxy. Instead of selecting a single index, the encoder produces a
convex combination of the codebook vectors:

K
Zij= Y, pij(k) e,
k=1

where &, € R? is the k-th learned codebook embedding. The resulting latent grid {Zi,;j} is passed to
the decoder, which attempts to reconstruct the original image.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1277

The VQ-VAE in DALL-E 1 is trained to maximize the Evidence Lower Bound (ELBO) on the
log-likelihood of the data distribution. This objective consists of two terms:

* Reconstruction loss: This term encourages the decoder to faithfully reconstruct the input
image from its latent representation. During training, the decoder receives a softly quantized
grid of latent vectors 7 = {Z; ;}, obtained via Gumbel-softmax relaxation over the encoder’s
logits. The decoder outputs a reconstructed image £ = Dy (Z), which is compared to the
original input x.

The reconstruction loss assumes an isotropic Gaussian likelihood with unit variance at each
pixel. This leads to a negative log-likelihood that simplifies to pixel-wise mean squared error
(MSE):

c%econ :Exw.@ [HX_DG(E)‘@} :

Although MSE does not capture perceptual similarity (e.g., sensitivity to spatial misalignments
or texture), it provides dense gradient feedback that encourages the encoder to preserve low-
level spatial and textural details. These local features—edges, contours, and color regions—are
crucial for producing discrete token sequences that retain semantic and structural information
required by the downstream transformer.

More perceptually aligned metrics such as LPIPS [778] are often used in tasks that prioritize
human visual judgment, but are computationally more intensive and less stable in early training.
In contrast, MSE offers simplicity, efficiency, and sufficient structural fidelity for the purposes
of compression and symbolic modeling.

» KL divergence regularization: At each spatial location (i, j), the encoder outputs a categor-
ical distribution p; ;(k) over the K codebook entries. To discourage codebook collapse—a
failure mode where only a small subset of the codebook is consistently used—the model
includes a regularization term that penalizes deviation from a uniform prior:

Zu =Y KL[pi,(k) || % k)],

L,j
where % (k) = % denotes the uniform categorical distribution over all K codebook entries.

This KL term encourages the encoder to distribute probability mass more evenly across
the entire codebook. Without such regularization, the model may converge to using only
a small number of tokens—those that are easiest for the decoder to reconstruct—thereby
underutilizing the available representational capacity. This phenomenon, known as codebook
collapse, reduces expressiveness and limits the diversity of visual patterns that the latent space
can encode.

The uniform prior % (k) reflects a modeling assumption that, across the dataset, all codebook
entries should be equally likely. While this may not hold exactly in practice, it serves as a
useful tool: by nudging the encoder’s output distributions p; ;(k) closer to uniform, the model
is encouraged to explore and specialize different code vectors. This improves latent diversity
and makes the discrete token space more informative for downstream components such as
autoregressive transformers.

The final objective function optimized during training is the ELBO:

Z51BO = Lrecon + B - Zx1,

1278 Chapter 20. Lecture 20: Generative Models Il

where f3 is a tunable hyperparameter that governs the trade-off between reconstruction fidelity and la-
tent space regularization. A carefully chosen 3 ensures that the model learns discrete representations
that are both structurally informative and uniformly distributed.

How is the codebook updated? Because the relaxed latent vector 7; ; is a weighted average over the
codebook entries, and the decoder is fully differentiable, the reconstruction loss induces gradients
with respect to the codebook vectors €;. These vectors are updated directly through backpropagation,
with each one receiving a contribution proportional to its selection probability p; j(k) across spatial
locations. This continuous relaxation allows efficient training of the discrete bottleneck.

Why is this relaxation valid if inference uses argmax?
At inference time, each spatial location (i, j) is assigned a discrete codebook index using a hard
argmax over the encoder logits:

i j = arg m]le ?; ilk].

This produces a symbolic grid of tokens that the transformer processes as a sequence over a fixed
vocabulary. Since transformer models operate exclusively over discrete categorical inputs, these hard
assignments are necessary for compatibility with downstream autoregressive generation.

However, during training, the non-differentiability of argmax prevents gradients from propagating
into the encoder and codebook. To enable end-to-end optimization, the model instead uses a Gumbel-
softmax relaxation [261]—a differentiable approximation to categorical sampling. For each location
(i,), the encoder outputs logits ¢; ; € RX, which are perturbed with Gumbel noise and scaled by a
temperature T > 0 to yield soft categorical probabilities:

exp ((4i,[k] +8k)/7)
Yo—rexp (4 [k +gu)/7)’

pij(k) = gk ~ Gumbel (0, 1).

Here, the Gumbel noise g serves a specific purpose: it injects stochasticity that simulates sampling
from a categorical distribution while keeping the operation differentiable. In effect, it perturbs the
logits just enough to allow a continuous approximation of discrete sampling. The softmax over noisy
logits mimics drawing from a categorical distribution in expectation, but permits gradients to flow
through the output probabilities p; j(k). Without this noise, the relaxation would simply reduce to a
softmax over logits and lose the stochastic behavior necessary to model discrete sampling during
training.

The latent vector is then computed as a convex combination of codebook entries:
K
Zij =) pij(k) e,
k=1

where &, € R? is the k-th learned codebook embedding.

The temperature 7 plays a central role in this process: it controls the sharpness of the softmax. At
high values, the output distribution is diffuse, placing weight on multiple entries. As T — 0, the
distribution becomes increasingly concentrated on the largest logit, approaching a one-hot vector. To
reconcile soft training with hard inference, 7 is gradually annealed during training—typically down
toT= %. This causes the encoder’s soft outputs to become sharply peaked, closely approximating
the behavior of argmax by the end of training.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1279

As a result, the decoder—trained on these increasingly sharp latent vectors—becomes robust to the
true hard tokens it will encounter at test time. Meanwhile, a KL divergence term encourages the
encoder to maintain high entropy across codebook usage, preventing mode collapse and promoting a
rich, expressive latent space.

In summary, the Gumbel-softmax relaxation enables differentiable training by producing soft samples
over codebook entries. The temperature parameter T controls how close these samples are to true
one-hot vectors, while the Gumbel noise simulates discrete sampling in a smooth and trainable way.
Together with annealing, reconstruction loss, and KL regularization, this mechanism allows the model
to learn discrete latent codes that are both optimizable and fully compatible with transformer-based
generation.

Codebook Vectors [¢;

8 e0

z11 = pralel)es + pralesles + -+ pralexleg

Q%;

Figure 20.79: Training the VQ-VAE in DALL-E 1. The encoder outputs logits ¢; ; € RX, which
are converted into relaxed categorical distributions p; j(k) via Gumbel-softmax. These define convex
combinations over codebook vectors €, yielding continuous latent vectors Z; ;. The decoder recon-
structs the image from the full grid {Z; ;}. The ELBO loss drives both reconstruction and codebook
utilization. At inference, the encoder performs hard argmax token selection for compatibility with
transformer-based generation.

(Figure created by the author using DALL-E-generated visual elements.)

\

.

7
/
§
\

£

Z

b ;po:-ua_
NND
gl
®
§o
i
===
CNN
Decoder

\
\
/

L

Note that while this simplification stabilizes training and integrates well with transformer-based
generation, it comes at the cost of reduced discreteness. Each latent vector becomes a blend of
multiple codebook entries rather than a single, clearly defined symbol. In contrast, models like
VQ-VAE-2—though not designed to interface with transformers—use hard quantization to enforce
strictly discrete representations. This is especially important in applications focused on compression,
clustering, or symbolic reasoning, where each token must correspond to a well-defined and separable
concept.

For instance, in tasks like class-conditional generation or latent space interpolation, soft assign-
ments can blur distinct concepts (e.g., mixing “cat” and “dog” embeddings), leading to ambiguous
representations. Hard assignments avoid this by ensuring each latent token corresponds to a single, in-
terpretable codebook entry—even if training becomes more complex due to the non-differentiability
of the quantization step.

1280 Chapter 20. Lecture 20: Generative Models Il

Inference-Time Token Generation and Decoding

At inference time, DALL-E 1 generates images directly from a text prompt—without any image
input. The encoder of the VQ-VAE is bypassed entirely. Instead, the caption is first tokenized
into a sequence of subword units using Byte Pair Encoding (BPE), which serves as context for a
powerful decoder-only transformer. This transformer then autoregressively generates a sequence
of 1024 discrete image tokens, each representing a codebook index in a 32 x 32 spatial grid. Once
the full token sequence is sampled, it is passed to the frozen VQ-VAE decoder to reconstruct a
high-resolution 256 x 256 RGB image.

1. The caption is tokenized into Tiex; BPE tokens: [x[™*! XX

1t TECXI
2. The transformer generates image tokens one by one:

image image | _ftext text image image
X; ~ p(x | X X X e X)

fort=1,...,1024.
3. The resulting sequence is reshaped into a 32 x 32 grid and decoded into pixels by the VQ-VAE
decoder.

This architecture separates semantic generation from image rendering:
* The transformer serves as a semantic prior, generating a symbolic image consistent with the
caption.
* The decoder acts as a neural renderer, translating discrete tokens into photorealistic pixel
outputs.

Training the Transformer with Discrete Tokens
To enable text-to-image generation, the transformer is trained to model the joint distribution over
text and image tokens:

. T{exl+1024
text —image
pll/('x y X &): H pl//(-xl |-x17"'7-xl‘—1)7
=1
where X = [x{*', ... xf*!] are the BPE-encoded caption tokens and X"™¢ = [x|™&%, . x|775€] are

the discrete image tokens derived from the VQ-VAE encoder via hard argmax quantization.

During training, these two sequences are concatenated into a single input:

text text _image image
X ,x}i:xl,xl S ,xlozi I,

and fed into the transformer, which is trained to predict each token in the sequence from its preceding

context using a causal attention mask. The model performs next-token prediction across the entire

sequence—first within the caption, then across the image region—with no distinction in architecture

between the two parts.

Importantly, cross-modal conditioning arises naturally: since image tokens are positioned after
the text tokens, they are allowed to attend to the entire caption. This enables the model to learn
text-guided image synthesis within a unified autoregressive framework.

The loss function used is standard categorical cross-entropy over all tokens in the sequence:

Tiext Tiext+1024

zotal = Z Aftext : gCE (xt) + Z limage 'gCE (-xl‘)a

t=1 t=Text+1

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1281

where Aext < Aimage (typically % VS. %) to emphasize the importance of accurate image modeling.
This bias reflects the downstream goal of generating images, not captions.

Additional regularization techniques—such as BPE dropout (which randomly alters token splits) and
spatial attention priors over the image portion—are used to improve robustness and sample quality.

By training in this way, the transformer learns to interpret the caption as a prefix and generate a
coherent visual token sequence conditioned on it. At inference time, the same structure is followed:
given only a text prompt, the model samples tokens autoregressively to produce an image in the
VQ-VAE’s discrete latent space.

Text Prompt

Fy
g
3

-

“Armchair in the
shape of an avocado” |

|

-
Transformer \

Teansfarmer \

\ Ja:uasm
v _1/
]
oo@o
-
O
|
mlsl=l=]=!
|
fonm)

/
L

L

-
o
l
DoEEEn
|
|

Codebaok Vectors (&, ., €y -uaz)
) "o,

\

— P s I I =
N L= ' HECS
g = - I p . — — Z 8 .,
'l 12 ® nluél
|—-—""J § I . I.m""""------.l

32 32

Figure 20.80: Inference pipeline in DALL-E 1. At inference time, the system receives a raw
text prompt, which is first tokenized into a sequence of subword units using Byte Pair Encoding
(BPE). This token sequence is fed into a decoder-only transformer, which autoregressively predicts
a sequence of 1024 discrete image tokens, each representing the index of a visual codebook vector.
The output sequence is reshaped into a 32 x 32 spatial grid and passed to the frozen VQ-VAE
decoder, which translates these symbolic tokens into a high-resolution 256 x 256 RGB image.
This modular architecture cleanly separates text understanding, symbolic image generation, and
pixel-level rendering.

(Figure created by the author to illustrate the DALL-E I inference process.)

Clarifying Terminology: dVAE vs. VQ-VAE

The DALL-E paper uses the term discrete VAE (dVAE) to refer to its tokenizer, which is effectively a
VQ-VAE trained with soft relaxation. While VQ-VAE-2 [514] adds hierarchical levels and is suited
to pixel-space autoregression, DALL-E uses only a flat VQ-VAE and does not employ VQ-VAE-2 or
hierarchical latent modeling.

1282 Chapter 20. Lecture 20: Generative Models Il

Training Datasets and Sample Generation Pipeline

DALL-E 1 is trained on a large-scale dataset comprising 250 million (text, image) pairs scraped
from the internet. Captions are tokenized using Byte Pair Encoding (BPE), while corresponding
images are compressed into 32 x 32 grids of discrete tokens via a VQ-VAE encoder. This diverse
and weakly supervised corpus exposes the model to a broad spectrum of concepts and modalities,
enhancing its generalization to novel text prompts at inference time.

During image generation, after receiving a text prompt, DALL-E 1 begins the process of autoregres-
sively sampling a sequence of 1024 discrete image tokens using a decoder-only sparse transformer
with 12 billion parameters. Although the model’s weights are fixed and deterministic after training,
the decoding process at inference time is deliberately stochastic.

At each of the 1024 generation steps, the model outputs a logit vector £ € R8!2, corresponding to a
categorical distribution over the image vocabulary. Instead of applying greedy decoding (selecting
the most likely token at each step), the model samples from this distribution. To modulate the
diversity of outputs, it uses temperature-based sampling, a method confirmed in the original
paper [509]. The logits are rescaled as:

Pj o< €X e—k
Pk p T ;

where 7 > 0 controls the sharpness of the softmax distribution. For T = 1, the model samples directly
from the raw distribution; lower T values sharpen the probabilities (favoring high-confidence tokens),
while higher values flatten them (increasing randomness). The authors report results under different
temperatures, including T = 0.85 and 7 = 1.0, showing that trade-offs between diversity and fidelity
can be tuned via this parameter.

It is important to note that even with a fixed temperature, the process remains non-deterministic.
The temperature shapes the distribution but does not determine the sampled outcome. At each
step, the model draws from a distribution with nonzero entropy—akin to rolling a die with unequal
probabilities. Thus, for a fixed prompt and temperature, different sequences can still emerge due to
randomness in token sampling.

To generate a batch of N candidate images, this entire sampling process is simply repeated N times.
Each run yields a distinct sequence of 1024 discrete image tokens, reflecting a unique plausible
interpretation of the same input caption. The diversity across these sequences arises entirely from
stochastic sampling—there is no injected model-level noise (such as dropout) at generation time.

Once generated, each of the N sampled token sequences is decoded into a full-resolution 256 x 256
RGB image using the pretrained and frozen VQ-VAE decoder. These images form the candidate
pool for the subsequent CLIP-based reranking phase.

To select the most relevant images from the candidate set, DALL-E applies a contrastive reranking
strategy using CLIP [498], a pretrained model that embeds both text and images into a shared
semantic space. Each image is scored by computing the cosine similarity between its embedding
and the embedding of the input caption. The top-ranked images—those most semantically aligned
with the prompt—are selected as final outputs.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1283

This two-stage pipeline—stochastic sampling followed by CLIP-based semantic reranking—enables
DALL-E to generate high-quality and semantically faithful images from diverse prompts. During
sampling, diversity is promoted through temperature-based decoding; during reranking, relevance is
enforced by scoring candidates against the caption using CLIP [498]. This separation of concerns
allows the model to handle ambiguous or open-ended prompts effectively: by increasing the number
of samples N, it becomes more likely that one or more generations will match the intent of the
caption.

However, this strategy comes at a significant computational cost. Generating N = 512 high-resolution
image candidates requires 512 full autoregressive decoding passes through a 12-billion parameter
transformer and subsequent VQ-VAE decoding—making the approach expensive in both time and
memory. While effective for research and offline applications, this procedure may be less practical
in low-latency or resource-constrained settings.

wo sinks, a
cabinet and a
bathiub,

a truck atopped at
an intersection
where construction
barriers are up.

a crowd of paople awoman and a man
standing on top of atanding next to &
a beach. bush beneh,

a man riding a
bike down a street
past a young man

a man aifting on a a car coverad in
bench next to a warious empty
alug. toathpaste tubes,

& group of urinats
Is near the trees

best of & best of 64 bestof 512

bestof 1

Figure 20.81: Effect of Sample Pool Size on Reranked Outputs. Adapted from [509], this figure
illustrates how increasing the number of sampled candidates N improves the top-ranked image
quality. The prompt is “a group of urinals is near the trees.” Each image is generated independently
using temperature-based decoding and scored by CLIP for alignment with the caption. At small
N, none of the candidates are coherent. As N increases, the diversity improves the chance that
CLIP surfaces a relevant and visually accurate result. This demonstrates the power—but also the
computational cost—of large-scale sampling combined with contrastive reranking.

1284 Chapter 20. Lecture 20: Generative Models Il

Experimental Results and Motivation for DALL-E 2

DALL.-E 1 delivers impressive zero-shot image generation capabilities, establishing a strong baseline
for symbolic text-to-image synthesis. On MS-COCO captions, its samples are consistently preferred
by human raters over those from prior work (e.g., DF-GAN [608]). In a best-of-five vote, DALL-E’s
generations were judged more realistic 90% of the time and more semantically aligned with the
caption 93.3% of the time. These results are particularly notable given that DALL-E was evaluated
in a zero-shot setting—without task-specific fine-tuning.

100% -
Number of Votes
0/5
1/5
2/5
3/5
4/5

5/5

75%

Majority vote

25%

0%

DF-GAN QOurs DF-GAN Ours
Realism Accuracy

Figure 20.82: Human evaluation on MS-COCO. Compared to DF-GAN [608], DALL-E 1°s
samples were chosen as more realistic and better aligned with the input caption in 90% and 93.3%
of evaluations, respectively. Voting was performed by five independent human raters. Adapted
from [509].

Quantitative benchmarks further validate these findings. On MS-COCO, DALL.-E achieves a Fréchet
Inception Distance (FID) competitive with state-of-the-art models—within 2 points of the best
prior approach—and outperforms all baselines when a mild Gaussian blur is applied to reduce
decoder artifacts. Its Inception Score (IS) also improves under similar conditions. However, on more
specialized datasets like CUB [651], DALL-E’s performance drops sharply, with a nearly 40-point
FID gap between it and task-specific models. This limitation is visually evident in the model’s CUB
generations: while bird-like in appearance, they often lack anatomical consistency and fine-grained
control.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1285

{a) FID and IS on MS-COCO as a func- (b) FID and 18 on CUB as a function of (c) FID and IS on MS-COCO as a func-
tion of blur radius, blur radius, tion of the sample size used for rerank-
ing.

Figure 20.83: FID and IS on MS-COCO and CUB. On MS-COCO, DALL-E 1 matches or
outperforms prior models depending on blur level, suggesting good high-level coherence. On CUB,
its lack of fine-grained knowledge leads to significantly worse FID scores, highlighting domain
transfer limitations. Adapted from [509].

this gray bird has a pointed beak black wings this rotund bird has a black tipped beak a this is a small white bird with a yellow
with small white bars long thigh and tarsus black tail with a yellow tip and a black crown and a black eye ring and cheek patch
and a long tail relative to its size cheek patch and throat

small bird with a pale yellow underside light . "
the small bird has a dark brown head and brown crown and back gray tail and wing lips Ll bied fin e gres Hiead Siwdarey bane
light brown body tip of tall feather bright yellow black eyes arey e ot 9
and black stripe over eyes W

Figure 20.84: Zero-shot samples from DALL-E 1 on the CUB dataset. While capturing bird-
like features, the generations struggle with consistent anatomy or species-level details, reflecting
DALL-E’s limited resolution and domain-specific expressivity. Adapted from [509].

1286 Chapter 20. Lecture 20: Generative Models Il

To address these challenges, DALL-E 1 employs a clever reranking mechanism using a pretrained
contrastive image—text model (CLIP [498]). From a large pool of candidate generations sampled
from the transformer, a subset is selected based on similarity to the input caption in CLIP’s joint
embedding space. As shown in Figure 20.81, increasing the number of samples from which to rerank
(e.g., from 64 to 512) yields clear improvements in FID and IS, showcasing the power of contrastive
alignment as a decoding prior.

Despite its pioneering design, DALL-E 1 reveals key bottlenecks that limit generation quality: a fixed-
length symbolic latent space, limited spatial resolution, and reliance on an autoregressive transformer
prone to compounding errors. Moreover, its VQ-VAE decoder constrains the expressiveness of fine
details and textures, and contrastive reranking—while effective—adds inference-time complexity.

These limitations laid the foundation for a more powerful successor. DALL-E 2 abandons discrete
tokenization in favor of CLIP-guided diffusion priors and cascaded super-resolution modules,
enabling photorealistic outputs, improved compositionality, and open-vocabulary generalization.
The next section explores this evolution in depth.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1287

System Overview and Architectural Shift

DALL-E 2 [508] departs from the discrete-token autoregressive modeling of its predecessor by
adopting a continuous latent diffusion framework grounded in the semantics of natural language and
vision. Instead of generating symbolic image tokens (as in VQ-VAE + Transformer), DALL-E 2
generates continuous CLIP image embeddings and decodes them into pixels using diffusion. This
shift introduces greater flexibility, semantic expressiveness, and compositional fluency.

The full text-to-image generation pipeline comprises three major components:

* A frozen CLIP model [498], which embeds both text and images into a shared latent space
via contrastive learning. In this space, semantic similarity corresponds to vector proxim-
ity—images and captions referring to the same concept are mapped close together. However,
CLIP is not generative: it provides a static embedding space but cannot sample new embed-
dings or synthesize images.

* A diffusion prior, trained to generate a CLIP image embedding from a given text embedding.

Although text and image embeddings coexist in the same CLIP space, they are not interchange-
able. Text embeddings primarily encode abstract, high-level semantic intent—what the image
should conceptually depict—while image embeddings capture concrete, fine-grained visual
details necessary for rendering a realistic image. Critically, only a subset of the embedding
space corresponds to actual, decodable images: this subset forms a complex manifold shaped
by natural image statistics.
To bridge the gap between abstract language and rich visual detail, the diffusion prior learns
to sample from the conditional distribution over image embeddings given a text embedding.
Instead of performing a deterministic projection (which might land off-manifold), it gradually
denoises a sample toward the manifold of valid image embeddings, guided by the semantic
signal from the text. This process ensures that the generated embedding is:

1. Semantically aligned with the input caption—anchored by the shared CLIP space,
2. Plausibly decodable into a coherent, photorealistic image—i.e., close to regions popu-
lated by real image embeddings.

The diffusion formulation also allows for stochasticity, making it possible to draw diverse but
valid image embeddings from the same text input—capturing the one-to-many relationship
between language and vision. For instance, the caption “a cat on a windowsill” might yield
images with different lighting, poses, styles, or backgrounds—all plausible and semantically
correct, but visually distinct.

* A diffusion decoder, trained to reconstruct a high-resolution image from a CLIP image
embedding. This decoder is based on the GLIDE architecture and operates directly in pixel
space, not in a learned latent space as in traditional latent diffusion models (LDMs). It
synthesizes images via a denoising diffusion process that is conditioned on the sampled CLIP
image embedding. To further enhance semantic fidelity, the decoder can also incorporate the
original CLIP text embedding as auxiliary context, enabling techniques such as classifier-free
guidance—where conditioning signals are dropped stochastically during training and later
reintroduced at inference to steer generation more precisely.

1288 Chapter 20. Lecture 20: Generative Models Il

To produce high-resolution images, DALL-E 2 employs a cascade of diffusion models: a base
model first generates a low-resolution 64 x 64 image, which is then successively refined by two
separate diffusion upsamplers—each responsible for enhancing resolution (e.g., to 256 x 256
and ultimately 1024 x 1024). This multi-stage pipeline allows coarse scene structure and
global composition to be resolved early, with fine textures and details added progressively.
The result is a photorealistic image that faithfully reflects the semantic intent of the input
caption and preserves the structural coherence implied by the CLIP embedding.

This architecture separates high-level semantics from low-level synthesis: the CLIP text embedding
anchors generation in linguistic meaning, while the diffusion prior produces a visually grounded
CLIP image embedding that is both semantically aligned and statistically plausible. By modeling
a distribution over such embeddings, the system captures the one-to-many nature of text-to-image
mappings—allowing multiple visually distinct yet valid outputs for the same prompt. Importantly, it
ensures that sampled image embeddings lie on the manifold of realistic images, enabling successful
decoding by the diffusion decoder.

CLIP objective

I I

“a corgi
playing a
flame |
throwing z .
1 — e —= [
trumpet 00000]
I =
prior decoder

Figure 20.85: DALL-E 2 Architecture Overview. The figure is divided into two conceptual stages.
Top (above the dotted line): CLIP pretraining. Images and text captions are mapped into a shared
latent space via contrastive learning, producing paired embeddings z; € R? (image) and z; € R¥ (text).
This CLIP model is pretrained independently and remains frozen throughout DALL-E 2 training.
Bottom (below the dotted line): DALL-E 2 generation pipeline. The frozen text embedding z
is passed to a diffusion prior that samples a compatible image embedding z;, aligned with both
the text and the CLIP image manifold. This embedding then conditions a cascade of diffusion
decoders, which generate a high-resolution image x € R¥*W>3_ Both the prior and decoder are
trained end-to-end using CLIP-based supervision.

Diffusion Prior: Bridging Text and Image Embeddings

The diffusion prior serves as a generative model that maps text embeddings to image embed-
dings—both produced by a frozen CLIP model [498]. This replaces the discrete-token autoregressive
Transformer of DALL-E 1 with a continuous, stochastic generative mechanism. Its primary role is to
synthesize plausible image representations (in CLIP space) that semantically align with a given text
prompt.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1289

Training Objective The DALL-E 2 prior models the conditional distribution p(z; | z;), where
7 € R? is the CLIP text embedding derived from a caption y, and z; € R is the corresponding CLIP
image embedding. This latent embedding z; is not the image x € R”*W >3 but a dense, semantic
vector encoding the high-level content of the image. The role of the prior is to bridge language and
vision by mapping z; to a plausible, text-consistent image embedding z;.

As in standard DDPMs [223], a forward noising process progressively corrupts z; over T timesteps:

= oz + o, g~ .4 (0,1),
where zl@ is the noisy latent at timestep ¢, and the scalars o;, o; are defined by a cosine variance

schedule [449]. The diffusion prior, modeled by a Transformer-based network fy, learns to recover
()

./, conditioned on z; and timestep ¢:

2

2])
Conditioning on text z; and timestep ¢: The diffusion prior fy is a decoder-only Transformer
that predicts the clean CLIP image embedding z; € R? from its noisy version zl@, conditioned
on the text prompt y, the global CLIP text embedding z; € R?, and the current diffusion timestep

t €{1,...,T}. All components are embedded into a sequence of tokens, each of dimensionality
dmodel, and processed jointly by the Transformer.

z; from z

o%rior = Ez,-,z,,t |:Hf9(Z§t),Zz,t) —Zi

Input sequence construction: At every denoising step ¢, the model receives a token sequence of
length N + 2, where N is the number of caption sub-word tokens. The sequence is composed as
follows:

1. CLIP text embedding token: The global CLIP text embedding z, € R is projected to the
model’s internal dimension and prepended to the sequence.

2. Caption tokens: The raw text y is tokenized and embedded via a learned text encoder (separate
from CLIP), yielding a sequence Enc(y) = [ey,...,ey] € RV*dmeel that captures fine-grained
linguistic details.

3. Noisy image token: The current noised image embedding zlm € Rémosel s appended as the

final token in the sequence. This is both a conditioning signal and the slof from which the

prediction is read.

A learned timestep embedding y; € Rémowl is added elementwise to each token in the sequence:

)

Input, = Proj(zt),el,...,eN,zgt +7 +PE,

where PE denotes positional embeddings. The Transformer attends over the entire sequence using
standard self-attention layers.

Prediction mechanism: Unlike architectures that introduce a special [OUT] token, DALL-E 2 reuses
the position of the noisy image token to emit the prediction. That is, the model’s output at the final
sequence position is interpreted as the predicted clean embedding:

Zi = fo(Input,)yi2.

1290 Chapter 20. Lecture 20: Generative Models Il

This vector is supervised using a mean squared error loss against the ground truth image embedding
Zi+

R 2
Lorior = Bz [Hzi _ZiHZ} :

Intuition: This conditioning layout minimizes token overhead while enabling the model to integrate
coarse semantic alignment (z;), fine-grained linguistic context ({ex}), temporal information (%), and
noisy visual evidence (zl@). By sharing the input and output slot for zl@, the model tightly couples
conditioning and generation, which empirically improves stability and sample quality in latent space.
The model acts as a semantic denoiser, iteratively refining its belief over z; in a manner consistent
with both language and the manifold of realistic CLIP image embeddings.

Why predict z; instead of noise £? In standard DDPMs, models are often trained to predict the
noise vector € added to the data, rather than the clean data itself. However, DALL-E 2 found that
predicting the uncorrupted latent z; directly yields better results in the CLIP space. This choice is
empirically motivated.

Cosine Noise Schedule: The prior uses the improved cosine schedule [449], which spreads signal-to-
noise ratio (SNR) more evenly across timesteps. This mitigates the sharp gradient imbalances found
in linear schedules—where learning is dominated by either near-clean or near-noise states—and
instead concentrates learning signal in mid-range latents, which are most ambiguous and informative.

Intuition: The prior functions as a semantic denoiser in CLIP space. At inference time, it starts

from random Gaussian noise zET) ~ A4(0,1), and iteratively transforms it into a coherent image
embedding zgo) ~ z; via reverse diffusion steps. Each step is guided not by the noise offset, but by
the model’s direct prediction of the destination z;, enabling more targeted and text-consistent updates.
This ensures that the final image embedding is both decodable—i.e., maps to a natural image x—and

semantically grounded in the input prompt y.

Model Architecture Two alternative approaches were considered for modeling the conditional
distribution p(z; | z;), where z; € R is the CLIP text embedding of the caption y, and z; € R is
the corresponding CLIP image embedding. Both approaches aim to generate latent image features
aligned with the input caption, but differ substantially in modeling assumptions, architecture, and
inference dynamics.
* Transformer-based diffusion prior: This is the main method used in DALL-E 2. It operates
in latent space using a denoising diffusion process over CLIP image embeddings z;. At each
timestep ¢, the model is given a noisy latent zft), the global CLIP text embedding z;, and an

embedded version of the timestep ¢, and predicts the clean latent z; directly.

Unlike UNet-based architectures used in pixel-space diffusion models such as DDPM [223] or
GLIDE [450], the prior is implemented as a decoder-only Transformer. The inputs—caption
tokens, CLIP embedding, timestep embedding, and noisy latent—form a compact sequence
that is processed by self-attention layers, enabling flexible and global conditioning. This
architecture naturally supports compositionality and long-range dependencies, which are more
difficult to encode in convolutional models.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1291

A key architectural departure from earlier DDPM-style models is the absence of pixel-level

upsampling paths or spatial hierarchies; instead, the Transformer operates entirely in the flat

CLIP embedding space. The model outputs the prediction from the same token slot that

received the noisy image latent zft), avoiding the need for a dedicated output token and keeping
conditioning tightly coupled with prediction.

* Autoregressive prior: As an alternative, the authors also experimented with an autoregressive
model over compressed image embeddings. The embedding z; is first reduced via PCA and
quantized into a sequence of discrete tokens, which are then modeled using a Transformer
decoder. This approach allows for non-iterative sampling, greatly reducing generation time.
However, it was found to severely limit sample diversity and compositional robustness. It
often failed to represent visually complex or semantically unusual prompts, such as “a snail
made of harp strings,” and exhibited classic autoregressive weaknesses like mode collapse.

The diffusion-based prior was ultimately adopted due to its superior expressiveness, semantic ground-
ing, and generalization capabilities. Its iterative nature enables it to sample from a rich, multimodal
distribution over image embeddings—capturing the diversity of possible visual instantiations for a
given text prompt. Importantly, this process ensures that sampled latents:

* Lie on the CLIP image manifold—i.e., they decode to realistic images.

* Align semantically with the caption embedding z;.

Comparison to previous diffusion works: The DALL-E 2 prior shares conceptual lineage with
diffusion models like “Diffusion Models Beat GANs” [122] and GLIDE [450], but with several
notable distinctions:
* It operates entirely in a latent space (CLIP embeddings), rather than in pixel space.
* It uses a Transformer instead of a UNet, facilitating flexible conditioning on textual tokens
and enabling better compositional generalization.
» The prediction target is the original embedding z;, not the noise €, a choice empirically found
to improve convergence and alignment in semantic spaces.

Sampling efficiency: Although operating in CLIP latent space reduces the dimensionality of
the generative process, diffusion models remain computationally intensive due to their iterative
nature. Each sample requires T sequential denoising steps—commonly 1000 or more in traditional
DDPMs [223]—which can severely limit inference speed.

To address this, DALL-E 2 adopts the Analytic-DPM sampler [395], a high-order numerical
solver designed to accelerate denoising without sacrificing quality. Unlike the original DDPM
sampler, which performs fixed-step stochastic updates, Analytic-DPM approximates the reverse
diffusion process as an ordinary differential equation (ODE) and solves it using techniques from
numerical analysis. Specifically, it constructs closed-form approximations of the score function’s
integral using high-order Runge—Kutta or multistep methods.

Intuition: Whereas classical DDPM sampling views denoising as a Markov chain with small, noisy
steps, Analytic-DPM reinterprets it as a continuous trajectory through latent space and computes
this path more efficiently. By leveraging smoothness in the learned score function and adapting
step sizes accordingly, the sampler produces high-fidelity outputs using significantly fewer steps. In
practice, this allows DALL-E 2 to reduce sampling to just 64 steps—an order of magnitude faster
than original DDPMs—while maintaining perceptual quality and semantic alignment.

1292 Chapter 20. Lecture 20: Generative Models Il

Further acceleration is possible via progressive distillation [542], which trains a student model to
mimic the multi-step sampling trajectory of a teacher using only a few steps. This method compresses
multi-step DDIM-style inference into 4—8 steps, enabling near real-time generation without major
loss in sample diversity or quality.

Future directions for improving the prior: DALL-E 2’s latent diffusion prior leverages CLIP space
to produce semantically aligned image embeddings. Still, there is room to improve its efficiency
and controllability. One avenue is to enhance the fext conditioning pathway, such as scaling the text
encoder or introducing structured cross-attention. As shown in Imagen [540], boosting language
understanding often yields greater perceptual gains than enlarging the generator.

In parallel, alternatives like Flow Matching [364] propose learning deterministic vector fields to
transport samples from noise to target latents. Trained with optimal transport, this approach can
shorten generative paths and accelerate sampling—making it a promising direction for future priors.

Together, these advances in conditioning and transport modeling inform newer architectures such as
DALL-E 3, which further optimize semantic grounding and inference speed.

Figure 20.86: DALL-E 2 text-to-image examples. These 1024 x 1024 samples, generated by a
production-scale version of the model, demonstrate high fidelity and strong semantic alignment.
The use of CLIP-based priors and diffusion decoders enables complex compositional reasoning and
stylistic control, outperforming discrete-token models.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1293

Diffusion-Based Decoder
Once a CLIP image embedding Z; € R? is sampled from the diffusion prior, it is transformed into a
photorealistic image by a cascade of diffusion models. This stage replaces the discrete VQ-VAE
decoder used in DALL-E 1 with a hierarchy of class-conditional diffusion models trained to generate
increasingly detailed images from the continuous latent 7Z;. The decoder consists of three main
components:
* A base decoder, trained to generate a 64 x 64 RGB image from Gaussian noise conditioned
onz.
* A mid-level super-resolution model, which upsamples the 64 x 64 output to 256 x 256,
conditioned on both 7; and the lower-resolution image.
* A high-resolution super-resolution model, which refines the image from 256 x 256 to
1024 x 1024, again conditioned on both Z; and the previous output.

Each module in the cascade is implemented as a U-Net [532], modified to support semantic con-
ditioning via cross-attention. At multiple layers within the U-Net, the CLIP image embedding
7 € RY is first projected through a learned MLP to produce a conditioning vector. This vector is
then broadcast and used as the key and value in Transformer-style cross-attention blocks, where the
U-Net’s intermediate activations serve as queries. This mechanism enables the model to inject global
semantic context into spatially localized features during each denoising step.

This architecture follows the conditional pathway introduced in GLIDE (see Enrichment 20.11.1),
where cross-attention is used to integrate text embeddings. However, DALL-E 2 replaces textual
input with the CLIP image embedding 7;, and applies this conditioning across a cascade of three
independently trained diffusion models—each specialized for a different output resolution.

All diffusion modules are trained separately using the standard noise prediction objective from
denoising diffusion probabilistic models (DDPMs). Given a clean training image Xy ~ Pdata, the
forward process produces noisy versions X; at discrete timesteps ¢ € {1,...,T} using the variance-
preserving formulation:

¥ =Voxo+/1—-ae, €~ N(01),

where @ defines a precomputed noise schedule. Each model is trained to predict € from X;, condi-
tioned on both ¢ and the CLIP embedding 7;, using the following loss:

Liecoter = By .0 | 11) - ll& — €0(F,1.)3

where A(¢) is a weighting function that emphasizes earlier timesteps, which are often more uncertain
and semantically significant.

Each model in the cascade integrates the global semantic embedding 7; using cross-attention blocks
inserted at multiple resolutions within a U-Net backbone. This mechanism allows the decoder to
preserve semantic alignment throughout the generation process—from coarse layout at 64 x 64 to
fine-grained detail at 1024 x 1024.

To upscale intermediate outputs, each super-resolution model is conditioned on both the CLIP
embedding 7; and the image produced by the preceding stage. These inputs are concatenated channel-
wise and injected into the U-Net’s input layers, enabling the model to combine high-level semantics
with spatial structure. This design preserves detail continuity across scales and mitigates the risk of
semantic drift.

1294 Chapter 20. Lecture 20: Generative Models Il

The cascaded diffusion strategy offers several advantages: modular training at different resolutions,
efficient capacity allocation, and improved fidelity without sacrificing alignment. This architecture
departs from the discrete token decoder used in DALL-E 1, embracing a continuous latent refinement
path. It also anticipates later systems such as Imagen [540] and Stable Diffusion [531], which
similarly leverage latent diffusion and hierarchical super-resolution.

Semantic Interpolation and Reconstruction in CLIP Latents

One of the key advantages of using CLIP image embeddings as the intermediate representation is
the ability to manipulate and interpolate between visual concepts in a semantically meaningful way.
Since the decoder learns to map from this continuous space to photorealistic images, it inherits the
smoothness and structure of the CLIP embedding space.

DALL.-E 2 supports reconstruction from any CLIP image embedding 7;. This capability is demon-
strated in reconstructions from progressively truncated principal components of the CLIP embedding.
As shown in the following figure, low-dimensional reconstructions preserve coarse layout and object
categories, while higher-dimensional reconstructions recover finer details such as texture, shape, and
pose.

Figure 20.87: Reconstructions from truncated CLIP embeddings. Each row reconstructs an
image from a version of its CLIP embedding projected into a subset of PCA components. As more
dimensions are retained, visual fidelity improves. Rightmost column shows the original image.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1295

In addition, the model enables semantic variations by perturbing the CLIP embedding 7; before
decoding. By sampling different noise seeds or slightly shifting 7;, the decoder generates alternate
renderings that retain the core semantics while altering attributes like style, viewpoint, or background
content. This property is shown in the below figure, where variations of a logo and painting preserve
their essential content while modifying incidental details.

Figure 20.88: Semantic variations from CLIP embeddings. Multiple outputs from the decoder
using the same image embedding with different noise seeds. Style and fine-grained details vary
while core semantic features (e.g., clock, strokes, color gradients) are preserved.

1296 Chapter 20. Lecture 20: Generative Models Il

Beyond single-image variations, the decoder also supports interpolation between CLIP embed-
dings. Given two embeddings Zl(Y and 2’52), one can linearly interpolate to create intermediate
representations:

29 = (1-0a) -Zgl)+a-2’(2) o< [0,1],

i i

and decode each Zﬁ"‘) to obtain a smooth visual transition. The following figure illustrates this,

showing how both content and style blend across the interpolation path.

Figure 20.89: Interpolation between CLIP image embeddings. Interpolated vectors in the CLIP
embedding space generate images that blend structural and stylistic aspects from two inputs. Each

row fixes the decoder noise seed.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1297

Further, textual edits can be translated into image modifications using vector arithmetic in CLIP
space. If 7} and 7, are CLIP text embeddings corresponding to prompts like “a photo of a red car”
and “a photo of a blue car”, one can construct:

Z;edited — Zj‘i‘}t . (?2 _?1),

to steer the image generation toward a modified concept. This enables controlled, attribute-specific
image edits as demonstrated in the below figure.

a photo of a landscape in winter — a photo of a landscape in fall

Figure 20.90: Text-based image editing via CLIP latent arithmetic. Rows show gradual edits by
interpolating between a reference image embedding and a direction defined by CLIP text embeddings.
DDIM inversion ensures a faithful reconstruction of the source.

These capabilities demonstrate that the decoder does more than map a fixed vector to a fixed
image—it enables meaningful navigation and manipulation within a high-dimensional semantic
space. This design aligns well with human interpretability, creative applications, and interactive
editing, bridging the gap between language and vision in a continuous and expressive manner.

1298 Chapter 20. Lecture 20: Generative Models Il

Robustness and Generalization of the Decoder

A notable strength of the DALL-E 2 decoder lies in its ability to produce semantically coherent
images even when faced with ambiguous or adversarial prompts. This property emerges from the
decoder’s dependence on the CLIP image embedding Z;, which encodes high-level semantic content
rather than raw text features. Despite the decoder’s lack of direct access to the original caption, its
generation process remains surprisingly resilient.

The following figure exemplifies this phenomenon using typographic attacks. These are specially
crafted images that contain misleading text elements designed to confuse vision-language models.
The figure shows how, even when CLIP’s text-image alignment score is nearly zero for the correct
label (e.g., “Granny Smith apple”), the decoder nonetheless produces plausible images consistent
with the intended semantics.

Granny Smith: 100% Granny Smith: 0.02% Granny Smith: 94.33%

iPod: 0% iPod: 99.98% iPod: 0%
Pizza: 0% Pizza: 0% Pizza: 5.66%

Figure 20.91: Typographic attacks and decoder robustness. Despite misleading visual tokens
(e.g., text overlays), the decoder can still produce correct samples (e.g., apples) when conditioned
on misleading CLIP embeddings. This suggests a degree of semantic resilience inherited from the
latent space, though susceptibility to adversarial perturbations remains a concern. Figure adapted
from [508].

The decoder’s robustness stems partly from the structure of the CLIP latent space, which prioritizes
high-level semantic attributes while discarding low-level noise [498]. By conditioning on global
CLIP embeddings rather than raw pixels, the decoder inherits a degree of semantic abstraction and
resilience. This acts as a form of latent filtering, enabling generalization across modest perturbations
and preserving semantic coherence even under ambiguous or corrupted inputs.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1299

However, the decoder also inherits CLIP’s limitations. Because CLIP is trained contrastively on
noisy web-scale data, its latent space can reflect biases or fail in edge cases—such as typographic
attacks [179] or adversarial prompts [800]. These vulnerabilities propagate directly into the decoder,
which lacks any mechanism to question or correct the conditioning input. As a result, failures in
CLIP—e.g., misinterpretation of text-image associations or overfitting to dominant visual styles—can
manifest as incoherent or misleading generations.

These issues highlight the trade-offs of using frozen, independently trained encoders for generative
tasks. While such encoders provide efficiency and stability, they limit adaptability: the decoder re-
ceives no gradient feedback about misaligned latents and cannot adjust its interpretation dynamically.
Future directions may involve closer coupling between encoder and decoder—through joint training,
adaptive conditioning, or feedback mechanisms—to improve robustness and mitigate failures under
distributional shifts.

Dataset Construction and Semantic Pretraining

The foundation of DALL-E 2 lies in its use of the CLIP model [498], which defines a shared latent
space for text and images. CLIP is pretrained on a massive, web-scale dataset comprising over 400
million image—caption pairs. This dataset—structurally similar to LAION [555]—is curated by
crawling the internet for images with surrounding natural language descriptions, such as alt text or
nearby HTML content.

Each image—text pair in the dataset is treated as a weakly supervised alignment between visual
content and language. No manual annotation is performed; instead, the system relies on heuristics
such as language filters, deduplication, and image-text consistency scores to ensure basic data quality.
The resulting corpus exhibits high diversity in style, domain, and resolution, but also inherits noise,
biases, and artifacts common to large-scale web data.

CLIP is trained using a symmetric contrastive loss (InfoNCE), in which paired text and image
embeddings are pulled together in latent space, while unpaired examples are pushed apart. This
strategy produces a semantic embedding space where proximity reflects conceptual similarity,
enabling zero-shot recognition and flexible conditioning in downstream generative models.

Because DALL-E 2 reuses this fixed latent space for both its prior and decoder, the properties
of the CLIP dataset fundamentally shape the behavior of the generation pipeline. The abstract,
high-level alignment captured by CLIP allows the model to generalize across prompts and visual
styles—but also introduces inherited limitations, such as uneven category coverage, culturally
specific associations, and susceptibility to adversarial captions [179, 800].

Future systems may benefit from cleaner or more targeted datasets, multi-modal filtering techniques,
or joint training strategies that better align vision and language across diverse distributions. However,
the scale and breadth of LAION-style corpora remain essential for achieving the wide generalization
capabilities characteristic of models like DALL-E 2.

1300 Chapter 20. Lecture 20: Generative Models Il

Image Quality and Diversity: Qualitative and Quantitative Results

DALL-E 2 demonstrates a significant leap in both sample fidelity and diversity compared to earlier
models such as DALL-E 1 and GLIDE [450]. Its design leverages the semantic richness of the CLIP
latent space and the spatial precision of cascaded diffusion decoders to generate high-resolution
images that are both realistic and semantically aligned with input prompts.

To evaluate zero-shot generalization, the authors compare DALL-E 2 with other models on MS-
COCO prompts. As shown in the following figure, DALL-E 2 consistently produces more photoreal-
istic and diverse outputs, outperforming both DALL-E 1 and GLIDE in terms of visual quality and
semantic relevance.

GLIDE DALL-E Real Image

Make-A-Scene

unCLIP

unCLIP (prod.)

“a group of skicrs are
preparing to ski down
a mountain”

*a small kitchen with “a group of clc ta “a living area with a

a low ceiling™ WSIkI&i::rTuddy television and a table™

i
Figure 20.92: Zero-shot generation on MS-COCO prompts. DALL-E 2 generates high-fidelity
images that surpass prior models in semantic alignment and detail preservation, despite no supervised
training on the target distribution. Figure adapted from [508].

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1301

Qualitatively, the model captures fine stylistic variations and compositional semantics, even for
abstract or imaginative prompts. Quantitatively, the authors report strong performance on both
FID and CLIP score metrics, indicating a favorable balance between visual realism and prompt
conditioning. Importantly, the model achieves these results without explicit caption-to-image pairing
during decoder training, relying solely on alignment via CLIP embeddings.

Together, these findings affirm that at the time of publication, DALL-E 2 achieved a new state-of-the-
art in text-to-image synthesis, combining high sample quality with broad generalization and stylistic
diversity.

Design Limitations and Architectural Tradeoffs

Despite its impressive performance, DALL-E 2 [508] exposes critical limitations that motivate
further innovation. Most notably, the system’s reliance on a frozen CLIP encoder [498] introduces a
structural bottleneck: the decoder generates images not from text directly, but from a static image
embedding 7; inferred from the CLIP text embedding 7;. This detachment limits the model’s capacity
to resolve ambiguities in prompts or adapt to subtle shifts in meaning, especially for underrepresented
concepts.

Because CLIP is pretrained independently on noisy web-scale data, it inherits biases and semantic
gaps that the decoder cannot overcome. This can lead to mismatches between the user’s intention and
the generated image, particularly in edge cases or when precision is required. Moreover, the three-
stage pipeline—comprising the frozen encoder, the diffusion prior, and the cascaded decoder—adds
system complexity and introduces potential fragility in the interfaces between components.

While this modular design supports reuse and targeted improvement, it also leads to a fragmented
learning objective: no component is trained end-to-end with the final pixel output in mind. As a
result, the system may excel in global compositionality but struggle with local consistency, prompting
interest in more unified alternatives.

Stepping Towards Latent Diffusion Models

The architecture of DALL-E 2 [508] introduced a modular pipeline in which a frozen CLIP model
provides a shared semantic space for both text and image, a diffusion prior generates image em-
beddings from text, and a cascaded decoder reconstructs full-resolution images. While this design
offers flexibility and component reuse, it enforces strict boundaries between modules: the decoder
receives only static CLIP embeddings, and the pipeline precludes gradient flow from image outputs
back to the text encoder or semantic space. As a result, DALL-E 2 cannot adapt its conditioning
representations to improve prompt alignment or compositional accuracy during training. These
limitations constrain its ability to generate coherent visual outputs for complex or nuanced captions.

Around the same time, Latent Diffusion Models (LDMs) [531] emerged as a unified alternative
to modular architectures like DALL-E 2. Instead of relying on frozen semantic embeddings as
generation targets, LDMs train a variational autoencoder (VAE) to compress high-resolution images
¥ € RT>*W>3 into a spatially structured latent space 7 € R"*"*¢_ This latent representation preserves
both semantic content and spatial locality while significantly reducing dimensionality, allowing

—

diffusion to operate over p(Z) rather than p(X)

1302 Chapter 20. Lecture 20: Generative Models Il

This decoupling of image space and generation space yields several key advantages. By performing
diffusion in a compressed latent domain—typically of size & x w x d with h,w < H,W—LDMs
significantly reduce the dimensionality of the generative process. This reduces memory consumption
and accelerates training and inference, since the denoising network operates over fewer spatial
locations and lower-resolution feature maps. While the final output must still be decoded into a
full-resolution image, working in latent space greatly reduces the number of operations performed
during iterative sampling.

Equally important is the spatial structure of the latent representation. Unlike global vectors such
as CLIP embeddings—which collapse all spatial variation into a single descriptor—LDMs retain
two-dimensional topology in the latent tensor 7 € R”***¢_This means that different spatial positions
in Z can correspond to different image regions, allowing localized control and making it possible to
model object layout, interactions, and spatial dependencies directly within the generative process.

Conditioning in LDMs is typically handled by a frozen text encoder (e.g., CLIP or T5), but rather than
being used as a generation target, its features are injected into the denoising U-Net via transformer-
style cross-attention modules at multiple spatial resolutions. This allows the model to integrate
textual guidance at each step of the generation process.

This architectural strategy yields several compositional advantages:

* Spatially grounded text control: Prompt components (e.g., “a red ball on the left, a blue cube
on the right”) can influence corresponding spatial locations in 7, allowing for position-aware
generation.

* Support for complex scene structure: The model can synthesize multiple entities with varied
poses, attributes, and spatial relationships, reflecting the structure and grammar of the input
prompt.

* Incremental and localized alignment: Because conditioning is applied repeatedly throughout
the U-Net, the model can iteratively refine alignment with the prompt during denoising—rather
than relying on a single global embedding passed at the start.

While the VAE and diffusion model are commonly trained separately for modularity and ease of
optimization, they can also be fine-tuned jointly. This allows the learned latent space to adapt more
directly to the generation task, potentially improving sample coherence and prompt fidelity.

In summary, LDMs replace static, globally pooled embeddings with a spatially structured, semanti-
cally responsive framework—laying the foundation for a new generation of controllable and scalable
generative models. Although not originally proposed as a corrective to DALL-E 2, LDMs address
many of its limitations, such as the reliance on fixed embeddings, lack of spatial awareness, and
modular non-differentiability. Stable Diffusion, released in mid-2022, embodies this design philoso-
phy, offering high-resolution, prompt-aligned generation through a fully open and extensible latent
diffusion pipeline.

OpenAI’s DALL-E 3, introduced subsequently, is widely believed to adopt similar principles—including
latent diffusion and closer integration with large language models such as GPT-4—to improve prompt
adherence and editing flexibility. However, due to the proprietary nature of its architecture and
training methodology, we now focus on the open and reproducible advances of latent diffusion
models, which provide a transparent and theoretically grounded foundation for modern text-to-image
generation.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1303

Overview and Conceptual Shift

Latent Diffusion Models (LDMs) [531] represent a key evolution in generative modeling by address-
ing the inefficiencies of pixel-space diffusion. Traditional diffusion models, while powerful, operate
directly over high-dimensional image tensors ¥ € R7*">3 ‘making both training and sampling
computationally expensive—especially for high-resolution generation. LDMs resolve this by first
learning a perceptual autoencoder that maps images to a compact, spatially-structured latent space
7 € Z. Instead of modeling raw pixels, the denoising diffusion process unfolds within this learned
latent space, where semantics are preserved but uninformative low-level details are abstracted away.

This architectural shift yields several benefits. Operating in 2 drastically reduces memory and
compute costs, enabling high-resolution synthesis on modest hardware. The latent space is trained
to preserve visually meaningful structures, improving the efficiency of generation. Moreover,
conditioning signals—such as text, class labels, or image layouts—can be integrated directly into
the latent denoising process via cross-attention mechanisms, giving rise to controllable, modular,
and semantically aligned generation. We begin by braking down the components and training stages
of LDMs, highlighting their conceptual differences from earlier approaches like DALL-E 2 and
motivating their widespread adoption in modern generative pipelines.

Autoencoder Architecture and Training Objective

Latent Diffusion Models (LDMs) [531] begin by compressing images into a spatially structured
latent space Z € & C RH>W'XC where H',W’' < H,W. This compression is achieved using a
continuous variational autoencoder (VAE), whose goal is to preserve semantic information while
discarding perceptually redundant pixel-level detail. The resulting latent representation balances
fidelity with efficiency, enabling tractable diffusion modeling at high resolutions.

The encoder & consists of a deep convolutional residual network that progressively downsamples
the input image and outputs per-location Gaussian parameters (u,log 62). Latent codes are sampled
using the reparameterization trick:

Z=ux)+ox) Oe, e~ (0,1),

ensuring differentiability for stochastic latent sampling. The decoder Zg mirrors this structure with
transposed convolutions and residual upsampling blocks to reconstruct the image £ = %y (7).

The training objective combines four complementary losses:
* Pixel-level reconstruction loss: Ensures basic structural and color fidelity between the input
and reconstruction. Typically chosen as ¢; or ¢, loss:

Liixet =[x = %1 o [lx—3.

While effective at preserving coarse structure, this term alone often leads to overly smooth or
blurry outputs due to averaging across plausible reconstructions.

* Perceptual loss (LPIPS): Mitigates blurriness by comparing activations (extraxcted features)
from a pretrained CNN acting as a feature extractor ¢, such as VGG16, in its final layer or in
multiple intermediate layers:

Lyercep = 9(x) = 9 (%)]13-

This loss encourages the decoder to preserve semantic and texture-level features, such as
object boundaries and surface consistency, beyond raw pixels.

Chapter 20. Lecture 20: Generative Models Il

» KL divergence: Encourages the encoder’s approximate posterior ¢(Z | X) to remain close to a
fixed Gaussian prior .4(0,I),

Zx = Dxu(q(Z| %) || 4(0,1)).

This term imposes structure and compactness on the latent space 2, which is essential for sta-
ble sampling and meaningful interpolation. By aligning ¢(Z | X) with an isotropic Gaussian, the
model ensures that randomly sampled latents resemble those seen during training—preventing
degenerate or out-of-distribution samples. Moreover, it facilitates smoother transitions across
the latent manifold, which is critical for tasks like class interpolation, latent editing, and
controllable generation.

* Adversarial loss (optional): Introduced to restore high-frequency details that perceptual
losses may not fully capture. A PatchGAN-style discriminator D is trained to distinguish real

versus reconstructed patches:
% = ~logD(x) — log(1 — D(£)),

This setup improves realism by aligning reconstructions with the local statistics of natural

Zaaw = —log D(%).

images, especially for textures such as hair, fabric, and foliage.
The total loss combines these components with tunable weights:

ﬁotal =)Ll D%ixel + l2«>§ﬁ)ercep + A3-=§/ﬂKL +)L4$adv-

In contrast to VQ-VAE architectures that discretize latents using a finite codebook, LDMs adopt
a continuous latent space, allowing gradients to flow smoothly through the encoder and decoder.
This continuity facilitates stable optimization. Furthermore, unlike approaches such as DALL-E 2
that rely on frozen, externally trained embeddings (e.g., CLIP), the latent space 2 in LDMs is
learned directly from data and refined through perceptual and adversarial objectives. As a result, the
representations are not only compact but also well-aligned with the generative process, improving
synthesis quality and of greater adaptability to the training domain.

el

e i

—Rl(e](el|l[le
(2) D} I‘JI KV K v_’__H_;_K V)

Latent Space

Diffusion Process ————»

= Denoising U-Net €p Text
(-1 [— ' Repres |

Eonditioning‘

emanti
Ma

entations

Pixel Space - ‘/
X 7\ s
> xv *A L
denoising step crossattention switch skip connection concat s

Figure 20.93: Latent Diffusion Model architecture overview [531]. LDMs operate in a learned
latent space 2, obtained via a pretrained autoencoder. Conditioning (e.g., on text) is supported either
via concatenation or through cross-attention layers within the denoising U-Net. Figure adapted from

the original paper (Fig. 3).

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1305

Autoencoder Architecture and Latent Normalization

Latent Diffusion Models (LDMs) [531] begin by compressing high-resolution images x € R *W>3
into a spatially structured latent representation 7 € R""*C, where h < H, w < W, and typically
C = 4. This compression is performed by a perceptual autoencoder consisting of a convolutional
encoder &y and decoder %y, trained separately from the generative diffusion model.

Encoder and Decoder Design The encoder & is built from residual convolutional blocks with
stride-2 downsampling, group normalization, and a spatial self-attention layer near the bottleneck.
Rather than directly outputting the latent 7, the encoder predicts a distribution over latents by produc-
ing two tensors of shape R"*"*C: the mean p and the log-variance log 6%. These are concatenated
into a single tensor of shape R"***2C and used to sample latents via the reparameterization trick:

I=U+0o0E, e~/ (0,I).

The decoder Py mirrors the encoder’s structure using upsampling residual blocks and convolutions.
The final output passes through a tanh activation to restrict pixel values to the range [—1, 1], ensuring
alignment with the normalized image input domain and promoting numerical stability.

From ldm/modules/autoencoder/modules.py

1

2

3 class AutoencoderKL(nn.Module):

4 def encode(self, x):

5 h = self.encoder(x) # Conv + ResBlock + Attention
6 moments = self.quant_conv(h) # Projects to (mu, logwvar)
7 return moments

8

9 def decode(self, z):

10 z = self.post_quant_conv(z) # Linear 1zl conv

11 x_hat = self.decoder(z) # Upsample + Conv stack

12 return torch.tanh(x_hat) # Outputs in [-1, 1]

Latent Normalization for Diffusion Compatibility After training the autoencoder, the encoder
&p maps images x € R xW>x3 to continuous latent representations 7 € R"*"*C via reparameterized
sampling. These latents, however, typically have a standard deviation significantly larger than 1 (e.g.,
6z ~ 5.49 on ImageNet 256 x 256), since the encoder has not been trained with any constraint to
normalize the latent scale.

To ensure compatibility with the noise schedules and assumptions of the downstream diffusion
model—specifically, that the initial inputs should lie within a distribution close to .4 (0,I)—the
latents are globally normalized by a scalar factor 7y, defined as the reciprocal of their empirical
standard deviation:

(AR}
Il
=
2
\{
Il
|~

1306 Chapter 20. Lecture 20: Generative Models Il

This normalization is applied affer training the autoencoder but before training the diffusion model.
It ensures that the scale of the latent representations matches the variance assumptions of the DDPM
forward process, allowing the use of standard Gaussian-based noise schedules (e.g., cosine or linear
beta schedules) without requiring architectural or hyperparameter adjustments.

For example, if the empirical standard deviation of 7 is 6z = 5.49, then y ~ 0.18215. This calibrated
latent distribution becomes the new data domain 2 C R"**C over which the denoising diffusion
model is trained.

By aligning the latent distribution with the assumptions of the diffusion framework, this scaling step
improves training stability and sample quality, while retaining the benefits of working in a compact
and perceptually aligned representation space.

Denoising Diffusion in Latent Space

Once the variational autoencoder has been trained and frozen, Latent Diffusion Models (LDMs)
reformulate the generative process as a denoising task in the latent space 2 C R"*"*C_ Rather
than modeling high-dimensional pixel distributions, a Denoising Diffusion Probabilistic Model
(DDPM) [223] is trained to model the distribution of latents produced by the encoder & (x). For
background on diffusion model fundamentals, see 20.9.1.

Given a clean latent zo = & (x), the forward process gradually corrupts it through a fixed Markov
chain:

C](Zt | Zz—l) = JV(Zt;\/ l—ﬁzthbﬁtI)a ‘I(Zt | ZO) =N (Zt§\/d7t10’(l - @)I))

where @& = [[,_,(1 — Bs) accumulates the noise schedule.

The denoising network &g is trained to predict the noise € ~ .4(0,I) added to the latent at each step.
The objective is a mean-squared error loss:

a%enoise = Ezo,&,t ”8 - SQ(Z,,I, T)H%)

where 7, = V@20 ++/1— 0y €, and T € RV *d g a sequence of embedded caption tokens from a
frozen CLIP text encoder.

Importantly, all operations take place in the compressed latent space. The output zg of the reverse
diffusion process is never directly decoded from the text, but instead synthesized through iterative
noise removal guided by linguistic context. Only after this denoised latent is produced does the
VAE decoder %y reconstruct the final image—bridging the semantic alignment in latent space with
rendering in pixel space.

We now examine the architecture of &g, which must reconcile temporal, spatial, and textual condi-
tioning across the entire denoising trajectory.

Architecture of the Denoising U-Net In Latent Diffusion Models (LDMs) [531], the denoising
network &g is a modified U-Net that operates entirely within a learned latent space 7, € R"W*C,
where spatial structure is preserved despite dimensionality reduction. This latent space is produced
by a pre-trained VAE encoder &, which maps high-resolution images x € RA>*W>3 into compact
latent representations. During inference, the VAE decoder %y reconstructs the final image from a
denoised latent Zy. Thus, generation is fully decoupled from rendering: the diffusion model performs
structured denoising in latent space, and the VAE handles the final image synthesis.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1307

Residual blocks: Each resolution stage of the U-Net uses residual blocks composed of
convolution, group normalization, and nonlinearity, with a skip path that adds the block’s
input to its output. This improves gradient flow and stability across the network depth, while
supporting effective feature reuse in the latent space.

Skip connections: Encoder—decoder symmetry is preserved by lateral skip connections that
pass early, high-resolution latent features to later decoding stages. These connections maintain
fine-grained spatial information—such as object boundaries and texture—that may otherwise
degrade through diffusion noise and downsampling.

Self-attention layers: Near the bottleneck, self-attention modules allow each latent location to
attend to the full latent map. This models long-range dependencies critical for spatial relations
like “above,” “behind,” or “next to,” and enables coherent global structure during denoising.

Timestep conditioning: At each denoising step ¢, the model is informed of the expected
noise level via sinusoidal embeddings &;, projected through an MLP to a vector J; € RC. This
conditioning vector is broadcast and added to intermediate feature maps h € RE™W inside
each residual block:

i = h+ Proj(¥,).

This simple additive modulation allows the model to adapt its behavior across timesteps,
progressively refining coarse structure into fine detail as ¢ — 0.

Cross-attention conditioning: Semantic control is introduced via transformer-style cross-
attention blocks applied at multiple U-Net resolutions. Given a caption embedding 7 € RV*¢,
obtained from a frozen CLIP text encoder, each spatial feature in the latent map 7, € R>*"*C
is projected to a query vector. The tokens in 7 are projected into keys and values. Attention is
computed as:

. - = = é’l_{v—r —
Attention(¢,K,V) = softmax | —= | V.

Vd

This enables each latent location to dynamically attend to the most relevant parts of the prompt.
For instance, if the caption is “a red cube on the left and a blue sphere on the right,” left-side
latents focus more on “red cube,” while right-side latents emphasize “blue sphere”.

The advantages of this formulation include:
— Spatial specificity: Token-level attention guides individual regions of the latent map,
enabling localized control.
— Semantic compositionality: Different parts of the prompt influence different subregions
of the latent, enabling compositional generation.
— Dynamic guidance: The prompt influences the denoising at every step, enabling consis-
tent semantic alignment throughout the trajectory.
This contrasts with global CLIP embedding approaches used in DALL-E 2, which apply
the prompt as a static conditioning vector, losing fine spatial control. Here, cross-attention
integrates linguistic semantics into spatial generation at every scale and timestep.

1308 Chapter 20. Lecture 20: Generative Models Il

Note on latent—-image alignment: One might worry that the denoised latent 7y produced by the
diffusion model may not match the distribution of latents seen by the VAE decoder during training.
However, the diffusion model is explicitly trained to reverse noise from latents 7y ~ & (x). Its
denoised outputs are thus learned to lie within the latent manifold that the decoder %y can reconstruct
from. The VAE does not condition on the text; instead, semantic alignment is handled entirely in the
latent space through cross-attention before decoding. This separation ensures high-quality, efficient,
and semantically grounded image generation.

A natural concern in Latent Diffusion Models (LDMs) [531] is that the VAE decoder %y is not
conditioned on the caption at inference. The diffusion model generates a latent code 7y € 2 based
on text input, but the decoder reconstructs an image from Zp unconditionally. This raises the question:

Can prompt-specific details be lost if the decoder never sees the text?

Why It Sfill Works
Although the decoder ignores the caption, it operates on latents that were explicitly shaped by a
text-conditioned diffusion model. The prompt’s semantics—object types, positions, colors—are
baked into Zy. The decoder’s job is not to reason about the prompt, but to faithfully render its visual
realization from the latent code.
This works because:
* The VAE is trained to reconstruct real images from latents produced by its encoder, ensuring
good coverage over 2.
* The compression factor (e.g., 4x or 8x) is modest, preserving fine detail.
* The diffusion model is trained on the encoder’s latent distribution, so its outputs lie within the
decoder’s domain.

Trade-offs and Alternatives
While this design is efficient and modular, it assumes the latent code captures all prompt-relevant
detail. This may falter with subtle prompts (e.g., “a sad astronaut” vs. “a smiling astronaut”) if
distinctions are too fine for 7 to preserve.
To address this, other models extend conditioning beyond the latent stage:
* DALL-E 2 (unCLIP) [508] uses a second-stage decoder conditioned on CLIP embeddings.
* GLIDE and Imagen apply prompt conditioning throughout a cascaded diffusion decoder.
These improve prompt alignment, especially for fine-grained attributes, but increase compute
cost and architectural complexity.

Conclusion

In LDMs, text guidance occurs entirely in latent space—but that’s usually sufficient: if the denoised
latent 7y accurately reflects the caption, the decoder can render it without ever “reading” the prompt.
While newer models extend semantic control to the pixel level, LDMs offer an elegant and effective
trade-off between simplicity and fidelity.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1309

Classifier-Free Guidance (CFG)

To enhance semantic alignment during sampling, Latent Diffusion Models incorporate Classifier-
Free Guidance (CFG) [224]. Rather than relying on external classifiers to guide generation, the
model is trained with randomly dropped conditioning information, enabling it to interpolate between
conditional and unconditional outputs at inference time. The final prediction is given by:

éCFG = (1+7L)‘é9(21,t,1) -1 'ée(zt,l,g),

where 7, is the latent at timestep 7, T is the CLIP-based text embedding, and A € R, is a guidance
weight. This simple yet powerful mechanism allows the diffusion process to be steered toward
text-conformant latents while balancing visual diversity. For a detailed derivation and architectural
breakdown, see Section 20.9.4.

Empirical Results and Ablations
LDMs have been evaluated across a wide range of tasks—unconditional generation, text-to-image
synthesis, inpainting, and style transfer.

input result

Figure 20.94: Text-guided object removal using an LDM inpainting model [531]. The model
receives a binary mask and a natural language prompt and fills in plausible structure matching the
surrounding scene. Figure adapted from the original paper (Fig. 11).

1310 Chapter 20. Lecture 20: Generative Models Il

The authors conduct extensive ablations to identify design choices that contribute most to perfor-
mance. Key insights include:

» Compression factor matters: Mild compression ratios (e.g., h,w ~ H/8,W /8) retain suf-
ficient perceptual detail for high-quality synthesis, outperforming VQ-based methods with
more aggressive bottlenecks.

* Text-conditional cross-attention is essential: Removing spatial cross-attention layers results
in poor prompt alignment, confirming that token-level attention is critical for semantic fidelity.

* Guidance scale tuning is nontrivial: Higher CFG values increase prompt adherence but
reduce diversity and realism. For text-to-image synthesis, guidance scales in the range
A € [4,7] are often optimal.

* Decoder quality sets an upper bound: Even perfect latent alignment cannot recover prompt-
relevant visual details if the decoder fails to reconstruct fine structure. Thus, VAE capacity
indirectly limits generation fidelity.

» Task-specific fine-tuning improves quality: Inpainting, depth conditioning, and style transfer
models trained on tailored objectives yield noticeably sharper and more controllable outputs
than generic text-to-image models.

Limitations and Transition to Newer Works Like Imagen

Latent Diffusion Models (LDMs) achieve a compelling trade-off between semantic guidance and
computational efficiency by shifting diffusion to a compressed latent space. However, two key
architectural limitations motivate newer designs:

1. Frozen CLIP Text Encoder: LDMs rely on a fixed CLIP encoder (e.g., ViT-B/32) for text
conditioning, which was pretrained for contrastive image—text alignment, not generation. As
such, it cannot adapt its embeddings to better serve the generative model. This limits the
handling of nuanced prompts, rare entities, or abstract relationships, and its relatively small
size constrains linguistic expressivity compared to large language models like T5-XXL.

2. Unconditional VAE Decoder: The decoder Zy reconstructs images from latent vectors 7
without access to the guiding text prompt. While the denoising U-Net integrates semantic
content into the latent, the decoder performs unconditional reconstruction. This design assumes
the latent fully captures all prompt-relevant details—an assumption that may falter in complex
or fine-grained prompts.

To address these issues, Imagen [540] introduces two key innovations:

* Richer Language Understanding: Instead of CLIP, Imagen uses a large frozen language
model (T5-XXL) to encode prompts. This yields semantically richer and more flexible
embeddings, better aligned with generation needs—even without end-to-end finetuning.

* Pixel-Space Diffusion: Imagen avoids latent compression during generation, performing
denoising directly in pixel space or using minimal downsampling. This preserves visual detail
and semantic fidelity more reliably than VAE-based reconstruction.

These improvements come at a cost: Imagen demands significantly higher computational resources
during training and inference, due to both its larger backbone and pixel-level denoising. As explored
next, the field continues to navigate the trade-off between efficiency and expressivity—balancing
lightweight modularity with prompt-faithful generation quality.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1311

Motivation and Context

Latent Diffusion Models (LDMs) [531] showed that pushing diffusion into a compressed VAE space
slashes compute while preserving visual quality. Yet their design leaves all text conditioning to
the UNet denoiser, because the VAE decoder itself is unconditional. For complex, compositional
prompts, that separation can introduce subtle mismatches between what the caption asks for and
what the pixels finally depict.

Imagen [540] turns this observation on its head. Through a careful ablation study the authors argue
that text fidelity is limited more by the language encoder than by the image decoder. Scaling the
caption encoder (T5 [501]) from Base to XXL delivers larger alignment gains than adding channels
or layers to the diffusion UNets.

What is new in Imagen? The system freezes a 4.6-B-parameter T5-XXL to embed the prompt, then
feeds that embedding into a three-stage diffusion cascade that progressively upsamples 64—256—1024
px. This coarse-to-fine recipe is familiar, but three engineering insights make Imagen unusually
faithful to the text:

* Bigger language encoder > bigger image decoder. Ablations show that scaling the rext
backbone (e.g. T5-Large — T5-XXL, ~ 4.6 B parameters) yields much larger improvements in
prompt—image alignment than enlarging the diffusion UNets. Richer linguistic representations,
not extra pixel capacity, are the main bottleneck.

* Dynamic-threshold CFG. Imagen applies classifier-free guidance but clips each predicted
image to the adaptive p-th percentile before the next denoising step. This dynamic thresholding
lets the sampler use higher guidance weights for sharper, more on-prompt images without
colour wash-out or blown highlights.

* DrawBench. The authors curate a 200-prompt suite covering objects, spatial relations,
counting, style, and abstract descriptions. In pairwise human studies on DrawBench, Imagen
is preferred over both DALL-E 2 and PARTI'.

In what follows we examine Imagen from four complementary angles:

1. Text — Latent Coupling. We detail how the frozen T5-XXL encoder feeds its 4 096-
dimensional embeddings into every UNet block, and why this cross-attention scheme is
decisive for tight prompt grounding.

2. Three-Stage Diffusion Cascade. We walk through the 64 —256 — 1024-pixel pipeline and
explain the dynamic-threshold variant of classifier-free guidance that stabilises high guidance
weights without introducing blow-outs.

3. Ablation Take-aways. Side-by-side experiments reveal that scaling the language encoder
delivers larger alignment gains than scaling the image UNets, and that guidance tuning
outweighs most architectural tweaks.

4. Implications for Later Work. We point out how Imagen’s design choices foreshadow prompt-
editing methods such as Prompt-to-Prompt and other text-controlled diffusion advances.

UPARTI [742] is a proprietary Google model that produces images autoregressively from discrete tokens. Because its
code and training details are not public, and its autoregressive design differs from the diffusion focus of this chapter, we
do not discuss PARTI further.

1312 Chapter 20. Lecture 20: Generative Models Il

Cascaded Diffusion Pipeline

Imagen generates high-resolution images from text using a three-stage cascaded diffusion pipeline.
A base model first synthesizes a coarse 64 x 64 image conditioned on a text embedding. Two
subsequent super-resolution (SR) diffusion models then refine this output to 256 x 256 and finally
to 1024 x 1024, each conditioned on both the original text and the lower-resolution image. Noise
conditioning augmentation is applied during SR training to improve robustness. This stage-wise
design progressively enhances fidelity and detail while maintaining strong semantic alignment with
the prompt.

Text “A Golden Retriever dog wearing a blue
+ checkered beret and red dotted turtleneck.”

Frozen Text Encoder

Text Embedding
Y Y

Text-to-Image
Diffusion Model

64 x 64 Image

Y

Super-Resolution
Diffusion Model

256 x 256 Image

Y

Super-Resolution
Diffusion Model

l

1024 x 1024 Image

Y

Figure 20.95: Visualization of the Imagen architecture [540]. A frozen T5-XXL encoder processes
the input prompt into a fixed text embedding. A base diffusion model generates a 64 x 64 image,
which is then upsampled to 1024 x 1024 in two SR stages. Each model is trained independently.
Figure adapted from the original paper.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1313

Classifier-Free Guidance and Dynamic Thresholding

As outlined in Section 20.9.4, classifier-free guidance (CFG) improves text-image alignment by
combining predictions from a conditional and an unconditional denoising model. In particular, given
a noisy sample 7, at timestep ¢, the denoised prediction is adjusted as

55D = (14 2) 80 G 1,5) — A 80 (Z0.1, 2),
where A > 0 is the guidance weight. Larger A values push samples closer to the conditional manifold,
increasing semantic fidelity—but they also amplify sharp transitions, outliers, and pixel intensities.
This may lead to unnatural results, especially in high-resolution stages like 1024 x 1024.

Problem: Oversaturation from Large Guidance
Without any correction, high CFG weights cause the predicted clean image X to exhibit pixel values
far outside the dynamic range of natural images (e.g., [—1, 1] in normalized space). This leads to:

* Oversaturated colors, especially in backgrounds or small object regions.

* Loss of contrast and detail due to hard clipping of extreme values.

* Reduced diversity across samples due to overly confident predictions.

Naive Solution: Static Thresholding
One straightforward way to ensure that the final image remains in the valid pixel range (e.g., [—1,1])
is to apply static thresholding—that is, clipping the predicted clean image Xy to lie within this range:

4P — Clip (£, —1,1).

While simple, this solution can degrade image quality when applied at every denoising step. During
the iterative reverse process, the model may temporarily predict pixel values outside the target range
to represent subtle visual cues—such as specular highlights, sharp edges, or deep shadows. These
out-of-range values often reflect meaningful structure that will eventually be pulled into range by the
final denoising steps. If we aggressively clip at each step, we risk:

* Flattening high-contrast regions: Highlights or shadows may be prematurely truncated,
reducing the image’s perceived depth and richness.

* Introducing artifacts: Hard cutoffs can produce unnatural boundaries or saturation plateaus,
especially in smooth gradients or textured areas.

* Destroying predictive consistency: The model’s learned denoising trajectory may rely on
temporarily overshooting the target range before converging. Clipping interferes with this
path, leading to less coherent results.

Because of these issues, it is more effective to defer clipping until the final step of the denoising
process—once Xy is fully predicted. However, even this final-step clipping can still be problematic
if the distribution of predictions varies across samples. This limitation motivates more adaptive
solutions such as dynamic thresholding, which adjusts the clipping range based on the specific
prediction statistics of each sample.

1314 Chapter 20. Lecture 20: Generative Models Il

Dynamic Thresholding: an Adaptive Alternative to Static Clipping

Method. Dynamic thresholding [540] rescales each denoised prediction £y € R *W>3 by a sample-
specific scale before clipping to [—1, 1]. This scale s is set to the p-th percentile (typically p = 99.5)
of the absolute pixel magnitudes:

s = percentile(|%o|, p),)E(gdyn) = clip (xo’ -1, 1> :
s

This adaptive rescaling ensures that only the top (100 — p)% of pixel values—those with the most
extreme magnitudes—are affected, while the bulk of the image retains its original brightness and
contrast. By adapting the clipping threshold to each image individually, dynamic thresholding avoids
global overcorrection and better preserves subtle visual detail.

Why it works (with examples and reasoning).
During denoising—especially under strong classifier-free guidance or at high resolutions—the model
often predicts pixel values slightly outside the legal image range [—1,1]. These excursions may
encode meaningful high-frequency details (like glints, reflections, or fine textures), but they can also
include spurious outliers (e.g., sharp halos, single-pixel spikes).

Static clipping flattens all values beyond this range, indiscriminately truncating both legitimate
signal and noise. For example, if a predicted pixel value is £y = 1.5 and the 99.5th percentile sets
s = 1.4, then dynamic thresholding performs:

X=15— % ~1.07 — clippedto 1.0, % =12 — % ~ 0.86 (preserved).
Here, even though both values exceed the legal range, only the more extreme outlier gets clipped.
Crucially, rescaling does reduce the absolute intensity of all values, but it preserves their relative
differences. The 1.2 pixel remains brighter than others around it, so its visual role as a highlight is
maintained. This distinction would be erased by static clipping, which collapses all values above 1.0
into a hard ceiling.

Dynamic thresholding thus provides a soft-constraint mechanism that acts proportionally to the
sample’s content:
* It preserves expressive range by maintaining contrast between midtones and peaks, avoiding
the flattening effect of uniform truncation.
* It rargets only extreme outliers—often isolated and perceptually disruptive—without globally
lowering brightness or contrast.
* It protects sharp detail and texture, where small overshoots encode fine structure (like fur,
edge reflections, or legible small text) rather than error.
By tailoring its response to each image’s intensity distribution, dynamic thresholding ensures
semantic expressivity and local fidelity—especially important under aggressive guidance or when
synthesizing high-resolution content.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1315

A f%

i 0 "\ :

(a) No thresholding. (b) Static thresholding. {(¢) Dyn

amic thresholding.

Figure 20.96: Comparison of thresholding strategies under high CFG weights [540]. Static clip-
ping (middle) removes extreme values but can oversaturate or flatten images. Dynamic thresholding
(bottom) scales predictions adaptively, preserving more detail while preventing distortions. Figure
adapted from the original paper.

Experimental Findings and DrawBench Evaluation

Scaling the Text Encoder

A central insight of Imagen [540] is that text encoder quality is a dominant factor in text-to-
image generation. In systematic ablations, the authors vary the underlying language model used to
encode the caption—comparing T5-Base, T5-Large, T5-XL, and T5-XXL—and observe consistent
improvements in both image-text alignment and visual fidelity as model size increases.

—Y] 93 |-[—— stic thresholding 5

o 5 | | —— S0 ey Fresholding X
—— 1 | (5 {
£ 2 EH % 3|))
Z z & /
E E E 1 Vi |
TR - L ¢
s
m 10k T — | 0 =
i ; % - ; e
vz 024 U6 .25 T T AT X T Uz 027 0ds 0w
CLIP Score CLIP Score CLIP Score
(a) Tmpact of encoder size. (b) Tmpact of U-Net size. (c) Tmpact of thresholding.

Figure 20.97: Imagen ablation results [540]. Scaling the text encoder improves image-text
alignment (left) and perceptual quality (right) more effectively than scaling the diffusion model.
Classifier-free guidance values are swept along the Pareto curves. Adapted from the original paper.

These results motivate a design shift: instead of primarily scaling the image generator (as done in
prior works), Imagen prioritizes high-capacity language understanding, even when the encoder is
frozen during training. This strengthens the mapping from prompt to semantic features, yielding
more accurate and coherent visual generations.

1316 Chapter 20. Lecture 20: Generative Models Il

DrawBench: A Diverse Prompt Evaluation Suite
To evaluate generative performance beyond cherry-picked prompts, the authors introduce Draw-
Bench, a human preference-based benchmark of 200 prompts spanning multiple semantic categories:
* Object and scene composition
* Spatial relationships and counting
» Style and texture
* Complex language grounding
Each model (e.g., Imagen, DALL-E 2, GLIDE, LDM, VQGAN+CLIP) generates images for each
prompt, which are then compared in a blind A/B format for:
* Alignment: Does the image accurately reflect the text prompt?
* Fidelity: Is the image visually plausible and high-quality?

Latent Diffusion

! lmagen | DALL-EZ2 ! Imagen | GLIDE | Imagen . VOGAN+CLLE i . Imagen
100%
- +
0%
Alignment Fidelity Alignment Fidelity Alignment Fidelity Alignment Fidelity

Figure 20.98: Human preference results on DrawBench [540]. Imagen outperforms prior mod-
els—including DALL-E 2, GLIDE, and Latent Diffusion—in both text-image alignment and visual
fidelity across 200 prompts. Figure adapted from the original paper.

Imagen significantly outperforms the baselines on both axes, demonstrating the effectiveness of its
text encoder, CFG tuning, and cascading architecture.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1317

Qualitative Samples
Finally, the model produces diverse, photorealistic samples across various creative and grounded
prompts:

Teddy bears swimming at the Olympics 400m Butter- A cute corgi lives in a house made out of sushi, A cute sloth holding a small treasure chest, A bright
fly event. golden glow is coming from the chest.

- = Imagen

A brain riding a rocketship heading towards the moon. A dragon fruit wearing karate belt in the snow. A strawberry mug filled with white sesame seeds. The
mug is floating in a dark chocolate sea.
Figure 20.99: Photorealistic samples from Imagen [540]. The model handles fine-grained seman-
tics (e.g., “a dragon fruit wearing a karate belt in the snow”) and imaginative compositions (e.g.,
“a cute corgi lives in a house made of sushi”) with high fidelity. Figure adapted from the original

paper.

Enrichment 20.11.5.1: Toward Fine-Grained Control and Editable Generation

From Fidelity to Conftrollability

While models like Imagen [540] and DALL-E 2 [508] have achieved remarkable success in pho-
torealism and semantic alignment, they remain fundamentally non-interactive. Once an image is
generated from a text prompt, the process is opaque: users have no control over which elements
change if the prompt is revised.

This poses a major limitation in creative and iterative workflows. For example, a designer mod-
ifying the prompt from “a red car” to “a blue car” expects only the car’s color to change, while
preserving the original composition, lighting, and style. In practice, however, standard diffusion
pipelines—including those using classifier-free guidance (CFG)—often regenerate the image from
scratch, with unpredictable changes to unrelated regions.

Why Prompt-Aware Attention Control Is Needed
To address this, recent work focuses on editable generation—where models support localized
updates, identity preservation, and deterministic user control. Three key goals underpin this new

1318 Chapter 20. Lecture 20: Generative Models Il

research direction:
* Fine-grained editability: Allow prompt-based modifications (e.g., changing “cat” to “dog”)
without altering unrelated image regions.
* Semantic preservation: Maintain critical attributes such as object identity, layout, and lighting
even after prompt edits.
* Interactive control: Introduce modular control signals—like segmentation masks, edge maps,
or pose estimations—that act as “handles” for spatial or structural guidance.

Key Approaches and Innovations
A growing ecosystem of techniques now forms the foundation for controllable diffusion-based
generation—each offering distinct mechanisms for enabling user-guided synthesis:

* Prompt-to-Prompt (P2P) [217]: Introduces a novel method for prompt-driven editing by
intervening in the model’s cross-attention maps during inference. Instead of retraining or
re-encoding, it aligns attention weights across similar prompts to preserve spatial layout and
object identity. This enables intuitive text modifications (e.g., “red shirt” to “blue shirt”) that
affect only relevant regions, without disturbing the rest of the image.

* DreamBooth [537]: Targets personalization by finetuning a pretrained diffusion model on a
small set of subject-specific images, anchored to a rare textual token (e.g., “sks”). This allows
generation of images that retain the subject’s identity across diverse scenes and poses—crucial
for creative professionals, avatars, or character preservation tasks.

* ControlNet [773]: Enables structural conditioning through auxiliary inputs like pose skeletons,
depth maps, or edge detections. Crucially, it does so without modifying the base model by
injecting trainable control paths that are fused with the original network. This unlocks precise
spatial control and makes diffusion adaptable to external guidance from perception pipelines
or user interfaces.

* IP-Adapter [733] and Transfusion [798]: Introduce modular, plug-and-play conditioning lay-
ers designed to adapt pretrained diffusion models to new visual or multimodal signals—without
modifying the original weights. IP-Adapter uses a decoupled cross-attention mechanism that
injects CLIP-derived image embeddings alongside frozen text features, enabling flexible
image-guided generation, personalization, and cross-modal editing with only 22M trainable
parameters. Transfusion builds on this adapter paradigm by unifying visual grounding with
text and sketch modalities, enabling diverse zero-shot edits across tasks. Both approaches
preserve the underlying text-to-image capabilities, making them well-suited for scalable,
reusable, and composable image generation pipelines.

Collectively, these methods reframe diffusion models as interactive generation systems—capable of
fine-grained control, identity preservation, and user-driven customization. The following sections
delve into these approaches, starting with Prompt-to-Prompt, which introduced one of the first
scalable solutions for semantically coherent prompt editing without sacrificing layout or visual
consistency.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1319

Enrichment 20.11.6: Prompt-to-Prompt (P2P): Cross-Attention Editing in DMs

Motivation and Core Insight

Prompt-to-Prompt (P2P) [217] introduces a novel method for fine-grained, prompt-based image
editing in text-to-image diffusion models. Unlike prior approaches that either operate directly in
pixel space or require full model finetuning, P2P achieves precise semantic control by modifying
only the prompt and reusing internal cross-attention maps of the diffusion process.

The core insight is that in text-conditioned diffusion models (e.g., Stable Diffusion), each token in
the prompt corresponds to a spatial attention map over the latent image at every denoising step. These
maps govern “what part of the image is controlled by which word”. By injecting stored attention
maps for shared tokens between an original and edited prompt, P2P preserves image structure while
applying meaningful semantic changes.

This mechanism allows users to:
* Replace entities (e.g., “a cat” — “a dog”) while preserving the scene layout.
* Modify stylistic details (e.g., “a photo of a mountain” — “a charcoal drawing of a mountain”).
* Tune the emphasis of individual adjectives or objects (e.g., increasing the visual weight of
“snowy”).

“a cake \ti_tb&zcnmtions M
Jully Ledmg

“children drewing of a castle next to a river.”

Figure 20.100: Prompt-to-Prompt editing capabilities [217]. The method enables fine-grained
modifications by editing text prompts and guiding the diffusion process via attention control. Exam-
ples include adjective reweighting (top-left), object replacement (top-right), style editing (bottom-
left), and progressive prompt refinement (bottom-right).

P2P thus bridges the flexibility of prompt-based conditioning with the structural fidelity of spatial
attention, enabling zero-shot edits with pixel-level consistency. In the following, we will explain
how this method works, and see some usage examples.

1320 Chapter 20. Lecture 20: Generative Models Il

Cross-Attention as the Mechanism for Prompt Influence In text-conditioned diffusion models
such as Stable Diffusion, the U-Net backbone integrates the prompt via cross-attention layers at every
denoising step ¢ € {1,...,T}. At each step, the model maintains a latent representation 7, € R">">d,
where each of the N = & - w spatial locations corresponds to a feature vector of dimension d. This
tensor is reshaped into a sequence 7; € RN*4 where each row Z; [n] can be interpreted as encoding
local information at spatial location » — similar to a pixel in a feature map, though potentially
corresponding to a receptive field in the original image due to earlier convolutional layers.

Let the text prompt be tokenized into L tokens, each embedded into a vector &; € R¢, forming an
embedding matrix E € RF*¢, These embeddings serve as the key-value memory bank over which
the latent queries will attend. The cross-attention computation at each U-Net layer is then given by:

T
Attention(Z;, E)) = softmax <QK> V,
Vd
where:
« Q=Wpz eRY *d are learned linear projections of the spatial feature vectors — one per
location n,
« K=WkE, V=WE cRL are the projected keys and values from the prompt token
embeddings,

e A! = softmax (QK T / \/3) € RV*L is the attention matrix at timestep .

If the original channel dimensions of Z; or E differ, the projections Wo, Wk, Wy are used to map both
inputs into a shared dimension d, ensuring compatibility. These are learnable parameters trained
end-to-end with the diffusion model.

Each entry A’ [n,[] quantifies how much the token w; influences the generation at spatial position
n. This allows us to interpret the model as dynamically querying which parts of the prompt should
affect which spatial regions of the latent representation.

We define the cross-attention map for token w; at timestep ¢ as:
M :=A"[;,[] € RV,

where A’ € RV*L is the cross-attention matrix at timestep 7, with N = & x w denoting the number of
spatial locations in the latent feature map and L the number of text tokens. The slice A’[:, 1] selects
the attention weights from all spatial positions to the token wy, yielding a heatmap over image space
that describes how strongly each location attends to the semantic concept expressed by w;.

This vector M] can be reshaped into a 2D grid M € R to match the spatial resolution of the
U-Net features, allowing a visual interpretation of where token wy; is grounded at step 7. For example,
if w; = “dog”, the corresponding map M; will have high values in regions corresponding to the
predicted dog’s body, such as its head or torso.

Concretely, if a spatial location i = (u,v) on the feature map has a high value M;[u,v], it indicates
that the pixel at location (u,v) in the latent representation is currently being influenced by, or aligned
with, the semantics of the word “dog”. Thus, the cross-attention map captures the evolving alignment
between text tokens and spatial regions throughout the diffusion process, enabling localized text-to-
image control.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1321

turry bear watching a

Average attention maps across all timestamps

Figure 20.101: Cross-attention maps in text-to-image diffusion models [217]. Top row: average
cross-attention maps for each word in the prompt that generated the image shown on the left,
aggregated across timesteps and layers. These maps visualize the typical spatial influence of each
token throughout the diffusion process. Bottom rows: temporal attention maps at selected denoising
steps, focusing on the tokens “bear” and “bird”. Early in the denoising process, attention maps are
diffuse and spatially ambiguous, while later steps exhibit sharper, more localized influence, revealing
how semantic concepts gradually consolidate into precise spatial regions. This temporal evolution
illustrates the emergence of spatial grounding in cross-attention and underpins the feasibility of
attention-based control mechanisms like Prompt-to-Prompt.

This attention mechanism forms the foundation for Prompt-to-Prompt’s editing capabilities: by
storing the maps M] from an initial prompt and reusing them selectively during generation with a
modified prompt, one can tightly control how semantic concepts from the original image persist or
change across edits. The next part describes how this editing mechanism is implemented.

Editing by Cross-Attention Injection Prompt-to-Prompt (P2P) [217] enables fine-grained, prompt-
aware image editing by intervening in the cross-attention maps of a pre-trained text-to-image diffu-
sion model. Given an original prompt p = [wi,...,w;] and a revised prompt p’ = [w},...,w}], the
method aligns their token sequences and selectively manipulates attention maps M across diffusion
timesteps 7 € {1,...,T}.

The core intuition is straightforward: each token w; in the prompt attends to a spatial region in
the image via its attention map M!, which evolves over time. If a token remains unchanged across
prompts—e.g., “tree” in “a dog next to a tree” versus “a cat next to a tree”’—then its associated
spatial influence should also remain fixed. P2P enforces this consistency by injecting attention maps
recorded during generation with the original prompt into the diffusion process guided by the new
prompt.

By doing so, the method preserves image layout and semantic grounding for shared tokens, while
allowing newly introduced or modified tokens to affect the image selectively.

1322 Chapter 20. Lecture 20: Generative Models Il

This form of editing occurs at the cross-attention layers within the U-Net and can be controlled over
time using a timestep threshold 7, enabling smooth interpolation between preservation and change.
The key components are:
* Attention Replacement for Matching Tokens: When a token w; € p appears identically in
the edited prompt p/, its attention map is replaced with the one recorded during generation of
the original image:

M + M;.

This preserves the spatial layout and semantic grounding of the unchanged concept (e.g.,
“table” in both prompts “a red chair and a table” and “a blue chair and a table™).

* Word Swapping via Timestep-Gated Attention Injection:
When a token in the prompt is replaced—for example, “car” — “truck”—the goal is to modify
the generated concept while keeping the rest of the image (e.g., layout, background, lighting)
structurally intact. Prompt-to-Prompt (P2P) achieves this via a timestep-gated injection of
cross-attention maps, controlled by a parameter 7, applied during the denoising process.

How it works: Diffusion models denoise a latent representation iteratively. At each timestep ¢,
cross-attention layers in the U-Net bind the current visual features (queries) to text tokens (keys
and values). The resulting attention map M, € R for token w; determines how strongly
each spatial location should attend to that token.

Importantly, these maps encode where in the image each token is relevant—but not what the
token means. The token’s semantic identity is carried through its embedding V;, projected
into the attention’s value vectors V. During cross-attention, each spatial location receives a
weighted sum of the values, using the attention map as weights:

Output = M; - V/

In word swapping, P2P modifies the attention maps Ml’ as follows:

M
! M; ift>17 (inject original map from the old prompt)

at {M,” ift <t (use attention map from the new prompt)

Why it works: Early in the diffusion process, the model determines the coarse structure—object
layout, pose, and geometry. Using M;" here ensures the new token (e.g., “truck”) can shape
its own spatial identity, learning its approximate location and structure. Crucially, the values
V/ always come from the new token embedding, so the semantic content being drawn from is
never related to the original token (“car”).

Later in the process (t > 7), the model begins refining texture, shading, and scene consistency.
At this point, P2P injects the original attention maps M} while still using the new values V} .
This means the model is now told: “inject the semantic content of a truck, but do so in the
spatial pattern where a car originally appeared.”

This is the crucial trick: the new concept (truck) inherits the spatial context of the old concept
(car)—its location, size, and perspective—but none of its identity. There is no semantic leakage
from the original word because the values, which carry the detailed information injected into
the visual features, still come from the new prompt.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1323

Example: When editing “a red sports car on a road” into “a red truck on a road,” early timesteps
allow the attention of “truck” to shape its own geometry. After 7, the attention map of the
original “car” is re-used, telling the model where in the image to continue refining. The
resulting truck is structurally aligned with the original car’s pose and lighting, yet semantically
distinct.

About the parameter T: The transition point 7 € [0, 7] determines when control shifts from
free composition to spatial anchoring. A smaller 7 gives more influence to the new prompt,
allowing larger structural changes. A larger T preserves more of the original layout. In practice,
intermediate values (e.g., T ~ 0.5T) often strike a balance between visual fidelity and effective
editing.

* Adding New Phrases:
Suppose we augment the prompt from “a house in the snow” to “a house in the snow with a
tree”. Our goal is to preserve the existing content (house, snow) while introducing the new
concept (tree) in a natural and non-destructive way.

How it works: Let p and p’ denote the original and edited prompts, respectively. At each
timestep ¢, Prompt-to-Prompt constructs the edited cross-attention maps Ml’ as follows:
— For each token w; € pN p’ that appears in both prompts, we inject the original attention
map:
M =M.
This enforces spatial consistency for the unchanged concepts (e.g., “house”, “snow”).

— For each newly added token w; € p’\ p, such as “tree”, we allow the model to compute
its attention map normally:

M =M.

Why it usually works: This approach biases the generation toward preserving the original
structure while carving out visual space for the new concept. The success of this balance
depends on three factors:

— Preserved attention anchors: By freezing the attention maps for shared tokens, we
ensure that their semantic influence remains fixed over the original image regions. This
strongly encourages the model to reconstruct those regions similarly in the edited version.

— Limited interference by new tokens: Although new tokens can, in principle, influence
any part of the image, their attention is typically focused on previously unclaimed or
neutral areas—such as background space—where the frozen maps from shared tokens
are weak. This is due to softmax normalization: strong attention weights from shared
tokens crowd out competing influence from new ones in key regions.

— Value-weighted blending: Even when spatial attention overlaps, the injected attention
maps act only as weights. The semantic content injected at each position still comes
from the values—i.e., the token embeddings. Since the new token (“tree”) has distinct
values from existing ones, its content will only dominate in regions where it receives
sufficient attention. In most cases, this naturally confines it to appropriate areas without
harming other objects.

1324 Chapter 20. Lecture 20: Generative Models Il

Important caveat: This method is not foolproof. If a new token’s attention overlaps heavily
with a shared token’s region, and its values inject strong or conflicting semantics, artifacts
or unintended modifications can occur. However, such cases are rare in practice, especially
for prompts that are incrementally edited or composed of semantically separable elements.
Fine-tuning the diffusion guidance strength or manually constraining attention can further
mitigate these risks.

Example: Inserting “a tree” into “a house in the snow” results in a tree appearing beside the
house—often in the background or foreground—without shifting or deforming the house itself.
The spatial layout and visual style of the original scene are preserved because the attention
maps for “house” and “snow” remain fixed, shielding those areas from disruption.

* Attention Re-weighting (Optional):
In prompts containing multiple concepts—such as “a cat on a chair with sunlight in the back-
ground”’—we may wish to emphasize or suppress specific elements. For instance, one might
want to intensify “sunlight” to brighten the scene or reduce the visual clutter associated with
“background”. Prompt-to-Prompt enables this via a technique called attention re-weighting,
also referred to as fader control.

How it works: Let j* denote the index of the token to be modified, and let ¢ € [—2,2] be
a scaling coefficient. At each diffusion step ¢, the cross-attention map M’ € RV*L from
the original prompt’s generation is reweighted to obtain M’, where each spatial position
i€{l,...,N} attends over the L tokens:

b e

W C'Mi,j if j=j*

i7j . t :
Mi, j otherwise

After reweighting, each row Mf is typically renormalized (e.g., using softmax) to ensure the
attention remains a valid distribution.

Why it works: Cross-attention determines where each token’s semantics are injected into the
latent image during denoising. The weights Mf ; are used to combine the value vectors Vv (from
the token embeddings), controlling how much each token contributes at location i. Increasing
¢ boosts the pre-softmax score for token j*, which raises its relative weight after softmax:

eCM;~f*
Softmax(M;.)[j*] = —
ZkZ] e i,k

Thus, more pixels are drawn to the token’s semantic content, strengthening its influence.
Conversely, reducing ¢ weakens this effect.

Why it usually doesn’t disrupt other objects: Reweighting adjusts only a single token’s attention
column. Since the attention is row-wise normalized, boosting one token proportionally reduces
others—but only at spatial locations where that token already had influence. For unrelated
concepts with disjoint spatial support, the impact is minimal. That said, large ¢ values can
overpower neighboring tokens in shared regions, potentially distorting their features.

Example: Increasing c for “sunlight” enhances brightness across attended regions, reinforcing
highlights and atmospheric glow. Suppressing “background” with a low ¢ reduces texture
variation and visual noise, producing a cleaner, more focused composition.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1325

These operations allow users to perform prompt-level edits—such as word substitution, phrase
addition, or semantic emphasis—while preserving coherence, layout, and object identity in the
image. Crucially, attention injection is not applied uniformly across the entire generation: the
timestep threshold 7 allows for nuanced control over when the structure should be preserved and
when it can adapt, striking a balance between faithfulness and flexibility.

8o
Pixel features Pixel Queries Tokens Keys ?5:‘5’ &;;bg Tokens Values Output
L] (from Prompl) (from Prompl)
—» M X O —» X O —
& (z) Q K M, v @ (z)

Text to Image Cross Attention

M; M} New weighting

My M,

M,

Word Swap Adding a New Phrase Attention Re—weighting

Figure 20.102: Prompt-to-Prompt method overview [217]. Top: input prompt is embedded and
fused with image features through cross-attention layers that produce one attention map per word.
Bottom: for editing, Prompt-to-Prompt injects cross-attention maps M; from the original prompt
into the generation process of the edited prompt. This enables semantic manipulations such as word
replacement, addition, or style transfer, while preserving spatial layout and object coherence.

This mechanism is particularly effective because it leverages the spatial grounding inherent in
attention maps: regions influenced by unchanged words remain fixed, while edited words influence
only localized changes. This permits high-fidelity image editing without requiring pixel-space
operations or model retraining.

In the following, we demonstrate how this mechanism can modify object content, style, or structure
while preserving layout.

Use Case: Content Modifications via Prompt Edits Once the Prompt-to-Prompt mechanism is
in place, a natural application is controlled object substitution through prompt editing. For example,
replacing “lemon cake” with “chocolate cake” or “birthday cake” should change only the appearance
of the object itself while preserving the layout, lighting, and background structure.

The below figure demonstrates this use case. Starting from a baseline image generated from the
prompt “lemon cake”, the prompt is modified to describe other cake types. Two editing strategies are
compared:

* Top row (attention injection): P2P preserves the spatial layout of all shared words by copying
their attention maps from the original generation. Only new tokens receive fresh attention
maps.

* Bottom row (seed reuse only): The same random seed is reused, but no attention maps are
injected — each prompt is generated independently.

1326 Chapter 20. Lecture 20: Generative Models Il

In the attention-injected row, the cake’s pose, size, and plate remain stable across edits — the
structure is preserved, and only semantic details (like texture and topping) change. Without attention
injection, the geometry drifts significantly, resulting in inconsistent layouts.

“monster cake” Flege cake” e Spepperoni cake.” *figh eake.” Mo ke “pasta cake.” “hrick cake”

__Fixedattention mapsand randomseed

“lego cake " “beel citke " ron ke 2 " “pasta cake.” “hrick eake”

Figure 20.103: Content modification through attention injection [217]. An original image
generated from the prompt “lemon cake” is edited by modifying the object type in the prompt. Top
row: Prompt-to-Prompt preserves attention maps for shared words, yielding structurally consistent
variations. Bottom row: Only the random seed is reused, resulting in less coherent object geometry
and structure.

This example highlights Prompt-to-Prompt’s ability to perform semantic transformations while
preserving the geometric footprint of unchanged content — a key feature for controlled editing in
image synthesis workflows.

We now turn to further use cases demonstrating Prompt-to-Prompt’s flexibility, including object
preservation across scene changes, gradual injection strength for stylistic blending, and real-image
editing via inversion.

Use Case: Object Preservation Across Scene Changes Prompt-to-Prompt also supports isolating
and preserving a specific object from a source image while altering the rest of the scene. This is
accomplished by selectively injecting the attention maps corresponding to a single token, such as
“butterfly”, from the original prompt.

The below figure demonstrates how injecting only the attention maps of the word “butterfly” preserves
its pose, structure, and texture across multiple edited prompts. The new contexts vary in composition
and background — e.g., a room, a flowerbed, or abstract shapes — but the butterfly remains visually
consistent, accurately positioned, and realistically integrated.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1327

“A photo of a butterfly on...”

. on g cundy.” B = o0 s mulfin” woonacake” “.om o plesa” *...om 4 bread "

“ona Que™ *on avioln” “..on 8 presenl.”

Figure 20.104: Preserving object structure through selective attention injection [217]. The
attention maps for the token “butterfly” are injected from the original image (top-left) into edited
prompts. While the background and surrounding context change, the butterfly’s appearance and
spatial configuration remain consistent, highlighting Prompt-to-Prompt’s ability to localize and
preserve selected visual elements.

This type of localized control is especially useful for identity-preserving edits or compositional
consistency — applications relevant to character animation, creative storytelling, and personalized
image manipulation. It also sets the stage for more advanced use cases involving dynamic modulation
of attention influence and real-image editing.

1328 Chapter 20. Lecture 20: Generative Models Il

Use Case: Controlled Blending via Partial Attention Injection Prompt-to-Prompt enables
fine-grained control over the generation process by specifying the temporal extent during which
the original cross-attention maps are injected. By limiting attention replacement to only a subset of
denoising timesteps 7 € [0, T], users can navigate the trade-off between faithfulness to the edited
prompt and fidelity to the original image structure.

Source image and prompt:

bicycle —= motorcycle

W.0Q. altention injection - 2 Full attention injection

Figure 20.105: Blending source and target semantics through partial attention injection [217].
Each example begins with an original image and prompt (top row). The prompt is edited by replacing
one token (e.g., “car” — “bicycle”). In the rows below, cross-attention maps from the original prompt
are injected into the edited generation for a growing portion of the denoising process—trom 0%
(left) to 100% (right). Low injection favors the edited prompt but may distort layout; high injection
preserves the original structure but inhibits visual change. Intermediate levels yield blended results.

Mechanism of control: Let T € [0, T] be the timestep threshold at which attention injection transitions.
For timesteps ¢ < 7, the cross-attention maps computed from the edited prompt are used (encouraging
semantic changes); for r > 7, the maps from the original prompt are injected (enforcing structural
consistency). A small T means most steps rely on the original attention, preserving layout but
potentially suppressing edits. A large 7 allows the new token’s semantics to dominate, which may
yield better object replacement but increase spatial drift.

Why it matters: This mechanism allows users to blend the “what” (new concept) and “where”
(original spatial anchors) over time, rather than committing to full replacement or preservation. For
instance, replacing “car” with “bicycle” may succeed when injection occurs only after the early
timesteps—Iletting the bicycle establish geometry, then snapping into the original scene’s pose and
viewpoint.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1329

This time-dependent attention editing proves useful in scenarios where both semantic change and
structural stability are important. Applications include identity-preserving edits, fine-grained modifi-
cations to clothing or pose, and stylistic alterations that should respect background composition.

We now turn to complementary editing strategies that do not replace attention maps, but instead
reweight them to modulate a token’s influence.

Use Case: Emphasizing and De-emphasizing Concepts Building on the principle of attention
re-weighting, Prompt-to-Prompt enables dynamic emphasis or suppression of specific concepts
directly through cross-attention manipulation. This allows users to subtly or dramatically control
how visible or dominant a particular word becomes in the generated image—without changing the
wording of the prompt itself.

“A photo of a birthday(4) cake next to an apple.”

T ':'w 4‘

“A photo of a house on a snowy(+) mountain.”

Figure 20.106: Controlling emphasis via cross-attention scaling [217]. Top: Reducing cross-
attention for selected words (e.g., “blossom”) softens their visual presence. Bottom: Increasing
attention weight (e.g., for “snowy” or “fluffy”’) amplifies the visual attributes tied to that token.

In Figure 20.106, re-weighting is applied to highlight or downplay specific concepts. For example,
increasing the attention mass on the token “fluffy” causes the entire image to exhibit more fluffiness
in the texture of objects (in this example, the furry bunny doll). Conversely, reducing the attention
weight on “blossom” attenuates the flower density and vibrancy of the tree canopy.

1330 Chapter 20. Lecture 20: Generative Models Il

This flexible form of text-guided emphasis is useful in stylization, mood control, and semantic
adjustment without prompt rewriting. The same technique can be applied for creative stylization.

Use Case: Text-Guided Stylization while Preserving Layout Prompt-to-Prompt enables rext-
guided stylization, allowing users to transform an image’s appearance while maintaining its spatial
composition and semantic structure. This is achieved by appending stylistic descriptors (e.g.,
“charcoal sketch”, “futuristic illustration’) to the prompt while injecting the cross-attention maps
from the original prompt. These injected maps anchor spatial localization, ensuring that stylistic
changes affect only visual texture, tone, and color, not layout.

“drawing of...” i “photo of...”

; Y [N |
“relaxing photo of...” *“dramatic photo of...” *..in the jungle.” *...in the desert.” ... on mars.”

source image

“photo of...”

. e
“impressionism...” “futuristic...” “neo classical...”

“watercolor...” “charocal...”

source image

“A waterfall between the mountains.”

Figure 20.107: Prompt-based image stylization with structural consistency [217]. Top: convert-
ing a sketch or drawing into realistic photographs under various stylistic prompts (e.g., “a relaxing

LR T

photo”, “a dramatic photo”). Bottom: transforming a real photo into stylized renderings using
art-related descriptors (e.g., “charcoal sketch”, “impressionist painting”, “neo-classical style”). In all
cases, Prompt-to-Prompt preserves spatial layout by injecting source attention maps while allowing

the new style tokens to influence appearance.

This strategy supports both sketch-to-photo and photo-to-sketch transformations, modulated entirely
through text. By preserving structural attention, Prompt-to-Prompt ensures that stylistic changes
remain localized to appearance, enabling faithful reinterpretations of the same scene across diverse
visual domains. Such capabilities are valuable for domain adaptation, visual exploration, and iterative
artistic workflows—offering a controllable, prompt-driven alternative to manual stylization or style
transfer networks.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1331

Use Case: Editing Real Images via Inversion and Prompt-to-Prompt Finally, Prompt-to-
Prompt is not limited to synthetic images. By leveraging diffusion inversion techniques (e.g., DDIM
inversion), real images can be mapped into latent noise vectors and edited as if they were generated
samples. This extends the power of prompt-based editing to real-world inputs.

..next to red flowers.™ “..when snow comes “while another black bear *0il painting of..."
down.” is watching.”

real image reconstructed

“Landscape image of trees in a valley...”

|
|
|
|
|
|
|
|
|
| e
I
|
|
|
|
I
|

“,.at fall.” “..at winter,”

real image reconstructed

..t sunrise.” .8t night.”

Figure 20.108: Prompt-based editing of real images. Left: Real photos are inverted into latent
noise vectors using DDIM inversion. Right: Edited versions are generated using Prompt-to-Prompt
by modifying the prompt and injecting attention maps as needed. Figure adapted from [217].

As shown in Figure 20.108, the inversion step maps a real photo (e.g., of a dog, house, or object) into
a latent representation from which a faithful reconstruction can be generated. Prompt edits—such
as changing the subject, adjusting appearance, or adding stylistic elements—are then applied via
P2P. The result is an edited image that respects the original structure and layout but incorporates the
semantic changes described in the updated prompt.

This capability opens the door to user-friendly image editing pipelines where real images can be
modified through text alone, with fine-grained control over structure and content.

Limitations and Transition to Personalized Editing While Prompt-to-Prompt offers fine-grained
control over textual edits through cross-attention injection, re-weighting, and temporal scheduling, it
still inherits several limitations from the underlying diffusion framework:

* Vocabulary-bound concept control: P2P assumes that all visual elements in the scene are
represented by prompt tokens. Consequently, it cannot edit or preserve objects that lack a
direct textual grounding—such as a specific person’s face, a custom logo, or a unique product
design.

* Semantic drift with underrepresented concepts: For rare or ambiguous tokens (e.g., “blos-
som”, “rustic”, or abstract modifiers like “ethereal”), the associated value vectors may not fully
capture the desired visual features. As a result, cross-attention editing may be inconsistent,

yielding unpredictable outputs or semantic drift over time.

1332 Chapter 20. Lecture 20: Generative Models Il

* Limited identity preservation: Because Prompt-to-Prompt relies purely on manipulating
cross-attention weights, it cannot preserve fine-grained visual identity—such as the facial
features of a specific subject—when editing real images. As demonstrated in prior sections,
even when using DDIM inversion to anchor the source image in latent space, significant details
may be lost or altered during generation.

These limitations motivate the need for personalized fine-tuning techniques that go beyond attention
manipulation. In particular, to faithfully edit scenes involving novel or user-defined subjects—such
as a specific dog, a unique sculpture, or a person’s face—we require models that can learn new visual
concepts and bind them to custom textual tokens.

While Prompt-to-Prompt enables fine-grained control over structure and style through attention
manipulation, it remains limited to concepts already understood by the base model. It cannot
synthesize entirely new identities or visually-grounded concepts absent from the training data. This
motivates the need for subject-driven generation, where the model is explicitly taught to recognize
and recreate a particular instance—such as a person, object, or pet—across diverse prompts and
settings.

This leads us to DreamBooth [537], a technique for high-fidelity personalization via instance-specific
fine-tuning. DreamBooth introduces a unique token (e.g., “[V]”) into the model’s vocabulary and
trains the model to associate it with the visual identity of a particular subject using just a handful of
example images. Once embedded, this token can be flexibly composed with other text descriptors to
guide generation across different poses, environments, and styles—all while preserving core identity
traits.

In the following, we explore how DreamBooth achieves this level of instance control, what challenges
arise in balancing identity preservation with prompt diversity, and how its innovations laid the
groundwork for personalized diffusion models.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1333

Enrichment 20.11.7: DreamBooth: Personalized Text-to-Image Generation

Motivation and Core Insight

DreamBooth [537] proposes a method for customizing pretrained text-to-image diffusion mod-
els—such as Stable Diffusion or Imagen—so that they can generate realistic, context-aware, and
stylistically diverse images of a specific subject, using only a handful of example images.

The key challenge addressed by DreamBooth is as follows: while large diffusion models are trained
on broad distributions of internet-scale data, they cannot reliably synthesize faithful renditions of an
individual subject (e.g., a specific dog or product) unless it appeared in their training data, and with a
unique identifier that allows reconstruction in various settings. Simply prompting with "a dog on a
beach" might yield a generic canine, but not your dog.

To solve this, DreamBooth introduces the idea of binding a unique textual identifier—such as
sks—to a novel visual subject by fine-tuning the diffusion model on a small set of subject-specific
images paired with customized prompts (e.g., "a photo of a sks dog"). This enables the model to
learn the association between the identifier and the subject’s visual concept, allowing the generation
of high-fidelity outputs in new poses, scenes, or styles using just prompt-based control.

Input images wn the Acropodis - n o doghouse 1 o bucket et ting o hadreut

Figure 20.109: DreamBooth enables subject-driven generation. With only 3-5 images of a subject
(left), DreamBooth fine-tunes a diffusion model to produce diverse outputs (right) via prompts like
“a sks dog in the Acropolis”. The results demonstrate consistent identity preservation across varying
contexts, lighting, and articulation. Figure adapted from [537].

This mechanism builds toward a more general idea in controllable generation: associating visual
attributes with tokens in the text space and using prompt engineering to drive structured edits. In later
works, we will see how ControlNet extends this idea further by conditioning on spatial inputs like
edges or poses. But first, we will examine how DreamBooth establishes the foundational capability
of subject-driven customization using only a few images and simple text.

Model Setup and Identifier Creation DreamBooth [537] modifies large pretrained text-to-image
diffusion models—such as Stable Diffusion and Imagen—to enable personalized subject-driven
generation. Given only a handful of subject reference images (typically 3-5), DreamBooth introduces
a new textual identifier that serves as a symbolic stand-in for the subject. By finetuning the model on
prompts like "a sks dog in the snow", the model learns to associate the rare token sks with
the subject’s visual appearance. This enables prompt-driven recontextualization of the subject across
new scenes, poses, and styles.

1334 Chapter 20. Lecture 20: Generative Models Il

The model architecture remains intact, with only a targeted subset of parameters updated during
training:

* Frozen Text Encoder: The input prompt is tokenized and embedded by a pretrained en-
coder—e.g., CLIP for Stable Diffusion or T5-XXL for Imagen. These components remain
fixed throughout training.

* Frozen Image Encoder/Decoder: Stable Diffusion uses a pretrained VAE to map RGB
images to a lower-dimensional latent space. Imagen, in contrast, operates directly in pixel
space using a base model and super-resolution stages. In both cases, these modules are left
untouched.

* Trainable U-Net Denoiser: The U-Net receives noisy inputs (pixels or latents), a timestep
embedding, and cross-attention conditioning from the prompt. This is the only component
that is finetuned during DreamBooth training, learning to associate the rare subject token with
its corresponding visual appearance.

To introduce a new subject into the model’s vocabulary, DreamBooth selects a unique rare token s,
such as sks, and uses it in prompts of the form:

"a photo of a sks dog "

subject ID ¢Ja55 Tabel
This prompt is paired with each training image of the subject. During finetuning, the model learns
to associate the identifier sks with the subject’s unique appearance while preserving the general
semantics of the class label (e.g., dog).

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1335

Reconstruction Loss

Shared
Inputimages (~3-5) Weights

Text — Image

!

”A’ doﬁ” 4 ,,A dog'.'!

Class-Specific Prior Preservation Loss

Figure 20.110: DreamBooth finetuning process. Given a few images of a subject (e.g., a specific
dog), the model is trained on prompts like "a [V] dog" to tie the unique token [V] to the subject’s
identity. Simultaneously, prompts like "a dog" are used with unrelated samples from the same class
to enforce intra-class diversity via prior-preservation loss. Figure adapted from [537].

Identifier Token Selection Strategy

The effectiveness of DreamBooth hinges on selecting a subject token s that is both learnable and
semantically disentangled—meaning it has weak or no associations with existing concepts in the
model’s pretraining distribution. If s corresponds to a token that is already semantically rich (e.g.,
"dog", "person", "red"), fine-tuning may corrupt unrelated concepts (semantic drift) or introduce
identity leakage and reduced generative diversity. Conversely, if s is rarely used during pretraining,

the model is free to associate it entirely with the new subject.

Tokenizer Overview and Motivation

Like most modern text-to-image models, DreamBooth processes natural language prompts using
a tokenizer—a component that maps raw text into a sequence of discrete token IDs. These IDs
form the input to the model’s text encoder and are drawn from a fixed vocabulary that is constructed
during pretraining on a large-scale corpus.

Rather than operating at the level of individual characters or entire words, modern tokenizers
segment text into subword units—yvariable-length fragments like “red”, or “xxy5”. This subword
decomposition strikes a practical balance between expressiveness and efficiency:
* It avoids the combinatorial explosion of full-word vocabularies, which would require millions
of entries to cover rare terms, compound words, or typos.

1336 Chapter 20. Lecture 20: Generative Models Il

* It reduces the sequence length relative to character-level tokenization, thereby improving
model efficiency and allowing for longer contextual understanding.
* Itensures robustness: even unseen or rare words can still be represented using known fragments
from the vocabulary.
The result is a compact, reusable, and expressive vocabulary that allows any input string—no matter
how unusual—to be tokenized into a valid sequence of known token IDs. Each token ID is then
mapped to a high-dimensional embedding vector via a static lookup table in the text encoder. These
embeddings are passed through a Transformer-based architecture such as CLIP or T5 to produce
contextualized representations used to condition the image generation process.

During image generation, particularly in diffusion-based architectures, the contextualized text
embeddings influence visual outputs through dedicated cross-attention layers. These layers are
embedded within the model’s U-Net architecture and act as an interface between the text encoder and
the evolving image representation. Specifically, visual features derived from the noisy image (acting
as attention queries) attend to the token-level embeddings (acting as keys and values), producing
spatially localized responses. The result is a set of attention maps that modulate each region of the
image according to its relevance to the corresponding text tokens.

This mechanism establishes a direct spatial-semantic correspondence: each region of the image learns
to "pay attention" to the appropriate linguistic concepts in the prompt. Such alignment is foundational
for accurate text-to-image synthesis. In DreamBooth, this correspondence is further exploited during
fine-tuning—where a rare identifier token is explicitly trained to control the appearance of a novel
subject. The gradients from the cross-attention pathway reinforce the association between that
token and spatial structures in the generated image, enabling the model to synthesize consistent and
editable subject representations in response to prompt variations.

Rare Token Selection for Subject Identity Binding

DreamBooth performs subject personalization without altering the tokenizer or the text encoder.
Instead of introducing new vocabulary, it repurposes an existing but underused token Six from
the tokenizer’s fixed vocabulary to symbolically represent a novel subject. This token’s embed-
ding—denoted ¢, € R%—is static, produced by the frozen text encoder, and interpreted only by the
fine-tuned diffusion model (e.g., the U-Net).

The goal is to choose a token that behaves as a semantic blank slate: syntactically valid, visually
neutral, and semantically unentangled. The U-Net is then trained to associate &; with the personalized
subject appearance while leaving the text encoder entirely untouched. After training, prompts like
"a sks dog in the snow" can reliably generate identity-consistent outputs in diverse contexts.

The rare-token selection strategy is general and applies to any text encoder—tokenizer pair. Below
we outline a unified procedure applicable to both /magen (using T5 with SentencePiece) and Stable
Diffusion (using CLIP with Byte-Pair Encoding).

1. Enumerate the Tokenizer Vocabulary.
Each tokenizer defines a fixed mapping from token IDs to Unicode strings:
» Imagen uses T5-XXL with a SentencePiece vocabulary of size 32,000.
* Stable Diffusion uses a CLIP-BPE tokenizer with approximately 49,000 tokens.
These mappings can be accessed via tokenizer APIs.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1337

2. Identify Rare, Neutral Candidates.
The ideal token sy is rare (low frequency) and lacks meaningful associations. For example:
* In Imagen, token IDs in the range

{5000,5001, ...,10000}

are empirically found to be infrequent in the training corpus and often decode to short,
nonsensical strings like sks, qx1, or zqv.

* In Stable Diffusion, naive strings like sks may be split into multiple tokens unless formatted
with brackets (e.g., [sks]) to ensure they are tokenized as a single unit.

3. Filter Structurally Valid Tokens.
Candidate tokens must satisfy the following constraints:
* Decodability: The token maps to a valid, printable Unicode string.
* Length: Ideally 1-3 characters or a compact glyph.
* Token integrity: It must remain a single token after tokenization.
¢ Semantic neutrality: It should not resemble common words, brand names, or known
entities.

Once a valid token is chosen, it is held fixed and used in all subject-specific prompts during
DreamBooth finetuning. The text encoder produces a static embedding é;, while only the U-Net
learns to interpret it as the visual identity of the subject. This setup supports prompt compositionality,
enabling queries like:

* "a watercolor painting of a sks vase in a spaceship"

* "a sks dog painted by Van Gogh"

* "a sks backpack on the Moon"
In summary, the reuse of rare tokens provides an elegant, encoder-compatible mechanism for subject
binding. By leveraging frozen embeddings with minimal prior entanglement, DreamBooth enables
high-fidelity personalization while preserving the expressive power of the original generative model.

In the following, we describe how this token selection integrates into the full DreamBooth training
procedure, including loss functions that ensure both precise subject encoding and generalization to
new contexts.

1338 Chapter 20. Lecture 20: Generative Models Il

Training Objective and Prior Preservation Once a rare identifier token s has been selected
and inserted into structured prompts, DreamBooth fine-tunes the pretrained text-to-image model
to associate the subject with its corresponding static embedding €. Training follows the denoising
diffusion paradigm, augmented with a regularization term that preserves the model’s generative
flexibility.

Main Loss: Denoising Objective
Let {x1,x2,...,x,} denote a small subject dataset, and let each image x; be paired with a prompt
yi="a photo of a sext class". The fine-tuning process proceeds as follows:

1. Encode each image x; using the frozen image encoder:
» For LDMs: obtain latent representation 7; = Enc(x;).
* For pixel-space models (e.g., Imagen): use 7; = x;.
2. Sample a timestep t ~ % ({1,...,T}) and corrupt the input:

Zii=VouZi+/1—-0, € &~ AN(0]).

3. Encode the prompt y; using the frozen text encoder to obtain embeddings E;, where & € E;
denotes the token embedding of sext.

4. Input (Zi,,t,E;) into the U-Net and predict the noise:
é = U—Net(Zi,t,t,E',-).

5. Minimize the reconstruction loss:

2

Zecon =||€E—€&

5 .

During this process, only the U-Net parameters (and optionally its cross-attention layers) are updated.
The tokenizer, text encoder, and VAE remain frozen.

Preventing Overfitting: Prior Preservation Loss
Since DreamBooth typically trains on as few as 3—5 images, it is prone to overfitting—resulting in
memorized poses, lighting, or background, and catastrophic forgetting of class diversity. To mitigate
this, DreamBooth introduces a prior preservation loss that encourages the model to retain generative
variability across the subject’s class.
This is implemented by mixing in a batch of generic class instances:

* For each batch, sample additional images {x7"*'} with prompts like "a photo of a dog",

omitting the identifier token.
* Apply the same forward corruption process and compute the corresponding loss:

A 2
gprior = || €prior — SHZ .

The final training objective becomes:
Zotal = o%econ +A- o%rior,

where A € R controls the strength of prior preservation (typically A = 1.0).

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1339

Input images

Figure 20.111: Encouraging diversity with prior-preservation loss. Without regularization
(left), the model overfits to the subject’s training images, replicating pose and context. With prior
preservation (right), the model generalizes across poses and settings while maintaining subject
identity. Figure adapted from [537].

Effect and Interpretation
The prior-preservation term acts as a semantic constraint: it encourages the model to treat the
identifier sex¢ as a distinct instance within a broader class, rather than as a class replacement. This
enables:
* Preserves the model’s ability to generate diverse class-consistent outputs (e.g., dogs in snow,
with accessories, or in unusual settings).
* Enables identity-grounded generation in novel contexts—e.g., "a sks dog in the desert",
"a sks dog jumping over a fence",or "a sks dog wearing sunglasses".
This balance between memorization and generalization is critical for subject-driven generation to
remain flexible and compositional. In the following, we explore how DreamBooth leverages this
setup to enable high-fidelity identity transfer across scenes, styles, and visual manipulations.

1340 Chapter 20. Lecture 20: Generative Models Il

Subject-Driven Generation in New Contexts Once DreamBooth has successfully fine-tuned
the model to bind a unique token s to a subject identity, it can be used to generate photorealistic or
stylized images of that subject in a wide range of scenarios. Unlike traditional overfitted fine-tuning
techniques, DreamBooth supports rich recontextualization—the subject can be rendered in scenes it
was never observed in, under varying lighting conditions, poses, styles, and semantic compositions.

L BE
& 10

et " = s | =
Input images AV] backpack in the Awet [V] backpack A [V] backpack in Boston A [V] backpack with the

Grand Canyon in water night sky

Input images A [V] teapot floating A -t.ransparent [V] teapot A [V] teapot A [V] teapot floating
in milk with milk inside pouring tea in the sea

Figure 20.112: Recontextualization and Identity Preservation — adapted from the DreamBooth
paper [537]. The model generates visually consistent outputs of two distinct subjects—a personalized
teapot and a backpack—placed in novel contexts. For the teapot, DreamBooth adapts to prompts
like “floating in milk", “transparent with milk inside", or “pouring tea", preserving identity and
even enabling material transformations (e.g., transparency). For the backpack, it generates varied
scenes such as “in Boston”, “at the Grand Canyon", while maintaining structural and stylistic fidelity.
These generations illustrate how DreamBooth supports compositional control beyond the training
distribution.

This capability is made possible by the model’s retained understanding of the subject’s class (e.g.,
“teapot”, “dog”’)—due to the prior preservation loss—and the flexibility to modify the subject’s
expression, pose, or style through text prompts:

* ‘‘a sks dog crying”’, ¢

a sks dog sleeping’”’, ‘““a sks dog smiling’’ — expression

manipulation
* ‘‘a Van Gogh painting of a sks dog’’ — style transfer
* ““a sks dog with wings’’, ‘“a sks dog in the style of a sculpture’ — composi-

tional attributes

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1341

Expression modification (“4 fstate] [V] dog”)

Input images

barking cryig from:ling Screaing
Figure 20.113: Expression manipulation — adapted from the DreamBooth paper [537]. Dream-
Booth enables semantic edits to a personalized dog subject, synthesizing novel expressions that were
absent from the input images. Notably, subject-defining features—such as the asymmetric white

streak on the dog’s face—are consistently preserved.

DreamBooth also supports zero-shot outfitting and attribute additions. Guided by prompt text, the
model composes realistic physical interactions between the subject and newly specified objects,
outfits, or environments.

Input images

Purple Wizard Outfit Superman Outfit Police Crutfit Angel Wings

Figure 20.114: Outfitting with accessories — adapted from the DreamBooth paper [537]. Given
prompts like ‘‘a sks dog wearing a police/chef/witch outfit’’, the model synthesizes
identity-consistent variations that exhibit plausible deformations and realistic interaction between
the subject and the accessories—despite such scenes never being seen during training.

By decoupling the subject embedding s from specific backgrounds, poses, and lighting, DreamBooth
enables flexible recombination with diverse prompts. This supports high-fidelity identity preservation
across scenes, compositions, and artistic styles—unlocking broad applications in personalized content
creation, from digital avatars and branded photography to stylized storytelling.

1342 Chapter 20. Lecture 20: Generative Models Il

Text-guided view synthesis
Input images Top view * Bottom view * Back view ¥\

Art Renditions
Van Gogh Michelangelo

Panda Lion Hippo

Figure 20.115: Novel view synthesis and stylization — adapted from the DreamBooth paper [537].
DreamBooth generalizes beyond training views to generate novel camera angles, stylized renditions
(e.g., Van Gogh painting of the sks dog), and compositional variants that preserve the core identity
of the subject across diverse conditions.

These capabilities highlight DreamBooth’s ability to interpolate both pose and rendering domain.
Viewpoint shifts and stylistic alterations—unseen in the training images—are synthesized faithfully
while retaining fine-grained subject detail. This extends the model’s generative capacity far beyond
memorization.

Nonetheless, DreamBooth is not without limitations. Some failure modes arise in rare contexts,
entangled prompts, or when the model overfits to specific image details.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1343

Input images (a) Incorrect context synthesis

on the moon

(c) Overfitting

in the Bolivian salt flats on top of a blue fabric in the forest

Figure 20.116: Failure cases — adapted from the DreamBooth paper [537]. (a) Unseen context
errors: The model fails to render subject-consistent outputs in unfamiliar environments (e.g.,
synthesizing a backpack on the moon or inside the International Space Station). (b) Context-
appearance entanglement: Visual details from training backgrounds (e.g., the Bolivian salt flats or a
blue fabric backdrop) unintentionally bind to the subject, leaking into generations. (c) Overfitting:
The model recreates poses and scenes from the original images it was trained on, reducing its capacity
for diverse generalization.

While DreamBooth achieves impressive subject fidelity, it often struggles with precise compo-
sitional control. Issues such as background entanglement, pose collapse, or implausible scene
generation persist—especially when attempting to render the subject in unfamiliar contexts. Prompt-
to-Prompt [217] addressed some of these shortcomings by manipulating cross-attention maps to
steer how specific words influence spatial regions of the image. However, its control remains
fundamentally implicit—limited to prompt structure and lacking direct spatial supervision.

This motivates a shift toward explicit conditioning: instead of relying solely on text, can we guide
generation using structured visual signals such as edge maps, depth fields, or pose skeletons?
ControlNet provides a powerful answer to this question. By injecting auxiliary control encoders into
the diffusion backbone, ControlNet enables fine-grained spatial, geometric, and semantic modulation
of the generation process—dramatically improving compositional accuracy and unlocking new
applications in image editing, synthesis, and personalized rendering.

In the following, we examine the architecture, training procedure, and capabilities of ControlNet,
highlighting how it can be used independently or in conjunction with methods like DreamBooth to
enhance controllability and visual grounding.

1344 Chapter 20. Lecture 20: Generative Models Il

Enrichment 20.11.8: ControlNet - Structured Conditioning for Diffusion Models

Motivation and Background Despite the remarkable success of prompt-based diffusion models
in generating photorealistic and semantically coherent images, they offer only coarse-grained control
over the structure and layout of the output. Natural language prompts—such as “a person riding
a bicycle near the ocean”—are inherently ambiguous in spatial and geometric terms. As a result,
generated scenes may omit critical elements, produce anatomically implausible poses, or fail to
match user intent in fine-grained ways.

This limitation stems from the fact that text alone cannot precisely encode spatial or visual structure.
Concepts such as object pose, layout, depth, or boundaries are difficult to express in natural language
and even harder for the model to ground consistently. Methods like DreamBooth [537] improve
subject identity preservation, and techniques such as Prompt-to-Prompt [217] allow for localized
prompt manipulation via attention maps—but both approaches rely solely on textual cues and offer
no mechanism for incorporating structured visual guidance.

To address these challenges, ControlNet [773] introduces a principled architectural extension to dif-
fusion models that enables conditioning on external visual signals. These conditioning inputs—such
as edge maps, human poses, depth estimates, scribbles, or segmentation masks—serve as explicit
spatial priors, providing the model with structured cues that text alone cannot supply. For example, a
depth map can enforce perspective geometry in a 3D interior scene, while a pose skeleton can define
limb orientation and articulation in human generation tasks.

ControlNet thus empowers users to inject high-level semantic intent through text while simultane-
ously guiding low-level spatial structure via visual hints—bridging the gap between language-driven
generation and precise, user-defined control over image composition.

pali -

Input Canny edge

“chef in kitchen” “Lincoln statue”

Input human pose

Figure 20.117: Controllable generation using ControlNet — adapted from the ControlNet pa-
per [773]. Users supply structured visual conditions, such as edge maps (top row) or pose keypoints
(bottom row), alongside prompts to guide image synthesis. While the default prompt is “a high-
quality, detailed, and professional image”, additional text (e.g., “chef in a kitchen”) can further refine
semantic content. ControlNet enables precise alignment of the generation with both prompt and
visual conditions.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1345

This capability is especially important in domains where spatial layout matters—such as:

» Pose-to-image generation (e.g., rendering a person performing a specific action).

* Edge-to-photo synthesis (e.g., recreating objects from sketches).

* Semantic-to-scene mapping (e.g., transforming segmentation maps into photorealistic scenes).
By introducing minimal architectural overhead and preserving the core capabilities of the base
diffusion model, ControlNet bridges the gap between prompt conditioning and structured visual
control. In the following, we will examine its design, training procedure, and practical benefits.

Block Injection and Architectural Motivation ControlNet augments large pretrained text-to-
image diffusion models—such as Stable Diffusion—by introducing a trainable conditional branch
designed to interpret external structural cues (e.g., edge maps, depth, pose, segmentation) while
preserving the integrity of the base model. These external cues are encoded as condition maps
c € RF*WxC ‘and are used in conjunction with the usual text prompt y, forming a dual conditioning
scheme:
* The text prompt is tokenized and encoded by a frozen text encoder (e.g., CLIP), producing
embeddings that are injected into the U-Net via cross-attention layers.
* The condition map is passed through a dedicated encoder, whose outputs are injected into a
trainable replica of the U-Net blocks, spatially guiding generation at each resolution.

ControlNet’s integration with large-scale pretrained diffusion models represents a significant archi-
tectural innovation. Rather than retraining a diffusion model from scratch—a process that would
require massive datasets like LAION-5B [556], which are tens of thousands of times larger than
typical condition-specific datasets—ControlNet employs a far more efficient strategy.

It locks the parameters of a production-ready model, such as Stable Diffusion [531], thereby
preserving its high-fidelity generation capabilities acquired through training on billions of image—text
pairs. Simultaneously, it introduces a trainable replica of each internal block in the U-Net backbone.
These replicas allow the model to adapt to new forms of spatial or structural conditioning (e.g., edges,
depth, pose) without disrupting the semantics encoded in the original weights. This approach avoids
overfitting and catastrophic forgetting—common pitfalls in low-data fine-tuning scenarios [350].

A key architectural mechanism enabling this safe dual-path design is the use of zero convolu-
tions [773]. These are 1 x 1 convolution layers whose weights and biases are initialized to zero. As
a result, the conditional branches contribute nothing at the beginning of training, ensuring that the
pretrained activations remain untouched. Gradually, as gradients update these layers, the conditional
signal is introduced in a controlled, non-disruptive manner. This guarantees a stable warm-start and
protects the pretrained backbone from the destabilizing effects of random gradient noise early in
training.

Injecting Spatial Conditioning into Frozen Networks

Large-scale pretrained models such as the U-Net used in Stable Diffusion exhibit remarkable
generative capabilities, especially when guided by text prompts. However, their reliance on linguistic
conditioning alone limits their ability to follow spatial instructions—such as replicating object pose,
structural contours, or depth information—especially in tasks requiring precise layout control. This
gap motivates the development of ControlNet, a framework that injects spatial condition maps into
the intermediate layers of a frozen pretrained diffusion model, enabling fine-grained control while
preserving generative quality.

1346 Chapter 20. Lecture 20: Generative Models Il

Let % (-;®) denote a frozen network block, where a block refers to a modular transformation unit
such as a residual block or Transformer layer. Given an input feature map x € R¥*W*C the block
produces an output feature map y = .7 (x; ®). These feature maps encode semantically and spatially
rich representations used progressively in denoising-based generation.

ConftrolNet Architectural Design

To augment the network with conditioning, ControlNet associates each frozen block .7 (-;®) with a
trainable replica % (-;©,). This replica processes both the original feature map x and an external
condition map ¢ € RP*W*C guch as a Canny edge image, depth map, or human pose keypoints.
The condition map is transformed into a residual signal through a pair of zero-initialized 1 x 1
convolution layers:

Ve=F(x;0)+ Z(F (x+Z(c;0,);0.);0,) (20.65)

Here, Z(+;@;;) injects the condition into the input space of the trainable replica, while Z°(-;0,)
modulates the output. Both zero convolutions are initialized such that their weights and biases are
exactly zero, ensuring that the condition path introduces no change at the start of training.

Motivation for Additive Injection: Why Not Inject ¢ Directly?
A seemingly natural idea would be to inject the condition map c directly into the layers of the frozen
U-Net—via concatenation, addition, or feature fusion. However, this naive approach often results in
degraded output quality. The pretrained model encodes subtle statistical priors learned from billions
of image-text pairs. Tampering with these internal representations, especially with limited data and
abrupt injections, may cause:
* Catastrophic Forgetting: Directly modifying the feature flow may cause the model to forget
its generative priors, reducing sample diversity and fidelity.
* Semantic Drift: Uncontrolled condition injection can skew the model’s internal representa-
tions, leading to mismatches between prompts and outputs.
* Training Instability: The injection introduces mismatched signals, leading to noisy gradients
and divergence during optimization.
ControlNet avoids these pitfalls by enforcing architectural separation: the condition map ¢ flows
through a parallel, trainable branch that computes residual corrections to the output of the frozen
U-Net. These corrections are injected additively via zero-initialized 1 x 1 convolutions, ensuring that
pretrained knowledge remains unperturbed at the start of training. This design enables progressive
alignment, where the residuals only modify the output when helpful.

Component Breakdown
* Z(x;0): The original U-Net block with frozen weights ©, trained on large-scale image-text
data and reused without modification.
* #(¥;0,.): A trainable replica of the frozen block, receiving a perturbed input x' = x +
Z (¢;0;1), where Z is a zero-initialized convolution.
* Z(30,1), Z(;0,): Zero-initialized 1 x 1 convolutions used at the input and output of the
trainable path, regulating the influence of the conditional signal.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1347

How Can the Output Change If the U-Net Is Frozen? And Why Is Denoising Still Valid?
Freezing the U-Net implies that its output remains unchanged—but ControlNet introduces a trainable
parallel path that circumvents this limitation. At each U-Net block, a residual branch is appended
and fused with the frozen output via zero-initialized 1 x 1 convolutions:

Ve =F(x;0)+ 25 (F (x+ Z1(¢;0,1);0,);0,) (20.66)

Initially, both 27 and %, are zero-initialized, making y. = .7 (x; ®)—identical to the pretrained
model. This ensures a safe warm start that avoids destabilization.

Although the residual branches in ControlNet are initialized with zero convolution layers—meaning
all weights W and biases B are set to zero at the beginning of training—they remain fully trainable.
The forward pass of such a layer for an input feature map I € R?*W*C ig defined as:

Z(IAW,B})pi = Bi+ Y 1, Wi (20.67)
7

At initialization, since W = 0 and B = 0, the output is zero. However, the gradients behave as follows
(where ‘98% denotes the upstream gradient):

0Z(I;{W,B}),.

o 1 (20.68)

92(1;‘;’1’% —Y Wi =0 (20.69)
Dyl j

IZ(LAW.B})pi

e [I, (20.70)

We see that while the gradient with respect to the input [is zero initially (due to W = 0), the
gradients with respect to the bias B and the weights W are non-zero as long as the input feature /
itself is non-zero—which is always the case in practice, since / encodes the image or conditioning
information.

This mechanism ensures that the first gradient descent step will update the weights to non-zero
values. For example, assuming a non-zero learning rate i and loss gradient 0. /dZ # 0, the weight
update becomes:

(20.71)

0z oz
dZ ~ oW

W*:W_,Blr'<®

where © denotes the Hadamard (elementwise) product. After this step, the weight matrix W*
becomes non-zero, and the layer begins to propagate gradients to its input as well:

OZ(I;{W*,B}),
al, ;

=Y W #0 (20.72)
J

1348 Chapter 20. Lecture 20: Generative Models Il

Training Objective

ControlNet is fine-tuned using the standard diffusion loss, augmented to include both spatial and
textual conditioning. This objective trains the model to predict the noise added to a latent image
representation at a given timestep, while also respecting high-level textual and low-level spatial
guidance.

Each training sample includes:
* 70: Clean latent representation, encoded from a 512 x 512 image using a frozen VQ-GAN
encoder [148, 531].
* £~ 4(0,I): Gaussian noise.
» t €{1,...,T}: Diffusion timestep.
e 7 =/®z0++/1 — @& €: Noised latent using cumulative schedule @;.
* ¢;: Text embedding from a frozen encoder (e.g., CLIP) [498]. During training, 50% of prompts
are replaced with empty strings to promote reliance on spatial inputs [773].
* ¢;: Spatial condition image (e.g., pose, depth, edges) deterministically derived from zp.
*ccr= &eond(¢;): Feature map from a shallow encoder &;ong, aligned to U-Net resolution.
The loss function is:

2
Leonoe = Eeysecrey |16~ €0 @stscrner) 3] (20.73)

Why ConfrolNet Preserves Denoising Capability

ControlNet extends pretrained diffusion models with spatial guidance while preserving their original
denoising behavior. This is achieved through a design that carefully introduces conditional influence
without interfering with the U-Net’s pretrained functionality.

At the heart of the diffusion process lies a U-Net trained to predict noise across billions of
images [531]. In ControlNet, this U-Net is left entirely frozen during training [773], meaning it
continues to perform the same denoising task it was originally optimized for. The key innovation lies
in how ControlNet introduces its new functionality: by attaching a parallel, trainable branch whose
outputs are added to the internal feature maps of the frozen U-Net at each resolution [773].

Initially, this residual branch is non-functional. All connecting 1 x 1 convolution layers are
zero-initialized—both weights and biases—which guarantees that the trainable path contributes
no signal at the beginning. Thus, the model’s forward pass and denoising predictions are initially
identical to the pretrained backbone. Crucially, despite being inactive at first, these zero-initialized
layers admit nonzero gradients with respect to both their weights and biases. As long as the input
condition maps contain nonzero values (which they typically do), gradient descent immediately
begins to train the ControlNet branch—starting from a neutral baseline and gradually learning how
to steer the generation process.

This training strategy ensures that conditional guidance is introduced in a progressive and
reversible way. Because the U-Net remains frozen, the core noise prediction function is never
corrupted. Instead, ControlNet learns to produce residual corrections that refine the denoising
trajectory in a way that respects both the diffusion objective and the spatial constraints imposed by
the conditioning input. The result is a denoising model that continues to predict valid noise estimates,
now informed by an auxiliary signal such as an edge map or pose skeleton.

In essence, ControlNet does not replace the original model’s logic—it learns to nudge it. The
trainable branch aligns the latent noise prediction with external guidance, but the primary computation
and structure of the denoising process remain governed by the fixed U-Net. This preserves the
quality, stability, and generalization of the pretrained model while enabling precise spatial control.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1349

T T [rr e Er ey
" l \
! \
: :

:

zero convolution

x x ?
l l §

neural network neural network trainable co
block block (locked) | PY |
i | :

J{ i [zero convolution

. :]
y . T ——
e ControlNet
(a) Before (b) After

Figure 20.118: ControlNet block-level augmentation — adapted from [773]. (a) Standard U-Net
block with frozen weights. (b) Trainable residual path processes condition inputs and injects them
via zero-initialized 1 x 1 convolutions.

1350 Chapter 20. Lecture 20: Generative Models Il

Prompt ¢, Time ¢

Text Time Condition ¢
Encoder | | Encoder !
|

zero convolution

Input z,
l Prompt&Time
|
SD Encoder Block A [SD Encoder Block A
a x3 . x3
64x64 64x64 (trainable copy)
|
SD Encoder Block B <3 SD Encoder Block B <3
32x32 32x32 (trainable copy)
|
SD Encoder Block C SD Encoder Block C
| x3 . x93
16x16 a 16x16 (trainable copy)
|
SD Encoder a %3 SD Encoder Block D w5
Block D 8x8 8x8 (trainable copy)
|

|
SD Middle a SD Middle Block
Block 8x8 \ L 8x8 (trainable copy)

[zero convolution

SD Decoder a] 3

Block D 8x8

|
SD Decoder Block C

16x16 a] x3 «————— zero convolution |x3

|
SD Decoder Block B

32x32

|
SD Decoder Block A a] ¥

64x64

l
Output €y(z, ¢, ¢, ¢r)

zero convolution x3

IR

] x3 — zero convolution x3

zero convolution x3

(a) Stable Diffusion (b) ControlNet

Figure 20.119: ControlNet-enhanced architecture — adapted from [773]. Residual branches
(blue) process spatial control inputs and merge into the frozen U-Net backbone (gray) via zero-conv
paths (white).

We now continue focusing on ControlNet’s training dynamics, sudden convergence behavior, and
the role of Classifier-Free Guidance (CFG):

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1351

Enrichment 20.11.8.2: Training Behavior and Sudden Convergence

A key strength of ControlNet’s architectural design lies in its fraining stability. Thanks to the
zero-initialized convolution layers that bridge the frozen and trainable branches, the model behaves
identically to the original Stable Diffusion at initialization. This ensures that the first forward passes
produce coherent images, even before any optimization occurs.

As training progresses, gradients propagate through the zero convolutions and update the trainable
ControlNet branches. Initially, these branches exert no influence on the output. However, within
a few thousand training steps, a phenomenon referred to as sudden convergence emerges: the
ControlNet rapidly learns to inject the condition map into the generation process in a semantically
meaningful way.

\ ;
N L™ ||
e T T P A B

Test input training step 100 step 1000 step 2000

step 6100 step 6133 step 8000 step 12000

Figure 20.120: Sudden convergence in ControlNet training — adapted from the ControlNet
paper [773]. Top: condition input (a sketch of an apple). Middle: model output at intermediate steps.
Bottom: final image after convergence. Around step 6,133, the model rapidly begins aligning with
the condition. Prior to this, the base model produces realistic but unaligned samples.

This behavior reflects the progressive unfreezing of the control pathway: the zero-initialized con-
volutions learn how to linearly transform the conditioned features to guide generation, while the
trainable U-Net blocks learn to interpret the condition map. Throughout this process, the frozen base
model remains intact, continuing to produce high-quality visual content.

1352 Chapter 20. Lecture 20: Generative Models Il

Classifier-Free Guidance and Resolution-Aware Weighting ControlNet enhances the capabil-
ities of diffusion models by integrating Classifier-Free Guidance (CFG) [224], a technique that
balances adherence to conditioning inputs (like text prompts) with the diversity and realism of gener-
ated images. Additionally, ControlNet introduces a novel refinement: Classifier-Free Guidance
Resolution Weighting (CFG-RW), which dynamically adjusts guidance strength across different
spatial resolutions to optimize both semantic alignment and visual fidelity.

Classifier-Free Guidance (CFG) that we’ve covered in 20.9.4 operates by training the diffusion
model to handle both conditional and unconditional scenarios. During training, the conditioning
input (e.g., text prompt y) is randomly omitted in a subset of training instances (commonly 50%),
compelling the model to learn representations that are robust to the absence of explicit conditions.
At inference, the model combines the conditional prediction &g and the unconditional prediction
Euncond USIing a guidance scale A:

€CFG = €uncond + A (SCOHd - guncond)

This formulation allows users to modulate the influence of the conditioning input, with higher values
of A enforcing stronger adherence to the condition, potentially at the cost of image diversity.

Resolution-Aware Weighting (CFG-RW) Resolution-Aware Weighting (CFG-RW) is a critical
mechanism that enables effective conditioning in ControlNet by adapting the strength of the guidance
signal to the spatial resolution of each layer in the U-Net. Rather than applying a uniform scale to
all residual injections, CFG-RW introduces a dynamic scheme:

_ o
-

Wi

where w; is the guidance weight applied at a layer with spatial height /;. This design is grounded in
the hierarchical nature of the U-Net and the dynamics of the denoising process in diffusion models.
The key to preserving the base model’s generative capabilities lies in regulating the influence of
these residuals according to resolution.

Why resolution matters

* Low-resolution layers (e.g., 8 x 8, 16 x 16) are responsible for encoding global struc-
ture—object positions, shapes, and scene layout. These layers benefit from strong guidance,
as alignment at this scale is critical for conditioning to take effect. Hence, CFG-RW assigns
large weights (e.g., w; = 8 for h; = 8) to amplify the control signal.

» High-resolution layers (e.g., 32 x 32, 64 x 64) refine textures, edges, and fine detail. Here,
excessive guidance can distort or overwrite the pretrained model’s realistic priors. Small
weights (e.g., w; = 1 for h; = 64) preserve freedom for the U-Net to leverage its learned
generative capacity.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1353

Why It Works
Diffusion models denoise from coarse to fine: early steps shape global semantics, while later ones
refine textures. ControlNet injects conditioning through residuals at every U-Net layer, but applying
a uniform strength across resolutions introduces issues:
* Too weak at low resolutions: Structural guidance is underutilized, leading to semantic drift.
* Too strong at high resolutions: Fine details are over-constrained, reducing realism.
Resolution-Aware Weighting (CFG-RW) resolves this by scaling the residual strength inversely
with spatial resolution. This ensures: stronger guidance for layers encoding coarse structure, and
softer influence where detail synthesis must remain flexible. Because the base U-Net is frozen, this
modulation gently steers the generative process without destabilizing pretrained behavior.

Training Intuition With CFG-RW

ControlNet is trained on a small paired dataset (x,y), where x is the conditioning input and y the
target image. The denoising objective remains unchanged, and only the ControlNet branch is updated.
Residuals start with zero-initialized weights, ensuring that early training mimics the original model.
As gradients accumulate, residuals learn to inject useful control, progressively modulated by CFG-

RW to balance structure and detail. This setup enables stable finetuning while preserving generative
fidelity.

(a) Input Canny map (b) W/o CFG (c) W/o CFG-RW (d) Full (w/o prompt)

Figure 20.121: Impact of Classifier-Free Guidance and Resolution Weighting — adapted from
the ControlNet paper [773]. Left: Generation without CFG shows weak alignment to the input.
Middle: Applying CFG improves semantic consistency. Right: CFG with resolution weighting
(CFG-RW) enhances both prompt fidelity and image quality.

In summary, the integration of CFG and the introduction of CFG-RW in ControlNet provide
a nuanced mechanism for balancing condition adherence and image realism. By dynamically
adjusting guidance strength across resolutions, ControlNet achieves high-quality, semantically
aligned image generation, even when conditioned on complex inputs like edge maps or depth
maps. This advancement underscores ControlNet’s robustness and versatility in controllable image
synthesis. In the next part, we explore the limitations of ControlNet, motivating us towards following
works.

1354 Chapter 20. Lecture 20: Generative Models Il

Limitations of ControlNet and the Need for Semantic Conditioning ControlNet represents a
major advance in controllable image synthesis. By introducing condition maps—such as Canny
edges, human poses, or depth estimates—into a frozen diffusion model, it enables users to steer
image generation with fine-grained structural constraints. However, it is important to emphasize a
subtle but critical limitation: although ControlNet can be trained on full images, it cannot directly
accept them as conditioning inputs. Instead, the image must be converted into a structural map—such
as an edge sketch or depth projection—via a separate preprocessing pipeline.

This design choice is not arbitrary. The control branch in ControlNet is injected as residual guidance
into a frozen U-Net, where each layer encodes spatially aligned features at different resolutions. To
avoid interfering with the pretrained backbone, the injected condition must be spatially structured
and semantically simple—matching the inductive biases of the U-Net. Raw RGB images are too
entangled: they mix high-level semantics with textures, lighting, and style cues that do not map
cleanly onto the diffusion model’s feature hierarchy. Structural maps, by contrast, are sparse,
modality-aligned inputs that can guide early-stage generation without disrupting fine detail synthesis.

As aresult, even when the training dataset contains full images, ControlNet learns to rely on their
preprocessed structural representations. These projections are useful but inherently limited, as they
discard much of the image’s global context.

Several limitations arise from this design:

Preprocessing Dependency
* Brittle and domain-specific. The quality of condition maps depends on external models (e.g.,
edge detectors or depth estimators), which may fail on atypical, occluded, or stylized inputs.
* Workflow friction. Generating these maps adds overhead to the user pipeline, breaking the
simplicity of prompting with raw images.
* Information bottleneck. Much of the source image’s richness—style, mood, identity—is lost
when projecting it into a sparse or low-resolution structural format.

Lack of Semantic Awareness
The core limitation of ControlNet is its inability to condition on high-level visual semantics:
* It cannot preserve or replicate an individual’s identity, since structure alone is insufficient to
describe fine facial or bodily characteristics.
* It does not capture or transfer artistic style, which depends on texture, color, and abstrac-
tion—not just shape or layout.
* It cannot convey emotional tone or scene context, which emerge from the global gestalt of an
image rather than any explicit structural map.

Limited Compositionality and Scalability
While ControlNet supports combining multiple condition maps (e.g., pose + depth), doing so often
requires separate parallel branches, each tied to its own preprocessor and parameter set. This
introduces:
* Architectural complexity. Adding more conditions increases VRAM usage and inference
latency.
* Signal conflict. Structural conditions may provide conflicting guidance (e.g., pose suggests
one layout, depth another), requiring manual resolution or custom weighting schemes.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1355

These shortcomings underscore a key insight: ControlNet excels at where things go, but not at what
they are. It anchors generation to spatial constraints, but ignores the high-level visual semantics that
define identity, style, and intent.

This motivates a new class of conditioning methods—those that allow users to guide generation
using images themselves as prompts. Rather than reducing an image to its skeletal structure, these
approaches aim to preserve and transfer the holistic content, mood, and semantics encoded in the
image. One such solution, which we present next, is the IP-Adapter framework: a modular design for
injecting semantic image features into pretrained diffusion models without retraining or disrupting
text conditioning.

Motivation and Background Text-to-image diffusion models, such as Stable Diffusion, have
revolutionized the field of generative Al by producing high-fidelity images from textual descriptions.
However, guiding these models to generate images that precisely match user intent can be challenging.
Crafting effective prompts often involves intricate prompt engineering, where users must carefully
phrase their descriptions to elicit specific visual attributes. Moreover, text alone may fall short
in conveying complex scenes, abstract concepts, or nuanced styles, limiting the creative control
available to users.

To address these limitations, incorporating image prompts emerges as a compelling alternative. The
adage ‘““a picture is worth a thousand words” aptly captures the value of visual cues in conveying
detailed information. Image prompts can encapsulate intricate styles, specific identities, or subtle
emotional tones that might be difficult to articulate through text alone. Early methods, such as
DALL-E 2, introduced image prompting capabilities but often required extensive fine-tuning of the
entire model, which was computationally intensive and risked compromising the model’s original
text-to-image performance. More recent approaches, like ControlNet, have provided structural
control by conditioning on explicit visual features such as edges, depth maps, or poses. However,
these methods rely on external preprocessing and lack inherent semantic understanding of high-level
concepts, and often fine-grained features we want to retain in the generation process.

Introducing IP-Adapter: A Lightweight and Compatible Solution [P-Adapter [733] provides
a plug-and-play mechanism for adding image prompt conditioning to pretrained text-to-image
diffusion models—without any modification to the U-Net itself. Instead of forcing image and text
information through the same cross-attention heads—heads that were originally trained exclusively
on text—the adapter introduces a decoupled pathway: one cross-attention block for the text prompt
(frozen), and one for the image prompt (trainable), both attending to the same latent query features.
Imagine two expert interpreters:
* The original, frozen attention module is a linguist—precisely trained to interpret prompts like
“a smiling woman in a red dress.”
* The adapter is an art critic—skilled in extracting pose, style, texture, and fine-grained visual
cues from a reference image.
Both receive the same Query—a partial image undergoing denoising—and offer distinct “translations”
(attention outputs). The fusion of these two outputs forms a single signal that guides the next
denoising step.

1356 Chapter 20. Lecture 20: Generative Models Il

Why IP-Adapter Works Without Compromising the Base Model

1. Image Guidance via Decoupled Cross-Attention in U-Net Blocks The U-Net architecture
used in diffusion models contains multiple cross-attention blocks distributed along its downsampling
and upsampling paths. Each of these blocks incorporates text conditioning by computing attention
outputs using queries Q = ZW,, keys K = ¢;W;, and values V = ¢;W,, where Z is the U-Net’s internal
latent activation, ¢, is the text embedding, and the projection matrices W, Wy, W, are frozen. The
resulting attention output is:

7' = Attention(Q, c;Wy,c:W,).

IP-Adapter introduces a separate image-guided cross-attention module at each of these blocks. It
operates on the same Q = ZW, but uses independent, trainable projections W, W, to attend to image
features c¢;, computing:

7" = Attention(Q, c;W/, ciW,)).

This parallel path enables the adapter to extract and inject visual information—such as identity, style,
or layout—without modifying or interfering with the pretrained text-conditioning weights.

2. The Base U-Net Remains Fully Frozen All components of the pretrained U-Net remain
unchanged: convolutional layers, residual connections, normalization layers, and the text-based
attention weights (W, Wi, W,) are frozen across all attention blocks. The only trainable components
are the new image-specific projections W/, W, and the lightweight image embedding projection
head. Thus, the U-Net continues to perform noise prediction exactly as learned during pretraining.
IP-Adapter merely enriches the context it receives, without altering its core computation.

3. Safe Integration via Additive Fusion To preserve structural compatibility, the image-based
attention output Z” is computed to match the shape of the existing text-conditioned context Z'. The
two are fused through an additive mechanism:

Znew =2 +M1-Z",

where A € [0, 1] is a scalar hyperparameter set by the user before inference to control the influence of
image conditioning. This formulation ensures that guidance from the adapter is smoothly integrated.
When A = 0, the model exactly reverts to its original behavior.

4. Denoising Logic is Preserved by Construction Because the U-Net is entirely frozen, no part
of its denoising logic is overwritten or re-learned. During training, the adapter’s weights W/, W,
are optimized to produce Z” that complements Z’ in minimizing the standard denoising loss. If Z"”
introduces irrelevant or harmful information, the resulting loss penalizes this, driving the adapter
to reduce Z"—often to near-zero. Thus, the adapter either contributes helpful signal or defaults to
silence, ensuring denoising is never degraded.

5. A Offers Explicit, Safe, Inference-Time Control The scalar A is not a learned parameter but a
user-controlled value selected at inference time. It governs the contribution of Z” as follows:
e A = 0: the adapter is disabled; only Z’ is used.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1357

e A = 1: full image guidance is applied via Z".

* 0 < A < 1: image and text context are blended in proportion.
Because A scales the already trained Z”, it does not affect the underlying weights or the stability of
the generation. This allows users to modulate the visual influence without retraining, enabling safe
and interpretable control.

6. Summary: Why This Architecture is Effective and Non-Destructive [P-Adapter succeeds by
introducing guidance precisely where U-Net models expect external context—within their cross-
attention layers—while preserving all pretrained weights. Its effectiveness and safety arise from:

* Structural decoupling: text and image use separate attention paths.

* Frozen base model: all U-Net operations and weights remain unchanged.

* Additive fusion: Z” is integrated without overwriting Z’.

* Controlled training: the adapter is optimized to cooperate with a fixed base.

» User governance: A determines adapter influence at inference.
Together, these principles exemplify the design philosophy of parameter-efficient fine-tuning (PEFT):
adding new capabilities through small, modular changes, while ensuring reversibility, compatibility,
and robustness. The adapter does not interfere with the base model—it collaborates with it. As a
result, IP-Adapter provides powerful image guidance without compromising the original model’s
generality or denoising quality.

ControlNet vs. IP-Adapter: Structural vs. Semantic Conditioning

Both ControlNet and IP-Adapter extend text-to-image diffusion models by introducing additional
conditioning mechanisms. However, they differ fundamentally in the type of information they
interpret, how they integrate it into the U-Net, and the nature of control they exert over image
generation.

ControlNet: Explicit Structural Conditioning ControlNet is designed to enforce spatial precision
by conditioning the diffusion process on externally preprocessed structural maps.

» Input Modality: ControlNet operates on preprocessed control maps—such as Canny edges,
OpenPose skeletons, or monocular depth maps—which distill raw images into sparse, low-
dimensional spatial blueprints. These inputs encode layout and pose explicitly, providing a
geometric scaffold for the generation process.

* Mechanism: The architecture introduces a trainable replica of the U-Net’s encoder and middle
blocks. This auxiliary pathway processes the control map directly, acting as a specialized
feature transformer that maps the structured signal into U-Net-compatible latent modifications.
Its outputs are then fused into the original, frozen U-Net via zero-initialized 1 x 1 convolutions,
ensuring stable and gradual integration of the control signal during training.

ControlNet & Raw Images

* Using a Pretrained ControlNet with Raw Images:
A common misunderstanding is that ControlNet, since it generates full-resolution images,
should also accept raw images as control inputs. This confuses the output target of the diffusion
model with the conditioning input to the control branch. ControlNet’s trainable modules are
explicitly trained to interpret filtered, structured control maps—not raw photographs.

1358 Chapter 20. Lecture 20: Generative Models Il

These control maps are highly reduced representations that isolate spatial features: for instance,
an edge map contains only high-contrast contours, and a pose map contains sparse landmark
joints. ControlNet’s learned filters are attuned to these simple, low-frequency patterns. Feed-
ing in a raw image instead—rich in color, texture, illumination, and semantics—leads to
a representational mismatch. The control branch expects structured geometry but receives
entangled visual information instead. As a result, its activations become incoherent, and the
injected guidance to the U-Net is noisy, leading to degraded or uncontrolled outputs.

* Finetuning ControlNet on Raw Images (Without Adding an Encoder):
One might consider finetuning the existing ControlNet architecture using raw images as input
instead of preprocessed control maps. However, this approach presents serious limitations: the
control branch lacks the inductive bias or capacity to disentangle structure from raw pixels.
Unlike semantic guidance models like IP-Adapter, it has no image encoder (e.g., CLIP) to
process raw inputs into higher-level embeddings. It would be akin to retraining an architect to
extract floor plans directly from artistic photographs without specialized tools. In practice,
training such a system without architectural changes would likely result in poor convergence,
highly inconsistent structural alignment, and a loss of controllability.

* Training ControlNet with an Added Encoder:
To enable ControlNet to accept raw image inputs, one could prepend a pretrained visual
encoder—such as CLIP, ViT, or ResNet—to its control branch. This encoder would transform
the raw reference image into a semantic or structural embedding, which the control U-Net
could then learn to decode into modulation signals for the diffusion backbone. Conceptually,
this setup decomposes the control task into two stages:

1. Semantic or Structural Feature Extraction: The image encoder must extract useful
structural or compositional signals (e.g., pose, depth, edge cues) from high-dimensional
raw pixel data.

2. Conditional Feature Injection: The control U-Net must learn to map these features into
latent-space modulations that steer the frozen U-Net’s denoising trajectory in a controlled
manner.

While this is theoretically feasible, it is practically inefficient and undermines the original
design motivations of ControlNet. Even when using a powerful pretrained encoder (like CLIP),
the downstream control branch—a full copy of the U-Net’s encoder and middle blocks—must
still be trained to convert the encoder’s outputs into usable control signals. This results in
several drawbacks:

— Training Complexity: Despite freezing the encoder or initializing it from a strong
checkpoint, the overall learning task remains complex. The control branch must learn
to interpret potentially noisy or overcomplete embeddings from the encoder—without
the benefit of explicit structural supervision. This makes convergence slower and less
reliable than the current ControlNet approach, which uses clean, task-specific maps as
input.

— Data Demands: If the encoder is trained from scratch, the model becomes highly
data-hungry. But even with a pretrained encoder, effective end-to-end finetuning often
requires significant domain-specific tuning or adapter layers, especially if the encoder is
not already aligned with the generation task.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1359

— Architectural Inefficiency: The approach reintroduces the core inefficiency that IP-
Adapter was designed to avoid: duplicating large parts of the U-Net architecture for
every control type. In this case, a full U-Net control branch must still be trained and
retained—even though the raw image input could have been handled more efficiently via
lightweight cross-attention, as done in IP-Adapter.

— Loss of Interpretability and Control: Unlike preprocessed control maps (e.g., sketches,
poses), raw-image embeddings are not human-editable. By relying on implicit structure
extracted from raw inputs, this design sacrifices the explicit, modular control that makes
ControlNet so appealing for tasks requiring fine spatial guidance.

In summary, ControlNet delivers precise spatial control by learning from explicit structural maps
and avoids the burden of interpreting raw image complexity. Attempts to bypass preprocessing
either lead to poor results (when used as-is) or impose heavy learning burdens (if rearchitected).
This design tradeoff reflects ControlNet’s core strength: it is a structural controller, not a semantic
interpreter.

1360 Chapter 20. Lecture 20: Generative Models Il

The following figure showcases the versatility of IP-Adapter in integrating image prompts into
text-to-image diffusion models. The central image in each example serves as the image prompt,
providing semantic guidance for the generation process.
* Right Column: Demonstrates applications where the image prompt is combined with textual
prompts to achieve:
— Image Variation: Generating stylistic or thematic variations of the image prompt.
— Multimodal Generation: Merging semantic cues from both the image and text prompts
to create novel compositions.
— Inpainting: Filling in missing or altered regions of the image while preserving its overall
semantics.
* Left Column: Illustrates scenarios where the image prompt is used alongside structural
conditions (e.g., pose, depth maps) to enforce spatial constraints, enabling:
— Controllable Generation: Producing images that adhere to specific structural layouts
while maintaining the semantic essence of the image prompt.

T
¥
= § —_——aa
e Variation

: i e ol
. \\—\ G weuring sunglasses ﬁ} L s
- ﬁw . Lext Prompt '“/‘ b % U
B ..\&g_'/ LR

b 2

.

Ilmage Prompt

==

Anime Model Realistic Model Structural Controls Inpainting Realistic Model Anime Model

Figure 20.122: Applications of IP-Adapter with pretrained text-to-image diffusion models. The
central image in each example serves as the image prompt. Right Column: Showcases image
variation, multimodal generation, and inpainting guided by the image prompt. Left Column:
Displays controllable generation achieved by combining the image prompt with additional structural
conditions. Adapted from [733].

Key Architectural Components and Detailed Infegration

* Image Encoder and Global Embedding: The reference image is processed using a frozen
vision encoder—typically OpenCLIP-ViT-H/14—which outputs a single global embedding
vector eimg € RP. This vector captures high-level visual semantics such as identity, global
composition, and stylistic intent. Note that D (e.g., 1024 for ViT-H/14) typically differs from
the internal dimension d of the U-Net’s cross-attention layers (e.g., 768 in Stable Diffusion
1.5). Thus, a transformation is needed to bridge this dimensional gap.

* Projection to Visual Tokens (¢): Since the U-Net expects a sequence of N key/value tokens,
each of dimension d, IP-Adapter introduces a lightweight, trainable projection network:

¢: RP — RV
which maps the global image embedding ey, into a sequence of N visual tokens:

1, en] = @ (eimg), With ¢; € RY.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1361

— Why Use N > 1: Multiple visual tokens enable the model to attend separately to different
latent attributes of the reference image—such as pose, color palette, facial features, or
overall scene layout. This mirrors how textual prompts are split into subword tokens,
each contributing distinct semantic signals. A typical choice is N = 4, balancing diversity
of representation with computational efficiency.

— Structure of ¢: The projection network consists of a single linear layer followed by
Layer Normalization:

¢ (€img) = LayerNorm(Weimg), with Wy € RWV@xP

The result is reshaped into a matrix in RV*“. The LayerNorm is applied across token
dimensions and serves two key purposes:

1. Statistical stability: It normalizes the projected tokens, reducing internal covariate
shift and promoting smoother gradient flow during training.

2. Architectural compatibility: It aligns the statistics of the visual tokens with those
of the text encoder, which are also typically normalized. This facilitates better
integration into the pretrained U-Net’s attention layers, which expect normalized
key/value inputs.

« Parallel Cross-Attention Layers: Let Z € RE*¢ denote the input query features from an
intermediate U-Net block, and let ¢; € R”*? be the tokenized text embeddings from the frozen
CLIP text encoder. The original cross-attention mechanism in the pretrained U-Net computes:

KT
7' = Attention(Q, K, V) = Softmax <Q > Vv,

Vd

where
Q:Zan K:Ckaa V:cIWV7

and W, W, W, € R?*4 are the frozen projection matrices.

To introduce visual conditioning, IP-Adapter appends a decoupled image-specific attention
stream using the same queries Q, but separate keys and values derived from the projected
image token sequence c; € RV*¢:

K/T
S AttentiOH(QaK/’ V/) = Softmax <Q > V”
Vd

where
K =cW, V' =W,

and W/, W, € R4*? are new trainable projection matrices. These are typically initialized from
W, and W, to accelerate training convergence.

1362 Chapter 20. Lecture 20: Generative Models Il

* Fusion Strategy: The outputs of the text-guided and image-guided attention modules are
combined additively:

Znew = Z,“‘)L 'ZNa

where A € R is a tunable scalar controlling the influence of the image prompt. At inference
time, adjusting A allows for fine-grained control over the visual guidance: A = 1 yields full
conditioning on the image prompt, while A = 0 recovers the original text-only generation
behavior.

Decoupled Cross-Attention

Image 1‘. Cross Cross
Encoder Attention Attention
— —
Frozen
modules
X¢ Denoising U-Net Xi-1 ‘
Trainable
= Text Features maodules
A girl with sunglasses ol
A ; —
Encoder

Figure 20.123: IP-Adapter Architecture with Decoupled Cross-Attention. A reference image is
encoded into a global feature vector, projected into visual tokens via ¢, and used to form parallel
attention pathways at each U-Net cross-attention site. These visual branches operate alongside frozen
text-conditioned paths, and their outputs are fused via addition. Adapted from [733].

Versatility and Generalization without Fine-Tuning A key strength of the IP-Adapter archi-
tecture lies in its remarkable generalization and composability. Once trained, the adapter can be
reused across a wide variety of downstream tasks without requiring any task-specific fine-tuning. It
remains compatible with community models built upon the same base U-Net backbone (e.g., Stable
Diffusion v1.5) and can be combined seamlessly with structured conditioning mechanisms such as
ControlNet [773].

This flexibility is enabled by IP-Adapter’s non-invasive, modular design. Its decoupled attention
layers are appended orthogonally to the pretrained U-Net, and its lightweight projection network
transforms the reference image into a short sequence of visual tokens. These tokens serve as semantic
key—value embeddings that are injected into the added image-specific attention stream. Because the
architecture avoids modifying the backbone U-Net or interfering with the frozen text encoder, it
remains interoperable with other conditioning systems that operate on different modalities.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1363

For example, when paired with ControlNet, the model can synthesize images that respect both high-
level semantic intent (from the image prompt) and low-level spatial structure (from edge maps, depth,
or pose). The semantic tokens from IP-Adapter modulate subject identity, style, and appearance,
while the structured control map—processed through a parallel ControlNet—anchors the generation
to a target layout. These influences act concurrently: one guiding what should appear, the other
guiding how and where it should appear.

Image prompr Condition Lmzge promp: Lmnage prowmpt Cordition

Figure 20.124: Multimodal Conditioning with IP-Adapter and ControlNet. Adapted from [733],
this figure showcases identity-preserving generation under explicit structural guidance. Each row
pairs a visual prompt (left) with a structured control map (right), such as edge maps or pose
skeletons, processed by ControlNet (first two rows)/T2I-Adapter (last row). The trained IP-Adapter
injects visual semantics via decoupled cross-attention, while ControlNet/T2I-Adapter enforces the
geometric layout. No fine-tuning of the adapter is required for such multimodal compositional
synthesis, demonstrating its generalization across tasks and conditioning modalities.

As illustrated in Figure 20.124, this compositional capability allows users to generate coherent,
high-fidelity outputs where appearance and structure are jointly controlled. The adapter generalizes
across visual styles, domains, and control inputs with no need to retrain for specific downstream
tasks. This makes it a practical and powerful tool in real-world creative workflows, where flexibility,
reuse, and modularity are critical.

1364 Chapter 20. Lecture 20: Generative Models Il

Comparative Evaluation Across Structural Control Tasks
To further validate its adaptability and effectiveness, IP-Adapter was comprehensively benchmarked
against a wide range of alternative methods across multiple structural generation tasks. These
competing approaches span three major categories:
* Trained-from-scratch models, such as Open unCLIP [508], Kandinsky-2.1 [531], and
Versatile Diffusion [717], which are optimized end-to-end for joint image-text alignment.
* Fine-tuned models, including SD Image Variations [587] and SD unCLIP [588], which adapt
pretrained diffusion models for image prompt inputs via extensive retraining.
* Adapter-based solutions, such as the Style Adapter of T2I-Adapter [442], Uni-ControlNet’s
global controller [792], SeeCoder [716], and variants of ControlNet [773] (e.g., ControlNet-
Reference and ControlNet-Shuffle), which inject image conditioning in a modular fashion.

Unlike methods that require task-specific retraining or rely on dedicated control structures for
each condition type, IP-Adapter achieves competitive or superior results using a single, unified
architecture. It supports a wide range of conditioning tasks—such as edge-to-image translation,
sketch-to-style synthesis, and pose-guided generation—without retraining for each setup.

ContrelNet ControlNet IP-Adapter
Shuffle Reference only {ours)

Tmage prompt Candition TUni-ContraTNet RecCoder

Figure 20.125: Comparison of IP-Adapter with Other Structural Conditioning Methods.
Adapted from [733], this figure compares IP-Adapter against competing approaches across diverse
control tasks. Baselines include SeeCoder [716], T2I-Adapter (Style) [442], Uni-ControlNet [792],
ControlNet-Shuffle and ControlNet-Reference [773]. IP-Adapter demonstrates high-quality syn-
thesis across edge, sketch, and pose conditioning, despite using a fixed image encoder and shared
attention module across all tasks. Notably, it requires no task-specific fine-tuning—unlike some of
the alternatives shown—highlighting its efficiency and generalization.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1365

Image-to-Image Translation, Inpainting, and Multimodal Prompting

IP-Adapter’s inherent strength lies in its remarkable versatility: it enables a single architecture with
fixed parameters to adapt seamlessly across diverse image generation paradigms [733]. This includes
high-quality image-to-image translation, image inpainting, and multimodal prompting, where both
image and text jointly guide the generation process.

For image-to-image translation, diffusion pipelines often adopt strategies like SDEdit [422], which
leverage stochastic differential equations to perform controlled image editing. Instead of generating
an image from pure noise, SDEdit begins with a real image and adds a calibrated amount of noise to
partially erase its content. The resulting noised image is then denoised under new conditions—such
as a modified prompt or altered guidance signals—enabling flexible and constrained editing.

Within this framework, IP-Adapter contributes as a semantic controller. The image prompt is passed
through a frozen CLIP encoder and a projection module to extract a dense embedding representing the
identity, style, and global appearance of the subject. These embeddings are injected into the U-Net via
dedicated cross-attention layers, enriching the denoising trajectory with semantic cues. Crucially, the
structural integrity of the original input is preserved, since the spatial information is derived directly
from the partially noised source image, not from external conditioning modules like ControlNet.
This allows IP-Adapter to achieve high-fidelity transformations—preserving fine-grained appearance
details.

image prompt
image prompt

inpainting

Figure 20.126: Image-to-Image Translation and Inpainting with IP-Adapter. Adapted from [733],
this figure illustrates IP-Adapter’s ability to preserve semantic fidelity (e.g., style, identity) while
enabling controllable edits. In these examples, the structure is inferred directly from the source
image or masked regions, demonstrating IP-Adapter’s capability in settings without explicit structural
control modules like ControlNet. However, IP-Adapter remains fully compatible with such modules
when needed for more complex conditioning.

For inpainting, a related mechanism is used: a portion of the input image is masked and replaced with
noise, and the diffusion model fills in the missing region during the denoising process. IP-Adapter
enhances this process by injecting semantic guidance from the reference image prompt, ensuring
that the inpainted content remains faithful to the original subject’s identity, lighting conditions, and
stylistic attributes. This is particularly useful in creative tasks such as occlusion removal, selective
editing, or visual reimagination, where both consistency and controllability are paramount.

1366 Chapter 20. Lecture 20: Generative Models Il

The same IP-Adapter architecture also supports multimodal prompting, where both an image and a
text prompt jointly influence generation. This enables fine-grained and compositional control: the
image prompt preserves visual identity, style, and structural cues, while the text prompt modulates
high-level semantics—such as adding new attributes, changing scene context, or modifying object
categories. Unlike fully fine-tuned image prompt models, which often lose their text-to-image
capability, IP-Adapter retains both modalities and allows users to balance their influence via the
inference-time weight A.

Imuge prompr 0 texr wenring & top hat ared horss Image prompt no et Blue hair riding a horse

—

Figure 20.127: Multimodal Generation with IP-Adapter (Image + Text). Adapted from [733],
this figure illustrates how IP-Adapter enables expressive generation by combining image and text
prompts. The top row shows an image of a horse used as the visual prompt. Subsequent generations
introduce text prompts like “wearing a top hat” or “a red horse” to modify attributes without altering
the base identity. Further examples show compositional edits: a red car’s scene is changed to “in
snowy winter”, or its appearance is modified to “a green car” using simple text. The adapter enables
these edits while preserving fidelity to the original image prompt—without fine-tuning.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1367

The synergy between image and text inputs makes IP-Adapter highly suitable for personalized
and controllable generation scenarios. As we will now see, IP-Adapter also outperforms several
multimodal baselines in this setting.

Santral Ner 04 v TP-Adlapice
et gt wessalile Dillusier. BLIE DifTsin Uai-Cantzal et ol 4 !

Figure 20.128: Comparison with other multimodal prompting methods — adapted from the IP-
Adapter paper [733]. IP-Adapter outperforms BLIP-Diffusion, Uni-ControlNet, and other baselines
in compositional generation with image + text prompts, demonstrating strong identity preservation
and prompt compliance.

Figure 20.128 provides qualitative comparisons with competing methods for multimodal image
generation. The results show that IP-Adapter produces images that better preserve identity, maintain
high visual quality, and more faithfully follow both text and image prompts compared to BLIP-
Diffusion, T2I-Adapter, and Uni-ControlNet.

In the next part, we explore ablation studies that demonstrate how IP-Adapter’s core architectural
choices—including decoupled attention and feature granularity—affect the quality and controllability
of generations.

Ablation: Validating Architectural Design

To assess the effectiveness of its key architectural decisions, the IP-Adapter paper includes a set of
controlled ablation experiments. These studies highlight the contribution of the decoupled cross-
attention mechanism and investigate the trade-offs between different feature representations used in
the adapter.

Baseline Comparison: Simple Adapter without Decoupling

A natural baseline is to compare IP-Adapter against a simpler variant that injects image features
using the existing text cross-attention layers—without the decoupled attention pathway. While this
approach simplifies integration, it suffers from feature entanglement and capacity conflict between
modalities.

1368 Chapter 20. Lecture 20: Generative Models Il

Tmage prompt. s

IP-Adapler

Simple adapler

Figure 20.129: Comparison with a simple adapter lacking decoupled cross-attention — adapted
from the IP-Adapter paper [733]. While the simple adapter fails to preserve fine-grained appearance
and identity attributes, IP-Adapter produces accurate and semantically aligned generations by
decoupling image attention from textual conditioning.

As shown in Figure 20.129, the simple adapter baseline often struggles to preserve subject identity
and generates content that deviates from the image prompt. In contrast, IP-Adapter achieves high
alignment with the source image, demonstrating the necessity of modality separation for accurate
multimodal fusion.

Granularity of Image Representations: Global vs. Fine-Grained Tokens

A key design decision in IP-Adapter is the choice of granularity for representing the image prompt.
By default, the adapter extracts a single global CLIP embedding from the reference image and
projects it into a small sequence of visual tokens (typically N = 4). These tokens are then injected
into the U-Net’s cross-attention layers to guide generation. This setup provides a lightweight and
expressive way to convey high-level semantics—such as identity, style, and layout—while remaining
efficient and generalizable.

To investigate whether more detailed spatial alignment could be achieved, the IP-Adapter authors
explored an alternative design that uses fine-grained visual tokens. Instead of relying solely on
the global embedding, this variant extracts grid features from the penultimate layer of the frozen
CLIP vision encoder. These grid features retain localized spatial information and are processed by a
lightweight transformer query network, which learns to distill them into a sequence of 16 learnable
visual tokens. These finer-grained tokens are then used in the same cross-attention mechanism,
replacing the global-token projection.

Experimental Setup and Trade-offs: This variant was trained on the same dataset and evaluated
under identical generation settings to allow fair comparison with the global-token version. The
results, shown in the following figure, highlight a clear trade-off. The fine-grained configuration
improves consistency with the reference image, particularly in background structures and subtle
textures. However, it also tends to constrain the generative process more tightly, leading to reduced
diversity across output samples. In contrast, the default global-token design offers a strong balance
between semantic fidelity and output variation, making it better suited for general-purpose use.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1369

Importantly, this limitation in diversity with fine-grained tokens can often be mitigated by adding
complementary conditioning—such as text prompts or ControlNet structural maps—which help
guide the generative process while restoring flexibility. In practice, the global-token configuration
remains the preferred choice for most applications due to its simplicity, efficiency, and broader
compatibility with multimodal workflows.

additional Wearing sunglisses readie o boak on e
condition dita purden Bwach

image prompt

[P-Adapter

IP-Adapter
wilh line-grained
[eature

Figure 20.130: Effect of Fine-Grained Image Tokens on Generation. Adapted from [733], this
figure compares IP-Adapter using global visual tokens (mid row) versus fine-grained visual tokens
(last row). While the fine-grained variant improves alignment with local texture and background
details, it can reduce variation across samples due to stronger conditioning. The global-token version
provides more generative flexibility while maintaining high semantic fidelity.

These ablation studies confirm that both the decoupled architecture and the choice of token gran-
ularity play critical roles in the model’s performance. The modularity of IP-Adapter allows these
components to be tailored depending on the intended use—whether for faithful recreation, stylized
adaptation, or diverse sampling.

1370 Chapter 20. Lecture 20: Generative Models Il

Looking Forward

A core motivation behind /P-Adapter was to disentangle heterogeneous modalities—specifically, to
inject visual semantics directly via image embeddings rather than forcing them through the linguistic
bottleneck of text encoders. This decoupling resolved key limitations in early diffusion pipelines,
where all conditioning—even image-derived information—had to pass through shared cross-attention
layers, often degrading fidelity and limiting semantic expressiveness. By introducing dedicated
visual pathways that operate alongside the frozen U-Net, IP-Adapter preserved both the semantic
richness of image prompts and the integrity of pre-trained text-to-image capabilities [733].

While this modular design proved highly effective for visual prompting, it was never meant to
support fully compositional control across multiple modalities. As use cases grow more com-
plex—demanding joint integration of reference appearance, structural layout, and descriptive lan-
guage—the limitations of modularity become increasingly evident. Combining multiple modules
(e.g., IP-Adapter for visual identity, ControlNet for edges or pose, and a separate module for text)
introduces architectural overhead, modality-specific constraints, and potential conflicts between in-
dependently routed guidance signals. Each modality is still handled in isolation, with no mechanism
for learning their mutual interactions or resolving contradictions.

This has sparked a broader shift toward unified conditioning frameworks—architectures designed
to ingest and fuse all input modalities within a single attention-driven latent space. Rather than
bolting on more specialized adapters, these frameworks are trained end-to-end on mixed-modality
sequences, allowing them to learn how different types of guidance interact, reinforce, or compete.

A compelling example of this conceptual leap is Transfusion [809], which we examine next.
Whereas IP-Adapter introduces decoupled cross-attention to avoid modality entanglement, Trans-
fusion instead embraces entanglement through a shared modeling framework. It trains a single
transformer to jointly model discrete text tokens and continuous image patches as part of a unified se-
quence, using shared self-attention and feedforward layers across modalities. This enables the model
to perform both language modeling and diffusion denoising within the same architecture—dissolving
the boundaries that modular adapters merely isolate.

By learning to align and synthesize multimodal signals within a single generative process, Transfusion
opens the door to richer, more coherent compositionality and seamless modality interaction—without
the overhead of managing separate modules. It represents the natural evolution of multimodal
generation: not just retrofitting existing systems with external guidance, but rethinking the generative
architecture itself from the ground up.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1371

Mofivation and Overview

Generative models have reached state-of-the-art performance in individual modalities: large language
models (LLMs) like GPT excel at producing coherent and contextually rich text, while diffusion-
based models such as Stable Diffusion generate highly realistic images. However, building a unified
generative system capable of seamlessly reasoning across both text and image modalities remains a
significant challenge.

Existing approaches to multimodal generation typically fall into one of two categories:

* Discrete Tokenization of Images: Approaches like DALL-E [509] or Chameleon [398]
quantize images into discrete visual tokens (e.g., via VQ-VAEs), allowing them to be modeled
autoregressively like text. While effective, this discretization introduces information loss and
reduces the fidelity of visual synthesis.

* Modular Pipelines: Methods such as IP-Adapter [733] or ControlNet [773] augment existing
text-to-image diffusion models with auxiliary components that inject conditioning signals.
While flexible, these grafted architectures often lack global coherence, require per-modality
customization, and struggle with joint, end-to-end reasoning.

Such designs are often brittle, especially when dealing with interleaved inputs (e.g., text-image-text)
or outputs requiring fine cross-modal consistency.

Transfusion [809] overcomes these limitations with a clean and elegant solution: a single, modality-
agnostic transformer trained end-to-end to model mixed sequences of text and image content. Rather
than building separate encoders or injecting one modality into another, Transfusion unifies both
within a shared token stream and a shared network backbone. It achieves this via two key design
principles:

* Shared Transformer Backbone: A single transformer with shared weights processes both
text tokens and continuous image patch embeddings. This facilitates uniform attention over
all elements in the sequence and supports tight cross-modal interactions.

* Dual Training Objectives: The model is jointly trained with a language modeling loss (for
text) and a denoising diffusion loss (for image patches). The training procedure teaches the
model to predict the next text token and remove noise from corrupted image tokens—both
using the same architecture.

This unified formulation enables Transfusion to support a wide range of input-output formats with a
single model:

* Text — Image: Text-to-image generation.

* Image — Text: Image captioning and visual understanding.

* Mixed — Mixed: One of the most compelling strengths of Transfusion is its ability to
process and generate rich interleaved sequences of text and images. These tasks involve both
multimodal inputs and multimodal outputs—handled in a unified transformer pipeline. Such
capabilities are essential for:

— Visual storytelling: Given a sequence of text snippets—such as narrative sentences,
scene descriptions, or story fragments—the model generates a coherent visual story by
producing aligned image segments after each text block. Conversely, it can also generate
interleaved text commentary or narrative lines from a sequence of input images.

1372 Chapter 20. Lecture 20: Generative Models Il

For example:

"A boy opens a mysterious book." <BOI>image_Il <EQI>

"A portal begins to glow on the wall." <BOI>image_2 <E0I>

"He steps through, entering a dreamlike jungle." <BOI>image_3
<EQI>

Each element is contextually grounded in prior ones, and the sequence evolves in both
text and image domains, preserving temporal and semantic coherence.

— Multimodal dialog: The model supports dynamic interactions where inputs and outputs
alternate between text and images. For instance, a user may submit an image followed
by a question, and the model replies with a mix of visual and textual responses—such as
diagrams, sketches, or annotated outputs. This enables applications in tutoring, grounded
question answering, and multimodal assistants.

— Text-guided image editing and inpainting: Given an input image and a text instruction,
the model directly generates a modified image that reflects the desired edit, without
requiring separate control modules or manually designed conditioning maps:

"Replace the red car with a bicycle." <BOI> edited_image <EOI>

These scenarios are challenging for traditional diffusion models, and some scenarios are chal-
lenging to even adapter-augmented architectures (e.g., ControlNet [773], IP-Adapter [733]).
Such modular systems often lack the flexibility to process arbitrary multimodal sequences or
to maintain cross-modal consistency across multiple alternating steps of generation.

In contrast, Transfusion achieves this by treating text tokens and continuous image tokens
as part of the same autoregressive token sequence. The model does not differentiate between
modalities at the architectural level—only special delimiter tokens (e.g., <BOI> (Beginning
of Image), <EOI> (End of Image)) indicate modality boundaries. All tokens are processed
uniformly using shared transformer layers, and multimodal coherence is learned end-to-end
via joint training with language modeling and diffusion objectives.

This design enables the model to naturally reason over long multimodal contexts, propagate
dependencies across modality transitions, and generate semantically aligned outputs that
respect both linguistic structure and visual consistency.

‘cuteH cat H : ”<BOI>]“” ' - E_, I!-'| [WhatHcoIorH is H its Hnose” ? ‘
i s
Transformer
rr+ 1ttt 1Tt rr
A cute cat . <BOI> l - !{' F <EQI= What color s its nose

Figure 20.131: High-level architecture of Transfusion — adapted from the Transfusion paper [809].
A single transformer handles interleaved sequences of text tokens and continuous image patch
embeddings. During training, text tokens are supervised using a next-token prediction loss, while
image tokens are optimized with a denoising diffusion loss. Modality delimiters like <BOI> and
<EOI> enable the model to seamlessly reason across modalities.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1373

Architecture and Training Pipeline of Transfusion

To understand the unified nature of Transfusion, we now examine its complete generative pipeline—starting
from raw image and text inputs, proceeding through tokenization and transformer processing, and
culminating in joint modality-specific losses. This breakdown serves as the foundation for later
sections covering generation and editing capabilities.

Part 1: Image Tokenization Pipeline To enable seamless multimodal generation, Transfusion
converts images into continuous, transformer-compatible tokens that can be interleaved with discrete
text tokens. This process preserves the spatial structure and rich visual semantics of the input while
allowing joint processing by a single transformer.
« Spatial Encoding via Convolutional VAE: The input image x € R7*W>3 is passed through
a pretrained convolutional Variational Autoencoder (VAE) [292], which encodes it into a
lower-resolution latent feature map. The encoder is composed of stacked convolutional layers
that downsample the image by a factor of s, producing two tensors:

u(x),logo?(x) e RMWXIwith H'=H/s,W' =W /s

Each spatial location (i, j) corresponds to a receptive field in the original image and defines a
diagonal Gaussian distribution:

2
q(zij | x) =N (2| Wij,07;1a)

During VAE training, latent samples are drawn using the reparameterization trick:
Zij=Mij+0ij-&j &j~A(0,1a)

The decoder then reconstructs the original image £ ~ x. The loss combines a reconstruction
objective with a KL divergence regularizer to promote a smooth latent space:

LAk = By (o) (1€ =[] + B -KL(q(z | x) || p(2))

During downstream use (e.g., tokenization in Transfusion), the VAE encoder is kept frozen
and the sampling step is disabled. Instead, the deterministic mean z := u(x) € RH XW'xd jg
used as the spatially-structured latent representation. Each vector z; ; € R? serves as a dense,
localized encoding of a specific region in the input image.

* Patching Strategy for Tokenization: The latent tensor z is then transformed into a 1D
sequence of patch-level embeddings using one of two methods:

— Linear Projection: The latent map is divided into non-overlapping k x k spatial blocks,
each containing k> adjacent vectors Zij € R¢. Each block is flattened into a vector of
shape k2 - d, then passed through a linear layer that compresses it back to dimension
d. This method provides a direct, local embedding of visual content and is easy to
implement, but it lacks contextual integration beyond each patch.

— U-Net-style Downsampling (Preferred): Alternatively, Transfusion applies a shallow
convolutional encoder (often derived from the U-Net stem) to the full latent tensor
z. This module downsamples the spatial dimensions further (e.g., H' — H), enabling
each resulting token to summarize information over a broader receptive field. These
richer embeddings are particularly beneficial for complex generation tasks that require
high-level reasoning or long-range visual consistency.

1374 Chapter 20. Lecture 20: Generative Models Il

+ Token Sequence Construction: The resulting patch embeddings {z1,...,zy} C R form a
continuous image token sequence. These are either appended to or interleaved with discrete
text tokens to form a unified input stream for the transformer. Special delimiter tokens (e.g.,
<BOI>, <EQI>) are inserted to mark modality boundaries, but the transformer processes all
tokens jointly, enabling fluent multimodal generation and reasoning.

¥

T

VAE Decoder

Linear or v U-Net Up
t

Transformer

Linear or Q U-Net Down
Noising
VAE Encoder

Figure 20.132: Image tokenization in Transfusion — adapted from the Transfusion paper [809]. A
pretrained VAE encodes each image into a spatial latent map, which is then converted into patch
tokens using either a shallow linear projection or a few downsampling blocks of a small U-Net.
These patches are inserted into the transformer sequence between special boundary tokens <BOI>
and <EQI>, enabling the model to process image and text jointly in a unified token stream.

Part 2: Text Tokenization Pipeline The text prompt .7 is first converted into a sequence of
discrete tokens using a standard tokenizer, then embedded into the same feature space as the image
tokens:

* A Byte-Pair Encoding (BPE) tokenizer transforms the input string into a token sequence:

T = A{wi,wa, oo owmt, Wi € Yext
» Each token w; is mapped to a continuous vector e¢; € R? using a learned embedding matrix
Eiext € RlYelxd;
e; = Erext [Wi]

* This produces the text embedding sequence:

Mxd
Xtext — [617627"'76M] eR

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1375

Part 3: Multimodal Sequence Construction After obtaining both the image token sequence
Ximg = [21,22,-..,2N] € RV*4 from Part 1 and the text token embeddings Xex; € R¥*¢ from Part 2,
Transfusion constructs a unified input sequence for the transformer.

* Two special learnable embeddings are added to delimit the image region:

d
e<gor>;, e<eor> € R

* The final multimodal input to the transformer is the concatenation:

_ M+N+2)xd
Xinput = [6’1, e 7eMae<BOI>azla---aZNae<ECII>] € R)

* Optional position encodings or segment embeddings may be added to indicate token roles and
preserve modality structure.

Part 4: Transformer Processing with Hybrid Attention A single transformer autoregressively
processes the multimodal sequence Xjypu. To balance generation constraints with spatial reasoning,
Transfusion adopts a hybrid attention mask:
* Causal attention is applied globally, ensuring that each token can only attend to previous
tokens in the sequence.
* Bidirectional attention is enabled locally within the image region delimited by <BOI> and
<EQI>, allowing all image tokens to attend to one another.
This hybrid masking strategy preserves autoregressive generation for the full sequence while enabling
richer spatial reasoning among image tokens—improving sample fidelity and multimodal alignment.

A cute cat <801>l.m£ l-f<EOI>What

Figure 20.133: Hybrid attention with intra-image bidirectional conditioning — adapted from the
Transfusion paper [809]. While the overall sequence obeys a causal attention mask (for autoregressive
generation), Transfusion relaxes this constraint within image segments. Patches from the same
image can attend to each other bidirectionally, allowing the model to better capture local visual
dependencies without violating the causal structure needed for autoregressive inference.

1376 Chapter 20. Lecture 20: Generative Models Il

Part 5: Training Objectives and Loss Functions Transfusion jointly optimizes a unified trans-
former model over both text and image inputs. The training procedure integrates two complementary
objectives—autoregressive language modeling and latent-space denoising—applied respectively to
text tokens and VAE image patches. These objectives are optimized simultaneously using shared
model parameters, with losses computed over the appropriate modality regions in the input sequence.

» Text Modeling Loss Ziex: For positions in the sequence corresponding to text tokens
{wi,...,wyu}, the model is trained to predict each next token w;;| based on the preceding
context w<;, using standard autoregressive language modeling.

M
Lrext = — Y logp(wir1 | wi)
i=1
The prediction is compared against the ground truth token from the training data, and the loss
is computed as cross-entropy between the predicted distribution and the true next-token index.
This formulation ensures that the model learns to generate fluent, contextually appropriate text
conditioned on both prior tokens and (when available) image content.

* Image Denoising Loss Zyifr: For image regions—i.e., the continuous sequence of tokens
z0 € RV*4 obtained by encoding and optionally downsampling the image with a pretrained
VAE—the model is trained using a DDPM-style denoising objective.

During training, a timestep ¢ ~ {1,...,T} is sampled, and Gaussian noise is added to each

image token z(()]) € RY using the forward diffusion process:

W =Va N +VT=ael), V)~ (0,1

Here, & is a cumulative noise schedule, and £/) is the sampled noise used to corrupt patch j.
The model is trained to predict €V/) from z,(") and the timestep ¢, minimizing the mean squared

error over all patches:

Ziitt = Er 76

VE [0 -]

This loss operates entirely in latent space; no decoding to pixels is performed during training.
The ground truth for each position is the actual noise added in the forward process. The use of
VAE latents enables spatial preservation and compact representation, making the diffusion
process more efficient than pixel-level alternatives.

¢ Total Training Loss %1z The overall training objective combines both modality-specific
terms into a weighted sum:

ZLrotal = Mext - Liext + Aditr - Lt

where A, Adgiff € R>q are scalar coefficients that control the relative contribution of text
modeling and image denoising to the final loss. In practice, the original Transfusion paper
reports using Agir = 5, giving higher weight to the image denoising component due to its
higher dynamic range and training complexity.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1377

Part 6: Key Advantages of the Training Design

* Full parameter sharing: No modality-specific blocks; language and vision share all layers.
End-to-end joint training: All gradients flow through shared transformer, improving align-
ment.

No discrete quantization: Image patches remain continuous, avoiding codebook collapse or
token artifacts.

Multimodal generation in a single pass: A single forward pass can generate image and text
jointly.

1378 Chapter 20. Lecture 20: Generative Models Il

Empirical Results and Qualitative Examples

Showcase: High-Quality Multi-Modal Generation One of the most compelling outcomes
of the Transfusion model is its ability to generate high-fidelity, semantically grounded images
from a wide range of compositional text prompts. Trained with 7B parameters on a dataset of 2
trillion multimodal tokens—including both text and images—the model produces coherent and
visually expressive outputs that exhibit stylistic nuance, spatial awareness, and fine-grained linguistic
alignment.

- .
TI“E:IHS' ‘usion

H

Ll

4

[—

A cloud in the shape of
two bunnies playing with
a ball. The ball is made of
clouds too.

“Transfusion" is written
on the blackboard.

A blue jay standing on a
large basket of rainbow
macarons.

A close up photo of a hu-
man hand, hand model.
High quality

the word ‘START’ on a
blue t-shirt

A Dutch still life of an
arrangement of tulips in
a fluted vase. The light-
ing is subtle, casting gen-
tle highlights on the flow-
ers and emphasizing their
delicate details and natu-
ral beauty.

A wall in a royal castle.
There are two paintings
on the wall. The one on
the left a detailed oil paint-
ing of the royal raccoon
king. The one on the right
a detailed oil painting of
the royal raccoon queen.

Three spheres made of
glass falling into ocean.
Water is splashing. Sun
is setting.

A kangaroo holding a
beer, wearing ski goggles
and passionately singing
silly songs.

an egg and a bird made of
wheat bread

A transparent sculpture of A chromeplated cat sculp-

a duck made out of glass. ture placed on a Persian

rug.

Figure 20.134: Examples generated by Transfusion — adapted from [809]. Each image was
generated by a 7B-parameter model trained from scratch on 2T multimodal tokens. Prompts range
from artistic to scene-specific, such as “A chromeplated cat sculpture placed on a Persian rug” and “A
wall in a royal castle. There are two paintings on the wall. The one on the left a detailed oil painting
of the royal raccoon king. The one on the right a detailed oil painting of the royal raccoon queen”.
These results highlight Transfusion’s ability to interpret rich, compositional text and produce visually
grounded responses.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1379

These qualitative results demonstrate not only stylistic diversity but also compositional understand-
ing—a hallmark of strong multimodal reasoning. Unlike U-NET based diffusion architectures that
rely on external encoders or modality-specific adapters, Transfusion achieves this performance using
a single, unified transformer trained from scratch, without separate alignment stages or handcrafted
prompt tuning.

Zero-Shot Image Editing via Fine-Tuning Beyond text-to-image synthesis, Transfusion also
generalizes to the task of image editing through lightweight fine-tuning. A version of the 7B model
was adapted on a dataset of only 8,000 image—text pairs, each consisting of an input image and a
natural-language instruction describing a desired change (e.g., “Remove the cupcake on the plate” or
“Change the tomato on the right to a green olive”).

Change this to cartoon style.

Figure 20.135: Image editing examples with Transfusion — adapted from [809]. After fine-tuning
on just 8k paired text—edit examples, the model performs successful localized edits such as object
removal, replacement, and attribute modification. Notably, global image coherence and realism are
preserved despite minimal fine-tuning and no explicit editing modules.

This result is notable: without requiring any architectural changes—such as inpainting masks or
diffusion-specific guidance—the model learns to apply textual edit instructions directly. Training is
end-to-end, and the only modification is through supervised adaptation on the editing dataset. This
demonstrates the expressive capacity of the underlying sequence model and suggests extensibility to
broader tasks such as viewpoint manipulation, object insertion, or multimodal storytelling.

1380 Chapter 20. Lecture 20: Generative Models Il

Ablation Studies and Experimental Insights

To evaluate the core design choices of Transfusion [798], the authors conduct extensive ablations
over attention masking, patch size, encoder/decoder type, noise scheduling and model scale. Both
vision and language benchmarks are reported with the metrics below.

Interpreting Evaluation Metrics

* PPL (Perplexity) |: Measures uncertainty in language modeling. Lower values correspond to
better next-token prediction performance.

* Accuracy (Acc) T: Multiple-choice question answering accuracy, especially on LLaMA-style
QA tasks.

* CIDEr 1: A captioning metric measuring consensus with human-written references, widely
used in MS-COCO.

* FID (Fréchet Inception Distance) |: Evaluates the visual realism of generated images. Lower
is better. See Section 20.5.2 for a detailed explanation.

* CLIP Score 1: Measures semantic alignment between generated image and caption using
pretrained CLIP embeddings [498].

Attention Masking: Causal vs. Bidirectional Bidirectional self-attention applied within each
image notably improves FID for linear encoders (61.3 — 20.3); U-Nets also benefit, though to a
lesser extent.

Table 20.7: Effect of attention masking in 0.76 B Transfusion models (2 x 2 patches). Adapted
from [798].

Encoder/Dec. Attention C4 PPL Wiki PPL Acc CIDEr FID CLIP

Linear Causal 10.4 6.0 514 127 613 23.0
Linear Bidirectional 104 6.0 51.7 160 203 24.0
U-Net Causal 10.3 5.9 520 233 168 253
U-Net Bidirectional 10.3 5.9 519 254 167 254

Patch Size Variations Larger patches reduce token length and compute, but can hurt performance.
U-Nets are more robust than linear encoders.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1381

Table 20.8: Effect of patch size in 0.76 B Transfusion models. Bold=best overall. Adapted from
[798].

Encoder/Dec. Patch C4PPL Wiki PPL Acc CIDEr FID CLIP
Linear 1 x1(1024) 10.3 59 522 120 21.0 240
Linear 2 x 2 (256) 10.4 6.0 51.7 160 203 240
Linear 4 x4 (64) 10.9 6.3 498 143 256 226
Linear 8 x 8 (16) 11.7 6.9 477 11.3 435 189
U-Net 2 x2(256) 10.3 5.9 519 254 167 254
U-Net 4x4(64) 10.7 6.2 50.7 299 16.0 25.7
U-Net 8 x 8 (16) 11.4 6.6 492 295 161 252

Encoding Architecture: Linear vs. U-Net U-Nets outperform linear encoders across model sizes
with only a modest parameter increase.

Table 20.9: Linear vs. U-Net encoders (0.76 B and 7.0 B). Adapted from [798].

Params Encoder C4 PPL Wiki PPL Acc CIDEr FID CLIP

0.76 B Linear 10.4 6.0 517 16,0 203 24.0
U-Net 10.3 59 519 254 167 254
7.0 B Linear 7.7 4.3 615 272 18.6 259
U-Net 7.8 4.3 61.1 33.7 16.0 26.5

Noise Scheduling in Image-to-Text Training Capping diffusion noise to timesteps ¢ < 500
improves CIDEr without degrading other metrics.

Table 20.10: Effect of diffusion-noise capping. Adapted from [798].

Model Capt <500 C4PPL WikiPPL Acc CIDEr FID

0.76 B X 10.3 5.9 519 254 16.7
0.76 B v 10.3 59 521 294 165
70B X 7.8 4.3 61.1 337 16.0
7.0B v 7.7 43 60.9 352 157

Comparison to Specialized Generative Models A single Transfusion model achieves strong
performance on both image and text tasks compared with state-of-the-art specialised models.

1382 Chapter 20. Lecture 20: Generative Models Il

Table 20.11: Comparison with prior work on image and multimodal tasks. Adapted from [798].

Model Params COCO FID] GenEvalt Acct Modality Notes

SDXL [482] 34B 6.66 0.55 - Image Frozen encoder
DeepFloyd IF [612] 10.2B 6.66 0.61 - Image Cascaded diffusion
SD3 [149] 12.7B - 0.68 - Image Synthetic caps
Chameleon [810] 7.0B 26.7 0.39 67.1 Multi Discrete fusion
Transfusion [798] 73 B 6.78 0.63 66.1 Multi Unified LM + diffusion
Summary

The ablation findings from [798] provide a clear picture of what makes Transfusion effective:
bidirectional intra-image attention is key to spatial coherence; U-Net-based patch encoders contribute
strong inductive biases that enhance both fidelity and alignment; and careful tuning of patch size and
noise scheduling enables efficient training without compromising performance. The success of this
architecture demonstrates that unifying text and image processing under a shared transformer with
continuous embeddings is not only feasible but highly performant.

At the same time, the reliance on continuous image tokens and diffusion-based generation introduces
additional training and sampling complexity. This raises a natural question: can we achieve the
benefits of modality unification using simpler, fully discrete generation schemes? In the following
section, we explore such a possibility through the lens of the VAR framework, which revisits token-
level autoregressive modeling for unified image and text generation—offering a different perspective
on multimodal generative design.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1383

Enrichment 20.11.11: Visual Autoregressive Modeling (VAR)

Traditional autoregressive (AR) models, such as PixelCNN or transformer-based image generators,
generate images sequentially by predicting each token (pixel, patch, or VQ code) in a predefined
raster scan order—typically left to right and top to bottom. While conceptually straightforward, this
strategy is fundamentally at odds with the two-dimensional nature of images and the hierarchical
way humans perceive visual content.

Visual Autoregressive Modeling (VAR) [615] reconsiders how autoregression should operate in the
image domain. Instead of modeling a 2D grid as a flattened 1D sequence, VAR predicts image
content in a coarse-to-fine, multi-scale manner. At each scale, the model generates an entire token
map in parallel, then conditions the next higher-resolution prediction on this coarser output. This
process mirrors how humans often process visual inputs: first recognizing global structure, then
refining local details.

This approach leads to multiple benefits:
» Improved efficiency: Tokens at a given resolution are predicted in parallel, which drastically
reduces the number of autoregressive steps compared to raster-scan generation.
* Higher fidelity: Coarse-to-fine guidance encourages global coherence and fine-grained detail
simultaneously.
* Scalable modeling: VAR exhibits smooth scaling behavior similar to language transformers,
showing predictable gains as model and compute increase.

Three Different Autoregressive
Generative Models

The | ear

1 #3t [) by ||| i || s

—

e = e
Eressive Transformer (GPT, LLaMg, p LM
A + FaLM, etc)

(a) AR: Text Beneration by next-token predict;
on

O TN o Al
AR Transformer (iGPT, UQGM'P““} 4 I’l gn' e

SR ..

() VAR: |m -
8¢ generatian by .
N prediction Y Next-seale (or next-res P
Ulutlun] predict;
on

(b = I, eneration ¥ next-j
| | age gi t B
AR on by next mage-toke,

Figure 20.136: Autoregressive modeling paradigms for image generation — adapted from [615].
(a) Standard language AR modeling predicts tokens sequentially. (b) Classical image AR methods
flatten a 2D grid into a raster-scan sequence. (¢) VAR predicts multi-scale token maps hierarchically:
coarse levels first, with progressively finer resolutions conditioned on earlier stages.

As we now explore, this paradigm shift from token-wise raster autoregression to scale-wise parallel
prediction yields state-of-the-art results on ImageNet and opens the door to efficient, high-fidelity
generation pipelines.

1384 Chapter 20. Lecture 20: Generative Models Il

Multi-Scale Architecture for Coarse-to-Fine Generation: How VAR Works The core contribu-
tion of Visual Autoregressive Modeling (VAR) [615] is a paradigm shift in how autoregressive models
approach image generation. Instead of predicting tokens in a strict raster-scan order—row-by-row,
left to right—VAR proposes a coarse-to-fine, scale-based generation strategy that better reflects how
humans compose images: beginning with global structure and refining toward detail. This section
explains the architecture and training pipeline, focusing on the two foundational stages: hierarchical
tokenization and scale-aware prediction.

Overview: A Two-Stage Pipeline for Image Generation
The Visual AutoRegressive (VAR) model [615] tackles the problem of high-fidelity image generation
using a modular, two-stage approach:

» Stage 1: Multi-Scale VQ-VAE for Hierarchical Tokenization Transforms a continuous
image into a hierarchy of discrete tokens, each representing visual content at a different scale
(from global layout to local texture). This compresses the image into symbolic representations
that are more structured and compact than pixels or raw latent features.

» Stage 2: Scale-Aware Autoregressive Transformer Learns to model the joint distribution of
token hierarchies and to autoregressively generate image tokens from coarse to fine, either
unconditionally or conditioned on class/text input. This allows realistic, structured image
synthesis without generating pixels directly.

These two stages are trained separately and serve complementary purposes:
* The VQ-VAE (Stage 1) learns how to discretize an image into multi-scale tokens R =

(r1,...,rg) and how to reconstruct the image from them.
* The transformer (Stage 2) learns how to generate realistic sequences of these tokens, modeling
p(ri,...,rg | s) where s is an optional conditioning signal.

This design addresses key challenges in autoregressive image modeling:
* It avoids operating over raw pixels, which are high-dimensional and redundant.
* It introduces scale-level causality, so image generation proceeds hierarchically (not raster-
scan), yielding better spatial inductive structure.
* It separates representation learning (handled by the VQ-VAE) from generation (handled by
the transformer), simplifying optimization and improving sample quality.
We now explain each stage in detail, beginning with the multi-scale encoding process of the VQ-VAE.

Stage 1: Multi-Scale VQ-VAE for Hierarchical Tokenization

The first stage of the VAR pipeline [615] transforms a continuous image into a set of discrete
token maps across multiple resolutions. This step establishes a symbolic vocabulary over images,
enabling a transformer in the second stage to model image generation as autoregressive token
prediction. Prior works like DALL-E 1 [509] relied on a single-scale VQ-VAE, which forced each
token to simultaneously capture high-level layout and low-level texture—often leading to trade-offs
in expressivity. VAR overcomes this limitation through a hierarchical decomposition:

R= (1‘1,1’2,...71’1{)

where each token map ry € {0,...,V—1}"* encodes the image at scale k, from coarse to fine.
The hierarchy is constructed through residual refinement, ensuring that each level captures only the
visual details not already modeled by coarser layers.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1385

Hierarchical Token Encoding via Residual Refinement Let x € R¥*W>3 be the input image. A
shared convolutional encoder E processes x into a latent feature map:

fe RH'XW’XC

where H' < H, W/ < W, and C is the channel dimension. This map retains semantic structure while
reducing spatial complexity.

To tokenize this image across multiple levels, the model applies a sequence of residual refinements.
For each scale k € {1,...,K}, the following steps are executed:

1. Resolution Adaptation: Interpolate the latent map f to resolution /; X wy, yielding a coarsened
view appropriate for scale k.

2. Discrete Quantization: Map the interpolated features to a discrete token map ry € {0,...,V —1}/w

by finding the nearest entries in a shared codebook Z € RY*“. Each index corresponds to the
closest code vector in Z, representing the local content at that location.
3. Code Vector Lookup: Retrieve the continuous code vectors associated with ry, forming:

Zp = Z[rk] c thxwkxd

4. Residual Update: Interpolate z; to the full resolution H' x W', apply a scale-specific 1x1
convolution ¢, and subtract the result from the shared latent:

f < £ — ¢ (Interpolate(z;))

This subtraction removes the information already modeled by level &, forcing subsequent
levels to focus on the residual detail. The subtraction step is critical: it decorrelates token
maps across scales and ensures that each scale contributes new, non-overlapping information.

After completing this procedure for all K levels, the image is represented as a hierarchy of discrete
symbolic tokens ry,...,rg, suitable for autoregressive modeling.

Token Decoding and Image Reconstruction Given a full hierarchy of token maps (ry,...,rg),
the decoder reconstructs the image by reversing the residual refinement process:

1. Embedding Recovery: Use the codebook Z to retrieve continuous embeddings:
2 = Z[ry] € R

2. Latent Aggregation: Interpolate each z; to resolution H' x W', apply its convolution ¢, and
sum the results to reconstruct the latent feature map:

K
f= Z ox (Interpolate(zy))
k=1

3. Image Synthesis: A lightweight convolutional decoder D maps f to a reconstructed image:

A

ﬁ:D() ERHXWX?J

This decoding path exactly mirrors the refinement steps in reverse, enabling the discrete token maps
to be faithfully converted back into high-resolution images.

1386 Chapter 20. Lecture 20: Generative Models Il

Training Objective for the VQ-VAE The encoder—decoder pipeline is trained independently from
the transformer using a perceptually aligned loss:

Lyqvae = [x =Rl +[If —Fll2+ 2. Lp(R) + A6 Z6(R)

where:

* ||x —X||: Pixel-space L2 reconstruction loss

« ||f—#]>: Latent-space consistency loss

* Zp(X): Perceptual loss (e.g., LPIPS) weighted by Ap

* Z;(X): Adversarial loss weighted by Ag
This compound objective encourages both structural accuracy and perceptual realism in the recon-
structed images. Once trained, the VQ-VAE becomes a symbolic bridge between continuous images
and the transformer in Stage 2.

Stage 2: Scale-Aware Auforegressive Transformer

While Stage 1 defines how to tokenize and reconstruct an image using a hierarchy of discrete visual
codes, Stage 2 transforms this representation into a full generative model. The transformer introduced
here is trained to model the joint probability distribution over multi-scale token maps produced by
the VQ-VAE. Its objective is to generate a sequence of token maps that are semantically coherent
and hierarchically consistent—ultimately producing realistic images when decoded by Stage 1.

p(rla"'7rl(|s)

Here, s is an optional conditioning signal such as a class label or text prompt, and ry € Z/%*"
denotes the token map at scale k.

From Tokens to Embeddings: Transformer Inputs The transformer does not operate directly on
the discrete token indices ry. Instead, each token map ry, is transformed into a continuous embedding
map e; € R%>*"e*Pmotel through the following procedure:

1. Codebook Lookup: Each integer token index in ry is used to retrieve its associated code
vector from the shared codebook Z € RY*¢, forming a spatial map z; = Z[r;] € R#*Wexd,

2. Projection to Transformer Dimension: The code vectors z; are projected to the transformer’s
model dimension Dpqe) Via a learned linear layer.

3. Positional and Scale Embedding: Positional embeddings are added to encode spatial location
within the grid, and a scale-specific embedding is added to indicate the resolution level k. The
resulting map is denoted ey, and it serves as the input to the transformer for scale k.

Similarly, the conditioning signal s is embedded as Seyp € RPmet, Together, the input to the
transformer at training time is the sequence:

[Sembaeh' . aerl]

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1387

Why a Second Stage is Needed This two-stage setup reflects a deliberate separation of concerns:
» Stage 1 (VQ-VAE): Encodes perceptual realism, spatial consistency, and image fidelity via
hierarchical quantization and reconstruction.
» Stage 2 (Transformer): Focuses purely on symbolic generation—learning to synthesize
plausible token sequences that form coherent, multi-scale image structures.
This design allows the transformer to reason over a compact, expressive, and semantically meaningful
representation space, without being burdened by low-level texture synthesis.

Autoregressive Modeling Across Scales Unlike pixel-level autoregressive models (e.g., Pixel-
RNN) that model:

T
=

p(x) = || p(xi | x<i),

i

I
—_

the VAR transformer performs next-scale prediction, modeling causality across hierarchical levels:

K
p(ry,...,rg |s) = Hp(rk | S,rek).
k=1

That is, the model generates each token map ry in parallel across spatial locations, but strictly
conditioned on previously generated scales and the conditioning input. Internally, this corresponds
to processing the sequence:

[Semb, €1, - - ,ex—1] —> predict rg.

To ensure this behavior, a blockwise causal attention mask is applied within the transformer. This
mask enforces the following:
» Tokens at scale k may attend to:
— The conditioning embedding Sepp
— All embedded tokens from previous scales eq,. .., ez
* Tokens at scale k cannot attend to:
— Other tokens within e
— Tokens from future scales e~
This yields a well-defined autoregressive ordering across resolution levels, while enabling parallel
token prediction within each scale.

Training Procedure The model is trained to maximize the log-likelihood of the token maps across
all scales:

K hpwi .
_ g
AR = — Z Z logp ("k,i | Sembaelaw'yekfl) ;
=1 i=1

where rf_tl. is the ground-truth token index at spatial position i in scale k, and p(-) is the predicted
probability distribution over the codebook vocabulary. The transformer outputs a distribution for
each token position, and the cross-entropy loss is applied at every location.

1388 Chapter 20. Lecture 20: Generative Models Il

Importantly, no teacher forcing is applied within a scale. When predicting ry, the model is not
conditioned on ground-truth tokens within that map—only on previously predicted scales. This
enables efficient training with strong inductive bias toward scale-level compositionality.

Inference and Generation Generation proceeds autoregressively over scales using the same
principle:

1. Predict 1 ~ p(- | Semp)

2. Embed 1t} — e

3. Predict , ~ p(- | Semb,€1)
4. Embed) — e;, and so on.

Each prediction is performed in parallel across spatial locations, making inference much faster than
raster-scan approaches. Key-value (KV) caching is applied to preserve and reuse the attention states
of Semb, €1, - - . ,€x—1, avoiding recomputation in deep transformers.

Final Decoding and Image Reconstruction After generating the full sequence t1,...,fk, the
decoder reconstructs the image as in Stage 1:

For each t, lookup code vectors from the codebook: Z; = Z[i]
Interpolate each 2 to resolution Aig X wi

Filter with scale-specific convolution ¢

Sum to form the latent map:

e

f=

M=

¢ (Interpolate(zy))
k

1

5. Decode to full-resolution image:

N
x=D(f)
Stage 1: Training multiscale VOVAE on images Stage 2: Training VAR transformer on tokens
(to provide the ground truth for training Stage 2) : (/%] means a start token with condition information)
i
& % i == Cross-Entropy
\'\\ ; s i ; =2
Filiifela)lz][a]iali:Pyld f

Sy, =
> \ ; f . —1 Block-wise causal mask
ol i VAR Transformer (causal) -—“inii
R e e]
ierf1|| 23] aliiex 2]~ 8]0

} f
word embedding and up-interpolation
I 1. RS —
in itz

VAE encoding Multi-scale quantization & Embedding Decoding I L=1"42°+3"=14

Figure 20.137: Two-stage VAR architecture — based on [615]. In Stage 1, a multi-scale VQ-VAE
encodes the image into hierarchical token maps. In Stage 2, a transformer autoregressively predicts
these maps one scale at a time. A blockwise attention mask ensures each scale r; only attends to s
and ry.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1389

This completes the symbolic-to-visual generation pipeline. The transformer produces discrete codes
that encode visual semantics and layout, while the VQ-VAE decoder renders them into photorealistic
images.

Benefits of the VAR Design
VAR'’s architecture offers several advantages:

1. Spatial locality is preserved, avoiding the unnatural 1D flattening of images.

2. Inference is parallelized within each resolution, enabling fast generation.

3. Global structure is conditioned into finer details via multi-scale refinement.

4. Transformer capacity is efficiently used, since each level focuses on simpler sub-distributions.

Experimental Results: High-Quality Generation and Editing

After training both the multi-scale VQ-VAE and the scale-aware transformer, the VAR model [615]
demonstrates compelling performance across a range of image generation tasks. Notably, it achieves
high visual fidelity on ImageNet [118] at resolutions up to 512 x 512, and supports zero-shot editing
— despite being trained with only unconditional or class-conditional supervision.

Figure 20.138: Image generation and editing with VAR — adapted from [615]. Top: Unconditional
samples at 512 x 512 resolution. Middle: Samples at 256 x 256. Bottom: Zero-shot image editing
results, where input images are modified using conditional prompts without task-specific fine-tuning.

Generation Quality. VAR achieves state-of-the-art sample quality on the ImageNet-256 and
ImageNet-512 benchmarks. Visually, its samples are both semantically rich and globally coherent —
showcasing correct object structure, texture, and style. This is due to its coarse-to-fine generation
mechanism: the transformer first predicts low-resolution structural layout via coarse token maps,
then refines texture and details in subsequent finer maps, guided by the VQ-VAE decoder.

Zero-Shot Editing. The ability to modify image content without additional supervision is enabled
by the discrete tokenization of the VQ-VAE and the structured generative pathway. In the bottom
row of Figure 20.138, input images are embedded into VAR'’s token space and selectively altered
before decoding — showcasing realistic object transformations, viewpoint changes, and fine-grained
edits, all without retraining the model.

1390 Chapter 20. Lecture 20: Generative Models Il

Multi-Resolution Support. One key strength of VAR lies in its multi-resolution token maps, which
naturally support different output scales. During inference, generation can stop at any intermediate
resolution (e.g., 64 x 64, 128 x 128, etc.), offering flexible tradeoffs between quality and speed.

These results validate VAR’s autoregressive transformer as a strong alternative to diffusion- or GAN-
based image generators. Its structured, scale-aware approach achieves both fidelity and controllability
— setting the stage for broader multimodal extensions and architectural scaling.

Comparison with Other Generative Paradigms To contextualize the significance of VAR’s
results, the authors benchmarked it against a wide spectrum of state-of-the-art generative models
across four major paradigms: GANs, diffusion models, masked prediction models, and autoregressive
(AR) transformers. The below table summarizes the comparison on the ImageNet 256 x 256 class-
conditional benchmark. Evaluation metrics include FID (lower is better), Inception Score (IS)
(higher is better), and Precision/Recall for semantic and distributional quality, along with model
size and inference cost (time).

Table 20.12: Comparison of generative model families on ImageNet 256 x 256 — adapted from [615].
VAR models (bottom rows) outperform all baselines in fidelity and inference speed. “|” or “1”
indicate whether lower or higher is better. Wall-clock time is reported relative to VAR.

Type Model FID, IST PreT Rec?T #Param #Step Time
GAN BigGAN [52] 695 2245 089 0.38 112M 1 -
GAN GigaGAN [273] 345 2255 0.84 0.61 569M 1 -
GAN StyleGAN-XL [551] 230 265.1 0.78 0.53 166M 1 0.3
Diff. ADM [122] 1094 101.0 0.69 0.63 554M 250 168
Diff. CDM [225] 4.88 158.7 - - 8100M - -
Diff. LDM-4-G [531] 3.60 2477 - - 400M 250 -
Diff. DiT-XL/2 [478] 227 2782 083 0.57 675M 250 45
Diff. L-DiT-3B [1] 2.10 3044 0.82 0.60 3.0B 250 >45
Mask. MaskGIT [77] 6.18 182.1 0.80 0.51 227TM 8 0.5
AR VQGAN [148] 15.78 74.3 - - 1.4B 256 24
AR ViTVQ-re [743] 3.04 2274 - - 1.7B 1024 >24
AR RQTransformer [318] 3.80 323.7 - - 3.8B 68 21
VAR VAR-d16 330 2744 0.84 0.51 310M 10 0.4
VAR VAR-d20 257 302.6 0.83 0.56 600M 10 0.5
VAR VAR-d24 209 3129 082 0.59 1.0B 10 0.6
VAR VAR-d30 192 3231 0.82 0.59 2.0B 10 1.0
VAR VAR-d30-re 1.73 350.2 0.82 0.60 2.0B 10 1.0
Key Takeaways.

* VAR sets a new benchmark: It achieves the lowest FID (1.73) and the highest IS (350.2)
of any model on ImageNet 256 x 256, surpassing strong diffusion models like L-DiT [1] and
GAN:Ss like StyleGAN-XL.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1391

* Inference speed is dramatically faster: While diffusion models require hundreds of denoising
steps (e.g., 250 for ADM, DiT), VAR completes generation in just 10 autoregressive steps —
one per scale.

* Superior precision-recall tradeoff: VAR maintains high recall (0.60) without sacrificing
precision, balancing diversity and realism in a way that standard AR models often fail to
achieve.

Why VAR Outperforms Traditional VQ-VAE/VQ-GAN Autoregressive Models.

VAR demonstrates significant advantages over raster-scan VQ-based AR models such as VQ-
GAN [148], ViIT-VQGAN [743], and RQ-Transformer [318], by overcoming both architectural and
theoretical limitations. These models typically flatten a 2D grid into a 1D token stream and predict
each token sequentially—introducing inefficiencies and violating the natural spatial structure of
images.

* Resolution of 2D-to-1D Flattening Issues. Flattening a 2D image into a 1D sequence for
raster-order prediction introduces what the authors call a mathematical premises violation.
Images are inherently 2D objects with bidirectional dependencies. Standard AR transformers,
however, assume strict unidirectional causality, which conflicts with the actual structure
of visual data. VAR resolves this mismatch via its next-scale prediction strategy, which
operates hierarchically across scales, preserving spatial coherence and reducing unnecessary
dependencies.

* Massive Reduction in Inference Cost. While traditional AR models require one autore-
gressive step per token (e.g., 256 x256 = 65,536 steps), VAR only needs K steps (typically
K = 4-6), since each scale’s token map is generated in parallel. This reduction yields roughly
O(N?) — O(K) sequential depth, improving inference speed by over 20 x in practice compared
to VQ-GAN or ViTVQ baselines.

* Enhanced Scalability and Stability. Unlike earlier VQ-based AR models, which often suffer
from training instability or limited scaling behavior, VAR exhibits smooth performance scaling
with model size and compute. As shown in Table 20.12, the largest VAR variant surpasses
both autoregressive and diffusion baselines at scale, demonstrating a power-law-like trend
similar to that of large language models (LLMs).

Why VAR Avoids the Blurriness of Traditional VAEs

Standard VAEs often produce blurry images due to the averaging effect in continuous latent spaces
and the use of simple L2 reconstruction loss. In contrast, VAR’s multi-scale VQ-VAE circumvents
these issues using discrete representations and adversarial objectives:

* Quantized, Discrete Latents. The use of a discrete token space—learned via a shared
codebook—eliminates interpolation-based blurriness. At each scale, the image is decomposed
into a quantized map ry, where tokens correspond to well-defined visual primitives rather than
uncertain blends.

* Residual-Style Encoder and Decoder. Each scale in the encoder captures residual detail not
explained by the coarser maps, leading to a more structured and interpretable decomposition.
The decoder sums contributions from all scales to reconstruct high-fidelity images with sharp
contours and textures.

1392 Chapter 20. Lecture 20: Generative Models Il

* Perceptual and Adversarial Losses. VAR’s VQ-VAE is trained with a compound objective
including:

— A perceptual loss £p (e.g., LPIPS) that compares image reconstructions in the feature
space of a pretrained CNN like VGG, encouraging realism and sharpness over pixel-wise
fidelity.

— An adversarial loss £ that penalizes visually implausible outputs via a GAN-style
discriminator, pushing the generator to produce images indistinguishable from real data.

* Hierarchical Representation Enables Coherence. Unlike VQGAN:S that rely on a single
token map, VAR’s hierarchical structure allows different scales to specialize: coarse layers
ensure global layout, while fine layers refine details. This structured generation avoids both
over-smoothing and oversharpening artifacts common in single-scale VAEs.

Taken together, these innovations allow VAR to combine the sharpness and semantic fidelity of GANs
with the training stability and generative flexibility of VAEs—without inheriting their respective
downsides.

Scaling Trends, Model Comparison, and Future Outlook

VAR [615] demonstrates that coarse-to-fine autoregressive modeling is not only viable, but also
highly competitive with, and in many respects superior to, both diffusion models and GANSs. Its
innovations in architectural design, inference efficiency, and training stability position it as a new
standard for high-resolution image synthesis.

Scaling Efficiency and Sample Quality VAR exhibits favorable power-law scaling as model
capacity increases. Across multiple variants (e.g., d16 to d30-re), both FID and Inception Score
improve steadily, as shown in the below figure. The largest model, VAR-d30-re (2B parameters),
achieves an FID of 1.73 and an IS of 350.2 on ImageNet 256 x 256, outperforming L-DiT-3B and
7B, yet requiring only 10 autoregressive steps.

. o 0 O '
A 03B 1B 2B 3B \.,
i, \ ADM
1 \
2 | —
E « AR (RQ) \ 5
2 MaskGIT \ an) @ o
= askGIT . AR(vqggan) * ,£
= A N \ P
B4 \ Gigagan &—@ \ g
= & \ =}
= . RCG \ =
£ \ DiT
2 o o
=5 @ VAR (ours) ® @
T T T UED ower bound 178 (vl se) |
0.1s | sec 10s 1 min

Inference Time (batch size = 1)

Figure 20.139: Scaling behavior of VAR — adapted from [615]. VAR outperforms diffusion models
like L-DiT-3B with fewer parameters and faster inference, validating its architectural scalability.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1393

Comparison to Diffusion and Autoregressive Models As detailed in Table 20.12, VAR delivers
best-in-class performance across fidelity, semantic consistency, and speed:
* Compared to diffusion models like ADM [122], DiT [478], and L-DiT [1], VAR matches or
exceeds sample quality while reducing inference time by over 20x.
* Compared to GANSs such as StyleGAN-XL [551], VAR achieves higher precision and recall,
while being more stable and easier to scale.
* Most importantly, VAR outperforms previous autoregressive methods (e.g., VQGAN [148],
ViT-VQGAN [743], and RQ-Transformer [318]) by resolving their core limitations — primar-
ily the violation of spatial locality introduced by raster-scan decoding.

Qualitative Scaling Effects of VAR

To further illustrate the benefits of architectural scaling, the authors created a figure that showcases
qualitative samples from multiple VAR models trained under different model sizes N and compute
budgets C. The grid includes generations from 4 model sizes (e.g., VAR-d16, d20, d24, d30)
at 3 different checkpoints during training. Each row corresponds to a specific class label from
ImageNet [118], and each column highlights progression in visual quality with increasing capacity
and training.

1394 Chapter 20. Lecture 20: Generative Models Il

Scaling up training compute

Scaling up transformer parameters N

Figure 20.140: Visual effect of scaling model size and training compute in VAR — based on [615].
Each row corresponds to a specific ImageNet class: flamingo, arctic wolf , macaw, Siamese cat,
oscilloscope, husky, mollymawk, volcano, and catamaran. From left to right, generations improve in
clarity, structure, and texture with increasing model depth and training steps.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1395

As visible in the figure, increased model scale and training compute systematically improve both
semantic fidelity (correctness of object structure and attributes) and visual soundness (absence of
artifacts, texture realism, and color consistency). For instance, the depiction of "oscilloscope" and
"catamaran" transitions from ambiguous blobs in early-stage, small models to highly plausible,
structurally accurate renderings in larger, well-trained variants.

These qualitative trends corroborate the quantitative findings in Figure 20.139 and Table 20.12,
reinforcing that VAR inherits desirable scaling properties akin to large language models: more
parameters and compute lead to predictable improvements in generative quality.

Limitations and Future Directions Despite its strengths, VAR still inherits certain limitations:

* Lack of native text conditioning: Unlike diffusion systems such as GLIDE or LDM, VAR
has not yet been extended to text-to-image generation. Integrating cross-modal encoders (e.g.,
CLIP or T5) remains a promising avenue.

* Memory footprint: While more efficient than raster AR models, each scale in VAR still
requires full-token parallel decoding, which may challenge memory limits for high-resolution
outputs.

» Token discretization ceiling: The reliance on codebook-based representations may bottle-
neck expressiveness for fine-grained texture, unless dynamic or learned vocabularies are
incorporated.

Nonetheless, VAR’s success opens up multiple promising research directions: extending the coarse-
to-fine AR paradigm to multimodal transformers, integrating with prompt-based editing, and
exploring learned topologies beyond rectangular grids. Its architectural clarity and empirical
strength position it as a foundation for the next generation of efficient generative models.

1396 Chapter 20. Lecture 20: Generative Models Il

Enrichment 20.11.12: DiT: Diffusion Transformers

Mofivation and context

Most high-performing diffusion models have used U-Net backbones that combine convolutional
biases (locality, translation equivariance) with occasional attention for long-range interactions [122,
531]. The central question addressed by Diffusion Transformers (DiT) [478] is whether a pure
Vision-Transformer denoiser operating in latent space can match or surpass U-Net diffusion when
scaled. DiT answers in the affirmative: by patchifying VAE latents and processing tokens with
transformer blocks modulated via adaptive LayerNorm (adalLN / adalLN-Zero), DiT exhibits clean
scaling laws and achieves state-of-the-art ImageNet sample quality at competitive compute.

Figure 20.141: Selected DiT samples on ImageNet. Curated generations from class-conditional
DiT-XL/2 at 512x 512 and 256 x256 illustrate fidelity and diversity across categories; credit: Peebles
& Xie [478].

High-level overview

DiT is a standard DDPM/latent-diffusion denoiser €y that operates on VAE latents zo = E(x) €
RIIXC (e.g., 1=32, C=4 for 2567 images). With ¢(z/|z0) = A (v/04z0,(1—04)I) and z; = /G420 +
V/1—@; €, the denoiser predicts €y (z,2,¢) (and a diagonal covariance) by minimizing the usual noise
MSE. Class-conditional training uses classifier-free guidance at sampling time.

Why transformers? Intuition. Transformers have appeared repeatedly in earlier parts of
this chapter: as attention submodules inside U-Nets, as text encoders, and even as full transformer
U-Nets. What distinguishes DiT is the decision to use a pure ViT backbone directly on latent patch
tokens, removing convolutional pyramids and skip connections entirely.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1397

This shift yields several concrete benefits that are hard to obtain with U-Nets:

* Global-first context at every depth. Self-attention connects all tokens in all layers, coor-
dinating layout and long-range dependencies continuously, rather than bottlenecking global
context at specific resolutions as in U-Nets.

* Simpler, predictable scaling. DiT exposes two orthogonal knobs—backbone size (S/B/L/XL)
and token count via patch size p—so quality tracks forward Gflops in a near-linear fashion.
This clarity is difficult with U-Nets whose compute varies non-trivially with resolution and
pyramid design.

* Uniform conditioning via normalization. Instead of injecting conditions via cross-attention
at a few scales, DiT uses adalLN-style modulation in every block, giving cheap, global,
step-aware control without the sequence-length overhead of cross-attention.

* Latent-space efficiency. Operating on VAE latents keeps sequence lengths manageable while
retaining semantics. Convolutional U-Nets still pay per-pixel costs that grow with resolution,
even in latent space.

In short, transformers are not merely “also used” here; the pure transformer backbone plus compute-
centric scaling and adalLN-based conditioning together produce a qualitatively different, more
scalable denoiser than a U-Net.

Method: architecture and components

Tokenization (patchify) of the latent. The noised latent z; € R/*/*C is split into non-overlapping
px pxC patches, each linearly projected to d-dim tokens with sine—cos positional embeddings. The
sequence length is T = (I/p)?. Reducing p increases tokens (and Gflops) without changing parame-

ters, acting as a clean compute knob.
DiT Block

Input Tokens T x d

T = (I/p)*

ﬂnised Latent \
IxIxC <p-

s
‘ A
¥

]

|

o

Figure 20.142: Input specification and patchify. A spatial latent of shape /xIxC becomes
T=(I/p)? tokens of width d. Smaller p increases sequence length and compute; credit: Peebles &
Xie [478].

1398 Chapter 20. Lecture 20: Generative Models Il

High-level overview: DiT as a transformer backbone for diffusion After tokenization, the task
is to predict the additive noise on latent patches at diffusion timestep ¢ (and, optionally, class/text
label y). Diffusion Transformers (DiT) [478] replace the U-Net with a stack of transformer blocks
that operate on the patch-token sequence: (i) patchify latents into tokens; (ii) transform them with N
conditional blocks that inject (¢, y) at every depth; (iii) project tokens back to per-patch predictions
(noise and optionally variance). The motivation is simple: self-attention offers global receptive fields
and scales cleanly with depth/width; conditioning via adaptive normalization is cheap and pervasive.

'd A
—
!
! Soal o
Noise b .flf i
Jin\Exd 32xi2x'| .fl'l i
. ' ; £y |
Linear and Reshape ,'f s Yo s | L]
i / ! — (3 ¥
i Liayer Narm
Layer Norm ;
J —
N x DT Block o %
[}
\\ Mui-Hasd
Patchify ~ Embed ER i
LS Faaf
| | \\ Scaie, hitt w—
[}
Noised Timastap ¢ \\ Lisyes Normi MLP
Latent 1 i 1 L {
v Labet ¥ i Ingut Tokens: Cendioring i kine it
Latent Diffusion Transformer DHT Block with adal N-Zero Block with Cross-Attentior

Figure 20.143: DiT architecture at a glance. Latent patches are embedded and passed through N
transformer blocks, then a per-token head maps back to the latent grid. Right: conditioning variants
evaluated by [478].

From AdalN to adaLLN: motivation and adaptation Adaptive normalization offers cheap, global
control by modulating normalized activations with per-channel scale/shift. StyleGAN’s AdaIN 20.6.2
applies (7, B) (from a style code) after InstanceNorm in convnets, broadcasting “style” through every
layer with negligible overhead. DiT carries this idea to transformers and diffusion by:

» Swapping InstanceNorm on feature maps for LayerNorm on token embeddings.

* Replacing style latents with diffusion timestep t and label/text y as the condition.

* Adding zero-initialized residual gates so very deep stacks start near identity and “open’

gradually (stability under heavy noise).

This preserves AdalN’s low-cost, layer-wise control while fitting the sequence setting and the
iterative denoising objective.

>

DiT block: adalLN and the adalLN-Zero variant The DiT backbone is a sequential stack of N
standard Pre-LN transformer blocks. Each block consumes a token sequence X € R*? and applies

(i) LN — MHSA — residual, (i1)) LN — MLP — residual.

Why this works. MHSA lets every latent patch-token attend to all others, building global spatial
coherence; the MLP adds channel-wise capacity after attention has mixed information. Conditioning
the LayerNorms lets t,y shape what MHSA/MLP see—cheaply and pervasively—so early steps
favor coarse denoising and later steps focus on fine details.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1399

How conditioning is produced (per-block MLPs, as in DiT). Embed the diffusion timestep and
label/text and concatenate to form ¢ = Embed(¢,y) € R¢ (sinusoidal 7-embed + learned y-embed).
Each transformer block i owns a tiny modulation MLP g; : R¢ —R5? that outputs six d-vectors

(V10> Bris @i, i Bois 2i) = gic),

one triplet for the attention branch (k=1) and one for the MLP branch (k=2). This gives shallow and
deep layers different “views” of (¢,y) with negligible parameter cost.

adalLN (adaptive LayerNorm). At each Pre-LN site (before self-attention and before the MLP),
replace vanilla LayerNorm by a condition-dependent affine transform:

adaLNk(X;c) = ’}’k’i(C)@LN(X) + ﬁk,,‘(c), ke {1,2}

This injects (,y) everywhere using only elementwise operations, so the subsequent computations
see features already bent toward the current diffusion step and class.

adaLN-Zero (the variant used in practice). DiT’s best-performing blocks add gates on the two
residual branches via a; ;(c), @ ;(c) that are zero-initialized. With X € RE*4 a full block computes

Z; = adaLN;(X;c), H = SelfAttn(Z;), U=X+ oy,(c)®H,
vz :adaLNz(U;c), M = MLP(ZQ), Y =U+ OCzﬂi(C)G)M.

Here SelfAttn is the standard multi-head scaled dot-product self-attention (MHSA); some figures
abbreviate it as “self-attn”. Self-attention lets every token attend to every other (global communica-
tion); the multi-head factorization runs several attentions in parallel so different heads can specialize
(e.g., shape vs. texture), then concatenates and projects them back to d. Zero-initialized gates make
the whole stack start near identity (Y ~X), preventing early instabilities on very noisy inputs; during
training the model learns where to “open” attention/MLP paths. Empirically, adalLN-Zero is the
variant used for final models; plain adalLN appears mainly in ablations.

Head and parameterization After the final LayerNorm, a linear head maps each token to
pxpx(2C) values (per patch; commonly p=1), then reshapes to the latent grid. The first C channels
parameterize the predicted noise; the remaining C optionally parameterize a diagonal variance.
Across T denoising steps, DiT iteratively predicts and removes noise to recover a clean latent xo;
a pretrained VAE decoder then converts xg to pixels (e.g., 256x256 RGB). Intuitively: MHSA
builds global structure across patches, the MLP refines channel-wise details, adalLN/Zero injects
timestep/class signals at every depth, and the head “de-tokenizes” back to a spatial latent that the
VAE upsamples to the final image.

2An equivalent implementation shares a trunk MLP across blocks and uses per-block linear heads to project into
(7, B, o); the official DiT code uses per-block modulation MLPs.

1400 Chapter 20. Lecture 20: Generative Models Il

Conditioning and guidance The condition c is the concatenation of timestep and class/text
embeddings. Classifier-free guidance is enabled by randomly replacing the label with a learned “null”
embedding during training. At inference, combine unconditional and conditional predictions as

E=¢ +s(g—8), s> 1,

steering samples toward the target class/text. Among conditioning routes (in-context tokens, cross-
attention, adalLN, adalLN-Zero), adaLLN-Zero consistently converges fastest and achieves the best
FID with negligible overhead; cross-attention is more flexible for long text but typically adds ~ 15%
compute.

100} = —e— XL/2 In-Context
\ XL/2 Cross-Attention
30 XL/2 adaLN
—0— XL/2 adaLN-Zero
4
7
. 60
L
40
20

100K 200K 300K 400K
Training Steps

Figure 20.144: Conditioning ablations. On DiT-XL/2, adal.N-Zero outperforms alternatives in
both speed and FID; cross-attention trades flexibility for extra compute [478].

Training objective and setup DiT trains end-to-end in latent space with the standard denoising
objective. For VAE-encoded images xo, noise € ~.4"(0,1), timestep ¢, and condition y,

L = Baens| lle = 80t)[3], 5 = Vam + V- ge.

Classifier-free guidance is enabled by dropping y with some probability during training and learning
a null embedding. In practice, AdamW with cosine LR decay and a brief warm-up are used; adalLN-
Zero’s identity start helps avoid early instabilities in deep attention stacks while maintaining the
capacity benefits of transformers.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1401

Experiments and ablations

Scaling and SOTA comparisons. Compute-centric scaling is the core story. DiT exposes two
orthogonal axes: backbone size (S/B/L/XL) and token count via patch size (p € {8,4,2}). Increasing
either axis improves FID at fixed training steps; the best results combine large backbones and small
patches.

DIT-5 s : .
LDM-g-G * % ¥ o
DiT8 prL g

DIT-%L ADM-U-G

LDM-4-G
B0
DIT-#L/2-G

FID-50K - ImageMet 256x256

r

=1

Scaling Diffusion Transformers SOTA Diffusion Models w/ Guidance

Figure 20.145: Scaling behavior and comparison to diffusion baselines. Left: FID steadily
improves with model flops over 400K iterations across S/B/L/XL. Right: DiT-XL/2 is compute-
efficient and outperforms prior U-Net diffusion baselines (ADM/LDM). Bubble area indicates flops;
credit: Peebles & Xie [478].

Training-time scaling trends. Holding p fixed and increasing backbone (S—XL) lowers FID
throughout training; holding backbone fixed and decreasing p (more tokens) also lowers FID. The
separation between curves indicates robust compute-to-quality scaling across 12 configurations.

— R
B4
L4

——— 52

B/

¥ AL l . "L || - —a— X2
b | - \
o 100, | .
= | “w,
| L o SR
30 | .
s
> .
| by
200K A0k GBI AODE 200K A0 00K BONK FIK ANDE BOOK BOK
Training Steps Tainng Steps Talning St2ps
i 58 B LB AT
L 8 L4 AL
150/ * - 52 Bz » L2 —- KLz
Lt
= e
FI Y
4100w
= e i | L4
51| k -
on T > S enae— L
IO0K 400R GUOK BOOK I0OK aDOK EGOK BOOK I0OK 400K BGOE BOOK T00K 400K GOOK 400K
Training Stops Trairirg Steps Trziring Steps Tring Stegs

Figure 20.146: FID-50K vs. training steps under model/patch sweeps. Scaling depth/width and
reducing patch size (more tokens) both improve sample quality at all stages; credit: Peebles &
Xie [478].

1402 Chapter 20. Lecture 20: Generative Models Il

Qualitative scaling: more flops — better images. A large grid sampled at 400K steps from
the same noise and label shows that increasing transformer Gflops—either via larger backbones
or more tokens—improves visual fidelity. Left-to-right increases backbone size; top-to-bottom
decreases patch size (more tokens).

Increasing transformer siz

Decreazing patch size

LD
e e S N
ey A AL LR]

::i.nqqﬂﬂl’!}
b

Figure 20.147: Qualitative scaling analysis. Bigger backbones and smaller patches yield sharper
textures and more coherent structure. The most convincing results appear in the bottom-right (XL
with p=2); credit: Peebles & Xie [478].

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1403

Gflops predict FID. Across all 12 DiTs at 400K steps, transformer forward Gflops strongly
correlates with FID (reported correlation ~—0.93). This metric predicts quality better than parameter
count and makes design trade-offs explicit.

160
s/ B/8 w8 XL/8
. —o— S/4 B/4 L4 XL/4
140 -8 52 B2 @ 12 @ X2
120
v 100 .
)
A 80
w D
60
40 _
Correlation: -0.93
20 .

100 10! 102
Transformer Gflops

Figure 20.148: Transformer Gflops vs. FID-50K. A strong inverse correlation indicates predictable
quality gains with higher compute; credit: Peebles & Xie [478].

Total training compute vs. FID. Plotting FID against total training compute shows smooth,
near power-law improvements. Larger models form a lower envelope: for the same train compute,
bigger models reach better FID than smaller ones trained longer.

5/8 B/8 L/g XL/B
200 +— S/4 B/4 L/4 XL/4
175 —e— 5/2 B/2 - L2 - XL/2
150 :
X 125 e *__\
Tel 3’
A 100 N
T
75
50
25
0
107 108 109 1010 1011 1012

Training Compute (Gflops)

Figure 20.149: Training compute vs. FID. Larger DiTs use training compute more efficiently,
suggesting “train larger for shorter” can be superior to “train smaller for longer”; credit: Peebles &
Xie [478].

1404 Chapter 20. Lecture 20: Generative Models Il

Sampling compute cannot replace model compute. Increasing denoising steps improves
quality for each model, but small models cannot catch large ones even with more sampling steps
(higher inference Gflops). For a fixed sampling budget, it is typically better to deploy a larger DiT at
fewer steps than a smaller DiT at many steps.

180 s/8 B/8 /8 XU8 |
_ s/4 B4 L/4 XL/4
160 -8 S)2 B2 -@ Uz -@ Xxuz |
140|
120|
S a
'_I! 100 N]
9 [Y
T go| Nal)
60 e
40| L\
20 -@g*'—"@—‘———:—-ﬁ .
10! 102 103 104 10°

Sampling Compute (Gflops)

Figure 20.150: Sampling compute vs. FID-10K. Small models do not close the gap to large ones
by sampling longer; large models constitute the lower envelope of the quality—budget frontier; credit:
Peebles & Xie [478].

Benchmark summary (ImageNet 256/512). On ImageNet-256, DiT-XL/2 with classifier-free
guidance (scale /1.5) attains FID = 2.27, sFID = 4.60, and IS ~ 278, exceeding LDM and ADM
variants. At 512, DiT maintains strong results with FID ~ 3.04. Precision/Recall indicate balanced
fidelity/diversity relative to GAN and diffusion baselines. (Exact tables are in [478]; summarized
here for brevity.)

What changed vs. Stable Diffusion and why it matters

* Backbone. U-Net (ResNet blocks + spatial attention at select scales) = pure ViT over patch
tokens. DiT’s global-first attention coordinates layout at all depths; no hand-crafted multi-scale
pyramid or skip connections are required.

* Conditioning. Cross-attention to text (costly, sequence-length dependent) =- adaLN / adaLN-
Zero (cheap, global, step-aware). This adapts AdaIN-style modulation (section 20.6.2) to
LayerNorm, distributing conditioning throughout the network with near-zero overhead and
superior FID (see Figure 20.144).

* Scaling lens. Params and resolution-dependent conv costs = forward Gflops as the primary
metric. As shown in Figure 20.148, Gflops strongly predicts FID and guides trade-offs between
model size and token count.

* Compute knobs. Channel/width heuristics and UNet depth = orthogonal knobs (backbone
size S/B/L/XL and patch size p). Figures 20.145-20.147 demonstrate monotonic quality gains
along both axes.

20.11 Enrichment 20.11: Additional Pioneering Works in Generative Al 1405

* Variance head. DiT’s head predicts noise and a diagonal covariance per spatial location,
enabling variance-aware denoising in latent space.
Outcome. At similar or lower compute, DiT matches or surpasses U-Net diffusion on ImageNet, and
scales predictably (quantitatively in Figure 20.148, Figure 20.149; qualitatively in Figure 20.147).

Relation to prior and follow-ups

AdalN-based control in StyleGAN1 (section 20.6.2) motivated normalization-as-conditioning; DiT
shows a transformer-native realization (adalLN-Zero). Subsequent work such as L-DiT [1] scales
DiT further in latent space, reporting even stronger ImageNet results. DiT complements latent
U-Nets [531]: both benefit from classifier-free guidance and VAE latents, but DiT offers LLM-like
scaling and a simpler global-context story.

Limitations and future work

* Memory/latency at small p. Reducing p increases tokens 7" and attention memory quadrati-
cally in /I; efficient attention, sparse routing, or hierarchical tokenization are promising.

* Inductive bias. Removing convolutions removes explicit translation equivariance and pyra-
mids; hybrid conv—transformer blocks or relative position biases may improve data efficiency.

* Long-sequence conditioning. Cross-attention for long text is flexible but adds compute;
extending adalLN-style modulation to long sequences or hybridizing with lightweight cross-
attention is an open avenue.

Practical recipe

Train in latent space with a strong VAE. Pick DiT-B/L/XL by budget. Start at p=4, drop to p=2 if
memory allows. Expect monotonic FID gains by increasing backbone size and tokens (Figure 20.146,
Figure 20.148). Prefer a larger DiT with fewer steps over a smaller DiT with many steps for a fixed
sampling budget (Figure 20.150).

