
20. Lecture 20: Generative Models II

20.1 VAE Training and Data Generation

In the previous chapter, we introduced the Evidence Lower Bound (ELBO) as a tractable surrogate

objective for training latent variable models. We now dive deeper into how this lower bound is used

in practice, detailing each component of the architecture and training pipeline.

20.1.1 Encoder and Decoder Architecture: MNIST Example

Consider training a VAE on the MNIST dataset. Each MNIST image is 28×28 grayscale, flattened

into a 784-dimensional vector x ∈ R
784. We choose a 20-dimensional latent space z ∈ R

20.

Figure 20.1: Example architecture: The encoder maps input x to µz|x and σ z|x. The decoder maps a

sampled z to µx|z and σ x|z, defining a distribution over reconstructed pixels.
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20.1.2 Training Pipeline: Step-by-Step

The ELBO Objective

Recall from our theoretical derivation that our ultimate goal is to maximize the marginal log-

likelihood of the data, log pθ (x). However, computing this probability directly involves an intractable

integral over the high-dimensional latent space. To circumvent this, we maximize a tractable surrogate

objective known as the Evidence Lower Bound (ELBO):

log pθ (x)≥ Ez∼qφ (z|x) [log pθ (x | z)]︸ ︷︷ ︸
reconstruction term

−DKL

(
qφ (z | x)∥ p(z)

)
︸ ︷︷ ︸

KL regularization

. (20.1)

We train two neural networks simultaneously—the encoder (inference network) and the decoder

(generative network)—to maximize this lower bound. Since standard deep learning frameworks (like

PyTorch or TensorFlow) are designed to minimize loss functions, we formally define the VAE Loss

as the negative ELBO:

LVAE =−ELBO. (20.2)

Crucial nuance: Minimizing this loss is not strictly equivalent to maximizing the true data likelihood.

We are optimizing a lower bound. The gap between the log-likelihood and the ELBO is exactly

the expected KL divergence between our approximate posterior and the true posterior, log pθ (x)−
ELBO = Ex∼pdata

[
DKL

(
qφ (z | x)∥ pθ (z | x)

)]
. If the encoder is not expressive enough to match the

true posterior, this gap remains strictly positive. This fundamental limitation—optimizing a bound

rather than the exact marginal likelihood—is one reason why later generative model families, such

as diffusion models and flow-based models, explore alternative training objectives that do not rely

on variational lower bounds.

For a high-level discussion on the properties of latent spaces (e.g., the manifold hypothesis), please

refer back to Section 19.4.2 (Chapter 19). Below, we detail the practical execution of the VAE

training pipeline in six stages.

1. Run input x through the encoder.

The encoder network qφ (z | x) processes the input image, but unlike a standard autoencoder,

it does not output a single latent code. Instead, it predicts a probability distribution over the

latent space. Specifically, for a latent dimensionality J, the encoder outputs two vectors:

µz|x ∈ R
J and σ2

z|x ∈ R
J

These vectors parameterize a diagonal Gaussian distribution qφ (z | x) = N (µz|x,diag(σ2
z|x)).

In what follows, we will often abbreviate µz|x and σ2
z|x as µ and σ2 for brevity.

Note on Stability: In many implementations, the encoder actually predicts log-variance, logσ2,

rather than σ2 directly. This improves numerical stability by mapping the variance domain

(0,∞) to the real line (−∞,∞). The variance is then recovered via an element-wise exponential.

2. Compute the KL divergence between the encoder’s distribution and the prior.

To ensure the latent space remains well-behaved, we enforce a penalty if the encoder’s

predicted distribution diverges from a fixed prior, typically the standard multivariate Gaussian

p(z) = N (0,I).
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Because both the posterior and prior are Gaussian, the Kullback-Leibler (KL) divergence has

a convenient closed-form solution. We compute this simply by summing over all J latent

dimensions:

DKL

(
qφ (z | x)∥ p(z)

)
=

1

2

J

∑
j=1

(
1+ logσ2

j −µ2
j −σ2

j

)
. (20.3)

This term acts as a regularizer. It pulls the mean µ towards 0 and the variance σ2 towards 1.

Without this term, the encoder could "cheat" by clustering data points far apart (making µ

huge) or by shrinking the variance to effectively zero (making σ → 0), effectively collapsing

the VAE back into a standard deterministic autoencoder.

3. Sample latent code z using the Reparameterization Trick.

The decoder requires a concrete vector z to generate an output. Therefore, we must sample

from the distribution defined by µ and σ .

The Obstacle (Blocking Gradients): A naive sampling operation breaks the computation

graph. Backpropagation requires continuous derivatives, but we cannot differentiate with

respect to a random roll of the dice. If we simply sampled z, the gradient flow would stop at

the sampling node.

The Solution (Reparameterization): We use the reparameterization trick to bypass this

block. We express z as a deterministic transformation of the encoder parameters and an

auxiliary noise source:

z = µz|x +σ z|x⊙ ε, ε ∼N (0,I). (20.4)

Practical Implementation Details:

• Source of Randomness: We sample a noise vector ε ∈ R
J from N (0,I). This variable

effectively "holds" the stochasticity.

• Vectorization: In practice, we sample a unique ε for every data point in the batch during

every forward pass.

• Gradient Flow: The operation ⊙ denotes element-wise multiplication. Crucially,

because ε is treated as an external constant during the backward pass, gradients can flow

freely through µ and σ back to the encoder weights.

For a visual walkthrough of this mechanism, we recommend:

ML&DL Explained � Reparameterization Trick.

4. Feed the sampled latent code z into the decoder.

The decoder pθ (x | z) maps the sampled code z back to the high-dimensional data space. It

outputs the parameters of the likelihood distribution for the pixels (e.g., the predicted mean

intensity for each pixel).

5. Evaluate the reconstruction likelihood.

We measure how well the decoder "explains" the original input x given the sampled code

z. For real-valued images, we typically assume a factorized Gaussian likelihood with fixed

variance. In this case, maximizing the log-likelihood is equivalent (up to an additive constant)

to minimizing the squared ℓ2 reconstruction error:

Lrecon ∝ ∥x− x̂∥2
2 . (20.5)

https://www.youtube.com/watch?v=vy8q-WnHa9A&ab_channel=ML%26DLExplained
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6. Combine terms to compute the total VAE Loss.

The final objective function is the sum of the reconstruction error and the regularization

penalty:

LVAE(x) =−Ez∼qφ (z|x) [log pθ (x | z)]︸ ︷︷ ︸
reconstruction loss

+DKL

(
qφ (z | x)∥ p(z)

)
︸ ︷︷ ︸

regularization loss

. (20.6)

The VAE “Tug-of-War” (Regularization vs. Reconstruction):

The VAE objective function creates a fundamental conflict between two opposing goals,

forcing the model to find a useful compromise:

The Reconstruction Term (Distinctness): This term maximizes E[log pθ (x | z)]. It drives

the encoder to be as precise as possible to minimize error. The Extreme Case: If

left unchecked, the encoder would reduce the variance to zero (σ → 0). The latent

distribution would collapse into a Dirac delta function (a single point), effectively turning

the VAE into a standard deterministic Autoencoder. While this minimizes reconstruction

error, the model effectively “memorizes” the training data as isolated points, failing to

learn the smooth, continuous manifold required for generating new images.

The KL Term (Smoothness): This term minimizes DKL(qφ (z | x)∥ p(z)). It forces the en-

coder’s output to match the standard Gaussian prior (N (0, I)), encouraging posteriors to

be “noisy” and overlap. The Extreme Case: If left unchecked (i.e., if this regularization

dominates), the encoder will ignore the input x entirely to satisfy the prior perfectly.

This phenomenon, known as Posterior Collapse, results in latent codes that contain

no information about the input image, causing the decoder to output generic noise or

average features regardless of the input.

The Result: This tension prevents the model from memorizing exact coordinates (Autoencoder)

while preventing it from outputting pure noise (Posterior Collapse). The VAE settles on a

“cloud-like” representation that is distinct enough to preserve content but smooth enough to

allow for interpolation and generation.

Figure 20.2: Full VAE training pipeline. Note the separation of deterministic parameters (µ,σ ) and

stochastic noise (ε) in the reparameterization step, allowing gradients to propagate to the encoder.
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Why a Diagonal Gaussian Prior?

We typically choose the prior p(z) to be a unit Gaussian N (0,I). While simple, this choice provides

powerful benefits:

• Analytical Tractability: As seen in Equation 20.3, the KL divergence between two Gaussians

can be computed without expensive sampling or integrals.

• Encouraging Disentanglement: The diagonal covariance structure assumes independence

between dimensions. This biases the model towards allocating distinct generative factors to

separate dimensions (e.g., “azimuth” vs. “elevation”) rather than entangling them, although in

practice such disentanglement is not guaranteed.

• Manifold Smoothness: By forcing the posterior to overlap with the standard normal prior, we

prevent the model from memorizing the training set (which would look like a set of isolated

delta functions). Instead, the model learns a smooth, continuous manifold where any point

sampled from N (0,I) is likely to decode into a plausible image.

20.1.3 How Can We Generate Data Using VAEs?

Once a Variational Autoencoder is trained, we can use it as a generative model to produce new data

samples. Unlike the training phase, which starts from observed inputs x, the generative process starts

from the latent space.

Sampling Procedure

To generate a new data point (e.g., a novel image), we follow a simple three-step process:

1. Sample a latent code z∼ p(z).
This draws from the prior distribution, which is typically set to N (0,I). The latent space has

been trained such that this prior corresponds to plausible latent factors of variation.

2. Run the sampled z through the decoder pθ (x | z).
This yields the parameters (e.g., mean and variance) of a probability distribution over possible

images.

3. Sample a new data point x̂ from this output distribution.

Typically, we sample from the predicted Gaussian:

x̂∼N (µx|z,diag(σ2
x|z))

In some applications (e.g., grayscale image generation), one might use just the mean µx|z as

the output.

This process enables the generation of diverse and novel data samples that resemble the training

distribution, but are not copies of any specific training point.
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Figure 20.3: Data generation process in a trained VAE. A latent code z∼ p(z) is passed through the

decoder to generate a new image x̂.

20.2 Results and Applications of VAEs

Variational Autoencoders not only enable data generation but also support rich latent-space manipu-

lation. Below, we summarize key empirical results and capabilities demonstrated in foundational

works.

20.2.1 Qualitative Generation Results

Once trained, VAEs can generate samples that resemble the training data distribution. For instance:

• On CIFAR-10, generated samples are 32×32 RGB images with recognizable textures and

object-like patterns.

• On the Labeled Faces in the Wild (LFW) dataset, VAEs generate realistic human faces,

capturing high-level structures such as symmetry, eyes, hair, and pose.

Figure 20.4: VAE-generated images on CIFAR-10 (left) and LFW faces (right). Generated samples

resemble the training distribution but may lack fine detail.
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20.2.2 Latent Space Traversals and Image Editing

Once a VAE has been trained, we are no longer limited to simply reconstructing inputs. Because

the latent prior p(z) is typically chosen to be a diagonal Gaussian, the model assumes that different

coordinates of z are a priori independent. This structural assumption makes it natural to manipulate

individual latent dimensions and observe how specific changes in the code z manifest in the generated

data.

Example 1: MNIST Morphing

A classic illustration of this property is provided by [292] using the MNIST dataset of handwritten

digits. By training a VAE with a strictly two-dimensional latent space, we can visualize the learned

manifold by systematically varying the latent variables z1 and z2 across a regular grid (using the

inverse CDF of the Gaussian to map the grid to probability mass) and decoding the results.

As shown in the below figure, this reveals a highly structured and continuous latent space. Rather

than jumping randomly between digits, the decoder produces smooth semantic interpolations:

• Vertical Morphing (z1): Moving along the vertical axis transforms the digit identity smoothly.

For instance, we can observe a 6 morphing into a 9, which then transitions into a 7. With

slight variations in z2, this path may also pass through a region decoding to a 2.

• Horizontal Morphing (z2): Moving along the horizontal axis produces different transitions.

In some regions, a 7 gradually straightens into a 1. In others, a 9 thickens into an 8, loops into

a 3, and settles back into an 8.

This confirms that the VAE has learned a smooth, continuous manifold where nearby latent codes

decode to visually similar images, and linear interpolation in latent space corresponds to meaningful

semantic morphing.

Figure 20.5: Latent space traversal in a 2D subspace of a trained MNIST VAE. Each cell is decoded

from a distinct point on a regular grid in latent space, showing smooth transitions between digit

images (e.g., 6→ 9→ 7). Adapted from [292].
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The General Editing Pipeline

We can generalize this “traversal” idea into a simple but powerful pipeline for semantic image editing.

As illustrated in the below figure, the process is:

1. Encode: Run the input image x through the encoder to obtain the approximate posterior

qφ (z | x).
2. Sample: Draw a latent code z ∼ qφ (z | x) using the reparameterization trick from Sec-

tion 20.1.2.

3. Edit in latent space: Manually modify one or more coordinates of z (for example, set

z̃ j = z j +δ ) to obtain a modified code z̃.

4. Decode: Pass the modified code z̃ through the decoder pθ (x | z) to obtain the parameters of

an edited-image distribution pθ (x | z̃).
5. Visualize: Either sample x̂∼ pθ (x | z̃) or directly visualize the decoder’s mean as the edited

image.

In other words, the encoder maps images to a “control space” (latent codes), we apply simple

algebraic edits there, and the decoder renders the results back into image space.

Figure 20.6: Image editing pipeline with a trained VAE. After encoding an input, we sample a latent

vector z, modify selected coordinates, and decode the modified code to produce semantically varied

outputs.
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Example 2: Disentanglement in Faces

While MNIST mainly exhibits simple geometric morphing, VAEs applied to more complex data often

uncover high-level semantic attributes. This phenomenon is known as disentanglement: particular

dimensions of z align with individual generative factors.

In the original VAE paper [292], the authors demonstrated this on the Frey Face dataset. Even

without label supervision, the model discovered latent coordinates that separately control expression

and pose:

• Varying one latent coordinate continuously changes the degree of smiling.

• Varying another coordinate continuously changes the head pose.

Figure 20.7: Semantic editing in a VAE trained on faces. Adjusting individual latent variables

smoothly changes attributes like expression (degree of smile) and pose (head orientation). Adapted

from [292].

This capability was further refined by [308] in the Deep Convolutional Inverse Graphics Network

(DC-IGN). Training on 3D-rendered faces, they identified specific latent variables that act like

“knobs” in a graphics engine:

• Pose (azimuth): rotating the head around the vertical axis while preserving identity.

• Lighting: moving the light source around the subject, while keeping pose fixed.

As shown in the following figure, editing a single latent value can rotate a face in 3D or sweep

the illumination direction, indicating that the model has captured underlying 3D structure from 2D

pixels.
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Figure 20.8: Latent-space editing in a VAE-style model trained on 3D faces (DC-IGN). Left: varying

a “pose” latent rotates the head. Right: varying a “lighting” latent changes illumination direction.

Adapted from [308].

These examples highlight a key qualitative advantage of VAEs: beyond modeling the data dis-

tribution, they expose a low-dimensional latent space in which many generative factors can be

probed, interpolated, and edited. In practice, disentanglement is imperfect and not guaranteed, but

even partially disentangled latents already enable powerful and interpretable control over generated

images.

Takeaway

Unlike autoregressive models (e.g., PixelCNN) that only model p(x) directly and provide no explicit

latent code, VAEs learn a structured latent representation z. This representation can be used to

interpolate between images, explore variations along semantic directions, and perform targeted edits,

making VAEs particularly valuable for representation learning and controllable generation.

20.3 Summary & Examples: Variational Autoencoders

Variational Autoencoders (VAEs) introduce a probabilistic framework on top of the traditional

autoencoder architecture. Instead of learning a deterministic mapping, they:

• treat the latent code z as a random variable drawn from an encoder-predicted posterior

qφ (z | x),
• model the data generation process via a conditional likelihood pθ (x | z),
• and optimize the Evidence Lower Bound (ELBO) instead of the intractable marginal likeli-

hood pθ (x).
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Pros

• Principled formulation: VAEs are grounded in Bayesian inference and variational methods,

giving a clear probabilistic interpretation of both training and inference.

• Amortized inference: The encoder qφ (z | x) allows fast, single-pass inference of latent codes

for new data, which can be reused for downstream tasks such as classification, clustering, or

editing.

• Interpretable latent space: As seen in the traversals above, the latent space often captures

semantic factors (pose, light, expression) in a smooth, continuous manifold.

• Fast sampling: Generating new data is efficient: sample z∼N (0,I) and decode once.

Cons

• Approximation gap: VAEs maximize a lower bound (ELBO), not the exact log-likelihood.

If the approximate posterior qφ (z | x) is too restricted (for example, diagonal Gaussian), the

model may underfit and assign suboptimal likelihood to the data.

• Blurry samples: With simple factorized Gaussian decoders (and the associated MSE-like

reconstruction loss), VAEs tend to produce over-smoothed images that lack the sharp, high-

frequency details achieved by PixelCNNs, GANs, or diffusion models.

Active Research Directions

Research on VAEs often focuses on mitigating these downsides while preserving their strengths:

• Richer posteriors: Replacing the diagonal Gaussian qφ (z | x) with more flexible families

such as normalizing flows or autoregressive networks to reduce the ELBO gap.

• Structured priors: Using hierarchical or discrete/categorical priors and structured latent

spaces to better capture factors of variation and induce disentanglement.

• Hybrid models: Combining VAEs with autoregressive decoders (e.g., PixelVAE), so that the

global structure is captured by z while local detail is modeled autoregressively.

Comparison: Autoregressive vs. Variational

Throughout this chapter, we have contrasted two major families of generative models. Figure 20.9

summarizes the trade-offs:

• Autoregressive models (PixelRNN / PixelCNN):

– Directly maximize pθ (x) with exact likelihood.

– Produce sharp, high-quality images.

– Are typically slow to sample from, since pixels are generated sequentially.

– Do not expose an explicit low-dimensional latent code.

• Variational models (VAEs):

– Maximize a lower bound on pθ (x) rather than the exact likelihood.

– Often produce smoother (blurrier) images with simple decoders.

– Are very fast to sample from once trained.

– Learn rich, editable latent codes that support interpolation and semantic control.

This comparison naturally raises the next question we will address: Can we combine these approaches

and obtain the best of both worlds?
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Figure 20.9: Comparison of autoregressive models and VAEs. Autoregressive models prioritize

exact likelihood and fine detail; VAEs prioritize latent structure and fast sampling. This motivates

hybrid architectures that seek to combine their respective strengths.
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20.3.1 VQ-VAE-2: Combining VAEs with Autoregressive Models

Motivation

Variational Autoencoders (VAEs) offer a principled latent variable framework for generative mod-

eling, but their outputs often lack detail due to oversimplified priors and decoders. In contrast,

autoregressive models such as PixelCNN produce sharp images by modeling pixel-level dependen-

cies but lack interpretable latent variables and are slow to sample from.

VQ-VAE-2 [514] combines these paradigms: it learns discrete latent representations via vector

quantization (as in VQ-VAE), and models their distribution using powerful autoregressive priors.

This approach achieves both high-fidelity synthesis and efficient, structured latent codes.

Architecture Overview

VQ-VAE-2 introduces a powerful combination of hierarchical encoding, discrete latent represen-

tations, and autoregressive priors. At its core, it improves upon traditional VAEs by replacing

continuous latent variables with discrete codes through a process called vector quantization.

• Hierarchical Multi-Level Encoder:

The input image x ∈ R
H×W×C is passed through two stages of convolutional encoders:

– A bottom-level encoder extracts a latent feature map ze
b ∈ R

Hb×Wb×d , where Hb < H,

Wb <W . This captures low-level image details (e.g., textures, edges).

– A top-level encoder is then applied to ze
b, producing ze

t ∈ R
Ht×Wt×d , with Ht < Hb,

Wt < Wb. This higher-level map captures global semantic information (e.g., layout,

object presence).

The spatial resolution decreases at each stage due to strided convolutions, forming a coarse-to-

fine hierarchy of latent maps.

• Vector Quantization and Codebooks:

Rather than passing the encoder outputs directly to the decoder, each position in the latent

maps is replaced by its closest vector from a learned codebook.

Intuition: Think of the codebook as a fixed “dictionary” of feature prototypes. Just as we

approximate a sentence using a limited vocabulary of words, VQ-VAE approximates an image

using a limited vocabulary of learnable feature vectors.

Each codebook is a set of K discrete embedding vectors:

C = {ek ∈ R
d}K

k=1

Quantization proceeds by computing, for each latent vector ze(i, j), its nearest codebook entry:

zq(i, j) = ek⋆ , where k⋆ = argmin
k

∥ze(i, j)− ek∥2

This process converts the encoder output ze ∈ R
Hl×Wl×d (for each level l ∈ {b, t}) into a

quantized tensor zq ∈ R
Hl×Wl×d , and a corresponding index map:

il ∈ {1, . . . ,K}Hl×Wl

The quantized representation consists of the code vectors z
q

l (i, j) = C (l)[il(i, j)].
Why this matters:

– It creates a discrete latent space with symbolic representations and structured reuse of

learned patterns.

– Discretization acts as a form of regularization, preventing the encoder outputs from

drifting.
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– Why not use continuous embeddings? In continuous VAEs, the model often “cheats”

by hiding microscopic details in the infinite precision of the latent vector. Discretization

forces the model to keep only the essential feature prototypes.

– Most importantly, it enables the use of autoregressive priors (PixelCNN) that model the

distribution over discrete indices. These models are exceptionally good at predicting dis-

crete tokens (like words in a language model) but struggle to model complex continuous

distributions.

• Shared Decoder (Coarse-to-Fine Reconstruction):

The quantized latents from both levels are passed to a shared decoder:

– The top-level quantized embedding map z
q
t ∈ R

Ht×Wt×d is first decoded into a coarse

semantic feature map.

– The bottom-level quantized embedding z
q

b ∈ R
Hb×Wb×d is then decoded conditioned on

the top-level output.

This coarse-to-fine strategy improves reconstruction quality and allows the decoder to combine

semantic context with fine detail.

• Autoregressive Priors (Trained After Autoencoder):

Once the VQ-VAE-2 autoencoder (i.e., encoders, decoder, and codebooks) has been trained to

reconstruct images, we introduce two PixelCNN-based autoregressive priors to enable data

generation from scratch.

These models operate over the discrete index maps produced during quantization:

– PixelCNNt models the unconditional prior p(it), i.e., the joint distribution over top-level

latent indices. It is trained autoregressively in raster scan order over the 2D grid Ht ×Wt .

– PixelCNNb models the conditional prior p(ib | it), i.e., the distribution of bottom-level

code indices given the sampled top-level indices. It is also autoregressive over the spatial

positions Hb×Wb, but each prediction is conditioned on both previous bottom-level

indices and the entire top-level map it .

Choice of Autoregressive Prior: PixelCNN vs. PixelRNN/LSTMs

While the VQ-VAE-2 architecture uses PixelCNN, other autoregressive sequence models exist.

It is important to understand the trade-offs that motivate this choice:

– Recurrent Models (PixelRNN, Diagonal BiLSTM): RNN-based approaches, such as

PixelRNN (which includes Row LSTM and Diagonal BiLSTM variants), are valid au-

toregressive models. Because they rely on recurrent hidden states, they theoretically have

an infinite receptive field and can model complex long-range dependencies effectively.

– Why PixelCNN is preferred: Despite the theoretical power of LSTMs, they are inher-

ently sequential—computing pixel t requires the hidden state from t−1. This makes

training slow and difficult to parallelize over large 2D grids. In contrast, PixelCNN uses

masked convolutions. This allows the model to compute the probability of all indices in

the map simultaneously during training (parallelization), offering a crucial speed and

scalability advantage for the high-resolution hierarchical maps in VQ-VAE-2.

Note on Dimensions: The PixelCNN does not input the high-dimensional VQ vectors (e.g.,

size 64). It inputs the indices (integers). Internally, the PixelCNN learns its own separate,

smaller embeddings optimized for sequence prediction.
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How does autoregressive sampling begin?

PixelCNN models generate a grid of indices one element at a time, using a predefined order

(e.g., row-major order). To start the generation process:

– The first pixel (i.e., top-left index it(1,1)) is sampled from a learned marginal distribution

(or initialized with a zero-padding context).

– Subsequent pixels are sampled conditioned on all previously generated values (e.g.,

it(1,2)∼ p(i1,2 | i1,1), and so on).

This sampling continues until all elements of it and ib are filled in.

How does this enable generation?

Once we have sampled both latent index maps:

1. Retrieve the quantized embeddings z
q
t = C (t)[it ] and z

q

b = C (b)[ib].
2. Feed both into the trained decoder: x̂ = Decoder(zq

t ,z
q

b).

This approach allows us to sample novel images with global coherence (via top-level modeling)

and local realism (via bottom-level refinement), while reusing the learned latent structure of

the VQ-VAE-2 encoder-decoder pipeline.

Summary Table: Dimensional Flow and Index Usage

Stage Tensor Shape Description

Input Image x H×W ×C Original RGB (or grayscale) image given as input to

the VQ-VAE-2 pipeline.

Bottom Encoder Out-

put ze
b

Hb×Wb×d Bottom-level continuous latent map produced by the

first encoder. Captures fine-scale features.

Top Encoder Output

ze
t

Ht ×Wt ×d Top-level continuous latent map obtained by passing

ze
b through the second encoder. Captures high-level,

coarse information.

Top-Level Index Map

it

Ht ×Wt At each spatial location (i, j), stores index of the nearest

codebook vector in C (t) for ze
t (i, j).

Bottom-Level Index

Map ib

Hb×Wb At each spatial location (i, j), stores index of the nearest

codebook vector in C (b) for ze
b(i, j).

Quantized Top-Level

z
q
t

Ht ×Wt ×d Latent tensor constructed by replacing each feature in

ze
t with the corresponding codebook vector from C (t)

using it .

Quantized Bottom-

Level z
q
b

Hb×Wb×d Latent tensor constructed by replacing each feature in

ze
b with the corresponding codebook vector from C (b)

using ib.

Reconstructed Image

x̂

H×W ×C Final decoded image produced by feeding z
q
t and z

q
b

into the decoder in a coarse-to-fine manner.

Table 20.1: Full data and dimensional flow in VQ-VAE-2 from raw input to final output, including

intermediate stages of encoding, quantization, and reconstruction.
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Next: Training and Inference Flow

Now that the architecture is defined, we proceed to describe the full training process. This includes:

• The VQ-VAE loss decomposition: reconstruction, codebook, and commitment losses.

• How gradients flow with the use of the stop-gradient operator.

• Post-hoc training of PixelCNNs over discrete index maps.

• Image generation during inference: sampling it → ib→ x̂.

Figure 20.10: VQ-VAE-2 architecture: hierarchical encoding using vector quantization at two levels,

followed by a decoder and autoregressive priors trained over the discrete code indices.

Training the VQ-VAE-2 Autoencoder

Objective Overview

The VQ-VAE-2 model is trained to reconstruct input images while simultaneously learning a

meaningful discrete latent space. Its objective function is composed of three terms:

LVQ-VAE-2 = Lrecon︸ ︷︷ ︸
Image Fidelity

+ Lcodebook︸ ︷︷ ︸
Codebook Update

+ β ·Lcommit︸ ︷︷ ︸
Encoder Regularization

Each term serves a different purpose in enabling a stable and effective quantized autoencoder.

We now explain each one.

1. Reconstruction Loss (Lrecon)

This term encourages the decoder to faithfully reconstruct the input image from the quantized latent

codes:

Lrecon = ∥x− x̂∥2
2

Here, x̂ = D(zq
t ,z

q

b) is the image reconstructed from the quantized top and bottom latent maps. This

is a pixel-wise squared error (or optionally a negative log-likelihood if modeling pixels probabilisti-

cally).

Why is the reconstruction sometimes blurry? The use of L2 loss (Mean Squared Error) mathemat-

ically forces the model to predict the mean (average) of all plausible pixel values.
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• Example: If the model is unsure whether an edge should be black (0) or white (255), the

“safest” prediction to minimize L2 error is gray (127). This averaging creates blur.

• L1 vs L2: While L1 loss forces the model to predict the median (which can be slightly

sharper/less sensitive to outliers), it still fundamentally penalizes pixel-level differences rather

than perceptual realism.

• Solution: To fix this, modern successors (like VQ-GAN) add an Adversarial Loss, which

penalizes the model if the texture looks “fake” or blurry, regardless of the pixel math.

2. Codebook Update (Lcodebook)

In VQ-VAE, the encoder produces a continuous latent vector at each spatial location, but the model

then quantizes this vector to the nearest entry in a learned codebook. Let

ze(i, j) ∈ R
d and C = {ek}K

k=1, ek ∈ R
d

denote the encoder output and a codebook of K embeddings, respectively. Quantization selects a

discrete index via a nearest-neighbor lookup:

k⋆(i, j) = argmin
k∈{1,...,K}

∥ze(i, j)− ek∥2 , zq(i, j) = ek⋆(i, j).

Why non-differentiability matters. The mapping ze 7→ k⋆ involves an argmin over discrete indices,

which is non-differentiable: infinitesimal changes in ze typically do not change the selected index k⋆.

Consequently, standard backpropagation cannot propagate gradients through the index selection to

instruct the encoder on how to adjust ze.

VQ-VAE resolves this by decoupling the updates:

• For the Encoder: It uses a straight-through gradient estimator, effectively copying gra-

dients from the decoder input zq directly to the encoder output ze during the backward pass

(treating quantization as an identity map for gradients).

• For the Codebook: It uses a separate update rule to explicitly move the embedding vectors

ek toward the encoder outputs that selected them.

There are two standard strategies to implement this codebook update: a gradient-based objective

(from the original VQ-VAE) and an EMA-based update (a commonly used stable alternative).

(a) Gradient-Based Codebook Loss (Original VQ-VAE) In this approach, the codebook embed-

dings are optimized by minimizing the squared distance between each selected embedding and the

corresponding encoder output. Crucially, we stop gradients flowing into the encoder for this term so

that it updates only the codebook:

Lcodebook =
∥∥sg[ze(i, j)]− ek⋆(i, j)

∥∥2

2
. (20.7)

Here sg[·] denotes the stop-gradient operator. This treats ze as a constant constant, ensuring that:

• Lcodebook pulls the code ek⋆ toward the data point ze (a prototype update).

• The encoder is not pulled toward the codebook by this loss, preventing the two from "chasing"

each other unstably.

To prevents the encoder outputs from drifting arbitrarily far from the codebook, VQ-VAE requires a

separate commitment loss that pulls the encoder toward the code:

Lcommit = β
∥∥ze(i, j)−sg[ek⋆(i, j)]

∥∥2

2
. (20.8)

Intuitively, Lcodebook updates the codes to match the data, while Lcommit updates the encoder to

commit to the chosen codes.
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(b) EMA-Based Codebook Update (Used in Practice) An alternative strategy, widely used in

modern implementations, updates the codebook using an Exponential Moving Average (EMA). To

understand this approach, it is helpful to view Vector Quantization as an online version of K-Means

clustering.

Intuition: The Centroid Logic. In ideal clustering, the optimal position for a cluster center

(codebook vector ek) is the average (centroid) of all data points (encoder outputs ze) assigned to it.

e
optimal
k =

∑ze assigned to k

Count of ze assigned to k

Unlike K-Means, which processes the entire dataset at once, deep learning processes data in small

batches. Updating the codebook to match the mean of a single batch would be unstable (the codebook

would jump around wildly based on the specific images in that batch).

The EMA Solution. Instead of jumping to the batch mean, we maintain a running average of the

sum and the count over time. We define two running statistics for each code k:

• Nk: The running count (total "mass") of encoder vectors assigned to code k.

• Mk: The running sum (total "momentum") of encoder vectors assigned to code k.

For a given batch, we first compute the statistics just for that batch:

nbatch
k = ∑

i, j

1[k⋆(i, j) = k], mbatch
k = ∑

i, j

1[k⋆(i, j) = k]ze(i, j).

We then smoothly update the long-term statistics using a decay factor γ (typically 0.99):

N
(t)
k ← γN

(t−1)
k︸ ︷︷ ︸

History

+(1− γ)nbatch
k︸ ︷︷ ︸

New Data

, M
(t)
k ← γM

(t−1)
k +(1− γ)mbatch

k . (20.9)

Deriving the Update. Finally, to find the current codebook vector ek, we simply calculate the

centroid using our running totals:

e
(t)
k =

Total Sum

Total Count
=

M
(t)
k

N
(t)
k

. (20.10)

Why update this way?

• Stability: This method avoids the need for a learning rate on the codebook. The codebook vec-

tors evolve smoothly as weighted averages of the data they represent, reducing the oscillatory

behavior often seen with standard gradient descent.

• Robustness: It mimics running K-Means on the entire dataset stream, ensuring codes eventu-

ally converge to the true centers of the latent distribution.

In this variant, the encoder is still trained via the straight-through estimator and commitment loss.

The only difference is that the codebook vectors are updated analytically, effectively smoothing out

the prototype dynamics.

Summary of Update Strategies

• Gradient-based: Updates ek⋆ via Lcodebook (Eq. 20.7). Requires balancing with commitment

loss; moves codes via standard optimizer steps.

• EMA-based: Updates ek via running statistics (Eq. 20.10). Acts as a stable, online K-Means

update, ignoring gradients for the codebook itself.
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3. Commitment Loss (Lcommit)

This term encourages encoder outputs to stay close to the quantized embeddings to which they are

assigned:

Lcommit = ∥ze−sg[e]∥2
2

Here, we stop the gradient on e, updating only the encoder. This penalizes encoder drift and forces it

to "commit" to one of the fixed embedding vectors in the codebook.

Why Two Losses with Stop-Gradients Are Needed

We require both the codebook and commitment losses to properly manage the interaction between

the encoder and the discrete latent space.

Intuition: The Dog and the Mat. Why can’t we just let both the encoder and codebook update

freely toward each other? Imagine trying to teach a dog (the Encoder) to sit on a mat (the Codebook

Vector).

• Without Stop Gradients (The Chase): If you move the mat toward the dog at the same time

the dog moves toward the mat, they will meet in a random middle spot. Next time, the dog

moves further, and the mat chases it again. The mat never stays in one place long enough to

become a reliable reference point (“anchor”). The codebook vectors would wander endlessly

(oscillate) and fail to form meaningful clusters.

• With Stop Gradients (Alternating Updates):

– Codebook Loss: We freeze the Encoder. We move the Codebook vector to the center of

the data points assigned to it (like moving the mat to where the dog prefers to sit). This

makes the codebook a good representative of the data.

– Commitment Loss: We freeze the Codebook. We force the Encoder to produce outputs

close to the current Codebook vector. This prevents the Encoder’s output from growing

arbitrarily large or drifting away from the allowed "dictionary" of codes.

The stop-gradient operator ensures that only one component — either the encoder or the codebook

— is updated by each loss term. This separation is essential for training stability.

Compact Notation for Vector Quantization Loss

The two terms above are often grouped together as the vector quantization loss:

LVQ = ∥sg[ze]− e∥2
2 +β∥ze−sg[e]∥2

2

Training Summary

1. Encode the image x into latent maps:

x→ ze
b→ ze

t

2. Quantize both latent maps:

z
q

b(i, j) = C
(b)[ib(i, j)], z

q
t (i, j) = C

(t)[it(i, j)]

where ib, it ∈ {1, . . . ,K} are index maps pointing to codebook entries.

3. Decode the quantized representations:

x̂ = D(zq
t ,z

q

b)
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4. Compute the total loss:

L = ∥x− x̂∥2
2 + ∑

ℓ∈{t,b}

[
∥sg[z(ℓ)e ]− e(ℓ)∥2

2 +β∥z(ℓ)e −sg[e(ℓ)]∥2
2

]

5. Backpropagate gradients and update:

• Encoder and decoder weights.

• Codebook embeddings.

Training Summary with EMA Codebook Updates

If using EMA for codebook updates, the total loss becomes:

LVQ-VAE-2 = ∥x− x̂∥2
2︸ ︷︷ ︸

Reconstruction

+β∥ze−sg[e]∥2
2︸ ︷︷ ︸

Commitment Loss

The codebook is updated separately using exponential moving averages, not through gradient-based

optimization.

This concludes the training of the VQ-VAE-2 autoencoder. Once trained and converged, the encoder,

decoder, and codebooks are frozen, and we proceed to the next stage: training the autoregressive

PixelCNN priors over the discrete latent indices.

Training the Autoregressive Priors

Motivation

Once the VQ-VAE-2 autoencoder has been trained to compress and reconstruct images via quantized

latents, we aim to turn it into a fully generative model. However, we cannot directly sample from the

latent codebooks unless we learn to generate plausible sequences of discrete latent indices — this is

where PixelCNN priors come into play.

These priors model the distribution over the discrete index maps produced by the quantization

process:

it ∈ {1, . . . ,K}Ht×Wt , ib ∈ {1, . . . ,K}Hb×Wb

Hierarchical Modeling: Why separate priors?

Two PixelCNNs are trained after the autoencoder components (encoders, decoder, codebooks) have

been frozen. We use two separate models because they solve fundamentally different probability

tasks:

• Top-Level Prior (PixelCNNt):

This models the unconditional prior p(it), i.e., the joint distribution over top-level latent

indices. It generates the “big picture” structure from scratch and has no context to rely on.

p(it) =
Ht

∏
h=1

Wt

∏
w=1

p(it [h,w] | it [< h, :], it [h,< w])

Here, each index is sampled conditioned on previously generated indices in raster scan order

— rows first, then columns.
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• Bottom-Level Prior (PixelCNNb):

This models the conditional prior p(ib | it). It fills in fine details (texture). Crucially, it is

conditioned on the top-level map. It asks: “Given that the top level says this area is a Face,

what specific skin texture pixels should I put here?”

p(ib | it) =
Hb

∏
h=1

Wb

∏
w=1

p(ib[h,w] | ib[< h, :], ib[h,< w], it)

Each index ib[h,w] is conditioned on both previously generated indices in ib and the full

top-level map it .

Overall Training Details

• The PixelCNNs are trained using standard cross-entropy loss on the categorical distributions

over indices.

• Training examples are collected by passing training images through the frozen encoder and

recording the resulting index maps it , ib.

• The models are trained separately:

– PixelCNNt : trained on samples of it
– PixelCNNb: trained on ib conditioned on it

Sampling Procedure

At inference time (for unconditional generation), we proceed as follows:

1. Sample ît ∼ p(it) using PixelCNNt .

2. Sample îb ∼ p(ib | ît) using PixelCNNb.

3. Retrieve quantized codebook vectors:

z
q
t [h,w] = C

(t)[ît [h,w]], z
q

b[h,w] = C
(b)[îb[h,w]]

4. Decode (zq
t ,z

q

b)→ x̂

Initialization Note

Since PixelCNNs are autoregressive models, they generate each element of the output one at a time,

conditioned on the previously generated elements in a predefined order (usually raster scan — left to

right, top to bottom). However, at the very beginning of sampling, no context exists yet for the first

position.

To address this, we initialize the grid of latent indices with an empty or neutral state — typically

done by either:

• Padding the grid with a fixed value (e.g., all zeros) to serve as an artificial context for the first

few pixels.

• Treating the first position (0,0) as unconditional and sampling it directly from the learned

marginal distribution.

From there, sampling proceeds autoregressively:

• For each spatial position (h,w), the PixelCNN uses all previously sampled values (e.g., those

above and to the left of the current location) to predict a probability distribution over possible

code indices.

• A discrete index is sampled from this distribution, placed at position (h,w), and used as context

for the next position.
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This procedure is repeated until the full latent index map is generated.

Advantages and Limitations of VQ-VAE-2

VQ-VAE-2 couples a discrete latent autoencoder with autoregressive priors (PixelCNN-style) over

latent indices. This hybrid design inherits strengths from both latent-variable modeling and autore-

gressive likelihood modeling, but it also exposes specific trade-offs.

• Advantages

– High-quality generation via abstract autoregression. Instead of predicting pixels

one-by-one, the prior models the joint distribution of discrete latent indices at a much

lower spatial resolution. This pushes autoregression to a more abstract level, capturing

long-range global structure (layout, pose) while the decoder handles local detail.

– Efficient sampling relative to pixel-space. By operating on a compressed (and hi-

erarchical) grid of latent indices, the effective sequence length is drastically reduced

compared to full-resolution pixel autoregression, making high-resolution synthesis more

practical.

– Modularity and reuse. The learned discrete autoencoder provides a standalone, reusable

image decoder. One can retrain the computationally cheaper PixelCNN prior for new

tasks (e.g., class-conditional generation) while keeping the expensive autoencoder fixed.

– Compact, semantically structured representation. Vector quantization yields a dis-

crete code sequence that acts as a learned compression of the image, naturally suiting

tasks like compression, retrieval, and semantic editing.

• Limitations

– Sequential priors remain a bottleneck. Despite the compressed grid, the priors generate

indices sequentially (raster-scan order). This inherent sequentiality limits inference speed

compared to fully parallel (one-shot) generators.

– Training complexity. The multi-stage pipeline—(i) training the discrete autoencoder,

then (ii) training hierarchical priors—is often more cumbersome to tune and engineer

compared to end-to-end approaches.

– Reconstruction bias (Blur). The autoencoder is typically trained with pixel-space losses

(like L2), which mathematically favor "average" predictions. This can result in a loss of

high-frequency texture details, as the model avoids committing to sharp, specific modes

in the output distribution.
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Qualitative Results

Figure 20.11: Class-conditional ImageNet generations from VQ-VAE-2. Autoregressive priors over

discrete latents capture global structure while the decoder synthesizes local detail.

Figure 20.12: Face samples (FFHQ) generated using VQ-VAE-2. The hierarchical latent structure

supports coherent global geometry and sharp textures.

The Pivot to Adversarial Learning. While VQ-VAE-2 achieved state-of-the-art likelihood results,

the limitations highlighted above—specifically the sequential sampling speed and the blur induced

by reconstruction losses—set the stage for our next topic.

To achieve real-time, one-shot generation and to optimize strictly for perceptual realism (ignoring

pixel-wise averages), we must abandon explicit density estimation. We now turn to Generative

Adversarial Networks (GANs), which solve these problems by training a generator not to match a

probability distribution, but to defeat a competitor.
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20.4 Generative Adversarial Networks (GANs)

Bridging from Autoregressive Models, VAEs to GANs

Up to this point, we have studied explicit generative models:

• Autoregressive models (e.g., PixelCNN) directly model the data likelihood p(x) by factorizing

it into a sequence of conditional distributions. These models produce high-quality samples but

suffer from slow sampling, since each pixel (or token) is generated sequentially.

• Variational Autoencoders (VAEs) introduce latent variables z and define a variational lower

bound on log p(x), which they optimize during training. While VAEs allow fast sampling,

their outputs are often blurry due to overly simplistic priors and decoders.

• VQ-VAE-2 combines the strengths of both worlds. It learns a discrete latent space via

vector quantization, and models its distribution using autoregressive priors like PixelCNN —

allowing for efficient compression and high-quality generation. Crucially, although it uses

autoregressive models, sampling happens in a much lower-resolution latent space, making

generation significantly faster than pixel-level autoregression.

Despite these advancements, all of the above methods explicitly define or approximate a probability

density p(x), or a lower bound thereof. This requires likelihood-based objectives and careful

modeling of distributions, which can introduce challenges such as:

• Trade-offs between sample fidelity and likelihood maximization (e.g., in VAEs).

• Architectural constraints imposed by factorized likelihood models (e.g., PixelCNN).

This leads us to a fundamentally different approach: Generative Adversarial Networks (GANs).

GANs completely sidestep the need to model p(x) explicitly — instead, they define a sampling

process that generates data, and train it using a learned adversary that distinguishes real from fake.

In the next section, we introduce this adversarial framework in detail.

Enter GANs

Generative Adversarial Networks (GANs) [180] are based on a radically different principle. Rather

than trying to compute or approximate the density function p(x), GANs focus on generating samples

that are indistinguishable from real data.

They introduce a new type of generative model called an implicit model: we never write down p(x),
but instead learn a mechanism for sampling from it.

20.4.1 Setup: Implicit Generation via Adversarial Learning

Sampling from the True Distribution

Let x ∼ pdata(x) be a sample from the real data distribution — for instance, natural images. This

distribution is unknown and intractable to express, but we assume we have access to i.i.d. samples

from it (e.g., a dataset of images).

Our goal is to train a model whose samples are indistinguishable from those of pdata. To this end,

we adopt a latent variable model:

• Define a simple latent distribution p(z), such as a standard Gaussian N (0,I) or uniform

distribution.

• Sample a latent code z∼ p(z).
• Pass it through a neural network generator x = G(z) to produce a data sample.

This defines a generator distribution pG(x), where the sampling path is:

z∼ p(z) ⇒ x = G(z)∼ pG(x)
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The key challenge is that we cannot write down pG(x) explicitly — it is an implicit distribution

defined by the transformation of noise through a neural network.

Discriminator as a Learned Judge

To bring pG closer to pdata, GANs introduce a second neural network: the discriminator D(x),
which is trained as a binary classifier. It receives samples from either the real distribution pdata or the

generator pG, and must learn to classify them as:

D(x) =

{
1 if x∼ pdata (real)

0 if x∼ pG (fake)

The generator G, meanwhile, is trained to fool the discriminator — it learns to produce samples that

the discriminator cannot distinguish from real data.

Adversarial Training Dynamics

The result is a two-player game: the generator tries to minimize the discriminator’s ability to detect

fakes, while the discriminator tries to maximize its classification accuracy.

Figure 20.13: Generative Adversarial Networks (GANs): A generator network transforms latent

noise z into samples. A discriminator tries to classify them as fake or real. The two networks are

trained adversarially.

• The discriminator D is trained to maximize the probability of correctly identifying real vs.

generated data.

• The generator G is trained to minimize this probability — i.e., to make generated data look

real.

At equilibrium, the discriminator is maximally uncertain (i.e., it assigns probability 0.5 to all inputs),

and the generator’s distribution pG matches the real distribution pdata.

Core Intuition

The fundamental idea of GANs is to reframe generative modeling as a discrimination problem: if

we can’t explicitly define what makes a good image, we can still train a network to tell real from

fake — and then invert this process to generate better samples.
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In the next part, we will formalize this game-theoretic setup and introduce the original GAN loss

proposed by Goodfellow et al. [180], including its connection to Jensen–Shannon divergence,

optimization challenges, and variants.

20.4.2 GAN Training Objective

We define a two-player minimax game between G and D. The discriminator aims to classify real vs.

fake images, while the generator tries to fool the discriminator. The objective function is:

min
G

max
D

V (D,G) = Ex∼pdata
[logD(x)]+Ez∼p(z) [log(1−D(G(z)))]

• The discriminator maximizes both terms:

– logD(x) encourages D to classify real data as real (i.e., D(x)→ 1).

– log(1−D(G(z))) encourages D to classify generated samples as fake (i.e., D(G(z))→
0).

• The generator minimizes the second term:

Ez∼p(z) [log(1−D(G(z)))]

This term is minimized when D(G(z))→ 1, i.e., when the discriminator believes generated

samples are real.

Figure 20.14: Adversarial training objective: the discriminator classifies between real and fake

images, while the generator tries to produce fake images that fool the discriminator.

The generator and discriminator are trained jointly using alternating gradient updates:

for t = 1, . . . ,T :

{
D← D+αD∇DV (G,D)

G← G−αG∇GV (G,D)

Difficulties in Optimization

GAN training is notoriously unstable due to the adversarial dynamics. Two critical issues arise:
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• No single loss is minimized: GAN training is a minimax game. The generator and discrimina-

tor influence each other’s gradients, making it difficult to assess convergence or use standard

training curves.

• Vanishing gradients early in training: When G is untrained, it produces unrealistic images.

This makes it easy for D to assign D(G(z))≈ 0, saturating the term log(1−D(G(z))). Since

log(1− x) flattens near x = 0, this leads to vanishing gradients for the generator early on.

Figure 20.15: At the start of training, the generator produces poor samples. The discriminator easily

identifies them, yielding vanishing gradients for the generator.

Modified Generator Loss (Non-Saturating Trick)

In the original minimax objective proposed in [180], the generator is trained to minimize:

Ez∼p(z) [log(1−D(G(z)))]

This objective encourages G to generate images that the discriminator believes are real. However, it

suffers from a critical problem early in training: when the generator is poor and produces unrealistic

images, the discriminator assigns very low scores D(G(z))≈ 0. As a result, log(1−D(G(z)))≈ 0,

and its gradient vanishes:

d

dG
log(1−D(G(z)))→ 0

This leads to extremely weak updates to the generator — just when it needs them most.

Solution: Switch the Objective

Instead of minimizing log(1−D(G(z))), we train the generator to maximize:

Ez∼p(z) [logD(G(z))]

This change does not alter the goal — the generator still wants the discriminator to classify its

outputs as real — but it yields stronger gradients, especially when D(G(z)) is small (i.e., when the

discriminator is confident the generated image is fake).

Why does this work?
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• For small inputs, log(1− x) is nearly flat (leading to vanishing gradients), while log(x) is

sharply sloped.

• So when D(G(z)) is close to zero, minimizing log(1−D(G(z))) gives negligible gradients,

while maximizing log(D(G(z))) gives large, informative gradients.

This variant is known as the non-saturating generator loss, and is widely used in practice for training

stability.

Figure 20.16: Modified generator loss: maximizing logD(G(z)) yields stronger gradients early in

training, when the discriminator is confident that generated samples are fake.

Looking Ahead: Why This Objective?

We have introduced the practical GAN training objective. But why this specific formulation? Is

it theoretically sound? What happens when D is optimal? Does the generator recover the true

data distribution pdata? In the next section, we analyze these questions and uncover the theoretical

justification for adversarial training.

20.4.3 Why the GAN Training Objective Is Optimal

Step-by-Step Derivation

We begin with the original minimax GAN objective from [180]. Our goal is to analyze the equilibrium

of this game by characterizing the global minimum of the value function.

min
G

max
D

Ex∼pdata
[logD(x)]+Ez∼p(z)[log(1−D(G(z)))] (Initial GAN objective)

= min
G

max
D

Ex∼pdata
[logD(x)]+Ex∼pG

[log(1−D(x))] (Change of variables / LOTUS)

= min
G

max
D

∫

X

(pdata(x) logD(x)+ pG(x) log(1−D(x)))dx (Definition of expectation)

= min
G

∫

X

max
D(x)

(pdata(x) logD(x)+ pG(x) log(1−D(x)))dx (Push max
D

inside integral)
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Justification of the Mathematical Transformations

To rigorously justify the steps above, we appeal to measure theory and the calculus of variations.

• Change of Variables (The Pushforward and LOTUS):

The second term in the original objective is expressed as an expectation over latent variables

z ∼ p(z), with samples transformed through the generator: x = G(z). This defines a new

distribution over images, denoted pG(x), formally known as the pushforward measure (or

generator distribution).

The transition from an expectation over z to one over x is a direct application of the Law of the

Unconscious Statistician (LOTUS). It guarantees that:

Ez∼p(z) [log(1−D(G(z)))] ⇒ Ex∼pG(x) [log(1−D(x))]

This reparameterization is valid because the pushforward distribution pG exists. For the

integral notation used subsequently, we further assume pG admits a density with respect to the

Lebesgue measure.

• Expectation to Integral:

Any expectation over a continuous random variable can be written as an integral:

Ex∼p(x)[ f (x)] =
∫

X

p(x) f (x)dx

This applies to both the real data term and the generator term, allowing us to combine them

into a single integral over the domain X .

• Pushing maxD into the Integral (Functional Separability):

The discriminator D is treated here as an arbitrary function defined pointwise over the domain

X . This is an assumption of non-parametric optimization (i.e., we assume D has infinite

capacity and is not constrained by a neural network architecture).

Crucially, there is no dependence or coupling between D(x1) and D(x2) for different values

of x. Therefore, the objective functional is separable, and maximizing the global integral is

equivalent to maximizing the integrand independently for each x.

max
D

∫

X

· · · dx =⇒
∫

X

max
D(x)
· · · dx

Solving the Inner Maximization (Discriminator)

We now optimize the integrand pointwise for each x ∈X , treating the discriminator output y = D(x)
as a scalar variable. Define the objective at each point as:

f (y) = a logy+b log(1− y), with a = pdata(x), b = pG(x)

This function is strictly concave on y ∈ (0,1), and we compute the maximum by solving f ′(y) = 0:

f ′(y) =
a

y
− b

1− y
= 0 ⇒ y =

a

a+b

Substituting back, the optimal value for the discriminator is:

D∗G(x) =
pdata(x)

pdata(x)+ pG(x)
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Here’s how the components map:

• pdata(x) (red) is the true data distribution at x.

• D(x) (purple) is the scalar output of the discriminator.

• pG(x) (dark yellow) is the generator’s distribution at x.

This solution gives us the discriminator’s best possible output for any fixed generator G. In

the next step, we will plug this optimal discriminator back into the GAN objective to simplify the

expression and reveal its connection to divergence measures.

Plugging the Optimal Discriminator into the Objective

Having found the optimal discriminator D∗G for a fixed generator, we now substitute it back into the

game to evaluate the generator’s performance.

Recall that our goal is to minimize the value function V (G,D). Since the inner maximization is

now solved, we focus on the Generator Value Function C(G), which represents the generator’s

loss when facing a perfect adversary:

C(G) = max
D

V (G,D) =V (G,D∗G)

To perform the substitution, let us first simplify the terms involving the optimal discriminator.

Given D∗G(x) =
pdata(x)

pdata(x)+pG(x)
, the complementary probability (probability that the discriminator thinks

a fake sample is fake) is:

1−D∗G(x) = 1− pdata(x)

pdata(x)+ pG(x)
=

pG(x)

pdata(x)+ pG(x)

We now replace D(x) and (1−D(x)) in the original integral objective with these expressions:

min
G

C(G) = min
G

∫

X

(
pdata(x) log

(
pdata(x)

pdata(x)+ pG(x)

)

︸ ︷︷ ︸
Expected log-prob of real data

+ pG(x) log

(
pG(x)

pdata(x)+ pG(x)

)

︸ ︷︷ ︸
Expected log-prob of generated data

)
dx

Rewriting as KL Divergences

The expression above resembles Kullback–Leibler (KL) divergence, but the denominators are sums,

not distributions. To fix this, we need to compare pdata and pG against their average distribution (or

mixture):

m(x) =
pdata(x)+ pG(x)

2

We manipulate the log arguments by multiplying numerator and denominator by 2. This "trick" is

mathematically neutral (multiplying by 1) but structurally revealing:

= min
G

(∫

X

pdata(x) log

(
1

2
· pdata(x)

pdata(x)+pG(x)
2

)
dx

+
∫

X

pG(x) log

(
1

2
· pG(x)

pdata(x)+pG(x)
2

)
dx

)
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Using the logarithmic identity log(a ·b) = loga+ logb, we separate the fraction 1
2

from the ratio

of distributions. Note that log(1/2) =− log2:

= min
G

(∫

X

pdata(x)

[
log

(
pdata(x)

m(x)

)
− log2

]
dx

+
∫

X

pG(x)

[
log

(
pG(x)

m(x)

)
− log2

]
dx

)

We now distribute the integrals. Since pdata and pG are valid probability distributions, they

integrate to 1. Therefore, the constant terms − log2 sum to −2log2 = − log4. The remaining

integrals are, by definition, KL divergences:

= min
G

(
KL

(
pdata

∥∥∥ pdata + pG

2

)
+KL

(
pG

∥∥∥ pdata + pG

2

)
− log4

)

Introducing the Jensen–Shannon Divergence (JSD)

The expression inside the minimization is related to the Jensen–Shannon Divergence (JSD),

which measures the similarity between two probability distributions. Unlike KL divergence, JSD is

symmetric and bounded. It is defined as:

JSD(p,q) =
1

2
KL

(
p

∥∥∥ p+q

2

)
+

1

2
KL

(
q

∥∥∥ p+q

2

)

Final Result: Objective Minimizes JSD

Substituting the JSD definition into our derived expression, the GAN training objective reduces to:

min
G

C(G) = min
G

(2 · JSD(pdata, pG)− log4)

Interpretation:

1. The term − log4 represents the value of the game when the generator is perfect (confusion).

Since log4 = 2log2, this corresponds to the discriminator outputting 0.5 (uncertainty) for

both real and fake samples: log(0.5)+ log(0.5) =− log4.

2. Since JSD(p,q)≥ 0 with equality if and only if p = q, the global minimum is achieved exactly

when:

pG(x) = pdata(x)

This completes the proof: under idealized conditions (infinite capacity discriminator), the

minimax game forces the generator to perfectly recover the data distribution.

Summary

Optimal discriminator: D∗G(x) =
pdata(x)

pdata(x)+ pG(x)

Global minimum: pG(x) = pdata(x)
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Important Caveats and Limitations of the Theoretical Result

The optimality result derived above provides a crucial theoretical anchor: it guarantees that the

minimax objective is statistically meaningful, identifying the data distribution as the unique global

optimum. However, bridging the gap between this idealized theory and practical deep learning

requires navigating several critical limitations.

• Idealized Functional Optimization vs. Parameterized Networks. The derivation treats the

discriminator D (and implicitly the generator G) as ranging over the space of all measurable

functions. This "non-parametric" or "infinite capacity" assumption is what allows us to solve

the inner maximization problem maxDV (G,D) pointwise for every x, yielding the closed-form

D∗G.

In practice, we optimize over restricted families of functions parameterized by neural net-

work weights, Dφ and Gθ . The shared weights in a network introduce coupling between

outputs—changing parameters to update D(x1) inevitably affects D(x2). Consequently: (i)

The network family may not be expressive enough to represent the sharp, pointwise optimal

discriminator D∗G; and (ii) Even if representable, the non-convex optimization landscape of the

parameters may prevent gradient descent from finding it. Thus, the theorem proves that the

game has the correct solution, not that a specific architecture trained with SGD will necessarily

reach it.

• The “Manifold Problem” and Vanishing Gradients. The JSD interpretation relies on

the assumption that pdata and pG have overlapping support with well-defined densities. In

high-dimensional image spaces, however, distributions often concentrate on low-dimensional

manifolds (e.g., the set of valid face images is a tiny fraction of the space of all possible pixel

combinations).

Early in training, these real and generated manifolds are likely to be disjoint. In this regime,

a sufficiently capable discriminator can separate the distributions perfectly, setting D(x)≈ 1

on real data and D(x) ≈ 0 on fake data. Mathematically, this causes the Jensen–Shannon

divergence to saturate at its maximum value (constant log2). Since the gradient of a constant

is zero, the generator receives no informative learning signal to guide it toward the data

manifold. This geometry is the primary cause of the vanishing gradient problem in the original

GAN formulation and motivates alternative objectives (like the non-saturating heuristic or

Wasserstein distance) designed to provide smooth gradients even when distributions do not

overlap.

• Existence vs. Convergence (Statics vs. Dynamics). The proof characterizes the static

equilibrium of the game: if we reach a state where pG = pdata, we are at the global optimum.

It says nothing about the dynamics of reaching that state.

GAN training involves finding a saddle point of a non-convex, non-concave objective using

alternating stochastic gradient updates. Such dynamical systems are prone to pathologies that

simple minimization avoids, including: (i) Limit cycles, where the generator and discriminator

chase each other in circles (rotational dynamics) without improving; (ii) Divergence, where

gradients grow uncontrollably; and (iii) Mode collapse, where the generator maps all latent

codes to a single "safe" output that fools the discriminator, satisfying the local objective but

failing to capture the full diversity of the data distribution.
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20.5 GANs in Practice: From Early Milestones to Modern Advances

20.5.1 The Original GAN (2014)

In their seminal work [180], Goodfellow et al. demonstrated that GANs could be trained to synthesize

digits similar to MNIST and low-resolution human faces. While primitive by today’s standards, this

was a significant leap: generating samples that look realistic without explicitly modeling likelihoods.

Figure 20.17: Samples from the original GAN paper [180]. The model learns to generate MNIST

digits and low-res face images.

20.5.2 Deep Convolutional GAN (DCGAN)

The Deep Convolutional GAN (DCGAN) architecture, proposed by Radford et al. [495], marked a

significant step toward stabilizing GAN training and improving the visual quality of generated images.

Unlike the original fully connected GAN setup, DCGAN leverages the power of convolutional neural

networks to better model image structure and achieve more coherent generations.

Architectural Innovations and Design Principles

• Convolutions instead of Fully Connected Layers: DCGAN eliminates dense layers at the

input and output of the networks. Instead, it starts from a low-dimensional latent vector

z∼N (0, I) and progressively upsamples it through a series of transposed convolutions (also

called fractional-strided convolutions) in the generator. This preserves spatial locality and

improves feature learning.

• Strided Convolutions (Downsampling): The discriminator performs downsampling using

strided convolutions rather than max pooling. This approach allows the network to learn its

own spatial downsampling strategy rather than rely on a hand-designed pooling operation,

thereby improving gradient flow and learning stability.

• Fractional-Strided Convolutions (Upsampling): In the generator, latent codes are trans-

formed into images through a series of transposed convolutions. These layers increase the

spatial resolution of the feature maps while learning spatial structure, enabling the model to

produce high-resolution outputs from compact codes.
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• Batch Normalization: Applied in both the generator and discriminator (except the genera-

tor’s output layer and discriminator’s input layer), batch normalization smooths the learning

dynamics and helps mitigate issues like mode collapse. It also reduces internal covariate shift,

allowing higher learning rates and more stable convergence.

• Activation Functions: The generator uses ReLU activations in all layers except the output,

which uses tanh to map values into the [−1,1] range. The discriminator uses LeakyReLU

activations throughout, which avoids dying neuron problems and provides gradients even for

negative inputs.

• No Pooling or Fully Connected Layers: The absence of pooling layers and fully connected

components ensures the entire network remains fully convolutional, further reinforcing locality

and translation equivariance.

Figure 20.18: DCGAN architecture overview. The generator (up) upsamples a latent vector using

transposed convolutions, while the discriminator (down) downsamples an image using strided

convolutions. Key components include batch normalization, ReLU/LeakyReLU activations, and the

absence of fully connected or pooling layers. Source: IdiotDeveloper.com.

https://idiotdeveloper.com/what-is-deep-convolutional-generative-adversarial-networks-dcgan/
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Why it Works

These design choices reflect the successful architectural heuristics of supervised CNNs (e.g., AlexNet,

VGG) but adapted to the generative setting. The convolutional hierarchy builds up spatially coherent

features, while batch normalization and careful activation design help maintain gradient signal

throughout training. As a result, DCGANs are capable of producing high-quality samples on natural

image datasets with far greater stability than the original GAN formulation.

Figure 20.19: Samples from DCGAN [495], generating bedroom scenes resembling training data.

Latent Space Interpolation

One striking property of DCGAN is that interpolating between two latent codes z1 and z2 leads to

smooth transitions in image space:

G((1−α)z1 +αz2), α ∈ [0,1]

Figure 20.20: Latent space interpolation using DCGAN [495]. The generator learns to warp semantic

structure, not just blend pixels.
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Latent Vector Arithmetic

DCGAN also revealed that semantic attributes can be disentangled in the latent space z. Consider

the following operation:

smiling man≈mean(zsmiling women)︸ ︷︷ ︸
attribute: smile

−mean(zneutral women)︸ ︷︷ ︸
remove woman identity

+mean(zneutral men)︸ ︷︷ ︸
add male identity

Figure 20.21: Attribute vector manipulation in latent space: generating “smiling man” from other

distributions [495].

A similar example uses glasses as a visual attribute:

zwoman with glasses = zman with glasses− zman without glasses + zwoman without glasses

Figure 20.22: Latent vector arithmetic applied to glasses: the model captures the concept of “adding

glasses” across identities.
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Evaluating Generative Adversarial Networks (GANs)

Evaluating generative adversarial networks (GANs) remains one of the most important (and still

imperfectly solved) problems in generative modeling. Unlike likelihood-based models (e.g., VAEs),

standard GAN training does not yield a tractable scalar objective such as log pθ (x) that can be

directly used for model selection. Instead, as derived in the previous section, GANs optimize a

minimax objective whose theoretical global optimum forces the generator to perfectly recover the

data distribution (pG = pdata), thereby minimizing the Jensen-Shannon Divergence (JSD).

Ideally, reaching this global minimum would satisfy all evaluation needs simultaneously. In practice,

however, we must evaluate the generator’s partial success along three distinct axes, each rooted in

the min-max formulation:

1. Fidelity (Realism): Do individual samples look real?

Min-Max mechanism: Enforced by the discriminator D. To minimize JSD, the generator

must ensure pG(x) is non-zero only where pdata(x) is high. If G generates samples outside the

manifold of real data, the optimal discriminator D∗ easily identifies and penalizes them.

2. Diversity / Coverage: Does the model represent all modes of the data?

Min-Max mechanism: Theoretically mandated by the condition pG = pdata. The JSD is only

zero if G covers every mode of the target distribution with the correct density. (In practice,

however, optimization instability often leads to mode collapse, where G captures only a single

mode to satisfy D).

3. Semantic Correctness: (Optional) Does the model respect conditioning?

Min-Max mechanism: In conditional GANs, the adversarial game extends to joint distributions.

The discriminator forces pG(x,y) to match pdata(x,y), ensuring that generated samples x are

not just realistic, but correctly aligned with their labels y.

Since the training loss value (ideally − log4) is often uninformative about which of these properties

is being satisfied or violated, modern practice relies on a bundle of external checks and scores [400,

543].

A practical rule: metrics are only comparable under the same protocol

Absolute scores (especially FID/KID) are generally not portable across different datasets, resolutions,

feature extractors, or preprocessing pipelines. Therefore, whenever you report a quantitative score,

you should also report the evaluation protocol: the real split used (train vs. held-out test), image

resolution, number of generated samples, the feature extractor φ(·), and the exact preprocessing (in

particular, resizing and cropping policy). In practice, protocol differences can easily cause score

swings that are comparable to (or larger than) architectural gains.

Qualitative vs. quantitative evaluation

We divide evaluation methods into two main categories: qualitative (human judgment, nearest-

neighbor checks) and quantitative (feature-space distribution metrics such as IS, FID, KID, and

precision/recall).

Qualitative Evaluation Methods

Manual inspection and preference ranking

The simplest evaluation technique is visual inspection of samples. Human judges may rate realism,

compare images side-by-side, or choose which model produces higher-quality samples.
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In practice, this is often implemented via crowd-sourcing (e.g., Amazon Mechanical Turk) or

via blinded pairwise preference tests [543]. The advantage is sensitivity to “semantic failures” that

scalar metrics may miss (odd textures, broken geometry, repeated artifacts). The drawbacks are that

it is subjective, expensive, and difficult to scale to large sweeps or to reproduce exactly.

Nearest-neighbor retrieval (memorization / leakage sanity check)

A standard diagnostic is to test whether generated samples are near-duplicates of training examples.

Given a generated image xg, retrieve its nearest neighbor among a reference set of real images {xr}
using a perceptual similarity measure.

Important: Pixel-space ℓ2 is typically misleading (tiny translations can dominate ℓ2 while being

visually negligible), so in practice one uses deep features (e.g., Inception/DINO/CLIP embeddings)

or perceptual distances such as LPIPS [778]. Qualitatively inspecting pairs (xg,NN(xg)) can reveal

direct copying. However, note the asymmetry of this test: “not identical to a training image” is not a

proof of generalization; it is only a guardrail against the most obvious memorization failure modes.

Quantitative Evaluation Methods

Most modern metrics compare distributions of embeddings

Many widely used GAN metrics begin by embedding images with a fixed, pretrained feature extractor

φ(·) ∈ R
d (classically Inception-v3 pool3 features). One then compares the empirical distributions

of real embeddings {φ(xr)} and generated embeddings {φ(xg)}. This is both a strength and a

limitation: the metric becomes sensitive to the semantics captured by φ , and insensitive to aspects φ

ignores. This dependence is especially important under domain shift (e.g., medical images), where

ImageNet-pretrained features may be a weak proxy for perceptual similarity.

Inception Score (IS)

Proposed by [543], the Inception Score uses a pretrained classifier pφ (y | x) to reward two properties:

(i) confidence on each generated sample (low conditional entropy H(Y | X)), and (ii) label diversity

across samples (high marginal entropy H(Y )). Let pφ (y) = Ex∼pG
[pφ (y | x)]. Then

IS = exp
(
Ex∼pG

[
DKL

(
pφ (y | x)∥ pφ (y)

)])
.

While IS historically appears in many papers, it is often de-emphasized in modern reporting because

it has several structural limitations:

• No real-vs.-fake comparison: IS depends only on generated samples, so it can increase even

if samples drift away from the true data distribution.

• Classifier and label-set bias: its meaning depends on whether the pretrained classifier is

appropriate for the domain.

• Can miss intra-class mode collapse: generating one “prototype” per class can yield a strong

IS while having poor within-class diversity.

Fréchet Inception Distance (FID)

The Fréchet Inception Distance (FID) [218] improves upon IS by directly comparing real and

generated feature distributions. Given real images {xr} and generated images {xg}, compute

embeddings u= φ(xr) and v= φ(xg), estimate empirical means and covariances (µr,Σr) and (µg,Σg),
and define the squared 2-Wasserstein (Fréchet) distance between the corresponding Gaussians:

FID = ∥µr−µg∥2
2 + Tr

(
Σr +Σg−2

(
Σ

1/2
r Σg Σ

1/2
r

)1/2
)
.
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Intuitively, the mean term ∥µr− µg∥2
2 captures a shift/bias between the feature clouds, while the

covariance term captures mismatch in spread and correlations (often aligned with diversity and

mode coverage). This real-vs.-fake distribution comparison is the main reason FID became a de

facto standard.

How to interpret FID (and why “typical ranges” are only rough)

• Lower is better: smaller FID indicates closer alignment between real and generated feature

distributions under φ .

• Non-zero even for real-vs.-real: if you compute FID between two finite real sample sets, it is

typically non-zero due to sampling noise.

• Context-dependent scale: absolute values depend strongly on dataset, resolution, and proto-

col; the safest use of FID is relative comparison under a fixed evaluation pipeline.

Figure 20.23: Geometric Interpretation of the Fréchet Inception Distance (FID) on Face

Generation. Pipeline: Real (blue) and generated (orange) face images are mapped to feature

space. FID compares their distributions via Gaussian statistics. (a) Mean Mismatch (Bias): The

centers differ (||µr−µg||2 > 0). Visual Interpretation: The generator misses the target distribution’s

"center of mass," often causing global shifts like incorrect color temperature (e.g., overly sepia) or

brightness offsets affecting all samples. (b) Covariance Mismatch (Diversity): The means are

aligned, isolating differences in spread and correlation. b1: Under-dispersion (Blur / Texture Loss).

Visual: Generated images appear blurry or texture-less compared to sharp real images. Geometric

Cause: The orange ellipsoid is nested inside the blue one. Blurring acts as a low-pass filter, removing

high-frequency variance. The generator "plays it safe" by averaging out details, effectively shrinking

the feature distribution (under-dispersion) and failing to fill the full volume of real facial textures.

b2: Mis-orientation (Attribute Skew). Visual: Generated images display a systematic bias, such

as wearing glasses in every sample, whereas the real data has a mix of glasses and no-glasses.

Geometric Cause: The orange ellipsoid is rotated or skewed. The model has learned incorrect

feature correlations—biasing the entire distribution toward a specific attribute (glasses) and failing

to align with the true principal axes of variation in the real population.
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FID limitations and implementation pitfalls (often the main source of confusion)

• Second-order (Gaussian) summary: FID matches only first and second moments of φ(x);
real feature distributions are typically multi-modal, so (µ,Σ) is a coarse approximation.

• Preprocessing sensitivity: resizing interpolation, cropping, and normalization can measur-

ably change FID. For fair comparisons, treat preprocessing as part of the metric definition

(“CleanFID-style” discipline: fixed, explicit preprocessing and extractor).

• Finite-sample effects: FID is a biased estimator with nontrivial variance at small sample

sizes; comparisons are most meaningful when computed with a large, fixed sample budget and

(ideally) repeated across random seeds/splits.

• Domain mismatch (feature-extractor bias): Inception features encode ImageNet semantics.

For domains far from ImageNet, it is common to replace φ with a domain-relevant encoder

(supervised or self-supervised), but then scores become extractor-specific and must not be

compared across different choices of φ .

A Note on Reconstruction Metrics (PSNR, SSIM, LPIPS)

Readers coming from classical image restoration (denoising, deblurring, super-resolution) often

report PSNR or SSIM. These are paired (reference-based) metrics: they require a pixel-aligned

ground-truth target x and a prediction x̂. This makes them appropriate for supervised tasks (where

a single “correct” answer exists) but fundamentally mismatched to unconditional GAN synthesis

(where no unique target exists) and often misleading even for conditional GANs.

• Peak Signal-to-Noise Ratio (PSNR). PSNR is simply a logarithmic rescaling of the pixelwise

Mean Squared Error (MSE):

PSNR(x, x̂) = 10log10

(
MAX2

I

MSE(x, x̂)

)
,

where MAXI is the maximum dynamic range (e.g., 255).

Why it fails for GANs: MSE relies on pixel-wise ℓ2 distance. It treats a tiny spatial shift (e.g.,

a nose moved by 1 pixel) as a massive error, yet it rewards blurring (averaging) because the

mean of many plausible edges minimizes the squared error. GANs, designed to produce sharp,

hallucinated details, often have poor PSNR despite superior perceptual quality.

• Structural Similarity Index (SSIM). SSIM attempts to quantify perceptual similarity by

comparing local statistics of image patches rather than raw pixels. For two patches x and x̂,

SSIM is the product of three terms:

SSIM(x, x̂) = l(x, x̂)α

︸ ︷︷ ︸
Luminance

·c(x, x̂)β

︸ ︷︷ ︸
Contrast

·s(x, x̂)γ

︸ ︷︷ ︸
Structure

1. Why do these terms match human perception? SSIM maps statistical moments to visual

concepts:

– Luminance (Mean µ): The average pixel intensity µx corresponds directly to the patch’s

brightness. A global lighting shift affects µ but leaves the content intact.

– Contrast (Variance σ ): The standard deviation σx measures the signal amplitude. A

flat grey patch has σ = 0 (no contrast), while a sharp edge has high σ . Blurring acts as a

low-pass filter, reducing σ , which SSIM penalizes as a loss of contrast.

– Structure (Covariance σxx̂): The normalized correlation measures if the patterns align

(e.g., do gradients point in the same direction?) regardless of their absolute brightness or

amplitude.
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2. Why SSIM fails for Semantic Realism: While better than PSNR, SSIM is still a low-level

statistic. It checks if local edges align, not if the image makes sense. A generated face with

distorted anatomy (e.g., an eye on the chin) might have excellent local contrast and texture

statistics (high SSIM if aligned to a reference), while being semantically broken. Conversely,

a plausible dog generated in a slightly different pose than the reference will suffer a huge

penalty.

LPIPS: Perceptual Similarity in Deep Feature Space

To bridge the gap between pixel metrics and human perception, LPIPS (Learned Perceptual Image

Patch Similarity) [778] measures distance in the activation space of a pre-trained deep network

(e.g., VGG or AlexNet).

LPIPS(x, x̂) = ∑
ℓ

∥wℓ⊙ (ψℓ(x)−ψℓ(x̂))∥2
2

Unlike PSNR, which sees a "bag of pixels," LPIPS sees "hierarchy of features." It correctly identifies

that a sharp, texture-rich image is closer to reality than a blurry average, even if the pixels don’t align

perfectly.

Other Quantitative Metrics (Complements, Not Replacements)

Since unconditional GANs cannot use paired metrics, we rely on distributional metrics to diagnose

specific failure modes.

• Precision and Recall (Manifold Approximation) [541]. These metrics separate Fidelity

(Precision) from Coverage (Recall).

How are they measured without the true manifold? Since we cannot know the true high-

dimensional manifold, we approximate it using k-Nearest Neighbors (k-NN) balls around the

available data samples in feature space.

– Precision (Quality): What % of generated samples fall within the k-NN balls of the real

data? (If low: generating garbage).

– Recall (Diversity): What % of real samples fall within the k-NN balls of the generated

data? (If low: mode collapse).

• Kernel Inception Distance (KID) [45]. KID is a non-parametric alternative to FID. Instead

of assuming feature embeddings follow a Gaussian distribution, KID measures the squared

Maximum Mean Discrepancy (MMD) between the real and generated distributions in a

reproducing kernel Hilbert space (RKHS).

1. Feature Embeddings (X and Y ). Like FID, KID operates in the feature space of a

pre-trained network φ(·) (usually Inception-v3). We define two sets of embeddings:

X = {φ(x(i)r )}m
i=1 (Real), Y = {φ(x( j)

g )}n
j=1 (Generated).

Note that the sample sizes m and n need not be equal. This is practically useful when the

test set size is fixed (e.g., m = 10,000) but you wish to evaluate a smaller batch of generated

samples (n = 2,000) for efficiency.



20.5 GANs in Practice: From Early Milestones to Modern Advances 1071

2. The Metric: Unbiased MMD. KID compares these sets using a polynomial kernel function,

typically k(u,v) = ( 1
d

u⊤v+1)3. The metric is computed via an unbiased estimator composed

of three terms:

K̂ID =
1

m(m−1) ∑
i ̸=i′

k(xi,xi′)

︸ ︷︷ ︸
Average Real–Real Similarity

+
1

n(n−1) ∑
j ̸= j′

k(y j,y j′)

︸ ︷︷ ︸
Average Gen–Gen Similarity

− 2

mn

m

∑
i=1

n

∑
j=1

k(xi,y j)

︸ ︷︷ ︸
Average Real–Gen Similarity

3. Intuition and Advantages. Conceptually, the formula measures "cohesion vs. separation":

if the distributions match, the average cross-similarity (real vs. generated) should equal the

average self-similarity (real vs. real).

– Unbiasedness: The primary advantage of KID over FID is that its estimator is unbiased.

FID systematically overestimates the distance when N is small (bias ∝ 1/N). KID’s

expected value equals the true population distance regardless of sample size.

– Practical Use: This makes KID the standard choice for **small datasets**, few-shot

generation, or limited compute budgets where generating 50,000 samples for stable FID

is infeasible.

• Classifier Two-Sample Tests (C2ST). This involves training a new, separate binary classifier

to distinguish Real vs. Fake samples after the GAN is trained.

– If Accuracy ≈ 50%: The distributions are indistinguishable (Perfect GAN).

– If Accuracy≫ 50%: The classifier can spot the fakes.

Difference from GAN Discriminator: The GAN discriminator is part of the dynamic training

game (moving target). C2ST is a static "post-game referee" that provides a sanity check on

whether the final result is truly indistinguishable.

• Geometry Score (GS) [290]. While FID measures density, GS measures Topology (shape

complexity). It builds a graph of the data manifold and compares topological features like

"number of holes" or "connected components". Intuition: If the real data forms a single

connected ring (like a donut) but the GAN generates two disconnected blobs, FID might

be low (blobs are in the right place), but GS will penalize the broken connectivity (wrong

topology).

Optional but important when editing matters: Latent-Space Diagnostics

Metrics like FID evaluate the destination (the final distribution of images). They do not tell us about

the journey—specifically, whether the latent space is well-structured for editing and interpolation. For

models like StyleGAN, we use Perceptual Path Length (PPL) [278] to quantify the "smoothness"

of the latent manifold.

The Intuition: Smooth vs. Rugged Landscapes. Imagine walking in a straight line through the

latent space. In a disentangled (good) space, a small step results in a small, consistent visual change

(e.g., a face slowly turning). In an entangled (bad) space, the same small step might cause sudden,

erratic jumps (e.g., a face suddenly changing identity or artifacts appearing and disappearing). PPL

measures this "bumpiness".
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How is it computed?

1. Interpolate: Pick two latent codes z1,z2 and take a tiny step ε along the path between them

(usually using spherical interpolation, slerp).

2. Generate: Decode the images at the start and end of this tiny step: x = G(z(t)) and x′ =
G(z(t + ε)).

3. Measure: Calculate the perceptual distance d = LPIPS(x,x′).
4. Normalize: PPL is the expected value of this distance normalized by the step size ε2.

Interpretation:

• Low PPL (Good): The latent space is perceptually uniform. Changes in latent values map

linearly to changes in visual appearance, making the model reliable for animation and editing.

• High PPL (Bad): The latent space contains "hidden" non-linearities or singularities where

the image changes drastically (or breaks) over short distances.

Limitations and Practical Guidelines

Robust evaluation requires Protocol Discipline. Absolute scores are meaningless without context.

• Report the Protocol: Always specify resolution, feature extractor (e.g., Inception-v3), and

resizing method (CleanFID).

• Triangulate: Never rely on one number. Pair a distributional metric (FID/KID) with a

diagnostic metric (Precision/Recall).

• Qualitative Guardrails: Always visually inspect nearest neighbors. A perfect FID of 0.0

means nothing if the model simply memorized the training set.

Summary

Evaluating GANs is difficult precisely because there is no single, universally meaningful scalar

objective. In practice, the most reliable approach is protocol discipline plus metric triangulation:

report a real-vs.-fake distribution metric (FID or KID), decompose fidelity vs. coverage (precision–

recall), and keep qualitative sanity checks (inspection and nearest neighbors). When Inception

features are a poor fit for the domain, the feature extractor must be treated as part of the metric

definition, and comparisons should be restricted accordingly.
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20.5.3 GAN Explosion

These results sparked rapid growth in the GAN research landscape, with hundreds of new papers and

variants proposed every year. For a curated (and still growing) collection of GAN papers, see: The

GAN Zoo.

Figure 20.24: The GAN explosion: number of GAN-related papers published per year since 2014.

Next Steps: Improving GANs

While the original GAN formulation [180] introduced a powerful framework, it often suffers from

instability, vanishing gradients, and mode collapse during training. These issues led to a wave of

improvements that we now explore in the following sections. Notable directions include:

• Wasserstein GAN (WGAN) — replaces the Jensen–Shannon-based loss with the Earth

Mover’s (Wasserstein) distance for smoother gradients.

• WGAN-GP — introduces a gradient penalty to enforce Lipschitz constraints without weight

clipping.

• StyleGAN / StyleGAN2 — enables high-resolution image synthesis with disentangled and

controllable latent spaces.

• Conditional GANs (cGANs) — allows conditioning the generation process on labels, text, or

other modalities.

These innovations make GANs more robust, interpretable, and scalable — paving the way for

practical applications in vision, art, and science.

20.5.4 Wasserstein GAN (WGAN): Earth Mover’s Distance

While original GANs achieved impressive qualitative results, their training can be highly unstable

and sensitive to hyperparameters. A key theoretical issue is that, under an optimal discriminator, the

original minimax GAN objective reduces to a constant plus a Jensen–Shannon (JS) divergence

term between pdata and pG [180]. In high-dimensional settings where the two distributions often

lie on (nearly) disjoint low-dimensional manifolds, this JS-based perspective helps explain why

the learning signal can become weak or poorly behaved. Below, we revisit this failure mode and

then introduce Wasserstein GAN (WGAN) [14], which replaces JS with the Wasserstein-1 (Earth

Mover) distance to obtain a smoother, geometry-aware objective.

https://github.com/hindupuravinash/the-gan-zoo
https://github.com/hindupuravinash/the-gan-zoo


1074 Chapter 20. Lecture 20: Generative Models II

Supports and Low-Dimensional Manifolds

• Support of a distribution: The subset of space where the distribution assigns non-zero

probability. In high-dimensional data like images, real samples lie on or near a complex,

low-dimensional manifold (e.g., the “face manifold” of all possible human faces).

• Generator manifold: Similarly, the generator’s outputs G(z) with z∼ p(z) occupy their own

manifold. Initially, the generator manifold often lies far from the data manifold.

Why the JS Divergence Fails in High Dimensions

In the original minimax GAN game, if the discriminator is optimized for a fixed generator, the value

function can be written as a constant plus a Jensen–Shannon divergence term [180]:

max
D

V (G,D) =− log4+2JS(pdata ∥ pG) .

Thus, improving the generator in the idealized setting corresponds to reducing a JS-based discrepancy

between pdata and pG. However, when these distributions have disjoint support, this discrepancy

saturates and yields a poorly behaved learning signal:

• Early training (negligible overlap): The generator typically produces unrealistic outputs,

so pG has little overlap with pdata. Ideally, we want a gradient that points towards the data.

However, the JS divergence saturates to a constant (log2) when supports are disjoint, providing

no smooth notion of “distance” to guide the generator.

• Weak or unreliable generator signal near an optimal discriminator: As the discriminator

becomes very accurate, its outputs saturate (D(x)≈ 1 on real, D(G(z))≈ 0 on fake). This can

yield vanishing or highly localized gradients for the generator, making training brittle and

contributing to mode collapse.

Non-Saturating Trick: A Partial Fix.

To mitigate immediate vanishing gradients, Goodfellow et al. [180] proposed replacing the minimax

generator objective with a different (but still consistent) surrogate.

In the original formulation, the generator minimizes the probability of the discriminator being correct:

L
minimax

G = Ez∼p(z)[log(1−D(G(z)))]. (20.11)

When the discriminator is strong (common early in training), D(G(z)) ≈ 0. In this region, the

function log(1− x) saturates—it becomes flat, yielding near-zero gradients.

The non-saturating alternative instead maximizes the discriminator’s output on fake samples:

max
G

Ez∼p(z)[logD(G(z))] ⇐⇒ min
G

L
NS

G =−Ez∼p(z)[logD(G(z))]. (20.12)

Why it helps: Although the optimum point theoretically remains the same, the gradient dynamics

differ. The function − log(x) rises sharply as x→ 0. This ensures the generator receives a strong

gradient signal precisely when it is performing poorly (i.e., when D(G(z)) ≈ 0), kickstarting the

learning process.
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The Need for a Better Distance Metric

Ultimately, the issue is not with the choice of generator loss formulation alone — it’s with the

divergence measure itself. Wasserstein GANs (WGANs) address this by replacing JS with the

Wasserstein-1 distance, also known as the Earth Mover’s Distance (EMD). Unlike JS, the Wasserstein

distance increases smoothly as the distributions move apart and remains informative even when they

are fully disjoint. It directly measures how much and how far the probability mass needs to be moved

to align pG with pdata. As a result, WGANs produce gradients that are:

• Typically less prone to saturation than JS-based objectives when the critic is trained near its

optimum.

• More reflective of distributional geometry (how mass must move), rather than only separa-

bility.

• Better aligned with incremental improvements in sample quality, often yielding smoother

and more stable optimization in practice.

This theoretical improvement forms the basis of WGANs, laying the foundation for more stable

and expressive generative training — even before considering architectural or loss refinements like

gradient penalties in WGAN-GP [194], which we’ll cover later as well.

Wasserstein-1 Distance: Transporting Mass

The Wasserstein-1 distance — also called the Earth Mover’s Distance (EMD) — quantifies how

much “mass” must be moved to transform the generator distribution pG into the real data distribution

pdata, and how far that mass must travel. Formally:

W (pdata, pG) = inf
γ∈Π(pdata,pG)

E(x,y)∼γ [∥x− y∥]

Here:

• γ(x,y) is a transport plan, i.e., a joint distribution describing how much mass to move from

location y∼ pG to location x∼ pdata.

• The set Π(pdata, pG) contains all valid couplings—that is, joint distributions γ(x,y) whose

marginals match the source and target distributions. Concretely, γ must satisfy:
∫

γ(x,y)dy = pdata(x) and

∫
γ(x,y)dx = pG(y). (20.13)

(In discrete settings, these integrals become sums). This constraint ensures mass conservation:

no probability mass is created or destroyed; it is simply moved from y to x.

• The infimum (inf) takes the best (lowest cost) over all possible plans γ ∈Π.

• The cost function ∥x−y∥ reflects how far one must move a unit of mass from y to x. It is often

Euclidean distance, but other choices are possible.

Example: Optimal Transport Plans as Joint Tables

To see this in action, consider a simple example in 1D:

• Generator distribution pG: 0.5 mass at y1 = 0, and 0.5 at y2 = 4.

• Data distribution pdata: 0.5 mass at x1 = 2, and 0.5 at x2 = 3.

Each plan defines a joint distribution γ(x,y) specifying how much mass to move between source and

target locations.

Plan 1 (Optimal):

γplan 1(x,y) =

y = 0 y = 4

x = 2 0.5 0.0
x = 3 0.0 0.5

⇒ Cost = 0.5 · |2−0|+0.5 · |3−4|= 1+0.5 = 1.5



1076 Chapter 20. Lecture 20: Generative Models II

Plan 2 (Suboptimal):

γplan 2(x,y) =

y = 0 y = 4

x = 2 0.0 0.5
x = 3 0.5 0.0

⇒ Cost = 0.5 · |3−0|+0.5 · |2−4|= 1.5+1 = 2.5

Plan 3 (Mixed):

γplan 3(x,y) =

y = 0 y = 4

x = 2 0.25 0.25

x = 3 0.25 0.25

⇒ Cost = ∑γ(x,y) · |x−y|= 2.0

Each table represents a valid joint distribution γ ∈ Π(pdata, pG), since the row and column sums

match the marginal probabilities. The Wasserstein-1 distance corresponds to the cost of the optimal

plan, i.e., the one with lowest total transport cost.

Why This Matters

• Meaningful even with disjoint support: Unlike JS (which saturates at log2 under dis-

joint support in the idealized analysis), Wasserstein-1 continues to vary with the geometric

separation between distributions.

• Captures geometric mismatch: It does not merely say “different”; it encodes how far

probability mass must move under an optimal coupling.

• Potentially informative signal early in training: When the critic is trained near its optimum

and the Lipschitz constraint is controlled, the resulting gradients can remain useful even when

pG is far from the data manifold.

Figure 20.25: Results of WGAN and WGAN-GP on the LSUN Bedrooms dataset. Compared to

standard GAN training, these objectives often yield more stable learning dynamics and improved

sample diversity in practice, driven by the Wasserstein-1 distance and Lipschitz-constrained critics.
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From Intractable Transport to Practical Training

The Wasserstein-1 distance offers a theoretically sound objective that avoids the saturation problems

of JS divergence. However, its original definition involves a highly intractable optimization over all

possible joint couplings:

W (pdata, pG) = inf
γ∈Π(pdata,pG)

E(x,y)∼γ [∥x− y∥]

Computing this infimum directly is not feasible for high-dimensional distributions like images.

The Kantorovich–Rubinstein duality makes the problem tractable by recasting it as:

W (pdata, pG) = sup
∥ f∥L≤1

(Ex∼pdata
[ f (x)]−Ex̃∼pG

[ f (x̃)]) ,

where the supremum is taken over all 1-Lipschitz functions f : X → R.

What These Expectations Mean in Practice

In actual training, we do not have access to the full distributions pdata and pG, but only to samples.

The expectations are therefore approximated by empirical means over minibatches:

Ex∼pdata
[ f (x)] ≈ 1

m

m

∑
i=1

f (x(i)), Ex̃∼pG
[ f (x̃)] ≈ 1

m

m

∑
i=1

f (G(z(i))),

where:

• {x(i)}m
i=1 is a minibatch sampled from the training dataset pdata.

• {z(i)}m
i=1 ∼ p(z), typically N (0, I), is a batch of latent codes.

• x̃(i) = G(z(i)) are the generated images.

How the Training Works (Maximize vs. Minimize).

In WGAN, the critic fw (parameterized by weights w) is trained to approximate the dual optimum

by widening the score gap between real and fake data.

1. The Critic Loss (Implementation View): Since deep learning frameworks typically minimize

loss functions, we invert the dual objective. We minimize the difference:

Lcritic = Ez∼p(z)[ fw(G(z))]
︸ ︷︷ ︸

Score on Fake

−Ex∼pdata
[ fw(x)]︸ ︷︷ ︸

Score on Real

. (20.14)

Minimizing this quantity is equivalent to maximizing the score on real data while minimizing

it on fake data.

2. The Generator Loss: The generator is updated to minimize the critic’s score on its output

(effectively trying to move its samples “uphill” along the critic’s value surface):

Lgen =−Ez∼p(z)[ fw(G(z))]. (20.15)

Intuitively, the critic learns a scalar potential function whose slopes point towards the data manifold,

and the generator moves its probability mass to follow these gradients.



1078 Chapter 20. Lecture 20: Generative Models II

Why This Makes Sense — Even if Samples Differ Sharply

This training might appear unintuitive at first glance:

• We are not directly comparing real and fake images pixel-by-pixel.

• The generator might produce very different images (e.g., noise) from real data in early training.

Yet, the setup works because:

• The critic learns a scalar-valued function f (x) that assigns a meaningful score to each image,

indicating how realistic it appears under the current critic.

• Even if two distributions have no overlapping support, the critic can still produce distinct

outputs for each — preserving a non-zero mean score gap.

• The generator then improves by reducing this gap, pushing pG closer to pdata in a distributional

sense.

In other words, we do not require individual generated samples to match real ones — only that, on

average, the generator learns to produce samples that fool the critic into scoring them similarly.

Summary

WGAN training works by:

1. Using minibatch means to estimate expectations in the dual Wasserstein objective.

2. Leveraging the critic as a 1-Lipschitz scoring function trained to separate real from fake.

3. Providing stable, non-vanishing gradients even when real and generated distributions are far

apart.

This principled approach turns adversarial training into a smooth, geometry-aware optimization

process — and lays the foundation for further improvements like WGAN-GP.

Side-by-Side: Standard GAN vs. WGAN

Component Standard GAN Wasserstein GAN (WGAN)

Objective
minG maxD

[
Ex∼pdata

logD(x)

+Ez∼p(z) log(1−D(G(z)))
]

minG max∥ f∥L≤1

[
Ex∼pdata

f (x)

−Ez∼p(z) f (G(z))
]

Output Type D(x) ∈ [0,1] (probability) f (x) ∈ R (score)

Interpretation Probability x is real Realism score for x

Training Signal Jensen–Shannon divergence Wasserstein-1 (Earth Mover) dis-

tance

Disjoint Supports JS saturates to log2; gradients van-

ish

Distance remains informative (with

Lipschitz critic)

Table 20.2: Compact comparison of standard GAN and Wasserstein GAN (WGAN) formulations.

What’s Missing: Enforcing the 1-Lipschitz Constraint

The dual WGAN formulation transforms the intractable Wasserstein distance into a solvable opti-

mization problem:

W (pdata, pG) = sup
∥ f∥L≤1

(Ex∼pdata
[ f (x)]−Ex∼pG

[ f (x)])
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However, this relies on a crucial condition: the function f must be 1-Lipschitz — that is, it cannot

change too quickly:

| f (x1)− f (x2)| ≤ ∥x1− x2∥ ∀x1,x2

This constraint ensures that the critic’s output is smooth and bounded — a key requirement to

preserve the validity of the dual formulation. Yet enforcing this constraint precisely over a deep

neural network is non-trivial. To address this, Arjovsky et al. [14] introduce a simple approximation:

weight clipping.

Weight Clipping: A Crude Approximation

After each gradient update during training, every parameter w in the critic is constrained to lie within

a compact range:

w← clip(w,−c,+c) with c≈ 0.01

The rationale is that limiting the range of weights constrains the magnitude of the output changes,

thereby approximating a 1-Lipschitz function. If the weights are small, then the critic function f (x)
cannot change too rapidly with respect to changes in x.

Benefits of WGAN

Despite using a crude approximation like weight clipping to enforce the 1-Lipschitz constraint,

Wasserstein GANs (WGAN) demonstrate compelling improvements over standard GANs:

• More interpretable training signal (often): When the critic is trained near its optimum, the

WGAN critic loss frequently correlates better with generator progress than standard GAN

discriminator losses, making it a more practical monitoring metric.

• Smoother optimization in challenging regimes: Because Wasserstein-1 varies continuously

with distributional shifts (including disjoint support), WGAN can yield less saturated and

more stable gradients than JS-based objectives, especially early in training.

• Reduced risk of mode collapse (not eliminated): By encouraging the generator to reduce

a transport-based discrepancy rather than only improving separability, WGAN training can

make collapse less likely in practice, though it does not guarantee full mode coverage.
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Figure 20.26: From Arjovsky et al. [14], Figure 4. Top: JS divergence estimates either increase

or remain flat during training, even as samples improve. Bottom: In unstable settings, the JS

loss fluctuates wildly and fails to reflect sample quality. These observations highlight a core issue:

standard GAN losses are not correlated with sample fidelity.

Figure 20.27: From Arjovsky et al. [14], Figure 3. Top: With both MLP and DCGAN generators,

WGAN losses decrease smoothly as sample quality improves. Bottom: In failed runs, both loss and

visual quality stagnate. Unlike JS-based losses, the WGAN critic loss serves as a reliable proxy for

training progress.
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Limitations of Weight Clipping in Practice

While simple to implement, weight clipping is an imprecise and inefficient method for enforcing the

1-Lipschitz constraint. It introduces multiple issues that degrade both the expressiveness of the critic

and the overall training dynamics:

• Reduced expressivity: Weight clipping constrains each parameter of the critic network to

lie within a small range (e.g., [−0.01,0.01]). This effectively flattens the critic’s function

space, especially in deeper architectures. The resulting networks tend to behave like near-

linear functions, as layers with small weights compound to produce low-variance outputs.

Consequently, the critic struggles to capture meaningful variations between real and generated

data — particularly in complex image domains — leading to weak or non-informative gradients

for the generator.

• Fragile gradient propagation: Gradient-based learning relies on consistent signal flow

through layers. When weights are clipped, two opposing issues can arise:

– If weights are too small, the gradients shrink with each layer — leading to vanishing

gradients, especially in deep networks.

– If weights remain non-zero but unevenly distributed across layers, activations can spike,

causing exploding gradients in certain directions due to unbalanced Jacobians.

These effects are particularly problematic in ReLU-like networks, where clipping reduces

activation diversity and gradient feedback becomes increasingly unreliable.

• Training instability and non-smooth loss: Empirical studies (e.g., Figure 4 in [14]) show that

critics trained under clipping oscillate unpredictably. In some iterations, the critic becomes too

flat to distinguish between real and fake inputs; in others, it becomes overly reactive to minor

differences. This leads to high-variance Wasserstein estimates and erratic training curves.

Worse, when the critic is underfit, the generator may receive biased or misleading gradients,

preventing effective mode coverage or long-term convergence.

Despite these challenges, weight clipping served its purpose in the original WGAN: it provided

a proof of concept that optimizing the Wasserstein-1 distance offers substantial advantages over

traditional GAN losses. However, it quickly became apparent that a more robust and mathematically

faithful mechanism was needed. This inspired Gulrajani et al. [194] to propose WGAN-GP —

which enforces Lipschitz continuity via a smooth and principled gradient penalty, significantly

improving stability and sample quality.
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20.5.5 WGAN-GP: Gradient Penalty for Stable Lipschitz Enforcement

While WGAN introduced a major improvement by replacing the JS divergence with the Wasserstein-

1 distance, its dual formulation relies on a key mathematical requirement: the critic f : X →R must

be 1-Lipschitz. In the original WGAN, this was enforced via weight clipping, which constrains

parameters to a small interval. As discussed, clipping is a coarse proxy for Lipschitz control and

often leads to underfitting (an overly simple critic) or brittle optimization.

To address this, Gulrajani et al. [194] proposed WGAN-GP, which replaces structural constraints

on parameters with a differentiable gradient penalty that directly regularizes the critic’s input

sensitivity in the region most relevant to training.

Theoretical Motivation: Lipschitz Continuity as “Controlled Sensitivity”

A function f is 1-Lipschitz if the change in its output is bounded by the change in its input:

| f (x1)− f (x2)| ≤ ∥x1− x2∥.

Intuitively, this imposes a global “speed limit” on the critic: small changes in the image should

not cause arbitrarily large changes in the critic score. When f is differentiable almost everywhere,

1-Lipschitzness implies

∥∇x f (x)∥2 ≤ 1 for almost every x ∈X ,

and (under mild regularity conditions) the converse holds as well. See Villani [646] for a rigorous

treatment of Lipschitz continuity in optimal transport.

The WGAN-GP Loss Function

WGAN-GP enforces this constraint softly via regularization. We train the critic to minimize

L
GP

critic = Ex̃∼pG
[ f (x̃)] − Ex∼pdata

[ f (x)]︸ ︷︷ ︸
WGAN critic loss (minimization form)

+ λ Ex̂∼px̂

[
(∥∇x̂ f (x̂)∥2−1)2

]

︸ ︷︷ ︸
gradient penalty

.

The generator is updated using the standard WGAN objective:

LG =−Ez∼p(z)

[
f (G(z))

]
.

Here λ is a regularization coefficient (typically λ = 10). The distribution px̂ is defined by the

interpolated samples used to evaluate the penalty, described next.

Interpolated Points: Enforcing a “Controlled Slope” Where It Matters Enforcing ∥∇ f∥ ≤ 1

everywhere in high-dimensional space is both intractable and unnecessary. WGAN-GP instead

enforces a controlled slope in the region that most strongly influences learning: the “bridge” between

current generated samples and real samples.

• The bridge intuition (local changes should cause local score changes): The generator

updates its parameters by backpropagating through the critic score f (G(z)). Consequently, the

geometry of f in the neighborhood of generated samples—and in the nearby region leading

toward real samples—determines the direction and stability of the generator’s gradient. If f

becomes too steep in this region, generator updates can become unstable; if f becomes too

flat, learning stalls.
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• Implementation via interpolation (sampling the bridge): WGAN-GP approximates this

bridge by sampling straight-line segments between random real and fake pairs. Given x∼ pdata,

x̃∼ pG, and ε ∼U [0,1], define

x̂ = ε x + (1− ε) x̃.

The distribution px̂ is the law of x̂ induced by this sampling procedure. The penalty is evaluated

on these x̂, encouraging the critic to behave like a well-conditioned “ramp” between real and

fake.

• An infinitesimal-change view (Explicit Intuition): For a small perturbation δ , a first-order

approximation gives

| f (x̂+δ )− f (x̂)| ≈ |⟨∇x̂ f (x̂),δ ⟩| ≤ ∥∇x̂ f (x̂)∥2 ∥δ∥2.

Thus, penalizing deviations of ∥∇x̂ f (x̂)∥2 from 1 explicitly enforces a controlled sensitivity:

it ensures that changing the image slightly along this bridge changes the critic score by a

predictable, bounded amount (roughly proportional to the change in the image).

Why Penalize Toward Norm 1 (Not Just “≤ 1”)? Formally, the Kantorovich–Rubinstein dual

requires ∥∇ f∥ ≤ 1. WGAN-GP uses the two-sided penalty (∥∇ f∥2− 1)2 as a practical way to

produce a critic that is both Lipschitz-compliant and useful for learning.

• Upper bound (preventing instability): Enforcing gradients near 1 automatically discourages

∥∇ f∥≫ 1, which would make the critic hypersensitive. This prevents the exploding gradients

that often destabilize standard GANs.

• Avoiding flat regions (ensuring signal): If the critic becomes flat on the bridge (∥∇ f∥ ≈ 0),

then f changes little as x̃ moves toward x. In this scenario, the generator receives a zero or

negligible gradient and stops learning. The two-sided penalty discourages such degeneracy by

encouraging a non-trivial slope on the bridge.

• A simple 1D example (Flat vs. Steep vs. Controlled): Consider a scalar input t ∈ [0,1]
parameterizing a path from fake (t = 0) to real (t = 1), and let the critic along this path be

f (t).
– Flat ( f ′(t)≈ 0): The critic outputs constant scores. The generator gets no signal.

– Steep ( f ′(t)≫ 1): The critic jumps rapidly. Generator updates are unstable and explode.

– Controlled ( f ′(t)≈ 1): The critic acts like a ramp. Moving t from 0 to 1 improves the

score steadily. This provides the ideal, constant-magnitude learning signal.

Comparison: Standard GANs vs. Clipped WGAN vs. WGAN-GP

1. Vs. Standard GANs: Standard GANs optimize a classification objective with a sigmoid

output. When the discriminator is perfect, the sigmoid saturates, and gradients vanish. WGAN-

GP uses a linear critic with a gradient penalty; this combination prevents saturation and

guarantees a steady flow of gradients even when the critic is accurate.

2. Vs. WGAN with Weight Clipping: Weight clipping constrains the critic’s parameters to

a box, which biases the network toward simple, linear functions and limits its capacity. In

contrast, WGAN-GP constrains the local slope of the function. This allows the parameters

themselves to be large, enabling the critic to learn complex, non-linear decision boundaries

(e.g., deep ResNets) while maintaining stability.
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Why This Avoids Over-Regularization Because the penalty is applied only on the interpolated

bridge samples x̂, the critic is not forced to satisfy a tight constraint everywhere in the vast input space

X . Instead, it is encouraged to be well-behaved precisely in the region that dominates generator

learning dynamics, yielding a practical compromise: controlled sensitivity where it matters, without

globally crippling the critic’s capacity.

Code Walkthrough: Penalty Computation Below is a robust PyTorch implementation of the

gradient penalty. Note the use of create_graph=True, which is essential because the penalty

depends on ∇x̂ f (x̂); updating the critic therefore requires differentiating through this gradient

computation.

1 def compute_gradient_penalty(critic, real_samples, fake_samples, device):

2 """

3 WGAN-GP gradient penalty: E[(||grad_xhat f(xhat)||_2 - 1)^2].

4 Assumes fake_samples are treated as constants during the critic update.

5 """

6 # Detach fake samples to avoid backprop to G during critic update

7 fake_samples = fake_samples.detach()

8

9 # 1) Sample interpolation coefficients and build x_hat

10 alpha = torch.rand(real_samples.size(0), 1, 1, 1, device=device)

11 alpha = alpha.expand_as(real_samples)

12 x_hat = (alpha * real_samples + (1 - alpha) * fake_samples).requires_grad_(True)

13

14 # 2) Critic output on interpolates

15 f_hat = critic(x_hat)

16

17 # 3) Compute grad_{x_hat} f(x_hat)

18 grad_outputs = torch.ones_like(f_hat)

19 gradients = torch.autograd.grad(

20 outputs=f_hat,

21 inputs=x_hat,

22 grad_outputs=grad_outputs,

23 create_graph=True, # enables backprop through the gradient norm

24 retain_graph=True

25 )[0]

26

27 # 4) Per-sample L2 norm and penalty

28 gradients = gradients.view(gradients.size(0), -1)

29 grad_norm = gradients.norm(2, dim=1)

30 return ((grad_norm - 1) ** 2).mean()

Step-by-step intuition:

(a) Sample & interpolate: Mix real and fake samples to form x̂, and set requires_grad_(True)

so gradients w.r.t. inputs are tracked.

(b) Differentiate through the critic: Use torch.autograd.grad to compute ∇x̂ f (x̂). Setting

create_graph=True is crucial so the penalty can backpropagate into critic parameters.

(c) Apply the penalty: Flatten per sample, compute ℓ2 norms, and penalize
(
∥∇x̂ f (x̂)∥2−1

)2
.
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Resulting Dynamics & Why It Helps

• Stabilized training: The critic avoids the pathological saturation or massive weight expansions

that occur with naive clipping. Its gradients remain “under control” precisely in the real-fake

frontier.

• More reliable gradients in practice: Compared to clipped WGANs, the critic is less likely

to become overly flat or excessively steep near the real–fake frontier, which often yields a

smoother and more informative learning signal for the generator.

• Minimal overhead, maximum benefits: The penalty is computed via a simple first-order

differentiation step. Empirically, it yields a more robust Lipschitz enforcement than globally

constraining network weights.

Interpreting the Loss Components

• The Wasserstein Estimate:

E[ f (x̃)]−E[ f (x)]

The critic minimizes Ex̃[ f (x̃)]−Ex[ f (x)], which is equivalent to maximizing Ex[ f (x)]−
Ex̃[ f (x̃)], thereby widening the real–fake score gap.

• The Gradient Penalty:

λ E

[
(∥∇x̂ f (x̂)∥2−1)2

]

Why penalize deviation from 1, rather than just values > 1? To maximize the Wasserstein

gap, the optimal critic tends to use as much slope as allowed (up to the Lipschitz limit) in

regions that separate real from generated samples. Penalizing deviation from 1 encourages

non-degenerate slopes (so infinitesimal changes in x̂ produce informative but bounded changes

in f (x̂)) while still controlling excessive gradients.

Key Benefits of the Gradient Penalty vs. Weight Clipping

• Precisely targeted constraint: By checking gradients only on line segments connecting real

and generated data, WGAN-GP avoids excessive regularization in unimportant regions.

• Avoids clipping pathologies: Hard-clipping forces weights into a small box, often causing

the critic to behave like a simple linear function. The soft gradient penalty allows for complex,

non-linear critics.

• Supports deeper architectures: WGAN-GP is compatible with deep ResNets without

suffering the instabilities or gradient vanishing often observed in clipped WGANs.

Practical Implementation Note: Avoid Batch Normalization A critical requirement for WGAN-

GP is that the critic must not use Batch Normalization. The gradient penalty is computed w.r.t.

individual inputs. BatchNorm couples samples in a batch, invalidating the independence assumption

of the penalty. Use Layer Normalization, Instance Normalization, or no normalization in the

critic (BatchNorm may still be used in the generator, since the gradient penalty is not taken w.r.t.

generator inputs).
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Figure 20.28: From Gulrajani et al. [194]. Inception scores (higher = better) for WGAN-GP vs. other

GAN methods. WGAN-GP converges consistently, demonstrating improved stability over time.

Architectural Robustness

One of the most compelling benefits of WGAN-GP is its architectural flexibility. It works reliably

with MLPs, DCGANs, and deep ResNets—even when using the same hyperparameters across

models.

Figure 20.29: From Gulrajani et al. [194]. Only WGAN-GP consistently trains all architectures with

a shared set of hyperparameters. This enables broader experimentation and performance gains.

State-of-the-Art Results on CIFAR-10 (At the Time of Publication)

In the experimental setup of Gulrajani et al. [194], WGAN-GP with a ResNet-based critic achieves

leading Inception scores on CIFAR-10 among the compared unsupervised baselines at the time

of publication. Since then, many subsequent GAN variants and training schemes have surpassed

these numbers; here, the table is best read as evidence that stable Lipschitz enforcement enables

higher-capacity architectures to train reliably and reach strong results under a fixed, controlled

comparison.
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Unsupervised Model Inception Score

ALI (Dumoulin et al.) 5.34 ± 0.05

DCGAN (Radford et al.) 6.16 ± 0.07

Improved GAN (Salimans et al.) 6.86 ± 0.06

EGAN-Ent-VI 7.07 ± 0.10

DFM 7.72 ± 0.13

WGAN-GP (ResNet) 7.86 ± 0.07

Table 20.3: CIFAR-10 Inception scores reported by Gulrajani et al. [194] for selected unsupervised

baselines.

Conclusion

WGAN-GP combines the theoretical strength of optimal transport with the practical stability of

smooth gradient regularization. It replaces rigid weight clipping with a principled, differentiable

loss term—enabling deeper architectures, smoother convergence, and high-quality generation across

domains. Its success laid the groundwork for many subsequent GAN improvements, including

conditional models and progressive training techniques.



1088 Chapter 20. Lecture 20: Generative Models II

Enrichment 20.6: The StyleGAN Family

The StyleGAN family, developed by Karras et al. [278, 279, 280], represents a major advancement

in generative modeling. These architectures build upon the foundational Progressive Growing

of GANs (ProGAN) [281], introducing a radically different generator design that enables better

disentanglement, fine-grained control, and superior image quality.

Enrichment 20.6.1: ProGAN Overview: A Stability-Oriented Design

ProGAN [281] stabilizes GAN training by progressively growing both the generator and discriminator

during optimization. Instead of learning to synthesize 1024×1024 images from the start, training

begins at a very low spatial resolution (typically 4×4) and then doubles resolution in stages:

42→ 82→ 162→ ·· · → 10242.

The core idea is that early stages learn global structure (pose, layout, coarse shape) in a low-

dimensional pixel space, while later stages specialize in high-frequency detail (texture, strands of

hair, wrinkles), reducing optimization shock and improving stability.

Training Strategy

ProGAN couples a resolution-aware curriculum with several stabilization heuristics (pixelwise

feature normalization, minibatch standard deviation, equalized learning rate). The progressive

schedule has two intertwined components: (i) architectural expansion and (ii) a fade-in transition

that smoothly introduces newly added layers.

• Progressive layer expansion (the core mechanism): To move from resolution R to 2R,

ProGAN does not restart training from scratch. Instead, it grows both networks by appending a

small, highest-resolution block while reusing the previously trained lower-resolution networks

unchanged as an Old Stack. Conceptually, the Old Stack has already learned how to model

and judge coarse structure at resolution R, so the newly added parameters can concentrate

on the incremental difficulty of handling finer-scale detail that only exists at resolution 2R.

This isolates the new learning problem, reduces optimization shock, and makes the adversarial

game substantially better conditioned.

– Generator growth (adding detail at 2R): Let GR denote the generator after training at

resolution R. When run up to its last internal feature tensor, it produces hR ∈ R
R×R×C,

which encodes a stable coarse scene description (global pose, layout, low-frequency

shape). To reach 2R, ProGAN upsamples this feature map and appends a New Block

(typically two 3×3 convolutions) that operates specifically at the new resolution. Finally,

a new toRGB head (a 1×1 convolution) projects the refined features to the three RGB

channels:

z→ ·· · → hR︸ ︷︷ ︸
Old Stack
(R×R×C)

upsample−−−−−→R
2R×2R×C Two 3×3 Convs−−−−−−−−−→

New Block
(learns fine detail)

h2R ∈R2R×2R×C′ toRGB−−−→
1×1

x2R︸︷︷︸
Output Image
(2R×2R×3)

.

In practice, upsampling is performed via nearest-neighbor interpolation (to avoid checker-

board artifacts from transposed convolutions), followed by the two 3×3 convolutions.
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The New Block and its toRGB head are the only components that must learn how to

express and render the additional degrees of freedom available at 2R (sharper edges,

higher-frequency texture statistics), while the Old Stack continues to provide the already-

learned global structure. This division of labor is the main reason progressive growing is

easier to optimize than training a full 2R-resolution generator from scratch, where global

geometry and micro-texture would need to be discovered simultaneously under a rapidly

strengthening discriminator.

– Discriminator growth (mirroring the generator at 2R): Let DR denote the discriminator

trained at resolution R. At this point in training, DR is already a competent “coarse

realism” judge: it has learned to map an R×R image (or, equivalently, an R×R feature

representation) to a scalar score by detecting global inconsistencies such as wrong layout,

implausible shapes, or broken low-frequency statistics.

When we increase the generator’s output resolution to 2R, the discriminator must expand

its perceptual bandwidth: it should still leverage its learned global judgment, but it must

also become sensitive to the new high-frequency evidence that now exists in 2R×2R

images (e.g., sharper edges, texture regularities, aliasing artifacts). ProGAN achieves

this without discarding the already-trained discriminator by growing the discriminator in

the opposite direction of the generator: it prepends a small, high-resolution processing

block at the input side, and then plugs the pre-trained DR (the Old Stack) in after this

new block.

Concretely, the new input-side block consists of a fromRGB stem (a 1×1 convolution)

that lifts raw pixels into feature space, followed by two 3×3 convolutions that operate

at resolution 2R to analyze fine-detail cues, and finally an average-pooling downsample

that produces an R×R feature tensor of the shape expected by the old discriminator

stack:

x2R︸︷︷︸
Input Image
(2R×2R×3)

fromRGB−−−−−→
1×1

R
2R×2R×C′

︸ ︷︷ ︸
High-res features
(new stem output)

Two 3×3 Convs−−−−−−−−−−−→
New Block

(critiques fine detail)

R
2R×2R×C avgpool−−−−−→ R

R×R×C
︸ ︷︷ ︸

Compatible input for
Old Stack DR

DR−−→ Score.

This construction makes the training dynamics much better behaved. The old discrimina-

tor DR is not “thrown away” and relearned; it remains intact and continues to process an

R×R representation with the same tensor shape and comparable semantic level as in the

previous stage. In other words, the newly added high-resolution block acts as a learned

front-end sensor: it observes the extra information available at 2R, extracts the fine-scale

evidence that was previously invisible, and then hands a downsampled summary to the

already-trained “global judge” DR.

As a result, the discriminator becomes stronger exactly where the generator gained new

degrees of freedom, but it does so in a controlled, localized way: most of the discrimina-

tor’s capability (the Old Stack) remains a stable foundation for judging geometry and

low-frequency structure, while only the new input-side block must learn how to interpret

and penalize higher-frequency artifacts. This is one of the key reasons progressive

growing improves stability compared to training a large 2R-resolution discriminator from

scratch, which can either (i) rapidly overpower the generator before it has learned coarse

structure, or (ii) destabilize optimization by forcing the entire discriminator to simul-

taneously learn both global and fine-scale judgments from an initially weak generator

distribution.
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• Fade-in mechanism (what is blended, when, and how it is controlled): Abruptly inserting

new layers can destabilize training, because the discriminator suddenly receives higher-

resolution inputs and the generator suddenly produces outputs through untrained weights.

ProGAN avoids this by linearly blending two image pathways during a dedicated transition

period.

At resolution 2R, the generator produces the final RGB image via:

xout
2R (α) = α · xhigh

2R +(1−α) · xlow
2R , α ∈ [0,1],

where:

– x
high
2R is the RGB output from the new block (upsample→ conv→ toRGB) at resolution

2R.

– xlow
2R is obtained by taking the previous stage output xR ∈ R

R×R×3 and upsampling it to

2R×2R (using the same deterministic upsampling).

The discriminator uses a matching fade-in at its input:

φ in
2R(α) = α ·φ high

2R +(1−α) ·φ low
2R ,

where φ
high
2R is the feature map after the new fromRGB and convs at 2R, and φ low

2R is obtained

by downsampling the input image to R×R and passing it through the previous-stage fromRGB

branch.

How α is scheduled in practice: α is treated as a deterministic scalar that is updated as

training progresses, typically linearly with the number of images processed during the fade-in

phase:

α ←min

(
1,

n

Nfade

)
,

where n is the number of training images seen so far in the fade-in phase and Nfade is a fixed

hyperparameter (often specified in “kimg”). Equivalently, in code one updates α once per

minibatch using the minibatch size. After the fade-in phase completes (α = 1), ProGAN

continues training at the new resolution for an additional stabilization phase with α fixed to 1.

• Stage completion criterion (schedule, not adaptive metrics): ProGAN uses a fixed curricu-

lum, not an adaptive convergence test. Each resolution stage consists of:

– Fade-in phase: linearly ramp α : 0→ 1 over Nfade images.

– Stabilization phase: continue training for Nstab images with α = 1.

The values Nfade,Nstab are resolution-dependent hyperparameters (often larger for high res-

olutions; e.g., hundreds of thousands of images per phase at 1282 and above in the original

setup).

• Upsampling and downsampling operators (why these choices): The generator uses nearest-

neighbor upsampling followed by 3×3 convolutions to avoid the checkerboard artifacts often

associated with transposed convolutions. The discriminator uses average pooling for down-

sampling to provide a simple, stable low-pass behavior, again followed by 3×3 convolutions.

Why This Works

Progressive growing decomposes a difficult high-resolution game into a sequence of easier games:

• Large-scale structure first: At 42 or 82, the networks learn global layout with very limited

degrees of freedom, reducing the chance that training collapses into high-frequency “noise

wars” between generator and discriminator.
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• Detail refinement later: Each new block primarily controls a narrower frequency band (finer

scales), so it can specialize in textures while earlier blocks preserve global semantics.

• Compute efficiency: Early stages are much cheaper, and a substantial portion of training

time occurs before reaching the largest resolutions, reducing total compute versus training

exclusively at full resolution.

Figure 20.30: Progressive Growing in ProGAN: Training begins with low-resolution images (e.g.,

4× 4). The generator grows by adding blocks that upsample feature maps and output higher-

resolution images, while the discriminator grows symmetrically by adding blocks that process

higher-resolution inputs before downsampling. Fade-in transitions blend old and new pathways to

avoid optimization shocks when new blocks are introduced. Figure adapted from [281], visualized

clearer in [696].
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Stabilization Heuristics

Beyond the progressive growth curriculum, ProGAN introduces three concrete modifications whose

shared goal is to make the generator–discriminator game numerically well-conditioned: (i) keep

generator signal magnitudes from drifting or “escalating” across depth and time, (ii) give the

discriminator an explicit handle on within-batch diversity so collapse is easier to detect, and (iii)

equalize the effective step sizes of different layers by a simple re-parameterization of convolution

weights.

• Pixelwise feature normalization (PixelNorm in the generator): ProGAN inserts a deter-

ministic normalization step after each convolutional layer in the generator (in the original

architecture, after the nonlinearity), applied independently at every spatial location and inde-

pendently for every sample in the minibatch. Let ah,w ∈ R
C denote the channel vector at pixel

(h,w) in some intermediate generator feature map (for a fixed sample). PixelNorm rescales

this vector by its root-mean-square (RMS) magnitude:

bh,w =
ah,w√

1
C ∑

C
j=1

(
a
( j)
h,w

)2
+ ε

, bh,w ∈ R
C.

This operation has no batch dependence and no learnable affine parameters (no γ,β ); it is a

pure, local rescaling.

Why this particular form helps. The generator repeatedly upsamples and refines features, so

small imbalances in per-layer gain can amplify over depth, leading to layers that operate at

very different dynamic ranges. PixelNorm acts as a per-location “automatic gain control”: it

keeps the feature energy at each pixel close to a fixed scale, while still allowing the network to

encode semantics in the direction of ah,w (i.e., relative patterns across channels). This tends

to reduce sensitivity to initialization and learning-rate choices, and it limits runaway signal

magnitudes without forcing the generator to be linear or low-capacity.

How it differs from common normalizers. BatchNorm normalizes using minibatch statistics,

coupling unrelated samples and potentially injecting batch-dependent artifacts into generation;

PixelNorm avoids this entirely by operating per sample and per spatial location. LayerNorm

typically uses both centering and scaling (subtracting a mean and dividing by a standard

deviation over channels, sometimes over larger axes depending on implementation) and

is usually paired with a learnable affine transform; PixelNorm performs only RMS-based

rescaling (no mean subtraction) and no learned gain/shift, which preserves sparsity patterns

induced by ReLU/leaky-ReLU and keeps the normalization as a lightweight stabilizer rather

than a feature-wise affine re-mapping. In the ProGAN context, the intent is not “feature

whitening” but simply keeping the generator’s internal signal scale under control throughout

progressive growth.

• Minibatch standard deviation (explicit diversity signal in the discriminator): Mode

collapse is difficult for a standard discriminator to detect because it scores each image inde-

pendently: if the generator outputs the same plausible-looking image for many latent codes,

per-sample classification can remain ambiguous even though the set of samples is clearly

non-diverse. ProGAN addresses this by appending a statistic that measures variation across

the minibatch to the discriminator’s activations near the end of the network.

Computation. Let f ∈R
N×C×H×W be a discriminator feature tensor for a minibatch of size N

at some late layer (typically when spatial resolution is already small).
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The minibatch standard deviation layer computes:

(a) Batch-wise deviation: compute the per-feature, per-location standard deviation across the

minibatch,

σc,h,w =

√
1

N

N

∑
n=1

(
fn,c,h,w−µc,h,w

)2
+ ε, µc,h,w =

1

N

N

∑
n=1

fn,c,h,w.

(b) Aggregate to a scalar: average σc,h,w over channels and spatial positions to obtain a single

scalar s ∈ R,

s =
1

CHW
∑

c,h,w

σc,h,w.

(c) Broadcast and concatenate: replicate s to a constant feature map s1 ∈ R
N×1×H×W and

concatenate it as an additional channel:

f ′ = Concat
(

f , s1
)
∈ R

N×(C+1)×H×W .

How it is used inside the discriminator: the next discriminator layers simply continue

operating on f ′ (now with C+1 channels). In particular, the subsequent convolution (or

final dense layers, depending on the stage) has trainable weights on this extra channel, so it

can treat s1 as a dedicated “diversity sensor” and incorporate it into the real/fake decision

alongside the usual learned features.

Why this discourages collapse. If the generator collapses so that samples in the batch become

nearly identical, then many discriminator features also become nearly identical across n,

driving σc,h,w (and hence s) toward zero. The discriminator can then learn a simple rule:

“real batches tend to exhibit non-trivial variation, whereas collapsed fake batches do not”.

This converts lack of diversity into an easily separable cue, forcing the generator to maintain

perceptible sample-to-sample variability in order to keep the discriminator uncertain. The

aggregation to a single scalar is deliberate: it provides a robust, low-variance signal that is

hard to game by injecting diversity into only a small subset of channels or spatial positions.

How this affects the generator (the feedback loop). Although s is computed inside the

discriminator, it changes the generator’s training signal because the discriminator’s output now

depends on a quantity that summarizes between-sample variation. During backpropagation,

gradients flow from the discriminator score through the weights that read the extra channel

s1, then through the computation of s, and finally back to the generator parameters via

the generated samples that contributed to f . Consequently, if the discriminator learns to

penalize low s as “fake”, the generator can only improve its objective by producing batches

for which the discriminator features are not nearly identical across different latent codes.

Operationally, this introduces a pressure to map different z values to meaningfully different

outputs (and intermediate discriminator activations), counteracting the collapsed solution in

which G(z1)≈ G(z2) for many z1 ̸= z2.
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• Equalized learning rate (EqLR): Standard initializations (like He or Xavier) scale weights

once at initialization to ensure stable signal magnitudes. However, this creates a side effect:

layers with different fan-ins end up with weights of vastly different magnitudes (e.g., 0.01

vs 1.0). Since modern optimizers (like Adam) often use a global learning rate, this leads to

update speeds that vary wildly across layers. ProGAN solves this by decoupling the parameter

scale from the signal scale.

The Mechanism (Runtime Scaling). First, recall that fan-in (n) is the number of input

connections to a neuron (e.g., k2 ·Cin for a convolution). In EqLR, we initialize all stored

parameters w from a standard normal distribution N (0,1). Then, during every forward pass,

we scale them dynamically:

weffective = w · c, where c =

√
2

n
.

The layer uses weffective for convolution, ensuring the output activations have unit variance

(just like He initialization).

Why this stabilizes training (The "Learning Speed" Intuition). The benefit appears during

the backward pass. To see why, compare a large layer (where weights must be small) under

both schemes:

– Standard He Initialization: We initialize w ≈ 0.01. If the learning rate is η = 0.01,

a single gradient step can change the weight from 0.01→ 0.02. This is a huge 100%

relative change, causing the layer to train explosively fast and potentially diverge.

– EqLR: We initialize w≈ 1.0. The constant c≈ 0.01 handles the scaling downstream.

Now, the same gradient update η = 0.01 changes the stored parameter from 1.0→ 1.01.

This is a stable 1% relative change.

Result: By keeping all stored parameters in the same range (w∼ 1), EqLR ensures that all

layers—regardless of their size—learn at the same relative speed. This prevents the "race

condition" where some layers adapt instantly while others lag behind, which is critical for the

delicate balance of GAN training.

Note on Inference: There is no train–test discrepancy. The scaling c is a fixed mathematical

constant derived from the architecture dimensions. It is applied identically during training and

inference.

Enrichment 20.6.1.1: Limitations of ProGAN: Toward Style-Based Generators

While ProGAN successfully synthesized high-resolution images with impressive quality, its architec-

ture introduced three fundamental limitations that StyleGAN sought to overcome:

• Latent code bottleneck: The latent vector z ∼N (0, I) is injected only once at the input.

Its influence can weaken in deeper layers, which are responsible for fine-grained texture and

microstructure.

• Entangled representations: High-level attributes such as pose, identity, and background

are mixed in the latent space, so small perturbations in z can produce unpredictable coupled

changes across multiple factors.

• Lack of stochastic control: Fine-scale stochastic details (e.g., pores, hair microstructure, sub-

tle lighting variation) are not explicitly controlled or reproducibly isolatable in the generator.

These limitations motivated a rethinking of the generator design—leading to StyleGAN, which

introduces multi-resolution modulation, explicit stochastic inputs, and a non-linear mapping from z

to intermediate style vectors to improve disentanglement and controllability.
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Enrichment 20.6.2: StyleGAN: Style-Based Synthesis via Latent Modulation

While ProGAN succeeded in generating high-resolution images by progressively growing both

the generator and discriminator, its architecture left a core limitation unresolved: the latent code

z ∼N (0, I) was injected only at the input layer of the generator. As a result, deeper layers —

responsible for fine-grained details — received no direct influence from the latent space, making it

difficult to control semantic factors in a disentangled or interpretable way.

StyleGAN, proposed by Karras et al. [278], addresses this by completely redesigning the generator,

while keeping the ProGAN discriminator largely unchanged. The key idea is to inject the latent

code — transformed into an intermediate vector w ∈W — into every layer of the generator. This

turns the generator into a learned stack of stylization blocks, where each resolution is modulated

independently by semantic information.

This architectural shift repositions the generator not as a direct decoder from latent to image, but as

a controllable, hierarchical stylization process — enabling high-quality synthesis and fine-grained

control over attributes like pose, texture, and color.

Figure 20.31: StyleGAN architecture: The latent code z is first mapped to w, which then controls

AdaIN layers across the generator. Stochastic noise is injected at each layer for texture variation.

Image adapted from [278].
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Key Architectural Ideas

(1) Mapping Network (Z →W ):

Instead of injecting the latent vector z ∈ R
d directly into the generator, StyleGAN introduces a

learned mapping network — an 8-layer MLP that transforms z into an intermediate latent vector

w = f (z) ∈W . This design serves two main purposes:

• Alleviating entanglement (empirically): The original latent space Z tends to entangle unrelated

attributes — such as pose, hairstyle, and facial expression — making them difficult to control

independently. The mapping network learns to reparameterize the latent space into W , which

is observed (empirically) to be more disentangled: specific dimensions in w often correspond to

localized and semantically meaningful variations.

• Improved editability: The intermediate latent space W facilitates smoother interpolation and

manipulation. Small movements in w tend to yield isolated, predictable image changes (e.g.,

adjusting skin tone or head orientation) without unintentionally affecting other factors.

Why Not Just Increase the Dimensionality of z?

A natural question arises: could increasing the dimensionality of the original latent vector z achieve

the same effect as using a mapping network? In practice, the answer is no — the limitation lies not

in the capacity of z, but in its geometry.

Latents drawn from N (0, I) are distributed isotropically: all directions in Z are equally likely,

with no preference for meaningful directions of variation. This forces the generator to learn highly

nonlinear transformations to decode useful structure from z, often leading to entangled image features.

Merely increasing the dimension expands the space without addressing this fundamental mismatch.

By contrast, the mapping network explicitly learns to warp Z into W , organizing it such that

different axes correspond more closely to semantically interpretable changes. While not theoretically

guaranteed, this empirically observed disentanglement leads to significant improvements in image

control, interpolation quality, and latent traversal. Karras et al. [278] demonstrate that using w ∈W

consistently outperforms direct use of z — even with larger dimension — in terms of editability and

semantic structure.

(2) Modulating Each Layer via AdaIN (Block A):

In ProGAN, the latent code z is injected only once at the input. To prevent signal magnitude

escalation, ProGAN uses PixelNorm, which forces every feature vector to unit norm. While stable,

this is rigid: it applies the same normalization rule to every image, denying the latent code the ability

to emphasize or suppress specific features sample-by-sample.

The Feature Statistics Hypothesis: What is “Style”? To understand StyleGAN’s solution, we

must first define what “style” means in the context of Convolutional Neural Networks. Building on

insights from neural style transfer [248], StyleGAN relies on the Feature Statistics Hypothesis:

• Spatial Layout (Content): The relative spatial locations of peaks and valleys in a feature map

encode geometry (e.g., “an eye is at pixel (10,10)”).

• Global Statistics (Style): The channel-wise mean and variance encode the texture or appear-

ance (e.g., “how strong are the edges globally?” or “what is the background lighting?”).

Under this hypothesis, we can alter the “style” of an image simply by overwriting its feature map

statistics, without needing to modify the spatial layout directly.
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The “Wash and Paint” Mechanism (AdaIN). StyleGAN replaces PixelNorm with Adaptive

Instance Normalization (AdaIN), turning each synthesis layer into a latent-controlled feature-

styling module.

Unlike neural style transfer, which borrows statistics from a reference image, StyleGAN predicts

the target statistics from the intermediate latent code w. The operation proceeds in two steps:

Step 1: The Wash (Instance Normalization). First, we strip the input features of their current style

statistics. Let xℓ ∈ R
N×Cℓ×Hℓ×Wℓ be the activation tensor at layer ℓ. For each sample i and channel c,

we compute the spatial mean µ and standard deviation σ across the dimensions (Hℓ,Wℓ):

Norm(xℓ,i,c) =
xℓ,i,c−µℓ,i,c

σℓ,i,c
.

This “wash” removes the global energy and offset from the feature map while preserving its relative

spatial structure. Ideally, the network retains where the features are (the layout), but forgets how

strong they are.

Step 2: The Paint (Latent-Driven Modulation). Next, StyleGAN “paints” new statistics onto this

canonical canvas. The latent w is projected via a learned affine transform Aℓ into style parameters:

(γℓ(w),βℓ(w)) = Aℓ(w), γℓ,βℓ ∈ R
Cℓ .

These parameters are broadcast across the spatial dimensions (Hℓ,Wℓ) to modulate the normalized

features:

AdaIN(xℓ,w) = γℓ(w)︸ ︷︷ ︸
Scale

⊙Norm(xℓ)+βℓ(w)︸ ︷︷ ︸
Bias

.

Why does this work? (Mathematical Derivation). We can prove that this operation forces the

output features to have exactly the statistics dictated by w. Let x̂ = Norm(x). By construction, its

spatial mean is 0 and variance is 1. The statistics of the output y = γ x̂+β are:

E[y] = E[γ x̂+β ] = γE[x̂]+β = β ,

√
Var[y] =

√
Var[γ x̂+β ] =

√
γ2Var[x̂] = γ.

Thus, for every layer ℓ, the pair (βℓ(w),γℓ(w)) is precisely the layer’s “style”: it directly dictates

the baseline and contrast of every feature channel.

Intuition: The “Global Control Panel” Analogy. Imagine each channel c is a specific feature

detector (e.g., Channel 42 detects “vertical wrinkles”). The AdaIN parameters act as a global control

panel for these detectors:

• Scale γℓ,c (The Volume Knob): This controls the gain or contrast.

– High γ: The volume is up. The detector’s response is amplified. Deep, sharp wrinkles

appear wherever the layout indicates.

– Low γ: The volume is down. The feature is muted or washed out.

• Bias βℓ,c (The Offset Slider): This controls the baseline presence.

– High β : The feature is active everywhere (e.g., brightening the global lighting condition).

– Low β : The feature is suppressed below the activation threshold.
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Key Limitations: Spatially Uniform and Channel-Wise Control. While powerful, the AdaIN

mechanism imposes two strict algebraic constraints on how the latent code w can influence the

image:

• Spatially Uniform Control: The parameters γℓ(w) and βℓ(w) are scalars that are broadcast

over all spatial locations (Hℓ,Wℓ). This means w cannot directly specify “brighten the top-left

corner” differently from the bottom-right. It can only modulate the entire feature detector

globally. (Note: Localized effects like a glint can still be produced via the spatial layout of the

input features xℓ, but w cannot selectively target them).

• Channel-Wise (Diagonal) Control: The modulation acts on each channel independently. The

affine transformation scales and shifts individual feature detectors but cannot mix or rotate

them based on the latent code. Any coordination between channels must be handled implicitly

by the convolutional weights.

The Downside: Normalization Artifacts (“Droplets”). These limitations—specifically the In-

stance Normalization step (The “Wash”)—are the primary motivation for StyleGAN2. Because

AdaIN re-normalizes every feature map to unit variance, it discards the relative signal strength

between channels. To bypass this, the generator learns to create localized spikes in signal magnitude

(blobs or “droplets”) in the background. These spikes inflate the variance σ , allowing the generator

to manipulate the normalization constant and effectively preserve signal magnitude elsewhere. Style-

GAN2 resolves this by removing explicit normalization in favor of a new weight demodulation

scheme, which preserves the benefits of style modulation without causing these artifacts.

Why this matters (Hierarchical Control): Despite the limitation, this mechanism yields the

disentanglement properties StyleGAN is famous for:

• Explicit separation of layout and appearance: The spatial arrangement flows through the

convolutions (the “content”), while w acts as an external controller that overwrites the statistics

(the “style”).

• Sample-dependent behavior: The same convolutional filters behave differently for different

images because their operating points are modulated by w.

• Coarse-to-fine control: By modulating early layers, w controls the statistics of coarse features

(pose, shape). By modulating deeper layers, it controls fine details (colors, micro-textures).

(3) Fixed Learned Input (Constant Tensor):

A second innovation in StyleGAN is the use of a fixed learned input tensor: a constant trainable

block of shape 4×4×C, shared across all samples. Unlike earlier GANs, where z or w was reshaped

into an initial feature map, StyleGAN treats this constant as a base canvas.

All variation is introduced after this tensor, via style-based AdaIN modulation and additive noise.

This decoupling is only viable because AdaIN provides a mechanism to inject sample-specific

statistics into every layer. Without such modulation, a fixed input would collapse to identical outputs;

with AdaIN, global structure emerges from the constant canvas, while semantic and stylistic variation

is progressively layered in.

This design enforces:

• Consistent spatial structure: A shared input encourages stable layouts (e.g., facial geometry),

while variations arise from modulation.

• Stronger disentanglement: Since w no longer defines spatial structure, it can focus on

semantic and appearance attributes.
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(4) Stochastic Detail Injection (Block B):

To introduce variation in fine-grained details, StyleGAN adds Gaussian noise per spatial location.

A single-channel noise map is drawn from N (0,1), broadcast across channels, scaled by learned

per-channel strengths, and added:

x′ = x+ γ ·noise, γ ∈ R
C.

This stochastic injection (Block B) allows natural variability (e.g., freckles, hair strands) without

affecting global style.

Together, Blocks A and B mark a conceptual shift. Instead of mapping latent codes directly into

images, StyleGAN decomposes generation into:

• Global, semantic variation: style-modulated via affine AdaIN.

• Local, stochastic variation: injected via per-layer noise.

Summary of changes from the original AdaIN: In Huang & Belongie’s work, AdaIN is a non-

parametric alignment of statistics between two images [248]. StyleGAN modifies it into a parametric

operator: style statistics are no longer extracted but predicted from latent codes. This repurposing

enables a constant input tensor, because all per-sample variation is reintroduced through AdaIN and

noise.

(5) Style Mixing Regularization: Breaking Co-Adaptation Across Layers

A key goal of StyleGAN is to enable disentangled, scale-specific control over the synthesis process:

early generator layers should influence coarse structure (e.g., face shape, pose), while later layers

refine medium and fine details (e.g., eye color, skin texture). This structured control relies on the

assumption that styles injected at each layer should work independently of one another.

However, if the generator always receives the same latent vector w ∈ W at all layers during

training, it may fall into a form of co-adaptation: early and late layers jointly specialize to particular

combinations of attributes (e.g., blond hair only appears with pale skin), resulting in entangled

features and reduced diversity.

Style Mixing Regularization disrupts this overfitting by occasionally injecting two distinct styles

into the generator during training:

• Two latent codes z1,z2 ∼Z are sampled and mapped to w1 = f (z1), w2 = f (z2).
• At a randomly chosen resolution boundary (e.g., 16×16), the generator applies w1 to all earlier

layers and switches to w2 for the later layers.

Why this works: Because the generator is trained to synthesize coherent images even when style

vectors abruptly change between layers, it cannot rely on tight correlations across resolutions. Instead,

each layer must learn to independently interpret its style input. For example:

• If early layers specify a round face and neutral pose (from w1), then later layers must correctly

render any eye shape, hair color, or lighting (from w2), regardless of what w1 “would have”

dictated.

• This prevents the network from implicitly coupling attributes (e.g., enforcing that a certain pose

always goes with a certain hairstyle), which helps achieve true scale-specific disentanglement.

Result: Style Mixing acts as a form of regularization that:

• Improves editing robustness, as individual w vectors can be manipulated without unexpected

side effects.
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• Enables style transfer and recombination, where coarse features can be swapped indepen-

dently of fine features.

• Encourages the generator to learn modularity, treating layer inputs as semantically indepen-

dent rather than jointly entangled.

(6) Perceptual Path Length (PPL): Quantifying Disentanglement in Latent Space

One of the defining features of a well-disentangled generative model is that interpolating between

two latent codes should cause predictable, semantically smooth changes in the generated output. To

formalize this idea, StyleGAN introduces the Perceptual Path Length (PPL) — a metric designed

to measure the local smoothness of the generator’s mapping from latent codes to images.

PPL computes the perceptual distance between two very close interpolated latent codes in W -space.

Specifically, for two samples w1,w2 ∼W , we linearly interpolate between them and evaluate the

visual difference between outputs at a small step:

PPL = Ew1,w2∼W

[
1

ε2
·LPIPS(G(w(ε)),G(w(0)))

]
, w(ε) = (1− ε)w1 + εw2,

where ε ≪ 1 (e.g., ε = 10−4) and G(w) is the image generated from w.

What Is LPIPS?

The Learned Perceptual Image Patch Similarity (LPIPS) metric [778] approximates human-

perceived visual differences by comparing the feature activations of two images in a pretrained deep

network (e.g., VGG-16). Unlike pixel-wise distances, LPIPS captures semantic similarity (e.g.,

facial expression, lighting) and is insensitive to small, perceptually irrelevant noise. This makes it

especially suitable for assessing smoothness in generated outputs.

Why PPL Matters — and How It Relates to Training

PPL serves two key roles:

• Evaluation: A low PPL score implies that the generator’s mapping is smooth — small steps

in W lead to controlled, localized changes in the image. High PPL values, in contrast, signal

entanglement — for example, where a minor shift might simultaneously change pose and hairstyle.

• Regularization (StyleGAN2): StyleGAN2 adds a path length regularization term that en-

courages consistent image changes per unit movement in W . This is implemented by randomly

perturbing latent codes and penalizing variance in the image-space response, pushing the generator

toward more linear and disentangled behavior.

Crucially, PPL also helps diagnose the effectiveness of the generator’s latent modulation mechanisms,

including AdaIN and noise injection. Improvements in PPL correlate with better interpretability and

higher-quality style control. In this sense, PPL provides a complementary lens to adversarial loss

functions — it doesn’t measure realism per se, but rather semantic coherence under manipulation.

(7) Loss Functions: From WGAN-GP to Non-Saturating GAN + R1

While StyleGAN’s architecture is central to its performance, stable training dynamics are equally

crucial. To this end, the authors explored two major loss formulations across different experiments

and datasets:

• WGAN-GP [194] — used for datasets like CelebA-HQ and LSUN, following the ProGAN

pipeline. This loss minimizes the Wasserstein-1 distance while enforcing 1-Lipschitz continuity

of the critic via a soft gradient penalty on interpolated samples.
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• Non-Saturating GAN with R1 Regularization [424] — used in more recent experiments with

the FFHQ dataset. This formulation applies a gradient penalty only to real samples, improving

local stability and enabling deeper generators to converge reliably. To reduce computational

overhead, the penalty is often applied lazily (e.g., every 16 steps).

These loss functions are not mutually exclusive with the perceptual evaluation tools like PPL. In fact,

StyleGAN’s most robust results — especially in FFHQ — combine:

1. R1-regularized non-saturating loss for stable GAN convergence,

2. Path length regularization to encourage disentangled and smooth latent traversals (i.e., low

PPL),

3. And LPIPS-based evaluation for empirical disentanglement measurement.

Together, these tools enable StyleGAN to not only generate photorealistic images, but also produce

consistent, interpretable, and user-controllable latent manipulations — a key departure from earlier

GANs where realism and control often conflicted.
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Summary and Additional Contributions

Beyond its architectural innovations — such as intermediate latent modulation, per-layer AdaIN,

and stochastic noise injection — StyleGAN owes part of its success to the introduction of the

Flickr-Faces-HQ (FFHQ) dataset. Compared to CelebA-HQ, FFHQ offers higher quality and

broader diversity in age, ethnicity, accessories, and image backgrounds, enabling more robust and

generalizable training.

This combination of structural disentanglement and dataset diversity allows StyleGAN to generate

not only high-fidelity images, but also provides fine-grained control over semantic and local attributes.

These advances collectively position StyleGAN as a foundational step toward interpretable and

high-resolution image synthesis.

Figure 20.32: StyleGAN results on high-resolution image synthesis. The model can generate diverse,

photorealistic outputs for both faces and cars at resolutions up to 1024×1024. These images are

synthesized from latent codes using layerwise style modulation and stochastic detail injection. From

Karras et al. [278].

Emerging Capabilities

By separating global structure and local texture, StyleGAN enabled applications previously difficult

in traditional GANs:

• Interpolation in latent space yields smooth, identity-preserving transitions.

• Truncation tricks can improve image quality by biasing w toward the center of W .

• Latent space editing tools can manipulate facial attributes with high precision.

This architectural shift — from latent vector injection to layer-wise modulation — laid the foundation

for follow-up work on improved realism, artifact removal, and rigorous disentanglement.



20.6 Enrichment 20.6: The StyleGAN Family 1103

Enrichment 20.6.3: StyleGAN2: Eliminating Artifacts, Improving Training Stability

StyleGAN2 [280] fundamentally refines the style-based generator framework, resolving key lim-

itations of the original StyleGAN—most notably the so-called water droplet artifacts, excessive

dependence on progressive growing, and training instabilities in high-resolution image synthesis. By

removing or carefully restructuring problematic normalization modules, and by rethinking how noise

and style manipulations are injected, StyleGAN2 achieves higher fidelity, improved consistency, and

better disentanglement.

Enrichment 20.6.3.1: Background: From StyleGAN1 to StyleGAN2

StyleGAN1 (often termed StyleGAN1) introduced Adaptive Instance Normalization (AdaIN)

in multiple generator layers, thereby allowing each feature map to be rescaled by learned style

parameters. While this unlocked highly flexible style control and improved image quality, it also

produced characteristic water droplet-like artifacts, most evident beyond 64×64 resolution.

According to [280], the culprit lies in channel-wise normalization. AdaIN standardizes each

feature map independently, removing not just its absolute magnitude but also any cross-channel

correlations. In many cases, these correlations carry important relational information, such as spatial

coherence or color harmony. By discarding them, the generator loses a mechanism to maintain

consistent patterns across channels. In an effort to “sneak” crucial amplitude information forward,

the network learns to insert extremely sharp, localized activation spikes. These spikes dominate the

channel statistics at normalization time, effectively bypassing AdaIN’s constraints. Unfortunately,

the localized spikes persist as structured distortions in the final images, creating the recognizable

“droplet” effect.

Figure 20.33: Systemic artifacts in StyleGAN1 (“droplets”). Because AdaIN normalizes feature

maps per channel, the generator injects localized spikes that skew normalization statistics. These

spikes ultimately manifest as structured artifacts. Source: [280].

To resolve these issues, StyleGAN2 reexamines the generator’s foundational design. Rather than

normalizing activations via AdaIN, it shifts style control to a weight demodulation paradigm, ensuring

that channel relationships remain intact. By scaling weights before convolution, the generator can

preserve relative magnitudes across channels and avoid the need for spurious spikes.

Beyond demodulation, StyleGAN2 also relocates noise injection, removes progressive growing, and

employs new regularization strategies, leading to improved stability and sharper image synthesis.

We outline these core innovations below.
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Enrichment 20.6.3.2: Weight Demodulation: A Principled Replacement for AdaIN

Context and Motivation: In the original StyleGAN (StyleGAN1), each layer applied Adaptive

Instance Normalization (AdaIN) to the activations post-convolution, enforcing a learned mean

and variance on each channel. This eroded cross-channel relationships and caused the network to

insert “activation spikes” to reintroduce lost amplitude information, giving rise to “droplet” artifacts.

StyleGAN2 addresses this by normalizing the weights instead of the activations, thereby preserving

channel coherence and eliminating those artifacts.

High-Level Flow in a StyleGAN2 Generator Block:

1. Input Feature Map and Style Code. Each block receives:

• The input feature map from the preceding layer (or from a constant input if it is the first

block).

• A latent code segment wlatent specific to that layer, from the block A. In practice, wlatent

is generated by an affine transform applied to W (the style vector shared across layers,

typically after a learned mapping network).

2. Optional Upsampling (Skip Generator): Before passing the feature map into the convolution,

StyleGAN2 may upsample the spatial resolution if this block operates at a higher resolution

than the previous one. In the simplified “skip-generator” design, upsampling occurs right

before the convolution in each block (rather than as a separate training phase, as in progressive

growing).

3. Weight Modulation:

w′i jk = si · wi jk, where si = affine
(
wlatent

)
i
.

The style vector wlatent is used to generate a set of scale factors {si}. These factors modulate

(i.e., rescale) the convolution’s filter weights by channel i. As a result, each channel’s influence

on the output can be boosted or suppressed depending on the style.

4. Weight Demodulation:

w′′i jk =
w′i jk√

∑i ∑k

(
w′i jk

)2
+ ε

.

After modulation, each output channel j is normalized so that the final “modulated+demodulated”

filter weights {w′′i jk} remain in a stable range. Crucially, this step does not standardize the ac-

tivations channel-by-channel; it only ensures that the overall filter magnitudes do not explode

or vanish.

5. Convolution:

output = Conv
(
input, w′′

)
.

The network now applies a standard 2D convolution using the newly modulated-and-demodulated

weights w′′i jk. The resulting activations reflect both the incoming feature map and the style-

dependent scaling, but without discarding cross-channel relationships.
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Why This Avoids the Pitfalls of AdaIN.

• No Post-Activation Reset: Unlike AdaIN, where each channel’s mean/variance is forcibly

re-centered, weight demodulation never re-normalizes each activation channel in isolation.

• Preserved Relative Magnitudes: Because the filters themselves incorporate style scaling before

the convolution, the resulting activations can naturally maintain the relationships among

channels.

• Prevents “Spikes”: The generator no longer needs to create sharp activation peaks to reintro-

duce magnitude differences lost by AdaIN’s normalization.

Figure 20.34: In StyleGAN2, style control moves from post-convolution (AdaIN) to a weight-centric

approach: each block uses (1) an affine transformation of the latent code, (2) weight modulation,

(3) weight demodulation, and (4) a normal convolution. Adapted from [280], figure by Jonathan

Hui [250].

Maintaining Style Control: Even though the normalizing step moves from the activation space to

the weight space, the style vector (wlatent) still dictates how each channel’s contribution is scaled. This

ensures layer-wise flexibility over high-level attributes (e.g., color palettes, facial geometry, textures)

without imposing uniform channel normalization. By avoiding activation-based standardization,

StyleGAN2 preserves rich inter-channel information, thus enabling more stable and artifact-free

synthesis.

Enrichment 20.6.3.3: Noise Injection Relocation: Separating Style and Stochasticity

In StyleGAN1, spatially uncorrelated Gaussian noise was injected within the AdaIN block — directly

into normalized activations. This setup caused the style vector w and the random noise to interfere

in ways that were hard to control. Because both types of signals shared the same normalization

path, their effects were entangled, making it difficult for the generator to cleanly separate structured

semantic features (e.g., pose, facial shape) from fine-grained randomness (e.g., freckles, skin pores).

StyleGAN2 resolves this by moving the noise injection outside the style modulation block.

Now, the noise is added after convolution and nonlinearity, as a purely additive operation. This
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isolates noise from the style-driven modulation, allowing each component to play its role without

interference:

• Noise: Adds per-pixel stochastic variation — capturing non-deterministic, high-frequency

effects like hair placement, pores, or skin texture.

• Style (via w): Encodes global, perceptual properties such as pose, identity, and illumination.

By decoupling noise from normalization, the generator gains more precise control over where and

how randomness is applied. This reduces unintended amplification of pixel-level variation, improves

training stability, and enhances interpretability of the learned style representation.

Enrichment 20.6.3.4: Path Length Regularization: Smoother Latent Traversals

While StyleGAN1 introduced the perceptual path length (PPL) as a metric — using LPIPS [778] to

quantify how much the image changes under latent interpolation — StyleGAN2 builds on this idea

by turning it into a regularization objective. Crucially, however, the authors abandon LPIPS (which

depends on pretrained VGG features) and instead compute the gradient directly in pixel space.

Why the change? Although LPIPS correlates well with human perception, it has several drawbacks

when used for regularization:

• It is computationally expensive and requires forward passes through large pretrained networks

(e.g., VGG16).

• It is non-differentiable or inefficient to backpropagate through, complicating training.

• It introduces a mismatch between the generator and the external perceptual model, which may

bias optimization in unintended ways.

Instead, StyleGAN2 proposes a simpler yet effective solution: directly regularize the Jacobian norm

of the generator with respect to the latent vector w ∈W , computed in pixel space. The goal is to

ensure that small perturbations in latent space result in proportionally smooth and stable changes in

the image. The proposed path length regularization loss is:

Lpath = Ew,y

[
(∥∇wG(w) ·y∥2−a)2

]
,

where:

• y∼N (0, I) is a random direction in latent space.

• a is a running average of the expected gradient norm, which centers the loss to avoid shrinking

gradients to zero.

Benefits of this formulation:

• Lightweight: No need to rely on external networks or pretrained feature extractors.

• Differentiable: The pixel-space gradient is fully backpropagatable through the generator.

• Tightly coupled to training: The regularization adapts directly to the generator’s own dynamics

and feature statistics.

Although pixel-space distances are not perfectly aligned with human perception (as LPIPS aims to

be), as it turns out, this gradient-based regularizer effectively captures smoothness in practice. It

ensures that the generator’s output changes at a steady rate along latent directions, leading to better

interpolations and more reliable latent editing.

Outcome: Latent walks in StyleGAN2 produce continuous, identity-preserving morphs with reduced

topological discontinuities — a key improvement over the sometimes jerky transitions seen in

StyleGAN1. This lightweight regularizer thus preserves the spirit of perceptual path length while

avoiding its practical limitations.
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Enrichment 20.6.3.5: Lazy R1 Regularization and Evolved Loss Strategy

StyleGAN1 explored a mix of loss strategies, including Wasserstein loss with gradient penalty

(WGAN-GP) [194] and the non-saturating GAN loss with R1 regularization [424]. StyleGAN2

formalizes and stabilizes this setup, adopting a consistent combination of:

• Non-saturating GAN loss for both generator and discriminator.

• Lazy one-sided gradient penalty (R1) on real samples.

• Optional path length regularization on the generator.

Discriminator Loss:

The full discriminator objective is given by:

LD =−Ex∼pdata
[logD(x)]−Ex̃∼pG

[log(1−D(x̃))]+δ (i mod N = 0) · γ
2
·Ex∼pdata

[
∥∇xD(x)∥2

2

]
,

where the final term is the R1 gradient penalty, applied only every N steps (typically N = 16) to

reduce computational overhead.

Generator Loss:

The generator minimizes the standard non-saturating loss:

LG =−Ex̃∼pG
[logD(x̃)]+λpath ·Lpath,

where Lpath is the path length regularization term:

Lpath = Ew,y

[
(∥∇wG(w) ·y∥2−a)2

]
,

with y∼N (0, I) and a a running exponential average of gradient magnitudes.

Joint Optimization Logic:

Despite having different loss functions, the generator G and discriminator D are trained alternatingly

in an adversarial setup:

• In each training iteration, the discriminator is first updated to better distinguish real samples x

from generated ones x̃ = G(w), using LD.

• Then, the generator is updated to fool the discriminator, i.e., to maximize D(x̃), via LG.

• Regularization terms like R1 and path length are applied at different frequencies to avoid

computational bottlenecks.

This adversarial training loop leads both networks to co-evolve: the generator learns to produce

realistic images, while the discriminator sharpens its ability to detect fake ones — with each providing

a learning signal to the other.

Why this setup works:

• R1 avoids the interpolation overhead of WGAN-GP while regularizing gradients only near

real data points.

• Lazy application of both R1 and Lpath allows training to scale to higher resolutions without

excessive cost.

• Path length regularization improves the smoothness and predictability of the generator’s

latent-to-image mapping, aiding inversion and editing tasks.

Takeaway: StyleGAN2’s adversarial training framework and especially its modular loss design —

non-saturating adversarial loss, lazy R1, and optional path regularization — has become the de facto

foundation for modern high-resolution GANs.
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Enrichment 20.6.3.6: No Progressive Growing

Moving Away From Progressive Growing. In ProGAN and StyleGAN1, progressive growing

gradually adds higher-resolution layers during training, aiming to stabilize convergence and manage

memory. Despite its initial success, this approach can fix early spatial layouts in ways that cause

phase artifacts, such as misaligned facial geometry (e.g., teeth remain centered to the camera rather

than following the head pose). These artifacts emerge because the network’s lower-resolution layers

hard-code specific spatial assumptions that later layers struggle to correct.

Figure 20.35: Phase artifact from progressive growing in StyleGAN1: teeth alignment remains fixed

relative to the camera view rather than following head pose. Source: [280].

StyleGAN2 addresses these issues by removing progressive growing entirely and training directly

at the target resolution from the outset. The architecture achieves the same coarse-to-fine benefits

through more transparent and robust mechanisms:

1. Multi-Scale Skip Connections in the Generator

• RGB at Every Resolution. Each generator block outputs an RGB image at its own resolution

(e.g., 8×8, 16×16, . . . , 1024×1024). These partial images are upsampled and summed to

form the final output.

• Coarse to Fine in a Single Pass. Early in training, low-resolution blocks dominate the

composite image, while higher-resolution blocks contribute less. As the network learns, the

high-resolution outputs become more significant, refining details.

• No Opaque Fade-Ins. Instead of abruptly fading in new layers, each resolution’s contribution

smoothly increases as training progresses, maintaining consistent alignment.

2. Residual Blocks in the Discriminator

• Residual Connections. The StyleGAN2 discriminator adopts a residual design, allowing inputs

to bypass certain convolutions through identity (or 1×1) paths.

• Smooth Gradient Flow. The shortcut paths let gradients propagate effectively, even in early

training, before higher-resolution features are fully meaningful.

• Flexible Depth Usage. Over time, the network learns to leverage high-resolution filters more,

while the early residual connections remain available for coarse discrimination.
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3. Tracking Per-Resolution Contributions

The authors in [280] analyze how each resolution block affects the final output by measuring the

variance of its partial RGB contribution through training. They observe:

• Early Dominance of Low-Res Layers. Initially, low-res blocks define major global structures.

• Increasing Role of High-Res Layers. As learning continues, high-resolution blocks (especially

those with more channels) add finer details and sharper edges.

• Adaptive Shift Toward Detail. The model naturally transitions from coarse shapes to intricate

textures without any manual “fade-in” scheduling.

Figure 20.36: Resolution-wise contribution to the generator output during training. Left: a baseline

network; Right: a network with doubled channels for higher resolutions. The additional capacity

yields more detailed and robust high-res features. Adapted from [280].

Why This Redesign Matters

• Avoids Locked-In Artifacts. Without progressive growing, low-resolution layers no longer

imprint rigid spatial biases that cause geometry misalignment.

• All Layers Co-Adapt. The network learns to distribute coarse and fine features simultaneously,

improving semantic consistency.

• Sharper and More Stable. Multi-resolution skip connections and residual blocks make training

smoother, boosting final image fidelity and detail.

• Scalable to Deep/High-Res Models. Eliminating progressive phases simplifies training when

moving to ultra-high resolutions or deeper networks.

Overall, StyleGAN2’s skip+residual generator and discriminator retain the coarse-to-fine advantage

of progressive growing without succumbing to phase artifacts. This shift enables more stable training

and sharper, better-aligned outputs at high resolutions.
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Enrichment 20.6.3.7: StyleGAN3: Eliminating Texture Sticking

StyleGAN2 excels at photorealistic image synthesis but suffers from a subtle defect: texture sticking.

When performing latent interpolations or spatial transformations (e.g., translation, rotation), textures

like hair or skin do not follow the global object motion. Instead, they appear anchored to fixed pixel

coordinates, leading to a breakdown of equivariance—the property that image content transforms

consistently with object movement.

StyleGAN3 [279] re-engineers the entire generator pipeline to ensure alias-free behavior, eliminat-

ing unintended pixel-grid reference points that cause sticking. This is achieved by treating feature

maps as bandlimited continuous signals and filtering all frequency components throughout the model.

As a result, StyleGAN3 generates content that moves smoothly under sub-pixel shifts and rotations,

making it suitable for video, animation, and neural rendering applications.

Figure 20.37: Texture Sticking in StyleGAN2 vs. StyleGAN3. Top: Average of jittered outputs.

StyleGAN2 exhibits fixed detail artifacts, while StyleGAN3 blurs them correctly. Bottom: Pixel-strip

visualization of interpolations. StyleGAN2 “locks” details to absolute positions (horizontal stripes);

StyleGAN3 allows coherent texture motion. Adapted from [279].

Why Does Texture Sticking Occur?

The root cause lies in how the generator in StyleGAN2 implicitly uses positional information—especially

during upsampling and convolution—introducing unintentional alignment with the image grid. The

generator effectively creates textures based on pixel coordinates, not object-relative positions. This

limits spatial generalization and causes artifacts when the generator is expected to simulate camera

motion or rotation.

How StyleGAN3 Fixes It: Core Innovations

1. Bandlimited Filtering at All Resolutions: In earlier architectures, upsampling operations

(e.g., nearest-neighbor, bilinear) introduced high-frequency artifacts by duplicating or interpo-

lating values without controlling the spectral content. These artifacts then propagated through

the network, causing textures to become “anchored” to pixel grid positions. StyleGAN3 re-

solves this by replacing standard up/downsampling with windowed sinc filters—true low-pass

filters designed to attenuate high-frequency components beyond the Nyquist limit. The filter

parameters (e.g., cutoff frequency, transition bandwidth) are tuned per resolution level to retain

only the frequencies that the current scale can represent reliably. This ensures that spatial

detail is consistent and alias-free across all scales.
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2. Filtered Nonlinearities: Pointwise nonlinearities like LeakyReLU are known to introduce

sharp spectral edges, generating high-frequency harmonics even when their inputs are smooth.

These harmonics can cause aliasing when passed into lower-resolution branches or subsequent

convolutions. StyleGAN3 inserts a filtering step around each nonlinearity:

Upsample → Activate → Low-pass Filter → Downsample.

This structure ensures that the nonlinear transformation doesn’t introduce frequency com-

ponents that cannot be represented at the given resolution. As a result, each block only

processes and propagates bandlimited signals, preserving translation and rotation equivariance

throughout the network.

3. Fourier Feature Input and Affine Spatial Transforms: In StyleGAN2, the generator begins

from a fixed, learnable 4× 4 tensor, which is inherently tied to the pixel grid. This gives

the network a built-in “origin” and orientation, which can subtly leak positional information

into the generated image. StyleGAN3 replaces this with a set of Fourier features—spatially

continuous sinusoidal patterns encoding different frequencies. These features are not fixed

but undergo an affine transformation (rotation and translation) controlled by the first latent

vector w0. This change removes the generator’s reliance on the pixel grid and introduces a

trainable coordinate system based on object geometry. As a result, spatial operations (like

rotating or translating the input) correspond to smooth, meaningful changes in the generated

image, supporting equivariant behavior even under subpixel movements.

4. Equivariant Kernel Design: In rotationally equivariant variants (e.g., StyleGAN3-R), convo-

lutions are restricted to 1×1 or radially symmetric kernels, ensuring that learned filters do not

introduce directionality or grid-aligned bias.

5. No Skip Connections or Noise Injection: Intermediate skip-to-RGB pathways and stochastic

noise injection are removed, both of which previously introduced fixed spatial bias. Instead,

StyleGAN3 allows positional information to flow only via controlled transformations.

Training Changes and Equivariance Goals

• The Perceptual Path Length regularization (Lpath) from StyleGAN2 is removed, since it

penalizes motion-equivariant generators by enforcing consistent change magnitudes in pixel

space.

• StyleGAN3 achieves translation equivariance in the “T” configuration and rotation+translation

equivariance in “R”. This makes it ideal for unaligned datasets (e.g., FFHQ-Unaligned) and

motion synthesis.

Latent and Spatial Disentanglement

While StyleGAN3 retains the original W and StyleSpace (S ) representations, studies (e.g., [4])

show that:

• Editing in S remains the most disentangled.

• Unaligned generators tend to entangle pose with other attributes, so pseudo-alignment (fixing

w0) or using an aligned generator with explicit spatial transforms (r, tx, ty) is recommended for

editing.
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Impact in Practice

• In videos: Texture sticking is almost entirely gone. Hairs, wrinkles, and facial features follow

object movement.

• In interpolation: Latent traversals produce realistic and continuous changes, even under

subpixel jitter.

• In inversion and editing: Real images can be reconstructed and manipulated with higher

spatial coherence using encoders trained on aligned data and StyleGAN3’s affine spatial

parameters.

Official code and models: https://github.com/NVlabs/stylegan3

Takeaway

StyleGAN3 resolves one of the most persistent issues in GAN-generated motion: positional artifacts

caused by grid alignment. Through a careful redesign grounded in signal processing, it enables truly

equivariant, high-quality, and temporally consistent image generation—laying the foundation for

advanced video editing, scene control, and neural rendering.

https://github.com/NVlabs/stylegan3
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Enrichment 20.7: Conditional GANs: Label-Aware Image Synthesis

Conditional GANs (cGANs) [435] enhance the classic GAN framework by incorporating structured

inputs—such as class labels—into both the generator and discriminator. The motivation is clear:

standard GANs produce samples from a learned distribution without any explicit control. If one

wants to generate, say, only images of cats or digit “3” from MNIST, standard GANs offer no direct

way to enforce that condition.

By injecting label information, cGANs enable class-conditional synthesis. The generator learns

to produce samples G(z | y) that match a desired label y, while the discriminator learns to assess

whether a given sample is both real and label-consistent. This label-aware feedback significantly

enhances training signals and improves controllability, quality, and diversity of generated samples.

Figure 20.38: Conditional GAN setup: the class label y is injected into both the generator and

discriminator, enabling generation of samples conditioned on class identity.

Enrichment 20.7.1: Conditional Batch Normalization (CBN)

Conditional Batch Normalization (CBN) [136] is a key technique that enables GANs to incorporate

class information not just at the input level, but deep within the generator’s layers. Unlike naive

conditioning methods—such as concatenating the label vector y with the latent code z—CBN injects

label-specific transformations throughout the network, significantly improving class control and

generation quality.

Motivation

In the vanilla GAN setup, the generator learns a mapping from noise z to image x, i.e., G(z) ≈ x.

But what if we want G(z | y) ≈ xy, an image from a specific class y? Concatenating y with z

only conditions the generator’s first layer. What happens afterward is left unregulated—there is

no guarantee that the network will retain or meaningfully use the label signal. This is especially

problematic in deep generators. CBN solves this by embedding the label y into every normalization

layer of the generator.



1114 Chapter 20. Lecture 20: Generative Models II

This ensures that class information continually modulates the internal feature maps across layers,

guiding the generation process at multiple scales.

How CBN Works

Let x be the input feature map to a BatchNorm layer. In standard BatchNorm, we normalize and

then apply learned scale and shift:

BN(x) = γ · x−µ

σ
+β

CBN replaces the static γ and β with label-dependent values γy and βy, often produced via a

small embedding or MLP based on y:

CBN(x | y) = γy ·
x−µ

σ
+βy

Here, each class y learns its own affine transformation parameters. This leads to class-specific

modulation of normalized features—effectively injecting semantic "style" throughout the generator.

• CBN allows for a shared generator backbone, with only minor per-class differences through γy

and βy.

• During training, these class-specific affine parameters are learned jointly with the generator

weights.

• CBN does not increase the number of convolutions but dramatically boosts the expressiveness

of conditional generation.

Figure 20.39: Conditional Batch Normalization (CBN): the label y determines a class-specific

affine transformation applied to normalized activations. This allows each class to modulate network

features differently.

CBN in the Generator

Conditional Batch Normalization (CBN) introduces class information deep into the generator. At

each layer ℓ, the activations are batch-normalized and then rescaled using label-specific parameters

γℓy , β ℓ
y , allowing each class to modulate the feature flow independently across scales.
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Enrichment 20.7.1.1: Projection-Based Conditioning in Discriminators

While Conditional Batch Normalization (CBN) is highly effective for injecting label information

into the generator, it is rarely applied in the discriminator. The discriminator’s primary responsibility

is to distinguish real from fake images and verify that they match the target label y. Rather than

applying class-specific transformations to every layer, conditional information is typically injected

via architectural conditioning, using either:

• Concatenation-Based Conditioning: The one-hot label y is spatially expanded and concate-

nated to the input image x ∈ R
3×H×W , resulting in a combined tensor [x;y′] ∈ R

(3+C)×H×W ,

where C is the number of classes. While simple, this method weakens in deeper layers, where

the label signal may vanish.

• Projection Discriminator [438]: A more robust alternative that introduces label conditioning

directly into the discriminator’s output logit. The logit is defined as:

D(x,y)︸ ︷︷ ︸
class-aware score

= b(x)︸︷︷︸
realism term

+ h(x)⊤e(y)︸ ︷︷ ︸
semantic match

,

where:

– h(x) ∈ R
d is a global feature vector extracted from the image (after convolution and

pooling).

– e(y) ∈ R
d is a learned embedding vector for the class label y.

– b(x) = w⊤h(x) is a standard linear layer predicting the realism of x, independent of label.

This design cleanly separates visual quality from semantic alignment.

Advantages of Projection-Based Conditioning:

• Efficiency: Requires only one additional dot product at the final layer, with minimal parameter

overhead.

• Interpretability: Clearly decomposes the output into realism and semantic compatibility

terms.

• Scalability: Works well for large-scale datasets and deep discriminators (e.g., BigGAN which

we’ll cover later).

By combining this strategy with techniques like Spectral Normalization (discussed next), projection-

based discriminators remain stable even under high capacity settings and offer strong guidance for

conditional image synthesis.

Enrichment 20.7.1.2: Training Conditional GANs with CBN

Conditional GANs (cGANs) trained with Conditional Batch Normalization (CBN) aim to syn-

thesize images that are not only visually realistic, but also semantically aligned with a given class

label y. To achieve this, the generator and discriminator are trained in tandem, each using label

information differently.

Generator G(z,y): Label-Aware Synthesis

The generator receives a latent code z ∼N (0, I) and a class label y. The label modulates every

normalization layer via CBN:

CBN(x | y) = γy ·
x−µ

σ
+βy
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This injects label-specific transformations into the generator’s internal feature maps, allowing class

control at multiple spatial scales. The output image is:

x̃ = G(z,y)

Discriminator D(x,y): Realness and Label Consistency

The discriminator receives both an image x and its associated label y, and outputs a scalar score that

jointly reflects:

• Whether the image looks real (i.e., sampled from pdata rather than the generator).

• Whether it is semantically consistent with the provided label y.

This dual-role is often realized using a projection discriminator [438], where the label is

embedded and combined with the discriminator’s internal features:

D(x,y) = b(x)+h(x)⊤e(y)

Here, h(x) is a learned feature embedding from the image, e(y) is the learned embedding of the

label y, and b(x) is a base logit representing the visual realism of x. The dot product term encourages

semantic agreement between the image and the label — if h(x) and e(y) align well, D(x,y) increases.

Training Pipeline with CBN Conditioning:

The Conditional GAN training loop is fully differentiable and jointly optimizes two objectives: (1)

realism — fooling the discriminator into classifying fake images as real, and (2) semantic alignment

— ensuring that generated images match the assigned class label. Conditional Batch Normalization

(CBN) plays a key role in achieving this alignment by embedding the label y throughout the generator.

1. Sample Inputs: For each batch:

• Sample latent codes z(i) ∼N (0, I) and corresponding labels y(i) ∈ {1, . . . ,K}.
2. Generate Conditioned Fakes: For each (z(i),y(i)), generate a fake image:

x̃(i) = G(z(i),y(i))

The generator uses CBN at every layer to condition on y(i), ensuring class-relevant features

are injected at all depths.

3. Discriminator Update:

• For real images x(i) ∼ pdata(x | y(i)), the discriminator D(x(i),y(i)) should output a high

value, indicating high confidence that the image is real and belongs to class y(i).

• For fake images x̃(i), the discriminator D(x̃(i),y(i)) should output a low value, identifying

them as generated (and potentially misaligned with y(i)).

4. Loss Functions:

• Discriminator:

LD =− 1

N

N

∑
i=1

logD(x(i),y(i)) − 1

N

N

∑
i=1

log
(

1−D(x̃(i),y(i))
)

The first term is minimized when real samples are confidently classified as real (D(x,y)→
1), while the second is minimized when fake samples are correctly rejected (D(x̃,y)→ 0).



20.7 Enrichment 20.7: Conditional GANs: Label-Aware Image Synthesis 1117

• Generator:

LG =− 1

N

N

∑
i=1

logD(x̃(i),y(i))

The generator is optimized to maximize the discriminator’s belief that its outputs are real

and consistent with label y(i) — hence minimizing the negative log-likelihood encourages

D(x̃,y)→ 1.

5. Backpropagation: Gradients are computed and propagated through both the standard network

layers and the label-conditioned affine parameters in CBN. This teaches the generator to match

label semantics at multiple feature levels, and the discriminator to enforce both realism and

label consistency.

Log-Loss Intuition:

• The logarithmic terms act as soft penalties:

logD(x,y)→ 0 if D(x,y)→ 1 (real images correct)

log(1−D(x̃,y))→ 0 if D(x̃,y)→ 0 (fake images rejected)

• Similarly, the generator aims to push D(x̃,y)→ 1, making logD(x̃,y)→ 0, which occurs

when the discriminator is fooled — i.e., when the generated image is both realistic and

label-consistent.

This adversarial setup enforces both high-fidelity and class-conditioned generation. However,

without regularization, it can suffer from unstable gradients, overconfident discriminators, and poor

generalization — issues we’ll now get into.

Limitations of CBN-Only Conditioning

While CBN provides powerful class control, it comes with caveats:

• Shortcut Learning: The generator might ignore the noise vector z, reducing output diversity.

• Overfitting to Labels: CBN parameters (γy,βy) may overfit when class distributions are

imbalanced.

• Training Instability: Without constraints, the discriminator may overemphasize labels at the

cost of visual quality.

To address these issues, the next section introduces Spectral Normalization [438]—a principled

method for controlling the discriminator’s capacity and improving the stability of conditional GAN

training.
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Enrichment 20.7.2: Spectral Normalization for Stable GAN Training

Spectral Normalization (SN) [438] is a technique designed to stabilize GAN training by constraining

the Lipschitz constant of the discriminator. This is achieved by directly controlling the largest

singular value—also known as the spectral norm—of each weight matrix in the network. By

normalizing the spectral norm to a fixed value (typically 1), SN ensures that no layer can amplify the

norm of its input arbitrarily.

Why Lipschitz Constraints Help. The training of GANs involves a two-player minimax game

between a discriminator D and a generator G. The discriminator is trained to distinguish real data

from fake samples generated by G, using an objective such as:

LD =−Ex∼pdata
[logD(x)] − Ez∼p(z)[log(1−D(G(z)))].

If the discriminator is too flexible—particularly if its output varies too rapidly in response to small

input perturbations—it can easily overfit, confidently separating real and fake data. In this regime,

the generator receives vanishing gradients: once D becomes near-perfect, it ceases to provide useful

learning signals, and ∇G ≈ 0. This leads to generator collapse and training instability.

To prevent this, we can restrict the class of discriminator functions to those with bounded

sensitivity. More formally, we enforce a 1-Lipschitz (or K-Lipschitz) constraint: for all inputs x1,x2,

∥D(x1)−D(x2)∥ ≤ K∥x1− x2∥

This condition ensures that the discriminator behaves smoothly—its outputs cannot change faster

than a controlled rate with respect to input variation. Under such a constraint, gradients passed to the

generator remain informative and well-scaled throughout training.

But how can we impose this constraint practically, especially when the discriminator is a deep

neural network composed of many weight matrices? The answer lies in analyzing how each linear

layer scales input vectors—and that leads us directly to a set of mathematical tools designed to

measure such transformations: eigenvalues, singular values, and ultimately, the spectral norm.

To understand these ideas rigorously, we begin by revisiting a fundamental concept from linear

algebra: eigenvalues and eigenvectors.

Enrichment 20.7.2.1: Spectral Normalization - Mathematical Background

Eigenvalues and Eigenvectors: Invariant Directions in Linear Maps

Given a square matrix A ∈ R
n×n, an eigenvector v ∈ R

n is a non-zero vector that, when transformed

by A, results in a scaled version of itself:

Av = λv

where λ ∈ R (or C) is the corresponding eigenvalue. Geometrically, this means that the action of A

leaves the direction of v unchanged—only its length is scaled by λ . In contrast to general vectors that

may be rotated, skewed, or fully transformed, eigenvectors identify the matrix’s “fixed” directions of

behavior, and eigenvalues quantify how strongly each of those directions is scaled.

These pairs (λ ,v) play a fundamental role in understanding the internal structure of linear

transformations. For example, they describe the principal modes along which a system stretches

or compresses space, and they allow us to determine whether a transformation is stable, reversible,

or diagonalizable. In systems theory, optimization, and neural network analysis, they reveal how

signals are amplified or attenuated by repeated application of a layer or operator.
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To compute eigenvalues, we rearrange the eigenvector equation as (A−λ I)v = 0, which admits

non-trivial solutions only when det(A− λ I) = 0. This gives the characteristic polynomial of

A, whose roots are the eigenvalues. Once we solve for λ , we can substitute it back and solve

(A−λ I)v = 0 to find the corresponding eigenvectors v.

Here is a basic numerical example in Python:

1 import numpy as np

2

3 A = np.array([[2, 1],

4 [1, 2]])

5

6 eigvals, eigvecs = np.linalg.eig(A)

7

8 # Print eigenvalues

9 print("Eigenvalues:")

10 for i, val in enumerate(eigvals):

11 print(f" lam{i + 1} = {val:.6f}")

12

13 # Print eigenvectors

14 print("\nEigenvectors (each column is a vector):")

15 for i in range(eigvecs.shape[1]):

16 vec = eigvecs[:, i]

17 print(f" v{i + 1} = [{vec[0]:.6f}, {vec[1]:.6f}]")

Results for this:

1 Eigenvalues:

2 lam1 = 3.000000

3 lam2 = 1.000000

4

5 Eigenvectors (each column is a vector):

6 v1 = [0.707107, 0.707107]

7 v2 = [-0.707107, 0.707107]

Why is this relevant to GANs, or to neural networks more broadly? Each linear layer in a network

is defined by a weight matrix W , which transforms input vectors as x 7→Wx. The key question is:

how much can W amplify the norm of its input? If certain directions are stretched excessively, the

network becomes unstable—gradients may explode, and outputs may become overly sensitive to

small input changes. If other directions are collapsed, information is lost and gradients vanish.

Eigenvalues help quantify this behavior in square, symmetric matrices: the largest eigenvalue

reflects the maximum scaling factor applied in any direction. In such cases, bounding the largest

eigenvalue effectively bounds the transformation’s ability to distort inputs. This idea connects directly

to the concept of Lipschitz continuity, which constrains how sensitive a function is to perturbations

in its input. For a function f to be K-Lipschitz, we must have ∥ f (x1)− f (x2)∥ ≤ K∥x1− x2∥ for all

x1,x2. In the case of the WGAN-GP optimization objective, being constrained in that way is crucial

for ensuring gradient stability and generalization.

In the case of a linear transformation, the Lipschitz constant is exactly the operator norm of the

matrix W , i.e., the maximum value of ∥Wx∥/∥x∥ over all non-zero x.
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For square matrices, this coincides with the largest singular value. Spectral normalization

leverages this insight: by explicitly normalizing W so that its largest singular value—also called its

spectral norm—is 1, we guarantee that the linear component of the layer is 1-Lipschitz.

A natural follow-up question is whether this guarantee still holds after applying the layer’s

nonlinearity, such as ReLU. Indeed, activation functions also influence the Lipschitz constant. Some

nonlinearities, like sigmoid or tanh, can shrink or saturate outputs, leading to norm compression or

gradient vanishing. However, ReLU and most of its variants (e.g., Leaky ReLU) are 1-Lipschitz

compliant: applying them to a vector cannot increase its norm. Therefore, when using ReLU-based

activations in conjunction with spectrally normalized linear layers, the composition preserves the

Lipschitz bound. This makes the entire layer (linear + activation) 1-Lipschitz, ensuring stable

gradients and reliable signal propagation.

Since eigenvalue analysis provides a structured way to understand how matrices scale vectors, it

serves as the conceptual precursor to the singular value decomposition (SVD)—a generalization

that extends these ideas to arbitrary matrices, including those that are non-square and non-symmetric.

SVD and spectral norm estimation will form the mathematical core of spectral normalization, and

enable its application to deep convolutional networks and GAN discriminators.

Singular Value Decomposition (SVD): Structure and Signal in Data

Singular Value Decomposition (SVD) is one of the most widely used and interpretable tools in linear

algebra, especially when applied to data analysis. It provides a principled way to factorize any real

matrix X ∈ R
n×m into three matrices that expose its internal structure—how it stretches, rotates, and

reprojects the data. SVD serves as a foundation for many modern machine learning algorithms and

dimensionality reduction techniques.

At a high level, SVD can be seen as a data-driven generalization of the Fourier Transform.

Whereas the Fourier basis decomposes signals into global sinusoidal modes that are independent

of the data, the SVD basis is tailored to the actual dataset. It adapts to the underlying structure of

X , identifying key directions—patterns, features, or modes—that explain most of the variation in

the data. This same decomposition underlies Principal Component Analysis (PCA), where the

goal is to find orthogonal directions (principal components) along which the data exhibits maximum

variance. While PCA specifically centers and projects the data to find these components, SVD

applies to any matrix directly—making it more general.

The utility of SVD goes far beyond mathematical elegance. It is used everywhere: in image

compression, facial recognition, search engine ranking algorithms, natural language processing, and

recommendation systems like those at Amazon or Netflix. There, rows may represent customers,

columns may represent movies, and the entries in X quantify viewing history. SVD can identify latent

structures—such as genres or interest patterns—that drive behavior. What makes SVD powerful is

not just that it works, but that the components it reveals are often understandable and interpretable.

It transforms complex, high-dimensional data into structured modes we can visualize, analyze, and

act on. Even better, it is scalable to massive datasets through efficient numerical algorithms.

For a practical and intuitive introduction to these concepts, including real Python code and visual

explanations, we highly recommend Steve Brunton’s excellent video series on Singular Value

Decomposition and PCA from the University of Washington. The following summary builds on

most of its ideas.

https://www.youtube.com/watch?v=gXbThCXjZFM&list=PLMrJAkhIeNNSVjnsviglFoY2nXildDCcv&ab_channel=SteveBrunton
https://www.youtube.com/watch?v=gXbThCXjZFM&list=PLMrJAkhIeNNSVjnsviglFoY2nXildDCcv&ab_channel=SteveBrunton
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SVD: Structure, Meaning, and Application to Real-World Data

To make this concrete, consider two real-world examples of data matrices X . In the first, suppose we

have a dataset consisting of face images, each stored as a column vector. If each image is grayscale

and of size H×W , then after flattening, each column xi ∈ R
n, where n = H ·W . Stacking m such

vectors side by side yields a matrix X ∈ R
n×m, where n≫ m. This is a “tall and skinny” matrix

where each column represents one person’s face. Performing SVD on this matrix allows us to extract

spatial modes across all the faces—patterns like edges, contours, or lighting variations—allowing

for data compression, denoising, and the generation of new faces from a reduced latent basis.

In the second example, consider a simulation of fluid flow past a circular object. Each column

of the matrix X ∈ R
n×m now represents the velocity field (or pressure field) at a particular time

step, flattened into a vector. As the fluid evolves in time, the state changes, so each column xi

captures the system’s dynamics at time ti. Here, SVD reveals the dominant coherent structures in the

flow—vortex shedding patterns, boundary layer oscillations, and so on—distilled into interpretable

spatial modes. In both cases, SVD helps convert a high-dimensional system into a compact and

meaningful representation.

The SVD of any real matrix X ∈ R
n×m (with n≥ m) always exists and takes the form:

X =UΣV⊤

Here, U ∈ R
n×n and V ∈ R

m×m are orthonormal matrices, meaning their columns are orthogonal,

and they have a unit length. Algebraically, this means:

U⊤U =UU⊤ = In×n, V⊤V =VV⊤ = Im×m

Each set of vectors in U and V forms a complete orthonormal basis for its respective space. The

columns of U span the column space of X , and the columns of V span the row space. While these

matrices can be interpreted geometrically as rotations or reflections that preserve norms and angles,

their real significance lies in the fact that they provide a new basis tailored to the data itself.

The left singular vectors in U have the same dimensionality as the columns of X , and they

can be thought of as data-specific “eigen-basis” elements. In the face image example, the vectors

u1,u2, . . . correspond to eigenfaces—representative spatial patterns that appear repeatedly across

different faces. These might reflect things like lighting patterns, face shape contours, or common

structural differences. In the fluid dynamics example, the ui represent eigen flow-fields—dominant

patterns in how fluid velocity or pressure changes over time. These basis vectors are not arbitrary:

they are orthonormal directions derived from the data that best capture variance across the dataset.

Crucially, only the first m columns of U are used in the decomposition, since the rank of X ∈Rn×m is

at most m. These ui vectors are sorted according to their importance in capturing variance, meaning

u1 is more important than u2, and so on.

The matrix Σ∈Rn×m is diagonal and contains the singular values σ1, . . . ,σm, followed by trailing

zeros if n > m. It has the form:

Σ =




σ1 0 · · · 0

0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σm

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0




n×m

, with σ1 ≥ σ2 ≥ ·· · ≥ σm ≥ 0
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These singular values tell us how much variance or “energy” each corresponding mode captures

from the data. In fact, the total energy in the matrix—measured as the squared Frobenius norm—is

the sum of the squared singular values:

∥X∥2
F =

m

∑
i=1

σ2
i

Hence, the first few singular values usually dominate, and σ2
1 /∥X∥2

F gives the fraction of total

variance captured by the first mode.

We can express the full decomposition explicitly as a sum of rank-one outer products:

X =
r

∑
i=1

σiuiv
⊤
i

where r = rank(X), and ui ∈ R
n, vi ∈ R

m are the i-th left and right singular vectors. Each term

σiuiv
⊤
i represents a matrix of rank one that contributes to reconstructing X . These terms are not just

additive: they are ordered so that each successive mode contributes less to the matrix’s variance.

To reconstruct a specific data point xi—that is, the i-th column of the data matrix X—we combine

the shared spatial modes u1, . . . ,um using weights derived from the matrix product ΣV⊤. Each vector

u j contributes a particular spatial pattern, and the coefficients that determine how to mix them to

recover xi are drawn from the i-th column of ΣV⊤. This can be written explicitly as:

xi =
m

∑
j=1

σ ju jv j,i

where v j,i is the entry in row j, column i of V , and σ jv j,i reflects the scaled contribution of mode u j

to sample xi. This formulation always holds, but its interpretation depends on the nature of the data

encoded in X .

In static datasets like facial images—where each column xi represents a different face—the

interpretation is sample-centric. The vectors u1, . . . ,um are shared spatial modes, or eigenfaces, and

each face xi is a specific mixture of them. The weights that determine this mixture are found in

the i-th column of V⊤, or equivalently the i-th row of V . Each such row tells us how much of each

spatial mode to include when reconstructing the corresponding face. The singular values in Σ scale

these weights to reflect the global importance of each mode. In other words, V⊤ tells us how to

linearly combine the shared features u1, . . . ,um to form each image in the dataset.

In time-evolving physical systems, such as fluid flow simulations, the interpretation is reversed:

the dataset X consists of snapshots of the system’s state at different times. Each column xi corresponds

to the system’s configuration at time ti. In this setting, the i-th column of V describes how strongly

the i-th spatial mode ui is activated at each time step. That is, each vi ∈ R
m forms a temporal

profile—or an eigen time-series—that quantifies how mode ui varies throughout time. In this case,

each ui represents a coherent spatial structure (e.g., a vortex or shear layer), and the corresponding vi

tells us when and how that structure appears across the sequence of system states.

In both interpretations, the combination of U , Σ, and V enables a powerful and interpretable

reconstruction of the original data. The matrix U defines spatial structures shared across samples or

time, the matrix V tells us either how to mix those structures for each observation (static data) or

how the structures evolve temporally (dynamic data), and Σ modulates their importance.
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This distinction is crucial for understanding SVD as a data-driven basis decomposition tailored to

the geometry and temporal structure of the dataset.

When some singular values σi are very small—indicating low energy or negligible contribu-

tion—we can truncate the decomposition to retain only the top r modes:

X ≈
r

∑
i=1

σiuiv
⊤
i

This yields a rank-r approximation of X that captures the dominant structure while ignoring

negligible details. This approximation is not just convenient—it is provably optimal in the Frobenius

norm sense. That is, among all rank-r matrices X̃ ∈R
n×m, the truncated SVD minimizes the squared

error:

∥X− X̃∥F ≥
∥∥∥∥∥X−

r

∑
i=1

σiuiv
⊤
i

∥∥∥∥∥
F

This optimality is fundamental to many applications in data science, including dimensionality

reduction, matrix compression, and feature extraction.

Spectral Structure via X⊤X and XX⊤

To better understand why the SVD always exists and how it connects to fundamental linear algebra

operations, recall that for any real matrix X ∈ R
m×n, both X⊤X ∈ R

n×n and XX⊤ ∈ R
m×m are

symmetric and positive semi-definite. This means:

• They can be diagonalized via eigendecomposition: X⊤X =V ΛV⊤, XX⊤ =UΛU⊤.

• Their eigenvalues are real and non-negative.

The Singular Value Decomposition leverages these eigendecompositions. Specifically, the right

singular vectors V are the eigenvectors of X⊤X , while the left singular vectors U are the eigenvectors

of XX⊤. The non-zero eigenvalues λi of either matrix are equal and relate to the singular values as

σi =
√

λi.

Economy (or Truncated) SVD

When rank(X) = r < min(m,n), we can simplify the decomposition by using only the top r singular

values and their associated singular vectors. This yields the so-called economy SVD:

X ≈ Û Σ̂V̂⊤

where:

• Û ∈ R
m×r contains the top r left singular vectors (columns of U),

• Σ̂ ∈ R
r×r is a diagonal matrix with the top r singular values,

• V̂ ∈ R
n×r contains the top r right singular vectors (columns of V ).

This truncated representation captures the most significant directions of variance or information in

X , and is especially useful in dimensionality reduction, PCA, and low-rank approximations.
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How is SVD Computed in Practice?

Although the SVD is defined mathematically via the factorization X = UΣV⊤, computing it in

practice follows a conceptually clear pipeline that is closely tied to eigendecomposition. Here is a

high-level outline of how the singular values and vectors of a real matrix X ∈Rm×n can be computed:

1. Form the symmetric, positive semi-definite matrices X⊤X ∈ R
n×n and XX⊤ ∈ R

m×m.

2. Compute the eigenvalues λ1, . . . ,λr of X⊤X by solving the characteristic equation:

det(X⊤X−λ I) = 0

This polynomial equation of degree n yields all the eigenvalues of X⊤X . In most practical

algorithms, direct determinant expansion is avoided, and iterative numerical methods (e.g., the

QR algorithm) are used for greater stability.

3. For each eigenvalue λi, compute the corresponding eigenvector vi ∈ R
n by solving the homo-

geneous system:

(X⊤X−λiI)vi = 0

This involves finding a nontrivial solution in the nullspace of the matrix X⊤X−λiI.

4. The singular values σi are then obtained as the square roots of the eigenvalues:

σi =
√

λi

These are placed in decreasing order along the diagonal of Σ, capturing how strongly X

stretches space along each mode.

5. The right singular vectors vi form the columns of V . To recover the corresponding left singular

vectors ui, we use the relation:

ui =
1

σi

Xvi

for all σi ̸= 0. This ensures orthonormality between the columns of U and links the left and

right singular vectors through the action of X .

While this approach is instructive, explicitly computing X⊤X or XX⊤ is rarely done in modern

numerical practice, especially for large or ill-conditioned matrices, because squaring the matrix

amplifies numerical errors and can destroy low-rank structure.

Instead, standard libraries use more stable and efficient algorithms based on bidiagonalization.

The most prominent is the Golub–Kahan SVD algorithm, which proceeds in two stages:

• First, X is orthogonally transformed into a bidiagonal matrix using Householder reflections.

• Then, iterative eigen-solvers (such as the QR algorithm or Divide-and-Conquer strategy) are

applied to the bidiagonal form to extract the singular values and vectors.

Other methods include the Golub–Reinsch algorithm for computing the full SVD and Lanczos

bidiagonalization for sparse or low-rank approximations.

Curious readers who want to dive deeper into these techniques are encouraged to consult:

• Matrix Computations by Golub and Van Loan — especially Chapters 8–10 (full SVD, QR-

based bidiagonalization, and Divide-and-Conquer methods).

• Numerical Linear Algebra by Trefethen and Bau — particularly the discussion on the numerical

stability of SVD versus eigendecomposition.
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• LAPACK’s online documentation — detailing routines like dgesvd (full SVD) and dgesdd

(Divide-and-Conquer SVD).

Understanding how these algorithms work and when to apply them is critical for large-scale

scientific computing, dimensionality reduction, and neural network regularization techniques like

spectral normalization.

Nevertheless, for practitioners who simply want to apply SVD in real-world problems—having

understood its purpose and how to interpret its results—modern scientific computing libraries make

it easy to compute with just a few lines of code.

For example, in Python with NumPy or SciPy:

1 import numpy as np

2

3 # Create an example matrix X

4 X = np.random.randn(100, 50) # Tall-and-skinny matrix

5

6 # Compute the full SVD

7 U, S, Vt = np.linalg.svd(X, full_matrices=True)

8

9 # U: left singular vectors (100x100)

10 # S: singular values (vector of length 50)

11 # Vt: transpose of right singular vectors (50x50)

Alternatively, to compute a truncated or low-rank approximation (economy SVD), you can use:

1 from scipy.linalg import svd

2

3 # Compute economy-sized SVD (faster for large problems)

4 U, S, Vt = svd(X, full_matrices=False)

This approach is widely used in machine learning pipelines, signal processing, recommendation

systems, and dimensionality reduction algorithms such as PCA. Efficient and scalable variants also

exist for sparse or streaming data matrices.

Finally, we also get why SVD is guaranteed to exist for any real matrix. Another interesting

property of SVD is that it is unique up to signs: for each pair (ui,vi), flipping their signs simultane-

ously leaves the outer product uiv
⊤
i unchanged. This sign ambiguity does not affect reconstruction,

but it is important to be aware of when analyzing the components numerically.

In the context of deep learning, these insights become practically useful. The largest singular

value σ1, also known as the spectral norm, determines the maximum amplification that a linear

transformation can apply to an input vector. Spectral normalization takes advantage of this by

enforcing an upper bound on the spectral norm of a weight matrix—ensuring that networks remain

stable, gradients do not explode, and the Lipschitz continuity of the model is preserved. This plays a

critical role in training robust GANs and other adversarial models.

Finally, we also get why SVD is guaranteed to exist for any real matrix. Another interesting

property of SVD is that is unique up to signs: for each pair (ui,vi), flipping their signs simultaneously

leaves the outer product uiv
⊤
i unchanged. This sign ambiguity does not affect reconstruction, but it is

important to be aware of when analyzing the components numerically.
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In the context of deep learning, these insights become practically useful. The largest singular

value σ1, also known as the spectral norm, determines the maximum amplification that a linear

transformation can apply to an input vector. Spectral normalization takes advantage of this by

enforcing an upper bound on the spectral norm of a weight matrix—ensuring that networks remain

stable, gradients do not explode, and the Lipschitz continuity of the model is preserved. This plays a

critical role in training robust GANs and other adversarial models.

Spectral Norm of a Weight Matrix

Let W ∈ R
m×n be the weight matrix of a NN layer. Its spectral norm σ(W ) is its largest singular

value:

σ(W ) = max
∥v∥=1

∥Wv∥2.

To constrain σ(W ) to 1, spectral normalization reparameterizes W as Ŵ = W
σ(W ). This ensures that

the layer cannot amplify an input vector’s norm by more than 1, thus bounding the discriminator’s

Lipschitz constant.

Fast Spectral–Norm Estimation via Power Iteration

What is the spectral norm and why that inequality is true? For any matrix W the spectral norm

is defined as

σ(W ) = ∥W∥2 = max
∥x∥2=1

∥Wx∥2.

It is the largest factor by which W can stretch a vector. If x ̸= 0 is arbitrary, write x = ∥x∥2 x̂ with

∥x̂∥2 = 1. Then

∥Wx∥2

∥x∥2

=
∥Wx̂∥2

1
≤ max
∥y∥2=1

∥Wy∥2 = σ(W ).

Equality is achieved when x̂ is the right singular vector v1 corresponding to the largest singular value

σ1. Thus σ(W ) is the supreme stretch factor and every individual ratio ∥Wx∥2/∥x∥2 is bounded by

it.

What power iteration is and why it works? Repeatedly multiplying any non-orthogonal vector by

W and renormalising pushes the vector toward v1; equivalently, repeatedly multiplying by the sym-

metric positive-semi-definite matrix WTW pushes toward v1 even faster, because v1 is its dominant

eigenvector with eigenvalue σ2
1 . Forming WTW explicitly is expensive and unnecessary—alternating

WT and W gives the same effect using only matrix–vector products.

Step-by-step (one iteration per forward pass)

1. Persistent vector: Keep a single unit vector u ∈ R
m. Initialise it once with random entries;

after that recycle the updated u from the previous mini-batch.

2. Right–vector update. Compute

v =
WTu

∥WTu∥2

( v ∈ R
n, ∥v∥2 = 1 ).
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This is one gradient-free step toward the dominant right singular vector.

3. Left–vector update: Compute

u =
Wv

∥Wv∥2

( ∥u∥2 = 1 ).

After this pair of operations, u and v are better aligned with the true singular vectors u1 and v1.

4. Singular-value estimate: Evaluate

σ̂ = uTWv = ∥Wv∥2.

With the recycled u the estimate is already very accurate; a single sweep is enough in practice.

5. Weight normalisation: Scale the weight matrix once per forward pass:

Ŵ =
W

σ̂
.

Now ∥Ŵ∥2 ≈ 1, so the layer is approximately 1-Lipschitz.

Why alternate WT and W? From the SVD W =UΣVT we have Wv1 = σ1u1 and WTu1 = σ1v1.

Composing the two maps gives WTWv1 = σ2
1 v1. Power iteration on WTW would therefore converge

to v1; carrying it out implicitly via WT/W multiplication avoids the O(mn2) cost of forming the

normal matrix.

Cost in practice Each layer pays for two extra matrix–vector products and a few normalisations—tiny

compared with convolution operations—yet gains a reliable on-the-fly σ(W ) estimate that keeps

gradients and adversarial training under control.

1 def spectral_norm_update(W, u, num_iterations=1):

2 # W: Weight matrix shaped [out_features, in_features]

3 # u: Approximated top singular vector (shape = [out_features])

4 for _ in range(num_iterations):

5 # v: top right singular vector approximation

6 v = W.t().mv(u)

7 v_norm = v.norm()

8 v = v / (v_norm + 1e-12)

9

10 # u: top left singular vector approximation

11 u_new = W.mv(v)

12 u_new_norm = u_new.norm()

13 u = u_new / (u_new_norm + 1e-12)

14

15 sigma = u.dot(W.mv(v))

16 # Return normalized weights and updated vectors

17 return W / sigma, u, v
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Figure 20.40: Spectral Normalization constrains the Lipschitz constant by bounding the spectral

norm of each layer’s weights. This ensures smoother gradient flow, preventing the discriminator

from learning overly sharp decision surfaces.

Alternative Loss: Hinge Loss Formulation

While the non-saturating GAN loss is commonly used in conditional GANs with CBN, another

widely adopted objective—especially in more recent setups such as this work and BigGANs—is the

hinge loss we’ve covered previously with SVMs 3.6.4. It replaces the cross-entropy terms with a

margin-based objective, helping the discriminator focus on classification margins and improving

gradient stability.

Hinge loss (for conditional GANs)

LD = Ex∼pdata
[max(0,1−D(x,y))]+Ez∼p(z) [max(0,1+D(G(z,y),y))]

LG =−Ez∼p(z) [D(G(z,y),y)]

Intuition:

• The discriminator learns to assign a positive score (ideally ≥ 1) to real images (x,y), and a

negative score (ideally ≤−1) to generated images G(z,y).
• If a sample is already on the correct side of the margin (e.g., a real image with D(x,y)> 1),

the loss is zero — no gradient is applied.

• The generator is trained to maximize the discriminator’s score for its outputs (i.e., make fake

images look real to the discriminator).

Why hinge loss helps

• Avoids vanishing gradients when the discriminator becomes too confident (a problem with

− log(1−D(G(z))) in early GANs).

• Simplifies optimization with piecewise-linear objectives.

• Empirically improves convergence speed and stability, particularly when combined with

spectral normalization.
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Interpretation and Benefits

• Stable Training: With a 1-Lipschitz constraint, the discriminator avoids extreme gradients;

the generator receives more reliable updates.

• No Extra Gradient Penalties: Unlike methods (e.g., WGAN-GP) that add penalty terms, SN

modifies weights directly, incurring lower overhead.

• Enhanced Diversity: By preventing the discriminator from collapsing too fast, SN often

yields more diverse generated samples and mitigates mode collapse.

In practice, Spectral Normalization integrates neatly with standard deep learning frameworks,

requiring minimal changes to existing layers. It has become a mainstay technique for reliably

training high-quality GANs, used in both unconditional and conditional setups.



1130 Chapter 20. Lecture 20: Generative Models II

Enrichment 20.7.3: Self-Attention GANs (SAGAN)

While convolutional GANs operate effectively on local patterns, they struggle with modeling long-

range dependencies, especially in complex scenes. In standard convolutions, each output pixel

is influenced only by a small neighborhood of input pixels, and even deep networks require many

layers to connect distant features. This becomes problematic in global structure modeling — e.g.,

maintaining symmetry across a face or coherence across distant body parts.

Self-Attention GANs (SAGAN) [763] address this limitation by integrating non-local self-attention

layers into both the generator and discriminator. This allows the model to reason about all spatial

locations simultaneously, capturing long-range dependencies without requiring deep, inefficient

convolutional hierarchies.

Figure 20.41: Self-Attention enables long-range spatial dependencies in GANs, yielding improved

structure and realism.

Architecture Overview

The self-attention block follows the "query–key–value" formulation:

• Given an input feature map X ∈ R
C×H×W , three 1×1 convolutions produce: f (X) (queries),

g(X) (keys), and h(X) (values).

• Queries and keys are reshaped to C′×N (with N = H ·W ) and multiplied, yielding a N×N

attention map.

• A softmax ensures attention scores sum to 1 across each row (normalized over keys).

• The result is multiplied with values h(X) and reshaped back to the spatial layout.

• A learnable scale parameter γ , initialized to zero, controls the strength of the attention output:

Output = γ ·SelfAttention(X)+X .

Why It Helps

• Facilitates global reasoning — e.g., the left eye can align symmetrically with the right, even if

they are spatially far apart.

• Improves texture consistency and fine-grained detail preservation in images.

• Enhances expressiveness in multi-class generation tasks like ImageNet.
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Training Details and Stabilization

SAGAN adopts two key techniques for stable training:

1. Spectral Normalization [438] applied to both generator and discriminator (unlike earlier

approaches which only normalized the discriminator). This constrains each layer’s Lipschitz

constant, preventing exploding gradients and improving convergence.

2. Two Time-Scale Update Rule (TTUR): The generator and discriminator are updated with

separate learning rates. This allows the discriminator to stabilize quickly while the generator

catches up.

Their combination leads to faster convergence, improved stability, and better FID/IS scores.

Loss Function

SAGAN uses the hinge version of the adversarial loss:

LD = Ex∼pdata
[max(0,1−D(x))]+Ez∼p(z)[max(0,1+D(G(z)))]

LG =−Ez∼p(z)[D(G(z))]

This formulation improves gradient behavior by clearly separating the penalties for incorrect real/fake

classification.

Quantitative Results

SAGAN significantly improves generative performance:

• Achieves state-of-the-art FID and IS scores on ImageNet (128×128).

• Produces semantically consistent outputs, outperforming convolution-only GANs especially

on complex classes like “dog” or “person”.

Summary

Self-attention enables the generator and discriminator to capture global structures efficiently, help-

ing GANs go beyond local textures. This innovation inspired later models like BigGAN [52],

which combine attention, large-scale training, and class conditioning to achieve unprecedented

photorealism.

Enrichment 20.7.4: BigGANs: Scaling Up GANs

BigGAN [52] marks a major milestone in the progression of class-conditional GANs by demon-

strating that simply scaling up the model and training setup—when coupled with key stabilization

techniques—yields state-of-the-art performance across resolution, sample fidelity, and class diversity.

Developed by Brock et al., BigGAN pushes the frontier of GAN-based image synthesis, particularly

on challenging datasets like ImageNet and JFT-300M.

Key Innovations and Techniques

• Conditional Batch Normalization (CBN): Class labels are incorporated deep into the gen-

erator via Conditional BatchNorm layers. Each BatchNorm is modulated by gain and bias

vectors derived from a shared class embedding, enabling class-conditional feature modulation.

• Projection-Based Discriminator: The discriminator uses projection [438] to incorporate

class information, effectively learning to assess whether an image is both real and aligned with

its target class.
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• Spectral Normalization (SN): Applied to both G and D, SN constrains the Lipschitz constant

of each layer, enhancing training stability by regularizing weight scales.

• Large-Scale Batch Training: Batch sizes as large as 2048 are used, significantly improving

gradient quality and enabling more stable optimization trajectories. Larger batches cover more

modes and support smoother convergence.

• Skip-z Connections: Latent vectors are not only injected at the generator input but also

directly routed to multiple residual blocks at various resolutions. These skip connections

facilitate hierarchical control over spatial features.

• Residual Architecture: Deep residual blocks enhance gradient flow and feature reuse.

BigGAN-deep further expands the architecture using bottleneck ResBlocks and additional

layers per resolution.

• Orthogonal Regularization: To support the truncation trick, orthogonal regularization [55]

ensures the generator’s mapping from latent space is smooth and well-conditioned. This

regularization minimizes cosine similarity between filters while avoiding norm constraints.

• Truncation Trick: During inference, samples are drawn from a truncated normal distribution,

i.e., z ∼N (0, I) with resampling of values exceeding a fixed magnitude threshold. This

concentrates latent inputs around the distribution’s mode, improving visual fidelity at the

cost of diversity. The truncation threshold serves as a dial for post-hoc control over the

quality–variety tradeoff.

• Exponential Moving Average (EMA): The generator weights are averaged across training

steps using an EMA with a decay of 0.9999, improving the quality and consistency of generated

samples during evaluation.

• Orthogonal Initialization: All layers in G and D are initialized with orthogonal matri-

ces [552], promoting stable signal propagation in very deep networks.

• Hinge Loss and Self-Attention: The architecture adopts hinge loss for adversarial training and

includes self-attention modules [763] to improve long-range dependency modeling, especially

in higher-resolution images.

Figure 20.42: BigGAN: high-fidelity, class-conditional samples across resolutions (128–512 px) on

ImageNet.
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Beyond the primary components discussed in earlier parts of this lecture such as label conditioning,

spectral normalization, and self-attention—BigGAN incorporates several additional architectural

and training innovations that play a crucial role in achieving high-fidelity, scalable synthesis. In what

follows, we elaborate on these techniques, mainly those which were not previously covered in depth.

Enrichment 20.7.4.1: Skip-z Connections: Hierarchical Latent Injection

In conventional conditional GANs, the latent code z ∈ R
d is typically introduced at the generator’s

input layer and optionally used to initialize class-conditional batch normalization (CBN) in a uniform

way. However, this limits the model’s ability to control spatially localized features in a deep generator

architecture.

BigGAN implements a refined variant of latent conditioning, referred to as skip-z connections.

The latent vector z is evenly split into L chunks—each assigned to one of the generator’s L residual

blocks. Each block uses its assigned chunk zℓ ∈Rd/L in combination with the shared class embedding

c ∈ R
dc to compute block-specific conditional normalization parameters.

Mechanism:

For each block:

1. Concatenate zℓ with c.

2. Project this vector using two linear layers to produce the gain and bias for CBN.

3. Apply those to modulate the BatchNorm activations within the residual block.

This process occurs twice per block (once for each BatchNorm layer), and is implemented via

reusable layers inside each residual block.

1 # From BigGAN-PyTorch: ConditionalBatchNorm2d

2 class ConditionalBatchNorm2d(nn.Module):

3 def __init__(self, num_features, cond_dim):

4 super().__init__()

5 self.bn = nn.BatchNorm2d(num_features, affine=False)

6 self.gain = nn.Linear(cond_dim, num_features)

7 self.bias = nn.Linear(cond_dim, num_features)

8

9 def forward(self, x, y): # y = [z_chunk, class_embedding]

10 out = self.bn(x)

11 gamma = self.gain(y).unsqueeze(2).unsqueeze(3)

12 beta = self.bias(y).unsqueeze(2).unsqueeze(3)

13 return gamma * out + beta

Each residual block in the generator stores its own ‘ConditionalBatchNorm2d‘ instances and

receives its dedicated chunk of z. This allows each layer to capture different aspects of semantic

control—for example, coarse structures at lower resolution, textures and edges at higher ones.
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Comparison to Standard CBN:

In standard conditional normalization, the generator is conditioned on a single global class embedding

c, which is reused across all layers. This provides semantic conditioning but lacks spatial specificity.

In BigGAN, the class embedding c remains global and shared, but the latent vector z is partitioned

into chunks z(l), one per generator block. Each chunk influences a different spatial resolution by

being fed into that block’s conditional batch normalization (CBN) layer.

This design allows different parts of the latent code to control different levels of the image

hierarchy — from coarse global structure to fine-grained texture. As a result, the generator gains

more expressive power and learns a hierarchical organization of semantic and stylistic attributes

without modifying the way c is handled.

BigGAN-deep Simplification:

In BigGAN-deep, the latent vector z is not split. Instead, the full z vector is concatenated with the

class embedding and injected identically into every residual block. While this sacrifices per-layer

specialization of z, it simplifies parameter management and works effectively in deeper, bottlenecked

architectures.

Enrichment 20.7.4.2: Residual Architecture: Deep and Stable Generators

A cornerstone of BigGAN’s scalability is its reliance on deep residual networks in both the generator

and discriminator. Inspired by ResNet-style design [206], BigGAN structures its generator using

stacked residual blocks, each of which learns a refinement over its input, enabling stable and

expressive function approximation even at hundreds of layers.

Motivation and Design:

GAN training becomes increasingly unstable as model capacity grows. Residual blocks counteract

this by providing shortcut (identity) connections that facilitate gradient propagation and feature reuse.

Each residual block contains:

• Two 3×3 convolutions (optionally bottlenecked).

• Two conditional batch normalization layers (CBN), conditioned via skip-z as described earlier.

• A ReLU activation before each convolution.

• A learned skip connection (via 1×1 conv) when input/output shapes differ.

This design supports deep, expressive generators that do not suffer from vanishing gradients.

BigGAN vs. BigGAN-deep:

BigGAN uses relatively shallow residual blocks with a single block per resolution stage. In contrast,

BigGAN-deep significantly increases network depth by introducing:

• Two residual blocks per resolution (instead of one).

• Bottlenecked residual layers: each block includes 1×1 convolutions before and after the main

3×3 convolution to reduce and restore the channel dimensionality.

• Identity-preserving skip connections: in the generator, excess channels are dropped to match

dimensions, while in the discriminator, missing channels are padded via concatenation.

These architectural changes enable deeper networks with better training stability and more

efficient parameter usage.



20.7 Enrichment 20.7: Conditional GANs: Label-Aware Image Synthesis 1135

Figure 20.43: BigGAN architectural layout and residual blocks [52]. (a) Generator architecture

with hierarchical latent injection via skip-z connections. (b) Residual block with upsampling in the

generator (ResBlock up). (c) Residual block with downsampling in the discriminator (ResBlock

down).
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Figure 20.44: BigGAN-deep architectural layout and residual blocks [52]. (a) Generator structure

with deeper residual hierarchies and full latent conditioning. (b) Residual block with upsampling

in the generator. (c) Residual block with downsampling in the discriminator. Blocks without

up/downsampling are identity-preserving and exclude pooling layers.
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These deeper and more modular residual structures help BigGAN-deep outperform its shallower

predecessor across all resolutions and evaluation metrics (e.g., FID and IS), while often using fewer

parameters due to the bottlenecked design.

Enrichment 20.7.4.3: Truncation Trick in BigGAN: Quality vs. Diversity

The truncation trick is a sampling technique introduced in BigGAN [52] to improve image quality

during inference. It restricts latent vectors to lie within a high-density region of the standard normal

distribution, where the generator is more likely to produce stable and realistic outputs.

Truncated Normal Distributions in Latent Space

During training, the latent code z ∈ R
d is drawn from a standard normal distribution, zi ∼N (0,1).

At test time, the truncation trick samples each component from the same distribution but only accepts

values within an interval [−τ,τ]. Formally:

zi ∼N (0,1) conditioned on |zi| ≤ τ

Samples exceeding τ are rejected and resampled. This results in a truncated normal distribution

with increased density near the origin and zero probability beyond the cutoff. The distribution is

renormalized so that it still integrates to 1.

Why Truncate?

In high-dimensional Gaussian space, most probability mass is concentrated in a thin spherical shell

around ∥z∥2 ≈
√

d. These high-norm vectors are often mapped by the generator to unstable or

low-quality outputs. Truncation focuses sampling on lower-norm vectors near the origin—regions

where the generator has been well-trained. This leads to:

• Cleaner and sharper images.

• Reduced artifacts.

• Stronger alignment with class-conditional structure.

How Is τ Chosen?

The truncation threshold τ is a tunable hyperparameter. Smaller values yield higher quality but

reduce diversity. Common values include τ = 2.0, 1.5, 1.0, or 0.5. In practice, a truncation sweep

is performed to empirically select the best trade-off. BigGAN reports IS and FID for multiple

truncation levels, revealing the tradeoff curve between sample quality and variety.

Implementation in Practice

Truncated sampling is implemented via per-dimension rejection sampling:

1 from scipy.stats import truncnorm

2

3 def truncated_z(dim, tau):

4 return truncnorm.rvs(-tau, tau, loc=0, scale=1, size=dim)

This procedure generates a latent vector z ∈ R
d with each component sampled independently

from N (0,1), truncated to [−τ,τ].
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Tradeoffs and Limitations

Truncation improves sample fidelity but comes with costs:

• Reduced Diversity: A smaller volume of latent space is explored.

• Possible Instability: Generators not trained to handle low-norm regions may produce col-

lapsed or saturated outputs.

When Truncation Fails

If the generator lacks smoothness near z = 0, truncation can trigger saturation artifacts or mode

collapse. This happens when the model overfits to high-norm training inputs and generalizes poorly

to low-norm regions. Thus, truncation should be used only with generators that have been explicitly

regularized for this purpose.

How to Make Truncation Work Reliably

To ensure that the generator behaves well under truncation, BigGAN applies orthogonal regu-

larization, which promotes smoothness and local isometry in the latent-to-image mapping. This

regularization term discourages filter redundancy and ensures the generator responds predictably to

small latent variations—especially those near the origin.

Enrichment 20.7.4.4: Orthogonal Regularization: A Smoothness Prior for Truncated Latents

Orthogonal regularization is a key technique introduced in BigGAN to ensure that the generator

remains well-behaved in low-norm regions of latent space—regions emphasized by the truncation

trick. While truncation improves sample quality by concentrating latent inputs near the origin, this

strategy only works reliably if the generator maps these inputs smoothly and predictably to images.

Without this property, truncation may lead to artifacts, over-saturation, or even complete mode

collapse.

To address this, BigGAN introduces a soft form of orthogonality constraint on the generator’s

weight matrices. The goal is to encourage the columns of each weight matrix to be approximately or-

thogonal to each other. This makes each layer in the generator act as a near-isometric transformation,

where similar inputs lead to similar outputs. As a result, local neighborhoods in latent space map to

locally coherent image regions.

The standard orthogonal regularization term penalizes deviations from strict orthogonality by

minimizing the squared Frobenius norm of the off-diagonal entries in W⊤W , where W is a weight

matrix:

Lortho = λ
∥∥∥W⊤W − I

∥∥∥
2

F

However, in practice, this constraint is too strong and can limit model expressiveness. Instead,

BigGAN uses a relaxed variant that excludes the diagonal entries, focusing only on reducing

correlations between filters while allowing their norms to vary. The regularization term becomes:

Lortho = λ
∥∥∥W⊤W ⊙ (1− I)

∥∥∥
2

F

where I is the identity matrix and ⊙ denotes element-wise multiplication. This version of the penalty

preserves the desired smoothness properties without overly constraining the generator’s capacity.

Empirical results show that orthogonal regularization dramatically increases the likelihood that a

generator will remain stable under truncated sampling. In the BigGAN paper, only 16% of large

models were truncation-tolerant without orthogonal regularization.
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When this penalty was included, the success rate increased to over 60%. These results confirm

that enforcing orthogonality improves the conditioning of the generator and mitigates gradient

pathologies that would otherwise arise in narrow latent regions.

In implementation, orthogonal regularization is applied as an auxiliary term added to the gen-

erator’s loss during training. It is computed across all linear and convolutional weight matrices

using simple matrix operations. Its computational overhead is negligible compared to the benefits

it provides in stability, generalization, and quality at inference time—particularly when truncated

latent vectors are used.

Orthogonal regularization should not be confused with orthogonal initialization, although both

arise from the same geometric motivation: preserving distance and structure through linear trans-

formations. Orthogonal initialization sets the initial weights of a neural network to be orthogonal

matrices, satisfying W⊤W = I at initialization time. This technique was introduced in the context

of deep linear and recurrent networks [552] to maintain variance propagation and avoid gradient

explosion or vanishing.

BigGAN applies orthogonal initialization to all convolutional and linear layers in both the

generator and the discriminator. This initialization ensures that the model starts in a well-conditioned

regime where activations and gradients are stable across many layers. However, during training,

weight matrices are updated by gradient descent and quickly deviate from orthogonality. This is

where orthogonal regularization becomes essential—it continuously nudges the model back toward

this structured regime.

Thus, orthogonal initialization provides a favorable starting point, while orthogonal regularization

acts as a guiding prior during optimization. Their combination is especially effective in large-scale

GANs: initialization alone may be insufficient to prevent pathological gradients, and regularization

alone may be ineffective if starting from arbitrary weights. Together, they enable BigGAN to

maintain spatial smoothness and local isometry throughout training, which is critical for its ability to

support low-norm latent vectors and reliably generate high-quality images under truncation.

Enrichment 20.7.4.5: Exponential Moving Average (EMA) of Generator Weights

Another subtle but powerful technique used in BigGAN is the application of an exponential moving

average (EMA) over the generator weights during training. Although it does not influence the

optimization process directly, EMA plays a critical role during evaluation and sample generation.

It acts as a temporal smoothing mechanism over the generator’s parameter trajectory, helping

to counteract the noise and instability of high-variance gradient updates that occur throughout

adversarial training.

The EMA maintains a running average of the generator’s weights θt according to the update rule:

θ EMA
t = α ·θ EMA

t−1 +(1−α) ·θt

where α ∈ (0,1) is the decay rate, often set very close to 1 (e.g., α = 0.999 or 0.9999). This

formulation gives exponentially more weight to recent updates while slowly fading out older values.

As training progresses, the EMA model tracks the moving average of each parameter across steps,

effectively producing a smoothed version of the generator that is less affected by momentary

oscillations or adversarial instability.

In practice, EMA is not used during training updates or backpropagation. Instead, a shadow copy

of the generator is maintained and updated using the EMA formula after each optimization step.
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Then, when it comes time to evaluate the generator—either for computing metrics like Inception

Score or FID, or for sampling images for qualitative inspection—BigGAN uses this EMA-smoothed

generator instead of the raw, most-recent checkpoint.

The benefits of this approach are particularly visible in high-resolution settings, where adversarial

training can produce noisy or unstable weight fluctuations even when the model as a whole is

converging. The EMA model filters out these fluctuations, resulting in visibly cleaner and more

coherent outputs. It also improves quantitative metrics across the board, with lower FID scores and

reduced sample variance across random seeds.

The idea of averaging model parameters over time is not unique to GANs—it has a long history

in convex optimization and stochastic learning theory, and is closely related to Polyak averaging.

However, in the context of GANs, it gains particular significance due to the non-stationary nature of

the loss surface and the adversarial updates. The generator is not optimizing a static objective but is

instead constantly adapting to a co-evolving discriminator. EMA helps decouple the generator from

this shifting target by producing a more stable parameter estimate over time.

It is also worth noting that EMA becomes increasingly important as model size and capacity

grow. In very large generators, even small perturbations to weight matrices can lead to visible

differences in output. This sensitivity is amplified when using techniques like truncation sampling,

which further constrain the input space. The EMA generator mitigates these issues by producing a

version of the model that is representative of the broader training trajectory, rather than any single

volatile moment in optimization.

In BigGAN, the EMA weights are typically stored alongside the training weights, and a final

evaluation pass is conducted exclusively using the averaged version. This ensures that reported

metrics reflect the most stable version of the model. As a result, EMA has become a de facto standard

in high-quality GAN implementations, extending well beyond BigGAN into diffusion models, VAEs,

and other generative frameworks that benefit from stable parameter averaging.

Enrichment 20.7.4.6: Discriminator-to-Generator Update Ratio

A key practical detail in BigGAN’s training strategy is its use of an asymmetric update schedule

between the generator and discriminator. Specifically, for every generator update, the discriminator

is updated twice. This 2:1 update ratio, while simple, has a significant impact on training stability

and convergence—particularly during early stages when the generator is still producing low-quality

outputs and lacks meaningful gradients.

This design choice arises from the fundamental nature of GANs as a two-player minimax game

rather than a supervised learning problem. In the standard GAN objective, the generator relies on

the discriminator to provide gradients that guide it toward producing more realistic samples. If the

discriminator is undertrained or inaccurate, it fails to deliver informative gradients. In such cases,

the generator may either receive gradients with very low magnitude (i.e., saturated) or gradients that

are inconsistent and directionless. Either scenario leads to unstable training, poor convergence, or

mode collapse.

Updating the discriminator more frequently ensures that it can closely track the current distribu-

tion of fake samples produced by the generator. In early training, this is especially important: the

generator often outputs near-random images, while the discriminator can quickly learn to distinguish

these from real samples. However, the generator can only learn effectively if the discriminator pro-

vides non-saturated gradients—responses that are confident yet not flat. By giving the discriminator

extra updates, the model maintains a discriminator that is sufficiently strong to provide meaningful

feedback but not so dominant that it collapses the generator.



20.7 Enrichment 20.7: Conditional GANs: Label-Aware Image Synthesis 1141

This update schedule also compensates for the relatively high gradient variance and weaker

signal that the generator typically receives. Since the generator’s loss depends entirely on how the

discriminator scores its outputs, and because these outputs change with each batch, the gradient

landscape faced by the generator is inherently less stable. Additional discriminator updates help

mitigate this instability by ensuring that the discriminator has time to adapt to the generator’s latest

distribution before a new generator step is taken.

Importantly, this strategy only works in combination with proper regularization. BigGAN uses

spectral normalization in both G and D to constrain the discriminator’s Lipschitz constant and prevent

overfitting. Without such constraints, training the discriminator more aggressively could lead it

to perfectly memorize the training data or overpower the generator entirely, resulting in vanishing

gradients.

While BigGAN settles on a 2:1 update ratio, other GAN variants may use different values

depending on model complexity and the chosen loss function. For example, WGAN-GP updates

the discriminator five times for every generator update to approximate the Wasserstein distance

reliably. In contrast, StyleGAN2-ADA uses a 1:1 schedule but includes strong regularization and

adaptive data augmentation to stabilize training. Ultimately, the ideal update frequency is a function

of architectural depth, dataset difficulty, and the adversarial loss landscape. In BigGAN’s case,

the 2:1 ratio is a well-calibrated compromise that supports rapid discriminator adaptation without

overwhelming the generator.

Results and Legacy

Trained on ImageNet, BigGAN models achieved an Inception Score (IS) of 166.5 and FID of 7.4 at

128×128 resolution—substantially surpassing previous benchmarks. The models generalize well to

larger datasets such as JFT-300M and have inspired a cascade of follow-up works, including:

• BigBiGAN [130], which extends BigGAN with an encoder network, enabling bidirectional

mapping and representation learning;

• ADM-G [123], whose strong results in class-conditional image synthesis with diffusion

models were, in part, motivated by BigGAN’s performance ceiling;

• StyleGAN-T [321], a transformer-based GAN combining BigGAN-style residual backbones

with Vision Transformer decoders;

• Consistency Models [581], which revisit training efficiency, stability, and realism tradeoffs

using simplified objectives beyond GANs.

These extensions signal BigGAN’s long-standing impact—not merely as a powerful model, but

as a catalyst for the generative modeling community’s move toward scalable, stable, and controllable

synthesis. Its emphasis on architectural regularization, batch scaling, and sample quality–diversity

tradeoffs continues to shape SOTA pipelines.



1142 Chapter 20. Lecture 20: Generative Models II

Enrichment 20.7.5: StackGAN: Two-Stage Text-to-Image Synthesis

StackGAN [765] introduced a pivotal advancement in text-to-image generation by proposing a

two-stage architecture that decomposes the synthesis process into coarse sketching and progressive

refinement. This design is inspired by how human artists typically work: first sketching global

structure, then layering fine-grained detail. The central insight is that generating high-resolution,

photorealistic images directly from text is extremely difficult—both because modeling fine detail in

a single forward pass is computationally unstable, and because the generator must preserve semantic

alignment with the conditioning text at increasing resolutions.

Earlier works such as GAN-INT-CLS [519] and GAWWN [520] introduced conditional GANs

based on text embeddings. GAN-INT-CLS used a pre-trained RNN to encode descriptive captions

into fixed-size vectors, which were then concatenated with noise and passed through a generator to

produce 64×64 images. While conceptually sound, it failed to capture high-frequency details or

generate sharp textures. GAWWN added spatial attention and object location hints, but similarly

struggled at scaling beyond low resolutions or preserving semantic richness.

StackGAN addresses these challenges by introducing a two-stage generator pipeline. But

before either stage operates, StackGAN applies a crucial transformation called Conditioning

Augmentation (CA). Instead of feeding the text embedding φt ∈ R
D directly into the generator, CA

maps it to a Gaussian distribution N (µ(φt),Σ(φt)) using a learned mean and diagonal covariance.

A conditioning vector ĉ∼N (µ,Σ) is then sampled and used as the actual conditioning input.

This stochastic perturbation serves several purposes:

• It encourages smoothness in the conditioning manifold, making the generator less brittle to

small changes in text.

• It introduces variation during training, acting like a regularizer that improves generalization.

• It helps overcome mode collapse by encouraging the generator to explore nearby conditioning

space without drifting far from the intended semantics.

With CA in place, StackGAN proceeds in two stages:

• Stage-I Generator: Takes as input the sampled conditioning vector ĉ and a random noise

vector z, and synthesizes a coarse 64×64 image. This image captures the global layout, color

palette, and rough object geometry implied by the text. However, it typically lacks sharpness

and fine-grained texture.

• Stage-II Generator: Refines the low-resolution image by conditioning again on the original

text embedding (not the sampled ĉ) and the Stage-I output. It corrects distortions, enhances

object boundaries, and synthesizes photorealistic detail. This generator is built as a residual

encoder–decoder network, with upsampling layers and deep residual connections that allow

semantic feature reuse. The discriminator in this stage is also enhanced with matching-aware

supervision to ensure image–text consistency.
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Figure 20.45: Comparison of StackGAN and a one-stage 256×256 GAN [765]. (a) Stage-I produces

low-resolution sketches with basic color and shape. (b) Stage-II enhances resolution and realism. (c)

One-stage GAN fails to produce plausible high-resolution outputs.

The effect of this staged generation is illustrated in Figure 20.45. While one-stage GANs

struggle to produce realistic 256× 256 images—even when equipped with deep upsampling lay-

ers—StackGAN’s sketch-and-refine paradigm achieves significantly better visual fidelity. Stage-I

outputs provide rough structure, and Stage-II convincingly improves resolution, texture, and align-

ment with text cues.

The architectural overview illustrates the interaction between text embeddings, conditioning

augmentation, and residual refinement. The text embedding is used at both stages to ensure that

conditioning information is not lost in early transformations. Residual blocks in Stage-II integrate

features from both the coarse image and the original text to construct plausible details aligned with

the semantics of the prompt.



1144 Chapter 20. Lecture 20: Generative Models II

Figure 20.46: Architecture of StackGAN [765]. Stage-I generator synthesizes low-resolution images

from text embedding and noise. Stage-II generator refines Stage-I outputs by injecting additional

detail using residual blocks and upsampling layers.

This two-stage framework offers several advantages:

• It decomposes the generation task into manageable subgoals: layout and detail.

• It maintains semantic consistency by conditioning both stages on the text.

• It improves training stability and image diversity through CA.

From Overview to Components:

We now examine each of StackGAN’s core components in detail. The entire system is built on a

simple but powerful idea: rather than attempting to generate high-resolution images in a single step,

StackGAN decomposes the process into well-defined stages. Each stage plays a specialized role in

the pipeline, and the quality of the final output hinges critically on the strength of the conditioning

mechanism that feeds it.

We begin by studying Conditioning Augmentation (CA), which precedes both Stage-I and

Stage-II generators and provides the stochastic conditioning vector from which the entire synthesis

process unfolds. This module acts as the semantic foundation of StackGAN, and understanding it

will clarify how subsequent stages achieve stability, diversity, and realism.
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Enrichment 20.7.5.1: Conditioning Augmentation (CA)

A central challenge in text-conditioned GANs is that each natural language caption is mapped to

a fixed high-dimensional embedding vector φt ∈ R
D, typically obtained via an RNN-based text

encoder. While these embeddings successfully encode semantics, they pose three major problems

for image generation:

• Determinism: A single text embedding maps to a single point in feature space, limiting image

diversity for the same caption.

• Sparsity and Interpolation Gaps: Fixed embeddings lie on a sparse, irregular manifold,

making interpolation and smooth generalization difficult.

• Overfitting: The generator may memorize how to map a specific caption embedding to a

specific image, risking mode collapse.

Solution: Learn a Distribution Over Conditioning Vectors

StackGAN addresses these issues with Conditioning Augmentation (CA), which models a distri-

bution over conditioning vectors rather than using a single deterministic embedding. Given a text

embedding φt , CA learns the parameters of a Gaussian distribution:

ĉ∼N
(
µ(φt),diag(σ2(φt))

)

where µ(φt) ∈ R
Ng and logσ2(φt) ∈ R

Ng are the outputs of two fully connected layers applied to φt .

This distribution introduces controlled randomness into the conditioning process.

Sampling via Reparameterization Trick

To ensure end-to-end differentiability, CA uses the reparameterization trick—first introduced in

variational autoencoders:

ĉ = µ(φt)+σ(φt)⊙ ε, ε ∼N (0, I)

where ĉ ∈ R
Ng becomes the actual conditioning input for the generator, and ⊙ denotes elementwise

multiplication. This trick enables gradients to propagate through the stochastic sampling process

during training.

KL Divergence Regularization

To avoid arbitrary shifts in the learned distribution and ensure it remains centered and stable, CA

includes a regularization term:

LKL = DKL

(
N (µ(φt),diag(σ2(φt))) ∥N (0, I)

)

This KL divergence penalizes deviations from the standard normal distribution, thereby encouraging

the learned µ to stay near zero and σ near one. This regularization discourages degenerate behavior

such as collapsing the variance to zero (making CA deterministic again). The KL loss is added to the

generator’s total loss during training.

Benefits of Conditioning Augmentation

• Diversity from Fixed Input: Sampling ĉ from a learned Gaussian allows multiple plausible

images to be generated from a single caption φt .

• Smooth Latent Manifold: The conditioning space becomes more continuous, improving

interpolation, generalization, and gradient flow.

• Robustness and Regularization: The KL penalty prevents the conditioning distribution from

drifting arbitrarily far from the origin, which stabilizes training.
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Summary Table: Conditioning Augmentation

Component Role

φt Sentence embedding from text encoder

µ(φt),σ
2(φt) Parameters of a diagonal Gaussian

ĉ Sampled conditioning vector fed to the generator

LKL Regularizer to keep N (µ,σ2) close to N (0, I)

Having established a robust and diverse conditioning vector ĉ via CA, we now turn to the first stage

of generation: a low-resolution GAN that translates this semantic vector into a coarse but globally

coherent image layout.

Enrichment 20.7.5.2: Stage-I Generator: Coarse Sketching from Noise and Caption

After sampling a stochastic conditioning vector ĉ ∈ R
Ng via Conditioning Augmentation (CA), the

Stage-I generator synthesizes a coarse 64×64 image that captures the global layout, dominant colors,

and rough object shapes. This stage is intentionally lightweight, focusing not on photorealism, but

on producing a semantically plausible sketch aligned with the text description.

Motivation: Why Two Stages?

Generating high-resolution images (e.g., 256×256) directly from noise and text is challenging due

to multiple factors:

• Gradient instability: GAN training at large resolutions often suffers from unstable optimiza-

tion.

• Complex mappings: A direct mapping from (z,φt) 7→ image must simultaneously learn

global structure and fine-grained detail.

• Mode collapse: High-resolution generation without strong inductive structure can lead to

poor sample diversity or overfitting.

To mitigate these issues, StackGAN breaks the synthesis process into two distinct tasks:

• Stage-I: Learn to generate a coarse image from the conditioning vector.

• Stage-II: Refine that image into a high-fidelity result using residual enhancement.

This decomposition improves modularity, training stability, and sample quality, following the

same coarse-to-fine approach used in human drawing.

Architecture of Stage-I Generator

The generator takes as input:

z∼N (0, I), ĉ∼N (µ(φt),σ
2(φt))

where z ∈ R
Nz is a standard Gaussian noise vector and ĉ ∈ R

Ng is the sampled conditioning vector.

These vectors are concatenated to form a combined input:

h0 = [z; ĉ] ∈ R
Nz+Ng

The forward pass proceeds as follows:

1. Fully connected layer: h0 is mapped to a dense feature vector and reshaped to a spatial tensor

(e.g., 4×4×512).
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2. Upsampling blocks: A series of convolutional blocks upsample this tensor progressively to

64×64, each consisting of:

• Nearest-neighbor upsampling (scale factor 2)

• 3×3 convolution to reduce channel dimensionality

• Batch Normalization

• ReLU activation

3. Final layer: A 3×3 convolution maps the output to 3 channels (RGB), followed by a Tanh

activation:

Istage-I = tanh(ConvRGB(h)) ∈ R
64×64×3

Output Normalization: Why Tanh?

The Tanh function ensures that pixel values lie in the range (−1,1). This matches the normalized

data distribution used during training and avoids vanishing gradients more effectively than the

Sigmoid function, which squashes values into [0,1] and saturates near boundaries. Moreover, Tanh is

zero-centered, which harmonizes well with BatchNorm layers that follow a zero-mean distribution.

From Latent Tensor to Displayable Image

At inference time, the generated image I ∈ [−1,1]H×W×3 is rescaled to displayable RGB format via:

imageuint8 =

(
I +1

2

)
×255

This rescaling is not part of the generator architecture—it is applied externally during image saving

or visualization.

How Channel Reduction Works in Upsampling Blocks

A common misconception is that upsampling reduces the number of channels. In fact:

• Upsampling (e.g., nearest-neighbor or bilinear) increases spatial resolution, but preserves

channel depth.

• Convolution that follows upsampling reduces channel dimensionality via learned filters.

Thus, a typical stack in Stage-I looks like:

4×4×512→ 8×8×256

→ 16×16×128

→ 32×32×64

→ 64×64×3

Each transition consists of: upsample� convolution� BatchNorm� ReLU.

Summary of Stage-I Generator

Component Role

z∼N (0, I) Random noise to seed diversity

ĉ∼N (µ,σ2) Conditioning vector from CA

FC layer Projects input into spatial feature map

Upsampling + Conv blocks Build image resolution step-by-step

Final Tanh activation Constrains pixel values to [−1,1]
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This completes the first stage of StackGAN. The output image Istage-I serves as a rough semantic

sketch that is then refined in Stage-II, where texture, edges, and class-specific details are injected in

a residual encoder–decoder framework.

Enrichment 20.7.5.3: Stage-II Generator: Refinement with Residual Conditioning

The Stage-I Generator outputs a low-resolution image Istage-I ∈ [−1,1]64×64×3 that captures the

coarse spatial layout and color distribution of the target object. However, it lacks photorealistic

texture and fine-grained semantic details. To address this, StackGAN introduces a Stage-II Gen-

erator that refines Istage-I into a high-resolution image (typically 256×256) by injecting residual

information—guided again by the original text description.

Why Two Stages Are Beneficial

The division of labor into two stages is not arbitrary. It allows the model to separate:

• Global coherence and layout (handled by Stage-I)

• Local realism, edges, and fine detail (handled by Stage-II)

This decomposition mimics human drawing: a rough sketch is laid down first, then detail is

added in successive refinement passes. The result is more stable training, higher sample fidelity, and

clearer semantic grounding.

Inputs to Stage-II Generator

Stage-II receives:

Istage-I ∈ R
64×64×3, ĉ ∈ R

Ng

where Istage-I is the output from Stage-I, and ĉ is the same conditioning vector sampled from the CA

module.

Network Structure and Residual Design

The Stage-II Generator follows an encoder–decoder architecture with residual connections:

1. Downsampling encoder: The 64×64 image is downsampled through strided convolutions,

extracting a hierarchical feature representation.

2. Text-aware residual blocks: The encoded features are concatenated with the text conditioning

vector ĉ and processed through multiple residual blocks:

x 7→ x+F(x, ĉ)

where F is a learnable function composed of BatchNorm, ReLU, and convolutions, modulated

by the text embedding.

3. Upsampling decoder: The enhanced feature map is upsampled through nearest-neighbor

blocks and convolutions until it reaches size 256×256×3.

4. Tanh activation: A final 3×3 convolution followed by Tanh ensures output pixel values are

in [−1,1].

Semantic Reinforcement via Dual Conditioning

One subtle but critical detail is that Stage-II does not rely solely on the coarse image. It also reuses

the original caption embedding φt via the CA vector ĉ, allowing it to reinterpret the initial sketch

and enforce textual alignment. This reinforcement ensures that Stage-II does not merely sharpen the

image, but corrects and realigns it to better reflect the input caption.
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Discriminator in Stage-II

The Stage-II Discriminator is also conditioned on text. It takes as input:

DStage-II(Ifake,φt)

and is trained to distinguish between real and generated images given the caption. It follows a

PatchGAN-style architecture and applies spectral normalization to improve convergence.

Overall Effect of Stage-II

Compared to naive GANs that attempt high-resolution synthesis in a single pass, StackGAN’s

residual refinement strategy in Stage-II enables:

• Sharper object boundaries and fine-grained textures (e.g., feathers, eyes, flower petals)

• Fewer artifacts and better color consistency

• Improved semantic alignment between caption and image

Summary of Stage-II Generator

Component Role

Istage-I ∈ R
64×64×3 Coarse layout from Stage-I

ĉ ∈ R
Ng Conditioning vector from CA (reused)

Encoder network Extracts low-res image features

Residual blocks Refine features using text-aware transformation

Decoder network Upsamples features to 256×256

Final Tanh Outputs image in [−1,1] range

Together with CA and Stage-I, this final refinement stage completes the StackGAN architecture,

establishing a blueprint for many follow-up works in text-to-image synthesis that adopt coarse-to-fine

generation, residual conditioning, and staged refinement.

Enrichment 20.7.5.4: Training Procedure and Multi-Stage Objectives

StackGAN is trained in two sequential stages, each consisting of its own generator–discriminator

pair and loss functions. The Conditioning Augmentation (CA) module is shared and optimized

during both stages via an additional KL divergence penalty.

Stage-I Training: The Stage-I generator G0 receives noise z∼N (0, I) and a sampled conditioning

vector ĉ∼N (µ(φt),σ
2(φt)) from the CA module, and outputs a coarse image Istage-I ∈ R

64×64×3.

A discriminator D0 is trained to classify whether this image is real and whether it corresponds to the

conditioning text embedding φt . The training losses are:

• Stage-I Discriminator Loss:

LD0
= E(x,φt)[logD0(x,φt)]+E(z,ĉ)[log(1−D0(G0(z, ĉ),φt))]

where x is a real image and G0(z, ĉ) is the generated fake image.

• Stage-I Generator Loss:

L
total

G0
= E(z,ĉ)[logD0(G0(z, ĉ),φt)]+λKL ·L (0)

KL

where the KL divergence term is:

L
(0)

KL = DKL

(
N (µ(φt),σ

2(φt)) ∥N (0, I)
)
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The generator G0 and the CA module are updated together to minimize L total
G0

, while the

discriminator D0 is trained to minimize LD0
.

Stage-II Training: After Stage-I has converged, its generator G0 is frozen. The Stage-II generator

G1 takes Istage-I and a new sample ĉ∼N (µ(φt),σ
2(φt)), and refines the image to high resolution

Istage-II ∈R
256×256×3. A second discriminator D1 is trained to distinguish between real and generated

high-resolution images, given the same conditioning text.

• Stage-II Discriminator Loss:

LD1
= E(x,φt)[logD1(x,φt)]+E(x̂,φt)[log(1−D1(G1(Istage-I, ĉ),φt))]

where x is a real 256×256 image and x̂ = G1(Istage-I, ĉ) is the generated refinement.

• Stage-II Generator Loss:

L
total

G1
= E(x̂,φt)[logD1(G1(Istage-I, ĉ),φt)]+λKL ·L (1)

KL

with the KL regularization again encouraging the conditioning distribution to remain close to

standard normal.

Training Alternation: For each stage, training proceeds by alternating updates between:

• The generator Gi, which minimizes L total
Gi

• The discriminator Di, which minimizes LDi

• The CA module (through shared gradients with Gi)

Stage-I and Stage-II are not trained jointly but in sequence. This modular strategy prevents

instability, improves sample fidelity, and mirrors a hierarchical refinement process—first capturing

scene layout, then enhancing texture and semantic alignment.

Enrichment 20.7.5.5: Legacy and Extensions: StackGAN++ and Beyond

StackGAN’s core contribution is not merely architectural, but conceptual. By recognizing that text-

to-image generation is inherently hierarchical, it introduced a modular, interpretable strategy that has

since become foundational. Many subsequent works—such as StackGAN++ [766], AttnGAN [715],

and DM-GAN [806]—build directly on its key innovations in conditioning augmentation, multi-

stage generation, and residual refinement.

StackGAN++ generalizes the two-stage approach of StackGAN into a more flexible and scalable

multi-branch architecture. Instead of just two stages, StackGAN++ supports an arbitrary number

of generators operating at increasing resolutions (e.g., 64×64, 128×128, 256×256), all trained

jointly in an end-to-end fashion. Unlike StackGAN, where the second stage generator is trained after

freezing the first, StackGAN++ employs shared latent features and hierarchical skip connections

across all branches—enabling simultaneous refinement of low-to-high resolution details. It also

removes explicit Conditioning Augmentation and instead integrates conditional information at each

scale using residual connections and shared text embeddings. This makes training more stable and

improves semantic alignment across resolutions. Additionally, each generator stage in StackGAN++

has its own dedicated discriminator, enabling finer gradient signals at every level of resolution.

These changes make StackGAN++ more robust to training instabilities and better suited to

modern high-resolution synthesis tasks. By enabling joint optimization across scales and conditioning

paths, it sets the stage for more sophisticated architectures like AttnGAN, which further introduces

word-level attention mechanisms to ground visual details in fine-grained linguistic tokens.



20.7 Enrichment 20.7: Conditional GANs: Label-Aware Image Synthesis 1151

Enrichment 20.7.6: VQ-GAN: Taming Transformers for High-Res Image Synthesis

Enrichment 20.7.6.1: VQ-GAN: Overview and Motivation

VQ-GAN [148] combines the efficient compressive abilities of Vector Quantized Variational Autoen-

coders (VQ-VAE) with the powerful generative capabilities of transformers. It introduces a hybrid

architecture where a convolutional autoencoder compresses images into spatially structured discrete

visual tokens, and a transformer models the distribution over these tokens to enable high-resolution

synthesis. Unlike VQ-VAE-2 [514], which uses hierarchical convolutional priors for modeling,

VQ-GAN incorporates adversarial and perceptual losses during training to enhance visual fidelity

and semantic richness in the learned codebook.

This section builds upon the foundation set by VQ-VAE-2 (§20.3.1) and now turns to a detailed ex-

amination of the VQ-GAN’s key innovations—beginning with its codebook structure and perceptual

training objectives. It is highly suggested to read the VQ-VAE2 part prior continuing if you haven’t

done so already.

The design of VQ-GAN addresses a core trade-off in image synthesis: transformers are well-

suited to modeling global, compositional structure but are computationally expensive when applied

directly to high-resolution pixel grids due to their quadratic scaling. In contrast, convolutional neural

networks (CNNs) are highly efficient in processing local image features—such as textures, edges,

and short-range patterns—because of their spatial locality and weight-sharing mechanisms. While

this practical strength is sometimes referred to as an inductive bias, the term itself is not precisely

defined; in this context, it reflects the empirical observation that CNNs excel at capturing local

correlations in natural images. However, they often fail to model long-range dependencies without

additional architectural support or stacking many layers one after the other, creating very deep and

computationally expensive architectures.

VQ-GAN bridges this gap by:

• Using a CNN-based encoder–decoder to transform images into discrete tokens arranged on a

spatial grid.

• Employing a transformer to model the autoregressive distribution over these tokens.

The result is a generator that is both efficient and expressive—capable of scaling to resolutions

like 256× 256, 512× 512, and beyond. This overall pipeline proceeds in two stages. First, a

convolutional encoder maps the image x ∈ R
H×W×3 into a low-resolution latent feature map ẑ ∈

R
h×w×d . Each feature vector ẑi j is then quantized to its nearest code zk ∈Z = {z1, . . . ,zK} from a

learned codebook Z ⊂ R
d . The decoder reconstructs the image x̂ = G(zq) from this quantized map

zq. Unlike VQ-VAE, which minimizes pixel-level MSE, VQ-GAN uses a combination of perceptual

loss Lperc (measured between VGG features) and a patch-based adversarial loss LGAN to enforce

both high-level semantic similarity and local realism. These losses enhance the codebook’s ability to

capture visually meaningful features.

Once the autoencoder and codebook are trained, they are frozen, and a transformer is trained on

the flattened sequence of codebook indices. The goal is to learn the joint distribution:

p(s) =
N

∏
i=1

p(si | s<i)

where s ∈ {1, . . . ,K}N is the raster-scanned sequence of codebook entries for an image. Training

proceeds via standard teacher-forced cross-entropy.
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At inference time, sampling is performed autoregressively one token at a time. To mitigate the

computational cost of modeling long sequences (e.g., 1024 tokens for 32× 32 maps), VQ-GAN

adopts a sliding window self-attention mechanism during sampling, which limits the receptive field

at each generation step. This approximation enables tractable synthesis at high resolutions while

preserving global structure.

In summary, VQ-GAN decouples local perceptual representation from global autoregressive

modeling, yielding a scalable and semantically rich architecture for image generation. The full

generation pipeline can be interpreted in two training stages:

• Stage 1: Discrete Tokenization via VQ-GAN. An image is encoded into a grid of latent

vectors by a convolutional encoder. Each vector is quantized to its nearest neighbor in a learned

codebook. A CNN decoder reconstructs the image from these discrete tokens. The training

objective incorporates adversarial realism, perceptual similarity, and vector quantization

consistency.

• Stage 2: Autoregressive Modeling. A transformer is trained on token indices to model their

spatial dependencies. It learns to predict each token based on preceding ones, enabling both

unconditional and conditional sampling during generation.

This decoupling of local perceptual encoding from global generative modeling enables VQ-GAN

to achieve the best of both worlds: localized feature accuracy and long-range compositional control.

Figure 20.47: Architecture of VQ-GAN. The convolutional encoder compresses input images

into discrete latent tokens using a learned codebook. The decoder reconstructs from tokens. A

transformer autoregressively models the token distribution for high-resolution synthesis. Image

adapted from [148].

Enrichment 20.7.6.2: Training Objectives and Losses in VQ-GAN

The training of VQ-GAN centers around a perceptually informed autoencoding task. The encoder

E maps an input image x ∈ R
H×W×3 to a latent map ẑ = E(x) ∈ R

h×w×d , which is then quantized

to zq ∈Z h×w by nearest-neighbor lookup from a codebook of learned prototypes. The decoder G

reconstructs the image x̂ = G(zq). While this process resembles the original VQ-VAE [460], the loss

function in VQ-GAN is significantly more expressive.
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Total Loss

The total objective used to train the encoder, decoder, and codebook jointly is:

LVQ-GAN = λrec ·Lrec +λGAN ·LGAN +LVQ

where each term is detailed below, and λrec,λGAN are hyperparameters (typically λrec = 1.0, λGAN =
1.0).

1. Perceptual Reconstruction Loss Lrec

Rather than minimizing pixel-wise MSE, VQ-GAN uses a perceptual loss based on deep feature

activations:

Lrec =
1

ClHlWl

∥φl(x)−φl(x̂)∥2
2

Here, φl(·) denotes the activation map of a pre-trained VGG network at layer l, and Cl,Hl,Wl are its

dimensions. This encourages reconstructions that preserve semantic and texture-level similarity even

if pixel-level details vary, helping avoid the blurriness seen in VQ-VAE outputs.

2. Adversarial Patch Loss LGAN

To further enhance realism, VQ-GAN adds an adversarial loss using a multi-scale PatchGAN

discriminator D. This discriminator classifies local image patches as real or fake. The generator (i.e.,

encoder + quantizer + decoder) is trained with the hinge loss:

L
G

GAN =−Ex̂[D(x̂)] , L
D

GAN = Ex̂[max(0,1+D(x̂))]+Ex[max(0,1−D(x))]

This formulation stabilizes adversarial training and ensures that reconstructions match the patch

statistics of real images.

3. Vector Quantization Commitment and Codebook Loss LVQ

The standard VQ loss is used to train the codebook and encourage encoder outputs to commit to

discrete codes. Following [460], the loss is:

LVQ =
∥∥sg[E(x)]− zq

∥∥2

2︸ ︷︷ ︸
Codebook loss

+β ·
∥∥E(x)− sg[zq]

∥∥2

2︸ ︷︷ ︸
Commitment loss

where sg[·] is the stop-gradient operator, and β controls the strength of the commitment penalty

(typically β = 0.25).

Combined Optimization Strategy

During training, the encoder, decoder, and codebook are updated to minimize LVQ-GAN, while the

discriminator is trained adversarially via L D
GAN. Optimization alternates between these two steps

using Adam with a 2:1 or 1:1 update ratio. The perceptual loss and discriminator feedback reinforce

each other: one encourages semantically faithful reconstructions, the other pushes the generator to

produce images indistinguishable from real data.

Why This Loss Works

The combination of perceptual and adversarial losses compensates for the main weaknesses of prior

methods. While VQ-VAE reconstructions are often blurry due to MSE, the perceptual loss helps

match high-level content, and adversarial feedback ensures photo-realistic textures. This makes the

quantized codebook entries more semantically meaningful, resulting in compressed representations

that are useful for downstream transformer modeling.
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Training Summary

VQ-GAN training proceeds in two stages:

1. Stage 1: Autoencoding. The encoder, decoder, codebook, and discriminator are trained jointly

using the perceptual, adversarial, and quantization losses. The model learns to represent images

as discrete token grids with high perceptual quality.

2. Stage 2: Transformer Language Modeling. The autoencoder is frozen, and a transformer is

trained on the flattened token sequences zq using standard cross-entropy loss for next-token

prediction.

This dual-stage training ensures that VQ-GAN not only compresses visual information effectively,

but also produces discrete codes that are highly suitable for transformer-based generation.

Enrichment 20.7.6.3: Discrete Codebooks and Token Quantization

A central innovation in VQ-GAN lies in its use of a discrete latent space, where each spatial

location in the encoder output is assigned an index corresponding to a learned codebook entry. This

mechanism—first introduced in VQ-VAE [460]—forms the foundation for compressing images into

compact, semantically meaningful tokens suitable for transformer-based modeling.

Latent Grid and Codebook Structure

Let x ∈ R
H×W×3 denote an image. The encoder E transforms it into a continuous latent map

ẑ = E(x) ∈ R
h×w×d , where each spatial position (i, j) corresponds to a d-dimensional vector. The

spatial resolution h×w is typically much smaller than H×W , e.g., 16×16 for 256×256 images.

This latent map is then quantized into a discrete tensor zq ∈Z h×w using a codebook Z = {ek ∈
R

d | k = 1, . . . ,K} containing K learnable embeddings (e.g., K = 1024).

Nearest-Neighbor Quantization

For each location (i, j), the vector ẑi, j ∈ R
d is replaced by its closest codebook entry:

zq(i, j) = ek where k = argmin
k′

∥∥ẑi, j− ek′
∥∥2

2

This lookup converts the continuous feature map into a grid of discrete embeddings, each pointing to

one of the K learned codebook vectors.

Gradient Flow via Stop-Gradient and Codebook Updates

Because the argmin operation is non-differentiable, VQ-GAN uses the same trick as VQ-VAE: it

copies the selected embedding ek into the forward pass and blocks gradients from flowing into the

encoder during backpropagation. Formally, the quantized output is written as:

zq = sg(ek)+(ẑ− sg(ẑ))

where sg(·) denotes the stop-gradient operator.

To update the codebook entries {ek}, the gradient is backpropagated from the reconstruction

loss to the selected embeddings. This allows the codebook to adapt over time based on usage and

reconstruction feedback.
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Codebook Capacity and Token Usage

The number of entries K in the codebook is a key hyperparameter. A small K leads to coarse

quantization (less expressiveness), while a large K may overfit or lead to infrequent usage of some

codes. VQ-GAN monitors token usage statistics during training to ensure that all codes are being

used (via an exponential moving average of codebook assignments). This avoids codebook collapse.

Spatial Token Grid as Transformer Input

After quantization, the grid zq ∈R
h×w×d is flattened into a sequence of token indices {k1, . . . ,khw} ∈

{1, . . . ,K}hw, forming the input for the transformer. The transformer learns to model the autoregres-

sive distribution over this sequence:

p(k1, . . . ,khw) =
hw

∏
t=1

p(kt | k1, . . . ,kt−1)

These discrete tokens serve as the vocabulary of the transformer, analogous to word tokens in natural

language processing.

Comparison to VQ-VAE-2

Unlike VQ-VAE-2, which uses multiple hierarchical codebooks to represent coarse-to-fine visual

features, VQ-GAN uses a single spatially aligned codebook and compensates for the lack of hierarchy

by injecting a stronger perceptual and adversarial training signal. This results in tokens that are

rich in local structure and semantically coherent, making them more suitable for transformer-based

modeling.

Summary

The quantization mechanism in VQ-GAN compresses an image into a spatial grid of discrete tokens

drawn from a learned embedding table. This enables efficient transformer training by decoupling

high-resolution pixel processing from global token modeling. The next section explains how the

transformer is trained on these token sequences to generate new images.

Enrichment 20.7.6.4: Autoregressive Transformer for Token Modeling

Once the VQ-GAN encoder and decoder are trained and the discrete codebook is stabilized, the

model proceeds to its second stage: learning a generative model over token sequences. Rather than

modeling images at the pixel level, this stage focuses on learning the probability distribution of the

codebook indices that describe compressed image representations.

Token Sequence Construction

After quantization, the encoder yields a spatial grid of token indices zq ∈ {1, . . . ,K}h×w. To apply

sequence modeling, this 2D array is flattened into a 1D sequence k = [k1, . . . ,kN ], where N = h ·w.

Typically, this flattening is performed in row-major order, preserving local spatial adjacency as much

as possible.

Autoregressive Training Objective

A transformer decoder is trained to predict the next token given all previous ones. The learning

objective is to maximize the log-likelihood of the true sequence:

LAR =−
N

∑
t=1

log p(kt | k1, . . . ,kt−1)
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This objective is optimized using teacher forcing and standard cross-entropy loss. During training,

the model is exposed to full sequences (obtained from the pretrained encoder) and learns to predict

the next index at each position.

Positional Encoding and Embedding Table

To preserve spatial context in the flattened sequence, each token is augmented with a positional

encoding. This encoding PE(t) ∈ R
d is added to the learned embedding ekt

, yielding the input to the

transformer:

xt = ekt
+PE(t)

The transformer layers then process this sequence via multi-head self-attention and feed-forward

blocks.

Sampling for Image Generation

At inference time, the transformer generates a new image by sampling from the learned token

distribution:

1. Initialize with a special start token or random first token.

2. For t = 1 to N, sample:

kt ∼ p(kt | k1, . . . ,kt−1)

3. After all tokens are generated, reshape the sequence into a grid zq ∈ R
h×w, look up their

embeddings from the codebook, and decode using the frozen VQ-GAN decoder.

Windowed Attention for Long Sequences

Modeling large images requires long token sequences (e.g., 32×32 = 1024 tokens for 256×256

images). This creates a memory bottleneck for standard transformers due to the quadratic cost of

self-attention. To address this, VQ-GAN adopts a sliding window or local attention mechanism:

the transformer only attends to a fixed-size neighborhood of preceding tokens when predicting the

next one. This approximation reduces computational complexity while preserving local coherence.

Comparison with Pixel-Level Modeling

Unlike models that operate directly on pixels (e.g., PixelCNN or autoregressive GANs), this token-

based approach offers:

• Lower sequence length: Tokens are downsampled representations, so fewer steps are needed.

• Higher abstraction: Each token represents a meaningful visual chunk (e.g., a part of an

object), not just an individual pixel.

• Improved generalization: The transformer learns compositional rules over high-level image

structure, rather than low-level noise.

Transformer Variants: Decoder-Only and Encoder–Decoder

The VQ-GAN framework employs different types of transformer architectures depending on the

downstream task—ranging from autoregressive image generation to conditional image synthesis

from natural language. The two primary transformer types are:

• Decoder-only (GPT-style) Transformers: For unconditional and class-conditional image

generation, VQ-GAN uses a causal decoder transformer inspired by GPT-2 [496]. This
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architecture models the token sequence left-to-right, predicting each token conditioned on the

preceding tokens 1, . . .k. It consists of stacked self-attention blocks with masked attention to

preserve causality. The output is a probability distribution over codebook indices for the next

token, enabling sequence generation via sampling. This design supports:

– Unconditional generation from a start-of-sequence token

– Class-conditional generation by appending a class token or embedding

• Encoder–Decoder Transformers (Text-to-Image): For conditional generation from textual

descriptions, the authors adopt a full Transformer encoder–decoder architecture—popularized

by models like T5 [501] and BART [324]. Here, the encoder processes a sequence of text

tokens (from a caption), typically encoded via pretrained embeddings (e.g., CLIP or BERT).

The decoder then autoregressively generates image token sequences conditioned on the encoder

output. This setup allows for:

– Cross-modal alignment between text and image

– Rich semantic guidance at every generation step

– Enhanced sample quality and relevance in text-to-image tasks

In both cases, the transformer operates over a compressed latent space of visual tokens, not pixels.

This architectural choice drastically reduces sequence length (e.g., 16 × 16 = 256 16×16=256 tokens

for 256 × 256 256×256 images), enabling efficient training while preserving global structure.

The authors also explore sliding-window attention during inference to reduce quadratic attention

costs for long token sequences. This allows the model to scale beyond 256×256 resolution while

maintaining tractability.

Training Setup

All transformer variants are trained after the VQ-GAN encoder and decoder are frozen. The

transformer is optimized using standard cross-entropy loss over codebook indices and trained to

minimize next-token prediction error. This decoupling of training stages avoids instability and allows

plug-and-play use of any transformer model atop a trained VQ-GAN tokenizer.

Summary

The transformer in VQ-GAN learns an autoregressive model over discrete image tokens produced by

the encoder and codebook. Its outputs—sequences of token indices—are used to synthesize novel

images by decoding through the frozen decoder. In the next subsection, we explore the sampling

process in detail and the role of quantization grid size in the fidelity and flexibility of the model.

Enrichment 20.7.6.5: Token Sampling and Grid Resolution

Once a transformer has been trained to model the distribution over token sequences, we can generate

new images by sampling from this model. This process involves autoregressively generating a

sequence of discrete token indices, reshaping them into a spatial grid, and then decoding them

through the frozen decoder network.
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Autoregressive Sampling Pipeline

At inference time, generation proceeds as follows:

1. Start from a special start token or a randomly selected token index.

2. For each timestep t ∈ {1, . . . ,N}, sample the next token index from the model’s predicted

distribution:

kt ∼ p(kt | k1, . . . ,kt−1)

3. After all N = h ·w tokens have been generated, reshape the sequence back to a 2D spatial grid.

4. Look up each token’s codebook embedding and pass the resulting tensor through the decoder

to obtain the final image.

This sampling process is computationally expensive, as each new token depends on all previously

generated tokens. For longer sequences (e.g., 32× 32 = 1024 tokens), decoding can be slow,

especially without optimized parallel inference.

Impact of Latent Grid Resolution

The spatial resolution of the latent token grid zq ∈Rh×w is determined by the encoder’s downsampling

factor. For instance, with a 4× downsampling per spatial dimension, a 256×256 image is compressed

into a 64×64 token grid. Larger h×w grids provide finer granularity but also lead to longer token

sequences for the transformer to model.

There is a trade-off here:

• Higher spatial resolution allows for more detailed reconstructions, especially at high image

resolutions.

• Lower spatial resolution results in faster training and sampling but may lead to coarser

images.

The authors of VQ-GAN found that using a 16× 16 token grid worked well for 256× 256

images, balancing model efficiency and output quality. However, when working with higher-

resolution images, grid size becomes a bottleneck: the more aggressively the encoder downsamples,

the more difficult it becomes to preserve fine spatial detail. On the other hand, increasing token

count burdens the transformer with longer sequences and higher memory demands.

Sliding Window Attention (Optional Variant)

To scale to longer sequences without quadratic memory costs, VQ-GAN optionally uses a sliding

window attention mechanism. Rather than attending to all previous tokens, each position attends

only to a fixed-size window of previous tokens (e.g., the last 256). This approximation significantly

reduces memory requirements while preserving local consistency during generation.

Summary

Sampling in VQ-GAN is a two-stage process: a transformer generates a sequence of codebook

indices that are then decoded into an image. The grid resolution of the quantized latent space

plays a critical role in the visual fidelity of outputs and the computational feasibility of training.

While smaller grids reduce complexity, larger grids improve detail—highlighting the importance of

choosing an appropriate balance for the task at hand.
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Enrichment 20.7.6.6: VQ-GAN: Summary and Outlook

VQ-GAN [148] represents a pivotal step in the evolution of generative models by bridging the

efficiency of discrete latent modeling with the expressive power of transformers. Its design merges

the local inductive strengths of convolutional encoders and decoders with global autoregressive

modeling in latent space, enabling synthesis of high-resolution and semantically coherent images.

The key ingredients of this system include:

• A convolutional autoencoder with vector quantization to compress high-dimensional images

into discrete token grids.

• A codebook trained using perceptual and adversarial losses to produce reconstructions that

are sharp and semantically rich.

• An autoregressive transformer that learns to model spatial dependencies among tokens in

the latent space, enabling sample generation and manipulation.

Why VQ-GAN Works

By introducing adversarial and perceptual supervision into the training of the autoencoder, VQ-GAN

overcomes a major limitation of previous models like VQ-VAE and VQ-VAE-2: the tendency toward

blurry or oversmoothed reconstructions. The perceptual loss aligns high-level features between

generated and ground-truth images, while the patch-based adversarial loss encourages fine detail,

particularly texture and edges. Meanwhile, transformers provide a mechanism for globally coherent

synthesis by modeling long-range dependencies among latent tokens.

This decoupling of low-level reconstruction and high-level compositionality makes VQ-GAN

not only effective but modular. The decoder and transformer can be trained separately, and the

codebook can serve as a compact representation for a wide range of downstream tasks.

Future Directions and Influence

The modular, tokenized view of image generation introduced by VQ-GAN has had wide-reaching

consequences in the field of generative modeling:

• It laid the foundation for powerful text-to-image models like DALLE [509] and followup

versions of it, which leverage learned discrete tokens over visual content as a bridge to

language.

• The taming-transformers framework became a baseline for generative pretraining and fine-

tuning, influencing both the latent diffusion models (LDMs) [531] and modern image editing

applications like Stable Diffusion.

• Its discrete latent representation also enabled efficient semantic image manipulation, in-

painting, and zero-shot transfer by training lightweight models directly in token space.

In conclusion, VQ-GAN exemplifies how a principled integration of discrete representation

learning, adversarial training, and autoregressive modeling can lead to scalable, controllable, and

high-fidelity generation. It forms a crucial bridge between convolutional perception and tokenized

generative reasoning, and it remains a foundational method in modern generative visual pipelines.
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Enrichment 20.8: Additional Important GAN Works

In addition to general-purpose GANs and high-resolution synthesis frameworks, many architectures

have been proposed to address specific structured generation tasks—ranging from super-resolution

and paired image translation to semantic layout synthesis and motion trajectory forecasting. These

models extend adversarial learning to incorporate spatial, semantic, and temporal constraints, often

introducing novel conditioning mechanisms, domain priors, and loss formulations.

We begin with seminal architectures such as SRGAN [317] for perceptual super-resolution,

pix2pix [255] and CycleGAN [805] for paired and unpaired image translation, SPADE [470]

for semantic-to-image generation via spatially-adaptive normalization, and SocialGAN [198] for

trajectory prediction in dynamic social environments. These models exemplify how GANs can be

tailored to specific applications by redesigning generator–discriminator objectives and conditioning

pipelines.

If further exploring recent innovations is of interest, we also recommend reviewing cutting-edge

hybrid architectures such as GauGAN2, which fuses semantic maps with text prompts for fine-grained

control over scene layout and appearance, and Diffusion-GAN hybrids [313], which combine score-

based denoising processes with adversarial training for enhanced realism and robustness. These

models reflect emerging trends in generative modeling—blending expressive priors, multimodal

conditioning, and stable learning strategies across increasingly complex synthesis domains.

We now proceed to analyze the foundational task-specific GANs in greater depth, each marking a

significant step forward in aligning generative modeling with real-world objectives.

Enrichment 20.8.1: SRGAN: Photo-Realistic Super-Resolution

SRGAN [317] introduced the first GAN-based framework for perceptual single-image super-

resolution, achieving photo-realistic results at 4× upscaling. Rather than optimizing conventional

pixel-level losses such as Mean Squared Error (MSE), which are known to favor high PSNR but

overly smooth outputs, SRGAN proposes a perceptual training objective that aligns better with

human visual preferences. This objective combines adversarial realism with deep feature similarity

extracted from a pre-trained classification network (VGG16).

Motivation and Limitations of Pixel-Wise Supervision

Pixel-based metrics such as MSE or L2 loss tend to produce blurry reconstructions, particularly at

large upscaling factors (e.g., 4×), because they penalize even slight misalignments in fine details. If

multiple plausible high-resolution reconstructions exist for a single low-resolution input, the network

trained with MSE will learn to output the average of those possibilities—resulting in smooth textures

and a loss of perceptual sharpness.

While pixel-wise accuracy is mathematically well-defined, it does not always reflect visual

fidelity. To address this, SRGAN replaces the MSE loss with a perceptual loss that compares images

in a feature space defined by deep activations of a pre-trained VGG16 network. These intermediate

features reflect higher-level abstractions (edges, textures, object parts), which are more aligned with

how humans perceive image realism.

Why Use VGG-Based Perceptual Loss?

The VGG-based content loss compares the reconstructed image ÎSR and the ground truth image IHR

not at the pixel level, but in the feature space of a neural network trained for image classification.
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Concretely, if φi, j(·) represents the activations at the (i, j)-th layer of VGG16, then the perceptual

loss is defined as:

LVGG =
1

WH
∑
x,y

∥∥φi, j(IHR)x,y−φi, j(ÎSR)x,y

∥∥2

2

This loss better preserves fine-grained textures and edges, as it penalizes semantic-level mismatches.

Although this approach sacrifices raw PSNR scores, it substantially improves perceptual quality.

Architecture Overview

The SRGAN generator is a deep convolutional network consisting of:

• An initial 9×9 convolution followed by Parametric ReLU (PReLU).

• 16 residual blocks, each comprising two 3×3 convolutions with PReLU and skip connections.

• A global skip connection from the input to the output of the residual stack.

• Two sub-pixel convolution blocks (pixel shuffling [564]) to increase spatial resolution by a

factor of 4 in total. Each block first applies a learned convolution that expands the number of

channels by a factor of r2, where r is the upscaling factor. Then, the resulting feature map is

rearranged using a pixel shuffle operation that reorganizes the channels into spatial dimensions.

This process allows efficient and learnable upsampling while avoiding checkerboard artifacts

commonly associated with transposed convolutions. The rearrangement step transforms a

tensor of shape H×W × (r2 ·C) into (rH)× (rW )×C, effectively increasing image resolution

without introducing new spatial operations.

• A final 9×9 convolution with Tanh activation to produce the RGB image.

Skip connections are critical to the generator’s stability and learning efficiency. They allow

the network to propagate low-frequency structure (e.g., colors, global layout) directly from the

input to the output, enabling the residual blocks to focus solely on learning high-frequency textures

and refinements. This decomposition aligns well with the structure-versus-detail duality in image

synthesis.

Upsampling Strategy: Sub-Pixel Convolution Blocks

A core challenge in super-resolution is learning how to upscale low-resolution inputs into high-

resolution outputs while preserving structural integrity and synthesizing high-frequency texture. Tra-

ditional interpolation methods such as nearest-neighbor, bilinear, or bicubic are non-parametric—they

ignore image content and apply fixed heuristics, often producing smooth but unrealistic textures.

Learnable alternatives like transposed convolutions introduce adaptive filters but are known to suffer

from checkerboard artifacts due to uneven kernel overlap and gradient instability.

To address these limitations, SRGAN employs sub-pixel convolution blocks, first introduced

in ESPCN [564]. Rather than directly increasing spatial resolution, the network instead increases

the channel dimension of intermediate features. Specifically, given a desired upscaling factor r, the

model outputs a tensor of shape H×W × (C · r2). This tensor is then passed through a deterministic

rearrangement operation called the pixel shuffle, which converts it to a higher-resolution tensor of

shape rH× rW ×C. This process can be visualized as splitting the interleaved channels into spatial

neighborhoods—each group of r2 channels at a given location forms a distinct r× r patch in the

upsampled output.

Formally, for a given low-resolution feature map F ∈ R
H×W×(C·r2), the pixel shuffle operation

rearranges it into F̃ ∈ R
rH×rW×C via:

F̃(r · i+a,r · j+b,c) = F(i, j,c · r2 +a · r+b)
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for i ∈ [0,H−1], j ∈ [0,W −1],a,b ∈ [0,r−1],c ∈ [0,C−1]. This operation is non-parametric and

fully differentiable.

This upsampling strategy provides several key benefits:

• It keeps most computation in the low-resolution domain, improving speed and memory

efficiency.

• Unlike transposed convolutions, it avoids overlapping kernels, which reduces aliasing and

checkerboard artifacts.

• Because the convolution preceding the pixel shuffle is learned, the network can generate

content-aware and semantically rich upsampling filters.

However, sub-pixel convolution is not without drawbacks. The hard-coded spatial rearrangement

makes it less flexible for modeling long-range spatial dependencies, which must be learned indirectly

by preceding convolutional layers.

This mechanism is now widely adopted in modern super-resolution networks, where it strikes an

effective balance between learnability, visual quality, and computational efficiency.

Discriminator Design

The discriminator is a VGG-style fully convolutional network that:

• Applies a sequence of 3×3 convolutions with increasing numbers of filters.

• Reduces spatial resolution using strided convolutions (no max pooling).

• Uses LeakyReLU activations and BatchNorm.

• Ends with two dense layers and a final sigmoid activation to classify images as real or fake.

Figure 20.48: SRGAN architecture. Top: generator network with deep residual blocks and sub-pixel

upsampling layers. Bottom: discriminator composed of convolutional blocks with increasing channel

width and spatial downsampling. Figure adapted from [317].

Together, the generator and discriminator are trained in an adversarial framework, where the discrim-

inator learns to distinguish between real and super-resolved images, and the generator learns to fool

the discriminator while also minimizing perceptual content loss.
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Figure 20.49: Comparison of reconstruction results for 4× super-resolution: bicubic, SRResNet

(optimized for MSE), SRGAN (optimized for perceptual loss), and ground-truth. Despite lower

PSNR, SRGAN achieves significantly better perceptual quality. Image adapted from [317].

In summary, SRGAN’s perceptual training framework—rooted in feature-level losses and adversarial

feedback—transformed the super-resolution landscape. It shifted the focus from purely quantitative

fidelity (e.g., PSNR) to perceptual realism, influencing numerous follow-up works in both restoration

and generation.

Perceptual Loss Function

Let φi, j(·) denote the feature maps extracted from the (i, j)-th layer of the pretrained VGG19 network.

The total perceptual loss used to train SRGAN is:

LSR =
1

WH
∑
x,y

∥φi, j(IHR)x,y−φi, j(ÎSR)x,y∥2
2

︸ ︷︷ ︸
Content Loss (VGG Feature Matching)

+λ ·− logD(ÎSR)︸ ︷︷ ︸
Adversarial Loss

where λ = 10−3 balances the two terms.

Training Strategy

• Phase 1: Pretrain the generator G as a ResNet (SRResNet) with MSE loss to produce strong

initial reconstructions.

• Phase 2: Jointly train G and the discriminator D using the perceptual loss above.

• Generator uses ParametricReLU activations and sub-pixel convolutions [564] for efficient

upscaling.

• Discriminator architecture follows DCGAN [495] conventions: LeakyReLU activations,

strided convolutions, and no max pooling.

Quantitative and Perceptual Results

Despite having lower PSNR than SRResNet, SRGAN consistently achieves higher Mean Opinion

Scores (MOS) in human evaluations, indicating more photo-realistic outputs. Tested in experiments

on datasets like Set5, Set14, and BSD100.
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Enrichment 20.8.2: pix2pix: Paired Image-to-Image Translation with cGANs

Motivation and Formulation

The pix2pix framework [255] addresses a family of image-to-image translation problems where we

are given paired training data {(xi,yi)}, with the goal of learning a mapping G : x 7→ y from input

images x (e.g., segmentation masks, sketches, grayscale images) to output images y (e.g., photos,

maps, colored images).

While fully convolutional neural networks (CNNs) can be trained to minimize an L2 or L1

loss between the generated output and the ground truth, such approaches tend to produce blurry

results. This is because the pixel-wise losses average over all plausible outputs, failing to capture

high-frequency structure or visual realism.

Instead of hand-designing task-specific loss functions, the authors propose using a conditional

GAN (cGAN) objective. The discriminator D is trained to distinguish between real pairs (x,y) and

fake pairs (x,G(x)), while the generator G learns to fool the discriminator. This adversarial training

strategy encourages the generator to produce outputs that are not just pixel-wise accurate, but also

indistinguishable from real images in terms of texture, edges, and fine details.

Figure 20.50: pix2pix image-to-image translation results on various tasks using paired datasets: (left

to right) labels to street scene, aerial photo to map, labels to facade, sketch to photo, and day to night.

All results use the same underlying model. Image adapted from [255].

This general-purpose approach enables the same model and training procedure to be applied

across a wide range of problems—without modifying the loss function or architecture—highlighting

the power of adversarial learning to implicitly learn appropriate loss functions that enforce realism.
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Enrichment 20.8.2.1: Generator Architecture and L1 Loss

Generator Architecture: U-Net with Skip Connections

The pix2pix generator adopts a U-Net-style encoder–decoder architecture tailored for structured

image-to-image translation. Its goal is to transform a structured input image x (such as an edge

map, semantic label mask, or sketch) into a realistic output y, preserving both spatial coherence and

semantic fidelity.

A common failure mode of vanilla encoder-decoder CNNs is their tendency to blur or oversmooth

outputs. This is because spatial resolution is reduced during encoding, and then the decoder must

regenerate fine details from heavily compressed features—often losing important low-level cues

such as edges and textures.

To overcome this, pix2pix integrates skip connections that link each encoder layer to its

corresponding decoder layer. This structure is inspired by the U-Net architecture originally designed

for biomedical segmentation tasks (see 15.6). The idea is to concatenate feature maps from early

encoder layers (which contain high-frequency, low-level spatial information) directly into the decoder

pathway, providing detailed cues that help the generator synthesize accurate textures, contours, and

spatial alignment.

While the architecture is based on U-Net, pix2pix introduces several important differences:

• The generator is trained adversarially as part of a conditional GAN setup, rather than with a

pixel-wise classification or regression loss.

• The input–output pairs often differ semantically (e.g., segmentation maps vs. RGB images),

requiring stronger representational flexibility.

• Noise is not injected through a latent vector z; instead, pix2pix introduces stochasticity via

dropout layers applied at both training and inference time.

This design allows the generator to be both expressive and detail-preserving, making it well-

suited for translation tasks where structural alignment between input and output is critical.

The Role of L1 Loss

In addition to the adversarial objective, pix2pix uses a pixel-wise L1 loss between the generated

image G(x) and the ground truth image y. Formally, this term is:

LL1(G) = Ex,y [∥y−G(x)∥1]

This loss encourages the generator to output images that are structurally aligned with the target and

reduces the risk of mode collapse. The authors argue that L1 is preferable to L2 (mean squared error)

because it encourages less blurring. While L2 loss disproportionately penalizes large errors and

promotes averaging over plausible solutions (leading to overly smooth results), L1 penalizes errors

linearly and retains sharper detail.

The addition of L1 loss provides a simple yet powerful inductive constraint: while the adversarial

loss encourages outputs to “look real,” the L1 loss ensures they are aligned with the target. This

combination was shown to reduce blurring substantially and is critical for tasks where pixel-level

structure matters.

Why Not WGAN or WGAN-GP?

While more theoretically grounded adversarial objectives—such as the Wasserstein GAN [14] or

WGAN-GP [194]—had already been introduced by the time of pix2pix’s publication, the authors

found these alternatives to underperform empirically in their setting.
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Specifically, they observed that standard GAN training with a conditional discriminator resulted

in sharper edges and more stable convergence across a range of datasets. Therefore, pix2pix adopts

the original GAN loss [180], modified for the conditional setting (described in detail in a later

section).

Enrichment 20.8.2.2: Discriminator Design and PatchGAN

Discriminator Design and Patch-Level Realism (PatchGAN)

In pix2pix, the discriminator is designed to operate at the level of local patches rather than entire

images. This design—known as the PatchGAN discriminator—focuses on classifying whether

each local region of the output image y is realistic and consistent with the corresponding region in the

input x. Instead of outputting a single scalar value, the discriminator produces a grid of probabilities,

one per patch, effectively modeling image realism as a Markov random field.

Architecture: The PatchGAN discriminator is a fully convolutional network that receives as input

the concatenation of the input image x and the output image y (either real or generated), stacked

along the channel dimension. This stacked tensor [x,y] ∈R
H×W×(Cx+Cy) is then processed by a series

of convolutional layers with stride 2, producing a downsampled feature map of shape N×N, where

each value lies in [0,1]. Each scalar in this output grid corresponds to a specific receptive field (e.g.,

70×70 pixels in the input image) and reflects the discriminator’s estimate of the realness of that

patch—i.e., whether that patch of y, given x, looks realistic and properly aligned.

What the Discriminator Learns: Importantly, the patches that are judged “real” or “fake” come

from the output image y, not the input x. The conditioning on x allows the discriminator to assess

whether each region of y is not only photorealistic but also semantically consistent with the structure

of x. This conditioning mechanism is crucial in tasks such as label-to-image translation, where the

spatial alignment of objects is important.

Benefits: The PatchGAN discriminator has several advantages:

• It generalizes across image sizes since it is fully convolutional.

• It promotes high-frequency correctness, which encourages the generator to focus on local

realism such as textures and edges.

Thus, rather than making a holistic judgment over the entire image, the discriminator acts as a texture

and detail critic, applied densely across the image surface.

Objective: The discriminator in pix2pix is trained using the original GAN objective [180], adapted

to the conditional setting. The discriminator D receives both the input image x and the output

image—either the real y ∼ pdata(y | x) or the generated output G(x). The discriminator is fully

convolutional and produces a spatial grid of predictions rather than a single scalar, making it a

PatchGAN.

Each element in the discriminator’s output grid corresponds to a local patch (e.g., 70×70 pixels)

in the image, and represents the discriminator’s estimate of whether that patch is “real” or “fake,”

conditioned on x. The overall discriminator loss is averaged across this grid:

LD = Ex,y [logD(x,y)]+Ex [log(1−D(x,G(x)))]

Likewise, the adversarial component of the generator’s objective is:

L
adv

G = Ex [log(1−D(x,G(x)))]

Since the outputs of D are now grids of probabilities (one per receptive field region), the log terms

are applied elementwise and the expectation denotes averaging across the training batch and spatial

positions. In implementation, this is usually done using a mean over the entire N×N output map.
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Benefits of Patch-Based Discrimination:

• Reduced complexity: PatchGAN has fewer parameters and is easier to train than a global

discriminator.

• High-frequency sensitivity: It is particularly good at enforcing local texture realism and

preserving fine-grained detail.

• Fully convolutional: Since the model operates locally, it can be seamlessly applied to images

of varying resolution at test time.

In the pix2pix paper, a 70× 70 receptive field is used, referred to as the 70-PatchGAN, which

balances context and texture fidelity. Smaller receptive fields may ignore global structure, while

larger fields increase training difficulty and instability.

Having established the adversarial loss, we now examine the L1 reconstruction loss, which com-

plements the discriminator by promoting spatial alignment and reducing blurriness in the generator

output. Let me know when you’re ready to continue.

Enrichment 20.8.2.3: Full Training Objective and Optimization

Generator Loss: Combining Adversarial and Reconstruction Objectives

While adversarial training encourages realism in the generated outputs, it does not ensure that

the output matches the expected ground truth y in structured tasks such as semantic segmentation

or image-to-image translation. For example, without additional supervision, the generator could

produce an image that looks realistic but fails to reflect the precise layout or identity present in the

input x.

To address this, pix2pix adds an L1 loss between the generated output G(x) and the target image

y. The full generator loss becomes:

LG = L
adv

G +λ ·LL1

with LL1 = Ex,y [∥y−G(x)∥1]

Here, λ is a hyperparameter (typically set to λ = 100) that balances the trade-off between fidelity

to the ground truth and perceptual realism. The L1 loss is preferred over L2 (MSE) because it

produces less blurring—a crucial feature for preserving edges and structural alignment.

This combined objective offers the best of both worlds:

• The adversarial loss encourages outputs that reside on the manifold of natural images.

• The L1 loss ensures spatial and semantic coherence between the prediction and the actual

output.

The final optimization problem for the generator is:

G∗ = argmin
G

max
D

LcGAN(G,D)+λ ·LL1(G)

where LcGAN denotes the conditional GAN loss using the PatchGAN discriminator:

LcGAN(G,D) = Ex,y [logD(x,y)]+Ex [log(1−D(x,G(x)))]

Together, this objective promotes outputs that are not only indistinguishable from real images but

also tightly aligned with the conditional input. The addition of L1 loss proved essential for stabilizing

training, especially early in optimization when adversarial feedback is still weak or noisy.

We now conclude this overview of pix2pix with a summary of the use cases and real-world applica-

tions from the original paper.
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Enrichment 20.8.2.4: Summary and Generalization Across Tasks

The core insight of pix2pix [255] is that many structured prediction tasks in computer vision—such

as semantic segmentation, edge-to-photo conversion, and sketch-to-image generation—can be unified

under the framework of conditional image translation. Rather than hand-designing task-specific loss

functions, the GAN-based strategy learns a loss function implicitly through the discriminator, trained

to judge how well an output image matches the target distribution given the input.

This conditional GAN setup—combined with a strong L1 reconstruction prior and a Patch-

GAN discriminator—proved surprisingly effective across a wide variety of domains. Figure 20.50

showcases representative examples from the original paper across multiple datasets and tasks.

Importantly, the pix2pix framework assumes access to paired training data—i.e., aligned in-

put–output image pairs (x,y). In practice, however, such datasets are often expensive or infeasible

to collect. For instance, we might have access to photos of horses and zebras, but no one-to-one

mapping between them.

This limitation motivated a follow-up line of research into unpaired image-to-image translation,

where models learn to transfer style, texture, or semantics between two domains without explicitly

aligned data. The seminal work in this space is CycleGAN [805], which we explore next. It

introduces a cycle-consistency loss that allows training without paired examples, opening the door to

powerful translation tasks such as horse-to-zebra, summer-to-winter, and Monet-to-photo.

Enrichment 20.8.3: CycleGAN: Unpaired Image-to-Image Translation

Enrichment 20.8.3.1: Motivation: Beyond Paired Supervision in Image Translation

While pix2pix (see 20.8.2) demonstrated the power of conditional GANs for paired image-to-image

translation, its applicability is fundamentally limited by the need for aligned training pairs (x,y)—that

is, input images and their exact corresponding target images. In many practical domains, such as

translating between artistic styles, seasons, or weather conditions, paired data is either unavailable or

prohibitively expensive to collect.

Figure 20.51: Paired vs. Unpaired Training Data. Left: Paired setting — each source image xi ∈ X

is matched with a corresponding target image yi ∈ Y , providing explicit supervision for translation.

Right: Unpaired setting — source set {xi}N
i=1 and target set {y j}M

j=1 are given independently, with

no direct correspondence between xi and y j. Figure adapted from [805].
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CycleGAN [805] tackles this challenge by proposing an unsupervised framework that learns

mappings between two visual domains X and Y using only unpaired collections of images from each

domain. The central question becomes: How can we learn a function G : X → Y when no direct

correspondences exist?

Key Insight: Cycle Consistency

At the heart of CycleGAN is the cycle consistency constraint, a principle that enables learning

from unpaired datasets. The system consists of two generators: G : X → Y , which maps images

from domain X to domain Y , and F : Y → X , which learns the reverse mapping.

The intuition is that if we start with an image x from domain X , translate it to Y via G, and

then map it back to X via F , the reconstructed image F(G(x)) should closely resemble the original

x. Likewise, for any y ∈ Y , G(F(y)) ≈ y. This cycle consistency enforces that neither mapping

is allowed to lose or invent too much information: the transformations should be approximately

invertible and content-preserving.

Why does this help with unpaired data? Without paired supervision, there are infinitely many

functions that can map the distribution of X to Y in a way that fools a GAN discriminator. However,

most such mappings would destroy the underlying content, yielding images that are realistic in

appearance but semantically meaningless. By explicitly requiring F(G(x)) ≈ x and G(F(y)) ≈ y,

CycleGAN dramatically restricts the space of possible solutions.

The network learns to transfer style while keeping the essential structure or identity intact,

making unsupervised image-to-image translation feasible.

Enrichment 20.8.3.2: Typical Use Cases

CycleGAN’s framework has been widely adopted in domains where paired data is scarce or unavail-

able, including:

• Artistic style transfer (e.g., photographs↔Monet or Van Gogh paintings)

• Season or weather translation (e.g., summer↔ winter, day↔ night)

• Object transfiguration (e.g., horse↔ zebra, apple↔ orange)

Figure 20.52: Unpaired image-to-image translation with CycleGAN. The model learns bidirectional

mappings between domains without access to paired examples, enabling high-quality translation in

applications. Image adapted from [805].
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Caution: Although CycleGAN and similar generative methods have attracted attention in medical

imaging (e.g., MRI↔ CT translation), their use in this context is highly controversial and potentially

dangerous. There is growing evidence in the literature and community commentaries that generative

models can hallucinate critical features—such as tumors or lesions—that do not exist in the real

patient scan, or fail to preserve vital diagnostic information. Thus, care must be taken to avoid

uncritical or clinical use of unpaired translation networks in safety-critical domains; for further

discussion, see [110, 736].

This motivation sets the stage for the architectural design and learning objectives of CycleGAN,

which we discuss next.

Enrichment 20.8.3.3: CycleGAN Architecture: Dual Generators and Discriminators

CycleGAN consists of two generators and two discriminators:

• Generator G : X → Y : Translates an image from domain X (e.g., horse) to domain Y (e.g.,

zebra).

• Generator F : Y → X: Translates an image from domain Y back to domain X .

• Discriminator DY : Distinguishes between real images y in domain Y and generated images

G(x).
• Discriminator DX : Distinguishes between real images x in domain X and generated images

F(y).
Each generator typically uses an encoder–decoder architecture with residual blocks, while the

discriminators are PatchGANs (see enrichment 20.8.2.2), focusing on local realism rather than global

classification.

The dual generator–discriminator setup allows CycleGAN to simultaneously learn both forward

and reverse mappings, supporting unsupervised translation in both directions.

Enrichment 20.8.3.4: CycleGAN: Loss Functions and Training Objectives

Adversarial Loss: Least Squares GAN (LSGAN)

A central goal in CycleGAN is to ensure that each generator produces images that are indis-

tinguishable from real images in the target domain. Rather than relying on the standard GAN

log-likelihood loss, CycleGAN adopts the Least Squares GAN (LSGAN) objective [416], which

stabilizes training and yields higher-fidelity results.

For generator G : X → Y and discriminator DY , the LSGAN adversarial loss is:

L
LS

GAN(G,DY ,X ,Y ) = Ey∼pdata(y)

[
(DY (y)−1)2

]
+Ex∼pdata(x)

[
(DY (G(x)))2

]

This encourages the discriminator to output 1 for real images and 0 for fake (generated) images.

Simultaneously, the generator is trained to fool the discriminator by minimizing:

L
LS

G = Ex∼pdata(x)

[
(DY (G(x))−1)2

]

An identical adversarial loss is used for the reverse mapping (F : Y → X , DX ). The least squares

loss is empirically more stable and less prone to vanishing gradients than the original log-loss

formulation.
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Cycle Consistency Loss

The cycle consistency loss is what enables learning with unpaired data. If we translate an

image from domain X to Y via G, and then back to X via F , we should recover the original image:

F(G(x))≈ x. The same logic holds for the reverse direction, G(F(y))≈ y. This is enforced via an

L1 loss:

Lcyc(G,F) = Ex∼pdata(x) [∥F(G(x))− x∥1]+Ey∼pdata(y) [∥G(F(y))− y∥1]

The use of L1 loss (mean absolute error) in CycleGAN is deliberate and particularly suited for image

reconstruction tasks. While L2 loss (mean squared error) is commonly used in regression settings, it

has the tendency to penalize large errors more harshly and to average out possible solutions. In the

context of image translation, this averaging effect often leads to over-smoothed and blurry outputs,

especially when multiple plausible reconstructions exist.

In contrast, L1 loss treats all deviations linearly and is less sensitive to outliers, which makes it

better at preserving sharp edges, fine details, and local structure in the generated images. Empirically,

optimizing with L1 encourages the network to maintain crisp boundaries and avoids the tendency of

L2 to "wash out" high-frequency content. As a result, L1 loss is a better fit for the cycle consistency

objective, promoting reconstructions that are visually sharper and closer to the original input.

Figure 20.53: CycleGAN architecture and cycle consistency losses. (a) The model contains two

mapping functions: G : X→Y and F : Y → X , with corresponding adversarial discriminators DY and

DX . Each discriminator ensures its generator’s outputs are indistinguishable from real samples in its

domain. (b) Forward cycle-consistency loss: x→ G(x)→ F(G(x))≈ x — translating to domain Y

and back should recover the original x. (c) Backward cycle-consistency loss: y→ F(y)→G(F(y))≈
y — translating to domain X and back should recover the original y. Figure adapted from [805].

Identity Loss (Optional)

To further regularize the mappings—especially when color or global content should remain

unchanged (e.g., in style transfer)—CycleGAN optionally employs an identity loss:

Lidentity(G,F) = Ey∼pdata(y) [∥G(y)− y∥1]+Ex∼pdata(x) [∥F(x)− x∥1]

This penalizes unnecessary changes to images already in the target domain.

Summary

The adversarial losses ensure that generated images in both directions are indistinguishable from

real samples, while the cycle consistency and (optionally) identity losses force the learned mappings

to preserve core content and structure. The overall objective is a weighted sum of these components:

Ltotal(G,F,DX ,DY )=L
LS

GAN(G,DY ,X ,Y )+L
LS

GAN(F,DX ,Y,X)+λcycLcyc(G,F)+λidLidentity(G,F)

where λcyc and λid are hyperparameters.
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Enrichment 20.8.3.5: Network Architecture and Practical Training Considerations

Generator and Discriminator Architectures

Generators: CycleGAN employs a ResNet-based generator for both G : X → Y and F : Y → X .

Each generator typically consists of an initial convolutional block, followed by several residual

blocks (commonly 6 or 9, depending on image size), and a set of upsampling (deconvolution)

layers. Instance normalization and ReLU activations are used throughout to stabilize training and

promote style flexibility. The design is chosen to enable both global and local transformations while

maintaining content structure.

Discriminators: Both DX and DY use a PatchGAN architecture—identical in spirit to the discrim-

inator design in pix2pix (see Section 20.8.2). Instead of classifying the entire image as real or

fake, PatchGAN outputs a grid of real/fake probabilities, each associated with a spatial patch (e.g.,

70×70 pixels) in the input. This local focus encourages preservation of texture and style across the

translated images, without requiring global image-level pairing.

Normalization and Activation: CycleGAN replaces batch normalization with instance normal-

ization (see 7.14.6), which is especially beneficial for style transfer and image translation tasks.

Unlike batch normalization, which normalizes feature statistics across the batch dimension, instance

normalization computes the mean and variance independently for each sample and each channel,

but only across the spatial dimensions (H×W ). Specifically, for a given sample n and channel c,

instance normalization calculates:

µn,c =
1

HW

H

∑
h=1

W

∑
w=1

xn,c,h,w, σ2
n,c =

1

HW

H

∑
h=1

W

∑
w=1

(xn,c,h,w−µn,c)
2

and normalizes accordingly. This operation decouples the feature scaling from the batch and instead

focuses normalization on the statistics of each individual sample and channel. As a result, instance

normalization improves the consistency of style adaptation and translation, making it particularly

well-suited for CycleGAN and similar works.

Training Strategy and Hyperparameters

The training procedure alternates between updating the generators (G, F) and the discriminators

(DX , DY ). The total objective is a weighted sum of adversarial loss, cycle-consistency loss, and

(optionally) identity loss:

LCycleGAN = LGAN(G,DY ,X ,Y )+LGAN(F,DX ,Y,X)+λcycLcyc(G,F)+λidLidentity(G,F)

where λcyc and λid are hyperparameters controlling the importance of cycle and identity losses.

Empirically, λcyc = 10 is standard, and λid is set to 0 or 0.5 depending on the task.

Optimizers: CycleGAN uses the Adam optimizer, with β1 = 0.5 and β2 = 0.999, which are well-

suited for stabilizing adversarial training.

Unpaired Data Setup: During each epoch, the model draws random samples from unpaired sets X

and Y , so every batch contains independently sampled images from both domains. This setup, along

with cycle-consistency, enables effective learning without paired supervision.

Stabilizing Discriminator Training with a Fake Image Buffer To further stabilize adversarial

training, CycleGAN maintains a buffer of previously generated fake images (typically 50) for each

domain. When updating the discriminator, a random sample from this buffer is mixed with the most

recent generated images. This approach prevents the discriminator from overfitting to the generator’s

most current outputs, introduces greater diversity in the fake set, and improves convergence.
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Enrichment 20.8.3.6: Ablation Study: Impact of Loss Components in CycleGAN

A comprehensive ablation study in CycleGAN systematically investigates the roles of the GAN loss,

cycle-consistency loss, and their combinations. The results, as reported in the original CycleGAN

paper [805], demonstrate that both adversarial (GAN) and cycle-consistency losses are critical for

successful unpaired image-to-image translation.

Effect of Removing Loss Components

• Removing the GAN loss (using only cycle-consistency) produces outputs with preserved

content but poor realism; the results lack natural appearance and often fail to match the target

domain visually.

• Removing the cycle-consistency loss (using only adversarial loss) leads to mode collapse

and lack of content preservation. The model may generate realistic-looking images, but they

are often unrelated to the input and fail to capture the source structure.

• Cycle loss in only one direction (e.g., forward F(G(x)) ≈ x or backward G(F(y)) ≈ y) is

insufficient and frequently causes training instability and mode collapse. The ablation reveals

that bidirectional cycle consistency is essential for learning meaningful mappings without

paired data.

Quantitative Results (from the CycleGAN Paper)

The ablation is quantified using semantic segmentation metrics (per-pixel accuracy, per-class accu-

racy, and class IoU) evaluated on the Cityscapes dataset for both labels→ photo and photo→ labels

directions. Tables 20.4 and 20.5 are directly reproduced from [805].

Table 20.4: Ablation study: FCN-scores for different loss variants, evaluated on Cityscapes (labels

→ photo). Results from [805].

Loss Per-pixel acc. Per-class acc. Class IOU

Cycle alone 0.22 0.07 0.02

GAN alone 0.51 0.11 0.08

GAN + forward cycle 0.55 0.18 0.12

GAN + backward cycle 0.39 0.14 0.06

CycleGAN 0.52 0.17 0.11

Table 20.5: Ablation study: classification performance for different loss variants, evaluated on

Cityscapes (photo→ labels). Results from [805].

Loss Per-pixel acc. Per-class acc. Class IOU

Cycle alone 0.10 0.05 0.02

GAN alone 0.53 0.11 0.07

GAN + forward cycle 0.49 0.11 0.07

GAN + backward cycle 0.01 0.06 0.01

CycleGAN 0.58 0.22 0.16



1174 Chapter 20. Lecture 20: Generative Models II

Qualitative Analysis

The following figure visually compares the effects of different loss combinations. Removing either

the GAN or cycle-consistency component leads to images that either lack realism (cycle alone) or

ignore input structure (GAN alone, or single-direction cycle loss). The full CycleGAN model (with

both losses in both directions) produces outputs that are both photorealistic and semantically aligned

with the input.

Figure 20.54: Ablation study: Visual results of different loss variants for mapping labels↔ photos

on Cityscapes. From left to right: input, cycle-consistency loss alone, adversarial loss alone,

GAN + forward cycle-consistency loss (F(G(x)) ≈ x), GAN + backward cycle-consistency loss

(G(F(y))≈ y), CycleGAN (full method), and ground truth. Cycle alone and GAN + backward fail

to produce realistic images. GAN alone and GAN + forward exhibit mode collapse, generating

nearly identical outputs regardless of input. Only the full CycleGAN yields both realistic and

input-consistent images. Figure adapted from [805].

Summary

The ablation study conclusively shows that both adversarial and cycle-consistency losses are indis-

pensable for successful unpaired image-to-image translation. The combination ensures the generated

outputs are realistic, diverse, and semantically faithful to their source images, while avoiding mode

collapse and degenerate mappings.

Enrichment 20.8.3.7: Summary and Transition to Additional Generative Approaches

The innovations introduced by CycleGAN have inspired a diverse ecosystem of task-specific GAN

models, each adapting adversarial training to new modalities and challenges. Notable such works we

won’t cover in-depth include:

• SPADE [470]: Semantic image synthesis using spatially-adaptive normalization, which

achieves high-resolution generation from segmentation maps.

• SocialGAN [198]: Multimodal trajectory forecasting for socially-aware path prediction in

crowds.

• MoCoGAN/VideoGAN [107]: Adversarial video generation architectures for modeling

temporal dynamics in complex scenes.

Together, these models demonstrate the flexibility of adversarial learning in structured generation

tasks. In the following sections, we broaden our view beyond GANs to introduce new families of

generative approaches—including diffusion models and flow matching—that are rapidly advancing

the state of the art in image, video, and sequential data synthesis.
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Enrichment 20.9: Diffusion Models: Modern Generative Modeling

Enrichment 20.9.0.1: Motivation: Limitations of Previous Generative Models

Diffusion models have emerged as a powerful and principled approach to generative modeling,

effectively addressing several longstanding challenges found in earlier generative paradigms. To

appreciate their significance, it helps to briefly revisit these earlier approaches and clearly identify

their main limitations:

Autoregressive Models (PixelCNN, PixelRNN, ...)

Autoregressive models factorize the joint probability distribution into sequential conditional pre-

dictions, enabling exact likelihood computation and precise modeling of pixel-level dependencies.

However, their inherently sequential nature severely limits sampling speed, making high-resolution

synthesis prohibitively slow. Moreover, their reliance on local receptive fields often restricts global

coherence and makes long-range dependencies difficult to model efficiently.

Variational Autoencoders (VAEs)

VAEs provide efficient inference through latent variable modeling and offer stable training and

sampling. Nonetheless, the assumption of independent Gaussian likelihoods at the output leads to

blurred images and limited sharpness. Additionally, VAEs are vulnerable to posterior collapse, where

the latent representation becomes underutilized, reducing expressivity and diversity in generated

outputs.

Generative Adversarial Networks (GANs)

GANs achieve impressive realism by optimizing an adversarial objective, bypassing explicit likeli-

hood computation. Despite their success, GANs notoriously suffer from instability during training,

sensitivity to hyperparameters, and mode collapse, where the generator focuses on a narrow subset of

the data distribution. Furthermore, their lack of explicit likelihood estimation complicates evaluation

and interpretability.

Hybrid Approaches (VQ-VAE, VQ-GAN)

Hybrid models such as VQ-VAE and VQ-GAN combine discrete latent representations with au-

toregressive or adversarial priors. These methods partially address the shortcomings of VAEs and

GANs but introduce their own issues, such as quantization artifacts, limited expressivity due to often

codebook collapse, and computational inefficiency in latent space sampling.

The Case for Diffusion Models

Diffusion models naturally overcome many of the above limitations by modeling data generation as

the gradual reversal of a diffusion (noise-adding) process. Specifically, they offer:

• Stable and Robust Training: Diffusion models avoid adversarial training entirely, leading to

stable and reproducible optimization.

• Explicit Likelihood Estimation: Their probabilistic framework supports tractable likelihood

estimation, aiding interpretability, evaluation, and theoretical understanding.

• High-Quality and Diverse Generation: Iterative refinement through small denoising steps

enables sharp, coherent outputs comparable to GANs, without common GAN instabilities.

• Flexible and Parallelizable Sampling: Recent advances (e.g., DDIM [580]) have accelerated

inference significantly, improving practical utility compared to autoregressive and hybrid

approaches.
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Enrichment 20.9.1: Introduction to Diffusion Models

Diffusion models represent a rigorous class of probabilistic generative models that transform

data generation into the problem of reversing a gradual, structured corruption process. Inspired

by nonequilibrium thermodynamics [578], these models define a stochastic Markov chain that

systematically injects noise into a data sample over many steps—the forward process—until the data

is fully randomized. The core learning objective is to parameterize and learn the reverse process:

a denoising Markov chain capable of synthesizing realistic data by iteratively refining pure noise

back into structured samples. This framework elegantly sidesteps many pitfalls of earlier generative

models—such as adversarial collapse in GANs and latent mismatch in VAEs—by relying on explicit,

tractable likelihoods and theoretically grounded transitions.

Mathematical Foundation and Dual Processes

At the heart of diffusion models are two complementary stochastic processes, each defined with

mathematical precision:

• Forward Process (Diffusion, Corruption):

Let x0 be a clean data sample (such as an image). Diffusion-based generative models transform

this data into pure noise through a gradual, multi-step corruption process. This is implemented

as a Markov chain :

x0→ x1→ ·· · → xT ,

where at each timestep t, Gaussian noise is added to slightly degrade the signal. The transition

kernel q(xt | xt−1) is a probability density function, not a discrete probability. It assigns a

scalar density value to a potential noisy state xt ; a high density indicates that xt is a likely

result of adding noise to xt−1, while a low density implies it is statistically inconsistent with

the noise model.

Formally, this transition is defined as a multivariate Gaussian:

q(xt | xt−1) = N


xt ;

√
1−βt xt−1︸ ︷︷ ︸

Mean µ

, βtI︸︷︷︸
Covariance Σ


 . (20.16)

This notation specifies three key components:

1. Subject (xt): The variable whose likelihood we are measuring.

2. Mean (µ =
√

1−βt xt−1): The expected value of the new state. Note that the previous

state xt−1 is scaled down by
√

1−βt .

3. Covariance (Σ = βtI): The spread of the injected noise, controlled by the scalar βt ∈
(0,1) and the identity matrix I.

Design Choices: Stability, Structure, and Tractability

The specific mathematical formulation of the forward process is not arbitrary; it relies on care-

ful design choices that ensure the process is stable, computationally tractable, and theoretically

sound.
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– Why Diagonal Covariance (βtI)? The covariance term βtI signifies that noise is

added independently to every pixel (or feature dimension) with equal intensity. The

identity matrix I ensures zero off-diagonal elements, meaning no spatial correlations are

introduced. This is essential because the goal is to degrade structure, not create it; if we

used a correlated covariance matrix, we would be effectively painting new, structured

patterns onto the image rather than dissolving the original signal into pure noise.

– Why Variance Preservation? (The Scaling Factor
√

1−βt) One might intuitively

assume that to make an image "noisier", we should simply add noise on top: xt = xt−1+ε .

While this does degrade the image, it increases the total energy of the signal at every

step:

Var(xt) = Var(xt−1)+βt .

Repeated over T = 1000 steps, the pixel values would explode to huge numbers, causing

numerical instability and making neural network training impossible.

Instead, diffusion models are designed to be variance-preserving. We want the dis-

tribution of pixel values to stay within a standard dynamic range (e.g., unit variance)

throughout the entire process. To achieve this, we must "make room" for the incoming

noise by shrinking the current signal.

The factor
√

1−βt contracts the signal variance exactly enough to counterbalance the

added noise variance:

Var(xt)︸ ︷︷ ︸
≈1

= (1−βt)Var(xt−1)︸ ︷︷ ︸
Signal Attenuation

+ βt︸︷︷︸
Noise Injection

.

Intuition: Imagine mixing a cocktail in a glass of fixed volume. You cannot simply keep

adding mixer (noise) to the spirit (signal), or the glass will overflow (exploding variance).

Instead, at each step, you pour out a small fraction of the current mixture (attenuation)

and top it back up with fresh mixer. By the end, the glass is still full, but the content has

transitioned from pure spirit to pure mixer.

This ensures that the final state xT converges to a standard Gaussian N (0,I)—a fixed,

well-behaved distribution that serves as a simple starting point for the reverse generation

process.

– Why Gaussian Noise? The choice of a Gaussian kernel is motivated by both physical

intuition and mathematical convenience.

1. Maximum Entropy: For a fixed variance, the Gaussian distribution has the max-

imum entropy. This means it makes the fewest structural assumptions about the

noise, representing "pure" information loss.

2. Analytical Tractability: Gaussians possess unique algebraic properties—the prod-

uct of two Gaussians is a Gaussian, and the convolution of two Gaussians is a

Gaussian. This allows us to derive closed-form expressions for the marginals

q(xt | x0) and the posteriors, enabling efficient training without expensive Monte

Carlo sampling at every step.

3. Universality: By the Central Limit Theorem, the sum of many independent noise

events tends toward a Gaussian distribution. Thus, modeling the corruption as a

sequence of Gaussian steps is a natural approximation for many physical degradation

processes.
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– Why a Gradual Multi-Step Process? Why not jump from data to noise in one step

(like a VAE) or learn the mapping directly (like a GAN)? The power of diffusion lies in

breaking a difficult problem into many easy ones.

Mapping pure noise xT directly to a complex image x0 is a highly non-linear and

difficult transformation to learn. However, if the steps are small enough (i.e., βt is

small), the reverse transition xt → xt−1 is a very simple denoising task that can be

locally approximated by a Gaussian. This transforms the generative modeling problem

from learning one complex map into learning a sequence of simple, stable denoising

corrections.

Noise Schedules: How Fast Should the Data Be Destroyed?

A crucial design choice in this process is the variance schedule {βt}T
t=1, which controls the

pace of corruption. Each βt determines the noise magnitude at step t: small values preserve

structure, while larger values accelerate signal destruction.

One of the earliest and most influential diffusion frameworks, the Denoising Diffusion Proba-

bilistic Model (DDPM) by Ho et al. [223], proposed a simple linear schedule:

βt = linspace(10−4,0.02,T ),

where T is the total number of diffusion steps (typically 1000). This linear progression ensures

that noise is added slowly and evenly, facilitating the learning of the reverse process.

Later works proposed nonlinear schedules to allocate noise more strategically:

– Cosine schedule: Proposed by Nichol and Dhariwal [449], this schedule defines signal

decay using a clipped cosine function. It slows down early corruption to preserve

information longer and concentrates noise injection toward later steps, improving sample

quality.

– Sigmoid or exponential schedules: Other heuristics adopt S-shaped or accelerating

curves, delaying heavy corruption until later timesteps to preserve fine details in early

latent representations.

The choice of noise schedule significantly affects the signal-to-noise ratio at each step and

determines the difficulty of the denoising task.

Figure 20.55: What happens to a distribution in the forward diffusion process? The forward

noising process progressively transforms the original data distribution q(x0) into a standard Gaussian

q(xT ) through a sequence of small Gaussian perturbations. As the noise level increases, intermediate

distributions q(xt) become increasingly blurred and entropic, eventually collapsing into an isotropic

normal distribution. This transition enables generative modeling by allowing the use of a simple

prior at sampling time. Source: Adapted from the CVPR 2022 diffusion models tutorial [582].
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Trajectory Properties and Convergence

While the step-by-step Gaussian transitions defined in Eq. 20.16 describe the local behavior

of the diffusion process, understanding the global behavior of the entire trajectory x0:T is

essential for both efficient training and theoretical justification.

The Joint Distribution and Markov Property The corruption process is explicitly designed

as a Markov chain, meaning the probability of state xt depends solely on the immediate prede-

cessor xt−1 and not on the earlier history x0:t−2. This conditional independence assumption

allows the joint distribution of the entire forward trajectory to factorize cleanly into a product

of local transitions:

q(x1:T | x0) =
T

∏
t=1

q(xt | xt−1). (20.17)

This factorization is computationally advantageous: it implies that the complex transformation

from data to noise is composed of simple, independent sampling steps, making the process

analytically manageable.

Closed-Form Marginals: The "Shortcut" Property A critical property of Gaussian

diffusion is that we do not need to simulate the chain step-by-step to obtain a sample at an

arbitrary timestep t. Because the convolution of two Gaussians is another Gaussian, we can

derive a closed-form expression for the marginal distribution q(xt | x0) directly.

To simplify the notation, we define the signal retention schedules:

αt := 1−βt , ᾱt :=
t

∏
s=1

αs.

Here, ᾱt represents the cumulative signal variance remaining after t steps. By recursively

applying the reparameterization trick xt =
√

αtxt−1 +
√

1−αtε , we can express xt as a linear

combination of the original data x0 and a merged noise term:

q(xt | x0) = N
(
xt ;
√

ᾱt x0, (1− ᾱt)I
)
. (20.18)

This identity is fundamental to the efficiency of diffusion models. It allows us to sample

training data pairs (x0,xt) instantly for any t without running the forward process loop,

enabling highly efficient parallel training.

Asymptotic Convergence to Pure Noise The endpoint of the forward process is determined

by the limit behavior of ᾱt . For a properly chosen schedule where ∑βt → ∞, the cumulative

signal ᾱT approaches 0 as T → ∞. Consequently, the mean
√

ᾱT x0 vanishes, and the variance

(1− ᾱT )I approaches identity:

q(xT | x0)≈N (0,I).



1180 Chapter 20. Lecture 20: Generative Models II

This convergence is theoretically grounded in two perspectives:

1. Central Limit Theorem (CLT): The final noise xT is effectively the sum of many

independent, scaled noise injections from previous steps. Even if the local transitions

were not perfectly Gaussian, the CLT suggests the cumulative result would tend toward

a Gaussian distribution.

2. Ornstein–Uhlenbeck Process: The discrete steps can be viewed as a discretization of a

continuous-time stochastic differential equation (SDE) known as the Ornstein–Uhlenbeck

process, which is a mean-reverting process that converges to a stationary Gaussian

distribution regardless of the starting state.

This ensures that the generative reverse process can always begin from a standard, easy-to-

sample prior N (0,I), decoupled from the complexities of the data distribution.

Preparing for the Reverse Process The properties derived above—stable variance, closed-

form marginals, and guaranteed convergence—define a known corruption path that is mathe-

matically invertible. By defining the forward process as a fixed, tractable Markov chain, we

create a supervised learning setup: if we know the exact distribution q(xt−1 | xt ,x0), we can

train a model to approximate it. This paves the path for the reverse process, where the model

learns to synthesize realistic data by iteratively denoising pure Gaussian noise.



20.9 Enrichment 20.9: Diffusion Models: Modern Generative Modeling 1181

• Reverse Process (Denoising, Generation)

The reverse (generative) process in diffusion models starts from pure Gaussian noise, xT ∼
N (0,I), and iteratively denoises it into a structured sample x0 via a Markov chain:

xT → xT−1→ ·· · → x0. (20.19)

In an ideal world, each transition would sample from the true reverse conditional q(xt−1 | xt).
The core difficulty is that this unconditional reverse is not available in closed form for real

data.

Why the True Reverse Step q(xt−1 | xt) Is Intractable

To generate data, we wish to sample from the reverse transition q(xt−1 | xt). Let us attempt to

derive this distribution analytically using Bayes’ rule. By definition:

q(xt−1 | xt) =
q(xt | xt−1)q(xt−1)

q(xt)
. (20.20)

The first term in the numerator, q(xt | xt−1), is simply the forward diffusion kernel, which is a

known Gaussian defined in Eq. 20.16.

However, the calculation breaks down when we examine the marginal probabilities q(xt−1)
and q(xt). To compute the marginal density of a noisy sample xt , we must integrate over

every possible clean image x0 that could have started the chain:

q(xt) =
∫

q(xt | x0) q(x0)︸ ︷︷ ︸
Data dist.

dx0. (20.21)

Here lies the fundamental problem:

1. Dependence on the Unknown Data Distribution: The term q(x0) represents the true

underlying distribution of natural images (or the specific dataset). This distribution is

highly complex, multimodal, and analytically unknown. We do not have a mathematical

formula for "the probability of a picture of a cat".

2. Intractable Integration: Because we cannot write down q(x0) in closed form, we

cannot perform the integration in Eq. 20.21. Consequently, we cannot calculate the

normalization constant q(xt) required for Bayes’ rule.

Intuition: Asking "What is the previous step given this noisy image?" is equivalent to asking

"Which clean image is this noisy blob most likely to have come from?". Without knowing

the distribution of clean images (the prior), we cannot distinguish between a "likely" noisy

version of a real object and a "likely" noisy version of random static. Since evaluating the

probability of every possible real-world image is impossible, the exact reverse step q(xt−1 | xt)
remains intractable.
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A tractable “teacher” posterior during training

During training, we observe the clean data sample x0 ∼ pdata from the dataset. This distinction

is critical: the unconditional reverse transition q(xt−1 | xt) is intractable in the data setting

because it marginalizes over the unknown data distribution. Concretely, by the law of total

probability,

q(xt−1 | xt) =
∫

q(xt−1 | xt ,x0)q(x0 | xt)dx0. (20.22)

Evaluating this integral would require the posterior q(x0 | xt), which depends on the unknown

prior pdata(x0) via Bayes’ rule: q(x0 | xt) ∝ q(xt | x0)pdata(x0).

However, if we condition on the specific ground-truth x0 used to generate xt during training,

the reverse posterior becomes fully analytic:

q(xt−1 | xt ,x0). (20.23)

We will treat this tractable posterior as a teacher target: it is the “correct” denoising distribu-

tion (under the forward process assumptions) that a neural network (the student) should learn

to approximate without access to x0 at inference time.

Visual Intuition

Figure 20.56: Visual intuition for the diffusion process. An input image is progressively corrupted

with Gaussian noise over multiple steps (left to right), ultimately yielding pure noise. The learned

denoising process (right to left) reverses this trajectory. Conditioning on x0 makes the reverse-step

posterior q(xt−1 | xt ,x0) a simple Gaussian with closed-form mean and variance, providing an exact

training-time target. Adapted from [402].

Derivation of the Posterior q(xt−1 | xt ,x0)

We assume the standard DDPM forward process [223, 578]:

q(xt | xt−1) = N (xt ;
√

αt xt−1, βtI) , αt := 1−βt . (20.24)

Recall the closed-form marginal:

q(xt | x0) = N
(
xt ;
√

ᾱt x0, (1− ᾱt)I
)
, ᾱt =

t

∏
s=1

αs. (20.25)
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Step 1: Bayes’ Rule and the Proportionality Argument

We aim to find the posterior distribution q(xt−1 | xt ,x0). Mathematically, we treat xt−1 as the

variable of interest, while xt and x0 are fixed observed values.

Using the definition of conditional probability, we expand the posterior:

q(xt−1 | xt ,x0) =
q(xt | xt−1,x0)q(xt−1 | x0)

q(xt | x0)
. (20.26)

First, we apply the Markov property to the first term in the numerator. Given the immediate

past xt−1, the future state xt depends only on the noise added at that step and is independent of

the distant past x0. Thus, q(xt | xt−1,x0) simplifies to q(xt | xt−1).
Second, consider the denominator, q(xt | x0). Notice that this term depends only on xt and x0.

Crucially, it does not contain the variable xt−1. From the perspective of a function over xt−1,

the denominator is merely a constant scaling factor (often denoted as Z or C). In Gaussian

derivation, it is standard practice to ignore such normalization constants and focus on the

functional form (or kernel) of the distribution. If we can show that the exponent is quadratic

in xt−1, we define the distribution as Gaussian and calculate the normalization later (or infer it

from the variance).

Therefore, we replace the equality with a proportionality sign (∝), retaining only the terms

that shape the distribution of xt−1:

q(xt−1 | xt ,x0) ∝ q(xt | xt−1)︸ ︷︷ ︸
Likelihood (Forward Step)

· q(xt−1 | x0)︸ ︷︷ ︸
Prior (Marginal)

. (20.27)

Step 2: Analyzing the Gaussian Factors

We now define the explicit forms of these two factors using the forward process definitions.

1. The Prior Term (Marginal): This is the distribution of xt−1 given the starting data x0.

From the closed-form marginal property, we know:

q(xt−1 | x0) = N

(
xt−1;

√
ᾱt−1x0, (1− ᾱt−1)I

)
, (20.28)

where ᾱt−1 = ∏
t−1
s=1(1−βs) is the cumulative signal variance.

2. The Likelihood Term (Transition): The forward transition is defined as a conditional

distribution over the next step xt :

q(xt | xt−1) = N (xt ;
√

αtxt−1,βtI), where αt = 1−βt .

To combine this with the prior (a distribution over xt−1), we need to multiply them. Since the

prior is a function of xt−1, it is mathematically convenient to also view this likelihood term as

a function of xt−1 (treating xt as a fixed observation).

Detailed Derivation: Inverting the Gaussian View

Recall that the probability density function (PDF) of a Gaussian N (y; µ,σ2I) is determined

entirely by the term inside its exponent:

p(y) ∝ exp

(
− 1

2σ2
∥y−µ∥2

)
.
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Any expression we can rearrange into the form exp(− 1
2C
∥x−m∥2) implies a Gaussian distri-

bution over x with mean m and variance C.

Let us analyze the exponent of q(xt | xt−1):

E =− 1

2βt

∥xt −
√

αtxt−1∥2.

Our goal is to isolate xt−1 so that it looks like ∥xt−1− . . .∥2.

1. Symmetry of the Norm: The squared Euclidean distance is symmetric (∥a− b∥2 =
∥b−a∥2). We swap the terms to put our variable of interest, xt−1, first:

∥xt −
√

αtxt−1∥2 = ∥√αtxt−1−xt∥2.

2. Factoring out the Scalar: We want the coefficient of xt−1 to be 1. We factor
√

αt out of

the vector subtraction inside the norm:

√
αtxt−1−xt =

√
αt

(
xt−1−

1√
αt

xt

)
.

3. Squaring the Factor: Recall the norm property ∥c ·v∥2 = c2∥v∥2. When we pull
√

αt

outside the squared norm, it becomes (
√

αt)
2 = αt :

∥∥∥∥
√

αt

(
xt−1−

1√
αt

xt

)∥∥∥∥
2

= αt

∥∥∥∥xt−1−
1√
αt

xt

∥∥∥∥
2

.

4. Substituting Back: Now we plug this transformed norm back into the original exponen-

tial expression:

exp(E) = exp

(
− 1

2βt

·αt

∥∥∥∥xt−1−
1√
αt

xt

∥∥∥∥
2
)
.

5. Identifying Variance: We group the scalars to match the standard Gaussian form − 1
2σ2 .

− αt

2βt

=− 1

2(βt/αt)
.

This identifies the effective variance σ2 as
βt

αt
.

Conclusion: The functional form with respect to xt−1 is:

exp

(
− 1

2( βt

αt
)

∥∥∥∥xt−1−
1√
αt

xt

∥∥∥∥
2
)
.

By inspection, this is proportional to a Gaussian density with:

– Mean: 1√
αt

xt (the observed next step, scaled backwards).

– Variance:
βt

αt
I (the forward noise scaled by the inverse signal factor).
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Thus, we write the proportionality:

q(xt | xt−1) ∝ N

(
xt−1;

1√
αt

xt ,
βt

αt

I

)
. (20.29)

Step 3: Calculating Posterior Precision and Mean

We now multiply the two Gaussians derived above. The product of two Gaussians N (µ1,Σ1)
and N (µ2,Σ2) is a new Gaussian N (µ̃, Σ̃), where the precisions (inverse variances) add:

Σ̃
−1

= Σ−1
1 +Σ−1

2 , µ̃ = Σ̃
(
Σ−1

1 µ1 +Σ−1
2 µ2

)
. (20.30)

Substituting our specific variances Σ1 =
βt

αt
I and Σ2 = (1− ᾱt−1)I:

β̃−1
t I =

(
αt

βt

+
1

1− ᾱt−1

)
I =

(
αt(1− ᾱt−1)+βt

βt(1− ᾱt−1)

)
I. (20.31)

Using the identity ᾱt = αt ᾱt−1 and βt = 1−αt , the numerator simplifies to 1− ᾱt . Inverting

the result gives the closed-form posterior variance:

β̃t =
1− ᾱt−1

1− ᾱt

βt . (20.32)

Similarly, computing the weighted mean yields:

µ̃ t(xt ,x0) =

√
ᾱt−1βt

1− ᾱt

x0 +

√
αt(1− ᾱt−1)

1− ᾱt

xt . (20.33)

This gives us the final tractable distribution q(xt−1 | xt ,x0) = N (µ̃ t , β̃tI), which acts as the

target for our neural network.

Reparameterizing the Posterior via Noise Prediction

While the closed-form expression for the posterior mean µ̃ t(xt ,x0) derived in Eq. (20.33)

is mathematically exact, it presents a practical difficulty: it depends explicitly on the clean

image x0. At inference time, x0 is exactly what we are trying to generate and is therefore

unknown. To make this posterior useful for a generative model, we must re-express it in terms

of quantities available to the network.

Recall the reparameterization of the forward marginal q(xt | x0), which relates the noisy state

xt to the clean data x0 and the cumulative noise ε:

xt =
√

ᾱtx0 +
√

1− ᾱtε, where ε ∼N (0,I).

We can invert this relationship to express the unknown x0 as a function of the current noisy

state xt and the noise vector ε:

x0 =
xt −
√

1− ᾱtε√
ᾱt

.

Substituting this expression back into the formula for the posterior mean µ̃ t (Eq. (20.33))

allows us to eliminate x0. After algebraic simplification, we arrive at an implementation-critical

identity that depends only on xt and ε:

µ̃ t(xt ,x0) =
1√
αt

(
xt −

βt√
1− ᾱt

ε

)
. (20.34)
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Key Insight: This equation reveals that the optimal denoising step is just a scaled version

of the input xt minus a scaled version of the noise ε . Since xt is known at the current step,

the only unknown quantity required to compute the optimal reverse trajectory is the noise ε

itself. Therefore, learning to approximate the posterior mean is mathematically equivalent to

learning to predict the noise present in the image.

Teacher–Student Learning: Matching the Posterior

To perform generation, we introduce a learnable “student” model pθ designed to approximate

the true time-reversed process. Since the true posterior q(xt−1 | xt ,x0) is Gaussian, we

parameterize the student transition also as a Gaussian:

pθ (xt−1 | xt) = N
(
xt−1; µθ (xt , t), σ2

t I
)
. (20.35)

Here, µθ is a neural network (typically a U-Net) that predicts the mean of the next state, and

σ2
t is the variance (often set to a fixed schedule such as βt or β̃t).

We train this model using a Teacher–Student framework. During training, we have access to

the ground truth data, so the exact posterior q(xt−1 | xt ,x0) (the “teacher”) is computable. We

optimize the student parameters θ to match the teacher by minimizing the Kullback-Leibler

(KL) divergence at every timestep:

Lt(θ) = KL(q(xt−1 | xt ,x0) ∥ pθ (xt−1 | xt)) . (20.36)

Because the KL divergence between two Gaussians is dominated by the squared Euclidean

distance between their means, minimizing this objective is equivalent (up to scaling factors) to

minimizing the Mean Squared Error (MSE) between the teacher’s mean µ̃ t and the student’s

predicted mean µθ .

The Noise-Prediction Objective

Leveraging the insight from Eq. (20.34), we parameterize the student network not to predict

the mean directly, but to predict the noise ε . We define the network output εθ (xt , t) and

construct the mean prediction as:

µθ (xt , t) :=
1√
αt

(
xt −

βt√
1− ᾱt

εθ (xt , t)

)
. (20.37)

By substituting this parameterization into the KL divergence objective, the loss function

simplifies significantly. The complicated coefficients describing the mean collapse into a

single time-dependent weight, and the target becomes simply the true noise vector ε sampled

during the forward process:

Lt(θ) = Ex0,ε

[
λt

∥∥ε− εθ (xt , t)
∥∥2

2

]
, where λt =

β 2
t

2σ2
t αt(1− ᾱt)

. (20.38)

This result is profound: complex generative modeling is reduced to a sequence of denoising

autoencoder tasks. The network simply learns to look at a noisy image xt and estimate the

noise ε that corrupted it.
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Theoretical Justification: The Variational Lower Bound (ELBO)

One might ask: is matching the posterior at each step strictly equivalent to maximizing the

likelihood of the generated data? The answer is yes, provided we consider the entire trajectory.

The local teacher–student objectives Lt arise naturally from maximizing the Evidence Lower

Bound (ELBO) on the log-likelihood log pθ (x0). Just as in VAEs, where we optimize a bound

on the marginal likelihood of the data, diffusion models optimize a bound derived from the

joint distribution of the forward and reverse chains:

log pθ (x0)≥LELBO = Eq

[
log

pθ (x0:T )

q(x1:T | x0)

]
. (20.39)

When expanded, this global objective decomposes into a sum of local terms corresponding

exactly to the objectives we derived heuristically:

LELBO =−KL(q(xT |x0)∥ p(xT ))︸ ︷︷ ︸
Prior Matching

−
T

∑
t=2

Eq[KL(q(xt−1|xt ,x0)∥ pθ (xt−1|xt))]︸ ︷︷ ︸
Denoising Matching (Teacher-Student)

+ Eq[log pθ (x0|x1)]︸ ︷︷ ︸
Reconstruction

.

(20.40)

This decomposition proves that by training the model to match the teacher posterior (de-

noising matching) and ensuring the final latent matches the prior (prior matching), we are

mathematically maximizing the likelihood of the generated data.

In the following section, we will explore the specific algorithm that instantiates this frame-

work—the Denoising Diffusion Probabilistic Model (DDPM)—and detail the practical

simplifications, such as discarding the weighting term λt , that lead to a practical diffusion

approach for image generation.
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Enrichment 20.9.2: Denoising Diffusion Probabilistic Models (DDPM)

Denoising Diffusion Probabilistic Models (DDPM) [223] represent a seminal advance in the

development of practical and highly effective diffusion-based generative models. DDPMs distill the

general diffusion modeling framework into a concrete, efficient, and empirically powerful algorithm

for image synthesis—transforming the theoretical appeal of diffusion into state-of-the-art results on

real data.

Enrichment 20.9.2.1: Summary of Core Variables in Diffusion Models

Purpose and Motivation

Before deriving the ELBO-based training objective of DDPMs, it is critical to clearly understand

the set of variables and coefficients that structure both the forward and reverse processes. The loss

function ultimately minimized in DDPMs is derived from the KL divergence between a true posterior

and a learned reverse process. Both of these distributions depend intimately on Gaussian means and

variances computed using scalar quantities such as βt , αt , ᾱt , and β̃t . Without explicitly recalling

what these mean—and how they interact—the derivation of the objective risks becoming opaque or

unmotivated.

Practical Implementation: Reverse Variance and Sampling

While the mean µθ (xt , t) is learned via the noise prediction objective, the reverse process variance

σ2
t must also be defined to perform sampling.

1. Choices for Reverse Variance σ2
t The full reverse transition is

pθ (xt−1 | xt) = N (xt−1; µθ (xt , t), σ2
t I). Two common strategies exist for setting σ2

t :

• Posterior-matching (σ2
t = β̃t): Sets the variance to the true posterior variance derived in

Eq. (20.32). This aligns the model with the theoretical reverse process and is analytically

precise.

• Forward-matching (σ2
t = βt): Sets the variance to the forward noise schedule. This is often

empirically stable and simpler to implement. Ideally, β̃t ≈ βt when sampling steps are small,

making them interchangeable in practice [223].

2. The Role of Stochasticity (Why Inject Noise?) The sampling update rule is:

xt−1 = µθ (xt , t)+σtz, where z∼N (0,I).

Why do we add the random noise term σtz instead of just taking the predicted mean?

• Generative Diversity: The noise injection ensures the process remains stochastic. It allows

the model to generate multiple distinct outputs x0 from the same starting noise xT , exploring

the full diversity of the data distribution.

• Correcting Errors: Without noise, the process would collapse into a deterministic trajectory

that might drift off the data manifold. The noise corrects small errors in the mean prediction,

keeping the trajectory “fuzzy” enough to land in a valid high-probability region.

Note: In the final step (t = 1), noise is typically omitted (z = 0) to output the best clean estimate

without adding residual grain.
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Intuitive Summary of Core Variables

To navigate the derivation and implementation of diffusion models, it is essential to build a strong

intuition for the four scalar schedules and tensor quantities that govern the process. We summarize

them here as functional components of the generative engine:

• The Corruption Schedule (βt): Controls the rate of information destruction. A small βt

implies a gentle diffusion step where image structure is preserved, whereas a large βt represents

aggressive corruption. The schedule {βt}T
t=1 is monotonically increasing to ensure data is

slowly dissolved into noise rather than destroyed abruptly [223].

• Cumulative Signal Health (ᾱt): Quantifies the remaining signal strength of x0 inside the

noisy state xt . Defined as ∏
t
s=1(1−βs), it acts as a “signal-to-noise” ratio indicator. When

ᾱt ≈ 1 (early t), the sample is pristine; when ᾱt → 0 (late t), the sample is effectively pure

Gaussian noise. This scalar allows us to jump directly to any timestep during training without

simulating intermediate steps.

• The Ideal Reverse Target (µ̃ t): Represents the optimal denoising destination. If we had

access to the ground truth x0, µ̃ t is exactly where we should move xt to optimally reverse the

last noise injection. It is a weighted blend of the noisy observation (what we see) and the

clean signal (what we know). Training essentially forces the model to guess this target without

seeing x0.

• The Learned Gradient (εθ ): The engine of generation. Instead of predicting the image

directly, the network estimates the noise vector pointing “away” from the data manifold.

Subtracting this estimated noise from xt (scaled appropriately) pushes the sample effectively

“towards” the clean data distribution, approximating the score function (gradient of the log-

density).

Enrichment 20.9.2.2: ELBO Formulation and Loss Decomposition

Maximum Likelihood with a Latent Diffusion Trajectory

A DDPM functions as a latent-variable generative model, but with a distinct structure: its latent

variables are the sequence of intermediate noisy states x1:T rather than a single compressed vector.

Notably, each latent xt ∈ R
D maintains the same dimensionality as the input data x0 ∈ R

D.

The generative process is defined as a reverse Markov chain that begins with pure noise xT and

progressively removes it to synthesize data:

pθ (x0:T ) = p(xT )
T

∏
t=1

pθ (xt−1 | xt), p(xT ) = N (0,I). (20.41)

Here, each transition pθ (xt−1 | xt) is typically modeled as a time-conditional Gaussian

N (xt−1; µθ (xt , t),Σθ (t)), where the mean is parameterized by a neural network.

Training this model by maximum likelihood requires optimizing the marginal log-likelihood of

the observed data x0:

log pθ (x0) = log

∫
pθ (x0:T )dx1:T . (20.42)

This integral necessitates marginalizing over all possible high-dimensional trajectories x1:T that

could have collapsed into x0. Due to the depth of the chain (T ≈ 1000) and the complex, learned

nature of the reverse transitions, this computation is analytically intractable.
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Introducing the Forward Process as a Variational Distribution

To obtain a tractable objective, we introduce an auxiliary distribution q(x1:T | x0) and apply variational

inference. In diffusion models, the key design choice is to set q to the fixed forward noising

process [223, 578]:

q(x1:T | x0) =
T

∏
t=1

q(xt | xt−1), q(xt | xt−1) = N (xt ;
√

αtxt−1,βtI) . (20.43)

This distribution is defined by a fixed noise schedule βt ∈ (0,1) and αt := 1−βt . Because each

transition is Gaussian, q(x1:T | x0) spans the entire space R
DT , ensuring that the log-ratios in the

objective are well-defined for any possible trajectory.

From the “Missing Integral” to a Tractable Expectation

To make the marginal likelihood log pθ (x0) computable, we transform the integration problem into

an expectation problem. We multiply and divide the term inside the integral by our chosen variational

distribution q(x1:T | x0):

log pθ (x0) = log

∫
q(x1:T | x0)

pθ (x0:T )

q(x1:T | x0)
dx1:T (20.44)

= logEq(x1:T |x0)

[
pθ (x0:T )

q(x1:T | x0)

]
. (20.45)

Why is this transformation useful? The move from Eq. (20.44) to Eq. (20.45) leverages the

definition of the expected value: Eq[ f (x)] ≡
∫

q(x) f (x)dx. While the original integral requires

evaluating all possible noise trajectories (an infinite and intractable set), the expectation form allows

us to use Monte Carlo estimation.

Instead of analytically solving the integral, we can approximate the expectation by sampling

a single trajectory x1:T from the forward process q. Since q is a fixed Gaussian Markov chain,

generating these samples is computationally trivial. This transforms the problem from impossible

high-dimensional integration to simple stochastic sampling.

Jensen’s Inequality and the ELBO

Because log is concave, Jensen’s inequality (logE[X ]≥ E[logX ]) gives a lower bound:

log pθ (x0)≥ Eq(x1:T |x0)

[
log

pθ (x0:T )

q(x1:T | x0)

]
=: LELBO(θ ;x0). (20.46)

Maximizing LELBO is therefore a principled surrogate for maximizing log pθ (x0).

Expanding the ELBO: Products Become Sums

Substituting the Markov factorizations from Eqs. (20.41)–(20.43) into Eq. (20.46) and using log∏t at =

∑t logat yields

LELBO(θ ;x0) = Eq

[
log p(xT )+

T

∑
t=1

log pθ (xt−1 | xt)−
T

∑
t=1

logq(xt | xt−1)
]
, (20.47)

where q is shorthand for q(x1:T | x0). This form is correct but not yet aligned with the backward-time

conditionals that will appear in KL divergences.
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The Posterior Trick: Aligning the Forward and Reverse Directions

We face a structural mismatch in the ELBO derived so far (Eq. 20.47). The ELBO contains a sum

of forward transitions logq(xt | xt−1), which describe the diffusion process going forward in time.

However, our generative model pθ (xt−1 | xt) operates backward in time. To define a meaningful

loss function (like a KL divergence), we must compare distributions that define the same transition

direction (t→ t−1).

To fix this, we do not "solve" for an unknown; rather, we use Bayes’ rule to rewrite the forward

term logq(xt | xt−1) into an equivalent expression involving the reverse posterior.

1. Inverting the arrow with Bayes’ Rule

Recall that for the Markov chain conditioned on x0, the reverse posterior is defined as:

q(xt−1 | xt ,x0) =
q(xt | xt−1,x0)q(xt−1 | x0)

q(xt | x0)
.

Using the Markov property q(xt | xt−1,x0) = q(xt | xt−1), we can rearrange this identity to isolate

the forward term found in our ELBO:

logq(xt | xt−1) = logq(xt−1 | xt ,x0)︸ ︷︷ ︸
Aligned Reverse Posterior

+ logq(xt | x0)− logq(xt−1 | x0)︸ ︷︷ ︸
Normalization Constants

. (20.48)

Why do this? We have successfully replaced a term pointing "forward" (which we cannot compare

to pθ ) with a term pointing "backward" (which we can compare to pθ ) plus some residual marginals.

2. The Telescoping Sum

When we sum this substitution over all timesteps t = 2 . . .T , the residual marginal terms cancel each

other out in a cascading (telescoping) series:

T

∑
t=2

[logq(xt |x0)− logq(xt−1|x0)] = (logq(x2|x0)− logq(x1|x0))

+(logq(x3|x0)− logq(x2|x0))

+ . . .

+(logq(xT |x0)− logq(xT−1|x0))

= logq(xT | x0)− logq(x1 | x0). (20.49)

This effectively removes all intermediate marginals from the loss function. When we combine this

result with the t = 1 term from the original sum, the final expression simplifies to just the sum of

reverse posteriors plus the endpoint at T :

T

∑
t=1

logq(xt | xt−1) =
T

∑
t=2

logq(xt−1 | xt ,x0)+ logq(xT | x0). (20.50)
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ELBO Decomposition into the Standard DDPM Terms

We now consolidate the terms to reveal the final objective. Recall our starting point: the expanded

ELBO from Eq. (20.47).

LELBO = Eq(x1:T |x0)

[
log p(xT )+

T

∑
t=1

log pθ (xt−1 | xt)−
T

∑
t=1

logq(xt | xt−1)

]
.

The Obstacle (Direction Mismatch): We want to train the reverse model pθ (xt−1 | xt). Ideally,

we would minimize a distance (like KL divergence) between this model and some ground truth.

However, the ELBO currently contains the forward terms logq(xt | xt−1). These point in the wrong

direction (time t−1→ t). We cannot directly compare a forward transition q to a reverse transition

pθ . To fix this, we must replace the forward sum with terms that point backwards in time.

Step 1: Applying the Telescoping Substitution

We substitute the forward sum using the telescoping identity derived in Eq. (20.50):

T

∑
t=1

logq(xt | xt−1) = logq(xT | x0)+
T

∑
t=2

logq(xt−1 | xt ,x0).

Notice that the terms inside the sum, q(xt−1 | xt ,x0), now point backwards (from t to t − 1),

conditioned on x0. This aligns perfectly with our generative model pθ (xt−1 | xt).
Step 2: Regrouping the ELBO

Substituting this back into the ELBO and grouping matching terms (prior with prior, transition with

transition):

LELBO = Eq(x1:T |x0)

[
log pθ (x0 | x1)︸ ︷︷ ︸

Reconstruction (t=1)

+(log p(xT )− logq(xT | x0))︸ ︷︷ ︸
Prior Matching (t=T )

+
T

∑
t=2

(log pθ (xt−1 | xt)− logq(xt−1 | xt ,x0))︸ ︷︷ ︸
Denoising Matching (t=2...T )

]
. (20.51)

Step 3: From Global Expectation to Local KLs

The expectation Eq(x1:T |x0) is an integral over the entire trajectory. However, each grouped term

depends on only a few variables. We can simplify the expectations by marginalizing out the

irrelevant variables.

• Prior Term: Depends only on xT .

Eq(x1:T |x0)

[
log

p(xT )

q(xT | x0)

]
= Eq(xT |x0)

[
log

p(xT )

q(xT | x0)

]
=−KL(q(xT | x0)∥ p(xT )).

• Denoising Terms (t > 1): The term at step t depends on xt and xt−1. We can split the

expectation using the chain rule q(xt ,xt−1 | x0) = q(xt−1 | xt ,x0)q(xt | x0):

Eq(x1:T |x0) [. . . ] = Eq(xt |x0)

[
Eq(xt−1|xt ,x0)

[
log

pθ (xt−1 | xt)

q(xt−1 | xt ,x0)

]

︸ ︷︷ ︸
−KL(q(xt−1|xt ,x0)∥ pθ (xt−1|xt))

]
.
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The inner expectation is exactly the negative KL divergence between the posterior and the

model. The outer expectation averages this KL over all possible noise levels xt sampled from

q(xt | x0).

The Standard Variational Bound Decomposition

We customarily minimize the negative ELBO (denoted L). Combining the results above yields the

canonical decomposition from the DDPM paper [223]:

L = L0︸︷︷︸
Reconstruction

+ LT︸︷︷︸
Prior Matching

+
T

∑
t=2

Lt−1︸︷︷︸
Denoising Matching

, (20.52)

where the individual loss terms are defined as:

L0 :=− log pθ (x0 | x1), (20.53)

LT := KL(q(xT | x0)∥ p(xT )), (20.54)

Lt−1 := Eq(xt |x0)

[
KL(q(xt−1 | xt ,x0)∥ pθ (xt−1 | xt))

]
. (20.55)

Why is this powerful? Because we chose Gaussian transitions for both the forward process q and

the reverse model pθ , every KL divergence inside LT and Lt−1 can be computed in closed form.

This avoids high-variance Monte Carlo estimates for the KL terms themselves. We only need to

sample the outer expectation Eq(xt |x0), which is efficiently handled by sampling a single xt during

each training step.

Interpretation: What Each Term Is Doing (and What Actually Trains θ )

Eq. (20.52) isolates exactly where learning happens:

• Stepwise denoising KLs Lt−1 (the main trainable supervision). For each t ≥ 2, the model

transition pθ (xt−1 | xt) is trained to match the true posterior q(xt−1 | xt ,x0) induced by the

forward process. This is the core “analytic teacher / learned student” mechanism: during

training x0 is known, so the teacher posterior is tractable; at sampling time x0 is unknown, so

only pθ remains.

• Prior KL LT (typically θ -independent). With a fixed forward schedule and fixed prior

p(xT ), LT depends only on q and p, and contributes no gradient to θ . Conceptually, it

accounts for matching the endpoint distribution of the forward chain to the chosen prior.

• Decoder / reconstruction L0. This term trains the final step mapping a lightly noised x1

back to data x0. It plays the same role as a VAE decoder likelihood term: its exact form is an

implementation choice (e.g., a discretized Gaussian when x0 is integer-valued pixel data).

Why This Matters for Implementation

This decomposition is not a heuristic: it is the variational identity that converts an intractable

marginal likelihood objective into a sum of tractable per-timestep losses. In practice, we estimate

these expectations by sampling a minibatch x0, drawing a timestep t, sampling xt ∼ q(xt | x0), and

evaluating the corresponding term. Once we choose a parameterization of the reverse Gaussian

mean (e.g., predicting ε or x0), the denoising KLs Lt−1 reduce (up to θ -independent constants and

known timestep-dependent weights) to the simple regression objectives used in modern implementa-

tions [223, 449].
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Enrichment 20.9.2.3: Training and Inference in DDPMs

Denoising diffusion probabilistic models (DDPMs) learn to reverse a fixed, gradually destructive

noise process. The forward process perturbs a clean sample x0 by injecting Gaussian noise over

T steps, transforming it into a nearly pure noise vector xT . The model is trained to invert this

process: starting from xT ∼N (0,I), it denoises step-by-step, ideally recovering a sample on the

data manifold.

Training Phase. Instead of directly reconstructing the clean image x0, the model is trained to predict

the exact noise ε ∼N (0,I) used to generate a corrupted sample xt at a randomly selected timestep.

This is done using the closed-form reparameterization:

xt =
√

ᾱt x0 +
√

1− ᾱt ε.

This formula defines the marginal distribution q(xt | x0), which is analytically tractable because

the forward process adds Gaussian noise at each step. Thanks to the Gaussian structure, we can

bypass the full Markov chain x0→ x1→·· ·→ xt and sample xt directly from x0. Since x0 is available

during training, we know both the corrupted image xt and the noise ε used to produce it — giving us

a clean, fully supervised learning signal at every step.

A new timestep t ∼ Uniform(1,T ) is sampled independently for each training example in every

iteration. This stochastic scheduling ensures that the model is exposed evenly to all levels of noise —

from lightly perturbed images (t small) to highly corrupted ones (t large). As a result, the network

learns to denoise across the entire corruption spectrum, handling both subtle and extreme distortions.

Crucially, the model is not trained to perform full denoising in a single step. Rather, it learns a

local denoising direction at a specific timestep — the vector that reduces the noise level just slightly.

These local predictions are later chained together during inference, gradually converting pure noise

xT ∼N (0,I) into a coherent image. In this way, the global generative trajectory is composed of

small, timestep-specific updates, each learned with direct supervision.

The objective is a simple mean squared error:

Lθ (t) = ∥ε− εθ (xt , t)∥2 ,

where εθ is the model’s noise estimate given the noisy input and timestep. Because ε ∼N (0,I)
has a time-invariant distribution, this formulation provides uniformly scaled gradients and avoids

timestep-dependent loss reweighting.

Training Loop

• Sample minibatch {x(i)0 }B
i=1 ∼ q(x0)

• For each sample, draw t ∼ Uniform({1, . . . ,T})
• Sample ε ∼N (0,I)
• Generate corrupted input:

xt =
√

ᾱt x0 +
√

1− ᾱt ε

• Update θ by minimizing:

1

B

B

∑
i=1

∥∥∥ε(i)− εθ (x
(i)
t , t(i))

∥∥∥
2
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Sampling Phase. Once training is complete, DDPMs generate new data by sampling from the

learned reverse process. The generative trajectory begins with a latent xT ∼N (0,I) and iteratively

denoises it using the model’s predictions until a final sample x0 is obtained.

Connection to the Model Distribution pθ (xt−1 | xt).

During inference, each reverse step samples from a parameterized Gaussian:

pθ (xt−1 | xt) = N
(
xt−1; µθ (xt , t), σ2

t I
)
,

where the mean µθ (xt , t) is derived from the model’s noise prediction:

µθ (xt , t) =
1√
αt

(
xt −

1−αt√
1− ᾱt

· εθ (xt , t)

)
,

and σ2
t is either fixed (e.g., set to the posterior variance β̃t) or learned.

Interpreting the Update.

This formula is a direct consequence of substituting the predicted noise into the reparameterized

form of the posterior mean. Intuitively, the model estimates the direction that locally increases the

probability density of the data at each step — a learned score-like vector pointing toward higher

likelihood under the evolving distribution pt(xt).

Stochasticity and Sample Diversity.

The added noise σtz, where z∼N (0,I), ensures that the process remains stochastic for all t > 1.

This stochasticity is crucial for generating diverse outputs: even with a fixed starting point xT , the

sampled trajectory may differ based on the random noise added at each step, enabling the model to

explore multiple valid reconstructions from the same latent seed.

Final Step Refinement.

To ensure a clean and stable output, the final step at t = 1 is typically performed deterministically:

x0 = µθ (x1,1) =
1√
α1

(
x1−

1−α1√
1− ᾱ1

· εθ (x1,1)

)
.

This prevents reintroducing noise into the final output and produces the model’s best estimate of a

sample from the data distribution.

Sampling Loop

• Initialize xT ∼N (0,I)
• For t = T, . . . ,1:

– If t > 1, sample z∼N (0,I); else set z = 0

– Compute:

xt−1 = µθ (xt , t)+σtz

• Return final sample x0

Each step applies the learned mean µθ (xt , t) and injects a calibrated amount of noise σtz,

gradually transforming white noise into a structured output. This aligns training and sampling:

the same noise prediction εθ (xt , t) used in the objective is used here to parameterize pθ (xt−1 | xt),
ensuring behavioral consistency and high-fidelity synthesis.
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Enrichment 20.9.2.4: Architecture, Datasets, and Implementation Details

Backbone Architecture: Why U-Net Fits Denoising in Diffusion Models

At the heart of Denoising Diffusion Probabilistic Models (DDPMs) is the noise prediction network

εθ (xt , t), which learns to estimate the additive Gaussian noise present in a noisy image xt at a given

diffusion timestep t. The model’s objective is not to directly recover the clean image x0, but to

predict the noise ε that was added to it—a simpler and more stable residual formulation that exploits

the additive structure of the forward process.

In nearly all implementations, this network adopts a modernized U-Net architecture [532], an

encoder–decoder design with skip connections. Originally introduced for biomedical image segmen-

tation, U-Net embodies architectural principles that are highly compatible with denoising: multiscale

abstraction, spatial alignment preservation, and residual refinement. For foundational architectural

background, refer to 15.6.

Why an Encoder–Decoder? Even though the goal is to produce an output of the same shape as

the input—namely, a per-pixel noise estimate ε̂θ (xt , t) ∈ R
H×W×C—a plain convolutional stack is

inadequate. To accurately predict structured noise, the model must:

• Understand global layout and semantic structure, which is necessary at high noise levels.

• Recover fine-grained spatial details and local noise textures, which dominate at low noise

levels.

The encoder–decoder design serves precisely this purpose. The encoder compresses the input into

an abstract, low-resolution representation that captures global context. The decoder then expands

this representation back to full resolution, guided by high-resolution activations passed through skip

connections. This configuration allows the model to infer both where and how much noise is present

across scales, producing a high-fidelity noise map to subtract from xt , yielding the denoised estimate

xt−1.

Multiscale Hierarchy and Architectural Intuition The forward diffusion process corrupts an

image gradually and hierarchically: fine textures and high-frequency details vanish early in the

process, while coarse shapes and global structure persist longer but are eventually lost as the timestep

increases. The U-Net mirrors this hierarchy in its encoder–decoder structure, enabling effective

prediction of structured noise across all scales.

• Encoder (Global Noise Pattern Extractor): The encoder consists of convolutional and

residual blocks, each followed by downsampling via strided convolutions or pooling. These

stages progressively reduce spatial resolution and increase the receptive field. As a result,

the encoder extracts increasingly abstract features that capture global noise patterns—broad,

low-frequency components of the corruption that dominate at high noise levels (large t). These

features help the model reason about the type and spatial layout of large-scale noise.

• Bottleneck (Compressed Noise Signature): At the coarsest resolution, the bottleneck fuses

information across the entire image. It often includes attention layers to model long-range

dependencies, forming a compact semantic summary of the noise. Rather than focusing on

local details, this stage encodes a global noise signature that allows the model to estimate how

structured or unstructured the corruption is throughout the image.
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• Decoder (Localized Noise Detail Refiner): The decoder reverses the downsampling process

by progressively upsampling the bottleneck features back to the original resolution. At each

scale, upsampled features are concatenated with the corresponding encoder outputs through

skip connections, enabling the model to reconstruct the spatial pattern of the noise with

pixel-level precision. This is especially important at small t, where most signal remains and

the model must predict subtle residual noise components for fine denoising.

• Skip Connections (High-Fidelity Noise Anchors): These direct links transmit high-resolution

features from the encoder to the decoder, bypassing the lossy bottleneck. They preserve local

structure from the input xt and act as spatial anchors, helping the model retain and refine

localized noise patterns without needing to regenerate them from coarse representations. In

essence, skip connections allow the decoder to focus on correcting residual noise at each pixel,

not reconstructing structure from scratch.

This architectural design aligns naturally with the multiscale nature of the denoising task. The

encoder and bottleneck guide the model at early timesteps (large t), when noise dominates and global

structure must be inferred. The decoder and skip connections specialize in late timesteps (small t),

where fine details are visible and precise noise subtraction is required.

Walkthrough: Layer-by-Layer Data Flow A DDPM U-Net processes its input as follows:

1. Input: A noisy image xt ∈ R
H×W×C and scalar timestep t are provided.

2. Timestep Embedding: The timestep is encoded via sinusoidal or learned embeddings, then

added to or modulates each residual block throughout the network. This enables conditional

denoising behavior based on the current noise level.

3. Encoder Path: Residual blocks compress the spatial resolution stage-by-stage while enriching

the semantic representation. Intermediate activations are stored for later skip connections.

4. Bottleneck: A central residual block—often augmented with self-attention—integrates global

context across the latent space.

5. Decoder Path: Each upsampling stage increases spatial resolution and concatenates the

corresponding encoder feature map. Residual blocks then refine the merged features.

6. Output Projection: A final convolution reduces the output channels to match the input image

dimensions, producing the predicted noise map ε̂θ (xt , t) ∈ R
H×W×C.

Why U-Net Matches the Diffusion Objective The U-Net is ideally suited to the demands of

iterative denoising:

• At high t, the model must infer missing structure from context—enabled by the encoder and

bottleneck’s large receptive field.

• At low t, it must restore subtle noise patterns and textures—achieved through decoder refine-

ment and skip connections.

• The model’s residual nature matches the objective of DDPMs: instead of “generating from

nothing,” it incrementally removes noise, learning what to subtract.

This architectural symmetry between noise corruption and hierarchical reconstruction makes U-Net

a natural backbone for DDPMs, explaining its ubiquity in both pixel-space and latent-space diffusion

models.
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Resolution and Depth Scaling

The model scales its architecture to accommodate input resolution. This adjustment is often described

as a resolution–depth tradeoff: deeper U-Nets are used for higher-resolution datasets to ensure that

the receptive field covers the full image, while shallower variants suffice for low-resolution images:

• CIFAR-10 (32×32): Uses 4 resolution levels, downsampling by factors of 2 from 32×32→
4×4.

• LSUN, CelebA-HQ (256×256): Use 6 resolution levels, down to 4×4, which allows deeper

processing and more extensive multi-scale aggregation.

This scaling ensures a balance between global context (captured at coarser resolutions) and

fine-grained detail (preserved by skip connections and upsampling paths), and prevents over- or

under-modeling at different scales.

Time Embedding via Sinusoidal Positional Encoding

Each diffusion step is associated with a timestep index t ∈ {1, . . . ,T}, which determines the noise

level in the corrupted image xt . Rather than inputting t directly as a scalar or spatial channel,

DDPMs encode this index using a sinusoidal positional embedding, as introduced in the Transformer

architecture [644]. For details, see Section 17.5.5.

The embedding maps t to a high-dimensional vector:

Embed(t)[2i] = sin
( t

100002i/d

)
, Embed(t)[2i+1] = cos

( t

100002i/d

)
,

where d is the embedding dimension. This yields a rich multi-scale representation of t that provides

smooth variation and relative ordering across timesteps.

How the Time Embedding is Used

The sinusoidal vector Embed(t) ∈ R
d is passed through a small multilayer perceptron (MLP),

typically a two-layer feedforward network with a nonlinearity (e.g., SiLU). The output of the MLP

is a transformed time embedding τ ∈ R
d′ where d′ matches the number of feature channels in the

current resolution level of the network.

This transformed vector τ is then used as follows:

• In each residual block of the U-Net, τ is broadcast across the spatial dimensions and added to

the activations before the first convolution:

h← h+Broadcast(τ),

where h ∈ R
C×H×W is the intermediate feature map and Broadcast(τ) ∈ R

C×H×W repeats τ

across spatial locations.

• This additive conditioning modulates the computation in every block with timestep-specific

information, allowing the network to adapt its filters and responses to the level of corruption

in xt .

• The time embedding is reused across multiple resolution levels and is injected consistently at

all depths of the U-Net.

Why Not Simpler Alternatives?

Several naive strategies for injecting time t into the network fail to match the effectiveness of

sinusoidal embeddings:
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• Feeding t as a scalar input: Adding a scalar value lacks expressivity and does not capture

periodicity or multi-scale structure in the diffusion process.

• Concatenating t as a spatial channel: Appending a constant-valued image channel represent-

ing t adds no location-specific structure and forces the network to learn to decode the meaning

of the timestep from scratch, which is inefficient and unprincipled.

• Learned timestep embeddings: While possible, they tend to overfit to the training schedule.

In contrast, sinusoidal embeddings are fixed and continuous, allowing generalization to unseen

timesteps or schedules.

Hence, sinusoidal positional encoding provides a continuous, high-capacity representation of

the timestep index t, and its integration into every residual block ensures the network remains

temporally aware throughout the forward pass. This architectural choice is central to DDPMs’ ability

to generalize across the full noise schedule and to specialize behavior for early vs. late denoising

stages.



1200 Chapter 20. Lecture 20: Generative Models II

Model Scale and Dataset Diversity

DDPMs have been shown to scale effectively across a range of standard image generation bench-

marks, with model capacity adjusted to match dataset complexity and resolution. The success

of diffusion models across these diverse datasets underscores their flexibility and robustness for

modeling natural image distributions:

• CIFAR-10: A 32×32 low-resolution dataset of natural images across 10 object categories

(e.g., airplanes, frogs, trucks). The DDPM trained on CIFAR-10 uses a relatively compact

architecture with 35.7 million parameters.

• LSUN (Bedrooms, Churches): High-resolution (256×256) scene-centric datasets focused

on structured indoor and outdoor environments. These demand greater capacity to model

texture, lighting, and geometry. DDPMs trained on LSUN use 114 million-parameter models.

• CelebA-HQ: A curated set of high-resolution (256× 256) face images with fine details in

skin, hair, and expression. The model architecture is the same as for LSUN, with 114 million

parameters.

• Large LSUN Bedroom Variant: To push fidelity further, a 256 million-parameter model is

trained by increasing the number of feature channels. This variant improves texture quality

and global coherence in challenging scene synthesis.

Together, these results demonstrate that DDPMs can successfully generate images across a

variety of domains—ranging from small-object classification datasets to high-resolution indoor

scenes and human faces—by appropriately scaling model depth and width to meet data complexity.

Summary

In summary, the DDPM network combines a modernized U-Net backbone with residual connections,

attention, group normalization, and sinusoidal time embeddings to robustly model the denoising

process at all noise levels. These design choices reflect a convergence of innovations from generative

modeling, deep CNNs, and sequence-based architectures, resulting in a stable and expressive

architecture well-suited for diffusion-based generation.
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Enrichment 20.9.2.5: Empirical Evaluation and Latent-Space Behavior

Noise Prediction Yields Stable Training and Best Sample Quality

The DDPM training objective can be formulated in multiple ways — most notably by regressing the

true posterior mean µ̃t , the original image x0, or the noise ε used to corrupt the data. An ablation

from [223] highlights the empirical advantage of predicting ε , especially when using the simplified

loss:

Lsimple(θ) = Ex0,ε,t ∥ε− εθ (xt , t)∥2 .

In Table 2 of the original paper, DDPMs trained to directly predict noise and using a fixed isotropic

variance achieve a FID score of 3.17 on CIFAR-10, outperforming all other parameterizations.

Notably:

• Mean prediction with fixed variance reaches FID 13.22, but training with learned variance is

unstable.

• Noise prediction stabilizes training and achieves state-of-the-art performance.

Image Interpolation in Latent Space

Interpolating images in pixel space typically leads to distorted, unrealistic samples. However,

interpolating in the diffusion latent space allows for smooth transitions while maintaining realism.

Figure 20.57: Interpolation between two CelebA-HQ images x0 and x′0 using latent space diffusion

embeddings.

Let x0,x
′
0 ∼ p(x0) be two real samples and define their noised versions xt ∼ q(xt | x0) and x′t ∼ q(x′t |

x′0). Interpolation in pixel space between x0 and x′0 yields low-quality results, as such mixtures are

not on the data manifold.

Instead, the DDPM first encodes both inputs into latent noise space via the forward process. It

then linearly interpolates the latent pair:

x̄t = (1−λ )xt +λx′t ,

and decodes this interpolated noise via the learned denoising process:

x̄0 ∼ pθ (x0 | x̄t).

The results are realistic samples that blend semantic attributes from both source images — such

as hairstyle, pose, and identity features. The rec columns (i.e., λ = 0 and λ = 1) show faithful

reconstructions of x0 and x′0, confirming that the process remains semantically grounded.
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Coarse-to-Fine Interpolation and Structural Completion

Unlike the previous interpolation experiment — where two images were encoded to the same noise

level t and interpolated under varying weights λ — this experiment investigates a different axis of

generative control: the impact of interpolating at different diffusion depths.

The idea is to fix two source images x0,x
′
0 ∼ p(x0), encode them to different levels of corruption

xt ,x
′
t , perform latent-space interpolation as before:

x̄t = (1−λ )xt +λx′t ,

and decode x̄t ∼ pθ (x0 | x̄t) via DDPM. But here, the timestep t itself is varied to control the

granularity of information being destroyed and recombined.

Figure 20.58: Interpolations between two CelebA-HQ images performed after different numbers of

forward diffusion steps. Small t preserves structure; large t results in novel completions.

As shown in Figure 20.58, we observe:

• t = 0: Interpolation occurs directly in pixel space. The resulting images are unrealistic and far

off-manifold, suffering from blurry blends and unnatural artifacts.

• t = 250: Fine-grained attributes (like expression, or hair texture) blend smoothly, but core

identity remains distinct.

• t = 750: High-level semantic traits such as pose, facial structure, and lighting are interpolated.

The model effectively recombines partial semantic cues from both images.

• t = 1000: The forward diffusion has fully erased both source images. The interpolated latent

lies near the prior, and the reverse process generates novel samples that do not resemble either

input — underscoring the destructive nature of high t.
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This experiment demonstrates that the forward diffusion process acts as a tunable semantic bottleneck.

Small t values retain local details, enabling fine-grained morphing, while large t values eliminate

low-level information, allowing the model to semantically complete or reinvent samples during

denoising. Crucially, it reveals how diffusion models naturally support interpolation at different

abstraction levels — from texture to structure — within a single framework.

Progressive Lossy Compression via Reverse Denoising

Beyond interpolation, DDPMs enable an elegant form of semantic compression. By encoding

images to a latent xt via forward diffusion and decoding with pθ (x0 | xt), one can interpret xt as a

progressively degraded version of the original — retaining coarse structure at high t, and finer details

at lower t.

Figure 20.59: Samples x0 ∼ pθ (x0 | xt) from the same xt , with varying t. As t decreases, more

high-frequency detail is recovered.

Figure 20.59 illustrates this behavior by fixing a latent xt from a given source image and sampling

multiple reconstructions at different noise levels. We observe:

• High t (e.g., 1000): Almost all detail is destroyed. Yet, all samples from pθ (x0 | xt) consistently

reflect global properties such as face orientation and head shape — traits that persist deep into

the diffusion process.

• Intermediate t (e.g., 750): Mid-level features like sunglasses, skin tone, or background begin

to reemerge — attributes not present at t = 1000, but encoded in the intermediate latent.

• Low t (e.g., 500): Fine texture and local details (e.g., wrinkles, clothing patterns, eye sharpness)

are reconstructed. The samples are perceptually similar and show near-lossless decoding.

This complements the earlier latent interpolation experiments: while Figure 20.57 and Figure 20.58

showed how DDPMs mix image content by interpolating between latents, Figure 20.59 focuses on

what semantic content is recoverable from a given latent. Together, these experiments reveal that:

• The forward process acts as a progressive semantic bottleneck — discarding detail layer by

layer, akin to a lossy compression encoder.

• The reverse process serves as a generative decoder, robustly reconstructing from incomplete

information while respecting semantic priors.

• DDPMs naturally support multiple levels of abstraction — from global pose to pixel-level

texture — controllable by the timestep t.

Critically, these findings also validate the choice of noise prediction and fixed-variance reverse

transitions (as shown in the ablation table): DDPMs not only achieve strong FID scores but exhibit

robust, controllable behavior across a range of generation and compression tasks — without the need

for external encoders or separate latent spaces.
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Enrichment 20.9.3: Denoising Diffusion Implicit Models (DDIM)

Motivation

While DDPMs produce high-quality samples, their sampling procedure is slow: generating each

image requires thousands of iterative steps, each injecting noise and resampling from a Gaussian.

Denoising Diffusion Implicit Models (DDIM) [580] propose a faster, possibly deterministic

(depending on our choice), alternative that reuses the noise trajectory learned during DDPM training.

Thus, allowing fewer, non-randomized reverse steps — without retraining the model.

The DDIM construction hinges on the forward diffusion process and its reparameterization, offering

a principled method to interpolate or skip timesteps using the same noise that corrupted the clean

sample. This enables sparse, deterministic or stochastic generation, with controllable speed and

sample diversity.

From DDPM Sampling to DDIM Inversion

To understand DDIM, we begin by revisiting a key property of the forward diffusion in DDPMs: the

fact that it admits a closed-form Gaussian marginal at each timestep t, conditioned on the original

sample x0. This allows any noisy sample xt to be written deterministically in terms of x0 and a latent

noise variable ε .

Importantly, this deterministic reparameterization can be inverted if we have access to xt and

the corresponding noise ε . DDIM leverages this observation by proposing a new reverse sampling

mechanism: instead of sampling xt−1 ∼ pθ (xt−1 | xt) using stochastic transitions, DDIM determinis-

tically reconstructs a denoised signal estimate x̂0, then reuses the same noise to compute xs for some

s < t, bypassing the need for Gaussian resampling.

The result is a non-Markovian, deterministic sampling trajectory defined entirely by the model’s

noise prediction εθ (xt , t), which acts as a proxy for the latent variable governing the entire diffusion

path. This insight allows DDIM to:

• Reconstruct x0 from a noisy xt using a single inference pass.

• Reuse the predicted noise to deterministically compute earlier samples xs.

• Support arbitrary skip steps and non-uniform timestep schedules.

• Eliminate stochasticity from the reverse process (optionally reintroducing it with a tunable

variance, to enhance the outputs variety).

We now derive the DDIM reverse (denoising) formula by walking through each conceptual and

mathematical step.

1. From Forward Diffusion to Inversion

The DDPM forward process defines a tractable Gaussian marginal at each timestep:

q(xt | x0) = N
(√

ᾱt x0, (1− ᾱt)I
)
,

which admits the following reparameterization:

xt =
√

ᾱt x0 +
√

1− ᾱt ε, ε ∼N (0,I).

This expression shows that xt lies on a deterministic path defined by the clean sample x0 and

the noise variable ε . If both xt and ε are known, we can recover the original sample using:

x0 =
1√
ᾱt

(
xt −

√
1− ᾱt · ε

)
.
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However, during sampling, we only observe the noisy sample xt . The clean image x0 is unknown.

To address this, the model is trained to approximate the injected noise:

ε ≈ εθ (xt , t),

allowing us to estimate the clean sample as:

x̂0 =
1√
ᾱt

(
xt −

√
1− ᾱt · εθ (xt , t)

)
.

This single-step estimate x̂0 may be inaccurate when t is large — that is, when xt is heavily corrupted

by noise and the denoising task is most difficult. Hence, DDIM continues with a multi-step procedure:

starting from pure noise xT , it progressively refines samples xt , . . .xs<t , . . . ,x0 using noise prediction

and noise reuse. We now derive the mechanism that enables this recursive denoising.

2. Reverse Step to Arbitrary s < t

In DDPM, the reverse process is modeled as a Markov chain:

xT → xT−1→ xT−2→ ·· · → x0,

where each step involves sampling from a Gaussian distribution conditioned only on the previous

timestep. This formulation requires a long sequence of small, incremental denoising updates —

typically 1000 steps — to reach high-quality samples.

DDIM generalizes this by allowing non-Markovian jumps: it permits transitions from any

timestep xt to any earlier timestep xs (with s < t), skipping over intermediate states. This defines a

shortened inference path of the form:

xT → xt1 → xt2 → ·· · → x0,

with T > t1 > t2 > · · ·> 0, often using just 25, 50, or 100 steps — significantly accelerating sampling.

This is possible because DDIM leverages the closed-form marginals of the forward process:

xs =
√

ᾱs x0 +
√

1− ᾱs · ε,

where ᾱs = ∏
s
j=1 α j is the cumulative signal retention up to step s, and ε ∼N (0,I) is the latent

noise variable that parameterizes the entire corruption trajectory.

At inference time, since we do not have access to x0, we use the estimated denoised sample:

x̂0 =
1√
ᾱt

(
xt −

√
1− ᾱt · εθ (xt , t)

)
,

and reuse the predicted noise vector εθ (xt , t) to compute a deterministic transition to the earlier

timestep xs:

xs =
√

ᾱs · x̂0 +
√

1− ᾱs · εθ (xt , t).
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This formulation has several key benefits:

• It allows coarse timestep schedules without retraining — e.g., using 50 steps instead of 1000.

• The predicted noise εθ (xt , t) acts as a global direction, reused to guide the entire trajectory.

• The sampling process becomes non-Markovian — each step is computed from shared global

information rather than local noise.

DDPM: xT → xT−1→ xT−2→ ·· · → x1→ x0 (1-step Gaussian update per transition)

DDIM: xT → xt1 → xt2 → ·· · → x1→ x0 (larger steps, no sampling noise)

Figure 20.60: Comparison of reverse trajectories. DDIM reduces the number of steps by using a

deterministic mapping with shared noise.

Finally, note that directly jumping from xT to x̂0 in one step is highly unstable: for large T , the sample

xT ∼N (0,I) contains no useful structure. DDIM’s stepwise refinement — using intermediate

predictions of x̂0 — enables better signal recovery through multiple corrections, while still avoiding

the full 1000-step path of DDPM.

This construction motivates the next question: how is it valid to reuse the same noise vector

across the entire trajectory? We now formalize that in the next part.

Figure 20.61: Graphical comparison of DDPM and DDIM inference models. Top: In DDPM,

the generative process is a Markov chain: each reverse step xt−1 depends only on the previous xt .

Bottom: DDIM defines a non-Markovian process, where each xs can be computed directly from xt

using the predicted noise εθ (xt , t), enabling accelerated, deterministic inference.

Adapted from [580].
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3. Why the “single–noise” picture is still correct

The DDPM forward process injects fresh Gaussian noise at every step, defining a Markov chain

q(xt | xt−1). This structure may suggest that different noise variables govern each transition. However,

DDIM reveals that this is not necessary.

Key insight: forward marginals are closed-form. Despite the forward process being implemented

as a chain of conditional Gaussians, its marginal at any timestep t is analytically tractable:

q(xt | x0) = N
(√

ᾱt x0, (1− ᾱt)I
)
,

which can be reparameterized as:

xt =
√

ᾱt x0 +
√

1− ᾱt · ε, ε ∼N (0,I).

Thus, every sample xt lies on a deterministic trajectory parameterized by a single global noise vector

ε , which DDIM aims to recover at test time.

DDPM training predicts this global noise. The model is trained using:

Lsimple = Ex0,t,ε ∥ε− εθ (xt , t)∥2 ,

meaning that the network learns to recover the same underlying ε that generated xt , regardless of the

Markov structure used in implementation.

DDIM reuses this noise in reverse. Using the prediction εθ (xt , t), we estimate the clean image:

x̂0 =
1√
ᾱt

(
xt −

√
1− ᾱt · εθ (xt , t)

)
,

and reconstruct an earlier point xs along the same trajectory as:

xs =
√

ᾱs · x̂0 +

√
1− ᾱs−σ2

t · εθ (xt , t)+σt · z, z∼N (0,I).

In the deterministic case (σt = 0), this constructs a smooth, invertible path backward. When σt > 0,

stochasticity is added — not to resample new noise, but to reflect posterior uncertainty.

Why this reuse is consistent. At every new step xs, we pass the new pair (xs,s) into the network

and obtain a fresh prediction εθ (xs,s), which again approximates the same global noise vector ε .

Although DDIM reuses noise directionally from step to step, it still recomputes it from scratch at

each stage — preserving consistency with the learned denoising function.

Conclusion:

• DDPM marginals are governed by a single noise vector ε , not per-step randomness.

• DDPM training teaches the model to recover this latent vector from any xt .

• DDIM sampling reuses this direction — deterministically or stochastically — along a consis-

tent generative trajectory.

• This makes DDIM both theoretically sound and fully compatible with DDPM training.
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4. Optional Stochastic Extension

DDIM supports a stochastic generalization of its reverse process, allowing a smooth tradeoff between

determinism and diversity. For any reverse step t→ s with s < t, the update becomes:

xs =
√

ᾱs · x̂0︸ ︷︷ ︸
projected clean signal

+

√
1− ᾱs−σ2

t→s · εθ (xt , t)︸ ︷︷ ︸
denoising direction

+ σt→s · z︸ ︷︷ ︸
stochastic noise

, z∼N (0,I),

where:

x̂0 =
1√
ᾱt

(
xt −

√
1− ᾱt · εθ (xt , t)

)
.

Term-by-Term Intuition:

• Projected clean signal: The model’s estimate x̂0 is projected from step t back to step s using

the forward process statistics ᾱs.

• Denoising direction: The score estimate εθ (xt , t) points back toward xt ; scaling it reintroduces

the appropriate amount of noise compatible with the forward marginal at step s.

• Stochastic noise: The final term injects fresh Gaussian noise of variance σ2
t→s. When σt→s = 0,

the process is fully deterministic. When σ2
t→s = β̃t · 1−ᾱs

1−ᾱt
, the update recovers the DDPM

reverse step.

Why This Works:

• Flexible yet faithful reverse step: The reverse mean is defined using the learned score (via

x̂0), while the variance σ2
t→s is a tunable hyperparameter. Every choice in the interval

σ2
t→s ∈ [0, β̃t · 1−ᾱs

1−ᾱt
]

yields a valid generative step with unchanged forward marginals and training objective. In

practice, most works set s = t−1, reducing the bound to β̃t .

• Preserved training semantics: The forward process and training objective are left unchanged:

q(xt | x0) = N (
√

ᾱtx0, (1− ᾱt)I),

and the model is trained to predict the noise ε ∼N (0,I) that produced xt . At inference time,

this same prediction is reused, regardless of the stochasticity level σt→s.

• Unbiased noise injection: The stochastic term z∼N (0,I) is added after the model predicts

the denoising direction εθ (xt , t). This ensures that:

– The model prediction remains unchanged regardless of the noise realization.

– The expectation over samples is centered on the deterministic prediction.

Thus, the added noise does not degrade the learned signal path but simply introduces controlled

variation. This behavior approximates the uncertainty inherent in the true posterior q(xs |
xt ,x0), even though x0 is not available at test time. As a result, DDIM allows stochasticity

without biasing or corrupting the generation trajectory.
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• Robustness to training mismatch: The only approximation is that future steps are now

fed states xs that include artificial noise σt→sz, not produced via the original forward chain.

Nevertheless:

– This noise is still Gaussian and isotropic, matching the training distribution.

– For moderate σt→s, the deviation is small. Empirically, DDIM sampling remains stable

and yields accurate denoising, as shown in Table 2 of [580].

Practical Implications:

• Deterministic vs. stochastic sampling: DDIM enables a continuum of generative behaviors,

controllable via the noise parameter σt→s. Setting σt→s = 0 yields fully deterministic sampling

trajectories, ideal for tasks such as image editing, latent space interpolation, and reproducible

evaluation. In contrast, using σt→s =
√

1− ᾱs or σt→s = β̃t restores stochasticity, producing

diverse samples comparable to those from DDPM.

• Model reuse without retraining: The added noise term σtz, where z∼N (0,I), is injected

after the network has predicted the denoising direction. Since this perturbation does not affect

model outputs during training, DDIM sampling remains fully compatible with DDPM-trained

networks. It requires no architectural changes or retraining and can be applied as a post-hoc

modification at inference time.

• Flexible speed–diversity trade-off: DDIM supports coarser inference schedules (e.g., 50 or

100 steps) compared to the original 1000-step DDPM, significantly accelerating generation.

Smaller values of σt lead to crisp, high-fidelity samples, while larger values increase diversity.

Since σt is selected at test time, this trade-off remains fully user-controlled.

5. Advantages of DDIM Sampling

• Deterministic inference: High-quality samples can be generated without randomness.

• Speedup: Fewer timesteps (e.g., 25, 50, or 100 instead of 1000) yield strong results.

• No retraining required: DDIM reuses DDPM-trained noise predictors.

• Trajectory consistency: Sampling follows the learned denoising direction.

• Tunable diversity: Optional variance allows DDPM-like diversity when needed.

The result is a more flexible sampling framework that enables both efficient and expressive image

generation — a critical step toward scaling diffusion models in practice.

For further insights and ablations, we refer the reader to [580], which introduces DDIM and

empirically benchmarks its improvements.
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Enrichment 20.9.4: Guidance Techniques in Diffusion Models

Diffusion models offer a flexible generative framework, but in their basic formulation, sample

generation proceeds unconditionally from Gaussian noise. In many real-world settings, we want to

steer this generation process — for example, to condition on class labels, textual prompts, or other

forms of side information. This general strategy is known as guidance.

Guidance techniques modify the reverse diffusion process to bias samples toward desired outcomes

while retaining high sample quality. These approaches do not alter the forward noising process, and

instead inject additional directional information into the sampling dynamics — often by adjusting

the reverse transition rule.

We now explore several influential guidance strategies, beginning with the original classifier guid-

ance method introduced by Dhariwal and Nichol [122].

Classifier Guidance

The first major form of guidance was introduced by Dhariwal and Nichol [122] under the name

classifier guidance. It extends DDPMs to class-conditional generation by injecting semantic feedback

from a pretrained classifier into the sampling dynamics of the reverse diffusion process.

During training, the denoising network εθ (xt , t) is trained as usual to predict the noise added at each

timestep, following the standard DDPM objective. Separately, a classifier pφ (y | xt) is trained to

predict labels from noisy images xt at various timesteps t ∈ [0,T ]. This is achieved by minimizing a

standard cross-entropy loss over samples from the noising process. The classifier is trained after or

in parallel with the diffusion model, and remains fixed during guided generation.

At inference time, we generate a trajectory by progressively denoising xT ∼N (0, I) toward x0, using

the reverse Gaussian transitions modeled by the network. To bias generation toward a particular

class y, we modify the reverse step by incorporating the gradient of the log-probability log pφ (y | xt)
with respect to the current sample xt . This yields a modified score function via Bayes’ rule:

∇xt
log p(xt | y) = ∇xt

log p(xt)+∇xt
log p(y | xt),

where the first term is the score of the unconditional model, and the second term comes from the

classifier. Since DDPMs already learn an approximation to ∇xt
log p(xt), we can guide sampling by

simply adding the classifier gradient.

In score-based language, the noise prediction is adjusted as:

ε̂guided(xt , t) = ε̂θ (xt , t)− s ·Σt∇xt
log pφ (y | xt),

where:

• ε̂θ (xt , t) is the denoiser’s prediction of the added noise,

• Σt is the variance of the reverse diffusion step at time t,

• s > 0 is a tunable guidance scale that controls how strongly the generation is biased toward

class y.

In practice, the classifier gradient ∇xt
log pφ (y | xt) is computed by backpropagating through the

logits of a pretrained classifier pφ (y | xt), using automatic differentiation.
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During sampling, this is done as follows:

1. Given the current noisy sample xt and the desired class y, compute the classifier’s logit vector

ℓ= fφ (xt) ∈ R
C, where C is the number of classes.

2. Extract the log-probability of the target class: log pφ (y | xt) = logsoftmax(ℓ)y.

3. Backpropagate this scalar with respect to the input xt (not with respect to the model weights)

to obtain the gradient:

∇xt
log pφ (y | xt).

4. Add this gradient to the score function, scaled by the guidance factor s, to steer the reverse

update toward class y.

At first glance, it may seem problematic to alter the denoising trajectory learned by the model. After

all, the diffusion model is trained to predict noise that reverses the corruption process from xt to xt−1,

and adding arbitrary gradients could in principle interfere with that process.

However, the addition of the classifier gradient is not arbitrary—it is theoretically grounded. We

remind that the reverse diffusion process samples from the conditional distribution p(xt | y), and its

associated score function is:

∇xt
log p(xt | y) = ∇xt

log p(xt)+∇xt
log p(y | xt),

by Bayes’ rule. The unconditional model learns to approximate ∇xt
log p(xt) through score estimation

or noise prediction. Adding ∇xt
log p(y | xt), which comes from the classifier, completes the full

class-conditional score.

Thus, the classifier gradient is not changing the direction arbitrarily—it is restoring a missing

piece of the full score function required for class-conditional generation. The classifier acts like

a plug-in module that injects semantic preference into the learned dynamics, gently pulling the

sample trajectory toward regions where xt is likely to belong to class y, without disrupting the overall

denoising process.

Empirically, this simple mechanism has been shown to substantially improve both perceptual quality

and class accuracy, particularly at moderate-to-high guidance scales s ∈ [1,15]. It steers trajectories

toward semantically meaningful modes in the conditional distribution, leading to clearer, sharper

outputs—often at the cost of some diversity, which can be tuned via the scale s.

This mechanism makes classifier guidance a plug-and-play enhancement: any differentiable classifier

can be used, and the guidance strength s can be tuned at inference time to balance fidelity and

diversity.

Although classifier guidance is simple to implement and produces significantly sharper and more

class-consistent samples, it does come with two practical drawbacks: it requires training and storing

a separate classifier over noisy images, and it introduces extra computation at sampling time due to

gradient evaluations at every timestep. These limitations motivate the development of classifier-free

guidance, which we discuss next.
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Classifier-Free Guidance

While classifier guidance enables powerful class-conditional generation, it comes with practical

drawbacks: it requires training and storing a separate classifier, and incurs additional gradient

computations at each sampling step. To overcome these limitations, Ho and Salimans [224] proposed

a remarkably simple alternative: classifier-free guidance.

The key idea is to let the denoising model itself learn both the unconditional and class-conditional

scores. That is, instead of training a separate classifier to inject ∇xt
log p(y | xt), we extend the

model input to optionally accept conditioning information and teach it to interpolate between both

behaviors.

Training Procedure

Let εθ (xt , t,y) denote a noise prediction model that is explicitly conditioned on a class label y. The

classifier-free guidance technique trains this model to operate in both conditional and unconditional

modes using a simple dropout strategy on the conditioning signal.

Concretely, during training we sample a data-label pair (x0,y) ∼ q(x,y), and select a timestep

t ∈ {1, . . . ,T}. We generate a noisy input xt =
√

ᾱtx0 +
√

1− ᾱtε where ε ∼N (0, I), and then

choose a conditioning label as:

ỹ =

{
y with probability 1− pdrop,

∅ with probability pdrop,

where ∅ denotes an empty or null token indicating that no label is provided.

We then minimize the standard DDPM loss:

Ex0,t,ε,y

[
∥εθ (xt , t, ỹ)− ε∥2

]
,

thus training the model to perform both conditional and unconditional denoising, depending on

whether ỹ is real or masked. In practice, pdrop ∈ [0.1,0.5] provides a good trade-off between learning

both behaviors.

How the Conditioning y is Incorporated. The conditioning variable y must be integrated into

the denoising model in a way that allows the network to modulate its predictions based on class

information (or other forms of conditioning such as text). The implementation depends on the nature

of y:

• For discrete class labels (e.g., in class-conditional image generation), y∈ {1, . . . ,C} is typically

passed through a learnable embedding layer:

ey = Embed(y) ∈ R
d .

This embedding is then added to or concatenated with the timestep embedding et = Embed(t)
and used to modulate the network. A common design is to inject ey into residual blocks via

adaptive normalization (e.g., conditional BatchNorm or FiLM [479]) or as additive biases.

• For richer conditioning (e.g., language prompts or segmentation masks), y may be a sequence

or tensor. In such cases, the network architecture includes a cross-attention mechanism to

allow the model to attend to the context:

CrossAttn(q,k,v) = softmax

(
qk⊤√

d

)
v,
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where the keys k and values v come from an encoder applied to the conditioning input y, and

the queries q are derived from the image representation.

These mechanisms allow the model to seamlessly switch between conditional and unconditional

modes by simply masking or zeroing out the embedding of y during classifier-free training.

Sampling with Classifier-Free Guidance

At inference time, we leverage the model’s ability to perform both conditional and unconditional

denoising. Given a noisy input xt at timestep t, we evaluate the model under two scenarios:

εcond = εθ (xt , t,y),

εuncond = εθ (xt , t,∅),

where y is the conditioning label (e.g., a class or prompt), and ∅ denotes an unconditional (empty)

input. These predictions are combined using the interpolation formula:

εguided = εuncond + s · (εcond− εuncond) ,

where s≥ 1 is the guidance scale controlling the strength of conditioning. This can also be written

as:

εguided = (1+ s) · εcond− s · εuncond.

The following piece of code illustrates how class labels are embedded and applied inside a diffusion

architecture (e.g., U-Net):

1 import torch

2 from tqdm import tqdm

3

4 # Assumes the following are pre-initialized:

5 # - model: diffusion model (e.g., U-Net)

6 # - text_encoder: a frozen CLIP/T5-style encoder

7 # - tokenizer: matching tokenizer

8 # - scheduler: DDPM or DDIM scheduler with .step()

9 # - guidance_scale: e.g., 7.5

10 # - H, W: image dimensions (e.g., 64x64)

11

12 # Step 1: Define prompt(s)

13 prompts = ["a photo of a dog"] # List of text prompts

14 batch_size = len(prompts)

15 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

16

17 # Step 2: Tokenize conditional and unconditional prompts

18 cond_tokens = tokenizer(prompts, padding=True, return_tensors="pt")

19 uncond_tokens = tokenizer([""] * batch_size, padding=True,

return_tensors="pt")↪→

20
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21 # Step 3: Encode prompts into embeddings

22 text_cond = text_encoder(

23 input_ids=cond_tokens.input_ids.to(device),

24 attention_mask=cond_tokens.attention_mask.to(device)

25 ).last_hidden_state # Shape: (B, T, D)

26

27 text_uncond = text_encoder(

28 input_ids=uncond_tokens.input_ids.to(device),

29 attention_mask=uncond_tokens.attention_mask.to(device)

30 ).last_hidden_state # Shape: (B, T, D)

31

32 # Step 4: Concatenate for a single forward pass

33 text_embeddings = torch.cat([text_uncond, text_cond], dim=0) # Shape: (2B, T,

D)↪→

34

35 # Step 5: Initialize Gaussian noise

36 x = torch.randn((2 * batch_size, model.in_channels, H, W), device=device)

37

38 # Step 6: Reverse sampling loop

39 for t in tqdm(scheduler.timesteps):

40 t_batch = torch.full((2 * batch_size,), t, device=device,

dtype=torch.long)↪→

41

42 with torch.no_grad():

43 noise_pred = model(x, t_batch,

encoder_hidden_states=text_embeddings).sample↪→

44 noise_uncond, noise_cond = noise_pred.chunk(2) # Split into (B, ...)

chunks↪→

45

46 # Apply classifier-free guidance

47 guided_noise = noise_uncond + guidance_scale * (noise_cond -

noise_uncond)↪→

48

49 # Step the scheduler using only guided samples

50 x = scheduler.step(guided_noise, t, x[:batch_size]).prev_sample # Shape:

(B, C, H, W)↪→

This simple pattern is powerful and generalizes across different modalities. In more complex systems

such as Stable Diffusion [531], the conditional input y is often a text prompt embedded using a

frozen transformer like CLIP [498], and passed through multiple layers of cross-attention throughout

the U-Net decoder.

Why Classifier-Free Guidance Works: A Score-Based and Intuitive View

Classifier-Free Guidance (CFG) builds on a simple yet powerful idea: train a single diffusion model

to support both unconditional and conditional denoising behaviors. By exposing the model to both

kinds of inputs during training, it becomes possible to steer generation toward a semantic target y

without relying on a separate classifier.

To understand this, consider the decomposition of the conditional log-probability using Bayes’ rule:

log p(xt | y) = log p(xt)+ log p(y | xt). (20.56)
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Taking the gradient with respect to xt yields:

∇xt
log p(xt | y) = ∇xt

log p(xt)+∇xt
log p(y | xt). (20.57)

This tells us that the conditional score consists of two components:

• an unconditional score ∇xt
log p(xt), which represents the direction that increases likelihood

under the overall data distribution;

• a label-specific influence ∇xt
log p(y | xt), which corrects the direction based on the condition-

ing variable y.

In classifier guidance, the second term is approximated by a trained classifier. In classifier-free

guidance, however, both terms are learned by the same model through a clever training trick:

randomly dropping the conditioning label y (e.g., with 10% probability) and training the model to

denoise in both settings.

Specifically:

• When y = "dog", the model sees noisy dog images xt and learns to denoise them toward clean

images x0, guided by the label.

• When y is dropped, the model learns unconditional denoising: predicting x0 without any

external label.

As a result, the model implicitly learns:

sθ (xt ,y, t)≈ ∇xt
log p(xt | y), (conditional score) (20.58)

sθ (xt ,∅, t)≈ ∇xt
log p(xt), (unconditional score) (20.59)

Subtracting these gives an approximation of the label’s effect:

sθ (xt ,y, t)− sθ (xt ,∅, t)≈ ∇xt
log p(y | xt). (20.60)

Intuition: This subtraction isolates the direction in feature space that pushes a sample toward better

alignment with label y. It’s as if we are extracting the “semantic vector field” attributable to the label

alone. By multiplying this vector by a scale factor s, we can amplify movement in the direction of

the conditioning label.

Substituting into Bayes’ decomposition gives:

∇xt
log p(xt | y)≈ sθ (xt ,∅, t)+ s · (sθ (xt ,y, t)− sθ (xt ,∅, t)) , (20.61)

where s ∈ R≥0 is a user-defined guidance scale.

In practice, most diffusion models are trained to predict noise ε rather than the score directly. This

reasoning therefore translates into the widely-used noise prediction rule:

εguided = εuncond + s · (εcond− εuncond) , (20.62)

where εcond = εθ (xt , t,y) and εuncond = εθ (xt , t,∅).

Conclusion. By training the model on noisy samples paired with and without the label, it learns how

the presence of y modifies the denoising direction. At inference time, we explicitly compute and

amplify this direction by subtracting the unconditional prediction and scaling the result. This lets us

generate samples that are more aligned with the target concept, while preserving the stability of the

underlying diffusion process.
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Interpretation

The difference εcond− εuncond approximates the semantic shift introduced by conditioning on y.

Scaling this difference by s amplifies the class- or prompt-specific features in the output, steering the

model’s trajectory toward the desired mode. Larger values of s increase class adherence but may

reduce diversity, reflecting a precision-recall trade-off in generation.

Typical Settings

Empirically, guidance scales s ∈ [7.5,10] often strike a good balance between fidelity and variation.

Values s > 10 can produce oversaturated or collapsed samples, while s = 0 corresponds to pure

unconditional generation.

Figure 20.62: Effect of Guidance Scale in Classifier-Free Guidance (Stable Diffusion v1.5).

Each column shows images generated from the same prompt using different guidance scales. As the

scale increases from left to right (values: −15∼ 1, 3, 7.5, 10, 15, 30), the outputs transition from

weakly conditioned or incoherent samples to more strongly aligned and vivid ones. However, overly

high values (e.g., 30) may introduce distortions or oversaturation. Guidance scales 7.5/10 typically

produce the most realistic and semantically faithful results. Adapted from [18].

Advantages

Classifier-free guidance has become a cornerstone of modern diffusion-based systems because:

• It requires no auxiliary classifier: Conditioning is integrated directly into the denoiser,

making the architecture self-contained.

• It avoids expensive gradient computations: No backward pass is needed during sampling.

• It enables dynamic guidance strength: Users can modulate s at test time without retraining

the model.

• It generalizes beyond classes: The same technique applies to text prompts, segmentation

maps, audio inputs, or any other conditioning.

Adoption in Large-Scale Models

Classifier-free guidance is now standard in most large-scale diffusion pipelines, including:

• Imagen [540], which uses language conditioning on top of a super-resolution cascade,

• Stable Diffusion [531], where text embeddings from CLIP guide an autoencoding UNet,

• DALLE-2 [508], which uses CFG to synthesize and refine images from textual prompts.

This generality makes it one of the most practical and powerful tools for guided generative modeling

with diffusion models.
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Enrichment 20.9.5: Cascaded Diffusion Models

Motivation and Overview

Diffusion models have achieved state-of-the-art results in image synthesis, but generating high-

resolution samples directly (e.g., 256×256 or larger) poses serious challenges. Large images require

significantly more memory and computational resources, and a single generative model must capture

both global structure and fine-grained detail. Additionally, standard denoising processes often

struggle to coordinate long-range dependencies at such scales.

Cascaded Diffusion Models (CDMs), introduced by Ho et al. [225], address this issue by breaking

the generation task into multiple stages. Instead of training a single large diffusion model for

full-resolution synthesis, CDMs train a sequence of models:

1. A low-resolution base model generates a small image (e.g., 64×64) from Gaussian noise,

conditioned on a class label y.

2. One or more super-resolution models then refine this image, increasing resolution step-by-

step (e.g., 64→ 128→ 256) while maintaining semantic consistency and adding detail. Each

model conditions on both the noisy image xt and a low-resolution context image obtained by

upsampling the previous model’s output.

Figure 20.63: Overview of a Cascaded Diffusion Pipeline. The first model generates a low-

resolution sample from noise (left). Subsequent models condition on this sample (upsampled) to

generate higher-resolution versions. At each stage, the model receives xt (the noisy image), the class

label y, and a low-resolution guidance image. This modular design enables each model to specialize

at a given scale. Figure adapted from [225].

This decomposition solves several problems:

• Scalability. Each model only needs to process a manageable resolution.

• Efficiency. Super-resolution models reuse coarse structure, focusing computation on adding

detail.

• Modularity. Models can be trained and evaluated independently.

In the following parts, we describe the architectural design (U-Net-based blocks with multi-scale

fusion), the training pipeline for both base and super-resolution models, and evaluation strategies for

high-resolution cascaded generation.
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Architecture: U-Net Design for Cascaded Diffusion Models

Each component in the CDM pipeline—whether base generator or super-resolution model—uses

a U-Net architecture tailored to its resolution level. This backbone supports spatial fidelity via

multi-scale representations and skip connections.

Figure 20.64: U-Net architecture used in CDMs. The first model receives a noisy image xt ∼
q(xt | x0) and class label y. Subsequent models (super-resolution stages) additionally take a lower-

resolution guide image z, which is the upsampled output of the previous stage. All inputs are

processed through downsampling and upsampling blocks with skip connections. Timestep t and

label y are embedded and injected into each block (not shown). Figure adapted from [225].

Inputs and Their Roles in CDM Super-Resolution Models

Each super-resolution stage in a Cascaded Diffusion Model (CDM) functions as a conditional

denoiser. Unlike naive super-resolution, which might learn a direct mapping from low-res to high-res,

CDM stages begin from noise and learn to sample a distribution over plausible refinements, guided

by a coarser input.

• Noisy high-resolution image xt: This is a sample from the standard forward diffusion process:

xt =
√

ᾱt x0 +
√

1− ᾱt ε, ε ∼N (0, I).

Here, x0 is a clean high-resolution image from the dataset, and t ∈ [0,1] is a timestep. The

model is trained to denoise xt using information from the timestep t, the class label y, and a

coarse guidance image z. This preserves the probabilistic nature of generation: the network

learns to sample detailed content rather than deterministically sharpen z.

• Low-resolution guide z: This is a fixed, non-noisy input that anchors the high-resolution

output to a previously generated image. It is computed as:

1. Downsample x0 to the previous stage’s resolution (e.g., from 128×128 to 64×64),

2. Then upsample it back to the current resolution using a deterministic interpolation

method (e.g., bilinear upsampling).
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The purpose of this two-step operation is to strip out high-frequency detail while retaining

global structure and composition. The result z looks like a smoothed, coarse sketch of the final

target image x0. During training, this allows the network to learn how to "fill in" fine details

that are consistent with the structure in z. During inference, the same structure is provided by

upsampling a generated image from the previous resolution stage.

• Timestep embedding t: The scalar t ∈ [0,1] controls the level of corruption in xt . It is encoded

using sinusoidal positional encodings or a learned MLP, and its embedding is added to feature

maps at every layer of the U-Net. This informs the network about "how much noise" remains

in the input, and thereby how much denoising should be performed. Without this conditioning,

the network would be unable to correctly localize the sample along the reverse trajectory.

• Class label y: In class-conditional setups, the label is embedded (e.g., via a learned embedding

table or projection) and added to intermediate layers in the U-Net—often by adding it to the

same intermediate representation as t. This helps guide the generation toward the correct

semantic category.

Why Are Both xt and z Needed?

Super-resolution diffusion models are trained to sample diverse, high-resolution outputs consis-

tent with a low-res guide. These two inputs serve complementary roles:

• xt introduces stochasticity—the model learns a distribution over high-res reconstructions, not

a fixed sharpening process. Sampling from noise also enables diversity in outputs.

• z provides structural anchoring—it ensures that sampled outputs respect the layout, pose, and

semantic structure already determined at the previous stage.

While it may seem redundant to denoise x0 (which is already high-res), recall that we are

not simply reconstructing x0 deterministically—we are learning to sample high-resolution images

consistent with z. This formulation ensures that each CDM stage acts like a generative model in its

own right, capable of producing diverse samples even when guided.

Training Procedure:

Each super-resolution model is trained independently as follows:

1. Sample a clean image x0 ∈ R
H×W×C from the dataset at the target resolution (e.g., 128×128).

2. Downsample x0 to a lower resolution (e.g., 64×64), then upsample back to 128×128 using

bilinear interpolation to form the guide z.

3. Sample a timestep t ∼U [0,1] and generate xt ∼ q(xt | x0).
4. Train the model to predict ε using a DDPM-style loss:

Ex0,t,ε,z,y

[
∥εθ (xt , t,z,y)− ε∥2

]
.

Inference Pipeline:

Cascaded Diffusion Models (CDMs) generate high-resolution images by factorizing the genera-

tion process into a sequence of resolution-specific stages. Each stage operates at a different image

resolution, beginning with a low-resolution semantic layout and progressively adding detail and

refinement. Importantly, each stage follows its own denoising loop conditioned on the output of the

previous stage.
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1. Base generation stage (e.g., 64×64):

• Sample Gaussian noise: x
(64)
T ∼N (0, I).

• Apply a class-conditional diffusion model to denoise x
(64)
T over a sequence of reverse

steps:

– For DDPM: iterate through all steps t = T,T−1, . . . ,1 using a stochastic update

rule.

– For DDIM: select a subset of timesteps (e.g., 50) and apply a deterministic update

rule with larger jumps in time.

• This produces a coarse but semantically correct image: x̃
(64)
0 ∼ p

(64)
model(x0 | y).

2. Super-resolution stages (e.g., 128×128, 256×256):

• For each higher resolution:

(a) Upsample: Resize x̃
(prev)
0 (e.g., bilinearly) to the current resolution to obtain the

conditioning image z.

(b) Sample noise: Draw x
(target)
T ∼N (0, I) at the target resolution.

(c) Denoise: Apply a class-conditional super-resolution diffusion model, conditioned

on z and the class label y, to iteratively denoise x
(target)
T over its own timestep schedule

(full or reduced), resulting in x̃
(target)
0 .

Each stage performs a complete generation pass at its resolution: the base model synthesizes the

semantic structure, and subsequent models enhance visual fidelity and fine details. Because the input

noise xT is sampled independently at each stage, and the conditioning image z is fixed throughout the

reverse process, the pipeline is modular and supports parallel improvements at each resolution level.

Empirical Performance of CDMs

Cascaded Diffusion Models (CDMs), proposed by Ho et al. [225], achieve strong performance in

class-conditional image generation across multiple resolutions. On ImageNet at 64× 64, CDMs

attain a Fréchet Inception Distance (FID) of 1.48 and an Inception Score (IS) of 67.95, outperforming

prior baselines including BigGAN-deep (FID 4.06), Improved DDPM (FID 2.92), and ADM (FID

2.07). At higher resolutions, CDMs continue to excel: at 128×128, they achieve an IS of 128.80 and

FID of 3.52, while at 256×256, they reduce FID to 4.88—beating Improved DDPM (FID 12.26),

SR3 (FID 11.30), and ADM+upsampling (FID 7.49).

Beyond sample quality, CDMs demonstrate strong semantic alignment. At 128×128, their generated

samples achieve a Top-1 classification accuracy of 59.84% and Top-5 of 81.79%, substantially higher

than BigGAN-deep (40.64% / 64.44%). At 256×256, CDMs further narrow the gap to real data,

achieving Top-1 / Top-5 scores of 63.02% / 84.06%, approaching the classification scores of real

ImageNet samples (73.09% / 91.47%). These results underscore the effectiveness of CDMs as a

scalable, modular pipeline for high-resolution image synthesis.
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Enrichment 20.9.6: Progressive Distillation for Fast Sampling

Motivation

Diffusion models have demonstrated exceptional generative capabilities, but suffer from a major

limitation: slow sampling. Generating a single high-quality image typically requires hundreds to

thousands of sequential steps, each invoking a deep neural network. This bottleneck arises from the

structure of the reverse diffusion process — a Markov chain where each xt−1 depends on denoising

xt , one step at a time.

A natural idea is to reduce sampling cost by skipping steps: instead of taking N fine-grained steps

(e.g., 1000), why not just train a model to denoise using N/2, N/4, or even just a single step? The

challenge lies in choosing how to perform these larger transitions. There are many possible denoising

trajectories between xT ∼N (0, I) and a final sample x0, and naively training a network to bridge

them directly — without a clear path structure — often leads to poor results. The most common

failure is blurry samples: the model learns to average over all plausible denoising paths, resulting in

washed-out images that fail to capture sharp details or semantics.

This is where progressive distillation enters. Instead of learning an arbitrary large-step denoiser

from scratch, we begin with a high-quality sampler — typically a DDIM — that already generates

realistic images over many fine-grained steps. We then train a student model to imitate this specific

sampling trajectory in fewer steps. Crucially, the student does not discover its own path; it learns to

follow the teacher’s dynamics — a trajectory known to yield clean, sharp results.

Hence, instead of training from scratch, each student is supervised by a teacher that already performs

high-quality generation. By repeating this process—e.g., distilling a 1000-step sampler into 500,

then into 250, etc.—we amortize the cost of integration into fewer and fewer learned steps.

Each round learns to approximate an already successful denoising schedule, which avoids

mode averaging and retains the crispness of the teacher model’s outputs. This structured

guidance is the key: we reduce sampling cost without sacrificing sample quality, achieving up to

2048× speedups by compressing an 8192-step process into as few as 4 steps.

Figure 20.65: Progressive Distillation Process. Each iteration compresses the original sampling

schedule into fewer steps. A 4-step DDIM sampler f (z;η) is distilled into a 1-step student f (z;θ)
that mimics its behavior. Distillation can be viewed as amortizing ODE integration across fewer

steps. Figure adapted from [542].
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Pseudocode: Progressive Distillation Loop

Inputs: Pretrained teacher model x̂η(zt , t); dataset D ; learning rate γ ; loss weighting function w(λt);
initial number of sampling steps N; cosine schedule αt = cos(π

2
t), σt = sin(π

2
t).

1. Initialize student model by copying the teacher: x̂θ ← x̂η

2. Repeat until N = 4:

(a) Halve the number of steps: N← N/2

(b) Train the student:

i. Sample data x0 ∼D

ii. Sample index i∼ Uniform{1, . . . ,N}, compute t = i/N

iii. Sample noise ε ∼N (0, I)
iv. Generate noisy input:

zt = αtx0 +σtε

v. Generate teacher trajectory (two DDIM steps):

Step 1: Let t ′ = t−0.5/N. Then:

zt ′ = αt ′ x̂η(zt , t)+
σt ′

σt

(zt −αt x̂η(zt , t))

Step 2: Let t ′′ = t−1/N. Then:

zt ′′ = αt ′′ x̂η(zt ′ , t
′)+

σt ′′

σt ′

(
zt ′−αt ′ x̂η(zt ′ , t

′)
)

Inversion to get student target: Solve for the denoised estimate that would pro-

duce zt ′′ in one coarse step from zt :

x̃0 =
zt ′′−

(
σt′′
σt

)
zt

αt ′′−
(

σt′′
σt

)
αt

vi. Train the student model:

Log-SNR:

λt = log

(
α2

t

σ2
t

)

Loss:

Lθ = w(λt) · ∥x̂θ (zt , t)− x̃0∥2

Gradient update:

θ ← θ − γ∇θ Lθ

(c) Promote student to teacher: x̂η ← x̂θ
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Prerequisites Required to Understand The Progressive Distillation Loop

In diffusion models, the forward process gradually corrupts a clean input x0 by adding Gaussian

noise across time steps. At diffusion step t ∈ {1, . . . ,T}, the noisy sample xt is defined as:

xt =
√

ᾱt · x0 +
√

1− ᾱt · ε, ε ∼N (0, I),

where the parameters ᾱt , αt , and σt follow a predefined noise schedule. We now clarify their

definitions and explain their role:

• Instantaneous noise factor: αt =
√

1−βt , with βt ∈ (0,1) being the per-step noise variance.

This coefficient determines how much of the current sample xt−1 is retained during the forward

transition xt−1→ xt : xt = αtxt−1 +
√

1−α2
t · ε.

• Cumulative signal retention:

ᾱt =
t

∏
s=1

α2
s .

This is the total fraction of the original signal x0 that survives up to step t. It appears in the

closed-form expression for direct sampling of xt from x0.

• Cumulative noise variance:

σ2
t = 1− ᾱt , σt =

√
1− ᾱt .

These describe the total noise variance and standard deviation added by time t. The form

ensures that xt ∼N (0, I) when t = T and the original signal is fully destroyed.

Cosine Formulation and Angular Parameterization (Continuous-Time)

In continuous-time diffusion models—such as DDIM [580] and progressive distillation—the forward

noising process is often rewritten using a unit-norm angular parameterization:

zt = αtx0 +σtε, where α2
t +σ2

t = 1, ε ∼N (0, I).

This formulation treats (αt ,σt) as a point on the unit circle in 2D signal–noise space. The

coefficients are defined via a cosine-based schedule [449]:

αt = cos
(π

2
t
)
, σt = sin

(π

2
t
)
, t ∈ [0,1].

This setup has several important properties and motivations:

• Variance Preservation: The identity α2
t +σ2

t = 1 ensures that zt ∼ N (0, I) for any t if

x0 ∼N (0, I). This keeps the total energy constant throughout the forward process.

• Smooth Signal–Noise Transition: As t→ 0, we have α0 = 1, σ0 = 0, so z0 = x0 (fully clean).

As t→ 1, α1 = 0, σ1 = 1, so z1 = ε ∼N (0, I) (fully noisy). The cosine schedule smoothly

interpolates between these extremes.

• Uniform Angular Spacing: The cosine function parameterizes a half-circle, so linear values

of t ∈ [0,1] correspond to evenly spaced angular positions θt ∈ [0, π
2
]. This gives simple

geometric control over the signal-to-noise tradeoff, which is particularly useful for reverse-

time interpolation in distillation.

This angular schedule underlies the reparameterized sample construction and simplifies both training

and inference in distillation frameworks. It also facilitates velocity-parameterized losses, cosine-

SNR analysis, and efficient teacher-student approximation schemes—all of which are explored in

subsequent sections.
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What Is SNR and Why Use It?

The signal-to-noise ratio (SNR) at time t quantifies how much of zt comes from signal x0 versus

noise ε . Since both x0 and ε are standard Gaussian and independent, their variances scale as:

Var[αtx0] = α2
t , Var[σtε] = σ2

t .

Thus, SNR is defined as:

SNR(t) =
Signal Variance

Noise Variance
=

α2
t

σ2
t

.

This ratio captures the amount of recoverable information at each timestep and naturally guides loss

weighting: larger SNR implies more signal (thus lower error tolerance), while smaller SNR implies

more noise.

Instead of using raw SNR, the training loss is often weighted by log-SNR:

λt = log

(
α2

t

σ2
t

)
,

which stabilizes training and improves numerical behavior over a wide range of t.

Cosine Schedule and Angular Construction

In progressive distillation, the pair (αt ,σt) is chosen from an angular cosine schedule:

αt = cos
(π

2
t
)
, σt = sin

(π

2
t
)
,

so that:

• α0 = 1, σ0 = 0 at clean input,

• α1 = 0, σ1 = 1 at full noise,

• α2
t +σ2

t = 1 (variance-preserving).

The angle φt = arctan
(

σt

αt

)
linearly spans [0,π/2], enabling tractable interpolation over time and

across sampled points t, t−δ , etc. This smooth interpolation is critical for trajectory matching during

teacher-student distillation.

Teacher Trajectory Construction via Two DDIM Steps

Progressive distillation [542] accelerates the denoising process by training a student model to mimic

multiple steps of a teacher sampler in one. Specifically, the student learns to match the result of

two consecutive DDIM steps taken by the teacher — compressing them into a single coarse jump.

This requires constructing a deterministic trajectory using the teacher and inverting it to generate a

suitable training target for the student.

DDIM Reverse Update Rule.

In DDIM [580], the denoising process is deterministic and parameterized by the model’s predic-

tion of the clean sample x̂0. The reverse update from timestep t→ t ′ is given by:

zt ′ = αt ′ x̂0 +
σt ′

σt

(zt −αt x̂0),

where αt = cos(π
2
t), σt = sin(π

2
t), and zt = αtx0+σtε is the noisy latent at normalized time t ∈ [0,1].
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This formula arises from analytically rewriting the DDPM forward process and selecting a

particular sampling path that preserves total variance. It provides a time-scaled interpolation between

the current noisy sample zt and the predicted denoised image x̂0, allowing a smooth deterministic

trajectory from noise to signal.

Constructing the Two-Step Teacher Trajectory.

Let t ∈ [0,1] be a coarse timestep from the student’s schedule, where N is the total number of

denoising steps in the current distillation round. To simulate how the teacher would behave with

finer resolution, we define two intermediate substeps:

t ′ = t− 0.5

N
, t ′′ = t− 1

N
.

These are symmetrically spaced between t and the next coarse timestep in the student’s schedule. In

other words, if the student will jump from t→ t ′′, then the teacher simulates two finer-grained hops

t→ t ′→ t ′′ that evenly divide the interval. This alignment ensures that the student’s coarse step has

a faithful, high-resolution trajectory to imitate.

Step 1: From zt to zt ′ .

We begin with a deterministic DDIM update, using the teacher’s prediction x̂η(zt , t). This

quantity corresponds to the predicted clean image x̂0 in the DDIM update rule:

zt ′ = αt ′ x̂0 +
σt ′

σt

(zt −αt x̂0).

Substituting x̂η(zt , t) in place of x̂0, we compute:

zt ′ = αt ′ x̂η(zt , t)+
σt ′

σt

(zt −αt x̂η(zt , t)) .

Step 2: From zt ′ to zt ′′ .

After reaching zt ′ , the teacher performs a second deterministic DDIM step, using a fresh denoised

prediction at the new timepoint. Specifically, it computes x̂η(zt ′ , t
′), which—just like before—plays

the role of x̂0 in the standard DDIM formulation. The update becomes:

zt ′′ = αt ′′ x̂η(zt ′ , t
′)+

σt ′′

σt ′

(
zt ′−αt ′ x̂η(zt ′ , t

′)
)
.

This completes the teacher’s fine-grained trajectory from zt→ zt ′→ zt ′′ , constructed entirely from

deterministic DDIM steps. It is important to emphasize that although both x̂η(zt , t) and x̂η(zt ′ , t
′) are

predictions of the clean image, each corresponds to a different timepoint and is used independently

in its respective update. No change to the DDIM formula is required—the teacher simply follows

two consecutive applications of the same rule.

Inverting the Trajectory: Computing the Student’s Target x̃0

To mimic the teacher’s fine-grained two-step path zt → zt ′ → zt ′′ using only a single coarse step, the

student must predict a clean image x̃0 such that its own DDIM update lands exactly at zt ′′ . Assuming

the student uses the same deterministic DDIM update rule, we require:

zt ′′ = αt ′′ x̃0 +
σt ′′

σt

(zt −αt x̃0).
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Solving for x̃0 gives a closed-form expression:

x̃0 =
zt ′′−

(
σt′′
σt

)
zt

αt ′′−
(

σt′′
σt

)
αt

.

What x̂0 and x̃0 represent

• x̂0: A predicted denoised image produced by either the teacher or student at a given timepoint

— e.g., x̂η(zt , t) — used to advance the DDIM trajectory.

• x̃0: An artificial target constructed via DDIM inversion, guiding the student to match the full

two-step path of the teacher using a single update.

How this resolves DDPM’s low-SNR limitations

In standard DDPM training [223], the model is trained to predict the additive noise ε via:

LDDPM = ∥ε− εθ (zt , t)∥2 ,

which is equivalent to denoising supervision when rewritten as:

∥x0− x̂θ (zt , t)∥2 · α
2
t

σ2
t

= w(λt) · ∥x0− x̂θ (zt , t)∥2 ,

with

λt = log

(
α2

t

σ2
t

)
, w(λt) = exp(λt).

This weighting scheme is effective for long diffusion schedules where denoising starts in

moderate-to-high SNR regions. But in progressive distillation — where the student starts from high

t values and the number of steps is drastically reduced (e.g., 1000→ 4) — the student must denoise

from latents zt ∼N (0, I) with virtually no remaining signal. That is:

SNR(t) =
α2

t

σ2
t

≪ 1 as t→ 1.

Failure Modes at Low SNR

This low-SNR regime is not inherently problematic in standard DDPM/DDIM settings, where

sampling begins from noise but proceeds through many finely spaced steps. Each reverse update

makes a small correction, gradually increasing signal and enabling stable recovery of x0.

However, in progressive distillation, the sampling path is aggressively compressed. The student is

expected to perform large denoising jumps — often starting from high values of t where zt ∼N (0, I),
but reaching nearly clean states in just a few steps. Without the benefit of a gradual signal buildup,

this one-step transition from low to high SNR introduces two key failure modes:

1. Exploding Gradients: In noise-prediction formulations, the model outputs an estimate

εθ (zt , t), which is later transformed into a clean reconstruction via:

x̂0 =
zt −σt · εθ (zt)

αt

.

However, when αt ≪ 1, this division magnifies even small prediction errors in εθ , leading

to unstable gradients during training. This effect worsens at large t, where the latent zt is

dominated by noise and provides limited information about the underlying signal.



20.9 Enrichment 20.9: Diffusion Models: Modern Generative Modeling 1227

2. Vanishing Supervision: Standard DDPM training implicitly scales the regression loss in

image space by the log-SNR-based factor:

w(λt) = exp(λt) =
α2

t

σ2
t

.

As λt →−∞ (i.e., α2
t → 0), this weight shrinks to zero, diminishing the contribution of early,

noisy timesteps to the overall training objective. Yet these are precisely the timesteps where

strong supervision is most crucial, since the model must perform large, uncertain denoising

transitions.

How Progressive Distillation Addresses These Issues

• Numerically Stable DDIM Inversion Target x̃0: Rather than recovering x0 from predicted

noise — which involves division by small αt — progressive distillation sidesteps the instability

by directly supervising the student with an analytically computed target:

x̃0 =
zt ′′−

(
σt′′
σt

)
zt

αt ′′−
(

σt′′
σt

)
αt

,

where zt ′′ is obtained from the teacher’s deterministic two-step DDIM trajectory. This inversion

expresses x̃0 purely in terms of known latents and schedule parameters, ensuring that it

remains well-scaled even when αt → 0. Crucially, this avoids reliance on unstable backward

conversions of predicted noise into signal.

• Loss Weighting That Remains Active at Low SNR: To preserve supervision across all

timesteps — including those where the signal is weak — progressive distillation replaces the

conventional SNR-based weight w(λt) = exp(λt) with more robust alternatives:

– Truncated Log-SNR Weighting:

w(t) = max

(
log

(
α2

t

σ2
t

)
,λmin

)
,

where λmin is a tunable floor that prevents the weight from collapsing to negative infinity.

This ensures that gradients remain non-negligible even in the most noise-dominated

steps.

– SNR+1 Weighting:

w(t) =
α2

t

α2
t +σ2

t

,

which is bounded between 0 and 1 and smoothly transitions as a function of time. Unlike

exponential decay, this formulation retains meaningful weight even at low SNR, while

still emphasizing timesteps with stronger signal.

Both weighting strategies are designed to prevent early training steps from being overwhelmed

by numerical instability or under-emphasized due to vanishing loss terms — two common

failure points in highly compressed denoising schedules.
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Conclusion

Progressive distillation introduces unique challenges due to its compressed sampling schedule, where

the model must denoise aggressively from extremely noisy latents in just a few steps. To address the

resulting low-SNR difficulties, the training procedure incorporates two key modifications:

• It mitigates exploding reconstruction errors by replacing unstable noise-to-image inversions

with a direct and well-conditioned target x̃0, avoiding any division by αt .

• It avoids supervision collapse by modifying the loss weighting scheme to remain active even

when SNR(t)≈ 0, ensuring meaningful gradients in the earliest and noisiest student steps.

These innovations make it possible to train compact student samplers that achieve high-fidelity

generation in as few as 2–4 steps — a remarkable improvement in diffusion model efficiency.

Empirical Results and Sample Quality

The effectiveness of progressive distillation is best understood through its impact on both sample

quality and inference efficiency. The following figure compares the Fréchet Inception Distance (FID)

scores achieved by distilled samplers on several datasets and resolution settings, evaluated at various

sampling step budgets.

Figure 20.66: Sample quality vs. number of steps for distilled vs. baseline samplers. Shown

are FID scores across 4 benchmark settings: unconditional CIFAR-10, class-conditional ImageNet

64×64, LSUN Bedrooms 128×128, and LSUN Churches 128×128. Distilled samplers match or

outperform DDIM and stochastic samplers with far fewer steps.
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Key observations:

• On all datasets, the distilled model converges to comparable or better FID than DDIM with

only a fraction of the steps.

• In unconditional CIFAR-10, the distilled sampler with just 4 steps achieves FID ~2.1 —

competitive with 50–100 step DDIM samplers.

These results validate the intuition behind distillation: rather than relying on numerical integration

of the reverse-time SDE or ODE, we amortize this trajectory into a fixed sampler that mimics the

high-quality path. As a result, inference can proceed in as few as 4–8 steps — reducing cost by more

than an order of magnitude without noticeable degradation in fidelity.

Stochastic vs. Deterministic Baselines. The experiments also include a tuned stochastic sampler,

where variance schedules are optimized via log-scale interpolation between upper and lower bounds

(following Nichol & Dhariwal, 2021). For each number of steps, the interpolation coefficient is

manually tuned to yield the best results. Still, progressive distillation matches or outperforms these

handcrafted alternatives — showing that learning to mimic a deterministic high-quality sampler is

more effective than manually adjusting variance schedules.

Conclusion

Progressive distillation transforms diffusion models from slow, high-fidelity samplers into efficient

generative tools by compressing the sampling process into a small number of learned denoising

steps. Rather than predicting noise in an unstable low-SNR regime, each distilled model learns

to reproduce the behavior of a high-quality sampler using a fraction of the original steps. This

amortized integration not only accelerates generation by orders of magnitude but does so without

sacrificing sample quality — as evidenced across diverse datasets and resolutions. As a result,

progressive distillation provides a principled, scalable solution to one of the most critical bottlenecks

in diffusion-based generative modeling.
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Enrichment 20.9.7: Velocity-Space Sampling: Learning Denoising Trajectories

After DDPMs introduced stochastic denoising and DDIMs offered a deterministic alternative by

exploiting the latent-noise parameterization, a natural question arises: can we model the entire

denoising trajectory more directly and efficiently? Velocity-space sampling (V-Space sampling)

offers a compelling answer.

Instead of predicting the noise ε added during forward diffusion (as in DDPM) or using it to

reconstruct x0 (as in DDIM), velocity-space sampling proposes to predict a new quantity: the

instantaneous velocity of the sample at time t. Specifically, the model learns a vector field vθ (xt , t) ∈
R

d that describes how each point should evolve over time:

d

dt
xt = vθ (xt , t).

This transforms sampling into a continuous-time trajectory defined by an ordinary differential

equation (ODE), offering a geometric interpretation of the denoising process as movement along

smooth, learned flow lines in image space.

In practice, the velocity target is derived from the known forward diffusion process. Given the

reparameterized forward sampling:

xt =
√

ᾱt x0 +
√

1− ᾱt ε, ε ∼N (0,I),

the velocity target becomes:

vθ (xt , t) =

√
ᾱt εθ (xt , t)−

√
1− ᾱt xt√

ᾱt(1− ᾱt)
.

This transformation is a linear combination of the predicted residual noise and the input xt , producing

smoother and more temporally stable dynamics than direct noise or image predictions.

During training, the model minimizes the mean squared error between the predicted velocity and the

oracle velocity derived from the forward process:

Lvel(θ) = Ex0,ε,t

[
∥vθ (xt , t)−voracle(xt , t)∥2

]
,

where xt is computed from x0 and ε as above. This loss replaces the conventional noise-prediction

loss used in DDPMs.

Velocity-based sampling offers several practical and conceptual advantages:

• Smoother dynamics: Velocities vary more smoothly across time than raw noise or image

values, resulting in a more stable back-propagation signal.

• Faster sampling: Models trained in velocity space can generate competitive samples in as

few as 20–35 steps on complex datasets such as ImageNet.

• Compatibility: The network architecture remains unchanged from DDPM; only the training

target shifts from noise to velocity.

• Interpretability: The model learns a continuous flow field, providing a geometric interpreta-

tion of how data points evolve toward the data manifold.
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While velocity-space sampling offers a more structured and smoother alternative to raw noise

prediction, it still inherits its supervision targets from the diffusion process. That is, the oracle

velocity voracle is implicitly defined by the reverse-time dynamics of a predefined forward SDE. As

such, training remains dependent on a specific generative trajectory and inherits the inductive biases

of the diffusion process used to define it.

Flow Matching generalizes this idea by decoupling the supervision of the velocity field from any

fixed stochastic process. Instead of learning to imitate a reverse diffusion path, Flow Matching

constructs explicit, analytically-defined velocity fields that transport a source distribution to a target

distribution. This enables direct supervision of the vector field—bypassing both diffusion dynamics

and likelihood estimation—and allows for greater flexibility in how generative trajectories are defined

and optimized.
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Enrichment 20.10: Flow Matching: Beating Diffusion Using Flows

Background and Motivation. Flow Matching is a principled approach to training continuous-time

generative models. It belongs to the broader class of flow-based methods, which generate data by

transforming samples from a simple source distribution p0 (e.g., standard Gaussian) into a complex

target distribution p1 (e.g., natural images). Rather than applying a fixed sequence of discrete

transformations, Flow Matching models this evolution as a continuous progression of probability

densities over time, forming a smooth probability path (pt)t∈[0,1] with p0 = p and p1 = q.

Generative Models

⊂

Flow Models︸ ︷︷ ︸
ODE-based transformations

⊂

Flow Matching︸ ︷︷ ︸
learns velocity fields directly

⊂

Diffusion Models (DDPM/DDIM)

To transform samples from a simple initial distribution p0 into more complex samples from a target

distribution p1, we define a continuous path in sample space parameterized by time t ∈ [0,1]. This

transformation is governed by a deterministic ordinary differential equation (ODE) that describes

how each point xt ∈ R
d should evolve over time.

At the heart of this dynamic system is a learnable velocity field vt : Rd → R
d , which assigns to every

point x a direction and magnitude of motion at each time t. The evolution of a sample xt under this

field is given by the initial value problem:

d

dt
xt = vt(xt), x0 ∼ p0.

This differential equation describes a trajectory in space that the sample follows over time, beginning

at an initial point x0. Conceptually, we can think of the sample as a particle moving through a fluid

whose flow is described by vt .

To formalize this idea, we define a time-dependent trajectory map ψt : Rd → R
d , where ψt(x0)

denotes the location of the particle at time t that started from position x0 at time zero. By the chain

rule, the rate of change of the map is governed by the velocity evaluated at the current position:

d

dt
ψt(x0) = vt(ψt(x0)), ψ0(x0) = x0.

This equation simply states that the motion of the transformed point ψt(x0) is dictated by the velocity

vector at its current location and time. It ensures that the path traced by ψt(x0) is consistent with the

flow defined by the velocity field.
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Under mild regularity conditions—specifically, that vt(x) is locally Lipschitz continuous in x and

measurable in t—the Picard–Lindelöf theorem guarantees that the ODE has a unique solution for

each initial point x0 and for all t ∈ [0,1] [480]. This means the trajectory map ψt defines a unique

and smooth deformation of space over time, continuously transporting samples from the initial

distribution p0 toward the desired target p1.

Yet ensuring well-defined trajectories is not sufficient: we must also guarantee that the distribution

of points evolves consistently. To this end, the time-varying density pt must satisfy the continuity

equation:

d

dt
pt(x)+∇ · (pt(x)vt(x)) = 0.

This partial differential equation enforces conservation of probability mass. The term jt(x) =
pt(x)vt(x) represents the probability flux at point x, and the divergence ∇ · jt(x) quantifies the net

outflow. Thus, the continuity equation ensures that changes in density arise solely from mass flowing

in or out under the velocity field.

A velocity field vt is said to generate the probability path pt if the pair (vt , pt) satisfies this equation

at all times t ∈ [0,1). This guarantees that the sample trajectories xt = ψt(x0), drawn from x0 ∼ p0,

induce an evolving density pt that converges to the desired target p1. This coupling of geometry

and distribution is what makes Flow Matching a distribution-consistent framework for generative

modeling.

Why Flow Matching? Diffusion models such as DDPM and DDIM generate data by simulating a

stochastic process in reverse—starting from Gaussian noise and iteratively denoising across hundreds

or even thousands of discretized timesteps. Although highly effective, this sampling procedure

is computationally expensive. Moreover, training such models involves approximating the score

function ∇x log pt(x) or optimizing a variational objective (e.g., an ELBO), both of which rely on

intricate reweighting schemes and carefully tuned noise schedules.

Flow Matching [364] offers a deterministic and simulation-free alternative. Rather than estimating a

score or a generative likelihood, it directly learns a time-dependent velocity field vt(x) that transports

mass along a prescribed probability path (pt)t∈[0,1]. Once trained, the model generates new samples

by solving a single ODE:

x1 = x0 +
∫ 1

0
vt(xt)dt, x0 ∼ p0.

The training process is simple: a supervised regression loss is used to match the model’s velocity

prediction vθ (x, t) to a known target velocity field, analytically derived from the chosen coupling

between source and target samples. No stochastic simulation, score estimation, or variational

inference is needed.

Key Benefits:

• Fast sampling: Generates samples in tens of ODE steps rather than hundreds of reverse

diffusion steps.

• Stable and interpretable training: Based on direct regression rather than variational bounds

or score matching.

• Unified perspective: Recovers DDIM and other diffusion models as special cases under

specific path and velocity choices.
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Further Reading

This section builds upon the foundational principles introduced in [364] and further elaborated

in the comprehensive tutorial and codebase [363]. For visual walkthroughs and intuitive expla-

nations, see [291, 642]. In addition to the vanilla formulation, recent works have extended Flow

Matching to discrete spaces via continuous-time Markov chains [168], to Riemannian manifolds for

geometry-aware modeling [86], and to general continuous-time Markov processes through Generator

Matching [228]. These advances broaden the applicability of Flow Matching to diverse generative

tasks. Readers are encouraged to consult these references for deeper theoretical foundations and

application-specific implementations.

Enrichment 20.10.1: Generative Flows: Learning by Trajectory Integration

Motivation: From Mapping to Likelihood.

Let p0 denote a known, tractable base distribution (e.g., isotropic Gaussian), and let q denote the

unknown, true data distribution. Our goal is to learn a continuous-time transformation ψ that maps

p0 to a distribution p1 ≈ q. More formally, we seek a flow ψ : Rd → R
d such that if x0 ∼ p0, then

x1 = ψ(x0)∼ p1, and p1 is close to q in a statistical sense.

A natural measure of this closeness is the Kullback–Leibler (KL) divergence, defined as:

KL(q∥ p1) =
∫

q(x) log
q(x)

p1(x)
dx.

Minimizing this divergence encourages the generated density p1 to place high probability mass where

the true data distribution q does. However, since q is unknown, we cannot compute this integral

directly. Instead, we assume access to samples x ∼ q̃, where q̃ ≈ q is the empirical distribution

defined by our dataset.

From KL to Log-Likelihood

Observe that the KL divergence can be rewritten (up to an additive constant independent of p1) as:

KL(q∥ p1) =−Ex∼q [log p1(x)]+Ex∼q [logq(x)] .

The second term is constant with respect to p1, so minimizing KL is equivalent to maximizing:

Ex∼q̃ [log p1(x)] .

This is precisely the objective used in maximum likelihood estimation (MLE): we want to find

parameters of the transformation ψ such that the resulting distribution p1 assigns high likelihood

to the observed data samples x∼ q̃. The more likely the generated samples under p1, the closer p1

becomes to q in KL divergence.

How Does p1 Arise from a Flow?

Let ψt : Rd → R
d denote a time-indexed flow map that transports samples from a known base

distribution p0 to an intermediate distribution pt , such that xt = ψt(x0) for x0 ∼ p0. We assume

ψ0 = id and that each ψt is a diffeomorphism—that is, smooth and invertible with a smooth

inverse—for all t ∈ [0,1]. In particular, the terminal map ψ1 transports p0 to a model distribution p1,

with x1 = ψ1(x0)∼ p1.
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Figure 20.67: Training Generative Flows to Match Data Distributions. Generative flow models

define a transformation ψt that maps samples from a tractable base distribution p0 (e.g., standard

Gaussian) to a more complex target distribution p1, with x1 = ψ1(x0). The goal is to learn ψ1 such

that the model distribution p1 matches the data distribution q. During training, we observe data

samples x1 ∼ q(x), invert the flow to recover latent variables x0 = ψ−1
1 (x1), and evaluate likelihoods

using the change-of-variables formula. This general framework enables exact maximum likelihood

estimation for flows that are smooth, invertible, and volume-tracking. Later, we extend this idea by

modeling ψt as the solution to an ODE parameterized by a velocity field vt(x), leading to continuous

normalizing flows (CNFs) and flow matching. Adapted from [643].

To compute or maximize the exact log-likelihood log p1(x1), we must understand how the flow

reshapes probability mass over time. This relationship is governed by the change-of-variables

formula for differentiable bijections:

p1(x1) = p0(x0) ·
∣∣∣∣∣det

(
∂ψ−1

1

∂x1

)∣∣∣∣∣= p0(x0) ·
∣∣∣∣det

(
∂ψ1

∂x0

)∣∣∣∣
−1

,

where x1 = ψ1(x0) and
∂ψ1

∂x0
∈ R

d×d is the Jacobian matrix of ψ1. The absolute value ensures

volume is computed without assuming orientation. This formula follows from standard results in

multivariable calculus [536, Theorem 7.26]. In practice, models often optimize the log-density form:

log p1(x1) = log p0(x0)− log

∣∣∣∣det

(
∂ψ1

∂x0

)∣∣∣∣ .

To understand the derivation, consider a measurable region A⊂ R
d and its image B = ψ1(A). Since

ψ1 is invertible, the mass over A and B must match:

∫

A
p0(x0)dx0 =

∫

B
p1(x1)dx1.

Changing variables in the second integral yields:

∫

B
p1(x1)dx1 =

∫

A
p1(ψ1(x0)) ·

∣∣detJψ1
(x0)

∣∣ dx0,

where Jψ1
(x0) =

∂ψ1

∂x0
. Equating both sides and canceling the integral over A gives:

p0(x0) = p1(ψ1(x0)) ·
∣∣detJψ1

(x0)
∣∣ ,

and solving for p1 recovers the change-of-variables formula.
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Intuitively, this result tracks how a small volume element transforms under ψ1. The Jacobian

determinant quantifies how the flow locally scales volume: if it expands space near x0, the mass is

diluted and the density decreases at x1; if it contracts space, the density increases. In particular:

∣∣∣∣det

(
∂ψ1

∂x0

)∣∣∣∣> 1 ⇒ volume expansion, lower density,

∣∣∣∣det

(
∂ψ1

∂x0

)∣∣∣∣< 1 ⇒ volume compression, higher density.

Hence, evaluating p1(x1) requires tracing the pre-image x0 =ψ−1
1 (x1) and correcting the base density

p0(x0) by the inverse local volume scaling.

While exact, this method becomes computationally burdensome in high dimensions. Computing

or differentiating the Jacobian determinant of a general neural network transformation typically

incurs a cost of O(d3), where d is the ambient data dimension. Unless special network structures are

used—such as triangular Jacobians in RealNVP [128], invertible 1×1 convolutions in Glow [294],

or Hutchinson’s trace estimators in FFJORD [185]—these costs scale poorly and introduce numerical

instability during training.

To overcome this, modern approaches recast the transformation ψt as a solution to an ordinary

differential equation (ODE) governed by a velocity field vt(x). This continuous-time formulation

allows us to express the evolution of log pt(xt) in terms of divergence alone, via the probability flow

ODE [87, 185, 583]. We now explore this perspective, which avoids explicit Jacobian determinants

altogether.

The Role of the Continuity Equation

To avoid computing high-dimensional Jacobian determinants, continuous-time flow models adopt a

differential viewpoint. Instead of working directly with the global transformation ψ1, we define a

time-indexed velocity field vt(x) that infinitesimally moves samples along trajectories xt = ψt(x0),
starting from x0 ∼ p0. The evolving distribution pt induced by this flow changes continuously over

time, and its dynamics are governed by the continuity equation:

∂ pt(x)

∂ t
+∇ · (pt(x)vt(x)) = 0.

This equation formalizes the principle of local conservation of probability mass: the only way for

density at a point x to change is via inflow or outflow of mass from its surrounding neighborhood.

To understand this equation precisely, let us examine the structure and roles of each term. We begin

with the product pt(x) · vt(x), often referred to as the probability flux.

Flux: Constructing pt(x)vt(x)

• pt(x) : Rd → R is a scalar field: it represents the probability density at each spatial point x.

• vt(x) : Rd → R
d is a vector field: it assigns a velocity vector to each point in space and time.

The product pt(x)vt(x) ∈ R
d is a vector-valued function defined componentwise:

(ptvt)(x) =




pt(x)vt,1(x)
pt(x)vt,2(x)

...

pt(x)vt,d(x)


 .
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This object is called the probability flux vector field. It tells us, for each spatial coordinate direction

i = 1, . . . ,d, the rate at which probability mass is moving through space in that direction. If the

domain is Rd , the flux encodes how much mass is flowing through each coordinate axis — left/right,

up/down, in/out — at every location and moment in time.

Intuitively, you can picture pt(x) as the “density of fog” at point x, and vt(x) as the wind that moves

the fog. Their product, pt(x)vt(x), describes how strongly the fog is being pushed in each direction.

If the wind is fast but no fog is present, there’s no actual movement of mass. If fog is dense but wind

is still, the same holds. Only when both density and velocity are present do we get mass transport.

Divergence: Understanding ∇ · (ptvt)

Despite involving the symbol ∇, the divergence operator is not a gradient. It maps a vector field

F⃗ : Rd → R
d to a scalar field, and is defined as:

∇ · F⃗(x) =
d

∑
i=1

∂Fi(x)

∂xi

.

Applied to the flux vector pt(x)vt(x), we get:

∇ · (ptvt)(x) =
d

∑
i=1

∂

∂xi

[pt(x) · vt,i(x)] .

This scalar quantity captures the net rate of mass flow out of point x in all coordinate directions. For

each dimension i, it computes how much probability is flowing in or out through xi, and the sum

tells us whether more mass is entering or exiting the region overall.

In this sense, divergence functions as a "net-outflow meter":

• If ∇ · (ptvt)(x)> 0, more mass is exiting than entering — density decreases.

• If ∇ · (ptvt)(x)< 0, more mass is arriving than leaving — density increases.

• If ∇ · (ptvt)(x) = 0, inflow and outflow balance — density remains stable.

Unlike the gradient, which returns a vector pointing in the direction of steepest increase of a scalar

field, the divergence is a scalar, that tells us whether the region is acting like a source (positive

divergence) or a sink (negative divergence) of probability mass.

Putting the Continuity Equation in Plain English
∂ pt(x)

∂ t︸ ︷︷ ︸
temporal change at a fixed point

+ ∇ · (pt(x)vt(x))︸ ︷︷ ︸
net probability flowing out of x

= 0.

Think of pt(x) as the density of a colored fog, and vt(x) as a wind field that pushes the fog through

space.

• Local accumulation:
∂ pt(x)

∂ t
asks whether the fog at the fixed location x is getting thicker

(> 0) or thinner (< 0) as time progresses. This is a temporal derivative: x is held fixed and we

observe how the density changes with t.

• Net inflow or outflow: ∇ · (pt(x)vt(x)) measures the net rate at which probability mass exits

an infinitesimal volume surrounding x. Imagine placing a tiny box around x; this term tells you

how much mass escapes from the box minus how much enters it, per unit time.

The equation asserts that these two quantities exactly cancel:

rate of local buildup + rate of escape = 0.
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No probability mass is created or destroyed—only transported. This is a local conservation law, the

probabilistic analogue of classical principles like:

• conservation of mass in fluid dynamics,

• conservation of charge in electromagnetism.

For continuous-time generative models, the continuity equation provides a conceptual bridge between

the microscopic law—how individual particles move under the velocity field vt—and the macroscopic

law—how the overall distribution pt evolves over time.

Crucially, it allows us to reason about global changes in the distribution without explicitly computing

expensive Jacobian determinants: the continuity equation already captures the effect of the full flow

through a compact, pointwise identity.

Broader Implications for Continuous-Time Generative Models

The continuity equation

∂ pt(x)

∂ t
+∇ · (pt(x)vt(x)) = 0 (CE)

is the probabilistic analogue of mass conservation in fluid dynamics. Any continuous-time generative

model that defines trajectories via the ODE

d

dt
xt = vt(xt)

must respect this equation to ensure that probability mass is preserved under the flow. Notable

examples include Neural ODEs [87], FFJORD [185], and probability flow ODEs [583].

One of the most important consequences of this formulation is that it allows us to track the evolu-

tion of the log-density along a sample trajectory xt without computing high-dimensional Jacobian

determinants.

Step-by-step: How Log-Density Evolves Along the Flow

Let xt be the solution to the ODE ẋt = vt(xt). To understand how the density pt(xt) changes

along this trajectory, we apply the chain rule for total derivatives to the composition t 7→ log pt(xt):

d

dt
log pt(xt) =

∂

∂ t
log pt(x)

︸ ︷︷ ︸
explicit time dependence

+∇x log pt(x) ·
dxt

dt︸ ︷︷ ︸
motion along the path

∣∣∣∣
x=xt

.

The first term captures how the log-density at a fixed spatial location changes over time. The second

term accounts for how the log-density changes as the point xt moves through space.

We now turn to the continuity equation:

∂ pt(x)

∂ t
+∇ · (pt(x)vt(x)) = 0.

Assuming pt(x)> 0, we divide through by pt(x) to rewrite the equation in terms of log pt(x):

1

pt(x)

∂ pt(x)

∂ t
+

1

pt(x)
∇ · (pt(x)vt(x)) = 0.
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Using the identities:

∂

∂ t
log pt(x) =

1

pt(x)

∂ pt(x)

∂ t
, ∇ · (ptvt) = ∇pt · vt + pt∇ · vt ,

we substitute and rearrange:

∂

∂ t
log pt(x) =−∇ · vt(x)−∇x log pt(x) · vt(x).

Substituting this into the total derivative expression (and using ẋt = vt(xt)) gives:

d

dt
log pt(xt) = [−∇ · vt(x)−∇x log pt(x) · vt(x)]+∇x log pt(x) · vt(x)

∣∣∣∣
x=xt

.

The inner product terms cancel, leaving:

d

dt
log pt(xt) =−∇ · vt(xt).

This is the celebrated Liouville identity, which relates log-density dynamics to the divergence of the

velocity field:

d

dt
log pt(xt) =−∇ · vt(xt) (20.63)

Interpretation

This equation reveals that the rate of change of log-density along the path of a particle is governed

entirely by the local divergence of the velocity field at that point. If ∇ · vt > 0, the flow is expanding

locally: volumes grow, so density must decrease. If ∇ · vt < 0, the flow is compressing: volumes

shrink, so density increases. Hence, divergence acts as a local proxy for log-likelihood adjustment.

From here, we can integrate both sides over time to obtain an exact log-likelihood formula for a

sample transformed through the flow:

log p1(x1) = log p0(x0)−
∫ 1

0
∇ · vt(xt)dt, x1 = ψ1(x0).

This shows that to evaluate log p1(x1), we simply need to know the base log-density log p0(x0) and

integrate the divergence along the trajectory. No determinant or inverse map is needed.

This identity is the foundation of continuous normalizing flows (CNFs)—a class of generative models

that define invertible mappings by continuously transforming a base distribution p0 via a learned

differential equation d
dt

xt = vt(xt).
CNFs generalize discrete normalizing flows by replacing sequences of invertible layers with a

smooth velocity field, and they compute log-likelihoods exactly via the Liouville identity. This

makes maximum-likelihood training in continuous-time models theoretically elegant and tractable,

using numerical ODE solvers to trace sample trajectories and trace estimators (e.g., Hutchinson’s

method) to approximate divergence.
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Why Pure CNF–Likelihood Training Is Not Scalable?

The Liouville identity provides an exact formula for the model likelihood in continuous-time

generative models governed by an ODE ẋt = vt(xt):

log p1(x1) = log p0(x0)−
∫ 1

0
∇ · vt(xt)dt, x1 = ψ1(x0).

In theory, this makes continuous normalizing flows (CNFs) ideal candidates for maximum likelihood

estimation. For a dataset of samples {x(i)data}, one could train the model by maximizing this likelihood

with respect to the parameters of vt , using standard gradient-based optimization.

How training works in principle:

1. Reverse ODE step: For each data point x1 = x
(i)
data, solve the reverse-time ODE

d

dt
xt =−v1−t(xt)

backward from t = 1 to t = 0, yielding the latent code x0 = ψ−1
1 (x1).

2. Divergence accumulation: Along this trajectory, compute or estimate the integral

∫ 1

0
∇ · vt(xt)dt

using numerical quadrature.

3. Likelihood computation: Combine with the known base density p0(x0) to evaluate

log p1(x1) = log p0(x0)−
∫ 1

0
∇ · vt(xt)dt.

4. Optimization: Backpropagate through all of the above to update the parameters of vt to maximize

the total log-likelihood over the dataset.

While theoretically elegant, this “textbook” maximum likelihood strategy faces major barriers in

practice—especially when scaling to high-dimensional data such as natural images.

Where the computational cost comes from:

1. Trajectory integration. Every forward (or reverse) pass requires numerically solving the ODE ẋt =
vt(xt) over t ∈ [0,1]. Adaptive solvers like Runge–Kutta may need 30–200 function evaluations,

depending on the stiffness and complexity of vt .

2. Divergence computation. The divergence ∇ · vt(xt) is the trace of the Jacobian ∇xvt ∈ R
d×d .

Estimating this exactly costs O(d2), or up to O(d3) with autodiff. Hutchinson’s stochastic trace

estimator [185] reduces the cost to O(d) but introduces variance that must be averaged out over

multiple random vectors.

3. Backpropagation. Training requires gradients of the loss with respect to the parameters of vt ,

which depends on the full trajectory. This necessitates differentiating through the ODE solver.

Adjoint sensitivity methods [87] reduce memory use, but can be numerically unstable and roughly

double the runtime.
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4. Slow sampling. Unlike discrete normalizing flows, CNFs require solving the forward ODE

ẋt = vt(xt) even at inference time for each latent x0 ∼ p0. Sampling is thus orders of magnitude

slower than a feedforward network.

Additionally: score-based dependencies. Some continuous-time models incorporate score terms

∇x log pt(x), either to guide learning or to define velocity fields indirectly. These score functions are

difficult to estimate robustly in high dimensions and often lead to unstable gradients or high variance

during training.

Modern practice. Because of these practical limitations, state-of-the-art CNF-based models often

avoid direct maximum likelihood training altogether:

• FFJORD [185] uses Hutchinson’s trick to estimate the divergence efficiently, but is still limited

to low-resolution datasets like CIFAR-10 (32×32).

• Probability flow ODEs [583] sidestep likelihood computation during training by learning the

score function ∇x log pt(x) using denoising score-matching losses. The ODE is only used at test

time for generation.

• Hybrid methods perform training with diffusion-style objectives and sample deterministically

with few ODE steps (as in DDIM or ODE-based sampling), achieving good sample quality at

lower cost.

Flow Matching: A New Approach

While the Liouville identity enables exact likelihood estimation in continuous normalizing flows

(CNFs), its practical use is limited by the computational cost of integrating trajectories, estimating

divergence, and backpropagating through ODE solvers—especially in high-dimensional settings like

natural images.

This leads to a natural question:

Can we avoid computing densities or their derivatives—and directly learn how to transport mass

from p0 to p1?

Flow Matching [364] answers this affirmatively. It reframes generative modeling as supervised

learning over velocity fields—sidestepping the need for log-densities, Jacobians, or variational

objectives.

Given pairs x0 ∼ p0 and x1 ∼ p1, a target velocity field vt(x) is computed analytically based on a

known interpolation path. A neural network is then trained to match this field by pointwise regression.

The key advantages:

• No divergence or Jacobian evaluation is needed.

• No density estimation or score functions are involved.

• No integration of log-likelihoods or backward ODEs is required.

By directly learning how probability flows, Flow Matching enforces the continuity equation in a

weak, sample-based sense—yielding a scalable alternative to CNFs for modern generative tasks.
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Enrichment 20.10.2: Development of the Flow Matching Objective

From Density Path to Vector Field

The Flow Matching objective is rooted in the relationship between a time-evolving probability

distribution {pt(x)}t∈[0,1] and the velocity field ut(x) that transports mass along this path. This

relationship is formalized by the continuity equation:

∂ pt(x)

∂ t
+∇ · (pt(x)ut(x)) = 0.

This PDE expresses local conservation of probability mass: the change in density at a point is exactly

offset by the net flow of mass in or out.

Crucially, this equation not only constrains ut when pt and ut are given jointly—it can also be used

in reverse: if we specify a smooth and differentiable path of densities pt(x), then there exists a

corresponding velocity field ut(x) that satisfies this equation. In fact, ut(x) is uniquely determined

(up to divergence-free components) by solving the inverse problem:

∇ · (pt(x)ut(x)) =−
∂ pt(x)

∂ t
.

Under appropriate regularity conditions, this equation has a constructive solution. In particular, one

can use it to show that the velocity field ut(x) can be expressed as:

ut(x) =−∇ log pt(x)+
∇pt(x)

pt(x)
− ∂t pt(x)

pt(x)
·∇−1,

where ∇−1 denotes the formal inverse divergence operator (e.g., via solving a Poisson equation).

While this expression may not always be tractable to compute directly, it conceptually shows that ut

is entirely determined by pt and its derivatives.

This insight is the foundation of Flow Matching: if the path pt is known or constructed, the generating

vector field ut is fixed by the continuity equation. Thus, in principle, one can train a neural network

vθ (t,x) to match this true transport field using supervised learning.

The Naive Flow Matching Objective

This motivates the general Flow Matching training loss:

LFM(θ) = Et∼U [0,1],x∼pt

[
∥vθ (t,x)−ut(x)∥2

]
, (FM-naive)

where:

• vθ (t,x) is a learnable velocity field (e.g., a neural network with parameters θ ),

• ut(x) is the ground-truth velocity field that satisfies the continuity equation for the path {pt},
• x∼ pt denotes that samples are drawn from the intermediate distribution at time t,

• t ∼U [0,1] is sampled uniformly across time.

Intuitively, this objective trains the CNF vector field vθ to reproduce the flow that transports the mass

of p0 to p1 via the path {pt}. If the regression error reaches zero, then integrating vθ over time from

t = 0 to t = 1 recovers the exact map ψt that generates the full path, including the final distribution

p1(x)≈ q(x).
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Why the Naive Objective Is Intractable

While the Flow Matching loss provides a clean supervised objective, applying it naively in practice

proves infeasible. The loss

LFM(θ) = Et∼U [0,1],x∼pt

[
∥vθ (t,x)−ut(x)∥2

]

assumes access to both the intermediate density pt and the corresponding vector field ut at every

point in space and time. But in real-world generative modeling settings, neither of these quantities is

known in closed form.

First, the interpolation path {pt} is fundamentally underdetermined: there are infinitely many ways

to transition from p0 to p1, each leading to a different transport behavior. Whether we interpolate

linearly in sample space, follow heat diffusion, or traverse a Wasserstein geodesic, each path implies

a different evolution of probability mass—and a different target field ut .

Even if we fix a reasonable interpolation scheme, we still face two practical barriers:

• We typically cannot sample from pt(x) at arbitrary times.

• We cannot compute ut(x), since it involves inverting the continuity equation—a PDE that

depends on time derivatives and spatial gradients of pt .

In short, the general form of the FM loss assumes a full global picture of how mass moves from p0

to p1—but in practice, we only have endpoint samples: x0 ∼ p0 (a known prior) and x1 ∼ p1 ≈ q(x)
(empirical data). We know nothing about the intermediate distributions pt , nor their generating

vector fields.

A Local Solution via Conditional Paths

To sidestep the intractability of directly modeling a global interpolation path {pt(x)} and its cor-

responding velocity field ut(x), Flow Matching proposes a local, sample-driven construction. The

core idea is to replace the global perspective with conditional trajectories: we define a family of

conditional probability paths pt(x | x1), each anchored at a target point x1 ∼ p1 ≈ q(x). These

conditional paths describe how probability mass should evolve from a shared base distribution p0

toward individual endpoints x1, using analytically tractable trajectories.

How are these conditional paths designed? Each path pt(x | x1) is constructed to satisfy the

continuity equation with an explicit, closed-form velocity field ut(x | x1). Importantly, the family is

required to obey two boundary conditions:

p0(x | x1) = p0(x), p1(x | x1)≈ δ (x− x1).

The first condition ensures that all paths begin from the same tractable prior p0, independent of x1.

The second condition encodes that each conditional flow must concentrate around its destination. In

practice, since the Dirac delta δ (x− x1) is not a true probability density, we approximate it using a

sharply peaked Gaussian:

p1(x | x1) = N (x | x1,σ
2I), for small σ > 0.

This reflects the intuition that the flow transitions from initial noise to a highly concentrated distribu-

tion centered at x1 as t→ 1. All mass should converge to x1, with negligible uncertainty.
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From Conditional Paths to a Marginal Distribution. To construct a global flow from sample-wise

supervision, Flow Matching defines a marginal density path pt(x) as a mixture of conditional flows:

pt(x) =
∫

pt(x | x1)q(x1)dx1.

This corresponds to Equation (6) in the original Flow Matching paper.

This integral represents the total probability mass at point x and time t, as aggregated over all

conditional trajectories, each targeting a different data point x1 ∼ q. At the final time step t = 1, this

becomes:

p1(x) =
∫

p1(x | x1)q(x1)dx1,

which can be made arbitrarily close to the true data distribution q(x) by choosing each terminal

conditional p1(x | x1) to concentrate sharply around x1, e.g., using a small-variance Gaussian. This

mixture construction enables a natural approximation of the data distribution through analytically

controlled flows.

Recovering the Marginal Vector Field

Having defined the marginal path pt(x) as a mixture of conditional densities:

pt(x) =
∫

pt(x | x1)q(x1)dx1,

it is natural to ask: can we recover the corresponding marginal velocity field ut(x) from the family of

conditional vector fields ut(x | x1) that generate each conditional path?

The answer is yes. A key result from the Flow Matching paper shows that we can construct the

marginal velocity field as:

ut(x) =
1

pt(x)

∫
ut(x | x1) pt(x | x1)q(x1)dx1.

This is Equation (8) in the Flow Matching paper.

Intuitively, this tells us that the velocity at point x is the average of all conditional vector fields

evaluated at x, weighted by how much probability mass each conditional contributes there. In

probabilistic terms, this expression can be rewritten as:

ut(x) = E[ut(Xt | X1) | Xt = x ],

where (Xt ,X1)∼ pt(x | x1)q(x1). That is, ut(x) represents the expected direction of flow at location

x, aggregated across all conditionals that pass through x at time t.

Why This Identity Is Valid

The expression

ut(x) =
1

pt(x)

∫
ut(x | x1) pt(x | x1)q(x1)dx1

is not just a useful identity—it is mathematically necessary if we want the marginal path pt(x)
to satisfy the continuity equation with respect to a single global vector field ut(x). This result is

formalized as Theorem 1 in the Flow Matching paper [364], which states:
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If each conditional pair (pt(x | x1),ut(x | x1)) satisfies the continuity equation, then the

marginal pair defined by

pt(x) =
∫

pt(x | x1)q(x1)dx1, ut(x) =
1

pt(x)

∫
ut(x | x1) pt(x | x1)q(x1)dx1

also satisfies the continuity equation:

∂ pt(x)

∂ t
+∇ · (pt(x)ut(x)) = 0.

We now sketch the intuition behind this result. Starting from the conditional continuity equation:

∂ pt(x | x1)

∂ t
+∇ · (pt(x | x1)ut(x | x1)) = 0,

we multiply both sides by q(x1) and integrate over x1:

∫
∂ pt(x | x1)

∂ t
q(x1)dx1 +

∫
∇ · (pt(x | x1)ut(x | x1))q(x1)dx1 = 0.

Assuming regularity (so that we can exchange integration and differentiation), this gives:

∂

∂ t

(∫
pt(x | x1)q(x1)dx1

)
+∇ ·

(∫
pt(x | x1)ut(x | x1)q(x1)dx1

)
= 0.

Now we invoke the definition of the marginal density:

pt(x) :=
∫

pt(x | x1)q(x1)dx1.

This tells us that the first term becomes ∂t pt(x). However, the second term is not yet in the standard

continuity form ∇ · (pt(x)ut(x)). To get there, we introduce a definition for the marginal velocity

field:

pt(x)ut(x) :=
∫

pt(x | x1)ut(x | x1)q(x1)dx1.

This is a definition, not a derived fact. It says: let ut(x) be the vector such that when multiplied by

pt(x), it reproduces the total flux across all conditionals.

Substituting this into the continuity equation yields:

∂ pt(x)

∂ t
+∇ · (pt(x)ut(x)) = 0,

which is exactly the continuity equation for the marginal trajectory.

In short: given conditional flows ut(x | x1) that preserve mass individually, the only way to define a

global velocity field ut(x) that preserves mass along the marginal trajectory is to aggregate the flux

contributions and normalize by pt(x). For the full formal proof, see Appendix A of [364].
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From Validity to Practicality: The Need for a Tractable Objective

While the marginalization identity is theoretically elegant—it expresses ut(x) as a weighted average

over analytically defined conditional fields—it remains fundamentally impractical for training. The

core issue lies in its reliance on the marginal density pt(x), which is defined by:

pt(x) =
∫

pt(x | x1)q(x1)dx1.

This expression depends on the true data distribution q(x1), which we only observe through samples,

and involves high-dimensional integration over all conditional paths. As a result, both evaluating

ut(x) and sampling from pt(x) are intractable in practice.

Hence, the original Flow Matching loss,

LFM = Et,x∼pt

[
∥vθ (t,x)−ut(x)∥2

]
,

is still inaccessible for direct optimization. Even though each conditional pair (pt(x | x1),ut(x | x1))
can be formed analytically tractable and mass-preserving, their integration into the marginal field

ut(x) requires quantities we cannot reliably compute.

Conditional Flow Matching (CFM): A Sample-Based Reformulation

The intractability of evaluating the marginal field ut(x) in the original Flow Matching loss motivates

a powerful reformulation: rather than matching the marginal flow ut(x), can we train a model to

match the conditional vector fields ut(x | x1), which are analytically known?

This is the central idea behind Conditional Flow Matching (CFM). Instead of supervising the

model using the marginal loss:

LFM = Et,x∼pt(x)

[
∥vθ (t,x)−ut(x)∥2

]
,

which depends on the inaccessible ut(x), we define a new, tractable conditional loss:

LCFM = Et∼U [0,1],x1∼q,x∼pt(x|x1)

[
∥vθ (t,x,x1)−ut(x | x1)∥2

]

Every term in this expression is fully accessible:

• x1 ∼ q: empirical samples from the data distribution.

• pt(x | x1): an analytically chosen, time-dependent conditional path (to be introduced next).

• ut(x | x1): the closed-form velocity field derived from that conditional path.

In this section we do not yet commit to a specific form of pt(x | x1), but crucially, the framework

allows any analytic choice—so long as it satisfies appropriate boundary conditions and yields a

velocity field computable in closed form. In the next section, we explore such constructions explicitly.

Why is this valid? The equivalence between CFM and the original FM objective is formalized in

Theorem 2 of the Flow Matching paper [364], which states:

Assuming pt(x)> 0 for all x ∈ R
d and t ∈ [0,1], and under mild regularity assumptions,

the conditional loss LCFM and the marginal loss LFM have identical gradients with

respect to θ :

∇θ LCFM = ∇θ LFM.
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The proof relies on rewriting both losses using bilinearity of the squared norm, and applying Fubini’s

Theorem to swap the order of integration over x and x1. The core insight is that the marginal field

ut(x) is itself an average over the conditional fields ut(x | x1), making CFM an unbiased surrogate

for the original objective. For a detailed derivation, see Appendix A of [364].

Why This Is Powerful

The Conditional Flow Matching objective unlocks a practical and scalable method for training

continuous-time generative models. It removes the need to estimate intermediate marginals or evalu-

ate global velocity fields—obstacles that make the original FM loss intractable in high dimensions.

Moreover, this framework is highly flexible: so long as we define a valid conditional path pt(x | x1)
with known boundary conditions and an analytic velocity field ut(x | x1), we can train a model using

only endpoint samples (x0,x1)∼ p0×q. This enables a wide variety of conditional designs, each

inducing distinct training behavior and inductive biases.

In the next part, we introduce several tractable and theoretically grounded choices for the conditional

trajectory pt(x | x1) and its corresponding vector field ut(x | x1), including Gaussian interpolants and

optimal transport-inspired paths.

Enrichment 20.10.3: Conditional Probability Paths and Vector Fields

Motivation

The core idea of Flow Matching is to train a learnable velocity field vθ (t,x) by supervising it with

analytically defined transport dynamics. Instead of attempting to construct a global flow that maps an

entire distribution p0 into p1, we take a more tractable approach: we define conditional flows from

the base distribution p0 to individual target points x1 ∼ q. This formulation enables both analytic

expressions for the evolving conditional densities pt(x | x1) and closed-form velocity fields ut(x | x1),
making the learning objective fully traceable.

In principle, many choices of conditional probability paths are valid—ranging from Gaussian

bridges to more complex nonlinear interpolants—so long as they satisfy the required boundary

conditions and preserve mass via the continuity equation. In what follows, we focus on one

particularly convenient and expressive family: Gaussian conditional paths. These offer a balance of

mathematical simplicity, closed-form expressions, and intuitive behavior, making them a canonical

starting point for Conditional Flow Matching.

Canonical Gaussian Conditional Paths

We begin with a simple yet expressive family of conditional probability paths:

pt(x | x1) = N (x | µt(x1),σ
2
t I), µt(x1) = tx1, σ2

t = (1− t)2.

This path evolves from the standard Gaussian base p0(x) = N (0, I) to the terminal distribution

p1(x | x1) = δ (x− x1), satisfying the boundary conditions:

p0(x | x1) = p0(x), p1(x | x1) = δ (x− x1).

The design is intuitive:

• The mean µt(x1) = tx1 moves linearly from the origin to the target x1.

• The variance σ2
t = (1− t)2 shrinks quadratically to zero, causing the distribution to contract

into a point mass at x1 as t→ 1.

This makes it an ideal conditional flow for modeling reverse diffusion processes.
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Deriving the Velocity Field from the Continuity Equation

Using the continuity equation,

∂

∂ t
pt(x | x1)+∇ · (pt(x | x1) ·ut(x | x1)) = 0,

we can solve for the velocity field that generates this flow. Since both the time derivative and spatial

divergence of a Gaussian are available in closed form, the solution is:

ut(x | x1) =
x1− x

1− t
.

This velocity points linearly from the current location x to the target x1, with increasing strength

as time progresses. As t → 1, the velocity diverges—ensuring all mass arrives precisely at x1, in

accordance with the boundary condition p1(x | x1) = δ (x− x1).

This canonical path illustrates the simplest form of analytically traceable conditional flow—where

both the density and velocity field are closed-form, and probability mass moves deterministically

from noise to data.

General Gaussian Conditional Paths and Affine Flow Maps

The linear trajectory described above is a special case of a broader class of flows. Conditional Flow

Matching accommodates any family of Gaussian conditionals:

pt(x | x1) = N (x | µt(x1),σ
2
t (x1)I),

where:

• µt(x1) : [0,1]×R
d → R

d is a time-dependent mean schedule,

• σt(x1)> 0 is a smooth variance schedule.

We require the boundary conditions:

µ0(x1) = 0, σ0(x1) = 1, µ1(x1) = x1, σ1(x1)→ 0,

so that the paths begin at standard Gaussian noise and converge toward the target x1. The canonical

example from above corresponds to the specific case:

µt(x1) = tx1, σt(x1) = 1− t.

The Canonical Affine Flow and Induced Velocity Field

To describe how conditional samples evolve over time, we define an explicit transport map that

pushes noise to data. This map is affine in form:

ψt(x0) = σt(x1)x0 +µt(x1),

where x0 ∼N (0, I) is a standard Gaussian sample. The function ψt deterministically transports

x0 to x ∼ pt(x | x1), and is invertible for all t ∈ [0,1) as long as σt(x1) > 0. Under this map, the

pushforward satisfies:

[ψt ]∗(N (0, I)) = N (x | µt(x1),σ
2
t (x1)I) = pt(x | x1),

which ensures that the conditional path pt(x | x1) evolves according to a known distribution family.
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To derive the velocity field that generates this flow, we differentiate ψt(x0) with respect to time:

d

dt
ψt(x0) = σ ′t (x1)x0 +µ ′t (x1),

which describes how points in latent (noise) space evolve over time. However, to express the velocity

field ut(x | x1) in data space, we must write this in terms of x = ψt(x0), not x0. Since the map is

invertible, we isolate the preimage:

x0 =
x−µt(x1)

σt(x1)
,

and substitute back to obtain:

ut(x | x1) =
d

dt
ψt(x0) = σ ′t (x1) ·

x−µt(x1)

σt(x1)
+µ ′t (x1),

which simplifies to:

ut(x | x1) =
σ ′t (x1)

σt(x1)
(x−µt(x1))+µ ′t (x1). (CFM-velocity)

Interpretation. This expression reveals two complementary effects:

• The term (x−µt(x1)) · σ ′t
σt

describes how samples are pulled toward the evolving mean as the

variance decays—capturing contraction of the distribution.

• The term µ ′t (x1) captures the drift of the mean itself, i.e., how the center of the distribution

moves over time.

Together, these components define the precise trajectory of mass under the affine Gaussian flow: a

contraction toward the target x1 combined with translation along a smooth path. The result guarantees

mass conservation and adherence to the conditional boundary conditions p0(x | x1) = p0(x) and

p1(x | x1)→ δ (x− x1) as σ1→ 0.

This derivation is formalized in Theorem 3 of the Flow Matching Guide, with a full proof provided

in Appendix A.

The Conditional Flow Matching Loss

Once we define the affine flow map ψt(x0) = σt(x1)x0 + µt(x1), and obtain its time derivative
d
dt

ψt(x0) = σ ′t (x1)x0+µ ′t (x1), we can directly supervise the learnable velocity field vθ by comparing

it to the known transport dynamics.

This gives rise to the Conditional Flow Matching (CFM) objective:

LCFM(θ) = Ex1∼q,x0∼N (0,I), t∼U [0,1]

∥∥∥∥vθ (t,ψt(x0))−
d

dt
ψt(x0)

∥∥∥∥
2

, (CFM-loss)

which corresponds to Equation (13) in the original Flow Matching paper [364].

Why this works: The key idea is to reparameterize the regression problem from data space into

latent (noise) space, where samples x∼ pt(x | x1) are expressed as x = ψt(x0). Since x0 ∼N (0, I)
and x1 ∼ q are both directly sampleable, this makes the objective entirely traceable. The CFM

loss thus replaces intractable expectations over marginal densities (as in the original FM loss) with

analytic supervision along known deterministic trajectories.
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From Theory to Practice: Training with Conditional Flow Matching

We now summarize how the Conditional Flow Matching (CFM) framework translates into an efficient,

fully traceable training algorithm. Recall that our supervised objective is:

LCFM(θ) = Et∼U [0,1],x1∼q,x0∼N (0,I)

∥∥∥∥vθ (t,ψt(x0))−
d

dt
ψt(x0)

∥∥∥∥
2

. (CFM-loss)

This formulation enables gradient-based optimization using only sample pairs from q and p0 =
N (0, I), along with the known closed-form target velocity field. We now describe the training loop

explicitly.

Conditional Flow Matching Training Loop

• Sample minibatch of data: {x(i)1 }B
i=1 ∼ q

• For each sample:

– Sample time t ∼U ([0,1])

– Sample noise vector x
(i)
0 ∼N (0, I)

– Compute interpolated point:

x
(i)
t = ψt(x

(i)
0 | x

(i)
1 ) = σt(x

(i)
1 )x

(i)
0 +µt(x

(i)
1 )

– Compute target velocity:

ẋ(i) =
d

dt
ψt(x

(i)
0 ) = σ ′t (x

(i)
1 )x

(i)
0 +µ ′t (x

(i)
1 )

• Compute batch loss:

LCFM(θ) =
1

B

B

∑
i=1

∥∥∥vθ (t,x
(i)
t ,x

(i)
1 )− ẋ(i)

∥∥∥
2

• Update model parameters θ via gradient descent.

Implementation Notes

• Natural Extension to Images: Conditional Flow Matching is particularly well-suited to

image generation. In this setting, both noise samples x0 and target data x1 are tensors of

shape R
C×H×W (e.g., 3×64×64). The learned velocity field vθ (t,x,x1) is implemented as

a time-conditioned convolutional neural network that predicts a velocity tensor of the same

shape. During training, the model learns how to morph isotropic Gaussian noise into sharp,

structured images.

• Sample-Based Supervision: Training involves sampling a triplet (x0,x1, t), computing x =
ψt(x0 | x1), and supervising vθ to match the analytic flow velocity d

dt
ψt(x0). For instance, with

the canonical Gaussian path, the model learns to push blurry noise blobs into semantically

coherent images over time.

• Efficient Data Pipeline: There is no need to evaluate densities or simulate stochastic trajec-

tories. Each sample is generated in a single forward pass using the affine flow map ψt . This

allows for efficient minibatch training using standard image augmentation pipelines.
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• Avoiding Score Estimation: Unlike diffusion models that require regressing to noisy gradients

∇x log pt(x), CFM provides an explicit, closed-form supervision target. This sidesteps the

need for score networks or denoising-based estimators, which are often difficult to tune and

computationally expensive.

• No Marginal Modeling Required: Importantly, the global marginal distribution pt(x) is

never required—neither for sampling nor for loss evaluation. This makes CFM far easier to

scale to high-dimensional outputs like images, where intermediate marginals are intractable to

estimate or store.

• Flexible Trajectories: The affine flow map ψt(x0) = σt(x1)x0 +µt(x1) allows for expressive

and interpretable design of the probability paths. For instance, one can interpolate linearly

toward the data, or follow an optimal transport displacement. These different trajectories

influence not only the flow geometry, but also how sharp or smooth the intermediate samples

appear during training.

This sample-driven, closed-form supervision strategy makes Conditional Flow Matching highly

effective for learning smooth transitions from noise to data—particularly in structured domains like

image synthesis. In the next section, we explore concrete flow designs using schedules µt(x1) and

σt(x1) that recover known diffusion processes and optimal transport flows as special cases.

Summary

Conditional Flow Matching offers a rare combination of theoretical rigor and computational sim-

plicity. The model learns directly from known flows between isotropic noise and real data, avoiding

any need for adversarial training, log-likelihood computation, or stochastic integration. This sample-

driven design makes CFM an attractive alternative to diffusion and score-based methods—one that

scales naturally to images, supports efficient training, and offers fine control over the geometry of

the learned generative process.

In the following, we explore concrete and historically motivated choices for the mean µt(x1) and

standard deviation σt(x1). These special cases demonstrate how our general CFM framework can

replicate or extend existing methods in generative modeling.

• Diffusion Conditional Vector Fields: By choosing µt(x1) and σt(x1) to match the forward

processes of classic diffusion models, we recover the conditional probability paths underly-

ing popular score-based generative models. The resulting velocity fields coincide with the

deterministic flows studied in probability flow ODEs, but are here derived directly from the

conditional Gaussian interpolation perspective.

• Optimal Transport Conditional Vector Fields: We also consider choices where the condi-

tional flow ψt(x0) matches the displacement interpolant from Optimal Transport theory. These

yield paths where particles move in straight lines with constant speed, offering simple, linear

dynamics that contrast with the curvature seen in diffusion flows.

These examples not only highlight the flexibility of the CFM framework, but also demonstrate

that by directly designing the conditional path pt(x | x1), we gain control over the structure and

complexity of the regression task faced by the model. This perspective frees us from relying on

SDEs or score-matching formulations, and instead empowers us to specify the flow behavior through

deterministic, analytically-defined ingredients.

Let us now examine these special cases in detail.
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Enrichment 20.10.4: Choosing Conditional Paths - Diffusion vs OT

Choosing Conditional Paths – Diffusion vs OT

A central design choice in Conditional Flow Matching (CFM) is the specification of the conditional

probability path pt(x | x1) and its associated velocity field ut(x | x1). Since the framework imposes

only minimal constraints—boundary conditions and mass conservation—we are free to define any

smooth, valid interpolation from noise to data. Two prominent families of conditional flows have

emerged:

• Diffusion-inspired paths, derived from time-reversed stochastic processes, follow curvature-

inducing velocity fields and have been widely used in score-based generative models.

• Optimal Transport (OT) paths, defined via displacement interpolation between Gaussians,

yield straight-line trajectories with constant-direction vector fields.

In what follows, we compare these constructions side by side, analyzing their flow geometry,

computational implications, and suitability for CFM training. While diffusion paths align with

existing literature and offer closed-form expressions under strong assumptions, we ultimately adopt

the OT-based path due to its simplicity, numerical stability, and intuitive alignment with direct mass

transport.

Variance Exploding (VE) Conditional Paths

In the VE family of score-based models, the forward diffusion process begins at a data sample x1

and progressively adds Gaussian noise until the distribution becomes nearly isotropic. Inverting this

process defines a conditional flow that transforms noise into data.

For Flow Matching, the reversed VE schedule defines:

µt(x1) = x1, σt(x1) = σ1−t ,

where σt is an increasing scalar function with σ0 = 0 and σ1 ≫ 1. This yields the conditional

Gaussian:

pt(x | x1) = N (x | x1,σ
2
1−tI).

Applying Theorem 3 to this path, we obtain the conditional velocity field:

ut(x | x1) =−
σ ′1−t

σ1−t

(x− x1).

This field points toward the target x1, accelerating as t→ 1.

Variance Preserving (VP) Conditional Paths

In the VP family, the diffusion process is defined to preserve total variance while gradually corrupting

signal with noise. In reverse, this defines a tractable flow that interpolates toward data at a controlled

rate.

Let:

αt = exp

(
−1

2

∫ t

0
β (s)ds

)
, T (t) =

∫ t

0
β (s)ds,

where β (t)≥ 0 is a noise schedule. Then define:

µt(x1) = α1−tx1, σt(x1) =
√

1−α2
1−t .
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This produces the conditional path:

pt(x | x1) = N (x | α1−tx1,(1−α2
1−t)I).

From Theorem 3, the corresponding vector field is:

ut(x | x1) =
α ′1−t

1−α2
1−t

(α1−tx1− x) .

This field decays more gradually than VE, producing smoother trajectories that reduce the risk of

numerical instability near t = 1.

Limitations of Diffusion-Based Conditional Paths

Despite being valid under Flow Matching, diffusion-based paths have several drawbacks:

• Non-convergent endpoints: Since σt → 0 or σt → ∞ only asymptotically, the true boundary

distribution p0(x) = N (0, I) is not reached in finite time.

• Nonlinear trajectories: The vector fields ut(x | x1) vary in both magnitude and direction over

time, producing curved trajectories that are harder to approximate with a neural predictor.

• Overshooting and backtracking: Empirically, diffusion paths can overshoot the target before

reversing course, wasting computation and requiring complex scheduling to stabilize.

These limitations motivate alternative constructions, such as the Optimal Transport conditional

paths, which we explore next.

Optimal Transport Conditional Probability Paths

Flow Matching not only allows flexibility in choosing conditional paths—it also opens the door

to highly principled constructions grounded in optimal transport (OT) theory. In this enrichment,

we describe how the OT interpolation between Gaussians leads to an analytically simple and

computationally superior conditional flow.

What Is Optimal Transport?

Given two probability distributions p0 and p1, the Optimal Transport (OT) problem seeks the most

efficient way to move mass from p0 to p1, minimizing a transportation cost. For quadratic cost, this

defines the Wasserstein-2 distance:

W 2
2 (p0, p1) = inf

γ∈Γ(p0,p1)

∫
∥x− y∥2 dγ(x,y),

where Γ(p0, p1) is the set of couplings with marginals p0 and p1.

McCann’s Theorem [419] shows that the displacement interpolation

ψt(x) = (1− t) · x+ t ·ψ(x),

with ψ the optimal transport map, defines a geodesic pt = [ψt ]# p0 in Wasserstein space. That is, OT

interpolates between p0 and p1 using straight-line trajectories in distribution space.
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Affine OT Flow Between Gaussians

In the CFM setting, we define each conditional path pt(x | x1) as a Gaussian:

pt(x | x1) = N (x | µt(x1),σ
2
t I),

with linearly evolving parameters:

µt(x1) = tx1, σt = 1− (1−σmin)t.

These satisfy the required boundary conditions:

p0(x | x1) = N (x | 0, I), p1(x | x1) = N (x | x1,σ
2
minI).

The OT Vector Field

Applying Theorem 3 to this linear Gaussian path yields the closed-form conditional velocity field:

ut(x | x1) =
x1− (1−σmin)x

1− (1−σmin)t
.

This field points directly from the current sample x to the target x1, scaled by a time-dependent factor.

Crucially:

• Its direction remains constant throughout time.

• Only the magnitude changes, increasing as t→ 1.

• The flow is affine and invertible.

The Corresponding Flow Map and CFM Loss

The conditional flow map is:

ψt(x0) = σtx0 +µt(x1) = (1− (1−σmin)t)x0 + tx1.

Differentiating with respect to time:

d

dt
ψt(x0) = (1−σmin)(x1− x0).

Plugging this into the CFM loss gives:

LCFM(θ) = Ex1∼q,x0∼p ∥vθ (t,ψt(x0))− (1−σmin)(x1− x0)∥2 .

This is a time-independent regression target with linearly interpolated samples and a constant vector

direction per sample pair (x0,x1).

Vector Field Geometry: Diffusion vs. Optimal Transport

We now compare the structure of two commonly used conditional velocity fields in Flow Matching:

• Diffusion-based:

udiff
t (x | x1) =

1

1− t
(x1− x)

is state and time dependent. As x moves along the trajectory, the direction of x1−x changes dy-

namically, producing curved paths. Moreover, the vector norm explodes as t→ 1, introducing

numerical stiffness and instability.
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• Optimal Transport (OT)-based:

uOT
t (x | x1) =

x1− (1−σmin)x

1− (1−σmin)t

is an affine vector field in x. The associated flow map solves the ODE:

d

dt
xt = uOT

t (xt | x1).

It is easy to verify that the solution has the form:

xt = (1− (1−σmin)t)x0 + t x1,

which is a convex combination of x0 and x1, perturbed slightly by σmin.

Why is this a straight line? Because:

– The path xt is a weighted average of two fixed endpoints x0 and x1.

– The coefficients are smooth functions of t.

– The velocity field ut(x | x1) always points in the same direction — from the current

position xt toward a fixed linear target.

The derivative d
dt

xt remains colinear with x1− x0 at every point in time. Therefore, xt traces

a line segment — a curve whose tangent vector has constant direction (though varying

magnitude). If σmin = 0, the path reduces to:

xt = (1− t)x0 + t x1,

which is exactly a straight-line interpolation with constant speed.

Thus, OT-based vector fields induce linear transport flows in space — each particle follows a

straight ray from x0 to x1 at time-varying speed.

Figure 20.68: Local vector fields for diffusion (left) and OT (right) conditional paths. Each plot

visualizes how the conditional velocity field ut(x | x1) evolves over time and space. In diffusion-

based flows (left), the velocity direction is state-dependent and becomes increasingly steep as t→ 1,

leading to curved sample trajectories and large vector magnitudes near the end. This causes the norm

∥ut(x)∥2 to spike, resulting in high-magnitude regions shown in blue near the target. In contrast,

OT-based flows (right) define a fixed affine direction from noise to data, inducing straight-line

trajectories with time-constant acceleration. Here, the velocity norm is uniform or gently varying,

yielding mostly red or yellow shades across the field. Color denotes velocity magnitude: blue = high,

red = low. Adapted from Figure 2 in [364].
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Why Optimal Transport Defines a Superior Learning Signal

1. Straight-line trajectories. Solving the ODE

d

dt
xt = uOT

t (xt | x1)

yields a linear path:

xt = (1− (1−σmin)t)x0 + tx1.

This is a straight-line trajectory between source and target. In contrast, diffusion-based paths

accelerate nonlinearly, especially near t = 1, due to the divergence of the vector field.

2. Consistent direction. The OT velocity field maintains a constant direction for each sample

pair (x0,x1), regardless of time. This means the neural network only needs to regress a fixed

direction vector rather than learn a time-varying field, making the training signal simpler and

more sample-efficient.

3. Zero divergence. Since uOT
t is affine in x, its divergence ∇ · ut is constant. This greatly

simplifies the log-likelihood computation via the Liouville identity:

d

dt
log pt(xt) =−∇ ·ut(xt).

4. Efficient ODE integration. The Lipschitz constant of uOT
t is small and independent of t,

while the diffusion vector field udiff
t behaves like ∝ 1

1−t
. As a result, OT flows require fewer

solver steps, lower memory, and yield more stable gradients.

Figure 20.69: Macroscopic sampling trajectories under diffusion and OT vector fields. Left:

Diffusion-based paths tend to overshoot and curve as they approach the target x1, requiring corrective

backtracking and tighter numerical integration tolerances. These nonlinear trajectories are induced by

state- and time-dependent velocity fields. Right: Optimal Transport trajectories follow straight-line

segments from x0 to x1 with constant direction and time-scaled speed. This linearity enables efficient

sampling using only ∼10−30 integration steps. Adapted from Figure 3 in [364].
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OT-based Conditional Flow Matching Inference

Once training has converged, the learned neural velocity field vθ (t,x) defines a time-dependent

transport field capable of moving samples from the base distribution p0 (typically N (0, I)) to the

learned model distribution p1. At inference time, this field is treated as the right-hand side of an

ODE, and sample generation reduces to solving the initial value problem from a random noise

sample.

OT-based Conditional Flow Matching Inference

• Sample initial noise x0 ∼N (0, I)
• Solve the ODE:

d

dt
xt = vθ (t,xt), x0 = xt=0

• Integrate from t = 0 to t = 1 using an ODE solver (e.g., midpoint

or Runge–Kutta)

• Return final sample x1 = xt=1 ∼ p1

In the OT setting, the ground-truth velocity field has an affine structure:

uOT
t (x) =

x1− (1−σmin)x

1− (1−σmin)t
,

The model learns to approximate this transport field using only the base sample x0. The result-

ing trajectories follow straight paths with consistent direction and smoothly varying magnitude.

Consequently, the learned field vθ is smooth and low-curvature, allowing efficient integration with

just 10–30 steps—dramatically fewer than diffusion models, which often require hundreds due to

stiffness near t = 1.

Takeaway

Flow Matching permits any conditional path and velocity field that satisfy the continuity equation

and match the boundary conditions. The Optimal Transport-based construction yields:

• Linear, closed-form trajectories.

• Constant-direction velocity fields.

• Tractable divergence computation.

• Dramatically improved sample efficiency.

For these reasons, OT-based conditional flows are often preferred in practice and form the

foundation of modern CFM implementations.
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Enrichment 20.10.5: Implementation, Experiments, and Related Work

Implementation Details

Practitioners interested in applying Conditional Flow Matching (CFM) to their own datasets can

refer to the following codebases:

• Official Flow Matching:

https://github.com/facebookresearch/flow_matching

This repository provides a clean PyTorch implementation of both continuous and discrete

Flow Matching objectives. It includes examples of defining conditional Gaussian flows and

training vector fields using small NNs.

• Conditional Flow Matching for High-Dimensional Data:

https://github.com/atong01/conditional-flow-matching

This implementation extends CFM to image datasets like CIFAR-10 and CelebA using U-Net

architectures. It includes training scripts, loss computation, and sampling pipelines. Users can

adapt this repository to train models on their own data by modifying the dataset loader and

network configuration.

Both codebases use the same core principle: sampling (x0,x1) ∼N (0, I)× q(x), computing x =
ψt(x0 | x1), and minimizing the supervised loss

∥∥∥∥vθ (t,x,x1)−
d

dt
ψt(x0 | x1)

∥∥∥∥
2

.

This enables scalable training without evaluating score functions or marginal densities.

Empirical Results: OT vs. Diffusion

The original Flow Matching paper [364] shows that using OT-based conditional vector fields leads to

smoother flows, earlier emergence of structure, and more efficient sampling.

Figure 20.70: Effect of training objective on CNF trajectories. Left: Trajectories of CNFs trained

on 2D checkerboard data. OT-based flows introduce structure earlier, while diffusion-based ones lag

and show less spatial coherence. Right: Midpoint-solver based sampling is much faster and more

stable with OT. Adapted from Figure 4 in [364].

Quantitative Benchmarks

Below is a comparison of Flow Matching with other generative modeling objectives on benchmark

datasets. FM with OT consistently achieves lower negative log-likelihood (NLL), lower Fréchet

Inception Distance (FID), and fewer function evaluations (NFE), outperforming score-based methods

and diffusion-trained models.

https://github.com/facebookresearch/flow_matching
https://github.com/atong01/conditional-flow-matching
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Table 20.6: Likelihood (NLL), sample quality (FID), and evaluation cost (NFE). Lower is better.

Adapted from Table 1 in [364].

Model CIFAR-10 ImageNet 32×32 ImageNet 64×64

NLL _ FID _ NFE _ NLL _ FID _ NFE _ NLL _ FID _ NFE _

DDPM [223] 3.12 7.48 274 3.54 6.99 262 3.32 17.36 264

Score Matching 3.16 19.94 242 3.56 5.68 178 3.40 19.74 441

ScoreFlow [583] 3.09 20.78 428 3.55 14.14 195 3.36 24.95 601

FM (Diffusion path) 3.10 8.06 183 3.54 6.37 193 3.33 16.88 187

FM (OT path) 2.99 6.35 142 3.53 5.02 122 3.31 14.45 138

Additional Comparisons

For high-resolution datasets such as ImageNet 128×128, FM with OT also outperforms GAN-based

baselines in terms of sample quality and tractability:

Model NLL _ FID _

MGAN [226] – 58.9

PacGAN2 [362] – 57.5

Logo-GAN-AE [539] – 50.9

Self-Cond. GAN [401] – 41.7

Uncond. BigGAN [401] – 25.3

PGMGAN [15] – 21.7

FM (OT path) 2.90 20.9

Related Work and Positioning

Flow Matching (FM) connects to and builds upon several influential research directions in generative

modeling:

• Score-Based Generative Models: Denoising Score Matching [647] and probability flow

ODEs [583] estimate the score ∇x log pt(x), which can be computationally expensive and

unstable. FM avoids this by directly training on velocity fields derived from known conditional

probability paths.

• Continuous Normalizing Flows (CNFs) and Neural ODEs: CNFs [87, 185] require solving

and differentiating through ODEs for training, using the instantaneous change-of-variables

formula. Flow Matching replaces this with a regression loss on known vector fields, avoiding

backpropagation through ODE solvers and enabling stable and simulation-free training.

• Vector Field Regression Methods: Approaches such as OT-Flow [621] and Sliced Wasserstein

Flows [718] aim to model transport vector fields but often lack closed-form supervision.

Conditional Flow Matching (CFM) generalizes these ideas with tractable Gaussian paths and

principled supervision over known conditional fields.
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In addition, many works build upon FM to create new SOTA results, and improve training and

inference times. Key such works include:

• Discrete Flow Matching and Language Modeling: Extensions such as Discrete Flow

Matching [168] adapt FM to continuous-time Markov chains over discrete state spaces,

broadening its applicability to structured data and natural language tasks.

• Riemannian Flow Matching: Recent work [86] generalizes FM to curved manifolds (e.g.,

protein structures or 3D geometry) by designing flows on Riemannian spaces. Conditional

paths are constructed via geodesics rather than affine maps, preserving geometric constraints

and enabling applications in biophysics and robotics.

• Multisample Flow Matching: Minibatch OT approaches [486] leverage more efficient

couplings between source and target samples, reducing variance and improving training

stability. These works extend FM to practical, large-batch implementations for real-world

datasets.

• Optimal Flow Matching: Recent methods [302] aim to learn straight trajectories in a single

step, enhancing the efficiency of flow-based generative models.

• Consistency Flow Matching: By enforcing self-consistency in the velocity field, Consistency

Flow Matching [724] defines straight flows starting from different times to the same endpoint,

improving training efficiency and generation quality.

• Bellman Optimal Stepsize Straightening: The BOSS technique [448] introduces a dynamic

programming algorithm to optimize stepsizes in flow-matching models, aiming for efficient

image sampling under computational constraints.

Together, these developments position Flow Matching—and particularly its conditional formu-

lation (CFM)—as a versatile and scalable foundation for continuous-time generative modeling. It

unifies ideas from score-matching, optimal transport, and neural ODEs, while enabling extensions to

discrete, structured, and geometric domains.

Outlook

Flow Matching with OT-based conditional paths currently offers one of the most promising trade-

offs between theoretical clarity, empirical stability, and computational efficiency. Its compositional

design—built around analytically specified conditional paths and closed-form velocity fields—creates

a powerful and flexible foundation for developing future generative models across a wide range of

domains.

Like diffusion models, Flow Matching supports conditioning on structured information (e.g., labels,

prompts, segmentation maps), making it a natural candidate for controlled synthesis tasks. However,

its deterministic trajectories and simulation-free sampling open the door to faster, more interpretable

alternatives to stochastic generation frameworks.

Having now completed our exploration of generative modeling—from diffusion models like DDPM

and DDIM to alternative frameworks such as Flow Matching—we conclude this chapter with

a broader perspective. The field continues to evolve rapidly, driven by innovations in training

stability, controllability, and cross-modal integration. Flow Matching, with its deterministic paths

and modular design, offers a promising foundation for future research. As you continue your journey,

we encourage you to explore how the principles introduced here may extend to new architectures,

modalities, or creative applications yet to be imagined.



20.11 Enrichment 20.11: Additional Pioneering Works in Generative AI 1261

Enrichment 20.11: Additional Pioneering Works in Generative AI

The success of diffusion models and flow-based generative techniques has catalyzed a shift from

low-level sample generation toward structured, semantically aligned systems. Today’s frontier

lies not just in generating images, but in doing so under rich forms of control—such as natural

language prompts, user sketches, or structural guidance. These systems are built by combining

three key ingredients: (1) pretrained perceptual encoders (e.g., CLIP [498], T5 [501]), (2) structured

conditioning modalities (e.g., text, pose, segmentation maps), and (3) latent-space modeling to

handle high-resolution synthesis efficiently.

We begin our exploration with GLIDE [450], one of the first works to integrate classifier-free

guidance with diffusion models for text-to-image generation. GLIDE marks a turning point in

generative AI—it demonstrated that diffusion models, when paired with learned embeddings and

careful guidance, could outperform prior autoregressive methods such as DALL·E [509] both

in realism and controllability. Building on this, later models introduced latent diffusion [531],

personalization (e.g., DreamBooth [537]), and fine-grained conditioning (e.g., ControlNet [773]),

each extending the flexibility and applicability of the core generative pipeline.

Enrichment 20.11.1: GLIDE: Text-Guided Diffusion with Classifier-Free Guidance

GLIDE [450] marked a turning point in text-to-image generation by demonstrating that high-quality,

controllable synthesis can be achieved using an end-to-end diffusion model conditioned directly on

natural language. Unlike earlier approaches such as DALL·E [509], which was originally built upon

VQ-VAE, and discretized images into token sequences and applied autoregressive modeling, GLIDE

operates in continuous pixel space, leveraging the denoising diffusion paradigm.

A central innovation in GLIDE is its use of a frozen text encoder—specifically a transformer model

trained separately—to inject semantic conditioning into the diffusion process. By guiding each

denoising step with a textual embedding, the model learns to associate complex descriptions with

spatial features, enabling coherent synthesis even for novel or compositional prompts. This not only

enables image generation, but also empowers applications such as text-driven inpainting, sketch

refinement, and iterative editing.

GLIDE also introduced the now-standard technique of classifier-free guidance (CFG), which

provides a tunable trade-off between diversity and fidelity without requiring an external classifier.

This innovation would prove critical in subsequent systems including DALL·E 2, Imagen, and

Latent Diffusion Models.

We now examine the GLIDE architecture, inference strategies, and capabilities—illustrating how

this model served as a blueprint for the modern diffusion stack.

Model Architecture and Conditioning Mechanism

GLIDE is a denoising diffusion probabilistic model (DDPM) that synthesizes images by learning to

reverse a stochastic forward process. In the forward process, a clean image x0 ∈RH×W×3 is gradually

perturbed with Gaussian noise:

xt =
√

ᾱt x0 +
√

1− ᾱt ε, ε ∼N (0, I),

where ᾱt ∈ (0,1] is the cumulative product of noise schedule coefficients, and xt is the noisy image

at timestep t. The model learns to predict the additive noise ε using a U-Net denoiser εθ (xt , t,y),
where y is a natural language prompt describing the image content.
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Figure 20.71: Selected samples from GLIDE using classifier-free guidance [450]. Prompts include

complex compositions and stylistic renderings. The model accurately generates unseen concepts like

“a crayon drawing of a space elevator” and interprets spatial relationships such as “a red cube on top

of a blue cube,” including plausible shadows and 3D structure.
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To condition on y, GLIDE uses a frozen Transformer-based text encoder that converts the prompt

into a sequence of contextual token embeddings. These embeddings are fused into the U-Net

through cross-attention modules inserted at multiple spatial resolutions. This design enables the

image representation at each location to selectively attend to different textual components, enforcing

semantic alignment between visual structure and linguistic content. Two encoder variants are

considered in the paper: a Transformer trained from scratch on image–text pairs, and the CLIP text

encoder [498].

The objective used during training is a conditional variant of the DDPM noise prediction loss:

LGLIDE = Ex0,ε,t

[
∥ε− εθ (xt , t,y)∥2

]
,

where the model learns to denoise xt using both temporal and semantic information. This conditional

learning setup allows GLIDE to support tasks like text-to-image synthesis, inpainting, and semantic

image editing with a unified architecture.

As seen in Figure 20.71, GLIDE generalizes beyond literal training examples, demonstrating strong

compositional ability and visual realism. This is made possible by its tight fusion of image-space

diffusion and language semantics via cross-attention, allowing for rich conditional control.

Text Conditioning via Cross-Attention in GLIDE

In GLIDE [450], natural language prompts are embedded using a frozen Transformer encoder, which

maps the input caption y into a sequence of contextualized token embeddings:

y 7−→ {e1, . . . ,eL} , ei ∈ R
d .

Each vector ei captures the meaning of a specific token (word or subword) in context—e.g., the

vector for “dog” will be different in “a dog” versus “hot dog.” The full sequence {ei} thus encodes

the semantics of the entire caption.

To inject this textual information into the image generation process, GLIDE modifies the self-

attention mechanism inside the U-Net with cross-attention, where visual features act as queries and

the text embeddings as both keys and values. At each attention block, the model computes:

Attn(Q,K,V ) = softmax

(
QK⊤√

d

)
V,

where:

Q =WQ f , K =WKe, V =WV e.

• f ∈ R
H×W×c: the current spatial feature map from the U-Net, flattened to shape (HW,c) and

linearly projected to form queries Q ∈ R
HW×d .

• e ∈ R
L×d : the caption token embeddings (from the text encoder), projected to keys K ∈ R

L×d

and values V ∈ R
L×d .

Why this works:

• The query vector Qi at each image location i specifies a directional probe: it "asks" which text

tokens are most semantically relevant to what the model is generating at that pixel or patch.

• The dot-product QiK
⊤
j measures the alignment between image location i and text token j. The

softmax turns this into a probability distribution over tokens—effectively letting each image

region focus on specific language concepts.
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• The final attended feature is a weighted combination of the value vectors Vj, which carry

semantic context from the caption and allow the image generator to access and integrate that

information.

This structure allows the model to learn that, for example, when the caption includes “a dog in a red

hat,” the spatial regions depicting the hat should align with the embedding for “hat,” and the dog’s

body with “dog.” No token is “highlighted” in isolation—instead, relevance emerges dynamically as

a function of the image context via learned query-key similarity.

This cross-modal alignment is applied at multiple resolutions within the U-Net, ensuring that

text guidance is accessible across coarse layouts and fine details. The conditioning is thus not

a global label but a dynamic, token-wise modulation of image generation grounded in semantic

correspondence between modalities.

GLIDE’s Multi-Stage Generation Pipeline: A Cascaded Diffusion Strategy

GLIDE [450] employs a cascaded diffusion approach to synthesize high-resolution images from text

prompts. It holds a similar intuition to the one behind Cascaded Diffusion Models (CDMs) [225],

that we’ve previously covered (20.9.5), only this time it is based on a text encoding and not a class

encoding. GLIDE divides the generation task into multiple stages, each operating at a different

spatial resolution. This staged architecture improves quality and efficiency by allowing each model

to focus on a specific aspect of the generation process.

• Base diffusion model (64×64): A text-conditioned DDPM generates low-resolution 64×64

images from captions. It captures coarse global structure, composition, and semantic alignment

with the prompt. Operating at a small scale allows for training on large and diverse datasets.

• Super-resolution model (64→256): A second diffusion model performs resolution upsam-

pling. It takes as input a bilinearly upsampled version of the base output and the same text

embedding. Conditioned on both, it synthesizes a 256×256 image with finer visual details

while preserving the semantic intent.

• (Optional) Final upsampler (256→512): An optional third-stage model further increases

resolution and sharpness, generating high-fidelity 512×512 images. This stage is particularly

useful in domains requiring photorealism or precise detail.

Why use cascading? GLIDE’s design is consistent with the principles of cascaded diffusion:

• Modularity and separation of concerns: The base model handles semantic composition and

spatial layout. Super-resolution stages specialize in refining texture, edges, and fine-grained

detail. This decomposition simplifies the learning objective at each stage.

• Improved sample quality: Errors and ambiguities in early low-resolution predictions can be

corrected at higher resolutions through guided refinement.

• Efficiency: Lower-resolution generation requires fewer parameters and less computation. Later

stages can reuse a smaller amount of training data focused on resolution pairs.

Each stage is trained independently. The super-resolution models are trained on paired low- and high-

resolution crops, conditioned on both the image and the shared frozen text encoder. This encoder

ensures that semantic alignment with the prompt is preserved across all stages. Cross-attention is

employed at multiple layers in the U-Net, aligning image regions with relevant textual concepts.
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Super-Resolution Modules in GLIDE

After producing a coarse sketch using the 64× 64 base model, GLIDE [450] refines the image

through a sequence of independently trained super-resolution diffusion models, typically for the

resolution upgrades 64→256 and optionally 256→512. Each stage is responsible for enhancing

visual fidelity by introducing higher-frequency detail, guided by both the upsampled coarse image

and the original text prompt.

Each super-resolution module follows a structured training process:

• The input is a low-resolution image xlow, obtained by downsampling a high-resolution training

image xhigh from the dataset.

• This xlow is bilinearly upsampled to the target resolution (e.g., from 64→256).

• Gaussian noise is added to the upsampled image using the forward diffusion schedule for that

resolution stage, yielding a noised version xt .

• The model is trained to denoise xt toward the original high-resolution ground truth xhigh,

conditioned on both the noisy image and the associated text prompt y.

Crucially, the same image-caption pair (xhigh,y) is used across all stages of the cascade:

• The base model learns to generate a 64×64 approximation of xhigh given y.

• The first super-resolution model refines that to 256×256, using the blurred/noised upsampled

64×64 image and still supervising against the same xhigh.

• The second super-res model (optional) further refines toward 512×512, again targeting the

same xhigh, now upsampled and re-noised accordingly.

This architecture ensures that all models in the cascade are aligned on a common semantic and

visual goal. While the inputs to each stage differ in resolution and noise level, the supervision target

xhigh and prompt y remain constant throughout. This coherence prevents semantic drift and enables

precise refinement of the coarse image toward the intended final output.

All models share a frozen T5 encoder for text conditioning. The token embeddings {⃗e1, . . . , e⃗L}
produced by this encoder are injected via cross-attention at multiple U-Net layers, ensuring that

every spatial region in the image remains grounded in the prompt throughout all diffusion steps.

By training each stage to recover the original high-resolution dataset image from progressively

degraded inputs, GLIDE ensures that the final samples are not just upsampled blobs, but semantically

faithful, high-fidelity images—each stage building upon and correcting the previous.

Relationship to Cascaded Diffusion Models (CDMs)

GLIDE [450] and CDMs [225] both follow a multi-stage pipeline: a low-resolution base model

generates coarse images that are progressively refined through super-resolution diffusion stages.

While the overall architecture is similar, the two differ in how they encode conditioning and enforce

robustness during upsampling.

• Conditioning and Guidance:

– GLIDE is conditioned on natural language via a frozen T5 encoder and uses classifier-

free guidance (CFG) at inference. During training, 10% of prompts are dropped, allowing

the model to learn both conditional and unconditional denoising. CFG interpolates their

predictions to enhance prompt alignment.

– CDMs are class-conditioned using learned label embeddings injected into all models.

No classifier-based or classifier-free guidance is used—class identity is always provided

directly to the network.



1266 Chapter 20. Lecture 20: Generative Models II

• Robustness via Degraded Conditioning:

– Both models degrade the upsampled low-resolution image before denoising. GLIDE

uses fixed methods such as Gaussian blur and BSR, whereas CDMs apply randomized

degradations (e.g., blur, JPEG compression, noise) drawn from a corruption distribution.

This conditioning augmentation is more formally defined in CDMs and proven essential

through ablations.

Summary: GLIDE and CDMs both use resolution-specific diffusion stages. The key differences are

GLIDE’s use of natural language prompts and classifier-free guidance, versus CDMs’ reliance on

class labels and stronger, randomized conditioning augmentation to maintain sample fidelity without

external guidance.

Full Generation Pipeline of GLIDE

1. Base Diffusion Model (64×64): A text-conditioned U-Net is trained using noise prediction

loss to generate low-resolution samples that reflect the coarse layout and semantic intent of

the prompt.

2. First Super-Resolution Stage (64→256): The base image is upsampled and then re-noised.

A second diffusion model is trained to remove the noise, refining texture, geometry, and visual

coherence.

3. Optional Final Upsampler (256→512): A third model further improves fidelity, handling

fine details and photorealistic rendering. This model is trained with similar supervision but

may use deeper architecture or stronger regularization.

Each model in the pipeline operates independently. All are conditioned on the same frozen T5

embeddings to ensure semantic consistency. Cross-attention is applied at various U-Net layers, so

spatial features in the image are explicitly guided by token-level prompt information.

ADM U-Net Architecture in GLIDE

The architecture of GLIDE [450] is built upon the ADM U-Net backbone introduced by Dhariwal

and Nichol [122]. This network serves as the core denoising model at each stage of the diffusion

cascade. While its layout resembles the canonical U-Net (see enrichment 15.6 and Figure 15.21), the

ADM version integrates time and text conditioning, residual connections, and attention mechanisms

in a more structured and scalable way.

Overall Structure. The U-Net processes a noisy input image xt ∈ R
3×H×W , a diffusion timestep t,

and a text prompt y. The network is divided into three main components:

• Encoder path (downsampling): Each spatial resolution level includes two residual blocks and,

optionally, a self-attention module. Downsampling is performed via strided convolutions, and

the number of channels doubles after each resolution drop (e.g., 192→ 384→ 768).

• Bottleneck: At the lowest spatial resolution (e.g., 8×8), the model uses two residual blocks

and one self-attention layer. This is where global semantic context is most concentrated.

• Decoder path (upsampling): This path mirrors the encoder. Each upsampling level includes

residual blocks and optional self-attention, followed by nearest-neighbor upsampling and

a 3× 3 convolution. Skip connections from the encoder are concatenated or added to the

decoder at each level to preserve fine-grained detail.

Timestep Conditioning. The scalar diffusion timestep t ∈ {0, . . . ,T} is encoded into a high-

dimensional vector via sinusoidal embeddings, similar to the Transformer [644].
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This vector is passed through a learnable MLP and injected into each residual block via FiLM-style

modulation:

GroupNorm(h) · γ(t)+β (t),

where γ(t),β (t) ∈ R
d are scale and shift vectors derived from the timestep embedding, and h is the

normalized activation.

Text Conditioning via Cross-Attention. The text prompt y is encoded using a frozen T5 encoder,

yielding contextualized token embeddings {⃗e1, . . . , e⃗L}, with e⃗i ∈ R
d . These are injected into the

network via cross-attention in all attention layers. Each attention block computes:

Attn(Q,K,V ) = softmax

(
QK⊤√

d

)
V,

where:

Q =WQ f , K =WKe, V =WV e,

and f ∈R
H×W×c is the image feature map at that layer. This mechanism allows each spatial location

in the image to query relevant semantic concepts from the caption.

Implementation Highlights. Key components of GLIDE’s U-Net implementation (adapted from

glide_text2im/unet.py) include:

• Residual Blocks: All convolutional layers are embedded in residual units with FiLM-style

conditioning and GroupNorm. Timestep embeddings and global pooled text embeddings are

both added before nonlinearity.

• Attention Layers: Multi-head attention modules are inserted at intermediate resolutions (e.g.,

64×64, 32×32, 16×16), depending on the stage (base model or super-resolution).

• Resolution Schedule: The base model uses four resolution levels with channel multipliers

[1,2,4,4]. Each resolution contains two residual blocks and an optional attention block. The

total number of attention heads and layer width increases with resolution depth.

• Skip Connections: As in traditional U-Nets, skip connections copy activations from encoder

layers to their corresponding decoder layers, enhancing spatial fidelity and stability during

training.

Final Output. The decoder outputs a tensor ε̂θ (xt , t,y) ∈ R
3×H×W , representing the predicted noise.

This estimate is used in the reverse diffusion step to move from xt → xt−1, progressively denoising

toward the final image.

Summary of the GLIDE System

GLIDE implements an early form of cascaded diffusion generation with the following key elements.

It employs a text-conditioned U-Net backbone trained to synthesize low-resolution semantic content.

It uses cross-attention mechanisms to maintain semantic alignment between the prompt and evolving

image features. It applies a hierarchical cascade of independently trained super-resolution modules

to improve fidelity and texture. This design enables scalable, prompt-consistent generation of

high-resolution images without requiring auxiliary classifiers, external guidance models, or re-

ranking. GLIDE’s architecture thus laid the foundation for subsequent cascaded frameworks, while

demonstrating strong generalization across a wide range of text prompts and visual concepts.
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Text-Guided Editing and Inpainting Capabilities

Beyond pure text-to-image generation, one of GLIDE’s key contributions is its ability to perform

conditional editing and inpainting through partial noising and constrained denoising steps. By erasing

selected regions of an image, injecting Gaussian noise, and conditioning on both the surrounding

pixels and a new text prompt, the model plausibly fills in missing content that respects the original

style and semantics.

Figure 20.72: Text-conditional inpainting with GLIDE [450]. The masked region (green) is filled

based on a new prompt. The model seamlessly aligns with the lighting, texture, and composition of

the original image.

As shown in Figure 20.72, GLIDE performs image inpainting by conditioning the generative process

on both a masked image and a guiding text prompt. To enable this capability, the model is fine-tuned

specifically for inpainting using a dataset of partially masked images. During training, the model

receives images with random rectangular regions removed and learns to denoise these masked regions

while keeping the unmasked content fixed.

At inference time, the masked region is initialized with noise and updated using the standard

diffusion sampling loop, while the known pixels are clamped to their original values at each step.

This partial denoising scheme ensures that the generated content blends smoothly with the unmasked

surroundings and adheres to the text condition.
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Compared to GAN-based inpainting—which often requires adversarial losses and may fail to main-

tain semantic or spatial coherence—GLIDE leverages the stability and flexibility of its probabilistic

denoising framework. The iterative nature of diffusion helps preserve global structure and yields

completions that are both context-aware and text-consistent. Techniques such as classifier-free

guidance can be retained during inpainting to further improve alignment with the prompt.

This mechanism also enables iterative refinement, wherein users can repeatedly mask regions, update

the text prompt, and reapply the model to incrementally build complex scenes.

Figure 20.73: Iterative scene construction with GLIDE. A base image is progressively edited via

masked regions and updated prompts (e.g., adding a coffee table, a vase, or shifting the wall upward).

These capabilities demonstrate that GLIDE functions not just as a generator but as a flexible and

interactive system for creative image manipulation. Its strength lies in preserving spatial coherence,

semantic relevance, and stylistic fidelity across multiple user-guided editing stages.
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Sketch-Based Conditional Editing with SDEdit

GLIDE’s diffusion-based formulation enables an additional editing mode: sketch-to-image synthesis.

By combining partial image inputs with language prompts, users can guide the model using both

structure and semantics. This is achieved using a variant of Score-Based Generative Modeling known

as SDEdit [422], which allows starting from a partially structured input and denoising it toward a

visually coherent result.

In this setup, a user provides a crude input sketch or image fragment, alongside a prompt describing

the desired output. The sketch is partially noised using the forward diffusion process (e.g., for 50

steps), and then the model is used to denoise it conditioned on the prompt. This ensures that the final

image aligns with both the provided sketch and the semantic intent of the text.

Figure 20.74: Sketch-guided editing with GLIDE, using text-conditional SDEdit [450]. The user

sketches a hat and provides the prompt “a corgi wearing a purple hat and a red tie”. The model

transforms the sketch into a plausible image aligned with both visual and linguistic guidance.

As illustrated in Figure 20.74, this hybrid mode yields outputs that respect the geometric intent

of the sketch while capturing nuanced prompt attributes (e.g., color, material, object integration).

Because using this technique in this setup builds directly on GLIDE’s denoising framework, it

remains versatile and general-purpose—capable of tasks like edge-to-image rendering, stroke-based

painting, and compositional sketching.

This functionality bridges the gap between hand-drawn control and natural language generation,

offering a compelling example of multimodal guidance in diffusion systems.
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Classifier-Free Guidance vs. CLIP Guidance

GLIDE introduces two competing strategies for aligning image generation with a textual prompt:

CLIP guidance and classifier-free guidance (CFG). While both aim to steer the sampling trajec-

tory toward semantic fidelity, they differ significantly in implementation, stability, and perceptual

outcomes.

CLIP guidance [498] optimizes the cosine similarity between image and text embeddings produced

by a frozen CLIP model:

max
x

cos( fCLIP(x), fCLIP(y)) .

This gradient-based alignment is applied across the diffusion trajectory, encouraging denoised latents

xt to resemble images that CLIP deems semantically close to the prompt y. While conceptually

direct, this approach has several drawbacks:

• Gradient mismatch: CLIP is trained on fully denoised, high-quality images, whereas diffu-

sion models operate over progressively noised latents. Applying CLIP’s gradients to noisy

intermediate states introduces distributional mismatch, often steering the denoising trajectory

off-manifold and resulting in unstable generation.

• Adversarial artifacts: Because CLIP is used both to guide and to evaluate image quality, the

generative model may exploit weaknesses in CLIP’s embedding space. Instead of faithfully

representing the prompt, it may synthesize images that trick CLIP into assigning high similarity

scores—despite the samples being visually implausible or semantically incoherent to humans.

This adversarial overfitting is particularly severe at high guidance scales, where the generator

over-optimizes for CLIP alignment and produces unnatural textures or distorted compositions

that "hack" the metric.

• Tuning sensitivity: Effective use of CLIP guidance requires delicate balancing of the gradient

scale. Weak guidance may yield vague or off-target generations, while overly strong guidance

often causes prompt overfitting, repetitive artifacts, or structural collapse—manifesting as

over-sharpened or corrupted outputs.

To partially address these limitations, GLIDE also experimented with a noised CLIP variant trained

on corrupted images. While this reduced mismatch at early timesteps, it did not eliminate instability

or the reliance on external model supervision.

Classifier-free guidance (CFG) [224], by contrast, is fully embedded into the model’s training

objective. During training, the model randomly receives either a full prompt y or an empty (null)

prompt ∅, enabling it to learn both conditional and unconditional behaviors. At inference, these

predictions are interpolated to amplify prompt fidelity:

εCFG = εθ (xt , t,∅)+ s · (εθ (xt , t,y)− εθ (xt , t,∅)) , (20.64)

where s≥ 1 is the guidance scale.

CFG is simple, robust, and model-native. It requires no additional networks or loss terms, introduces

no adversarial gradient pathways, and scales gracefully across prompts and domains. Although

guidance inevitably reduces output diversity, GLIDE shows that CFG manages the fidelity–diversity

trade-off more favorably than CLIP guidance. While CLIP guidance aggressively sacrifices variation

to maximize alignment scores, CFG maintains perceptual quality without mode collapse.
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Figure 20.75: Trade-off between diversity and fidelity in GLIDE [450]. Classifier-free guidance

(CFG) achieves sharper, more realistic images while preserving more variation than CLIP-based

guidance.

This superiority is reflected in human preference studies. GLIDE uses Elo scoring—a rating system

adapted from competitive games like chess—to compare pairs of samples from different guidance

methods. Each approach accumulates points based on relative preference in head-to-head matchups.

Figure 20.76: Elo scores for guidance methods in GLIDE [450]. CFG outperforms CLIP guidance

across both photorealism and semantic alignment.

Takeaway: Classifier-free guidance is a foundational technique for modern diffusion-based image

generation. It integrates directly with the model’s architecture, avoids adversarial gaming of external

metrics, and produces samples that are consistently favored by human evaluators. Its success in

GLIDE set the stage for adoption in subsequent systems like Stable Diffusion [531], Imagen [540],

and Parti [742].
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Failure Cases and Architectural Limitations

Despite its strong generative capabilities, GLIDE exhibits clear limitations when tasked with

abstract reasoning, rare object compositions, or spatially intricate prompts. Failure cases include

implausible geometries (e.g., “a car with triangular wheels”), semantic mismatches (e.g., “a mouse

hunting a lion”), and weak attribute binding. Figure 20.77 illustrates such inconsistencies in spatial

relationships, object placement, and compositional coherence.

Figure 20.77: Failure examples from GLIDE [450]. The model exhibits spatial inconsistencies,

compositional errors, or semantic drift.

These challenges stem, in part, from GLIDE’s architectural design. The model operates directly in

pixel space using a cascade of resolution-specific diffusion U-Nets, from a 64×64 base model to

higher-resolution super-resolution modules. While this cascade enables high-fidelity output, it incurs

significant computational cost and can propagate or amplify local inconsistencies—especially when

text conditioning is vague or underspecified.

Text conditioning in GLIDE is injected via frozen T5 embeddings applied through cross-attention at

each U-Net layer. While effective for common prompts, this mechanism is static and may fail to

capture fine-grained semantics, particularly in rare or compositional settings. Attempts to enhance

conditioning using CLIP guidance led to brittle behavior: though CLIP gradients improved prompt

alignment metrics, they also introduced adversarial artifacts and degraded visual plausibility [450].

Even a noise-aware CLIP variant, trained on noised latents, did not eliminate these issues.

In contrast, classifier-free guidance (CFG) [224] proved more robust, offering sharper, more coherent

samples while maintaining a reasonable fidelity–diversity trade-off. Still, GLIDE’s monolithic design

entangles semantic interpretation and pixel-level synthesis in a single forward trajectory, limiting the

model’s controllability and generalization to atypical prompts.

These limitations motivated a shift in architecture. Rather than generating images directly from text

in pixel space, DALL·E 2 (also known as unCLIP) proposes a modular framework that decouples

semantic modeling from image generation. The design consists of:

• A pretrained CLIP encoder that embeds the text prompt into a dense latent space.

• A prior model—either autoregressive or diffusion-based—that maps the text to plausible

CLIP image embeddings z⃗i.

• A diffusion decoder that generates the final image conditioned on z⃗i (and optionally the

original text).

This two-stage pipeline enables specialization: the prior operates in CLIP’s compact semantic

space, improving prompt generalization and sample diversity, while the decoder focuses purely on

photorealistic rendering.
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Unlike GLIDE, guidance does not collapse diversity in unCLIP, since semantic information is already

embedded in z⃗i and remains fixed during decoding [508]. As we will see, this architectural decoupling

resolves several of GLIDE’s bottlenecks and introduces new capabilities—such as zero-shot image

editing and text-guided variations.

Before introducing DALL·E 2 in depth, we briefly revisit its predecessor—DALL·E 1 [509]—which

pioneered large-scale text-to-image synthesis using discrete visual tokens and an autoregressive

transformer. Although limited in resolution and editability, DALL·E 1 established key ideas—such

as VQ-VAE bottlenecks and joint modeling of image and text tokens—that laid the groundwork for

modern generative systems.

Enrichment 20.11.2: DALL·E 1: Discrete Tokens for Text-to-Image Generation

Motivation: Turning Images into Token Sequences for GPT-Style Modelling

DALL·E 1 [509] reframes text-to-image generation as conditional autoregressive sequence modeling.

Inspired by the success of GPT-3 [58], which generates fluent text by predicting one token at a time,

DALL·E extends this idea to vision: if an image can be represented as a sequence of discrete tokens,

then a transformer could learn to "write" images one token at a time, conditioned on a caption.

Applying GPT-style architectures directly to pixels is infeasible for two key reasons:

• Memory constraints: A 256× 256 RGB image contains nearly 200,000 pixel values, far

exceeding the context length supported by transformers with quadratic self-attention.

• Low-level fidelity bias: Pixel-wise likelihoods encourage matching short-range visual details

but are poor at capturing global semantic structure aligned with a text prompt.

To address these issues, DALL·E adopts a two-stage pipeline:

1. Stage A — Discrete Visual Tokenization (VQ-VAE).

A Vector-Quantized Variational Autoencoder (VQ-VAE) is trained to compress and reconstruct

images. Specifically:

• The encoder downsamples a 256×256 RGB image into a 32×32 latent grid.

• Each latent vector is replaced with the nearest of K = 8192 codebook entries, producing

a discrete token map z ∈ {1, . . . ,K}32×32.

• The decoder reconstructs the image from these discrete codes using nearest-neighbor

embeddings.

After training, both the encoder and decoder are frozen. They serve distinct roles:

• The encoder is used to tokenize training images into fixed-length sequences of visual

indices.

• The decoder is used at inference time to reconstruct the final image from the predicted

image tokens.

2. Stage B — Transformer-Based Sequence Modeling.

Once the image-token vocabulary is defined by the VQ-VAE, DALL·E trains a decoder-only

Transformer to model the conditional distribution over joint text–image token sequences. The

training input is a single, flattened sequence:

[BPE-encoded caption tokens]︸ ︷︷ ︸
text context

∥ [VQ-VAE image tokens]︸ ︷︷ ︸
target to predict

,

where || denotes concatenation. The model autoregressively learns to predict the next token

given all previous ones, using a standard maximum likelihood objective.
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At inference time, the generation process unfolds in three main steps:

(a) The input caption is tokenized using Byte Pair Encoding (BPE).

(b) The Transformer autoregressively generates a sequence of 1024 discrete image to-

kens—each corresponding to a 32×32 position in the image grid.

(c) These image tokens are passed to the frozen VQ-VAE decoder, which transforms them

into a full 256×256 RGB image.

This stage completes the pipeline: the Transformer acts as a powerful prior over visual token

sequences, and the VQ-VAE decoder serves as the renderer that translates discrete tokens

into pixel-level images. The reuse of pretrained components ensures modularity, while the

tokenized format enables the Transformer to operate over images in exactly the same way it

operates over language—token by token.

This design turns the image generation task into a symbolic language modeling problem. By

discretizing images, DALL·E enables the reuse of scaling laws, architectures, and optimization

methods originally developed for large language models. The VQ-VAE bottleneck plays a critical

role: it reduces the transformer’s sequence length by a factor of 192, enforces a visual vocabulary,

and allows the image generator to focus on semantic structure rather than low-level pixel precision.

Why not use a Vision Transformer (ViT) instead of a VQ-VAE? At the time of DALL·E 1’s

development (early 2020), ViT-style self-supervised encoders (e.g., SimCLR, BYOL, MAE) were

not yet mature enough to support discrete symbolic modeling.

Could a ViT-style encoder work today? Yes—modern systems like VQ-GAN [148], MAE [210],

and DALL·E 2 combine transformer or CLIP-style features with either residual quantization or

diffusion decoders. Advances in scalable mixed-precision training and robust quantization make

ViT-based latent spaces viable. Later parts in this book revisit these improved architectures.

In summary, DALL·E 1’s symbolic bottleneck—powered by a convolutional VQ-VAE—offered

a compact, expressive, and discrete latent space for training GPT-style transformers over images.

While ViT-based alternatives have since become popular, the VQ-VAE’s combination of discrete

representation, efficient decoding, and architectural maturity made it the most practical choice at the

time.
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Figure 20.78: Examples from DALL·E [509]. The model demonstrates the ability to combine

distinct concepts (e.g., “an illustration of a baby hedgehog in a christmas sweater walking a dog”),

anthropomorphize animals, render textual descriptions into stylized lettering, and even perform basic

image-to-image translation. These outputs illustrate DALL·E’s capacity for visual reasoning and

compositional generalization.

How VQ-VAE Enables Discrete Tokenization

The tokenizer in DALL·E 1 [509] is based on a vector-quantized variational autoencoder (VQ-VAE),

which converts high-resolution images into grids of discrete latent tokens. Specifically, it maps each

256×256 RGB image into a 32×32 grid, where each element indexes one of K = 8192 codebook

vectors. These indices serve as compact image tokens for downstream modeling.

Training the Discrete VAE in DALL·E 1. The VQ-VAE tokenizer used in DALL·E 1 [509] maps

high-resolution input images into a grid of discrete latent tokens, enabling downstream modeling

with autoregressive transformers.

During training, the encoder processes the input image and outputs a spatial grid of logits ℓi, j ∈ R
K ,

where K is the number of codebook vectors and (i, j) indexes the spatial position in the latent map.

These logits represent unnormalized log-probabilities over the discrete latent variables. A softmax is

applied to yield a categorical distribution:

pi, j(k) = softmax(ℓi, j)k,

which defines the probability of selecting the k-th codebook vector at location (i, j).

Since sampling discrete indices is non-differentiable, the model applies the Gumbel-softmax

relaxation [261] to enable end-to-end training. This technique approximates categorical sampling

using a continuous, differentiable proxy. Instead of selecting a single index, the encoder produces a

convex combination of the codebook vectors:

z⃗i, j =
K

∑
k=1

pi, j(k) · e⃗k,

where e⃗k ∈ R
d is the k-th learned codebook embedding. The resulting latent grid {⃗zi, j} is passed to

the decoder, which attempts to reconstruct the original image.
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The VQ-VAE in DALL·E 1 is trained to maximize the Evidence Lower Bound (ELBO) on the

log-likelihood of the data distribution. This objective consists of two terms:

• Reconstruction loss: This term encourages the decoder to faithfully reconstruct the input

image from its latent representation. During training, the decoder receives a softly quantized

grid of latent vectors z⃗ = {⃗zi, j}, obtained via Gumbel-softmax relaxation over the encoder’s

logits. The decoder outputs a reconstructed image x̂ = Dθ (⃗z), which is compared to the

original input x.

The reconstruction loss assumes an isotropic Gaussian likelihood with unit variance at each

pixel. This leads to a negative log-likelihood that simplifies to pixel-wise mean squared error

(MSE):

Lrecon = Ex∼D

[
∥x−Dθ (⃗z)∥2

2

]
.

Although MSE does not capture perceptual similarity (e.g., sensitivity to spatial misalignments

or texture), it provides dense gradient feedback that encourages the encoder to preserve low-

level spatial and textural details. These local features—edges, contours, and color regions—are

crucial for producing discrete token sequences that retain semantic and structural information

required by the downstream transformer.

More perceptually aligned metrics such as LPIPS [778] are often used in tasks that prioritize

human visual judgment, but are computationally more intensive and less stable in early training.

In contrast, MSE offers simplicity, efficiency, and sufficient structural fidelity for the purposes

of compression and symbolic modeling.

• KL divergence regularization: At each spatial location (i, j), the encoder outputs a categor-

ical distribution pi, j(k) over the K codebook entries. To discourage codebook collapse—a

failure mode where only a small subset of the codebook is consistently used—the model

includes a regularization term that penalizes deviation from a uniform prior:

LKL = ∑
i, j

KL [pi, j(k)∥U (k)] ,

where U (k) = 1
K

denotes the uniform categorical distribution over all K codebook entries.

This KL term encourages the encoder to distribute probability mass more evenly across

the entire codebook. Without such regularization, the model may converge to using only

a small number of tokens—those that are easiest for the decoder to reconstruct—thereby

underutilizing the available representational capacity. This phenomenon, known as codebook

collapse, reduces expressiveness and limits the diversity of visual patterns that the latent space

can encode.

The uniform prior U (k) reflects a modeling assumption that, across the dataset, all codebook

entries should be equally likely. While this may not hold exactly in practice, it serves as a

useful tool: by nudging the encoder’s output distributions pi, j(k) closer to uniform, the model

is encouraged to explore and specialize different code vectors. This improves latent diversity

and makes the discrete token space more informative for downstream components such as

autoregressive transformers.

The final objective function optimized during training is the ELBO:

LELBO = Lrecon +β ·LKL,



1278 Chapter 20. Lecture 20: Generative Models II

where β is a tunable hyperparameter that governs the trade-off between reconstruction fidelity and la-

tent space regularization. A carefully chosen β ensures that the model learns discrete representations

that are both structurally informative and uniformly distributed.

How is the codebook updated? Because the relaxed latent vector z⃗i, j is a weighted average over the

codebook entries, and the decoder is fully differentiable, the reconstruction loss induces gradients

with respect to the codebook vectors e⃗k. These vectors are updated directly through backpropagation,

with each one receiving a contribution proportional to its selection probability pi, j(k) across spatial

locations. This continuous relaxation allows efficient training of the discrete bottleneck.

Why is this relaxation valid if inference uses argmax?

At inference time, each spatial location (i, j) is assigned a discrete codebook index using a hard

argmax over the encoder logits:

zi, j = argmax
k

ℓi, j[k].

This produces a symbolic grid of tokens that the transformer processes as a sequence over a fixed

vocabulary. Since transformer models operate exclusively over discrete categorical inputs, these hard

assignments are necessary for compatibility with downstream autoregressive generation.

However, during training, the non-differentiability of argmax prevents gradients from propagating

into the encoder and codebook. To enable end-to-end optimization, the model instead uses a Gumbel-

softmax relaxation [261]—a differentiable approximation to categorical sampling. For each location

(i, j), the encoder outputs logits ℓi, j ∈ R
K , which are perturbed with Gumbel noise and scaled by a

temperature τ > 0 to yield soft categorical probabilities:

pi, j(k) =
exp((ℓi, j[k]+gk)/τ)

∑
K
k′=1 exp((ℓi, j[k′]+gk′)/τ)

, gk ∼ Gumbel(0,1).

Here, the Gumbel noise gk serves a specific purpose: it injects stochasticity that simulates sampling

from a categorical distribution while keeping the operation differentiable. In effect, it perturbs the

logits just enough to allow a continuous approximation of discrete sampling. The softmax over noisy

logits mimics drawing from a categorical distribution in expectation, but permits gradients to flow

through the output probabilities pi, j(k). Without this noise, the relaxation would simply reduce to a

softmax over logits and lose the stochastic behavior necessary to model discrete sampling during

training.

The latent vector is then computed as a convex combination of codebook entries:

z⃗i, j =
K

∑
k=1

pi, j(k) · e⃗k,

where e⃗k ∈ R
d is the k-th learned codebook embedding.

The temperature τ plays a central role in this process: it controls the sharpness of the softmax. At

high values, the output distribution is diffuse, placing weight on multiple entries. As τ → 0, the

distribution becomes increasingly concentrated on the largest logit, approaching a one-hot vector. To

reconcile soft training with hard inference, τ is gradually annealed during training—typically down

to τ = 1
16

. This causes the encoder’s soft outputs to become sharply peaked, closely approximating

the behavior of argmax by the end of training.
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As a result, the decoder—trained on these increasingly sharp latent vectors—becomes robust to the

true hard tokens it will encounter at test time. Meanwhile, a KL divergence term encourages the

encoder to maintain high entropy across codebook usage, preventing mode collapse and promoting a

rich, expressive latent space.

In summary, the Gumbel-softmax relaxation enables differentiable training by producing soft samples

over codebook entries. The temperature parameter τ controls how close these samples are to true

one-hot vectors, while the Gumbel noise simulates discrete sampling in a smooth and trainable way.

Together with annealing, reconstruction loss, and KL regularization, this mechanism allows the model

to learn discrete latent codes that are both optimizable and fully compatible with transformer-based

generation.

Figure 20.79: Training the VQ-VAE in DALL·E 1. The encoder outputs logits ℓi, j ∈ R
K , which

are converted into relaxed categorical distributions pi, j(k) via Gumbel-softmax. These define convex

combinations over codebook vectors e⃗k, yielding continuous latent vectors z⃗i, j. The decoder recon-

structs the image from the full grid {⃗zi, j}. The ELBO loss drives both reconstruction and codebook

utilization. At inference, the encoder performs hard argmax token selection for compatibility with

transformer-based generation.

(Figure created by the author using DALL·E-generated visual elements.)

Note that while this simplification stabilizes training and integrates well with transformer-based

generation, it comes at the cost of reduced discreteness. Each latent vector becomes a blend of

multiple codebook entries rather than a single, clearly defined symbol. In contrast, models like

VQ-VAE-2—though not designed to interface with transformers—use hard quantization to enforce

strictly discrete representations. This is especially important in applications focused on compression,

clustering, or symbolic reasoning, where each token must correspond to a well-defined and separable

concept.

For instance, in tasks like class-conditional generation or latent space interpolation, soft assign-

ments can blur distinct concepts (e.g., mixing “cat” and “dog” embeddings), leading to ambiguous

representations. Hard assignments avoid this by ensuring each latent token corresponds to a single, in-

terpretable codebook entry—even if training becomes more complex due to the non-differentiability

of the quantization step.
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Inference-Time Token Generation and Decoding

At inference time, DALL·E 1 generates images directly from a text prompt—without any image

input. The encoder of the VQ-VAE is bypassed entirely. Instead, the caption is first tokenized

into a sequence of subword units using Byte Pair Encoding (BPE), which serves as context for a

powerful decoder-only transformer. This transformer then autoregressively generates a sequence

of 1024 discrete image tokens, each representing a codebook index in a 32×32 spatial grid. Once

the full token sequence is sampled, it is passed to the frozen VQ-VAE decoder to reconstruct a

high-resolution 256×256 RGB image.

1. The caption is tokenized into Ttext BPE tokens: [xtext
1 , . . . ,xtext

Ttext
].

2. The transformer generates image tokens one by one:

x
image
t ∼ p(x

image
t | xtext

1 , . . . ,xtext
Ttext

,x
image
1 , . . . ,x

image
t−1 )

for t = 1, . . . ,1024.

3. The resulting sequence is reshaped into a 32×32 grid and decoded into pixels by the VQ-VAE

decoder.

This architecture separates semantic generation from image rendering:

• The transformer serves as a semantic prior, generating a symbolic image consistent with the

caption.

• The decoder acts as a neural renderer, translating discrete tokens into photorealistic pixel

outputs.

Training the Transformer with Discrete Tokens

To enable text-to-image generation, the transformer is trained to model the joint distribution over

text and image tokens:

pψ (⃗x
text, x⃗image) =

Ttext+1024

∏
t=1

pψ(xt | x1, . . . ,xt−1),

where x⃗text = [xtext
1 , . . . ,xtext

Ttext
] are the BPE-encoded caption tokens and x⃗image = [x

image
1 , . . . ,x

image
1024 ] are

the discrete image tokens derived from the VQ-VAE encoder via hard argmax quantization.

During training, these two sequences are concatenated into a single input:

[xtext
1 , . . . ,xtext

Ttext
,x

image
1 , . . . ,x

image
1024 ],

and fed into the transformer, which is trained to predict each token in the sequence from its preceding

context using a causal attention mask. The model performs next-token prediction across the entire

sequence—first within the caption, then across the image region—with no distinction in architecture

between the two parts.

Importantly, cross-modal conditioning arises naturally: since image tokens are positioned after

the text tokens, they are allowed to attend to the entire caption. This enables the model to learn

text-guided image synthesis within a unified autoregressive framework.

The loss function used is standard categorical cross-entropy over all tokens in the sequence:

Ltotal =
Ttext

∑
t=1

λtext ·LCE(xt)+
Ttext+1024

∑
t=Ttext+1

λimage ·LCE(xt),
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where λtext≪ λimage (typically 1
8

vs. 7
8
) to emphasize the importance of accurate image modeling.

This bias reflects the downstream goal of generating images, not captions.

Additional regularization techniques—such as BPE dropout (which randomly alters token splits) and

spatial attention priors over the image portion—are used to improve robustness and sample quality.

By training in this way, the transformer learns to interpret the caption as a prefix and generate a

coherent visual token sequence conditioned on it. At inference time, the same structure is followed:

given only a text prompt, the model samples tokens autoregressively to produce an image in the

VQ-VAE’s discrete latent space.

Figure 20.80: Inference pipeline in DALL·E 1. At inference time, the system receives a raw

text prompt, which is first tokenized into a sequence of subword units using Byte Pair Encoding

(BPE). This token sequence is fed into a decoder-only transformer, which autoregressively predicts

a sequence of 1024 discrete image tokens, each representing the index of a visual codebook vector.

The output sequence is reshaped into a 32× 32 spatial grid and passed to the frozen VQ-VAE

decoder, which translates these symbolic tokens into a high-resolution 256× 256 RGB image.

This modular architecture cleanly separates text understanding, symbolic image generation, and

pixel-level rendering.

(Figure created by the author to illustrate the DALL·E 1 inference process.)

Clarifying Terminology: dVAE vs. VQ-VAE

The DALL·E paper uses the term discrete VAE (dVAE) to refer to its tokenizer, which is effectively a

VQ-VAE trained with soft relaxation. While VQ-VAE-2 [514] adds hierarchical levels and is suited

to pixel-space autoregression, DALL·E uses only a flat VQ-VAE and does not employ VQ-VAE-2 or

hierarchical latent modeling.
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Training Datasets and Sample Generation Pipeline

DALL·E 1 is trained on a large-scale dataset comprising 250 million (text, image) pairs scraped

from the internet. Captions are tokenized using Byte Pair Encoding (BPE), while corresponding

images are compressed into 32×32 grids of discrete tokens via a VQ-VAE encoder. This diverse

and weakly supervised corpus exposes the model to a broad spectrum of concepts and modalities,

enhancing its generalization to novel text prompts at inference time.

During image generation, after receiving a text prompt, DALL·E 1 begins the process of autoregres-

sively sampling a sequence of 1024 discrete image tokens using a decoder-only sparse transformer

with 12 billion parameters. Although the model’s weights are fixed and deterministic after training,

the decoding process at inference time is deliberately stochastic.

At each of the 1024 generation steps, the model outputs a logit vector ℓ ∈ R
8192, corresponding to a

categorical distribution over the image vocabulary. Instead of applying greedy decoding (selecting

the most likely token at each step), the model samples from this distribution. To modulate the

diversity of outputs, it uses temperature-based sampling, a method confirmed in the original

paper [509]. The logits are rescaled as:

p̃k ∝ exp

(
ℓk

τ

)
,

where τ > 0 controls the sharpness of the softmax distribution. For τ = 1, the model samples directly

from the raw distribution; lower τ values sharpen the probabilities (favoring high-confidence tokens),

while higher values flatten them (increasing randomness). The authors report results under different

temperatures, including τ = 0.85 and τ = 1.0, showing that trade-offs between diversity and fidelity

can be tuned via this parameter.

It is important to note that even with a fixed temperature, the process remains non-deterministic.

The temperature shapes the distribution but does not determine the sampled outcome. At each

step, the model draws from a distribution with nonzero entropy—akin to rolling a die with unequal

probabilities. Thus, for a fixed prompt and temperature, different sequences can still emerge due to

randomness in token sampling.

To generate a batch of N candidate images, this entire sampling process is simply repeated N times.

Each run yields a distinct sequence of 1024 discrete image tokens, reflecting a unique plausible

interpretation of the same input caption. The diversity across these sequences arises entirely from

stochastic sampling—there is no injected model-level noise (such as dropout) at generation time.

Once generated, each of the N sampled token sequences is decoded into a full-resolution 256×256

RGB image using the pretrained and frozen VQ-VAE decoder. These images form the candidate

pool for the subsequent CLIP-based reranking phase.

To select the most relevant images from the candidate set, DALL·E applies a contrastive reranking

strategy using CLIP [498], a pretrained model that embeds both text and images into a shared

semantic space. Each image is scored by computing the cosine similarity between its embedding

and the embedding of the input caption. The top-ranked images—those most semantically aligned

with the prompt—are selected as final outputs.
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This two-stage pipeline—stochastic sampling followed by CLIP-based semantic reranking—enables

DALL·E to generate high-quality and semantically faithful images from diverse prompts. During

sampling, diversity is promoted through temperature-based decoding; during reranking, relevance is

enforced by scoring candidates against the caption using CLIP [498]. This separation of concerns

allows the model to handle ambiguous or open-ended prompts effectively: by increasing the number

of samples N, it becomes more likely that one or more generations will match the intent of the

caption.

However, this strategy comes at a significant computational cost. Generating N = 512 high-resolution

image candidates requires 512 full autoregressive decoding passes through a 12-billion parameter

transformer and subsequent VQ-VAE decoding—making the approach expensive in both time and

memory. While effective for research and offline applications, this procedure may be less practical

in low-latency or resource-constrained settings.

Figure 20.81: Effect of Sample Pool Size on Reranked Outputs. Adapted from [509], this figure

illustrates how increasing the number of sampled candidates N improves the top-ranked image

quality. The prompt is “a group of urinals is near the trees.” Each image is generated independently

using temperature-based decoding and scored by CLIP for alignment with the caption. At small

N, none of the candidates are coherent. As N increases, the diversity improves the chance that

CLIP surfaces a relevant and visually accurate result. This demonstrates the power—but also the

computational cost—of large-scale sampling combined with contrastive reranking.
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Experimental Results and Motivation for DALL·E 2

DALL·E 1 delivers impressive zero-shot image generation capabilities, establishing a strong baseline

for symbolic text-to-image synthesis. On MS-COCO captions, its samples are consistently preferred

by human raters over those from prior work (e.g., DF-GAN [608]). In a best-of-five vote, DALL·E’s

generations were judged more realistic 90% of the time and more semantically aligned with the

caption 93.3% of the time. These results are particularly notable given that DALL·E was evaluated

in a zero-shot setting—without task-specific fine-tuning.

Figure 20.82: Human evaluation on MS-COCO. Compared to DF-GAN [608], DALL·E 1’s

samples were chosen as more realistic and better aligned with the input caption in 90% and 93.3%

of evaluations, respectively. Voting was performed by five independent human raters. Adapted

from [509].

Quantitative benchmarks further validate these findings. On MS-COCO, DALL·E achieves a Fréchet

Inception Distance (FID) competitive with state-of-the-art models—within 2 points of the best

prior approach—and outperforms all baselines when a mild Gaussian blur is applied to reduce

decoder artifacts. Its Inception Score (IS) also improves under similar conditions. However, on more

specialized datasets like CUB [651], DALL·E’s performance drops sharply, with a nearly 40-point

FID gap between it and task-specific models. This limitation is visually evident in the model’s CUB

generations: while bird-like in appearance, they often lack anatomical consistency and fine-grained

control.
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Figure 20.83: FID and IS on MS-COCO and CUB. On MS-COCO, DALL·E 1 matches or

outperforms prior models depending on blur level, suggesting good high-level coherence. On CUB,

its lack of fine-grained knowledge leads to significantly worse FID scores, highlighting domain

transfer limitations. Adapted from [509].

Figure 20.84: Zero-shot samples from DALL·E 1 on the CUB dataset. While capturing bird-

like features, the generations struggle with consistent anatomy or species-level details, reflecting

DALL·E’s limited resolution and domain-specific expressivity. Adapted from [509].
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To address these challenges, DALL·E 1 employs a clever reranking mechanism using a pretrained

contrastive image–text model (CLIP [498]). From a large pool of candidate generations sampled

from the transformer, a subset is selected based on similarity to the input caption in CLIP’s joint

embedding space. As shown in Figure 20.81, increasing the number of samples from which to rerank

(e.g., from 64 to 512) yields clear improvements in FID and IS, showcasing the power of contrastive

alignment as a decoding prior.

Despite its pioneering design, DALL·E 1 reveals key bottlenecks that limit generation quality: a fixed-

length symbolic latent space, limited spatial resolution, and reliance on an autoregressive transformer

prone to compounding errors. Moreover, its VQ-VAE decoder constrains the expressiveness of fine

details and textures, and contrastive reranking—while effective—adds inference-time complexity.

These limitations laid the foundation for a more powerful successor. DALL·E 2 abandons discrete

tokenization in favor of CLIP-guided diffusion priors and cascaded super-resolution modules,

enabling photorealistic outputs, improved compositionality, and open-vocabulary generalization.

The next section explores this evolution in depth.
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Enrichment 20.11.3: DALL·E 2: Diffusion Priors over CLIP Embeddings

System Overview and Architectural Shift

DALL·E 2 [508] departs from the discrete-token autoregressive modeling of its predecessor by

adopting a continuous latent diffusion framework grounded in the semantics of natural language and

vision. Instead of generating symbolic image tokens (as in VQ-VAE + Transformer), DALL·E 2

generates continuous CLIP image embeddings and decodes them into pixels using diffusion. This

shift introduces greater flexibility, semantic expressiveness, and compositional fluency.

The full text-to-image generation pipeline comprises three major components:

• A frozen CLIP model [498], which embeds both text and images into a shared latent space

via contrastive learning. In this space, semantic similarity corresponds to vector proxim-

ity—images and captions referring to the same concept are mapped close together. However,

CLIP is not generative: it provides a static embedding space but cannot sample new embed-

dings or synthesize images.

• A diffusion prior, trained to generate a CLIP image embedding from a given text embedding.

Although text and image embeddings coexist in the same CLIP space, they are not interchange-

able. Text embeddings primarily encode abstract, high-level semantic intent—what the image

should conceptually depict—while image embeddings capture concrete, fine-grained visual

details necessary for rendering a realistic image. Critically, only a subset of the embedding

space corresponds to actual, decodable images: this subset forms a complex manifold shaped

by natural image statistics.

To bridge the gap between abstract language and rich visual detail, the diffusion prior learns

to sample from the conditional distribution over image embeddings given a text embedding.

Instead of performing a deterministic projection (which might land off-manifold), it gradually

denoises a sample toward the manifold of valid image embeddings, guided by the semantic

signal from the text. This process ensures that the generated embedding is:

1. Semantically aligned with the input caption—anchored by the shared CLIP space,

2. Plausibly decodable into a coherent, photorealistic image—i.e., close to regions popu-

lated by real image embeddings.

The diffusion formulation also allows for stochasticity, making it possible to draw diverse but

valid image embeddings from the same text input—capturing the one-to-many relationship

between language and vision. For instance, the caption “a cat on a windowsill” might yield

images with different lighting, poses, styles, or backgrounds—all plausible and semantically

correct, but visually distinct.

• A diffusion decoder, trained to reconstruct a high-resolution image from a CLIP image

embedding. This decoder is based on the GLIDE architecture and operates directly in pixel

space, not in a learned latent space as in traditional latent diffusion models (LDMs). It

synthesizes images via a denoising diffusion process that is conditioned on the sampled CLIP

image embedding. To further enhance semantic fidelity, the decoder can also incorporate the

original CLIP text embedding as auxiliary context, enabling techniques such as classifier-free

guidance—where conditioning signals are dropped stochastically during training and later

reintroduced at inference to steer generation more precisely.
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To produce high-resolution images, DALL·E 2 employs a cascade of diffusion models: a base

model first generates a low-resolution 64×64 image, which is then successively refined by two

separate diffusion upsamplers—each responsible for enhancing resolution (e.g., to 256×256

and ultimately 1024× 1024). This multi-stage pipeline allows coarse scene structure and

global composition to be resolved early, with fine textures and details added progressively.

The result is a photorealistic image that faithfully reflects the semantic intent of the input

caption and preserves the structural coherence implied by the CLIP embedding.

This architecture separates high-level semantics from low-level synthesis: the CLIP text embedding

anchors generation in linguistic meaning, while the diffusion prior produces a visually grounded

CLIP image embedding that is both semantically aligned and statistically plausible. By modeling

a distribution over such embeddings, the system captures the one-to-many nature of text-to-image

mappings—allowing multiple visually distinct yet valid outputs for the same prompt. Importantly, it

ensures that sampled image embeddings lie on the manifold of realistic images, enabling successful

decoding by the diffusion decoder.

Figure 20.85: DALL·E 2 Architecture Overview. The figure is divided into two conceptual stages.

Top (above the dotted line): CLIP pretraining. Images and text captions are mapped into a shared

latent space via contrastive learning, producing paired embeddings zi ∈Rd (image) and zt ∈Rd (text).

This CLIP model is pretrained independently and remains frozen throughout DALL·E 2 training.

Bottom (below the dotted line): DALL·E 2 generation pipeline. The frozen text embedding zt

is passed to a diffusion prior that samples a compatible image embedding zi, aligned with both

the text and the CLIP image manifold. This embedding then conditions a cascade of diffusion

decoders, which generate a high-resolution image x ∈ R
H×W×3. Both the prior and decoder are

trained end-to-end using CLIP-based supervision.

Diffusion Prior: Bridging Text and Image Embeddings

The diffusion prior serves as a generative model that maps text embeddings to image embed-

dings—both produced by a frozen CLIP model [498]. This replaces the discrete-token autoregressive

Transformer of DALL·E 1 with a continuous, stochastic generative mechanism. Its primary role is to

synthesize plausible image representations (in CLIP space) that semantically align with a given text

prompt.
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Training Objective The DALL·E 2 prior models the conditional distribution p(zi | zt), where

zt ∈ R
d is the CLIP text embedding derived from a caption y, and zi ∈ R

d is the corresponding CLIP

image embedding. This latent embedding zi is not the image x ∈ R
H×W×3, but a dense, semantic

vector encoding the high-level content of the image. The role of the prior is to bridge language and

vision by mapping zt to a plausible, text-consistent image embedding zi.

As in standard DDPMs [223], a forward noising process progressively corrupts zi over T timesteps:

z
(t)
i =

√
αtzi +σtε, ε ∼N (0,I),

where z
(t)
i is the noisy latent at timestep t, and the scalars αt ,σt are defined by a cosine variance

schedule [449]. The diffusion prior, modeled by a Transformer-based network fθ , learns to recover

zi from z
(t)
i , conditioned on zt and timestep t:

Lprior = Ezi,zt ,t

[∥∥∥ fθ (z
(t)
i ,zt , t)− zi

∥∥∥
2

2

]
.

Conditioning on text zt and timestep t: The diffusion prior fθ is a decoder-only Transformer

that predicts the clean CLIP image embedding zi ∈ R
d from its noisy version z

(t)
i , conditioned

on the text prompt y, the global CLIP text embedding zt ∈ R
d , and the current diffusion timestep

t ∈ {1, . . . ,T}. All components are embedded into a sequence of tokens, each of dimensionality

dmodel, and processed jointly by the Transformer.

Input sequence construction: At every denoising step t, the model receives a token sequence of

length N + 2, where N is the number of caption sub-word tokens. The sequence is composed as

follows:

1. CLIP text embedding token: The global CLIP text embedding zt ∈ R
dCLIP is projected to the

model’s internal dimension and prepended to the sequence.

2. Caption tokens: The raw text y is tokenized and embedded via a learned text encoder (separate

from CLIP), yielding a sequence Enc(y) = [e1, . . . ,eN ] ∈ R
N×dmodel that captures fine-grained

linguistic details.

3. Noisy image token: The current noised image embedding z
(t)
i ∈ R

dmodel is appended as the

final token in the sequence. This is both a conditioning signal and the slot from which the

prediction is read.

A learned timestep embedding γt ∈ R
dmodel is added elementwise to each token in the sequence:

Inputt =
[
Proj(zt), e1, . . . ,eN , z

(t)
i

]
+ γt +PE,

where PE denotes positional embeddings. The Transformer attends over the entire sequence using

standard self-attention layers.

Prediction mechanism: Unlike architectures that introduce a special [OUT] token, DALL·E 2 reuses

the position of the noisy image token to emit the prediction. That is, the model’s output at the final

sequence position is interpreted as the predicted clean embedding:

ẑi = fθ (Inputt)N+2.
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This vector is supervised using a mean squared error loss against the ground truth image embedding

zi:

Lprior = E(zi,zt ,y), t

[
∥ẑi− zi∥2

2

]
.

Intuition: This conditioning layout minimizes token overhead while enabling the model to integrate

coarse semantic alignment (zt), fine-grained linguistic context ({ek}), temporal information (γt), and

noisy visual evidence (z
(t)
i ). By sharing the input and output slot for z

(t)
i , the model tightly couples

conditioning and generation, which empirically improves stability and sample quality in latent space.

The model acts as a semantic denoiser, iteratively refining its belief over zi in a manner consistent

with both language and the manifold of realistic CLIP image embeddings.

Why predict zi instead of noise ε? In standard DDPMs, models are often trained to predict the

noise vector ε added to the data, rather than the clean data itself. However, DALL·E 2 found that

predicting the uncorrupted latent zi directly yields better results in the CLIP space. This choice is

empirically motivated.

Cosine Noise Schedule: The prior uses the improved cosine schedule [449], which spreads signal-to-

noise ratio (SNR) more evenly across timesteps. This mitigates the sharp gradient imbalances found

in linear schedules—where learning is dominated by either near-clean or near-noise states—and

instead concentrates learning signal in mid-range latents, which are most ambiguous and informative.

Intuition: The prior functions as a semantic denoiser in CLIP space. At inference time, it starts

from random Gaussian noise z
(T )
i ∼N (0,I), and iteratively transforms it into a coherent image

embedding z
(0)
i ≈ zi via reverse diffusion steps. Each step is guided not by the noise offset, but by

the model’s direct prediction of the destination zi, enabling more targeted and text-consistent updates.

This ensures that the final image embedding is both decodable—i.e., maps to a natural image x—and

semantically grounded in the input prompt y.

Model Architecture Two alternative approaches were considered for modeling the conditional

distribution p(zi | zt), where zt ∈ R
d is the CLIP text embedding of the caption y, and zi ∈ R

d is

the corresponding CLIP image embedding. Both approaches aim to generate latent image features

aligned with the input caption, but differ substantially in modeling assumptions, architecture, and

inference dynamics.

• Transformer-based diffusion prior: This is the main method used in DALL·E 2. It operates

in latent space using a denoising diffusion process over CLIP image embeddings zi. At each

timestep t, the model is given a noisy latent z
(t)
i , the global CLIP text embedding zt , and an

embedded version of the timestep t, and predicts the clean latent zi directly.

Unlike UNet-based architectures used in pixel-space diffusion models such as DDPM [223] or

GLIDE [450], the prior is implemented as a decoder-only Transformer. The inputs—caption

tokens, CLIP embedding, timestep embedding, and noisy latent—form a compact sequence

that is processed by self-attention layers, enabling flexible and global conditioning. This

architecture naturally supports compositionality and long-range dependencies, which are more

difficult to encode in convolutional models.
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A key architectural departure from earlier DDPM-style models is the absence of pixel-level

upsampling paths or spatial hierarchies; instead, the Transformer operates entirely in the flat

CLIP embedding space. The model outputs the prediction from the same token slot that

received the noisy image latent z
(t)
i , avoiding the need for a dedicated output token and keeping

conditioning tightly coupled with prediction.

• Autoregressive prior: As an alternative, the authors also experimented with an autoregressive

model over compressed image embeddings. The embedding zi is first reduced via PCA and

quantized into a sequence of discrete tokens, which are then modeled using a Transformer

decoder. This approach allows for non-iterative sampling, greatly reducing generation time.

However, it was found to severely limit sample diversity and compositional robustness. It

often failed to represent visually complex or semantically unusual prompts, such as “a snail

made of harp strings,” and exhibited classic autoregressive weaknesses like mode collapse.

The diffusion-based prior was ultimately adopted due to its superior expressiveness, semantic ground-

ing, and generalization capabilities. Its iterative nature enables it to sample from a rich, multimodal

distribution over image embeddings—capturing the diversity of possible visual instantiations for a

given text prompt. Importantly, this process ensures that sampled latents:

• Lie on the CLIP image manifold—i.e., they decode to realistic images.

• Align semantically with the caption embedding zt .

Comparison to previous diffusion works: The DALL·E 2 prior shares conceptual lineage with

diffusion models like “Diffusion Models Beat GANs” [122] and GLIDE [450], but with several

notable distinctions:

• It operates entirely in a latent space (CLIP embeddings), rather than in pixel space.

• It uses a Transformer instead of a UNet, facilitating flexible conditioning on textual tokens

and enabling better compositional generalization.

• The prediction target is the original embedding zi, not the noise ε , a choice empirically found

to improve convergence and alignment in semantic spaces.

Sampling efficiency: Although operating in CLIP latent space reduces the dimensionality of

the generative process, diffusion models remain computationally intensive due to their iterative

nature. Each sample requires T sequential denoising steps—commonly 1000 or more in traditional

DDPMs [223]—which can severely limit inference speed.

To address this, DALL·E 2 adopts the Analytic-DPM sampler [395], a high-order numerical

solver designed to accelerate denoising without sacrificing quality. Unlike the original DDPM

sampler, which performs fixed-step stochastic updates, Analytic-DPM approximates the reverse

diffusion process as an ordinary differential equation (ODE) and solves it using techniques from

numerical analysis. Specifically, it constructs closed-form approximations of the score function’s

integral using high-order Runge–Kutta or multistep methods.

Intuition: Whereas classical DDPM sampling views denoising as a Markov chain with small, noisy

steps, Analytic-DPM reinterprets it as a continuous trajectory through latent space and computes

this path more efficiently. By leveraging smoothness in the learned score function and adapting

step sizes accordingly, the sampler produces high-fidelity outputs using significantly fewer steps. In

practice, this allows DALL·E 2 to reduce sampling to just 64 steps—an order of magnitude faster

than original DDPMs—while maintaining perceptual quality and semantic alignment.
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Further acceleration is possible via progressive distillation [542], which trains a student model to

mimic the multi-step sampling trajectory of a teacher using only a few steps. This method compresses

multi-step DDIM-style inference into 4–8 steps, enabling near real-time generation without major

loss in sample diversity or quality.

Future directions for improving the prior: DALL·E 2’s latent diffusion prior leverages CLIP space

to produce semantically aligned image embeddings. Still, there is room to improve its efficiency

and controllability. One avenue is to enhance the text conditioning pathway, such as scaling the text

encoder or introducing structured cross-attention. As shown in Imagen [540], boosting language

understanding often yields greater perceptual gains than enlarging the generator.

In parallel, alternatives like Flow Matching [364] propose learning deterministic vector fields to

transport samples from noise to target latents. Trained with optimal transport, this approach can

shorten generative paths and accelerate sampling—making it a promising direction for future priors.

Together, these advances in conditioning and transport modeling inform newer architectures such as

DALL·E 3, which further optimize semantic grounding and inference speed.

Figure 20.86: DALL·E 2 text-to-image examples. These 1024×1024 samples, generated by a

production-scale version of the model, demonstrate high fidelity and strong semantic alignment.

The use of CLIP-based priors and diffusion decoders enables complex compositional reasoning and

stylistic control, outperforming discrete-token models.
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Diffusion-Based Decoder

Once a CLIP image embedding z⃗i ∈ R
d is sampled from the diffusion prior, it is transformed into a

photorealistic image by a cascade of diffusion models. This stage replaces the discrete VQ-VAE

decoder used in DALL·E 1 with a hierarchy of class-conditional diffusion models trained to generate

increasingly detailed images from the continuous latent z⃗i. The decoder consists of three main

components:

• A base decoder, trained to generate a 64×64 RGB image from Gaussian noise conditioned

on z⃗i.

• A mid-level super-resolution model, which upsamples the 64× 64 output to 256× 256,

conditioned on both z⃗i and the lower-resolution image.

• A high-resolution super-resolution model, which refines the image from 256× 256 to

1024×1024, again conditioned on both z⃗i and the previous output.

Each module in the cascade is implemented as a U-Net [532], modified to support semantic con-

ditioning via cross-attention. At multiple layers within the U-Net, the CLIP image embedding

z⃗i ∈ R
d is first projected through a learned MLP to produce a conditioning vector. This vector is

then broadcast and used as the key and value in Transformer-style cross-attention blocks, where the

U-Net’s intermediate activations serve as queries. This mechanism enables the model to inject global

semantic context into spatially localized features during each denoising step.

This architecture follows the conditional pathway introduced in GLIDE (see Enrichment 20.11.1),

where cross-attention is used to integrate text embeddings. However, DALL·E 2 replaces textual

input with the CLIP image embedding z⃗i, and applies this conditioning across a cascade of three

independently trained diffusion models—each specialized for a different output resolution.

All diffusion modules are trained separately using the standard noise prediction objective from

denoising diffusion probabilistic models (DDPMs). Given a clean training image x⃗0 ∼ pdata, the

forward process produces noisy versions x⃗t at discrete timesteps t ∈ {1, . . . ,T} using the variance-

preserving formulation:

x⃗t =
√

ᾱt⃗x0 +
√

1− ᾱtε, ε ∼N (0, I),

where ᾱt defines a precomputed noise schedule. Each model is trained to predict ε from x⃗t , condi-

tioned on both t and the CLIP embedding z⃗i, using the following loss:

Ldecoder = Ex⃗0 ,⃗zi,t,ε

[
λ (t) · ∥ε− εθ (⃗xt , t ,⃗zi)∥2

2

]
,

where λ (t) is a weighting function that emphasizes earlier timesteps, which are often more uncertain

and semantically significant.

Each model in the cascade integrates the global semantic embedding z⃗i using cross-attention blocks

inserted at multiple resolutions within a U-Net backbone. This mechanism allows the decoder to

preserve semantic alignment throughout the generation process—from coarse layout at 64×64 to

fine-grained detail at 1024×1024.

To upscale intermediate outputs, each super-resolution model is conditioned on both the CLIP

embedding z⃗i and the image produced by the preceding stage. These inputs are concatenated channel-

wise and injected into the U-Net’s input layers, enabling the model to combine high-level semantics

with spatial structure. This design preserves detail continuity across scales and mitigates the risk of

semantic drift.
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The cascaded diffusion strategy offers several advantages: modular training at different resolutions,

efficient capacity allocation, and improved fidelity without sacrificing alignment. This architecture

departs from the discrete token decoder used in DALL·E 1, embracing a continuous latent refinement

path. It also anticipates later systems such as Imagen [540] and Stable Diffusion [531], which

similarly leverage latent diffusion and hierarchical super-resolution.

Semantic Interpolation and Reconstruction in CLIP Latents

One of the key advantages of using CLIP image embeddings as the intermediate representation is

the ability to manipulate and interpolate between visual concepts in a semantically meaningful way.

Since the decoder learns to map from this continuous space to photorealistic images, it inherits the

smoothness and structure of the CLIP embedding space.

DALL·E 2 supports reconstruction from any CLIP image embedding z⃗i. This capability is demon-

strated in reconstructions from progressively truncated principal components of the CLIP embedding.

As shown in the following figure, low-dimensional reconstructions preserve coarse layout and object

categories, while higher-dimensional reconstructions recover finer details such as texture, shape, and

pose.

Figure 20.87: Reconstructions from truncated CLIP embeddings. Each row reconstructs an

image from a version of its CLIP embedding projected into a subset of PCA components. As more

dimensions are retained, visual fidelity improves. Rightmost column shows the original image.
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In addition, the model enables semantic variations by perturbing the CLIP embedding z⃗i before

decoding. By sampling different noise seeds or slightly shifting z⃗i, the decoder generates alternate

renderings that retain the core semantics while altering attributes like style, viewpoint, or background

content. This property is shown in the below figure, where variations of a logo and painting preserve

their essential content while modifying incidental details.

Figure 20.88: Semantic variations from CLIP embeddings. Multiple outputs from the decoder

using the same image embedding with different noise seeds. Style and fine-grained details vary

while core semantic features (e.g., clock, strokes, color gradients) are preserved.
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Beyond single-image variations, the decoder also supports interpolation between CLIP embed-

dings. Given two embeddings z⃗
(1)
i and z⃗

(2)
i , one can linearly interpolate to create intermediate

representations:

z⃗
(α)
i = (1−α) ·⃗ z(1)i +α ·⃗ z(2)i , α ∈ [0,1],

and decode each z⃗
(α)
i to obtain a smooth visual transition. The following figure illustrates this,

showing how both content and style blend across the interpolation path.

Figure 20.89: Interpolation between CLIP image embeddings. Interpolated vectors in the CLIP

embedding space generate images that blend structural and stylistic aspects from two inputs. Each

row fixes the decoder noise seed.
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Further, textual edits can be translated into image modifications using vector arithmetic in CLIP

space. If t⃗1 and t⃗2 are CLIP text embeddings corresponding to prompts like “a photo of a red car”

and “a photo of a blue car”, one can construct:

z⃗edited
i = z⃗i +λ · (⃗t2− t⃗1),

to steer the image generation toward a modified concept. This enables controlled, attribute-specific

image edits as demonstrated in the below figure.

Figure 20.90: Text-based image editing via CLIP latent arithmetic. Rows show gradual edits by

interpolating between a reference image embedding and a direction defined by CLIP text embeddings.

DDIM inversion ensures a faithful reconstruction of the source.

These capabilities demonstrate that the decoder does more than map a fixed vector to a fixed

image—it enables meaningful navigation and manipulation within a high-dimensional semantic

space. This design aligns well with human interpretability, creative applications, and interactive

editing, bridging the gap between language and vision in a continuous and expressive manner.
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Robustness and Generalization of the Decoder

A notable strength of the DALL·E 2 decoder lies in its ability to produce semantically coherent

images even when faced with ambiguous or adversarial prompts. This property emerges from the

decoder’s dependence on the CLIP image embedding z⃗i, which encodes high-level semantic content

rather than raw text features. Despite the decoder’s lack of direct access to the original caption, its

generation process remains surprisingly resilient.

The following figure exemplifies this phenomenon using typographic attacks. These are specially

crafted images that contain misleading text elements designed to confuse vision-language models.

The figure shows how, even when CLIP’s text-image alignment score is nearly zero for the correct

label (e.g., “Granny Smith apple”), the decoder nonetheless produces plausible images consistent

with the intended semantics.

Figure 20.91: Typographic attacks and decoder robustness. Despite misleading visual tokens

(e.g., text overlays), the decoder can still produce correct samples (e.g., apples) when conditioned

on misleading CLIP embeddings. This suggests a degree of semantic resilience inherited from the

latent space, though susceptibility to adversarial perturbations remains a concern. Figure adapted

from [508].

The decoder’s robustness stems partly from the structure of the CLIP latent space, which prioritizes

high-level semantic attributes while discarding low-level noise [498]. By conditioning on global

CLIP embeddings rather than raw pixels, the decoder inherits a degree of semantic abstraction and

resilience. This acts as a form of latent filtering, enabling generalization across modest perturbations

and preserving semantic coherence even under ambiguous or corrupted inputs.
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However, the decoder also inherits CLIP’s limitations. Because CLIP is trained contrastively on

noisy web-scale data, its latent space can reflect biases or fail in edge cases—such as typographic

attacks [179] or adversarial prompts [800]. These vulnerabilities propagate directly into the decoder,

which lacks any mechanism to question or correct the conditioning input. As a result, failures in

CLIP—e.g., misinterpretation of text-image associations or overfitting to dominant visual styles—can

manifest as incoherent or misleading generations.

These issues highlight the trade-offs of using frozen, independently trained encoders for generative

tasks. While such encoders provide efficiency and stability, they limit adaptability: the decoder re-

ceives no gradient feedback about misaligned latents and cannot adjust its interpretation dynamically.

Future directions may involve closer coupling between encoder and decoder—through joint training,

adaptive conditioning, or feedback mechanisms—to improve robustness and mitigate failures under

distributional shifts.

Dataset Construction and Semantic Pretraining

The foundation of DALL·E 2 lies in its use of the CLIP model [498], which defines a shared latent

space for text and images. CLIP is pretrained on a massive, web-scale dataset comprising over 400

million image–caption pairs. This dataset—structurally similar to LAION [555]—is curated by

crawling the internet for images with surrounding natural language descriptions, such as alt text or

nearby HTML content.

Each image–text pair in the dataset is treated as a weakly supervised alignment between visual

content and language. No manual annotation is performed; instead, the system relies on heuristics

such as language filters, deduplication, and image-text consistency scores to ensure basic data quality.

The resulting corpus exhibits high diversity in style, domain, and resolution, but also inherits noise,

biases, and artifacts common to large-scale web data.

CLIP is trained using a symmetric contrastive loss (InfoNCE), in which paired text and image

embeddings are pulled together in latent space, while unpaired examples are pushed apart. This

strategy produces a semantic embedding space where proximity reflects conceptual similarity,

enabling zero-shot recognition and flexible conditioning in downstream generative models.

Because DALL·E 2 reuses this fixed latent space for both its prior and decoder, the properties

of the CLIP dataset fundamentally shape the behavior of the generation pipeline. The abstract,

high-level alignment captured by CLIP allows the model to generalize across prompts and visual

styles—but also introduces inherited limitations, such as uneven category coverage, culturally

specific associations, and susceptibility to adversarial captions [179, 800].

Future systems may benefit from cleaner or more targeted datasets, multi-modal filtering techniques,

or joint training strategies that better align vision and language across diverse distributions. However,

the scale and breadth of LAION-style corpora remain essential for achieving the wide generalization

capabilities characteristic of models like DALL·E 2.



1300 Chapter 20. Lecture 20: Generative Models II

Image Quality and Diversity: Qualitative and Quantitative Results

DALL·E 2 demonstrates a significant leap in both sample fidelity and diversity compared to earlier

models such as DALL·E 1 and GLIDE [450]. Its design leverages the semantic richness of the CLIP

latent space and the spatial precision of cascaded diffusion decoders to generate high-resolution

images that are both realistic and semantically aligned with input prompts.

To evaluate zero-shot generalization, the authors compare DALL·E 2 with other models on MS-

COCO prompts. As shown in the following figure, DALL·E 2 consistently produces more photoreal-

istic and diverse outputs, outperforming both DALL·E 1 and GLIDE in terms of visual quality and

semantic relevance.

Figure 20.92: Zero-shot generation on MS-COCO prompts. DALL·E 2 generates high-fidelity

images that surpass prior models in semantic alignment and detail preservation, despite no supervised

training on the target distribution. Figure adapted from [508].
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Qualitatively, the model captures fine stylistic variations and compositional semantics, even for

abstract or imaginative prompts. Quantitatively, the authors report strong performance on both

FID and CLIP score metrics, indicating a favorable balance between visual realism and prompt

conditioning. Importantly, the model achieves these results without explicit caption-to-image pairing

during decoder training, relying solely on alignment via CLIP embeddings.

Together, these findings affirm that at the time of publication, DALL·E 2 achieved a new state-of-the-

art in text-to-image synthesis, combining high sample quality with broad generalization and stylistic

diversity.

Design Limitations and Architectural Tradeoffs

Despite its impressive performance, DALL·E 2 [508] exposes critical limitations that motivate

further innovation. Most notably, the system’s reliance on a frozen CLIP encoder [498] introduces a

structural bottleneck: the decoder generates images not from text directly, but from a static image

embedding z⃗i inferred from the CLIP text embedding z⃗t . This detachment limits the model’s capacity

to resolve ambiguities in prompts or adapt to subtle shifts in meaning, especially for underrepresented

concepts.

Because CLIP is pretrained independently on noisy web-scale data, it inherits biases and semantic

gaps that the decoder cannot overcome. This can lead to mismatches between the user’s intention and

the generated image, particularly in edge cases or when precision is required. Moreover, the three-

stage pipeline—comprising the frozen encoder, the diffusion prior, and the cascaded decoder—adds

system complexity and introduces potential fragility in the interfaces between components.

While this modular design supports reuse and targeted improvement, it also leads to a fragmented

learning objective: no component is trained end-to-end with the final pixel output in mind. As a

result, the system may excel in global compositionality but struggle with local consistency, prompting

interest in more unified alternatives.

Stepping Towards Latent Diffusion Models

The architecture of DALL·E 2 [508] introduced a modular pipeline in which a frozen CLIP model

provides a shared semantic space for both text and image, a diffusion prior generates image em-

beddings from text, and a cascaded decoder reconstructs full-resolution images. While this design

offers flexibility and component reuse, it enforces strict boundaries between modules: the decoder

receives only static CLIP embeddings, and the pipeline precludes gradient flow from image outputs

back to the text encoder or semantic space. As a result, DALL·E 2 cannot adapt its conditioning

representations to improve prompt alignment or compositional accuracy during training. These

limitations constrain its ability to generate coherent visual outputs for complex or nuanced captions.

Around the same time, Latent Diffusion Models (LDMs) [531] emerged as a unified alternative

to modular architectures like DALL·E 2. Instead of relying on frozen semantic embeddings as

generation targets, LDMs train a variational autoencoder (VAE) to compress high-resolution images

x⃗ ∈ R
H×W×3 into a spatially structured latent space z⃗ ∈ R

h×w×d . This latent representation preserves

both semantic content and spatial locality while significantly reducing dimensionality, allowing

diffusion to operate over p(⃗z) rather than p(⃗x).



1302 Chapter 20. Lecture 20: Generative Models II

This decoupling of image space and generation space yields several key advantages. By performing

diffusion in a compressed latent domain—typically of size h×w× d with h,w≪ H,W—LDMs

significantly reduce the dimensionality of the generative process. This reduces memory consumption

and accelerates training and inference, since the denoising network operates over fewer spatial

locations and lower-resolution feature maps. While the final output must still be decoded into a

full-resolution image, working in latent space greatly reduces the number of operations performed

during iterative sampling.

Equally important is the spatial structure of the latent representation. Unlike global vectors such

as CLIP embeddings—which collapse all spatial variation into a single descriptor—LDMs retain

two-dimensional topology in the latent tensor z⃗ ∈Rh×w×d . This means that different spatial positions

in z⃗ can correspond to different image regions, allowing localized control and making it possible to

model object layout, interactions, and spatial dependencies directly within the generative process.

Conditioning in LDMs is typically handled by a frozen text encoder (e.g., CLIP or T5), but rather than

being used as a generation target, its features are injected into the denoising U-Net via transformer-

style cross-attention modules at multiple spatial resolutions. This allows the model to integrate

textual guidance at each step of the generation process.

This architectural strategy yields several compositional advantages:

• Spatially grounded text control: Prompt components (e.g., “a red ball on the left, a blue cube

on the right”) can influence corresponding spatial locations in z⃗, allowing for position-aware

generation.

• Support for complex scene structure: The model can synthesize multiple entities with varied

poses, attributes, and spatial relationships, reflecting the structure and grammar of the input

prompt.

• Incremental and localized alignment: Because conditioning is applied repeatedly throughout

the U-Net, the model can iteratively refine alignment with the prompt during denoising—rather

than relying on a single global embedding passed at the start.

While the VAE and diffusion model are commonly trained separately for modularity and ease of

optimization, they can also be fine-tuned jointly. This allows the learned latent space to adapt more

directly to the generation task, potentially improving sample coherence and prompt fidelity.

In summary, LDMs replace static, globally pooled embeddings with a spatially structured, semanti-

cally responsive framework—laying the foundation for a new generation of controllable and scalable

generative models. Although not originally proposed as a corrective to DALL·E 2, LDMs address

many of its limitations, such as the reliance on fixed embeddings, lack of spatial awareness, and

modular non-differentiability. Stable Diffusion, released in mid-2022, embodies this design philoso-

phy, offering high-resolution, prompt-aligned generation through a fully open and extensible latent

diffusion pipeline.

OpenAI’s DALL·E 3, introduced subsequently, is widely believed to adopt similar principles—including

latent diffusion and closer integration with large language models such as GPT-4—to improve prompt

adherence and editing flexibility. However, due to the proprietary nature of its architecture and

training methodology, we now focus on the open and reproducible advances of latent diffusion

models, which provide a transparent and theoretically grounded foundation for modern text-to-image

generation.
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Enrichment 20.11.4: Latent Diffusion Models (LDMs)

Overview and Conceptual Shift

Latent Diffusion Models (LDMs) [531] represent a key evolution in generative modeling by address-

ing the inefficiencies of pixel-space diffusion. Traditional diffusion models, while powerful, operate

directly over high-dimensional image tensors x⃗ ∈ R
H×W×3, making both training and sampling

computationally expensive—especially for high-resolution generation. LDMs resolve this by first

learning a perceptual autoencoder that maps images to a compact, spatially-structured latent space

z⃗ ∈Z . Instead of modeling raw pixels, the denoising diffusion process unfolds within this learned

latent space, where semantics are preserved but uninformative low-level details are abstracted away.

This architectural shift yields several benefits. Operating in Z drastically reduces memory and

compute costs, enabling high-resolution synthesis on modest hardware. The latent space is trained

to preserve visually meaningful structures, improving the efficiency of generation. Moreover,

conditioning signals—such as text, class labels, or image layouts—can be integrated directly into

the latent denoising process via cross-attention mechanisms, giving rise to controllable, modular,

and semantically aligned generation. We begin by braking down the components and training stages

of LDMs, highlighting their conceptual differences from earlier approaches like DALL·E 2 and

motivating their widespread adoption in modern generative pipelines.

Autoencoder Architecture and Training Objective

Latent Diffusion Models (LDMs) [531] begin by compressing images into a spatially structured

latent space z⃗ ∈ Z ⊂ R
H ′×W ′×C, where H ′,W ′ ≪ H,W . This compression is achieved using a

continuous variational autoencoder (VAE), whose goal is to preserve semantic information while

discarding perceptually redundant pixel-level detail. The resulting latent representation balances

fidelity with efficiency, enabling tractable diffusion modeling at high resolutions.

The encoder Eφ consists of a deep convolutional residual network that progressively downsamples

the input image and outputs per-location Gaussian parameters (µ, logσ2). Latent codes are sampled

using the reparameterization trick:

z⃗ = µ(x)+σ(x)⊙ ε, ε ∼N (0,I),

ensuring differentiability for stochastic latent sampling. The decoder Dθ mirrors this structure with

transposed convolutions and residual upsampling blocks to reconstruct the image x̂ = Dθ (⃗z).

The training objective combines four complementary losses:

• Pixel-level reconstruction loss: Ensures basic structural and color fidelity between the input

and reconstruction. Typically chosen as ℓ1 or ℓ2 loss:

Lpixel = ∥x− x̂∥1 or ∥x− x̂∥2
2.

While effective at preserving coarse structure, this term alone often leads to overly smooth or

blurry outputs due to averaging across plausible reconstructions.

• Perceptual loss (LPIPS): Mitigates blurriness by comparing activations (extraxcted features)

from a pretrained CNN acting as a feature extractor φ , such as VGG16, in its final layer or in

multiple intermediate layers:

Lpercep = ∥φ(x)−φ(x̂)∥2
2.

This loss encourages the decoder to preserve semantic and texture-level features, such as

object boundaries and surface consistency, beyond raw pixels.
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• KL divergence: Encourages the encoder’s approximate posterior q(⃗z | x⃗) to remain close to a

fixed Gaussian prior N (0,I),

LKL = DKL (q(⃗z | x⃗) ∥N (0,I)) .

This term imposes structure and compactness on the latent space Z , which is essential for sta-

ble sampling and meaningful interpolation. By aligning q(⃗z | x⃗) with an isotropic Gaussian, the

model ensures that randomly sampled latents resemble those seen during training—preventing

degenerate or out-of-distribution samples. Moreover, it facilitates smoother transitions across

the latent manifold, which is critical for tasks like class interpolation, latent editing, and

controllable generation.

• Adversarial loss (optional): Introduced to restore high-frequency details that perceptual

losses may not fully capture. A PatchGAN-style discriminator D is trained to distinguish real

versus reconstructed patches:

LD =− logD(x)− log(1−D(x̂)), Ladv =− logD(x̂).

This setup improves realism by aligning reconstructions with the local statistics of natural

images, especially for textures such as hair, fabric, and foliage.

The total loss combines these components with tunable weights:

Ltotal = λ1Lpixel +λ2Lpercep +λ3LKL +λ4Ladv.

In contrast to VQ-VAE architectures that discretize latents using a finite codebook, LDMs adopt

a continuous latent space, allowing gradients to flow smoothly through the encoder and decoder.

This continuity facilitates stable optimization. Furthermore, unlike approaches such as DALL·E 2

that rely on frozen, externally trained embeddings (e.g., CLIP), the latent space Z in LDMs is

learned directly from data and refined through perceptual and adversarial objectives. As a result, the

representations are not only compact but also well-aligned with the generative process, improving

synthesis quality and of greater adaptability to the training domain.

Figure 20.93: Latent Diffusion Model architecture overview [531]. LDMs operate in a learned

latent space Z , obtained via a pretrained autoencoder. Conditioning (e.g., on text) is supported either

via concatenation or through cross-attention layers within the denoising U-Net. Figure adapted from

the original paper (Fig. 3).
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Autoencoder Architecture and Latent Normalization

Latent Diffusion Models (LDMs) [531] begin by compressing high-resolution images x ∈R
H×W×3

into a spatially structured latent representation z⃗ ∈ R
h×w×C, where h≪ H, w≪W , and typically

C = 4. This compression is performed by a perceptual autoencoder consisting of a convolutional

encoder Eφ and decoder Dθ , trained separately from the generative diffusion model.

Encoder and Decoder Design The encoder Eφ is built from residual convolutional blocks with

stride-2 downsampling, group normalization, and a spatial self-attention layer near the bottleneck.

Rather than directly outputting the latent z⃗, the encoder predicts a distribution over latents by produc-

ing two tensors of shape R
h×w×C: the mean µ and the log-variance logσ2. These are concatenated

into a single tensor of shape R
h×w×2C and used to sample latents via the reparameterization trick:

z⃗ = µ +σ ⊙ ε, ε ∼N (0,I).

The decoder Dθ mirrors the encoder’s structure using upsampling residual blocks and convolutions.

The final output passes through a tanh activation to restrict pixel values to the range [−1,1], ensuring

alignment with the normalized image input domain and promoting numerical stability.

1 # From ldm/modules/autoencoder/modules.py

2

3 class AutoencoderKL(nn.Module):

4 def encode(self, x):

5 h = self.encoder(x) # Conv + ResBlock + Attention

6 moments = self.quant_conv(h) # Projects to (mu, logvar)

7 return moments

8

9 def decode(self, z):

10 z = self.post_quant_conv(z) # Linear 1x1 conv

11 x_hat = self.decoder(z) # Upsample + Conv stack

12 return torch.tanh(x_hat) # Outputs in [-1, 1]

Latent Normalization for Diffusion Compatibility After training the autoencoder, the encoder

Eφ maps images x ∈ R
H×W×3 to continuous latent representations z⃗ ∈ R

h×w×C via reparameterized

sampling. These latents, however, typically have a standard deviation significantly larger than 1 (e.g.,

σ̂⃗z ≈ 5.49 on ImageNet 256×256), since the encoder has not been trained with any constraint to

normalize the latent scale.

To ensure compatibility with the noise schedules and assumptions of the downstream diffusion

model—specifically, that the initial inputs should lie within a distribution close to N (0,I)—the

latents are globally normalized by a scalar factor γ , defined as the reciprocal of their empirical

standard deviation:

˜⃗z = γ ·⃗ z, γ =
1

σ̂⃗z

.



1306 Chapter 20. Lecture 20: Generative Models II

This normalization is applied after training the autoencoder but before training the diffusion model.

It ensures that the scale of the latent representations matches the variance assumptions of the DDPM

forward process, allowing the use of standard Gaussian-based noise schedules (e.g., cosine or linear

beta schedules) without requiring architectural or hyperparameter adjustments.

For example, if the empirical standard deviation of z⃗ is σ̂⃗z = 5.49, then γ ≈ 0.18215. This calibrated

latent distribution becomes the new data domain Z ⊂ R
h×w×C over which the denoising diffusion

model is trained.

By aligning the latent distribution with the assumptions of the diffusion framework, this scaling step

improves training stability and sample quality, while retaining the benefits of working in a compact

and perceptually aligned representation space.

Denoising Diffusion in Latent Space

Once the variational autoencoder has been trained and frozen, Latent Diffusion Models (LDMs)

reformulate the generative process as a denoising task in the latent space Z ⊂ R
h×w×C. Rather

than modeling high-dimensional pixel distributions, a Denoising Diffusion Probabilistic Model

(DDPM) [223] is trained to model the distribution of latents produced by the encoder Eφ (x). For

background on diffusion model fundamentals, see 20.9.1.

Given a clean latent z0 = Eφ (x), the forward process gradually corrupts it through a fixed Markov

chain:

q(zt | zt−1) = N (zt ;
√

1−βt zt−1,βt I), q(zt | z0) = N
(
zt ;
√

ᾱt z0,(1− ᾱt)I
)
,

where ᾱt = ∏
t
s=1(1−βs) accumulates the noise schedule.

The denoising network εθ is trained to predict the noise ε ∼N (0,I) added to the latent at each step.

The objective is a mean-squared error loss:

Ldenoise = Ez0,ε,t

[
∥ε− εθ (zt , t,τ)∥2

2

]
,

where zt =
√

ᾱt z0 +
√

1− ᾱt ε , and τ ∈ R
N×d is a sequence of embedded caption tokens from a

frozen CLIP text encoder.

Importantly, all operations take place in the compressed latent space. The output z0 of the reverse

diffusion process is never directly decoded from the text, but instead synthesized through iterative

noise removal guided by linguistic context. Only after this denoised latent is produced does the

VAE decoder Dθ reconstruct the final image—bridging the semantic alignment in latent space with

rendering in pixel space.

We now examine the architecture of εθ , which must reconcile temporal, spatial, and textual condi-

tioning across the entire denoising trajectory.

Architecture of the Denoising U-Net In Latent Diffusion Models (LDMs) [531], the denoising

network εθ is a modified U-Net that operates entirely within a learned latent space z⃗t ∈ R
h×w×C,

where spatial structure is preserved despite dimensionality reduction. This latent space is produced

by a pre-trained VAE encoder Eφ , which maps high-resolution images x ∈ R
H×W×3 into compact

latent representations. During inference, the VAE decoder Dθ reconstructs the final image from a

denoised latent z⃗0. Thus, generation is fully decoupled from rendering: the diffusion model performs

structured denoising in latent space, and the VAE handles the final image synthesis.
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• Residual blocks: Each resolution stage of the U-Net uses residual blocks composed of

convolution, group normalization, and nonlinearity, with a skip path that adds the block’s

input to its output. This improves gradient flow and stability across the network depth, while

supporting effective feature reuse in the latent space.

• Skip connections: Encoder–decoder symmetry is preserved by lateral skip connections that

pass early, high-resolution latent features to later decoding stages. These connections maintain

fine-grained spatial information—such as object boundaries and texture—that may otherwise

degrade through diffusion noise and downsampling.

• Self-attention layers: Near the bottleneck, self-attention modules allow each latent location to

attend to the full latent map. This models long-range dependencies critical for spatial relations

like “above,” “behind,” or “next to,” and enables coherent global structure during denoising.

• Timestep conditioning: At each denoising step t, the model is informed of the expected

noise level via sinusoidal embeddings e⃗t , projected through an MLP to a vector γ⃗t ∈ R
C. This

conditioning vector is broadcast and added to intermediate feature maps h⃗ ∈ R
C×h×w inside

each residual block:

h⃗′ = h⃗+Proj(⃗γt).

This simple additive modulation allows the model to adapt its behavior across timesteps,

progressively refining coarse structure into fine detail as t→ 0.

• Cross-attention conditioning: Semantic control is introduced via transformer-style cross-

attention blocks applied at multiple U-Net resolutions. Given a caption embedding τ ∈ R
N×d ,

obtained from a frozen CLIP text encoder, each spatial feature in the latent map z⃗t ∈ R
h×w×C

is projected to a query vector. The tokens in τ are projected into keys and values. Attention is

computed as:

Attention(⃗q, K⃗,V⃗ ) = softmax

(
q⃗ · K⃗⊤√

d

)
V⃗ .

This enables each latent location to dynamically attend to the most relevant parts of the prompt.

For instance, if the caption is “a red cube on the left and a blue sphere on the right,” left-side

latents focus more on “red cube,” while right-side latents emphasize “blue sphere”.

The advantages of this formulation include:

– Spatial specificity: Token-level attention guides individual regions of the latent map,

enabling localized control.

– Semantic compositionality: Different parts of the prompt influence different subregions

of the latent, enabling compositional generation.

– Dynamic guidance: The prompt influences the denoising at every step, enabling consis-

tent semantic alignment throughout the trajectory.

This contrasts with global CLIP embedding approaches used in DALL·E 2, which apply

the prompt as a static conditioning vector, losing fine spatial control. Here, cross-attention

integrates linguistic semantics into spatial generation at every scale and timestep.
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Note on latent–image alignment: One might worry that the denoised latent z⃗0 produced by the

diffusion model may not match the distribution of latents seen by the VAE decoder during training.

However, the diffusion model is explicitly trained to reverse noise from latents z⃗0 ∼ Eφ (x). Its

denoised outputs are thus learned to lie within the latent manifold that the decoder Dθ can reconstruct

from. The VAE does not condition on the text; instead, semantic alignment is handled entirely in the

latent space through cross-attention before decoding. This separation ensures high-quality, efficient,

and semantically grounded image generation.

Enrichment 20.11.4.1: Decoder Fidelity Without Explicit Text Conditioning

A natural concern in Latent Diffusion Models (LDMs) [531] is that the VAE decoder Dθ is not

conditioned on the caption at inference. The diffusion model generates a latent code z⃗0 ∈Z based

on text input, but the decoder reconstructs an image from z⃗0 unconditionally. This raises the question:

Can prompt-specific details be lost if the decoder never sees the text?

Why It Still Works

Although the decoder ignores the caption, it operates on latents that were explicitly shaped by a

text-conditioned diffusion model. The prompt’s semantics—object types, positions, colors—are

baked into z⃗0. The decoder’s job is not to reason about the prompt, but to faithfully render its visual

realization from the latent code.

This works because:

• The VAE is trained to reconstruct real images from latents produced by its encoder, ensuring

good coverage over Z .

• The compression factor (e.g., 4x or 8x) is modest, preserving fine detail.

• The diffusion model is trained on the encoder’s latent distribution, so its outputs lie within the

decoder’s domain.

Trade-offs and Alternatives

While this design is efficient and modular, it assumes the latent code captures all prompt-relevant

detail. This may falter with subtle prompts (e.g., “a sad astronaut” vs. “a smiling astronaut”) if

distinctions are too fine for z⃗0 to preserve.

To address this, other models extend conditioning beyond the latent stage:

• DALL·E 2 (unCLIP) [508] uses a second-stage decoder conditioned on CLIP embeddings.

• GLIDE and Imagen apply prompt conditioning throughout a cascaded diffusion decoder.

These improve prompt alignment, especially for fine-grained attributes, but increase compute

cost and architectural complexity.

Conclusion

In LDMs, text guidance occurs entirely in latent space—but that’s usually sufficient: if the denoised

latent z⃗0 accurately reflects the caption, the decoder can render it without ever “reading” the prompt.

While newer models extend semantic control to the pixel level, LDMs offer an elegant and effective

trade-off between simplicity and fidelity.



20.11 Enrichment 20.11: Additional Pioneering Works in Generative AI 1309

Classifier-Free Guidance (CFG)

To enhance semantic alignment during sampling, Latent Diffusion Models incorporate Classifier-

Free Guidance (CFG) [224]. Rather than relying on external classifiers to guide generation, the

model is trained with randomly dropped conditioning information, enabling it to interpolate between

conditional and unconditional outputs at inference time. The final prediction is given by:

ε̂CFG = (1+λ ) · ε̂θ (⃗zt , t,τ)−λ · ε̂θ (⃗zt , t,∅),

where z⃗t is the latent at timestep t, τ is the CLIP-based text embedding, and λ ∈ R+ is a guidance

weight. This simple yet powerful mechanism allows the diffusion process to be steered toward

text-conformant latents while balancing visual diversity. For a detailed derivation and architectural

breakdown, see Section 20.9.4.

Empirical Results and Ablations

LDMs have been evaluated across a wide range of tasks—unconditional generation, text-to-image

synthesis, inpainting, and style transfer.

Figure 20.94: Text-guided object removal using an LDM inpainting model [531]. The model

receives a binary mask and a natural language prompt and fills in plausible structure matching the

surrounding scene. Figure adapted from the original paper (Fig. 11).
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The authors conduct extensive ablations to identify design choices that contribute most to perfor-

mance. Key insights include:

• Compression factor matters: Mild compression ratios (e.g., h,w ≈ H/8,W/8) retain suf-

ficient perceptual detail for high-quality synthesis, outperforming VQ-based methods with

more aggressive bottlenecks.

• Text-conditional cross-attention is essential: Removing spatial cross-attention layers results

in poor prompt alignment, confirming that token-level attention is critical for semantic fidelity.

• Guidance scale tuning is nontrivial: Higher CFG values increase prompt adherence but

reduce diversity and realism. For text-to-image synthesis, guidance scales in the range

λ ∈ [4,7] are often optimal.

• Decoder quality sets an upper bound: Even perfect latent alignment cannot recover prompt-

relevant visual details if the decoder fails to reconstruct fine structure. Thus, VAE capacity

indirectly limits generation fidelity.

• Task-specific fine-tuning improves quality: Inpainting, depth conditioning, and style transfer

models trained on tailored objectives yield noticeably sharper and more controllable outputs

than generic text-to-image models.

Limitations and Transition to Newer Works Like Imagen

Latent Diffusion Models (LDMs) achieve a compelling trade-off between semantic guidance and

computational efficiency by shifting diffusion to a compressed latent space. However, two key

architectural limitations motivate newer designs:

1. Frozen CLIP Text Encoder: LDMs rely on a fixed CLIP encoder (e.g., ViT-B/32) for text

conditioning, which was pretrained for contrastive image–text alignment, not generation. As

such, it cannot adapt its embeddings to better serve the generative model. This limits the

handling of nuanced prompts, rare entities, or abstract relationships, and its relatively small

size constrains linguistic expressivity compared to large language models like T5-XXL.

2. Unconditional VAE Decoder: The decoder Dθ reconstructs images from latent vectors z⃗0

without access to the guiding text prompt. While the denoising U-Net integrates semantic

content into the latent, the decoder performs unconditional reconstruction. This design assumes

the latent fully captures all prompt-relevant details—an assumption that may falter in complex

or fine-grained prompts.

To address these issues, Imagen [540] introduces two key innovations:

• Richer Language Understanding: Instead of CLIP, Imagen uses a large frozen language

model (T5-XXL) to encode prompts. This yields semantically richer and more flexible

embeddings, better aligned with generation needs—even without end-to-end finetuning.

• Pixel-Space Diffusion: Imagen avoids latent compression during generation, performing

denoising directly in pixel space or using minimal downsampling. This preserves visual detail

and semantic fidelity more reliably than VAE-based reconstruction.

These improvements come at a cost: Imagen demands significantly higher computational resources

during training and inference, due to both its larger backbone and pixel-level denoising. As explored

next, the field continues to navigate the trade-off between efficiency and expressivity—balancing

lightweight modularity with prompt-faithful generation quality.
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Enrichment 20.11.5: Imagen: Scaling Language Fidelity in Text2Img Models

Motivation and Context

Latent Diffusion Models (LDMs) [531] showed that pushing diffusion into a compressed VAE space

slashes compute while preserving visual quality. Yet their design leaves all text conditioning to

the UNet denoiser, because the VAE decoder itself is unconditional. For complex, compositional

prompts, that separation can introduce subtle mismatches between what the caption asks for and

what the pixels finally depict.

Imagen [540] turns this observation on its head. Through a careful ablation study the authors argue

that text fidelity is limited more by the language encoder than by the image decoder. Scaling the

caption encoder (T5 [501]) from Base to XXL delivers larger alignment gains than adding channels

or layers to the diffusion UNets.

What is new in Imagen? The system freezes a 4.6-B-parameter T5-XXL to embed the prompt, then

feeds that embedding into a three-stage diffusion cascade that progressively upsamples 64�256�1024

px. This coarse-to-fine recipe is familiar, but three engineering insights make Imagen unusually

faithful to the text:

• Bigger language encoder > bigger image decoder. Ablations show that scaling the text

backbone (e.g. T5-Large→T5-XXL,≈ 4.6 B parameters) yields much larger improvements in

prompt–image alignment than enlarging the diffusion UNets. Richer linguistic representations,

not extra pixel capacity, are the main bottleneck.

• Dynamic-threshold CFG. Imagen applies classifier-free guidance but clips each predicted

image to the adaptive p-th percentile before the next denoising step. This dynamic thresholding

lets the sampler use higher guidance weights for sharper, more on-prompt images without

colour wash-out or blown highlights.

• DrawBench. The authors curate a 200-prompt suite covering objects, spatial relations,

counting, style, and abstract descriptions. In pairwise human studies on DrawBench, Imagen

is preferred over both DALL·E 2 and PARTI
1.

In what follows we examine Imagen from four complementary angles:

1. Text→Latent Coupling. We detail how the frozen T5-XXL encoder feeds its 4 096-

dimensional embeddings into every UNet block, and why this cross-attention scheme is

decisive for tight prompt grounding.

2. Three-Stage Diffusion Cascade. We walk through the 64→256→1024-pixel pipeline and

explain the dynamic-threshold variant of classifier-free guidance that stabilises high guidance

weights without introducing blow-outs.

3. Ablation Take-aways. Side-by-side experiments reveal that scaling the language encoder

delivers larger alignment gains than scaling the image UNets, and that guidance tuning

outweighs most architectural tweaks.

4. Implications for Later Work. We point out how Imagen’s design choices foreshadow prompt-

editing methods such as Prompt-to-Prompt and other text-controlled diffusion advances.

1PARTI [742] is a proprietary Google model that produces images autoregressively from discrete tokens. Because its

code and training details are not public, and its autoregressive design differs from the diffusion focus of this chapter, we

do not discuss PARTI further.
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Cascaded Diffusion Pipeline

Imagen generates high-resolution images from text using a three-stage cascaded diffusion pipeline.

A base model first synthesizes a coarse 64× 64 image conditioned on a text embedding. Two

subsequent super-resolution (SR) diffusion models then refine this output to 256×256 and finally

to 1024×1024, each conditioned on both the original text and the lower-resolution image. Noise

conditioning augmentation is applied during SR training to improve robustness. This stage-wise

design progressively enhances fidelity and detail while maintaining strong semantic alignment with

the prompt.

Figure 20.95: Visualization of the Imagen architecture [540]. A frozen T5-XXL encoder processes

the input prompt into a fixed text embedding. A base diffusion model generates a 64×64 image,

which is then upsampled to 1024× 1024 in two SR stages. Each model is trained independently.

Figure adapted from the original paper.
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Classifier-Free Guidance and Dynamic Thresholding

As outlined in Section 20.9.4, classifier-free guidance (CFG) improves text-image alignment by

combining predictions from a conditional and an unconditional denoising model. In particular, given

a noisy sample z⃗t at timestep t, the denoised prediction is adjusted as

x̂
(CFG)
0 = (1+λ ) ε̂θ (⃗zt , t,y)−λ ε̂θ (⃗zt , t,∅),

where λ ≥ 0 is the guidance weight. Larger λ values push samples closer to the conditional manifold,

increasing semantic fidelity—but they also amplify sharp transitions, outliers, and pixel intensities.

This may lead to unnatural results, especially in high-resolution stages like 1024×1024.

Problem: Oversaturation from Large Guidance

Without any correction, high CFG weights cause the predicted clean image x̂0 to exhibit pixel values

far outside the dynamic range of natural images (e.g., [−1,1] in normalized space). This leads to:

• Oversaturated colors, especially in backgrounds or small object regions.

• Loss of contrast and detail due to hard clipping of extreme values.

• Reduced diversity across samples due to overly confident predictions.

Naïve Solution: Static Thresholding

One straightforward way to ensure that the final image remains in the valid pixel range (e.g., [−1,1])
is to apply static thresholding—that is, clipping the predicted clean image x̂0 to lie within this range:

x̂
(clipped)
0 = clip(x̂0,−1,1).

While simple, this solution can degrade image quality when applied at every denoising step. During

the iterative reverse process, the model may temporarily predict pixel values outside the target range

to represent subtle visual cues—such as specular highlights, sharp edges, or deep shadows. These

out-of-range values often reflect meaningful structure that will eventually be pulled into range by the

final denoising steps. If we aggressively clip at each step, we risk:

• Flattening high-contrast regions: Highlights or shadows may be prematurely truncated,

reducing the image’s perceived depth and richness.

• Introducing artifacts: Hard cutoffs can produce unnatural boundaries or saturation plateaus,

especially in smooth gradients or textured areas.

• Destroying predictive consistency: The model’s learned denoising trajectory may rely on

temporarily overshooting the target range before converging. Clipping interferes with this

path, leading to less coherent results.

Because of these issues, it is more effective to defer clipping until the final step of the denoising

process—once x̂0 is fully predicted. However, even this final-step clipping can still be problematic

if the distribution of predictions varies across samples. This limitation motivates more adaptive

solutions such as dynamic thresholding, which adjusts the clipping range based on the specific

prediction statistics of each sample.
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Dynamic Thresholding: an Adaptive Alternative to Static Clipping

Method. Dynamic thresholding [540] rescales each denoised prediction x̂0 ∈ R
H×W×3 by a sample-

specific scale before clipping to [−1,1]. This scale s is set to the p-th percentile (typically p = 99.5)

of the absolute pixel magnitudes:

s = percentile(|x̂0|, p), x̂
(dyn)
0 = clip

(
x̂0

s
, −1, 1

)
.

This adaptive rescaling ensures that only the top (100− p)% of pixel values—those with the most

extreme magnitudes—are affected, while the bulk of the image retains its original brightness and

contrast. By adapting the clipping threshold to each image individually, dynamic thresholding avoids

global overcorrection and better preserves subtle visual detail.

Why it works (with examples and reasoning).

During denoising—especially under strong classifier-free guidance or at high resolutions—the model

often predicts pixel values slightly outside the legal image range [−1,1]. These excursions may

encode meaningful high-frequency details (like glints, reflections, or fine textures), but they can also

include spurious outliers (e.g., sharp halos, single-pixel spikes).

Static clipping flattens all values beyond this range, indiscriminately truncating both legitimate

signal and noise. For example, if a predicted pixel value is x̂0 = 1.5 and the 99.5th percentile sets

s = 1.4, then dynamic thresholding performs:

x̂0 = 1.5−→ 1.5

1.4
≈ 1.07−→ clipped to 1.0, x̂0 = 1.2−→ 1.2

1.4
≈ 0.86 (preserved).

Here, even though both values exceed the legal range, only the more extreme outlier gets clipped.

Crucially, rescaling does reduce the absolute intensity of all values, but it preserves their relative

differences. The 1.2 pixel remains brighter than others around it, so its visual role as a highlight is

maintained. This distinction would be erased by static clipping, which collapses all values above 1.0

into a hard ceiling.

Dynamic thresholding thus provides a soft-constraint mechanism that acts proportionally to the

sample’s content:

• It preserves expressive range by maintaining contrast between midtones and peaks, avoiding

the flattening effect of uniform truncation.

• It targets only extreme outliers—often isolated and perceptually disruptive—without globally

lowering brightness or contrast.

• It protects sharp detail and texture, where small overshoots encode fine structure (like fur,

edge reflections, or legible small text) rather than error.

By tailoring its response to each image’s intensity distribution, dynamic thresholding ensures

semantic expressivity and local fidelity—especially important under aggressive guidance or when

synthesizing high-resolution content.
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Figure 20.96: Comparison of thresholding strategies under high CFG weights [540]. Static clip-

ping (middle) removes extreme values but can oversaturate or flatten images. Dynamic thresholding

(bottom) scales predictions adaptively, preserving more detail while preventing distortions. Figure

adapted from the original paper.

Experimental Findings and DrawBench Evaluation

Scaling the Text Encoder

A central insight of Imagen [540] is that text encoder quality is a dominant factor in text-to-

image generation. In systematic ablations, the authors vary the underlying language model used to

encode the caption—comparing T5-Base, T5-Large, T5-XL, and T5-XXL—and observe consistent

improvements in both image-text alignment and visual fidelity as model size increases.

Figure 20.97: Imagen ablation results [540]. Scaling the text encoder improves image-text

alignment (left) and perceptual quality (right) more effectively than scaling the diffusion model.

Classifier-free guidance values are swept along the Pareto curves. Adapted from the original paper.

These results motivate a design shift: instead of primarily scaling the image generator (as done in

prior works), Imagen prioritizes high-capacity language understanding, even when the encoder is

frozen during training. This strengthens the mapping from prompt to semantic features, yielding

more accurate and coherent visual generations.
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DrawBench: A Diverse Prompt Evaluation Suite

To evaluate generative performance beyond cherry-picked prompts, the authors introduce Draw-

Bench, a human preference-based benchmark of 200 prompts spanning multiple semantic categories:

• Object and scene composition

• Spatial relationships and counting

• Style and texture

• Complex language grounding

Each model (e.g., Imagen, DALL·E 2, GLIDE, LDM, VQGAN+CLIP) generates images for each

prompt, which are then compared in a blind A/B format for:

• Alignment: Does the image accurately reflect the text prompt?

• Fidelity: Is the image visually plausible and high-quality?

Figure 20.98: Human preference results on DrawBench [540]. Imagen outperforms prior mod-

els—including DALL·E 2, GLIDE, and Latent Diffusion—in both text-image alignment and visual

fidelity across 200 prompts. Figure adapted from the original paper.

Imagen significantly outperforms the baselines on both axes, demonstrating the effectiveness of its

text encoder, CFG tuning, and cascading architecture.
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Qualitative Samples

Finally, the model produces diverse, photorealistic samples across various creative and grounded

prompts:

Figure 20.99: Photorealistic samples from Imagen [540]. The model handles fine-grained seman-

tics (e.g., “a dragon fruit wearing a karate belt in the snow”) and imaginative compositions (e.g.,

“a cute corgi lives in a house made of sushi”) with high fidelity. Figure adapted from the original

paper.

Enrichment 20.11.5.1: Toward Fine-Grained Control and Editable Generation

From Fidelity to Controllability

While models like Imagen [540] and DALL·E 2 [508] have achieved remarkable success in pho-

torealism and semantic alignment, they remain fundamentally non-interactive. Once an image is

generated from a text prompt, the process is opaque: users have no control over which elements

change if the prompt is revised.

This poses a major limitation in creative and iterative workflows. For example, a designer mod-

ifying the prompt from “a red car” to “a blue car” expects only the car’s color to change, while

preserving the original composition, lighting, and style. In practice, however, standard diffusion

pipelines—including those using classifier-free guidance (CFG)—often regenerate the image from

scratch, with unpredictable changes to unrelated regions.

Why Prompt-Aware Attention Control Is Needed

To address this, recent work focuses on editable generation—where models support localized

updates, identity preservation, and deterministic user control. Three key goals underpin this new
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research direction:

• Fine-grained editability: Allow prompt-based modifications (e.g., changing “cat” to “dog”)

without altering unrelated image regions.

• Semantic preservation: Maintain critical attributes such as object identity, layout, and lighting

even after prompt edits.

• Interactive control: Introduce modular control signals—like segmentation masks, edge maps,

or pose estimations—that act as “handles” for spatial or structural guidance.

Key Approaches and Innovations

A growing ecosystem of techniques now forms the foundation for controllable diffusion-based

generation—each offering distinct mechanisms for enabling user-guided synthesis:

• Prompt-to-Prompt (P2P) [217]: Introduces a novel method for prompt-driven editing by

intervening in the model’s cross-attention maps during inference. Instead of retraining or

re-encoding, it aligns attention weights across similar prompts to preserve spatial layout and

object identity. This enables intuitive text modifications (e.g., “red shirt” to “blue shirt”) that

affect only relevant regions, without disturbing the rest of the image.

• DreamBooth [537]: Targets personalization by finetuning a pretrained diffusion model on a

small set of subject-specific images, anchored to a rare textual token (e.g., “sks”). This allows

generation of images that retain the subject’s identity across diverse scenes and poses—crucial

for creative professionals, avatars, or character preservation tasks.

• ControlNet [773]: Enables structural conditioning through auxiliary inputs like pose skeletons,

depth maps, or edge detections. Crucially, it does so without modifying the base model by

injecting trainable control paths that are fused with the original network. This unlocks precise

spatial control and makes diffusion adaptable to external guidance from perception pipelines

or user interfaces.

• IP-Adapter [733] and Transfusion [798]: Introduce modular, plug-and-play conditioning lay-

ers designed to adapt pretrained diffusion models to new visual or multimodal signals—without

modifying the original weights. IP-Adapter uses a decoupled cross-attention mechanism that

injects CLIP-derived image embeddings alongside frozen text features, enabling flexible

image-guided generation, personalization, and cross-modal editing with only 22M trainable

parameters. Transfusion builds on this adapter paradigm by unifying visual grounding with

text and sketch modalities, enabling diverse zero-shot edits across tasks. Both approaches

preserve the underlying text-to-image capabilities, making them well-suited for scalable,

reusable, and composable image generation pipelines.

Collectively, these methods reframe diffusion models as interactive generation systems—capable of

fine-grained control, identity preservation, and user-driven customization. The following sections

delve into these approaches, starting with Prompt-to-Prompt, which introduced one of the first

scalable solutions for semantically coherent prompt editing without sacrificing layout or visual

consistency.
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Enrichment 20.11.6: Prompt-to-Prompt (P2P): Cross-Attention Editing in DMs

Motivation and Core Insight

Prompt-to-Prompt (P2P) [217] introduces a novel method for fine-grained, prompt-based image

editing in text-to-image diffusion models. Unlike prior approaches that either operate directly in

pixel space or require full model finetuning, P2P achieves precise semantic control by modifying

only the prompt and reusing internal cross-attention maps of the diffusion process.

The core insight is that in text-conditioned diffusion models (e.g., Stable Diffusion), each token in

the prompt corresponds to a spatial attention map over the latent image at every denoising step. These

maps govern “what part of the image is controlled by which word”. By injecting stored attention

maps for shared tokens between an original and edited prompt, P2P preserves image structure while

applying meaningful semantic changes.

This mechanism allows users to:

• Replace entities (e.g., “a cat”→ “a dog”) while preserving the scene layout.

• Modify stylistic details (e.g., “a photo of a mountain”→ “a charcoal drawing of a mountain”).

• Tune the emphasis of individual adjectives or objects (e.g., increasing the visual weight of

“snowy”).

Figure 20.100: Prompt-to-Prompt editing capabilities [217]. The method enables fine-grained

modifications by editing text prompts and guiding the diffusion process via attention control. Exam-

ples include adjective reweighting (top-left), object replacement (top-right), style editing (bottom-

left), and progressive prompt refinement (bottom-right).

P2P thus bridges the flexibility of prompt-based conditioning with the structural fidelity of spatial

attention, enabling zero-shot edits with pixel-level consistency. In the following, we will explain

how this method works, and see some usage examples.
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Cross-Attention as the Mechanism for Prompt Influence In text-conditioned diffusion models

such as Stable Diffusion, the U-Net backbone integrates the prompt via cross-attention layers at every

denoising step t ∈ {1, . . . ,T}. At each step, the model maintains a latent representation z⃗t ∈ R
h×w×d ,

where each of the N = h ·w spatial locations corresponds to a feature vector of dimension d. This

tensor is reshaped into a sequence z⃗i ∈ R
N×d , where each row z⃗i[n] can be interpreted as encoding

local information at spatial location n — similar to a pixel in a feature map, though potentially

corresponding to a receptive field in the original image due to earlier convolutional layers.

Let the text prompt be tokenized into L tokens, each embedded into a vector e⃗l ∈ R
d , forming an

embedding matrix E⃗ ∈ R
L×d . These embeddings serve as the key-value memory bank over which

the latent queries will attend. The cross-attention computation at each U-Net layer is then given by:

Attention(⃗zi, E⃗) = softmax

(
QK⊤√

d

)
V,

where:

• Q = WQ⃗zi ∈ R
N×d are learned linear projections of the spatial feature vectors — one per

location n,

• K = WKE⃗, V = WV E⃗ ∈ R
L×d are the projected keys and values from the prompt token

embeddings,

• At = softmax
(

QK⊤/
√

d
)
∈ R

N×L is the attention matrix at timestep t.

If the original channel dimensions of z⃗i or E⃗ differ, the projections WQ,WK ,WV are used to map both

inputs into a shared dimension d, ensuring compatibility. These are learnable parameters trained

end-to-end with the diffusion model.

Each entry At [n, l] quantifies how much the token wl influences the generation at spatial position

n. This allows us to interpret the model as dynamically querying which parts of the prompt should

affect which spatial regions of the latent representation.

We define the cross-attention map for token wl at timestep t as:

Mt
l := At [:, l] ∈ R

N ,

where At ∈ R
N×L is the cross-attention matrix at timestep t, with N = h×w denoting the number of

spatial locations in the latent feature map and L the number of text tokens. The slice At [:, l] selects

the attention weights from all spatial positions to the token wl , yielding a heatmap over image space

that describes how strongly each location attends to the semantic concept expressed by wl .

This vector Mt
l can be reshaped into a 2D grid Mt

l ∈ R
h×w to match the spatial resolution of the

U-Net features, allowing a visual interpretation of where token wl is grounded at step t. For example,

if wl = “dog”, the corresponding map Mt
l will have high values in regions corresponding to the

predicted dog’s body, such as its head or torso.

Concretely, if a spatial location i = (u,v) on the feature map has a high value Mt
l [u,v], it indicates

that the pixel at location (u,v) in the latent representation is currently being influenced by, or aligned

with, the semantics of the word “dog”. Thus, the cross-attention map captures the evolving alignment

between text tokens and spatial regions throughout the diffusion process, enabling localized text-to-

image control.
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Figure 20.101: Cross-attention maps in text-to-image diffusion models [217]. Top row: average

cross-attention maps for each word in the prompt that generated the image shown on the left,

aggregated across timesteps and layers. These maps visualize the typical spatial influence of each

token throughout the diffusion process. Bottom rows: temporal attention maps at selected denoising

steps, focusing on the tokens “bear” and “bird”. Early in the denoising process, attention maps are

diffuse and spatially ambiguous, while later steps exhibit sharper, more localized influence, revealing

how semantic concepts gradually consolidate into precise spatial regions. This temporal evolution

illustrates the emergence of spatial grounding in cross-attention and underpins the feasibility of

attention-based control mechanisms like Prompt-to-Prompt.

This attention mechanism forms the foundation for Prompt-to-Prompt’s editing capabilities: by

storing the maps Mt
l from an initial prompt and reusing them selectively during generation with a

modified prompt, one can tightly control how semantic concepts from the original image persist or

change across edits. The next part describes how this editing mechanism is implemented.

Editing by Cross-Attention Injection Prompt-to-Prompt (P2P) [217] enables fine-grained, prompt-

aware image editing by intervening in the cross-attention maps of a pre-trained text-to-image diffu-

sion model. Given an original prompt p = [w1, . . . ,wL] and a revised prompt p′ = [w′1, . . . ,w
′
L′ ], the

method aligns their token sequences and selectively manipulates attention maps Mt
l across diffusion

timesteps t ∈ {1, . . . ,T}.
The core intuition is straightforward: each token wl in the prompt attends to a spatial region in

the image via its attention map Mt
l , which evolves over time. If a token remains unchanged across

prompts—e.g., “tree” in “a dog next to a tree” versus “a cat next to a tree”—then its associated

spatial influence should also remain fixed. P2P enforces this consistency by injecting attention maps

recorded during generation with the original prompt into the diffusion process guided by the new

prompt.

By doing so, the method preserves image layout and semantic grounding for shared tokens, while

allowing newly introduced or modified tokens to affect the image selectively.
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This form of editing occurs at the cross-attention layers within the U-Net and can be controlled over

time using a timestep threshold τ , enabling smooth interpolation between preservation and change.

The key components are:

• Attention Replacement for Matching Tokens: When a token wl ∈ p appears identically in

the edited prompt p′, its attention map is replaced with the one recorded during generation of

the original image:

M′tl ←Mt
l .

This preserves the spatial layout and semantic grounding of the unchanged concept (e.g.,

“table” in both prompts “a red chair and a table” and “a blue chair and a table”).

• Word Swapping via Timestep-Gated Attention Injection:

When a token in the prompt is replaced—for example, “car”→ “truck”—the goal is to modify

the generated concept while keeping the rest of the image (e.g., layout, background, lighting)

structurally intact. Prompt-to-Prompt (P2P) achieves this via a timestep-gated injection of

cross-attention maps, controlled by a parameter τ , applied during the denoising process.

How it works: Diffusion models denoise a latent representation iteratively. At each timestep t,

cross-attention layers in the U-Net bind the current visual features (queries) to text tokens (keys

and values). The resulting attention map Mt
l ∈ R

h×w for token wl determines how strongly

each spatial location should attend to that token.

Importantly, these maps encode where in the image each token is relevant—but not what the

token means. The token’s semantic identity is carried through its embedding v⃗l , projected

into the attention’s value vectors V . During cross-attention, each spatial location receives a

weighted sum of the values, using the attention map as weights:

Output = M̂t
l ·V ′l

In word swapping, P2P modifies the attention maps M̂t
l as follows:

M̂t
l =

{
M′tl if t < τ (use attention map from the new prompt)

Mt
l if t ≥ τ (inject original map from the old prompt)

Why it works: Early in the diffusion process, the model determines the coarse structure—object

layout, pose, and geometry. Using M′tl here ensures the new token (e.g., “truck”) can shape

its own spatial identity, learning its approximate location and structure. Crucially, the values

V ′l always come from the new token embedding, so the semantic content being drawn from is

never related to the original token (“car”).

Later in the process (t ≥ τ), the model begins refining texture, shading, and scene consistency.

At this point, P2P injects the original attention maps Mt
l while still using the new values V ′l .

This means the model is now told: “inject the semantic content of a truck, but do so in the

spatial pattern where a car originally appeared.”

This is the crucial trick: the new concept (truck) inherits the spatial context of the old concept

(car)—its location, size, and perspective—but none of its identity. There is no semantic leakage

from the original word because the values, which carry the detailed information injected into

the visual features, still come from the new prompt.
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Example: When editing “a red sports car on a road” into “a red truck on a road,” early timesteps

allow the attention of “truck” to shape its own geometry. After τ , the attention map of the

original “car” is re-used, telling the model where in the image to continue refining. The

resulting truck is structurally aligned with the original car’s pose and lighting, yet semantically

distinct.

About the parameter τ: The transition point τ ∈ [0,T ] determines when control shifts from

free composition to spatial anchoring. A smaller τ gives more influence to the new prompt,

allowing larger structural changes. A larger τ preserves more of the original layout. In practice,

intermediate values (e.g., τ ≈ 0.5T ) often strike a balance between visual fidelity and effective

editing.

• Adding New Phrases:

Suppose we augment the prompt from “a house in the snow” to “a house in the snow with a

tree”. Our goal is to preserve the existing content (house, snow) while introducing the new

concept (tree) in a natural and non-destructive way.

How it works: Let p and p′ denote the original and edited prompts, respectively. At each

timestep t, Prompt-to-Prompt constructs the edited cross-attention maps M̂t
l as follows:

– For each token wl ∈ p∩ p′ that appears in both prompts, we inject the original attention

map:

M̂t
l := Mt

l .

This enforces spatial consistency for the unchanged concepts (e.g., “house”, “snow”).

– For each newly added token wl ∈ p′ \ p, such as “tree”, we allow the model to compute

its attention map normally:

M̂t
l := M′tl .

Why it usually works: This approach biases the generation toward preserving the original

structure while carving out visual space for the new concept. The success of this balance

depends on three factors:

– Preserved attention anchors: By freezing the attention maps for shared tokens, we

ensure that their semantic influence remains fixed over the original image regions. This

strongly encourages the model to reconstruct those regions similarly in the edited version.

– Limited interference by new tokens: Although new tokens can, in principle, influence

any part of the image, their attention is typically focused on previously unclaimed or

neutral areas—such as background space—where the frozen maps from shared tokens

are weak. This is due to softmax normalization: strong attention weights from shared

tokens crowd out competing influence from new ones in key regions.

– Value-weighted blending: Even when spatial attention overlaps, the injected attention

maps act only as weights. The semantic content injected at each position still comes

from the values—i.e., the token embeddings. Since the new token (“tree”) has distinct

values from existing ones, its content will only dominate in regions where it receives

sufficient attention. In most cases, this naturally confines it to appropriate areas without

harming other objects.
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Important caveat: This method is not foolproof. If a new token’s attention overlaps heavily

with a shared token’s region, and its values inject strong or conflicting semantics, artifacts

or unintended modifications can occur. However, such cases are rare in practice, especially

for prompts that are incrementally edited or composed of semantically separable elements.

Fine-tuning the diffusion guidance strength or manually constraining attention can further

mitigate these risks.

Example: Inserting “a tree” into “a house in the snow” results in a tree appearing beside the

house—often in the background or foreground—without shifting or deforming the house itself.

The spatial layout and visual style of the original scene are preserved because the attention

maps for “house” and “snow” remain fixed, shielding those areas from disruption.

• Attention Re-weighting (Optional):

In prompts containing multiple concepts—such as “a cat on a chair with sunlight in the back-

ground”—we may wish to emphasize or suppress specific elements. For instance, one might

want to intensify “sunlight” to brighten the scene or reduce the visual clutter associated with

“background”. Prompt-to-Prompt enables this via a technique called attention re-weighting,

also referred to as fader control.

How it works: Let j∗ denote the index of the token to be modified, and let c ∈ [−2,2] be

a scaling coefficient. At each diffusion step t, the cross-attention map Mt ∈ R
N×L from

the original prompt’s generation is reweighted to obtain M̂t , where each spatial position

i ∈ {1, . . . ,N} attends over the L tokens:

M̂t
i, j :=

{
c ·Mt

i, j if j = j∗

Mt
i, j otherwise

After reweighting, each row M̂t
i,: is typically renormalized (e.g., using softmax) to ensure the

attention remains a valid distribution.

Why it works: Cross-attention determines where each token’s semantics are injected into the

latent image during denoising. The weights Mt
i, j are used to combine the value vectors v⃗ j (from

the token embeddings), controlling how much each token contributes at location i. Increasing

c boosts the pre-softmax score for token j∗, which raises its relative weight after softmax:

Softmax(M̂t
i,:)[ j

∗] =
e

cMt
i, j∗

∑
L
k=1 e

M̂t
i,k

.

Thus, more pixels are drawn to the token’s semantic content, strengthening its influence.

Conversely, reducing c weakens this effect.

Why it usually doesn’t disrupt other objects: Reweighting adjusts only a single token’s attention

column. Since the attention is row-wise normalized, boosting one token proportionally reduces

others—but only at spatial locations where that token already had influence. For unrelated

concepts with disjoint spatial support, the impact is minimal. That said, large c values can

overpower neighboring tokens in shared regions, potentially distorting their features.

Example: Increasing c for “sunlight” enhances brightness across attended regions, reinforcing

highlights and atmospheric glow. Suppressing “background” with a low c reduces texture

variation and visual noise, producing a cleaner, more focused composition.
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These operations allow users to perform prompt-level edits—such as word substitution, phrase

addition, or semantic emphasis—while preserving coherence, layout, and object identity in the

image. Crucially, attention injection is not applied uniformly across the entire generation: the

timestep threshold τ allows for nuanced control over when the structure should be preserved and

when it can adapt, striking a balance between faithfulness and flexibility.

Figure 20.102: Prompt-to-Prompt method overview [217]. Top: input prompt is embedded and

fused with image features through cross-attention layers that produce one attention map per word.

Bottom: for editing, Prompt-to-Prompt injects cross-attention maps Mt from the original prompt

into the generation process of the edited prompt. This enables semantic manipulations such as word

replacement, addition, or style transfer, while preserving spatial layout and object coherence.

This mechanism is particularly effective because it leverages the spatial grounding inherent in

attention maps: regions influenced by unchanged words remain fixed, while edited words influence

only localized changes. This permits high-fidelity image editing without requiring pixel-space

operations or model retraining.

In the following, we demonstrate how this mechanism can modify object content, style, or structure

while preserving layout.

Use Case: Content Modifications via Prompt Edits Once the Prompt-to-Prompt mechanism is

in place, a natural application is controlled object substitution through prompt editing. For example,

replacing “lemon cake” with “chocolate cake” or “birthday cake” should change only the appearance

of the object itself while preserving the layout, lighting, and background structure.

The below figure demonstrates this use case. Starting from a baseline image generated from the

prompt “lemon cake”, the prompt is modified to describe other cake types. Two editing strategies are

compared:

• Top row (attention injection): P2P preserves the spatial layout of all shared words by copying

their attention maps from the original generation. Only new tokens receive fresh attention

maps.

• Bottom row (seed reuse only): The same random seed is reused, but no attention maps are

injected — each prompt is generated independently.
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In the attention-injected row, the cake’s pose, size, and plate remain stable across edits — the

structure is preserved, and only semantic details (like texture and topping) change. Without attention

injection, the geometry drifts significantly, resulting in inconsistent layouts.

Figure 20.103: Content modification through attention injection [217]. An original image

generated from the prompt “lemon cake” is edited by modifying the object type in the prompt. Top

row: Prompt-to-Prompt preserves attention maps for shared words, yielding structurally consistent

variations. Bottom row: Only the random seed is reused, resulting in less coherent object geometry

and structure.

This example highlights Prompt-to-Prompt’s ability to perform semantic transformations while

preserving the geometric footprint of unchanged content — a key feature for controlled editing in

image synthesis workflows.

We now turn to further use cases demonstrating Prompt-to-Prompt’s flexibility, including object

preservation across scene changes, gradual injection strength for stylistic blending, and real-image

editing via inversion.

Use Case: Object Preservation Across Scene Changes Prompt-to-Prompt also supports isolating

and preserving a specific object from a source image while altering the rest of the scene. This is

accomplished by selectively injecting the attention maps corresponding to a single token, such as

“butterfly”, from the original prompt.

The below figure demonstrates how injecting only the attention maps of the word “butterfly” preserves

its pose, structure, and texture across multiple edited prompts. The new contexts vary in composition

and background — e.g., a room, a flowerbed, or abstract shapes — but the butterfly remains visually

consistent, accurately positioned, and realistically integrated.
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Figure 20.104: Preserving object structure through selective attention injection [217]. The

attention maps for the token “butterfly” are injected from the original image (top-left) into edited

prompts. While the background and surrounding context change, the butterfly’s appearance and

spatial configuration remain consistent, highlighting Prompt-to-Prompt’s ability to localize and

preserve selected visual elements.

This type of localized control is especially useful for identity-preserving edits or compositional

consistency — applications relevant to character animation, creative storytelling, and personalized

image manipulation. It also sets the stage for more advanced use cases involving dynamic modulation

of attention influence and real-image editing.



1328 Chapter 20. Lecture 20: Generative Models II

Use Case: Controlled Blending via Partial Attention Injection Prompt-to-Prompt enables

fine-grained control over the generation process by specifying the temporal extent during which

the original cross-attention maps are injected. By limiting attention replacement to only a subset of

denoising timesteps τ ∈ [0,T ], users can navigate the trade-off between faithfulness to the edited

prompt and fidelity to the original image structure.

Figure 20.105: Blending source and target semantics through partial attention injection [217].

Each example begins with an original image and prompt (top row). The prompt is edited by replacing

one token (e.g., “car”→ “bicycle”). In the rows below, cross-attention maps from the original prompt

are injected into the edited generation for a growing portion of the denoising process—from 0%

(left) to 100% (right). Low injection favors the edited prompt but may distort layout; high injection

preserves the original structure but inhibits visual change. Intermediate levels yield blended results.

Mechanism of control: Let τ ∈ [0,T ] be the timestep threshold at which attention injection transitions.

For timesteps t < τ , the cross-attention maps computed from the edited prompt are used (encouraging

semantic changes); for t ≥ τ , the maps from the original prompt are injected (enforcing structural

consistency). A small τ means most steps rely on the original attention, preserving layout but

potentially suppressing edits. A large τ allows the new token’s semantics to dominate, which may

yield better object replacement but increase spatial drift.

Why it matters: This mechanism allows users to blend the “what” (new concept) and “where”

(original spatial anchors) over time, rather than committing to full replacement or preservation. For

instance, replacing “car” with “bicycle” may succeed when injection occurs only after the early

timesteps—letting the bicycle establish geometry, then snapping into the original scene’s pose and

viewpoint.
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This time-dependent attention editing proves useful in scenarios where both semantic change and

structural stability are important. Applications include identity-preserving edits, fine-grained modifi-

cations to clothing or pose, and stylistic alterations that should respect background composition.

We now turn to complementary editing strategies that do not replace attention maps, but instead

reweight them to modulate a token’s influence.

Use Case: Emphasizing and De-emphasizing Concepts Building on the principle of attention

re-weighting, Prompt-to-Prompt enables dynamic emphasis or suppression of specific concepts

directly through cross-attention manipulation. This allows users to subtly or dramatically control

how visible or dominant a particular word becomes in the generated image—without changing the

wording of the prompt itself.

Figure 20.106: Controlling emphasis via cross-attention scaling [217]. Top: Reducing cross-

attention for selected words (e.g., “blossom”) softens their visual presence. Bottom: Increasing

attention weight (e.g., for “snowy” or “fluffy”) amplifies the visual attributes tied to that token.

In Figure 20.106, re-weighting is applied to highlight or downplay specific concepts. For example,

increasing the attention mass on the token “fluffy” causes the entire image to exhibit more fluffiness

in the texture of objects (in this example, the furry bunny doll). Conversely, reducing the attention

weight on “blossom” attenuates the flower density and vibrancy of the tree canopy.
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This flexible form of text-guided emphasis is useful in stylization, mood control, and semantic

adjustment without prompt rewriting. The same technique can be applied for creative stylization.

Use Case: Text-Guided Stylization while Preserving Layout Prompt-to-Prompt enables text-

guided stylization, allowing users to transform an image’s appearance while maintaining its spatial

composition and semantic structure. This is achieved by appending stylistic descriptors (e.g.,

“charcoal sketch”, “futuristic illustration”) to the prompt while injecting the cross-attention maps

from the original prompt. These injected maps anchor spatial localization, ensuring that stylistic

changes affect only visual texture, tone, and color, not layout.

Figure 20.107: Prompt-based image stylization with structural consistency [217]. Top: convert-

ing a sketch or drawing into realistic photographs under various stylistic prompts (e.g., “a relaxing

photo”, “a dramatic photo”). Bottom: transforming a real photo into stylized renderings using

art-related descriptors (e.g., “charcoal sketch”, “impressionist painting”, “neo-classical style”). In all

cases, Prompt-to-Prompt preserves spatial layout by injecting source attention maps while allowing

the new style tokens to influence appearance.

This strategy supports both sketch-to-photo and photo-to-sketch transformations, modulated entirely

through text. By preserving structural attention, Prompt-to-Prompt ensures that stylistic changes

remain localized to appearance, enabling faithful reinterpretations of the same scene across diverse

visual domains. Such capabilities are valuable for domain adaptation, visual exploration, and iterative

artistic workflows—offering a controllable, prompt-driven alternative to manual stylization or style

transfer networks.
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Use Case: Editing Real Images via Inversion and Prompt-to-Prompt Finally, Prompt-to-

Prompt is not limited to synthetic images. By leveraging diffusion inversion techniques (e.g., DDIM

inversion), real images can be mapped into latent noise vectors and edited as if they were generated

samples. This extends the power of prompt-based editing to real-world inputs.

Figure 20.108: Prompt-based editing of real images. Left: Real photos are inverted into latent

noise vectors using DDIM inversion. Right: Edited versions are generated using Prompt-to-Prompt

by modifying the prompt and injecting attention maps as needed. Figure adapted from [217].

As shown in Figure 20.108, the inversion step maps a real photo (e.g., of a dog, house, or object) into

a latent representation from which a faithful reconstruction can be generated. Prompt edits—such

as changing the subject, adjusting appearance, or adding stylistic elements—are then applied via

P2P. The result is an edited image that respects the original structure and layout but incorporates the

semantic changes described in the updated prompt.

This capability opens the door to user-friendly image editing pipelines where real images can be

modified through text alone, with fine-grained control over structure and content.

Limitations and Transition to Personalized Editing While Prompt-to-Prompt offers fine-grained

control over textual edits through cross-attention injection, re-weighting, and temporal scheduling, it

still inherits several limitations from the underlying diffusion framework:

• Vocabulary-bound concept control: P2P assumes that all visual elements in the scene are

represented by prompt tokens. Consequently, it cannot edit or preserve objects that lack a

direct textual grounding—such as a specific person’s face, a custom logo, or a unique product

design.

• Semantic drift with underrepresented concepts: For rare or ambiguous tokens (e.g., “blos-

som”, “rustic”, or abstract modifiers like “ethereal”), the associated value vectors may not fully

capture the desired visual features. As a result, cross-attention editing may be inconsistent,

yielding unpredictable outputs or semantic drift over time.
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• Limited identity preservation: Because Prompt-to-Prompt relies purely on manipulating

cross-attention weights, it cannot preserve fine-grained visual identity—such as the facial

features of a specific subject—when editing real images. As demonstrated in prior sections,

even when using DDIM inversion to anchor the source image in latent space, significant details

may be lost or altered during generation.

These limitations motivate the need for personalized fine-tuning techniques that go beyond attention

manipulation. In particular, to faithfully edit scenes involving novel or user-defined subjects—such

as a specific dog, a unique sculpture, or a person’s face—we require models that can learn new visual

concepts and bind them to custom textual tokens.

While Prompt-to-Prompt enables fine-grained control over structure and style through attention

manipulation, it remains limited to concepts already understood by the base model. It cannot

synthesize entirely new identities or visually-grounded concepts absent from the training data. This

motivates the need for subject-driven generation, where the model is explicitly taught to recognize

and recreate a particular instance—such as a person, object, or pet—across diverse prompts and

settings.

This leads us to DreamBooth [537], a technique for high-fidelity personalization via instance-specific

fine-tuning. DreamBooth introduces a unique token (e.g., “[V]”) into the model’s vocabulary and

trains the model to associate it with the visual identity of a particular subject using just a handful of

example images. Once embedded, this token can be flexibly composed with other text descriptors to

guide generation across different poses, environments, and styles—all while preserving core identity

traits.

In the following, we explore how DreamBooth achieves this level of instance control, what challenges

arise in balancing identity preservation with prompt diversity, and how its innovations laid the

groundwork for personalized diffusion models.
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Enrichment 20.11.7: DreamBooth: Personalized Text-to-Image Generation

Motivation and Core Insight

DreamBooth [537] proposes a method for customizing pretrained text-to-image diffusion mod-

els—such as Stable Diffusion or Imagen—so that they can generate realistic, context-aware, and

stylistically diverse images of a specific subject, using only a handful of example images.

The key challenge addressed by DreamBooth is as follows: while large diffusion models are trained

on broad distributions of internet-scale data, they cannot reliably synthesize faithful renditions of an

individual subject (e.g., a specific dog or product) unless it appeared in their training data, and with a

unique identifier that allows reconstruction in various settings. Simply prompting with "a dog on a

beach" might yield a generic canine, but not your dog.

To solve this, DreamBooth introduces the idea of binding a unique textual identifier—such as

sks—to a novel visual subject by fine-tuning the diffusion model on a small set of subject-specific

images paired with customized prompts (e.g., "a photo of a sks dog"). This enables the model to

learn the association between the identifier and the subject’s visual concept, allowing the generation

of high-fidelity outputs in new poses, scenes, or styles using just prompt-based control.

Figure 20.109: DreamBooth enables subject-driven generation. With only 3–5 images of a subject

(left), DreamBooth fine-tunes a diffusion model to produce diverse outputs (right) via prompts like

“a sks dog in the Acropolis”. The results demonstrate consistent identity preservation across varying

contexts, lighting, and articulation. Figure adapted from [537].

This mechanism builds toward a more general idea in controllable generation: associating visual

attributes with tokens in the text space and using prompt engineering to drive structured edits. In later

works, we will see how ControlNet extends this idea further by conditioning on spatial inputs like

edges or poses. But first, we will examine how DreamBooth establishes the foundational capability

of subject-driven customization using only a few images and simple text.

Model Setup and Identifier Creation DreamBooth [537] modifies large pretrained text-to-image

diffusion models—such as Stable Diffusion and Imagen—to enable personalized subject-driven

generation. Given only a handful of subject reference images (typically 3–5), DreamBooth introduces

a new textual identifier that serves as a symbolic stand-in for the subject. By finetuning the model on

prompts like "a sks dog in the snow", the model learns to associate the rare token sks with

the subject’s visual appearance. This enables prompt-driven recontextualization of the subject across

new scenes, poses, and styles.
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The model architecture remains intact, with only a targeted subset of parameters updated during

training:

• Frozen Text Encoder: The input prompt is tokenized and embedded by a pretrained en-

coder—e.g., CLIP for Stable Diffusion or T5-XXL for Imagen. These components remain

fixed throughout training.

• Frozen Image Encoder/Decoder: Stable Diffusion uses a pretrained VAE to map RGB

images to a lower-dimensional latent space. Imagen, in contrast, operates directly in pixel

space using a base model and super-resolution stages. In both cases, these modules are left

untouched.

• Trainable U-Net Denoiser: The U-Net receives noisy inputs (pixels or latents), a timestep

embedding, and cross-attention conditioning from the prompt. This is the only component

that is finetuned during DreamBooth training, learning to associate the rare subject token with

its corresponding visual appearance.

To introduce a new subject into the model’s vocabulary, DreamBooth selects a unique rare token s,

such as sks, and uses it in prompts of the form:

"a photo of a sks︸︷︷︸
subject ID

dog︸︷︷︸
class label

"

This prompt is paired with each training image of the subject. During finetuning, the model learns

to associate the identifier sks with the subject’s unique appearance while preserving the general

semantics of the class label (e.g., dog).
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Figure 20.110: DreamBooth finetuning process. Given a few images of a subject (e.g., a specific

dog), the model is trained on prompts like "a [V] dog" to tie the unique token [V] to the subject’s

identity. Simultaneously, prompts like "a dog" are used with unrelated samples from the same class

to enforce intra-class diversity via prior-preservation loss. Figure adapted from [537].

Identifier Token Selection Strategy

The effectiveness of DreamBooth hinges on selecting a subject token s that is both learnable and

semantically disentangled—meaning it has weak or no associations with existing concepts in the

model’s pretraining distribution. If s corresponds to a token that is already semantically rich (e.g.,

"dog", "person", "red"), fine-tuning may corrupt unrelated concepts (semantic drift) or introduce

identity leakage and reduced generative diversity. Conversely, if s is rarely used during pretraining,

the model is free to associate it entirely with the new subject.

Tokenizer Overview and Motivation

Like most modern text-to-image models, DreamBooth processes natural language prompts using

a tokenizer—a component that maps raw text into a sequence of discrete token IDs. These IDs

form the input to the model’s text encoder and are drawn from a fixed vocabulary that is constructed

during pretraining on a large-scale corpus.

Rather than operating at the level of individual characters or entire words, modern tokenizers

segment text into subword units—variable-length fragments like “red”, or “xxy5”. This subword

decomposition strikes a practical balance between expressiveness and efficiency:

• It avoids the combinatorial explosion of full-word vocabularies, which would require millions

of entries to cover rare terms, compound words, or typos.
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• It reduces the sequence length relative to character-level tokenization, thereby improving

model efficiency and allowing for longer contextual understanding.

• It ensures robustness: even unseen or rare words can still be represented using known fragments

from the vocabulary.

The result is a compact, reusable, and expressive vocabulary that allows any input string—no matter

how unusual—to be tokenized into a valid sequence of known token IDs. Each token ID is then

mapped to a high-dimensional embedding vector via a static lookup table in the text encoder. These

embeddings are passed through a Transformer-based architecture such as CLIP or T5 to produce

contextualized representations used to condition the image generation process.

During image generation, particularly in diffusion-based architectures, the contextualized text

embeddings influence visual outputs through dedicated cross-attention layers. These layers are

embedded within the model’s U-Net architecture and act as an interface between the text encoder and

the evolving image representation. Specifically, visual features derived from the noisy image (acting

as attention queries) attend to the token-level embeddings (acting as keys and values), producing

spatially localized responses. The result is a set of attention maps that modulate each region of the

image according to its relevance to the corresponding text tokens.

This mechanism establishes a direct spatial-semantic correspondence: each region of the image learns

to "pay attention" to the appropriate linguistic concepts in the prompt. Such alignment is foundational

for accurate text-to-image synthesis. In DreamBooth, this correspondence is further exploited during

fine-tuning—where a rare identifier token is explicitly trained to control the appearance of a novel

subject. The gradients from the cross-attention pathway reinforce the association between that

token and spatial structures in the generated image, enabling the model to synthesize consistent and

editable subject representations in response to prompt variations.

Rare Token Selection for Subject Identity Binding

DreamBooth performs subject personalization without altering the tokenizer or the text encoder.

Instead of introducing new vocabulary, it repurposes an existing but underused token stext from

the tokenizer’s fixed vocabulary to symbolically represent a novel subject. This token’s embed-

ding—denoted e⃗s ∈ R
d—is static, produced by the frozen text encoder, and interpreted only by the

fine-tuned diffusion model (e.g., the U-Net).

The goal is to choose a token that behaves as a semantic blank slate: syntactically valid, visually

neutral, and semantically unentangled. The U-Net is then trained to associate e⃗s with the personalized

subject appearance while leaving the text encoder entirely untouched. After training, prompts like

"a sks dog in the snow" can reliably generate identity-consistent outputs in diverse contexts.

The rare-token selection strategy is general and applies to any text encoder–tokenizer pair. Below

we outline a unified procedure applicable to both Imagen (using T5 with SentencePiece) and Stable

Diffusion (using CLIP with Byte-Pair Encoding).

1. Enumerate the Tokenizer Vocabulary.

Each tokenizer defines a fixed mapping from token IDs to Unicode strings:

• Imagen uses T5-XXL with a SentencePiece vocabulary of size 32,000.

• Stable Diffusion uses a CLIP-BPE tokenizer with approximately 49,000 tokens.

These mappings can be accessed via tokenizer APIs.
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2. Identify Rare, Neutral Candidates.

The ideal token stext is rare (low frequency) and lacks meaningful associations. For example:

• In Imagen, token IDs in the range

{5000,5001, . . . ,10000}

are empirically found to be infrequent in the training corpus and often decode to short,

nonsensical strings like sks, qxl, or zqv.

• In Stable Diffusion, naive strings like sks may be split into multiple tokens unless formatted

with brackets (e.g., [sks]) to ensure they are tokenized as a single unit.

3. Filter Structurally Valid Tokens.

Candidate tokens must satisfy the following constraints:

• Decodability: The token maps to a valid, printable Unicode string.

• Length: Ideally 1–3 characters or a compact glyph.

• Token integrity: It must remain a single token after tokenization.

• Semantic neutrality: It should not resemble common words, brand names, or known

entities.

Once a valid token is chosen, it is held fixed and used in all subject-specific prompts during

DreamBooth finetuning. The text encoder produces a static embedding e⃗s, while only the U-Net

learns to interpret it as the visual identity of the subject. This setup supports prompt compositionality,

enabling queries like:

• "a watercolor painting of a sks vase in a spaceship"

• "a sks dog painted by Van Gogh"

• "a sks backpack on the Moon"

In summary, the reuse of rare tokens provides an elegant, encoder-compatible mechanism for subject

binding. By leveraging frozen embeddings with minimal prior entanglement, DreamBooth enables

high-fidelity personalization while preserving the expressive power of the original generative model.

In the following, we describe how this token selection integrates into the full DreamBooth training

procedure, including loss functions that ensure both precise subject encoding and generalization to

new contexts.
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Training Objective and Prior Preservation Once a rare identifier token stext has been selected

and inserted into structured prompts, DreamBooth fine-tunes the pretrained text-to-image model

to associate the subject with its corresponding static embedding e⃗s. Training follows the denoising

diffusion paradigm, augmented with a regularization term that preserves the model’s generative

flexibility.

Main Loss: Denoising Objective

Let {x1,x2, . . . ,xn} denote a small subject dataset, and let each image xi be paired with a prompt

yi = "a photo of a stext class". The fine-tuning process proceeds as follows:

1. Encode each image xi using the frozen image encoder:

• For LDMs: obtain latent representation z⃗i = Enc(xi).
• For pixel-space models (e.g., Imagen): use z⃗i = xi.

2. Sample a timestep t ∼U ({1, . . . ,T}) and corrupt the input:

z⃗i,t =
√

ᾱt⃗zi +
√

1− ᾱt ε⃗, ε⃗ ∼N (0, I⃗).

3. Encode the prompt yi using the frozen text encoder to obtain embeddings E⃗i, where e⃗s ∈ E⃗i

denotes the token embedding of stext.

4. Input (⃗zi,t , t, E⃗i) into the U-Net and predict the noise:

ˆ⃗ε = U-Net(⃗zi,t , t, E⃗i).

5. Minimize the reconstruction loss:

Lrecon =
∥∥∥ ˆ⃗ε− ε⃗

∥∥∥
2

2
.

During this process, only the U-Net parameters (and optionally its cross-attention layers) are updated.

The tokenizer, text encoder, and VAE remain frozen.

Preventing Overfitting: Prior Preservation Loss

Since DreamBooth typically trains on as few as 3–5 images, it is prone to overfitting—resulting in

memorized poses, lighting, or background, and catastrophic forgetting of class diversity. To mitigate

this, DreamBooth introduces a prior preservation loss that encourages the model to retain generative

variability across the subject’s class.

This is implemented by mixing in a batch of generic class instances:

• For each batch, sample additional images {xprior
j } with prompts like "a photo of a dog",

omitting the identifier token.

• Apply the same forward corruption process and compute the corresponding loss:

Lprior =
∥∥∥ ˆ⃗εprior− ε⃗

∥∥∥
2

2
.

The final training objective becomes:

Ltotal = Lrecon +λ ·Lprior,

where λ ∈ R+ controls the strength of prior preservation (typically λ = 1.0).
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Figure 20.111: Encouraging diversity with prior-preservation loss. Without regularization

(left), the model overfits to the subject’s training images, replicating pose and context. With prior

preservation (right), the model generalizes across poses and settings while maintaining subject

identity. Figure adapted from [537].

Effect and Interpretation

The prior-preservation term acts as a semantic constraint: it encourages the model to treat the

identifier stext as a distinct instance within a broader class, rather than as a class replacement. This

enables:

• Preserves the model’s ability to generate diverse class-consistent outputs (e.g., dogs in snow,

with accessories, or in unusual settings).

• Enables identity-grounded generation in novel contexts—e.g., "a sks dog in the desert",

"a sks dog jumping over a fence", or "a sks dog wearing sunglasses".

This balance between memorization and generalization is critical for subject-driven generation to

remain flexible and compositional. In the following, we explore how DreamBooth leverages this

setup to enable high-fidelity identity transfer across scenes, styles, and visual manipulations.
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Subject-Driven Generation in New Contexts Once DreamBooth has successfully fine-tuned

the model to bind a unique token s to a subject identity, it can be used to generate photorealistic or

stylized images of that subject in a wide range of scenarios. Unlike traditional overfitted fine-tuning

techniques, DreamBooth supports rich recontextualization—the subject can be rendered in scenes it

was never observed in, under varying lighting conditions, poses, styles, and semantic compositions.

Figure 20.112: Recontextualization and Identity Preservation — adapted from the DreamBooth

paper [537]. The model generates visually consistent outputs of two distinct subjects—a personalized

teapot and a backpack—placed in novel contexts. For the teapot, DreamBooth adapts to prompts

like “floating in milk", “transparent with milk inside", or “pouring tea", preserving identity and

even enabling material transformations (e.g., transparency). For the backpack, it generates varied

scenes such as “in Boston”, “at the Grand Canyon", while maintaining structural and stylistic fidelity.

These generations illustrate how DreamBooth supports compositional control beyond the training

distribution.

This capability is made possible by the model’s retained understanding of the subject’s class (e.g.,

“teapot”, “dog”)—due to the prior preservation loss—and the flexibility to modify the subject’s

expression, pose, or style through text prompts:

• �a sks dog crying�, �a sks dog sleeping�, �a sks dog smiling� — expression

manipulation

• �a Van Gogh painting of a sks dog� — style transfer

• �a sks dog with wings�, �a sks dog in the style of a sculpture� — composi-

tional attributes
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Figure 20.113: Expression manipulation — adapted from the DreamBooth paper [537]. Dream-

Booth enables semantic edits to a personalized dog subject, synthesizing novel expressions that were

absent from the input images. Notably, subject-defining features—such as the asymmetric white

streak on the dog’s face—are consistently preserved.

DreamBooth also supports zero-shot outfitting and attribute additions. Guided by prompt text, the

model composes realistic physical interactions between the subject and newly specified objects,

outfits, or environments.

Figure 20.114: Outfitting with accessories — adapted from the DreamBooth paper [537]. Given

prompts like �a sks dog wearing a police/chef/witch outfit�, the model synthesizes

identity-consistent variations that exhibit plausible deformations and realistic interaction between

the subject and the accessories—despite such scenes never being seen during training.

By decoupling the subject embedding s from specific backgrounds, poses, and lighting, DreamBooth

enables flexible recombination with diverse prompts. This supports high-fidelity identity preservation

across scenes, compositions, and artistic styles—unlocking broad applications in personalized content

creation, from digital avatars and branded photography to stylized storytelling.
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Figure 20.115: Novel view synthesis and stylization — adapted from the DreamBooth paper [537].

DreamBooth generalizes beyond training views to generate novel camera angles, stylized renditions

(e.g., Van Gogh painting of the sks dog), and compositional variants that preserve the core identity

of the subject across diverse conditions.

These capabilities highlight DreamBooth’s ability to interpolate both pose and rendering domain.

Viewpoint shifts and stylistic alterations—unseen in the training images—are synthesized faithfully

while retaining fine-grained subject detail. This extends the model’s generative capacity far beyond

memorization.

Nonetheless, DreamBooth is not without limitations. Some failure modes arise in rare contexts,

entangled prompts, or when the model overfits to specific image details.
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Figure 20.116: Failure cases — adapted from the DreamBooth paper [537]. (a) Unseen context

errors: The model fails to render subject-consistent outputs in unfamiliar environments (e.g.,

synthesizing a backpack on the moon or inside the International Space Station). (b) Context-

appearance entanglement: Visual details from training backgrounds (e.g., the Bolivian salt flats or a

blue fabric backdrop) unintentionally bind to the subject, leaking into generations. (c) Overfitting:

The model recreates poses and scenes from the original images it was trained on, reducing its capacity

for diverse generalization.

While DreamBooth achieves impressive subject fidelity, it often struggles with precise compo-

sitional control. Issues such as background entanglement, pose collapse, or implausible scene

generation persist—especially when attempting to render the subject in unfamiliar contexts. Prompt-

to-Prompt [217] addressed some of these shortcomings by manipulating cross-attention maps to

steer how specific words influence spatial regions of the image. However, its control remains

fundamentally implicit—limited to prompt structure and lacking direct spatial supervision.

This motivates a shift toward explicit conditioning: instead of relying solely on text, can we guide

generation using structured visual signals such as edge maps, depth fields, or pose skeletons?

ControlNet provides a powerful answer to this question. By injecting auxiliary control encoders into

the diffusion backbone, ControlNet enables fine-grained spatial, geometric, and semantic modulation

of the generation process—dramatically improving compositional accuracy and unlocking new

applications in image editing, synthesis, and personalized rendering.

In the following, we examine the architecture, training procedure, and capabilities of ControlNet,

highlighting how it can be used independently or in conjunction with methods like DreamBooth to

enhance controllability and visual grounding.
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Enrichment 20.11.8: ControlNet – Structured Conditioning for Diffusion Models

Motivation and Background Despite the remarkable success of prompt-based diffusion models

in generating photorealistic and semantically coherent images, they offer only coarse-grained control

over the structure and layout of the output. Natural language prompts—such as “a person riding

a bicycle near the ocean”—are inherently ambiguous in spatial and geometric terms. As a result,

generated scenes may omit critical elements, produce anatomically implausible poses, or fail to

match user intent in fine-grained ways.

This limitation stems from the fact that text alone cannot precisely encode spatial or visual structure.

Concepts such as object pose, layout, depth, or boundaries are difficult to express in natural language

and even harder for the model to ground consistently. Methods like DreamBooth [537] improve

subject identity preservation, and techniques such as Prompt-to-Prompt [217] allow for localized

prompt manipulation via attention maps—but both approaches rely solely on textual cues and offer

no mechanism for incorporating structured visual guidance.

To address these challenges, ControlNet [773] introduces a principled architectural extension to dif-

fusion models that enables conditioning on external visual signals. These conditioning inputs—such

as edge maps, human poses, depth estimates, scribbles, or segmentation masks—serve as explicit

spatial priors, providing the model with structured cues that text alone cannot supply. For example, a

depth map can enforce perspective geometry in a 3D interior scene, while a pose skeleton can define

limb orientation and articulation in human generation tasks.

ControlNet thus empowers users to inject high-level semantic intent through text while simultane-

ously guiding low-level spatial structure via visual hints—bridging the gap between language-driven

generation and precise, user-defined control over image composition.

Figure 20.117: Controllable generation using ControlNet — adapted from the ControlNet pa-

per [773]. Users supply structured visual conditions, such as edge maps (top row) or pose keypoints

(bottom row), alongside prompts to guide image synthesis. While the default prompt is “a high-

quality, detailed, and professional image”, additional text (e.g., “chef in a kitchen”) can further refine

semantic content. ControlNet enables precise alignment of the generation with both prompt and

visual conditions.
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This capability is especially important in domains where spatial layout matters—such as:

• Pose-to-image generation (e.g., rendering a person performing a specific action).

• Edge-to-photo synthesis (e.g., recreating objects from sketches).

• Semantic-to-scene mapping (e.g., transforming segmentation maps into photorealistic scenes).

By introducing minimal architectural overhead and preserving the core capabilities of the base

diffusion model, ControlNet bridges the gap between prompt conditioning and structured visual

control. In the following, we will examine its design, training procedure, and practical benefits.

Block Injection and Architectural Motivation ControlNet augments large pretrained text-to-

image diffusion models—such as Stable Diffusion—by introducing a trainable conditional branch

designed to interpret external structural cues (e.g., edge maps, depth, pose, segmentation) while

preserving the integrity of the base model. These external cues are encoded as condition maps

c ∈ R
H×W×C, and are used in conjunction with the usual text prompt y, forming a dual conditioning

scheme:

• The text prompt is tokenized and encoded by a frozen text encoder (e.g., CLIP), producing

embeddings that are injected into the U-Net via cross-attention layers.

• The condition map is passed through a dedicated encoder, whose outputs are injected into a

trainable replica of the U-Net blocks, spatially guiding generation at each resolution.

ControlNet’s integration with large-scale pretrained diffusion models represents a significant archi-

tectural innovation. Rather than retraining a diffusion model from scratch—a process that would

require massive datasets like LAION-5B [556], which are tens of thousands of times larger than

typical condition-specific datasets—ControlNet employs a far more efficient strategy.

It locks the parameters of a production-ready model, such as Stable Diffusion [531], thereby

preserving its high-fidelity generation capabilities acquired through training on billions of image–text

pairs. Simultaneously, it introduces a trainable replica of each internal block in the U-Net backbone.

These replicas allow the model to adapt to new forms of spatial or structural conditioning (e.g., edges,

depth, pose) without disrupting the semantics encoded in the original weights. This approach avoids

overfitting and catastrophic forgetting—common pitfalls in low-data fine-tuning scenarios [350].

A key architectural mechanism enabling this safe dual-path design is the use of zero convolu-

tions [773]. These are 1×1 convolution layers whose weights and biases are initialized to zero. As

a result, the conditional branches contribute nothing at the beginning of training, ensuring that the

pretrained activations remain untouched. Gradually, as gradients update these layers, the conditional

signal is introduced in a controlled, non-disruptive manner. This guarantees a stable warm-start and

protects the pretrained backbone from the destabilizing effects of random gradient noise early in

training.

Enrichment 20.11.8.1: ControlNet Architecture

Injecting Spatial Conditioning into Frozen Networks

Large-scale pretrained models such as the U-Net used in Stable Diffusion exhibit remarkable

generative capabilities, especially when guided by text prompts. However, their reliance on linguistic

conditioning alone limits their ability to follow spatial instructions—such as replicating object pose,

structural contours, or depth information—especially in tasks requiring precise layout control. This

gap motivates the development of ControlNet, a framework that injects spatial condition maps into

the intermediate layers of a frozen pretrained diffusion model, enabling fine-grained control while

preserving generative quality.
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Let F (·;Θ) denote a frozen network block, where a block refers to a modular transformation unit

such as a residual block or Transformer layer. Given an input feature map x ∈ R
H×W×C, the block

produces an output feature map y = F (x;Θ). These feature maps encode semantically and spatially

rich representations used progressively in denoising-based generation.

ControlNet Architectural Design

To augment the network with conditioning, ControlNet associates each frozen block F (·;Θ) with a

trainable replica F (·;Θc). This replica processes both the original feature map x and an external

condition map c ∈ R
H×W×C, such as a Canny edge image, depth map, or human pose keypoints.

The condition map is transformed into a residual signal through a pair of zero-initialized 1× 1

convolution layers:

yc = F (x;Θ)+Z (F (x+Z (c;Θz1);Θc) ;Θz2) (20.65)

Here, Z (·;Θz1) injects the condition into the input space of the trainable replica, while Z (·;Θz2)
modulates the output. Both zero convolutions are initialized such that their weights and biases are

exactly zero, ensuring that the condition path introduces no change at the start of training.

Motivation for Additive Injection: Why Not Inject c Directly?

A seemingly natural idea would be to inject the condition map c directly into the layers of the frozen

U-Net—via concatenation, addition, or feature fusion. However, this naive approach often results in

degraded output quality. The pretrained model encodes subtle statistical priors learned from billions

of image-text pairs. Tampering with these internal representations, especially with limited data and

abrupt injections, may cause:

• Catastrophic Forgetting: Directly modifying the feature flow may cause the model to forget

its generative priors, reducing sample diversity and fidelity.

• Semantic Drift: Uncontrolled condition injection can skew the model’s internal representa-

tions, leading to mismatches between prompts and outputs.

• Training Instability: The injection introduces mismatched signals, leading to noisy gradients

and divergence during optimization.

ControlNet avoids these pitfalls by enforcing architectural separation: the condition map c flows

through a parallel, trainable branch that computes residual corrections to the output of the frozen

U-Net. These corrections are injected additively via zero-initialized 1×1 convolutions, ensuring that

pretrained knowledge remains unperturbed at the start of training. This design enables progressive

alignment, where the residuals only modify the output when helpful.

Component Breakdown

• F (x;Θ): The original U-Net block with frozen weights Θ, trained on large-scale image-text

data and reused without modification.

• F (x′;Θc): A trainable replica of the frozen block, receiving a perturbed input x′ = x +
Z (c;Θz1), where Z is a zero-initialized convolution.

• Z (·;Θz1), Z (·;Θz2): Zero-initialized 1×1 convolutions used at the input and output of the

trainable path, regulating the influence of the conditional signal.
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How Can the Output Change If the U-Net Is Frozen? And Why Is Denoising Still Valid?

Freezing the U-Net implies that its output remains unchanged—but ControlNet introduces a trainable

parallel path that circumvents this limitation. At each U-Net block, a residual branch is appended

and fused with the frozen output via zero-initialized 1×1 convolutions:

yc = F (x;Θ)+Z2 (F (x+Z1(c;Θz1);Θc);Θz2) (20.66)

Initially, both Z1 and Z2 are zero-initialized, making yc = F (x;Θ)—identical to the pretrained

model. This ensures a safe warm start that avoids destabilization.

Although the residual branches in ControlNet are initialized with zero convolution layers—meaning

all weights W and biases B are set to zero at the beginning of training—they remain fully trainable.

The forward pass of such a layer for an input feature map I ∈ R
H×W×C is defined as:

Z(I;{W,B})p,i = Bi +∑
j

Ip, jWi, j (20.67)

At initialization, since W = 0 and B = 0, the output is zero. However, the gradients behave as follows

(where ∂L

∂Z
denotes the upstream gradient):

∂Z(I;{W,B})p,i

∂Bi

= 1 (20.68)

∂Z(I;{W,B})p,i

∂ Ip,i
= ∑

j

Wi, j = 0 (20.69)

∂Z(I;{W,B})p,i

∂Wi, j
= Ip, j (20.70)

We see that while the gradient with respect to the input I is zero initially (due to W = 0), the

gradients with respect to the bias B and the weights W are non-zero as long as the input feature I

itself is non-zero—which is always the case in practice, since I encodes the image or conditioning

information.

This mechanism ensures that the first gradient descent step will update the weights to non-zero

values. For example, assuming a non-zero learning rate βlr and loss gradient ∂L /∂Z ̸= 0, the weight

update becomes:

W ∗ =W −βlr ·
(

∂L

∂Z
⊙ ∂Z

∂W

)
(20.71)

where ⊙ denotes the Hadamard (elementwise) product. After this step, the weight matrix W ∗

becomes non-zero, and the layer begins to propagate gradients to its input as well:

∂Z(I;{W ∗,B})p,i

∂ Ip, j
= ∑

j

W ∗i, j ̸= 0 (20.72)
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Training Objective

ControlNet is fine-tuned using the standard diffusion loss, augmented to include both spatial and

textual conditioning. This objective trains the model to predict the noise added to a latent image

representation at a given timestep, while also respecting high-level textual and low-level spatial

guidance.

Each training sample includes:

• z0: Clean latent representation, encoded from a 512× 512 image using a frozen VQ-GAN

encoder [148, 531].

• ε ∼N (0, I): Gaussian noise.

• t ∈ {1, . . . ,T}: Diffusion timestep.

• zt =
√

ᾱtz0 +
√

1− ᾱt ε: Noised latent using cumulative schedule ᾱt .

• ct : Text embedding from a frozen encoder (e.g., CLIP) [498]. During training, 50% of prompts

are replaced with empty strings to promote reliance on spatial inputs [773].

• ci: Spatial condition image (e.g., pose, depth, edges) deterministically derived from z0.

• c f = Econd(ci): Feature map from a shallow encoder Econd, aligned to U-Net resolution.

The loss function is:

LControlNet = Ez0,t,ε,ct ,c f

[∥∥ε− εθ (zt , t,ct ,c f )
∥∥2

2

]
(20.73)

Why ControlNet Preserves Denoising Capability

ControlNet extends pretrained diffusion models with spatial guidance while preserving their original

denoising behavior. This is achieved through a design that carefully introduces conditional influence

without interfering with the U-Net’s pretrained functionality.

At the heart of the diffusion process lies a U-Net trained to predict noise across billions of

images [531]. In ControlNet, this U-Net is left entirely frozen during training [773], meaning it

continues to perform the same denoising task it was originally optimized for. The key innovation lies

in how ControlNet introduces its new functionality: by attaching a parallel, trainable branch whose

outputs are added to the internal feature maps of the frozen U-Net at each resolution [773].

Initially, this residual branch is non-functional. All connecting 1× 1 convolution layers are

zero-initialized—both weights and biases—which guarantees that the trainable path contributes

no signal at the beginning. Thus, the model’s forward pass and denoising predictions are initially

identical to the pretrained backbone. Crucially, despite being inactive at first, these zero-initialized

layers admit nonzero gradients with respect to both their weights and biases. As long as the input

condition maps contain nonzero values (which they typically do), gradient descent immediately

begins to train the ControlNet branch—starting from a neutral baseline and gradually learning how

to steer the generation process.

This training strategy ensures that conditional guidance is introduced in a progressive and

reversible way. Because the U-Net remains frozen, the core noise prediction function is never

corrupted. Instead, ControlNet learns to produce residual corrections that refine the denoising

trajectory in a way that respects both the diffusion objective and the spatial constraints imposed by

the conditioning input. The result is a denoising model that continues to predict valid noise estimates,

now informed by an auxiliary signal such as an edge map or pose skeleton.

In essence, ControlNet does not replace the original model’s logic—it learns to nudge it. The

trainable branch aligns the latent noise prediction with external guidance, but the primary computation

and structure of the denoising process remain governed by the fixed U-Net. This preserves the

quality, stability, and generalization of the pretrained model while enabling precise spatial control.
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Figure 20.118: ControlNet block-level augmentation — adapted from [773]. (a) Standard U-Net

block with frozen weights. (b) Trainable residual path processes condition inputs and injects them

via zero-initialized 1×1 convolutions.
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Figure 20.119: ControlNet-enhanced architecture — adapted from [773]. Residual branches

(blue) process spatial control inputs and merge into the frozen U-Net backbone (gray) via zero-conv

paths (white).

We now continue focusing on ControlNet’s training dynamics, sudden convergence behavior, and

the role of Classifier-Free Guidance (CFG):



20.11 Enrichment 20.11: Additional Pioneering Works in Generative AI 1351

Enrichment 20.11.8.2: Training Behavior and Sudden Convergence

A key strength of ControlNet’s architectural design lies in its training stability. Thanks to the

zero-initialized convolution layers that bridge the frozen and trainable branches, the model behaves

identically to the original Stable Diffusion at initialization. This ensures that the first forward passes

produce coherent images, even before any optimization occurs.

As training progresses, gradients propagate through the zero convolutions and update the trainable

ControlNet branches. Initially, these branches exert no influence on the output. However, within

a few thousand training steps, a phenomenon referred to as sudden convergence emerges: the

ControlNet rapidly learns to inject the condition map into the generation process in a semantically

meaningful way.

Figure 20.120: Sudden convergence in ControlNet training — adapted from the ControlNet

paper [773]. Top: condition input (a sketch of an apple). Middle: model output at intermediate steps.

Bottom: final image after convergence. Around step 6,133, the model rapidly begins aligning with

the condition. Prior to this, the base model produces realistic but unaligned samples.

This behavior reflects the progressive unfreezing of the control pathway: the zero-initialized con-

volutions learn how to linearly transform the conditioned features to guide generation, while the

trainable U-Net blocks learn to interpret the condition map. Throughout this process, the frozen base

model remains intact, continuing to produce high-quality visual content.
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Classifier-Free Guidance and Resolution-Aware Weighting ControlNet enhances the capabil-

ities of diffusion models by integrating Classifier-Free Guidance (CFG) [224], a technique that

balances adherence to conditioning inputs (like text prompts) with the diversity and realism of gener-

ated images. Additionally, ControlNet introduces a novel refinement: Classifier-Free Guidance

Resolution Weighting (CFG-RW), which dynamically adjusts guidance strength across different

spatial resolutions to optimize both semantic alignment and visual fidelity.

Classifier-Free Guidance (CFG) that we’ve covered in 20.9.4 operates by training the diffusion

model to handle both conditional and unconditional scenarios. During training, the conditioning

input (e.g., text prompt y) is randomly omitted in a subset of training instances (commonly 50%),

compelling the model to learn representations that are robust to the absence of explicit conditions.

At inference, the model combines the conditional prediction εcond and the unconditional prediction

εuncond using a guidance scale λ :

εCFG = εuncond +λ · (εcond− εuncond)

This formulation allows users to modulate the influence of the conditioning input, with higher values

of λ enforcing stronger adherence to the condition, potentially at the cost of image diversity.

Resolution-Aware Weighting (CFG-RW) Resolution-Aware Weighting (CFG-RW) is a critical

mechanism that enables effective conditioning in ControlNet by adapting the strength of the guidance

signal to the spatial resolution of each layer in the U-Net. Rather than applying a uniform scale to

all residual injections, CFG-RW introduces a dynamic scheme:

wi =
64

hi

where wi is the guidance weight applied at a layer with spatial height hi. This design is grounded in

the hierarchical nature of the U-Net and the dynamics of the denoising process in diffusion models.

The key to preserving the base model’s generative capabilities lies in regulating the influence of

these residuals according to resolution.

Why resolution matters

• Low-resolution layers (e.g., 8× 8, 16× 16) are responsible for encoding global struc-

ture—object positions, shapes, and scene layout. These layers benefit from strong guidance,

as alignment at this scale is critical for conditioning to take effect. Hence, CFG-RW assigns

large weights (e.g., wi = 8 for hi = 8) to amplify the control signal.

• High-resolution layers (e.g., 32×32, 64×64) refine textures, edges, and fine detail. Here,

excessive guidance can distort or overwrite the pretrained model’s realistic priors. Small

weights (e.g., wi = 1 for hi = 64) preserve freedom for the U-Net to leverage its learned

generative capacity.
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Why It Works

Diffusion models denoise from coarse to fine: early steps shape global semantics, while later ones

refine textures. ControlNet injects conditioning through residuals at every U-Net layer, but applying

a uniform strength across resolutions introduces issues:

• Too weak at low resolutions: Structural guidance is underutilized, leading to semantic drift.

• Too strong at high resolutions: Fine details are over-constrained, reducing realism.

Resolution-Aware Weighting (CFG-RW) resolves this by scaling the residual strength inversely

with spatial resolution. This ensures: stronger guidance for layers encoding coarse structure, and

softer influence where detail synthesis must remain flexible. Because the base U-Net is frozen, this

modulation gently steers the generative process without destabilizing pretrained behavior.

Training Intuition With CFG-RW

ControlNet is trained on a small paired dataset (x,y), where x is the conditioning input and y the

target image. The denoising objective remains unchanged, and only the ControlNet branch is updated.

Residuals start with zero-initialized weights, ensuring that early training mimics the original model.

As gradients accumulate, residuals learn to inject useful control, progressively modulated by CFG-

RW to balance structure and detail. This setup enables stable finetuning while preserving generative

fidelity.

Figure 20.121: Impact of Classifier-Free Guidance and Resolution Weighting — adapted from

the ControlNet paper [773]. Left: Generation without CFG shows weak alignment to the input.

Middle: Applying CFG improves semantic consistency. Right: CFG with resolution weighting

(CFG-RW) enhances both prompt fidelity and image quality.

In summary, the integration of CFG and the introduction of CFG-RW in ControlNet provide

a nuanced mechanism for balancing condition adherence and image realism. By dynamically

adjusting guidance strength across resolutions, ControlNet achieves high-quality, semantically

aligned image generation, even when conditioned on complex inputs like edge maps or depth

maps. This advancement underscores ControlNet’s robustness and versatility in controllable image

synthesis. In the next part, we explore the limitations of ControlNet, motivating us towards following

works.
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Limitations of ControlNet and the Need for Semantic Conditioning ControlNet represents a

major advance in controllable image synthesis. By introducing condition maps—such as Canny

edges, human poses, or depth estimates—into a frozen diffusion model, it enables users to steer

image generation with fine-grained structural constraints. However, it is important to emphasize a

subtle but critical limitation: although ControlNet can be trained on full images, it cannot directly

accept them as conditioning inputs. Instead, the image must be converted into a structural map—such

as an edge sketch or depth projection—via a separate preprocessing pipeline.

This design choice is not arbitrary. The control branch in ControlNet is injected as residual guidance

into a frozen U-Net, where each layer encodes spatially aligned features at different resolutions. To

avoid interfering with the pretrained backbone, the injected condition must be spatially structured

and semantically simple—matching the inductive biases of the U-Net. Raw RGB images are too

entangled: they mix high-level semantics with textures, lighting, and style cues that do not map

cleanly onto the diffusion model’s feature hierarchy. Structural maps, by contrast, are sparse,

modality-aligned inputs that can guide early-stage generation without disrupting fine detail synthesis.

As a result, even when the training dataset contains full images, ControlNet learns to rely on their

preprocessed structural representations. These projections are useful but inherently limited, as they

discard much of the image’s global context.

Several limitations arise from this design:

Preprocessing Dependency

• Brittle and domain-specific. The quality of condition maps depends on external models (e.g.,

edge detectors or depth estimators), which may fail on atypical, occluded, or stylized inputs.

• Workflow friction. Generating these maps adds overhead to the user pipeline, breaking the

simplicity of prompting with raw images.

• Information bottleneck. Much of the source image’s richness—style, mood, identity—is lost

when projecting it into a sparse or low-resolution structural format.

Lack of Semantic Awareness

The core limitation of ControlNet is its inability to condition on high-level visual semantics:

• It cannot preserve or replicate an individual’s identity, since structure alone is insufficient to

describe fine facial or bodily characteristics.

• It does not capture or transfer artistic style, which depends on texture, color, and abstrac-

tion—not just shape or layout.

• It cannot convey emotional tone or scene context, which emerge from the global gestalt of an

image rather than any explicit structural map.

Limited Compositionality and Scalability

While ControlNet supports combining multiple condition maps (e.g., pose + depth), doing so often

requires separate parallel branches, each tied to its own preprocessor and parameter set. This

introduces:

• Architectural complexity. Adding more conditions increases VRAM usage and inference

latency.

• Signal conflict. Structural conditions may provide conflicting guidance (e.g., pose suggests

one layout, depth another), requiring manual resolution or custom weighting schemes.
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These shortcomings underscore a key insight: ControlNet excels at where things go, but not at what

they are. It anchors generation to spatial constraints, but ignores the high-level visual semantics that

define identity, style, and intent.

This motivates a new class of conditioning methods—those that allow users to guide generation

using images themselves as prompts. Rather than reducing an image to its skeletal structure, these

approaches aim to preserve and transfer the holistic content, mood, and semantics encoded in the

image. One such solution, which we present next, is the IP-Adapter framework: a modular design for

injecting semantic image features into pretrained diffusion models without retraining or disrupting

text conditioning.

Enrichment 20.11.9: IP-Adapter — Semantic Image Prompting for DMs

Motivation and Background Text-to-image diffusion models, such as Stable Diffusion, have

revolutionized the field of generative AI by producing high-fidelity images from textual descriptions.

However, guiding these models to generate images that precisely match user intent can be challenging.

Crafting effective prompts often involves intricate prompt engineering, where users must carefully

phrase their descriptions to elicit specific visual attributes. Moreover, text alone may fall short

in conveying complex scenes, abstract concepts, or nuanced styles, limiting the creative control

available to users.

To address these limitations, incorporating image prompts emerges as a compelling alternative. The

adage “a picture is worth a thousand words” aptly captures the value of visual cues in conveying

detailed information. Image prompts can encapsulate intricate styles, specific identities, or subtle

emotional tones that might be difficult to articulate through text alone. Early methods, such as

DALL·E 2, introduced image prompting capabilities but often required extensive fine-tuning of the

entire model, which was computationally intensive and risked compromising the model’s original

text-to-image performance. More recent approaches, like ControlNet, have provided structural

control by conditioning on explicit visual features such as edges, depth maps, or poses. However,

these methods rely on external preprocessing and lack inherent semantic understanding of high-level

concepts, and often fine-grained features we want to retain in the generation process.

Introducing IP-Adapter: A Lightweight and Compatible Solution IP-Adapter [733] provides

a plug-and-play mechanism for adding image prompt conditioning to pretrained text-to-image

diffusion models—without any modification to the U-Net itself. Instead of forcing image and text

information through the same cross-attention heads—heads that were originally trained exclusively

on text—the adapter introduces a decoupled pathway: one cross-attention block for the text prompt

(frozen), and one for the image prompt (trainable), both attending to the same latent query features.

Imagine two expert interpreters:

• The original, frozen attention module is a linguist—precisely trained to interpret prompts like

“a smiling woman in a red dress.”

• The adapter is an art critic—skilled in extracting pose, style, texture, and fine-grained visual

cues from a reference image.

Both receive the same Query—a partial image undergoing denoising—and offer distinct “translations”

(attention outputs). The fusion of these two outputs forms a single signal that guides the next

denoising step.
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Why IP-Adapter Works Without Compromising the Base Model

1. Image Guidance via Decoupled Cross-Attention in U-Net Blocks The U-Net architecture

used in diffusion models contains multiple cross-attention blocks distributed along its downsampling

and upsampling paths. Each of these blocks incorporates text conditioning by computing attention

outputs using queries Q = ZWq, keys K = ctWk, and values V = ctWv, where Z is the U-Net’s internal

latent activation, ct is the text embedding, and the projection matrices Wq,Wk,Wv are frozen. The

resulting attention output is:

Z′ = Attention(Q,ctWk,ctWv).

IP-Adapter introduces a separate image-guided cross-attention module at each of these blocks. It

operates on the same Q = ZWq but uses independent, trainable projections W ′k ,W
′
v to attend to image

features ci, computing:

Z′′ = Attention(Q,ciW
′
k ,ciW

′
v).

This parallel path enables the adapter to extract and inject visual information—such as identity, style,

or layout—without modifying or interfering with the pretrained text-conditioning weights.

2. The Base U-Net Remains Fully Frozen All components of the pretrained U-Net remain

unchanged: convolutional layers, residual connections, normalization layers, and the text-based

attention weights (Wq,Wk,Wv) are frozen across all attention blocks. The only trainable components

are the new image-specific projections W ′k ,W
′
v and the lightweight image embedding projection

head. Thus, the U-Net continues to perform noise prediction exactly as learned during pretraining.

IP-Adapter merely enriches the context it receives, without altering its core computation.

3. Safe Integration via Additive Fusion To preserve structural compatibility, the image-based

attention output Z′′ is computed to match the shape of the existing text-conditioned context Z′. The

two are fused through an additive mechanism:

Znew = Z′+λ ·Z′′,

where λ ∈ [0,1] is a scalar hyperparameter set by the user before inference to control the influence of

image conditioning. This formulation ensures that guidance from the adapter is smoothly integrated.

When λ = 0, the model exactly reverts to its original behavior.

4. Denoising Logic is Preserved by Construction Because the U-Net is entirely frozen, no part

of its denoising logic is overwritten or re-learned. During training, the adapter’s weights W ′k ,W
′
v

are optimized to produce Z′′ that complements Z′ in minimizing the standard denoising loss. If Z′′

introduces irrelevant or harmful information, the resulting loss penalizes this, driving the adapter

to reduce Z′′—often to near-zero. Thus, the adapter either contributes helpful signal or defaults to

silence, ensuring denoising is never degraded.

5. λ Offers Explicit, Safe, Inference-Time Control The scalar λ is not a learned parameter but a

user-controlled value selected at inference time. It governs the contribution of Z′′ as follows:

• λ = 0: the adapter is disabled; only Z′ is used.
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• λ = 1: full image guidance is applied via Z′′.
• 0 < λ < 1: image and text context are blended in proportion.

Because λ scales the already trained Z′′, it does not affect the underlying weights or the stability of

the generation. This allows users to modulate the visual influence without retraining, enabling safe

and interpretable control.

6. Summary: Why This Architecture is Effective and Non-Destructive IP-Adapter succeeds by

introducing guidance precisely where U-Net models expect external context—within their cross-

attention layers—while preserving all pretrained weights. Its effectiveness and safety arise from:

• Structural decoupling: text and image use separate attention paths.

• Frozen base model: all U-Net operations and weights remain unchanged.

• Additive fusion: Z′′ is integrated without overwriting Z′.
• Controlled training: the adapter is optimized to cooperate with a fixed base.

• User governance: λ determines adapter influence at inference.

Together, these principles exemplify the design philosophy of parameter-efficient fine-tuning (PEFT):

adding new capabilities through small, modular changes, while ensuring reversibility, compatibility,

and robustness. The adapter does not interfere with the base model—it collaborates with it. As a

result, IP-Adapter provides powerful image guidance without compromising the original model’s

generality or denoising quality.

ControlNet vs. IP-Adapter: Structural vs. Semantic Conditioning

Both ControlNet and IP-Adapter extend text-to-image diffusion models by introducing additional

conditioning mechanisms. However, they differ fundamentally in the type of information they

interpret, how they integrate it into the U-Net, and the nature of control they exert over image

generation.

ControlNet: Explicit Structural Conditioning ControlNet is designed to enforce spatial precision

by conditioning the diffusion process on externally preprocessed structural maps.

• Input Modality: ControlNet operates on preprocessed control maps—such as Canny edges,

OpenPose skeletons, or monocular depth maps—which distill raw images into sparse, low-

dimensional spatial blueprints. These inputs encode layout and pose explicitly, providing a

geometric scaffold for the generation process.

• Mechanism: The architecture introduces a trainable replica of the U-Net’s encoder and middle

blocks. This auxiliary pathway processes the control map directly, acting as a specialized

feature transformer that maps the structured signal into U-Net-compatible latent modifications.

Its outputs are then fused into the original, frozen U-Net via zero-initialized 1×1 convolutions,

ensuring stable and gradual integration of the control signal during training.

ControlNet & Raw Images

• Using a Pretrained ControlNet with Raw Images:

A common misunderstanding is that ControlNet, since it generates full-resolution images,

should also accept raw images as control inputs. This confuses the output target of the diffusion

model with the conditioning input to the control branch. ControlNet’s trainable modules are

explicitly trained to interpret filtered, structured control maps—not raw photographs.
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These control maps are highly reduced representations that isolate spatial features: for instance,

an edge map contains only high-contrast contours, and a pose map contains sparse landmark

joints. ControlNet’s learned filters are attuned to these simple, low-frequency patterns. Feed-

ing in a raw image instead—rich in color, texture, illumination, and semantics—leads to

a representational mismatch. The control branch expects structured geometry but receives

entangled visual information instead. As a result, its activations become incoherent, and the

injected guidance to the U-Net is noisy, leading to degraded or uncontrolled outputs.

• Finetuning ControlNet on Raw Images (Without Adding an Encoder):

One might consider finetuning the existing ControlNet architecture using raw images as input

instead of preprocessed control maps. However, this approach presents serious limitations: the

control branch lacks the inductive bias or capacity to disentangle structure from raw pixels.

Unlike semantic guidance models like IP-Adapter, it has no image encoder (e.g., CLIP) to

process raw inputs into higher-level embeddings. It would be akin to retraining an architect to

extract floor plans directly from artistic photographs without specialized tools. In practice,

training such a system without architectural changes would likely result in poor convergence,

highly inconsistent structural alignment, and a loss of controllability.

• Training ControlNet with an Added Encoder:

To enable ControlNet to accept raw image inputs, one could prepend a pretrained visual

encoder—such as CLIP, ViT, or ResNet—to its control branch. This encoder would transform

the raw reference image into a semantic or structural embedding, which the control U-Net

could then learn to decode into modulation signals for the diffusion backbone. Conceptually,

this setup decomposes the control task into two stages:

1. Semantic or Structural Feature Extraction: The image encoder must extract useful

structural or compositional signals (e.g., pose, depth, edge cues) from high-dimensional

raw pixel data.

2. Conditional Feature Injection: The control U-Net must learn to map these features into

latent-space modulations that steer the frozen U-Net’s denoising trajectory in a controlled

manner.

While this is theoretically feasible, it is practically inefficient and undermines the original

design motivations of ControlNet. Even when using a powerful pretrained encoder (like CLIP),

the downstream control branch—a full copy of the U-Net’s encoder and middle blocks—must

still be trained to convert the encoder’s outputs into usable control signals. This results in

several drawbacks:

– Training Complexity: Despite freezing the encoder or initializing it from a strong

checkpoint, the overall learning task remains complex. The control branch must learn

to interpret potentially noisy or overcomplete embeddings from the encoder—without

the benefit of explicit structural supervision. This makes convergence slower and less

reliable than the current ControlNet approach, which uses clean, task-specific maps as

input.

– Data Demands: If the encoder is trained from scratch, the model becomes highly

data-hungry. But even with a pretrained encoder, effective end-to-end finetuning often

requires significant domain-specific tuning or adapter layers, especially if the encoder is

not already aligned with the generation task.
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– Architectural Inefficiency: The approach reintroduces the core inefficiency that IP-

Adapter was designed to avoid: duplicating large parts of the U-Net architecture for

every control type. In this case, a full U-Net control branch must still be trained and

retained—even though the raw image input could have been handled more efficiently via

lightweight cross-attention, as done in IP-Adapter.

– Loss of Interpretability and Control: Unlike preprocessed control maps (e.g., sketches,

poses), raw-image embeddings are not human-editable. By relying on implicit structure

extracted from raw inputs, this design sacrifices the explicit, modular control that makes

ControlNet so appealing for tasks requiring fine spatial guidance.

In summary, ControlNet delivers precise spatial control by learning from explicit structural maps

and avoids the burden of interpreting raw image complexity. Attempts to bypass preprocessing

either lead to poor results (when used as-is) or impose heavy learning burdens (if rearchitected).

This design tradeoff reflects ControlNet’s core strength: it is a structural controller, not a semantic

interpreter.
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The following figure showcases the versatility of IP-Adapter in integrating image prompts into

text-to-image diffusion models. The central image in each example serves as the image prompt,

providing semantic guidance for the generation process.

• Right Column: Demonstrates applications where the image prompt is combined with textual

prompts to achieve:

– Image Variation: Generating stylistic or thematic variations of the image prompt.

– Multimodal Generation: Merging semantic cues from both the image and text prompts

to create novel compositions.

– Inpainting: Filling in missing or altered regions of the image while preserving its overall

semantics.

• Left Column: Illustrates scenarios where the image prompt is used alongside structural

conditions (e.g., pose, depth maps) to enforce spatial constraints, enabling:

– Controllable Generation: Producing images that adhere to specific structural layouts

while maintaining the semantic essence of the image prompt.

Figure 20.122: Applications of IP-Adapter with pretrained text-to-image diffusion models. The

central image in each example serves as the image prompt. Right Column: Showcases image

variation, multimodal generation, and inpainting guided by the image prompt. Left Column:

Displays controllable generation achieved by combining the image prompt with additional structural

conditions. Adapted from [733].

Key Architectural Components and Detailed Integration

• Image Encoder and Global Embedding: The reference image is processed using a frozen

vision encoder—typically OpenCLIP-ViT-H/14—which outputs a single global embedding

vector eimg ∈ R
D. This vector captures high-level visual semantics such as identity, global

composition, and stylistic intent. Note that D (e.g., 1024 for ViT-H/14) typically differs from

the internal dimension d of the U-Net’s cross-attention layers (e.g., 768 in Stable Diffusion

1.5). Thus, a transformation is needed to bridge this dimensional gap.

• Projection to Visual Tokens (φ ): Since the U-Net expects a sequence of N key/value tokens,

each of dimension d, IP-Adapter introduces a lightweight, trainable projection network:

φ : RD→ R
N×d

which maps the global image embedding eimg into a sequence of N visual tokens:

[c1, . . . ,cN ] = φ(eimg), with ci ∈ R
d .
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– Why Use N > 1: Multiple visual tokens enable the model to attend separately to different

latent attributes of the reference image—such as pose, color palette, facial features, or

overall scene layout. This mirrors how textual prompts are split into subword tokens,

each contributing distinct semantic signals. A typical choice is N = 4, balancing diversity

of representation with computational efficiency.

– Structure of φ : The projection network consists of a single linear layer followed by

Layer Normalization:

φ(eimg) = LayerNorm(Wφ eimg), with Wφ ∈ R
(N·d)×D

The result is reshaped into a matrix in R
N×d . The LayerNorm is applied across token

dimensions and serves two key purposes:

1. Statistical stability: It normalizes the projected tokens, reducing internal covariate

shift and promoting smoother gradient flow during training.

2. Architectural compatibility: It aligns the statistics of the visual tokens with those

of the text encoder, which are also typically normalized. This facilitates better

integration into the pretrained U-Net’s attention layers, which expect normalized

key/value inputs.

• Parallel Cross-Attention Layers: Let Z ∈ R
L×d denote the input query features from an

intermediate U-Net block, and let ct ∈RT×d be the tokenized text embeddings from the frozen

CLIP text encoder. The original cross-attention mechanism in the pretrained U-Net computes:

Z′ = Attention(Q,K,V ) = Softmax

(
QK⊤√

d

)
V,

where

Q = ZWq, K = ctWk, V = ctWv,

and Wq,Wk,Wv ∈ R
d×d are the frozen projection matrices.

To introduce visual conditioning, IP-Adapter appends a decoupled image-specific attention

stream using the same queries Q, but separate keys and values derived from the projected

image token sequence ci ∈ R
N×d :

Z′′ = Attention(Q,K′,V ′) = Softmax

(
QK′⊤√

d

)
V ′,

where

K′ = ciW
′
k , V ′ = ciW

′
v ,

and W ′k ,W
′
v ∈ R

d×d are new trainable projection matrices. These are typically initialized from

Wk and Wv to accelerate training convergence.
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• Fusion Strategy: The outputs of the text-guided and image-guided attention modules are

combined additively:

Znew = Z′+λ ·Z′′,

where λ ∈ R is a tunable scalar controlling the influence of the image prompt. At inference

time, adjusting λ allows for fine-grained control over the visual guidance: λ = 1 yields full

conditioning on the image prompt, while λ = 0 recovers the original text-only generation

behavior.

Figure 20.123: IP-Adapter Architecture with Decoupled Cross-Attention. A reference image is

encoded into a global feature vector, projected into visual tokens via φ , and used to form parallel

attention pathways at each U-Net cross-attention site. These visual branches operate alongside frozen

text-conditioned paths, and their outputs are fused via addition. Adapted from [733].

Versatility and Generalization without Fine-Tuning A key strength of the IP-Adapter archi-

tecture lies in its remarkable generalization and composability. Once trained, the adapter can be

reused across a wide variety of downstream tasks without requiring any task-specific fine-tuning. It

remains compatible with community models built upon the same base U-Net backbone (e.g., Stable

Diffusion v1.5) and can be combined seamlessly with structured conditioning mechanisms such as

ControlNet [773].

This flexibility is enabled by IP-Adapter’s non-invasive, modular design. Its decoupled attention

layers are appended orthogonally to the pretrained U-Net, and its lightweight projection network

transforms the reference image into a short sequence of visual tokens. These tokens serve as semantic

key–value embeddings that are injected into the added image-specific attention stream. Because the

architecture avoids modifying the backbone U-Net or interfering with the frozen text encoder, it

remains interoperable with other conditioning systems that operate on different modalities.
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For example, when paired with ControlNet, the model can synthesize images that respect both high-

level semantic intent (from the image prompt) and low-level spatial structure (from edge maps, depth,

or pose). The semantic tokens from IP-Adapter modulate subject identity, style, and appearance,

while the structured control map—processed through a parallel ControlNet—anchors the generation

to a target layout. These influences act concurrently: one guiding what should appear, the other

guiding how and where it should appear.

Figure 20.124: Multimodal Conditioning with IP-Adapter and ControlNet. Adapted from [733],

this figure showcases identity-preserving generation under explicit structural guidance. Each row

pairs a visual prompt (left) with a structured control map (right), such as edge maps or pose

skeletons, processed by ControlNet (first two rows)/T2I-Adapter (last row). The trained IP-Adapter

injects visual semantics via decoupled cross-attention, while ControlNet/T2I-Adapter enforces the

geometric layout. No fine-tuning of the adapter is required for such multimodal compositional

synthesis, demonstrating its generalization across tasks and conditioning modalities.

As illustrated in Figure 20.124, this compositional capability allows users to generate coherent,

high-fidelity outputs where appearance and structure are jointly controlled. The adapter generalizes

across visual styles, domains, and control inputs with no need to retrain for specific downstream

tasks. This makes it a practical and powerful tool in real-world creative workflows, where flexibility,

reuse, and modularity are critical.
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Comparative Evaluation Across Structural Control Tasks

To further validate its adaptability and effectiveness, IP-Adapter was comprehensively benchmarked

against a wide range of alternative methods across multiple structural generation tasks. These

competing approaches span three major categories:

• Trained-from-scratch models, such as Open unCLIP [508], Kandinsky-2.1 [531], and

Versatile Diffusion [717], which are optimized end-to-end for joint image-text alignment.

• Fine-tuned models, including SD Image Variations [587] and SD unCLIP [588], which adapt

pretrained diffusion models for image prompt inputs via extensive retraining.

• Adapter-based solutions, such as the Style Adapter of T2I-Adapter [442], Uni-ControlNet’s

global controller [792], SeeCoder [716], and variants of ControlNet [773] (e.g., ControlNet-

Reference and ControlNet-Shuffle), which inject image conditioning in a modular fashion.

Unlike methods that require task-specific retraining or rely on dedicated control structures for

each condition type, IP-Adapter achieves competitive or superior results using a single, unified

architecture. It supports a wide range of conditioning tasks—such as edge-to-image translation,

sketch-to-style synthesis, and pose-guided generation—without retraining for each setup.

Figure 20.125: Comparison of IP-Adapter with Other Structural Conditioning Methods.

Adapted from [733], this figure compares IP-Adapter against competing approaches across diverse

control tasks. Baselines include SeeCoder [716], T2I-Adapter (Style) [442], Uni-ControlNet [792],

ControlNet-Shuffle and ControlNet-Reference [773]. IP-Adapter demonstrates high-quality syn-

thesis across edge, sketch, and pose conditioning, despite using a fixed image encoder and shared

attention module across all tasks. Notably, it requires no task-specific fine-tuning—unlike some of

the alternatives shown—highlighting its efficiency and generalization.
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Image-to-Image Translation, Inpainting, and Multimodal Prompting

IP-Adapter’s inherent strength lies in its remarkable versatility: it enables a single architecture with

fixed parameters to adapt seamlessly across diverse image generation paradigms [733]. This includes

high-quality image-to-image translation, image inpainting, and multimodal prompting, where both

image and text jointly guide the generation process.

For image-to-image translation, diffusion pipelines often adopt strategies like SDEdit [422], which

leverage stochastic differential equations to perform controlled image editing. Instead of generating

an image from pure noise, SDEdit begins with a real image and adds a calibrated amount of noise to

partially erase its content. The resulting noised image is then denoised under new conditions—such

as a modified prompt or altered guidance signals—enabling flexible and constrained editing.

Within this framework, IP-Adapter contributes as a semantic controller. The image prompt is passed

through a frozen CLIP encoder and a projection module to extract a dense embedding representing the

identity, style, and global appearance of the subject. These embeddings are injected into the U-Net via

dedicated cross-attention layers, enriching the denoising trajectory with semantic cues. Crucially, the

structural integrity of the original input is preserved, since the spatial information is derived directly

from the partially noised source image, not from external conditioning modules like ControlNet.

This allows IP-Adapter to achieve high-fidelity transformations—preserving fine-grained appearance

details.

Figure 20.126: Image-to-Image Translation and Inpainting with IP-Adapter. Adapted from [733],

this figure illustrates IP-Adapter’s ability to preserve semantic fidelity (e.g., style, identity) while

enabling controllable edits. In these examples, the structure is inferred directly from the source

image or masked regions, demonstrating IP-Adapter’s capability in settings without explicit structural

control modules like ControlNet. However, IP-Adapter remains fully compatible with such modules

when needed for more complex conditioning.

For inpainting, a related mechanism is used: a portion of the input image is masked and replaced with

noise, and the diffusion model fills in the missing region during the denoising process. IP-Adapter

enhances this process by injecting semantic guidance from the reference image prompt, ensuring

that the inpainted content remains faithful to the original subject’s identity, lighting conditions, and

stylistic attributes. This is particularly useful in creative tasks such as occlusion removal, selective

editing, or visual reimagination, where both consistency and controllability are paramount.
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The same IP-Adapter architecture also supports multimodal prompting, where both an image and a

text prompt jointly influence generation. This enables fine-grained and compositional control: the

image prompt preserves visual identity, style, and structural cues, while the text prompt modulates

high-level semantics—such as adding new attributes, changing scene context, or modifying object

categories. Unlike fully fine-tuned image prompt models, which often lose their text-to-image

capability, IP-Adapter retains both modalities and allows users to balance their influence via the

inference-time weight λ .

Figure 20.127: Multimodal Generation with IP-Adapter (Image + Text). Adapted from [733],

this figure illustrates how IP-Adapter enables expressive generation by combining image and text

prompts. The top row shows an image of a horse used as the visual prompt. Subsequent generations

introduce text prompts like “wearing a top hat” or “a red horse” to modify attributes without altering

the base identity. Further examples show compositional edits: a red car’s scene is changed to “in

snowy winter”, or its appearance is modified to “a green car” using simple text. The adapter enables

these edits while preserving fidelity to the original image prompt—without fine-tuning.
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The synergy between image and text inputs makes IP-Adapter highly suitable for personalized

and controllable generation scenarios. As we will now see, IP-Adapter also outperforms several

multimodal baselines in this setting.

Figure 20.128: Comparison with other multimodal prompting methods — adapted from the IP-

Adapter paper [733]. IP-Adapter outperforms BLIP-Diffusion, Uni-ControlNet, and other baselines

in compositional generation with image + text prompts, demonstrating strong identity preservation

and prompt compliance.

Figure 20.128 provides qualitative comparisons with competing methods for multimodal image

generation. The results show that IP-Adapter produces images that better preserve identity, maintain

high visual quality, and more faithfully follow both text and image prompts compared to BLIP-

Diffusion, T2I-Adapter, and Uni-ControlNet.

In the next part, we explore ablation studies that demonstrate how IP-Adapter’s core architectural

choices—including decoupled attention and feature granularity—affect the quality and controllability

of generations.

Ablation: Validating Architectural Design

To assess the effectiveness of its key architectural decisions, the IP-Adapter paper includes a set of

controlled ablation experiments. These studies highlight the contribution of the decoupled cross-

attention mechanism and investigate the trade-offs between different feature representations used in

the adapter.

Baseline Comparison: Simple Adapter without Decoupling

A natural baseline is to compare IP-Adapter against a simpler variant that injects image features

using the existing text cross-attention layers—without the decoupled attention pathway. While this

approach simplifies integration, it suffers from feature entanglement and capacity conflict between

modalities.
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Figure 20.129: Comparison with a simple adapter lacking decoupled cross-attention — adapted

from the IP-Adapter paper [733]. While the simple adapter fails to preserve fine-grained appearance

and identity attributes, IP-Adapter produces accurate and semantically aligned generations by

decoupling image attention from textual conditioning.

As shown in Figure 20.129, the simple adapter baseline often struggles to preserve subject identity

and generates content that deviates from the image prompt. In contrast, IP-Adapter achieves high

alignment with the source image, demonstrating the necessity of modality separation for accurate

multimodal fusion.

Granularity of Image Representations: Global vs. Fine-Grained Tokens

A key design decision in IP-Adapter is the choice of granularity for representing the image prompt.

By default, the adapter extracts a single global CLIP embedding from the reference image and

projects it into a small sequence of visual tokens (typically N = 4). These tokens are then injected

into the U-Net’s cross-attention layers to guide generation. This setup provides a lightweight and

expressive way to convey high-level semantics—such as identity, style, and layout—while remaining

efficient and generalizable.

To investigate whether more detailed spatial alignment could be achieved, the IP-Adapter authors

explored an alternative design that uses fine-grained visual tokens. Instead of relying solely on

the global embedding, this variant extracts grid features from the penultimate layer of the frozen

CLIP vision encoder. These grid features retain localized spatial information and are processed by a

lightweight transformer query network, which learns to distill them into a sequence of 16 learnable

visual tokens. These finer-grained tokens are then used in the same cross-attention mechanism,

replacing the global-token projection.

Experimental Setup and Trade-offs: This variant was trained on the same dataset and evaluated

under identical generation settings to allow fair comparison with the global-token version. The

results, shown in the following figure, highlight a clear trade-off. The fine-grained configuration

improves consistency with the reference image, particularly in background structures and subtle

textures. However, it also tends to constrain the generative process more tightly, leading to reduced

diversity across output samples. In contrast, the default global-token design offers a strong balance

between semantic fidelity and output variation, making it better suited for general-purpose use.
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Importantly, this limitation in diversity with fine-grained tokens can often be mitigated by adding

complementary conditioning—such as text prompts or ControlNet structural maps—which help

guide the generative process while restoring flexibility. In practice, the global-token configuration

remains the preferred choice for most applications due to its simplicity, efficiency, and broader

compatibility with multimodal workflows.

Figure 20.130: Effect of Fine-Grained Image Tokens on Generation. Adapted from [733], this

figure compares IP-Adapter using global visual tokens (mid row) versus fine-grained visual tokens

(last row). While the fine-grained variant improves alignment with local texture and background

details, it can reduce variation across samples due to stronger conditioning. The global-token version

provides more generative flexibility while maintaining high semantic fidelity.

These ablation studies confirm that both the decoupled architecture and the choice of token gran-

ularity play critical roles in the model’s performance. The modularity of IP-Adapter allows these

components to be tailored depending on the intended use—whether for faithful recreation, stylized

adaptation, or diverse sampling.
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Looking Forward

A core motivation behind IP-Adapter was to disentangle heterogeneous modalities—specifically, to

inject visual semantics directly via image embeddings rather than forcing them through the linguistic

bottleneck of text encoders. This decoupling resolved key limitations in early diffusion pipelines,

where all conditioning—even image-derived information—had to pass through shared cross-attention

layers, often degrading fidelity and limiting semantic expressiveness. By introducing dedicated

visual pathways that operate alongside the frozen U-Net, IP-Adapter preserved both the semantic

richness of image prompts and the integrity of pre-trained text-to-image capabilities [733].

While this modular design proved highly effective for visual prompting, it was never meant to

support fully compositional control across multiple modalities. As use cases grow more com-

plex—demanding joint integration of reference appearance, structural layout, and descriptive lan-

guage—the limitations of modularity become increasingly evident. Combining multiple modules

(e.g., IP-Adapter for visual identity, ControlNet for edges or pose, and a separate module for text)

introduces architectural overhead, modality-specific constraints, and potential conflicts between in-

dependently routed guidance signals. Each modality is still handled in isolation, with no mechanism

for learning their mutual interactions or resolving contradictions.

This has sparked a broader shift toward unified conditioning frameworks—architectures designed

to ingest and fuse all input modalities within a single attention-driven latent space. Rather than

bolting on more specialized adapters, these frameworks are trained end-to-end on mixed-modality

sequences, allowing them to learn how different types of guidance interact, reinforce, or compete.

A compelling example of this conceptual leap is Transfusion [809], which we examine next.

Whereas IP-Adapter introduces decoupled cross-attention to avoid modality entanglement, Trans-

fusion instead embraces entanglement through a shared modeling framework. It trains a single

transformer to jointly model discrete text tokens and continuous image patches as part of a unified se-

quence, using shared self-attention and feedforward layers across modalities. This enables the model

to perform both language modeling and diffusion denoising within the same architecture—dissolving

the boundaries that modular adapters merely isolate.

By learning to align and synthesize multimodal signals within a single generative process, Transfusion

opens the door to richer, more coherent compositionality and seamless modality interaction—without

the overhead of managing separate modules. It represents the natural evolution of multimodal

generation: not just retrofitting existing systems with external guidance, but rethinking the generative

architecture itself from the ground up.
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Enrichment 20.11.10: Transfusion: Unified Multimodal Generation

Motivation and Overview

Generative models have reached state-of-the-art performance in individual modalities: large language

models (LLMs) like GPT excel at producing coherent and contextually rich text, while diffusion-

based models such as Stable Diffusion generate highly realistic images. However, building a unified

generative system capable of seamlessly reasoning across both text and image modalities remains a

significant challenge.

Existing approaches to multimodal generation typically fall into one of two categories:

• Discrete Tokenization of Images: Approaches like DALL·E [509] or Chameleon [398]

quantize images into discrete visual tokens (e.g., via VQ-VAEs), allowing them to be modeled

autoregressively like text. While effective, this discretization introduces information loss and

reduces the fidelity of visual synthesis.

• Modular Pipelines: Methods such as IP-Adapter [733] or ControlNet [773] augment existing

text-to-image diffusion models with auxiliary components that inject conditioning signals.

While flexible, these grafted architectures often lack global coherence, require per-modality

customization, and struggle with joint, end-to-end reasoning.

Such designs are often brittle, especially when dealing with interleaved inputs (e.g., text-image-text)

or outputs requiring fine cross-modal consistency.

Transfusion [809] overcomes these limitations with a clean and elegant solution: a single, modality-

agnostic transformer trained end-to-end to model mixed sequences of text and image content. Rather

than building separate encoders or injecting one modality into another, Transfusion unifies both

within a shared token stream and a shared network backbone. It achieves this via two key design

principles:

• Shared Transformer Backbone: A single transformer with shared weights processes both

text tokens and continuous image patch embeddings. This facilitates uniform attention over

all elements in the sequence and supports tight cross-modal interactions.

• Dual Training Objectives: The model is jointly trained with a language modeling loss (for

text) and a denoising diffusion loss (for image patches). The training procedure teaches the

model to predict the next text token and remove noise from corrupted image tokens—both

using the same architecture.

This unified formulation enables Transfusion to support a wide range of input-output formats with a

single model:

• Text→ Image: Text-to-image generation.

• Image→ Text: Image captioning and visual understanding.

• Mixed → Mixed: One of the most compelling strengths of Transfusion is its ability to

process and generate rich interleaved sequences of text and images. These tasks involve both

multimodal inputs and multimodal outputs—handled in a unified transformer pipeline. Such

capabilities are essential for:

– Visual storytelling: Given a sequence of text snippets—such as narrative sentences,

scene descriptions, or story fragments—the model generates a coherent visual story by

producing aligned image segments after each text block. Conversely, it can also generate

interleaved text commentary or narrative lines from a sequence of input images.
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For example:

"A boy opens a mysterious book." <BOI> image_1 <EOI>

"A portal begins to glow on the wall." <BOI> image_2 <EOI>

"He steps through, entering a dreamlike jungle." <BOI> image_3

<EOI>

Each element is contextually grounded in prior ones, and the sequence evolves in both

text and image domains, preserving temporal and semantic coherence.

– Multimodal dialog: The model supports dynamic interactions where inputs and outputs

alternate between text and images. For instance, a user may submit an image followed

by a question, and the model replies with a mix of visual and textual responses—such as

diagrams, sketches, or annotated outputs. This enables applications in tutoring, grounded

question answering, and multimodal assistants.

– Text-guided image editing and inpainting: Given an input image and a text instruction,

the model directly generates a modified image that reflects the desired edit, without

requiring separate control modules or manually designed conditioning maps:

"Replace the red car with a bicycle." <BOI> edited_image <EOI>

These scenarios are challenging for traditional diffusion models, and some scenarios are chal-

lenging to even adapter-augmented architectures (e.g., ControlNet [773], IP-Adapter [733]).

Such modular systems often lack the flexibility to process arbitrary multimodal sequences or

to maintain cross-modal consistency across multiple alternating steps of generation.

In contrast, Transfusion achieves this by treating text tokens and continuous image tokens

as part of the same autoregressive token sequence. The model does not differentiate between

modalities at the architectural level—only special delimiter tokens (e.g., <BOI> (Beginning

of Image), <EOI> (End of Image)) indicate modality boundaries. All tokens are processed

uniformly using shared transformer layers, and multimodal coherence is learned end-to-end

via joint training with language modeling and diffusion objectives.

This design enables the model to naturally reason over long multimodal contexts, propagate

dependencies across modality transitions, and generate semantically aligned outputs that

respect both linguistic structure and visual consistency.

Figure 20.131: High-level architecture of Transfusion — adapted from the Transfusion paper [809].

A single transformer handles interleaved sequences of text tokens and continuous image patch

embeddings. During training, text tokens are supervised using a next-token prediction loss, while

image tokens are optimized with a denoising diffusion loss. Modality delimiters like <BOI> and

<EOI> enable the model to seamlessly reason across modalities.
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Architecture and Training Pipeline of Transfusion

To understand the unified nature of Transfusion, we now examine its complete generative pipeline—starting

from raw image and text inputs, proceeding through tokenization and transformer processing, and

culminating in joint modality-specific losses. This breakdown serves as the foundation for later

sections covering generation and editing capabilities.

Part 1: Image Tokenization Pipeline To enable seamless multimodal generation, Transfusion

converts images into continuous, transformer-compatible tokens that can be interleaved with discrete

text tokens. This process preserves the spatial structure and rich visual semantics of the input while

allowing joint processing by a single transformer.

• Spatial Encoding via Convolutional VAE: The input image x ∈ R
H×W×3 is passed through

a pretrained convolutional Variational Autoencoder (VAE) [292], which encodes it into a

lower-resolution latent feature map. The encoder is composed of stacked convolutional layers

that downsample the image by a factor of s, producing two tensors:

µ(x), logσ2(x) ∈ R
H ′×W ′×d , with H ′ = H/s,W ′ =W/s

Each spatial location (i, j) corresponds to a receptive field in the original image and defines a

diagonal Gaussian distribution:

q(zi, j | x) = N (zi, j | µi, j,σ
2
i, j · Id)

During VAE training, latent samples are drawn using the reparameterization trick:

zi, j = µi, j +σi, j · εi, j, εi, j ∼N (0, Id)

The decoder then reconstructs the original image x̂≈ x. The loss combines a reconstruction

objective with a KL divergence regularizer to promote a smooth latent space:

LVAE = Eq(z|x)
[
∥x̂− x∥2

]
+β ·KL(q(z | x)∥ p(z))

During downstream use (e.g., tokenization in Transfusion), the VAE encoder is kept frozen

and the sampling step is disabled. Instead, the deterministic mean z := µ(x) ∈ R
H ′×W ′×d is

used as the spatially-structured latent representation. Each vector zi, j ∈ R
d serves as a dense,

localized encoding of a specific region in the input image.

• Patching Strategy for Tokenization: The latent tensor z is then transformed into a 1D

sequence of patch-level embeddings using one of two methods:

– Linear Projection: The latent map is divided into non-overlapping k× k spatial blocks,

each containing k2 adjacent vectors zi, j ∈ R
d . Each block is flattened into a vector of

shape k2 · d, then passed through a linear layer that compresses it back to dimension

d. This method provides a direct, local embedding of visual content and is easy to

implement, but it lacks contextual integration beyond each patch.

– U-Net-style Downsampling (Preferred): Alternatively, Transfusion applies a shallow

convolutional encoder (often derived from the U-Net stem) to the full latent tensor

z. This module downsamples the spatial dimensions further (e.g., H ′→ H̃), enabling

each resulting token to summarize information over a broader receptive field. These

richer embeddings are particularly beneficial for complex generation tasks that require

high-level reasoning or long-range visual consistency.
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• Token Sequence Construction: The resulting patch embeddings {z1, . . . ,zN} ⊂ R
d form a

continuous image token sequence. These are either appended to or interleaved with discrete

text tokens to form a unified input stream for the transformer. Special delimiter tokens (e.g.,

<BOI>, <EOI>) are inserted to mark modality boundaries, but the transformer processes all

tokens jointly, enabling fluent multimodal generation and reasoning.

Figure 20.132: Image tokenization in Transfusion — adapted from the Transfusion paper [809]. A

pretrained VAE encodes each image into a spatial latent map, which is then converted into patch

tokens using either a shallow linear projection or a few downsampling blocks of a small U-Net.

These patches are inserted into the transformer sequence between special boundary tokens <BOI>

and <EOI>, enabling the model to process image and text jointly in a unified token stream.

Part 2: Text Tokenization Pipeline The text prompt T is first converted into a sequence of

discrete tokens using a standard tokenizer, then embedded into the same feature space as the image

tokens:

• A Byte-Pair Encoding (BPE) tokenizer transforms the input string into a token sequence:

T 7→ {w1,w2, . . . ,wM}, wi ∈ Vtext

• Each token wi is mapped to a continuous vector ei ∈ R
d using a learned embedding matrix

Etext ∈ R
|Vtext|×d :

ei = Etext[wi]

• This produces the text embedding sequence:

xtext = [e1,e2, . . . ,eM] ∈ R
M×d
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Part 3: Multimodal Sequence Construction After obtaining both the image token sequence

ximg = [z1,z2, . . . ,zN ] ∈ R
N×d from Part 1 and the text token embeddings xtext ∈ R

M×d from Part 2,

Transfusion constructs a unified input sequence for the transformer.

• Two special learnable embeddings are added to delimit the image region:

e<BOI>, e<EOI> ∈ R
d

• The final multimodal input to the transformer is the concatenation:

xinput = [e1, . . . ,eM,e<BOI>,z1, . . . ,zN ,e<EOI>] ∈ R
(M+N+2)×d

• Optional position encodings or segment embeddings may be added to indicate token roles and

preserve modality structure.

Part 4: Transformer Processing with Hybrid Attention A single transformer autoregressively

processes the multimodal sequence xinput. To balance generation constraints with spatial reasoning,

Transfusion adopts a hybrid attention mask:

• Causal attention is applied globally, ensuring that each token can only attend to previous

tokens in the sequence.

• Bidirectional attention is enabled locally within the image region delimited by <BOI> and

<EOI>, allowing all image tokens to attend to one another.

This hybrid masking strategy preserves autoregressive generation for the full sequence while enabling

richer spatial reasoning among image tokens—improving sample fidelity and multimodal alignment.

Figure 20.133: Hybrid attention with intra-image bidirectional conditioning — adapted from the

Transfusion paper [809]. While the overall sequence obeys a causal attention mask (for autoregressive

generation), Transfusion relaxes this constraint within image segments. Patches from the same

image can attend to each other bidirectionally, allowing the model to better capture local visual

dependencies without violating the causal structure needed for autoregressive inference.
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Part 5: Training Objectives and Loss Functions Transfusion jointly optimizes a unified trans-

former model over both text and image inputs. The training procedure integrates two complementary

objectives—autoregressive language modeling and latent-space denoising—applied respectively to

text tokens and VAE image patches. These objectives are optimized simultaneously using shared

model parameters, with losses computed over the appropriate modality regions in the input sequence.

• Text Modeling Loss Ltext: For positions in the sequence corresponding to text tokens

{w1, . . . ,wM}, the model is trained to predict each next token wi+1 based on the preceding

context w≤i, using standard autoregressive language modeling.

Ltext =−
M

∑
i=1

log p(wi+1 | w≤i)

The prediction is compared against the ground truth token from the training data, and the loss

is computed as cross-entropy between the predicted distribution and the true next-token index.

This formulation ensures that the model learns to generate fluent, contextually appropriate text

conditioned on both prior tokens and (when available) image content.

• Image Denoising Loss Ldiff: For image regions—i.e., the continuous sequence of tokens

z0 ∈ R
N×d obtained by encoding and optionally downsampling the image with a pretrained

VAE—the model is trained using a DDPM-style denoising objective.

During training, a timestep t ∼ {1, . . . ,T} is sampled, and Gaussian noise is added to each

image token z
( j)
0 ∈ R

d using the forward diffusion process:

z
( j)
t =

√
ᾱt z

( j)
0 +

√
1− ᾱt ε( j), ε( j) ∼N (0, I)

Here, ᾱt is a cumulative noise schedule, and ε( j) is the sampled noise used to corrupt patch j.

The model is trained to predict ε( j) from z
( j)
t and the timestep t, minimizing the mean squared

error over all patches:

Ldiff = Et,z0,ε

[
1

N

N

∑
j=1

∥∥∥εθ (z
( j)
t , t)− ε( j)

∥∥∥
2

2

]

This loss operates entirely in latent space; no decoding to pixels is performed during training.

The ground truth for each position is the actual noise added in the forward process. The use of

VAE latents enables spatial preservation and compact representation, making the diffusion

process more efficient than pixel-level alternatives.

• Total Training Loss Ltotal: The overall training objective combines both modality-specific

terms into a weighted sum:

Ltotal = λtext ·Ltext +λdiff ·Ldiff

where λtext,λdiff ∈ R≥0 are scalar coefficients that control the relative contribution of text

modeling and image denoising to the final loss. In practice, the original Transfusion paper

reports using λdiff = 5, giving higher weight to the image denoising component due to its

higher dynamic range and training complexity.
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Part 6: Key Advantages of the Training Design

• Full parameter sharing: No modality-specific blocks; language and vision share all layers.

• End-to-end joint training: All gradients flow through shared transformer, improving align-

ment.

• No discrete quantization: Image patches remain continuous, avoiding codebook collapse or

token artifacts.

• Multimodal generation in a single pass: A single forward pass can generate image and text

jointly.
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Empirical Results and Qualitative Examples

Showcase: High-Quality Multi-Modal Generation One of the most compelling outcomes

of the Transfusion model is its ability to generate high-fidelity, semantically grounded images

from a wide range of compositional text prompts. Trained with 7B parameters on a dataset of 2

trillion multimodal tokens—including both text and images—the model produces coherent and

visually expressive outputs that exhibit stylistic nuance, spatial awareness, and fine-grained linguistic

alignment.

Figure 20.134: Examples generated by Transfusion — adapted from [809]. Each image was

generated by a 7B-parameter model trained from scratch on 2T multimodal tokens. Prompts range

from artistic to scene-specific, such as “A chromeplated cat sculpture placed on a Persian rug” and “A

wall in a royal castle. There are two paintings on the wall. The one on the left a detailed oil painting

of the royal raccoon king. The one on the right a detailed oil painting of the royal raccoon queen”.

These results highlight Transfusion’s ability to interpret rich, compositional text and produce visually

grounded responses.
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These qualitative results demonstrate not only stylistic diversity but also compositional understand-

ing—a hallmark of strong multimodal reasoning. Unlike U-NET based diffusion architectures that

rely on external encoders or modality-specific adapters, Transfusion achieves this performance using

a single, unified transformer trained from scratch, without separate alignment stages or handcrafted

prompt tuning.

Zero-Shot Image Editing via Fine-Tuning Beyond text-to-image synthesis, Transfusion also

generalizes to the task of image editing through lightweight fine-tuning. A version of the 7B model

was adapted on a dataset of only 8,000 image–text pairs, each consisting of an input image and a

natural-language instruction describing a desired change (e.g., “Remove the cupcake on the plate” or

“Change the tomato on the right to a green olive”).

Figure 20.135: Image editing examples with Transfusion — adapted from [809]. After fine-tuning

on just 8k paired text–edit examples, the model performs successful localized edits such as object

removal, replacement, and attribute modification. Notably, global image coherence and realism are

preserved despite minimal fine-tuning and no explicit editing modules.

This result is notable: without requiring any architectural changes—such as inpainting masks or

diffusion-specific guidance—the model learns to apply textual edit instructions directly. Training is

end-to-end, and the only modification is through supervised adaptation on the editing dataset. This

demonstrates the expressive capacity of the underlying sequence model and suggests extensibility to

broader tasks such as viewpoint manipulation, object insertion, or multimodal storytelling.
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Ablation Studies and Experimental Insights

To evaluate the core design choices of Transfusion [798], the authors conduct extensive ablations

over attention masking, patch size, encoder/decoder type, noise scheduling and model scale. Both

vision and language benchmarks are reported with the metrics below.

Interpreting Evaluation Metrics

• PPL (Perplexity) ↓: Measures uncertainty in language modeling. Lower values correspond to

better next-token prediction performance.

• Accuracy (Acc) ↑: Multiple-choice question answering accuracy, especially on LLaMA-style

QA tasks.

• CIDEr ↑: A captioning metric measuring consensus with human-written references, widely

used in MS-COCO.

• FID (Fréchet Inception Distance) ↓: Evaluates the visual realism of generated images. Lower

is better. See Section 20.5.2 for a detailed explanation.

• CLIP Score ↑: Measures semantic alignment between generated image and caption using

pretrained CLIP embeddings [498].

Attention Masking: Causal vs. Bidirectional Bidirectional self-attention applied within each

image notably improves FID for linear encoders (61.3→20.3); U-Nets also benefit, though to a

lesser extent.

Table 20.7: Effect of attention masking in 0.76 B Transfusion models (2×2 patches). Adapted

from [798].

Encoder/Dec. Attention C4 PPL Wiki PPL Acc CIDEr FID CLIP

Linear Causal 10.4 6.0 51.4 12.7 61.3 23.0

Linear Bidirectional 10.4 6.0 51.7 16.0 20.3 24.0

U-Net Causal 10.3 5.9 52.0 23.3 16.8 25.3

U-Net Bidirectional 10.3 5.9 51.9 25.4 16.7 25.4

Patch Size Variations Larger patches reduce token length and compute, but can hurt performance.

U-Nets are more robust than linear encoders.
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Table 20.8: Effect of patch size in 0.76 B Transfusion models. Bold=best overall. Adapted from

[798].

Encoder/Dec. Patch C4 PPL Wiki PPL Acc CIDEr FID CLIP

Linear 1×1 (1024) 10.3 5.9 52.2 12.0 21.0 24.0

Linear 2×2 (256) 10.4 6.0 51.7 16.0 20.3 24.0

Linear 4×4 (64) 10.9 6.3 49.8 14.3 25.6 22.6

Linear 8×8 (16) 11.7 6.9 47.7 11.3 43.5 18.9

U-Net 2×2 (256) 10.3 5.9 51.9 25.4 16.7 25.4

U-Net 4×4 (64) 10.7 6.2 50.7 29.9 16.0 25.7

U-Net 8×8 (16) 11.4 6.6 49.2 29.5 16.1 25.2

Encoding Architecture: Linear vs. U-Net U-Nets outperform linear encoders across model sizes

with only a modest parameter increase.

Table 20.9: Linear vs. U-Net encoders (0.76 B and 7.0 B). Adapted from [798].

Params Encoder C4 PPL Wiki PPL Acc CIDEr FID CLIP

0.76 B Linear 10.4 6.0 51.7 16.0 20.3 24.0

U-Net 10.3 5.9 51.9 25.4 16.7 25.4

7.0 B Linear 7.7 4.3 61.5 27.2 18.6 25.9

U-Net 7.8 4.3 61.1 33.7 16.0 26.5

Noise Scheduling in Image-to-Text Training Capping diffusion noise to timesteps t ≤ 500

improves CIDEr without degrading other metrics.

Table 20.10: Effect of diffusion-noise capping. Adapted from [798].

Model Cap t ≤ 500 C4 PPL Wiki PPL Acc CIDEr FID

0.76 B ✗ 10.3 5.9 51.9 25.4 16.7

0.76 B ✓ 10.3 5.9 52.1 29.4 16.5

7.0 B ✗ 7.8 4.3 61.1 33.7 16.0

7.0 B ✓ 7.7 4.3 60.9 35.2 15.7

Comparison to Specialized Generative Models A single Transfusion model achieves strong

performance on both image and text tasks compared with state-of-the-art specialised models.
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Table 20.11: Comparison with prior work on image and multimodal tasks. Adapted from [798].

Model Params COCO FID↓ GenEval↑ Acc↑ Modality Notes

SDXL [482] 3.4 B 6.66 0.55 – Image Frozen encoder

DeepFloyd IF [612] 10.2 B 6.66 0.61 – Image Cascaded diffusion

SD3 [149] 12.7 B – 0.68 – Image Synthetic caps

Chameleon [810] 7.0 B 26.7 0.39 67.1 Multi Discrete fusion

Transfusion [798] 7.3 B 6.78 0.63 66.1 Multi Unified LM + diffusion

Summary

The ablation findings from [798] provide a clear picture of what makes Transfusion effective:

bidirectional intra-image attention is key to spatial coherence; U-Net-based patch encoders contribute

strong inductive biases that enhance both fidelity and alignment; and careful tuning of patch size and

noise scheduling enables efficient training without compromising performance. The success of this

architecture demonstrates that unifying text and image processing under a shared transformer with

continuous embeddings is not only feasible but highly performant.

At the same time, the reliance on continuous image tokens and diffusion-based generation introduces

additional training and sampling complexity. This raises a natural question: can we achieve the

benefits of modality unification using simpler, fully discrete generation schemes? In the following

section, we explore such a possibility through the lens of the VAR framework, which revisits token-

level autoregressive modeling for unified image and text generation—offering a different perspective

on multimodal generative design.
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Enrichment 20.11.11: Visual Autoregressive Modeling (VAR)

Traditional autoregressive (AR) models, such as PixelCNN or transformer-based image generators,

generate images sequentially by predicting each token (pixel, patch, or VQ code) in a predefined

raster scan order—typically left to right and top to bottom. While conceptually straightforward, this

strategy is fundamentally at odds with the two-dimensional nature of images and the hierarchical

way humans perceive visual content.

Visual Autoregressive Modeling (VAR) [615] reconsiders how autoregression should operate in the

image domain. Instead of modeling a 2D grid as a flattened 1D sequence, VAR predicts image

content in a coarse-to-fine, multi-scale manner. At each scale, the model generates an entire token

map in parallel, then conditions the next higher-resolution prediction on this coarser output. This

process mirrors how humans often process visual inputs: first recognizing global structure, then

refining local details.

This approach leads to multiple benefits:

• Improved efficiency: Tokens at a given resolution are predicted in parallel, which drastically

reduces the number of autoregressive steps compared to raster-scan generation.

• Higher fidelity: Coarse-to-fine guidance encourages global coherence and fine-grained detail

simultaneously.

• Scalable modeling: VAR exhibits smooth scaling behavior similar to language transformers,

showing predictable gains as model and compute increase.

Figure 20.136: Autoregressive modeling paradigms for image generation — adapted from [615].

(a) Standard language AR modeling predicts tokens sequentially. (b) Classical image AR methods

flatten a 2D grid into a raster-scan sequence. (c) VAR predicts multi-scale token maps hierarchically:

coarse levels first, with progressively finer resolutions conditioned on earlier stages.

As we now explore, this paradigm shift from token-wise raster autoregression to scale-wise parallel

prediction yields state-of-the-art results on ImageNet and opens the door to efficient, high-fidelity

generation pipelines.
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Multi-Scale Architecture for Coarse-to-Fine Generation: How VAR Works The core contribu-

tion of Visual Autoregressive Modeling (VAR) [615] is a paradigm shift in how autoregressive models

approach image generation. Instead of predicting tokens in a strict raster-scan order—row-by-row,

left to right—VAR proposes a coarse-to-fine, scale-based generation strategy that better reflects how

humans compose images: beginning with global structure and refining toward detail. This section

explains the architecture and training pipeline, focusing on the two foundational stages: hierarchical

tokenization and scale-aware prediction.

Overview: A Two-Stage Pipeline for Image Generation

The Visual AutoRegressive (VAR) model [615] tackles the problem of high-fidelity image generation

using a modular, two-stage approach:

• Stage 1: Multi-Scale VQ-VAE for Hierarchical Tokenization Transforms a continuous

image into a hierarchy of discrete tokens, each representing visual content at a different scale

(from global layout to local texture). This compresses the image into symbolic representations

that are more structured and compact than pixels or raw latent features.

• Stage 2: Scale-Aware Autoregressive Transformer Learns to model the joint distribution of

token hierarchies and to autoregressively generate image tokens from coarse to fine, either

unconditionally or conditioned on class/text input. This allows realistic, structured image

synthesis without generating pixels directly.

These two stages are trained separately and serve complementary purposes:

• The VQ-VAE (Stage 1) learns how to discretize an image into multi-scale tokens R =
(r1, . . . ,rK) and how to reconstruct the image from them.

• The transformer (Stage 2) learns how to generate realistic sequences of these tokens, modeling

p(r1, . . . ,rK | s) where s is an optional conditioning signal.

This design addresses key challenges in autoregressive image modeling:

• It avoids operating over raw pixels, which are high-dimensional and redundant.

• It introduces scale-level causality, so image generation proceeds hierarchically (not raster-

scan), yielding better spatial inductive structure.

• It separates representation learning (handled by the VQ-VAE) from generation (handled by

the transformer), simplifying optimization and improving sample quality.

We now explain each stage in detail, beginning with the multi-scale encoding process of the VQ-VAE.

Stage 1: Multi-Scale VQ-VAE for Hierarchical Tokenization

The first stage of the VAR pipeline [615] transforms a continuous image into a set of discrete

token maps across multiple resolutions. This step establishes a symbolic vocabulary over images,

enabling a transformer in the second stage to model image generation as autoregressive token

prediction. Prior works like DALL·E 1 [509] relied on a single-scale VQ-VAE, which forced each

token to simultaneously capture high-level layout and low-level texture—often leading to trade-offs

in expressivity. VAR overcomes this limitation through a hierarchical decomposition:

R = (r1,r2, . . . ,rK)

where each token map rk ∈ {0, . . . ,V−1}hk×wk encodes the image at scale k, from coarse to fine.

The hierarchy is constructed through residual refinement, ensuring that each level captures only the

visual details not already modeled by coarser layers.
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Hierarchical Token Encoding via Residual Refinement Let x ∈ R
H×W×3 be the input image. A

shared convolutional encoder E processes x into a latent feature map:

f ∈ R
H ′×W ′×C

where H ′≪H, W ′≪W , and C is the channel dimension. This map retains semantic structure while

reducing spatial complexity.

To tokenize this image across multiple levels, the model applies a sequence of residual refinements.

For each scale k ∈ {1, . . . ,K}, the following steps are executed:

1. Resolution Adaptation: Interpolate the latent map f to resolution hk×wk, yielding a coarsened

view appropriate for scale k.

2. Discrete Quantization: Map the interpolated features to a discrete token map rk ∈{0, . . . ,V−1}hk×wk

by finding the nearest entries in a shared codebook Z ∈ R
V×d . Each index corresponds to the

closest code vector in Z, representing the local content at that location.

3. Code Vector Lookup: Retrieve the continuous code vectors associated with rk, forming:

zk = Z[rk] ∈ R
hk×wk×d

4. Residual Update: Interpolate zk to the full resolution H ′×W ′, apply a scale-specific 1×1

convolution φk, and subtract the result from the shared latent:

f← f−φk (Interpolate(zk))

This subtraction removes the information already modeled by level k, forcing subsequent

levels to focus on the residual detail. The subtraction step is critical: it decorrelates token

maps across scales and ensures that each scale contributes new, non-overlapping information.

After completing this procedure for all K levels, the image is represented as a hierarchy of discrete

symbolic tokens r1, . . . ,rK , suitable for autoregressive modeling.

Token Decoding and Image Reconstruction Given a full hierarchy of token maps (r1, . . . ,rK),
the decoder reconstructs the image by reversing the residual refinement process:

1. Embedding Recovery: Use the codebook Z to retrieve continuous embeddings:

zk = Z[rk] ∈ R
hk×wk×d

2. Latent Aggregation: Interpolate each zk to resolution H ′×W ′, apply its convolution φk, and

sum the results to reconstruct the latent feature map:

f̂ =
K

∑
k=1

φk (Interpolate(zk))

3. Image Synthesis: A lightweight convolutional decoder D maps f̂ to a reconstructed image:

x̂ = D(f̂) ∈ R
H×W×3

This decoding path exactly mirrors the refinement steps in reverse, enabling the discrete token maps

to be faithfully converted back into high-resolution images.
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Training Objective for the VQ-VAE The encoder–decoder pipeline is trained independently from

the transformer using a perceptually aligned loss:

LVQ-VAE = ∥x− x̂∥2 +∥f− f̂∥2 +λPLP(x̂)+λGLG(x̂)

where:

• ∥x− x̂∥2: Pixel-space L2 reconstruction loss

• ∥f− f̂∥2: Latent-space consistency loss

• LP(x̂): Perceptual loss (e.g., LPIPS) weighted by λP

• LG(x̂): Adversarial loss weighted by λG

This compound objective encourages both structural accuracy and perceptual realism in the recon-

structed images. Once trained, the VQ-VAE becomes a symbolic bridge between continuous images

and the transformer in Stage 2.

Stage 2: Scale-Aware Autoregressive Transformer

While Stage 1 defines how to tokenize and reconstruct an image using a hierarchy of discrete visual

codes, Stage 2 transforms this representation into a full generative model. The transformer introduced

here is trained to model the joint probability distribution over multi-scale token maps produced by

the VQ-VAE. Its objective is to generate a sequence of token maps that are semantically coherent

and hierarchically consistent—ultimately producing realistic images when decoded by Stage 1.

p(r1, . . . ,rK | s)

Here, s is an optional conditioning signal such as a class label or text prompt, and rk ∈ Z
hk×wk

denotes the token map at scale k.

From Tokens to Embeddings: Transformer Inputs The transformer does not operate directly on

the discrete token indices rk. Instead, each token map rk is transformed into a continuous embedding

map ek ∈ R
hk×wk×Dmodel through the following procedure:

1. Codebook Lookup: Each integer token index in rk is used to retrieve its associated code

vector from the shared codebook Z ∈ R
V×d , forming a spatial map zk = Z[rk] ∈ R

hk×wk×d .

2. Projection to Transformer Dimension: The code vectors zk are projected to the transformer’s

model dimension Dmodel via a learned linear layer.

3. Positional and Scale Embedding: Positional embeddings are added to encode spatial location

within the grid, and a scale-specific embedding is added to indicate the resolution level k. The

resulting map is denoted ek, and it serves as the input to the transformer for scale k.

Similarly, the conditioning signal s is embedded as semb ∈ R
Dmodel . Together, the input to the

transformer at training time is the sequence:

[semb,e1, . . . ,eK−1]
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Why a Second Stage is Needed This two-stage setup reflects a deliberate separation of concerns:

• Stage 1 (VQ-VAE): Encodes perceptual realism, spatial consistency, and image fidelity via

hierarchical quantization and reconstruction.

• Stage 2 (Transformer): Focuses purely on symbolic generation—learning to synthesize

plausible token sequences that form coherent, multi-scale image structures.

This design allows the transformer to reason over a compact, expressive, and semantically meaningful

representation space, without being burdened by low-level texture synthesis.

Autoregressive Modeling Across Scales Unlike pixel-level autoregressive models (e.g., Pixel-

RNN) that model:

p(x) =
H·W
∏
i=1

p(xi | x<i),

the VAR transformer performs next-scale prediction, modeling causality across hierarchical levels:

p(r1, . . . ,rK | s) =
K

∏
k=1

p(rk | s,r<k).

That is, the model generates each token map rk in parallel across spatial locations, but strictly

conditioned on previously generated scales and the conditioning input. Internally, this corresponds

to processing the sequence:

[semb,e1, . . . ,eK−1]−→ predict rK .

To ensure this behavior, a blockwise causal attention mask is applied within the transformer. This

mask enforces the following:

• Tokens at scale k may attend to:

– The conditioning embedding semb

– All embedded tokens from previous scales e1, . . . ,ek−1

• Tokens at scale k cannot attend to:

– Other tokens within ek

– Tokens from future scales e>k

This yields a well-defined autoregressive ordering across resolution levels, while enabling parallel

token prediction within each scale.

Training Procedure The model is trained to maximize the log-likelihood of the token maps across

all scales:

LAR =−
K

∑
k=1

hk·wk

∑
i=1

log p
(

r
gt
k,i | semb,e1, . . . ,ek−1

)
,

where r
gt
k,i is the ground-truth token index at spatial position i in scale k, and p(·) is the predicted

probability distribution over the codebook vocabulary. The transformer outputs a distribution for

each token position, and the cross-entropy loss is applied at every location.
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Importantly, no teacher forcing is applied within a scale. When predicting rk, the model is not

conditioned on ground-truth tokens within that map—only on previously predicted scales. This

enables efficient training with strong inductive bias toward scale-level compositionality.

Inference and Generation Generation proceeds autoregressively over scales using the same

principle:

1. Predict r̂1 ∼ p(· | semb)
2. Embed r̂1→ e1

3. Predict r̂2 ∼ p(· | semb,e1)
4. Embed r̂2→ e2, and so on.

Each prediction is performed in parallel across spatial locations, making inference much faster than

raster-scan approaches. Key-value (KV) caching is applied to preserve and reuse the attention states

of semb,e1, . . . ,ek−1, avoiding recomputation in deep transformers.

Final Decoding and Image Reconstruction After generating the full sequence r̂1, . . . , r̂K , the

decoder reconstructs the image as in Stage 1:

1. For each r̂k, lookup code vectors from the codebook: ẑk = Z[r̂k]
2. Interpolate each ẑk to resolution hK×wK

3. Filter with scale-specific convolution φk

4. Sum to form the latent map:

f̂ =
K

∑
k=1

φk (Interpolate(ẑk))

5. Decode to full-resolution image:

x̂ = D(f̂)

Figure 20.137: Two-stage VAR architecture — based on [615]. In Stage 1, a multi-scale VQ-VAE

encodes the image into hierarchical token maps. In Stage 2, a transformer autoregressively predicts

these maps one scale at a time. A blockwise attention mask ensures each scale rk only attends to s

and r<k.
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This completes the symbolic-to-visual generation pipeline. The transformer produces discrete codes

that encode visual semantics and layout, while the VQ-VAE decoder renders them into photorealistic

images.

Benefits of the VAR Design

VAR’s architecture offers several advantages:

1. Spatial locality is preserved, avoiding the unnatural 1D flattening of images.

2. Inference is parallelized within each resolution, enabling fast generation.

3. Global structure is conditioned into finer details via multi-scale refinement.

4. Transformer capacity is efficiently used, since each level focuses on simpler sub-distributions.

Experimental Results: High-Quality Generation and Editing

After training both the multi-scale VQ-VAE and the scale-aware transformer, the VAR model [615]

demonstrates compelling performance across a range of image generation tasks. Notably, it achieves

high visual fidelity on ImageNet [118] at resolutions up to 512×512, and supports zero-shot editing

— despite being trained with only unconditional or class-conditional supervision.

Figure 20.138: Image generation and editing with VAR — adapted from [615]. Top: Unconditional

samples at 512×512 resolution. Middle: Samples at 256×256. Bottom: Zero-shot image editing

results, where input images are modified using conditional prompts without task-specific fine-tuning.

Generation Quality. VAR achieves state-of-the-art sample quality on the ImageNet-256 and

ImageNet-512 benchmarks. Visually, its samples are both semantically rich and globally coherent —

showcasing correct object structure, texture, and style. This is due to its coarse-to-fine generation

mechanism: the transformer first predicts low-resolution structural layout via coarse token maps,

then refines texture and details in subsequent finer maps, guided by the VQ-VAE decoder.

Zero-Shot Editing. The ability to modify image content without additional supervision is enabled

by the discrete tokenization of the VQ-VAE and the structured generative pathway. In the bottom

row of Figure 20.138, input images are embedded into VAR’s token space and selectively altered

before decoding — showcasing realistic object transformations, viewpoint changes, and fine-grained

edits, all without retraining the model.
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Multi-Resolution Support. One key strength of VAR lies in its multi-resolution token maps, which

naturally support different output scales. During inference, generation can stop at any intermediate

resolution (e.g., 64×64, 128×128, etc.), offering flexible tradeoffs between quality and speed.

These results validate VAR’s autoregressive transformer as a strong alternative to diffusion- or GAN-

based image generators. Its structured, scale-aware approach achieves both fidelity and controllability

— setting the stage for broader multimodal extensions and architectural scaling.

Comparison with Other Generative Paradigms To contextualize the significance of VAR’s

results, the authors benchmarked it against a wide spectrum of state-of-the-art generative models

across four major paradigms: GANs, diffusion models, masked prediction models, and autoregressive

(AR) transformers. The below table summarizes the comparison on the ImageNet 256×256 class-

conditional benchmark. Evaluation metrics include FID (lower is better), Inception Score (IS)

(higher is better), and Precision/Recall for semantic and distributional quality, along with model

size and inference cost (time).

Table 20.12: Comparison of generative model families on ImageNet 256×256 — adapted from [615].

VAR models (bottom rows) outperform all baselines in fidelity and inference speed. “_” or “^”

indicate whether lower or higher is better. Wall-clock time is reported relative to VAR.

Type Model FID _ IS ^ Pre ^ Rec ^ #Param #Step Time

GAN BigGAN [52] 6.95 224.5 0.89 0.38 112M 1 –

GAN GigaGAN [273] 3.45 225.5 0.84 0.61 569M 1 –

GAN StyleGAN-XL [551] 2.30 265.1 0.78 0.53 166M 1 0.3

Diff. ADM [122] 10.94 101.0 0.69 0.63 554M 250 168

Diff. CDM [225] 4.88 158.7 – – 8100M – –

Diff. LDM-4-G [531] 3.60 247.7 – – 400M 250 –

Diff. DiT-XL/2 [478] 2.27 278.2 0.83 0.57 675M 250 45

Diff. L-DiT-3B [1] 2.10 304.4 0.82 0.60 3.0B 250 >45

Mask. MaskGIT [77] 6.18 182.1 0.80 0.51 227M 8 0.5

AR VQGAN [148] 15.78 74.3 – – 1.4B 256 24

AR ViTVQ-re [743] 3.04 227.4 – – 1.7B 1024 >24

AR RQTransformer [318] 3.80 323.7 – – 3.8B 68 21

VAR VAR-d16 3.30 274.4 0.84 0.51 310M 10 0.4

VAR VAR-d20 2.57 302.6 0.83 0.56 600M 10 0.5

VAR VAR-d24 2.09 312.9 0.82 0.59 1.0B 10 0.6

VAR VAR-d30 1.92 323.1 0.82 0.59 2.0B 10 1.0

VAR VAR-d30-re 1.73 350.2 0.82 0.60 2.0B 10 1.0

Key Takeaways.

• VAR sets a new benchmark: It achieves the lowest FID (1.73) and the highest IS (350.2)

of any model on ImageNet 256×256, surpassing strong diffusion models like L-DiT [1] and

GANs like StyleGAN-XL.
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• Inference speed is dramatically faster: While diffusion models require hundreds of denoising

steps (e.g., 250 for ADM, DiT), VAR completes generation in just 10 autoregressive steps —

one per scale.

• Superior precision-recall tradeoff: VAR maintains high recall (0.60) without sacrificing

precision, balancing diversity and realism in a way that standard AR models often fail to

achieve.

Why VAR Outperforms Traditional VQ-VAE/VQ-GAN Autoregressive Models.

VAR demonstrates significant advantages over raster-scan VQ-based AR models such as VQ-

GAN [148], ViT-VQGAN [743], and RQ-Transformer [318], by overcoming both architectural and

theoretical limitations. These models typically flatten a 2D grid into a 1D token stream and predict

each token sequentially—introducing inefficiencies and violating the natural spatial structure of

images.

• Resolution of 2D-to-1D Flattening Issues. Flattening a 2D image into a 1D sequence for

raster-order prediction introduces what the authors call a mathematical premises violation.

Images are inherently 2D objects with bidirectional dependencies. Standard AR transformers,

however, assume strict unidirectional causality, which conflicts with the actual structure

of visual data. VAR resolves this mismatch via its next-scale prediction strategy, which

operates hierarchically across scales, preserving spatial coherence and reducing unnecessary

dependencies.

• Massive Reduction in Inference Cost. While traditional AR models require one autore-

gressive step per token (e.g., 256×256 = 65,536 steps), VAR only needs K steps (typically

K = 4–6), since each scale’s token map is generated in parallel. This reduction yields roughly

O(N2)→O(K) sequential depth, improving inference speed by over 20× in practice compared

to VQ-GAN or ViTVQ baselines.

• Enhanced Scalability and Stability. Unlike earlier VQ-based AR models, which often suffer

from training instability or limited scaling behavior, VAR exhibits smooth performance scaling

with model size and compute. As shown in Table 20.12, the largest VAR variant surpasses

both autoregressive and diffusion baselines at scale, demonstrating a power-law-like trend

similar to that of large language models (LLMs).

Why VAR Avoids the Blurriness of Traditional VAEs

Standard VAEs often produce blurry images due to the averaging effect in continuous latent spaces

and the use of simple L2 reconstruction loss. In contrast, VAR’s multi-scale VQ-VAE circumvents

these issues using discrete representations and adversarial objectives:

• Quantized, Discrete Latents. The use of a discrete token space—learned via a shared

codebook—eliminates interpolation-based blurriness. At each scale, the image is decomposed

into a quantized map rk, where tokens correspond to well-defined visual primitives rather than

uncertain blends.

• Residual-Style Encoder and Decoder. Each scale in the encoder captures residual detail not

explained by the coarser maps, leading to a more structured and interpretable decomposition.

The decoder sums contributions from all scales to reconstruct high-fidelity images with sharp

contours and textures.
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• Perceptual and Adversarial Losses. VAR’s VQ-VAE is trained with a compound objective

including:

– A perceptual loss LP (e.g., LPIPS) that compares image reconstructions in the feature

space of a pretrained CNN like VGG, encouraging realism and sharpness over pixel-wise

fidelity.

– An adversarial loss LG that penalizes visually implausible outputs via a GAN-style

discriminator, pushing the generator to produce images indistinguishable from real data.

• Hierarchical Representation Enables Coherence. Unlike VQGANs that rely on a single

token map, VAR’s hierarchical structure allows different scales to specialize: coarse layers

ensure global layout, while fine layers refine details. This structured generation avoids both

over-smoothing and oversharpening artifacts common in single-scale VAEs.

Taken together, these innovations allow VAR to combine the sharpness and semantic fidelity of GANs

with the training stability and generative flexibility of VAEs—without inheriting their respective

downsides.

Scaling Trends, Model Comparison, and Future Outlook

VAR [615] demonstrates that coarse-to-fine autoregressive modeling is not only viable, but also

highly competitive with, and in many respects superior to, both diffusion models and GANs. Its

innovations in architectural design, inference efficiency, and training stability position it as a new

standard for high-resolution image synthesis.

Scaling Efficiency and Sample Quality VAR exhibits favorable power-law scaling as model

capacity increases. Across multiple variants (e.g., d16 to d30-re), both FID and Inception Score

improve steadily, as shown in the below figure. The largest model, VAR-d30-re (2B parameters),

achieves an FID of 1.73 and an IS of 350.2 on ImageNet 256×256, outperforming L-DiT-3B and

7B, yet requiring only 10 autoregressive steps.

Figure 20.139: Scaling behavior of VAR — adapted from [615]. VAR outperforms diffusion models

like L-DiT-3B with fewer parameters and faster inference, validating its architectural scalability.
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Comparison to Diffusion and Autoregressive Models As detailed in Table 20.12, VAR delivers

best-in-class performance across fidelity, semantic consistency, and speed:

• Compared to diffusion models like ADM [122], DiT [478], and L-DiT [1], VAR matches or

exceeds sample quality while reducing inference time by over 20×.

• Compared to GANs such as StyleGAN-XL [551], VAR achieves higher precision and recall,

while being more stable and easier to scale.

• Most importantly, VAR outperforms previous autoregressive methods (e.g., VQGAN [148],

ViT-VQGAN [743], and RQ-Transformer [318]) by resolving their core limitations — primar-

ily the violation of spatial locality introduced by raster-scan decoding.

Qualitative Scaling Effects of VAR

To further illustrate the benefits of architectural scaling, the authors created a figure that showcases

qualitative samples from multiple VAR models trained under different model sizes N and compute

budgets C. The grid includes generations from 4 model sizes (e.g., VAR-d16, d20, d24, d30)

at 3 different checkpoints during training. Each row corresponds to a specific class label from

ImageNet [118], and each column highlights progression in visual quality with increasing capacity

and training.
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Figure 20.140: Visual effect of scaling model size and training compute in VAR — based on [615].

Each row corresponds to a specific ImageNet class: flamingo, arctic wolf , macaw, Siamese cat,

oscilloscope, husky, mollymawk, volcano, and catamaran. From left to right, generations improve in

clarity, structure, and texture with increasing model depth and training steps.
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As visible in the figure, increased model scale and training compute systematically improve both

semantic fidelity (correctness of object structure and attributes) and visual soundness (absence of

artifacts, texture realism, and color consistency). For instance, the depiction of "oscilloscope" and

"catamaran" transitions from ambiguous blobs in early-stage, small models to highly plausible,

structurally accurate renderings in larger, well-trained variants.

These qualitative trends corroborate the quantitative findings in Figure 20.139 and Table 20.12,

reinforcing that VAR inherits desirable scaling properties akin to large language models: more

parameters and compute lead to predictable improvements in generative quality.

Limitations and Future Directions Despite its strengths, VAR still inherits certain limitations:

• Lack of native text conditioning: Unlike diffusion systems such as GLIDE or LDM, VAR

has not yet been extended to text-to-image generation. Integrating cross-modal encoders (e.g.,

CLIP or T5) remains a promising avenue.

• Memory footprint: While more efficient than raster AR models, each scale in VAR still

requires full-token parallel decoding, which may challenge memory limits for high-resolution

outputs.

• Token discretization ceiling: The reliance on codebook-based representations may bottle-

neck expressiveness for fine-grained texture, unless dynamic or learned vocabularies are

incorporated.

Nonetheless, VAR’s success opens up multiple promising research directions: extending the coarse-

to-fine AR paradigm to multimodal transformers, integrating with prompt-based editing, and

exploring learned topologies beyond rectangular grids. Its architectural clarity and empirical

strength position it as a foundation for the next generation of efficient generative models.
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Enrichment 20.11.12: DiT: Diffusion Transformers

Motivation and context

Most high-performing diffusion models have used U-Net backbones that combine convolutional

biases (locality, translation equivariance) with occasional attention for long-range interactions [122,

531]. The central question addressed by Diffusion Transformers (DiT) [478] is whether a pure

Vision-Transformer denoiser operating in latent space can match or surpass U-Net diffusion when

scaled. DiT answers in the affirmative: by patchifying VAE latents and processing tokens with

transformer blocks modulated via adaptive LayerNorm (adaLN / adaLN-Zero), DiT exhibits clean

scaling laws and achieves state-of-the-art ImageNet sample quality at competitive compute.

Figure 20.141: Selected DiT samples on ImageNet. Curated generations from class-conditional

DiT-XL/2 at 512×512 and 256×256 illustrate fidelity and diversity across categories; credit: Peebles

& Xie [478].

High-level overview

DiT is a standard DDPM/latent-diffusion denoiser εθ that operates on VAE latents z0 = E(x) ∈
R

I×I×C (e.g., I=32, C=4 for 2562 images). With q(zt |z0) = N
(√

ᾱtz0,(1−ᾱt)I
)

and zt =
√

ᾱtz0 +√
1−ᾱt ε , the denoiser predicts εθ (zt , t,c) (and a diagonal covariance) by minimizing the usual noise

MSE. Class-conditional training uses classifier-free guidance at sampling time.

Why transformers? Intuition. Transformers have appeared repeatedly in earlier parts of

this chapter: as attention submodules inside U-Nets, as text encoders, and even as full transformer

U-Nets. What distinguishes DiT is the decision to use a pure ViT backbone directly on latent patch

tokens, removing convolutional pyramids and skip connections entirely.
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This shift yields several concrete benefits that are hard to obtain with U-Nets:

• Global-first context at every depth. Self-attention connects all tokens in all layers, coor-

dinating layout and long-range dependencies continuously, rather than bottlenecking global

context at specific resolutions as in U-Nets.

• Simpler, predictable scaling. DiT exposes two orthogonal knobs—backbone size (S/B/L/XL)

and token count via patch size p—so quality tracks forward Gflops in a near-linear fashion.

This clarity is difficult with U-Nets whose compute varies non-trivially with resolution and

pyramid design.

• Uniform conditioning via normalization. Instead of injecting conditions via cross-attention

at a few scales, DiT uses adaLN-style modulation in every block, giving cheap, global,

step-aware control without the sequence-length overhead of cross-attention.

• Latent-space efficiency. Operating on VAE latents keeps sequence lengths manageable while

retaining semantics. Convolutional U-Nets still pay per-pixel costs that grow with resolution,

even in latent space.

In short, transformers are not merely “also used” here; the pure transformer backbone plus compute-

centric scaling and adaLN-based conditioning together produce a qualitatively different, more

scalable denoiser than a U-Net.

Method: architecture and components

Tokenization (patchify) of the latent. The noised latent zt ∈RI×I×C is split into non-overlapping

p×p×C patches, each linearly projected to d-dim tokens with sine–cos positional embeddings. The

sequence length is T = (I/p)2. Reducing p increases tokens (and Gflops) without changing parame-

ters, acting as a clean compute knob.

Figure 20.142: Input specification and patchify. A spatial latent of shape I×I×C becomes

T=(I/p)2 tokens of width d. Smaller p increases sequence length and compute; credit: Peebles &

Xie [478].
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High-level overview: DiT as a transformer backbone for diffusion After tokenization, the task

is to predict the additive noise on latent patches at diffusion timestep t (and, optionally, class/text

label y). Diffusion Transformers (DiT) [478] replace the U-Net with a stack of transformer blocks

that operate on the patch-token sequence: (i) patchify latents into tokens; (ii) transform them with N

conditional blocks that inject (t,y) at every depth; (iii) project tokens back to per-patch predictions

(noise and optionally variance). The motivation is simple: self-attention offers global receptive fields

and scales cleanly with depth/width; conditioning via adaptive normalization is cheap and pervasive.

Figure 20.143: DiT architecture at a glance. Latent patches are embedded and passed through N

transformer blocks, then a per-token head maps back to the latent grid. Right: conditioning variants

evaluated by [478].

From AdaIN to adaLN: motivation and adaptation Adaptive normalization offers cheap, global

control by modulating normalized activations with per-channel scale/shift. StyleGAN’s AdaIN 20.6.2

applies (γ,β ) (from a style code) after InstanceNorm in convnets, broadcasting “style” through every

layer with negligible overhead. DiT carries this idea to transformers and diffusion by:

• Swapping InstanceNorm on feature maps for LayerNorm on token embeddings.

• Replacing style latents with diffusion timestep t and label/text y as the condition.

• Adding zero-initialized residual gates so very deep stacks start near identity and “open”

gradually (stability under heavy noise).

This preserves AdaIN’s low-cost, layer-wise control while fitting the sequence setting and the

iterative denoising objective.

DiT block: adaLN and the adaLN-Zero variant The DiT backbone is a sequential stack of N

standard Pre-LN transformer blocks. Each block consumes a token sequence X ∈ R
L×d and applies

(i) LN→MHSA→ residual, (ii) LN→MLP→ residual.

Why this works. MHSA lets every latent patch-token attend to all others, building global spatial

coherence; the MLP adds channel-wise capacity after attention has mixed information. Conditioning

the LayerNorms lets t,y shape what MHSA/MLP see—cheaply and pervasively—so early steps

favor coarse denoising and later steps focus on fine details.
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How conditioning is produced (per-block MLPs, as in DiT). Embed the diffusion timestep and

label/text and concatenate to form c = Embed(t,y) ∈ R
e (sinusoidal t-embed + learned y-embed).

Each transformer block i owns a tiny modulation MLP gi : Re→R
6d that outputs six d-vectors

(γ1,i,β1,i,α1,i,γ2,i,β2,i,α2,i) = gi(c),

one triplet for the attention branch (k=1) and one for the MLP branch (k=2). This gives shallow and

deep layers different “views” of (t,y) with negligible parameter cost.2

adaLN (adaptive LayerNorm). At each Pre-LN site (before self-attention and before the MLP),

replace vanilla LayerNorm by a condition-dependent affine transform:

adaLNk(X ;c) = γk,i(c)⊙LN(X) + βk,i(c), k ∈ {1,2}.

This injects (t,y) everywhere using only elementwise operations, so the subsequent computations

see features already bent toward the current diffusion step and class.

adaLN-Zero (the variant used in practice). DiT’s best-performing blocks add gates on the two

residual branches via α1,i(c),α2,i(c) that are zero-initialized. With X ∈RL×d , a full block computes

Z1 = adaLN1(X ;c), H = SelfAttn(Z1), U = X + α1,i(c)⊙H,

Z2 = adaLN2(U ;c), M = MLP(Z2), Y = U + α2,i(c)⊙M.

Here SelfAttn is the standard multi-head scaled dot-product self-attention (MHSA); some figures

abbreviate it as “self-attn”. Self-attention lets every token attend to every other (global communica-

tion); the multi-head factorization runs several attentions in parallel so different heads can specialize

(e.g., shape vs. texture), then concatenates and projects them back to d. Zero-initialized gates make

the whole stack start near identity (Y ≈X), preventing early instabilities on very noisy inputs; during

training the model learns where to “open” attention/MLP paths. Empirically, adaLN-Zero is the

variant used for final models; plain adaLN appears mainly in ablations.

Head and parameterization After the final LayerNorm, a linear head maps each token to

p×p×(2C) values (per patch; commonly p=1), then reshapes to the latent grid. The first C channels

parameterize the predicted noise; the remaining C optionally parameterize a diagonal variance.

Across T denoising steps, DiT iteratively predicts and removes noise to recover a clean latent x0;

a pretrained VAE decoder then converts x0 to pixels (e.g., 256×256 RGB). Intuitively: MHSA

builds global structure across patches, the MLP refines channel-wise details, adaLN/Zero injects

timestep/class signals at every depth, and the head “de-tokenizes” back to a spatial latent that the

VAE upsamples to the final image.

2An equivalent implementation shares a trunk MLP across blocks and uses per-block linear heads to project into

(γ,β ,α); the official DiT code uses per-block modulation MLPs.
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Conditioning and guidance The condition c is the concatenation of timestep and class/text

embeddings. Classifier-free guidance is enabled by randomly replacing the label with a learned “null”

embedding during training. At inference, combine unconditional and conditional predictions as

ε̃ = ε /0 + s(εy− ε /0), s > 1,

steering samples toward the target class/text. Among conditioning routes (in-context tokens, cross-

attention, adaLN, adaLN-Zero), adaLN-Zero consistently converges fastest and achieves the best

FID with negligible overhead; cross-attention is more flexible for long text but typically adds ∼ 15%

compute.

Figure 20.144: Conditioning ablations. On DiT-XL/2, adaLN-Zero outperforms alternatives in

both speed and FID; cross-attention trades flexibility for extra compute [478].

Training objective and setup DiT trains end-to-end in latent space with the standard denoising

objective. For VAE-encoded images x0, noise ε∼N (0, I), timestep t, and condition y,

L = Ex0,ε,t,y

[ ∥∥ε − ε̂θ (xt , t,y)
∥∥2

2

]
, xt =

√
ᾱt x0 +

√
1− ᾱt ε.

Classifier-free guidance is enabled by dropping y with some probability during training and learning

a null embedding. In practice, AdamW with cosine LR decay and a brief warm-up are used; adaLN-

Zero’s identity start helps avoid early instabilities in deep attention stacks while maintaining the

capacity benefits of transformers.
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Experiments and ablations

Scaling and SOTA comparisons. Compute-centric scaling is the core story. DiT exposes two

orthogonal axes: backbone size (S/B/L/XL) and token count via patch size (p∈{8,4,2}). Increasing

either axis improves FID at fixed training steps; the best results combine large backbones and small

patches.

Figure 20.145: Scaling behavior and comparison to diffusion baselines. Left: FID steadily

improves with model flops over 400K iterations across S/B/L/XL. Right: DiT-XL/2 is compute-

efficient and outperforms prior U-Net diffusion baselines (ADM/LDM). Bubble area indicates flops;

credit: Peebles & Xie [478].

Training-time scaling trends. Holding p fixed and increasing backbone (S→XL) lowers FID

throughout training; holding backbone fixed and decreasing p (more tokens) also lowers FID. The

separation between curves indicates robust compute-to-quality scaling across 12 configurations.

Figure 20.146: FID-50K vs. training steps under model/patch sweeps. Scaling depth/width and

reducing patch size (more tokens) both improve sample quality at all stages; credit: Peebles &

Xie [478].



1402 Chapter 20. Lecture 20: Generative Models II

Qualitative scaling: more flops→ better images. A large grid sampled at 400K steps from

the same noise and label shows that increasing transformer Gflops—either via larger backbones

or more tokens—improves visual fidelity. Left-to-right increases backbone size; top-to-bottom

decreases patch size (more tokens).

Figure 20.147: Qualitative scaling analysis. Bigger backbones and smaller patches yield sharper

textures and more coherent structure. The most convincing results appear in the bottom-right (XL

with p=2); credit: Peebles & Xie [478].
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Gflops predict FID. Across all 12 DiTs at 400K steps, transformer forward Gflops strongly

correlates with FID (reported correlation≈−0.93). This metric predicts quality better than parameter

count and makes design trade-offs explicit.

Figure 20.148: Transformer Gflops vs. FID-50K. A strong inverse correlation indicates predictable

quality gains with higher compute; credit: Peebles & Xie [478].

Total training compute vs. FID. Plotting FID against total training compute shows smooth,

near power-law improvements. Larger models form a lower envelope: for the same train compute,

bigger models reach better FID than smaller ones trained longer.

Figure 20.149: Training compute vs. FID. Larger DiTs use training compute more efficiently,

suggesting “train larger for shorter” can be superior to “train smaller for longer”; credit: Peebles &

Xie [478].
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Sampling compute cannot replace model compute. Increasing denoising steps improves

quality for each model, but small models cannot catch large ones even with more sampling steps

(higher inference Gflops). For a fixed sampling budget, it is typically better to deploy a larger DiT at

fewer steps than a smaller DiT at many steps.

Figure 20.150: Sampling compute vs. FID-10K. Small models do not close the gap to large ones

by sampling longer; large models constitute the lower envelope of the quality–budget frontier; credit:

Peebles & Xie [478].

Benchmark summary (ImageNet 256/512). On ImageNet-256, DiT-XL/2 with classifier-free

guidance (scale ≈1.5) attains FID ≈ 2.27, sFID ≈ 4.60, and IS ≈ 278, exceeding LDM and ADM

variants. At 512, DiT maintains strong results with FID ≈ 3.04. Precision/Recall indicate balanced

fidelity/diversity relative to GAN and diffusion baselines. (Exact tables are in [478]; summarized

here for brevity.)

What changed vs. Stable Diffusion and why it matters

• Backbone. U-Net (ResNet blocks + spatial attention at select scales)⇒ pure ViT over patch

tokens. DiT’s global-first attention coordinates layout at all depths; no hand-crafted multi-scale

pyramid or skip connections are required.

• Conditioning. Cross-attention to text (costly, sequence-length dependent)⇒ adaLN / adaLN-

Zero (cheap, global, step-aware). This adapts AdaIN-style modulation (section 20.6.2) to

LayerNorm, distributing conditioning throughout the network with near-zero overhead and

superior FID (see Figure 20.144).

• Scaling lens. Params and resolution-dependent conv costs⇒ forward Gflops as the primary

metric. As shown in Figure 20.148, Gflops strongly predicts FID and guides trade-offs between

model size and token count.

• Compute knobs. Channel/width heuristics and UNet depth⇒ orthogonal knobs (backbone

size S/B/L/XL and patch size p). Figures 20.145–20.147 demonstrate monotonic quality gains

along both axes.
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• Variance head. DiT’s head predicts noise and a diagonal covariance per spatial location,

enabling variance-aware denoising in latent space.

Outcome. At similar or lower compute, DiT matches or surpasses U-Net diffusion on ImageNet, and

scales predictably (quantitatively in Figure 20.148, Figure 20.149; qualitatively in Figure 20.147).

Relation to prior and follow-ups

AdaIN-based control in StyleGAN1 (section 20.6.2) motivated normalization-as-conditioning; DiT

shows a transformer-native realization (adaLN-Zero). Subsequent work such as L-DiT [1] scales

DiT further in latent space, reporting even stronger ImageNet results. DiT complements latent

U-Nets [531]: both benefit from classifier-free guidance and VAE latents, but DiT offers LLM-like

scaling and a simpler global-context story.

Limitations and future work

• Memory/latency at small p. Reducing p increases tokens T and attention memory quadrati-

cally in I; efficient attention, sparse routing, or hierarchical tokenization are promising.

• Inductive bias. Removing convolutions removes explicit translation equivariance and pyra-

mids; hybrid conv–transformer blocks or relative position biases may improve data efficiency.

• Long-sequence conditioning. Cross-attention for long text is flexible but adds compute;

extending adaLN-style modulation to long sequences or hybridizing with lightweight cross-

attention is an open avenue.

Practical recipe

Train in latent space with a strong VAE. Pick DiT-B/L/XL by budget. Start at p=4, drop to p=2 if

memory allows. Expect monotonic FID gains by increasing backbone size and tokens (Figure 20.146,

Figure 20.148). Prefer a larger DiT with fewer steps over a smaller DiT with many steps for a fixed

sampling budget (Figure 20.150).


