
15. Lecture 15: Image Segmentation

15.1 From Object Detection to Segmentation
In the previous chapter, we explored object detection, where the goal was to localize and classify
objects within an image using bounding boxes. Object detection models such as Faster R-CNN [523]
and YOLO [518] predict discrete object regions but do not assign labels to every pixel. However,
many real-world applications require a finer-grained understanding beyond bounding boxes. This
leads us to the problem of image segmentation, where the task is to assign a category label to every
pixel in the image.

Figure 15.1: Comparison of different computer vision tasks: classification, object detection, and
semantic and instance segmentation. We begin with Semantic Segmentation.

682 Chapter 15. Lecture 15: Image Segmentation

As shown in Figure 15.1, segmentation can be divided into two primary tasks:
• Semantic segmentation: Assigns a category label to each pixel but does not differentiate

between instances of the same class.
• Instance segmentation: Extends semantic segmentation by distinguishing individual object

instances.
We begin by studying semantic segmentation because it serves as the foundation for understanding
pixel-wise classification. Unlike instance segmentation, which requires distinguishing between
different objects of the same category, semantic segmentation focuses solely on identifying the type
of object at each pixel. By first mastering the fundamental principles of pixel-wise classification, we
can later build upon them to incorporate instance-level distinctions.

Enrichment 15.2: Why is Object Detection Not Enough?

Consider an autonomous vehicle navigating through a crowded urban environment. Object detection
is a crucial first step: it draws bounding boxes around pedestrians, vehicles, and traffic signs, and
already provides coarse spatial awareness (for example, that a pedestrian is somewhere near the curb
rather than in the middle of the road). However, this level of understanding is still not sufficient for
safe, fine-grained decision-making:

• Bounding boxes are coarse approximations. A bounding box is a rectangle that roughly
encloses an object, not its true shape. In many cases this is enough to know that a pedestrian
is “near the road”, but in safety-critical edge cases—such as a foot just crossing the curb
versus standing safely on the sidewalk—the box does not reveal the precise contact boundary
between pedestrian and road.

• Occlusions and overlaps create ambiguity. When objects overlap (e.g., a cyclist partially
hidden behind a parked car), their bounding boxes may intersect or fragment. From boxes
alone, it is hard to infer which pixels belong to which object, who is in front or behind, and
exactly where the free space lies between them.

• No labels for “stuff” and free space. Object detection focuses on discrete, countable “things”
(cars, pedestrians, traffic lights), but leaves the background unlabeled. It does not differentiate
drivable road surface from sidewalks, bike lanes, grass, or curbs at the pixel level, even though
this information is crucial for path planning and rule-following (e.g., staying within the lane
markings).

Semantic segmentation addresses these limitations by assigning a class label to every pixel in the
image. Instead of just knowing that “there is a pedestrian in this box,” the model produces a dense
map indicating exactly which pixels are road, sidewalk, pedestrian, car, or building. This pixel-wise
understanding provides the geometric and contextual detail needed for precise obstacle avoidance,
free-space estimation, and safe navigation in complex scenes.

683

Figure 15.2: Segmentation differentiates between things (discrete objects like cars, people) and stuff
(amorphous regions like sky, road).

In Figure 15.2, we see a breakdown of image elements into things (object categories that can be
separated into instances, such as cars, pedestrians, trees) and stuff (regions that lack clear boundaries,
such as sky, road, grass). This pixel-level distinction enables applications such as lane detection,
drivable area estimation, and pedestrian tracking, all of which contribute to safer and more efficient
navigation.
The next sections will cover the fundamental methods used in segmentation, beginning with semantic
segmentation, before proceeding to instance segmentation.

684 Chapter 15. Lecture 15: Image Segmentation

15.3 Advancements in Semantic Segmentation
In this section, we explore the evolution of semantic segmentation techniques, focusing on solutions
that are convolutional neural networks (CNNs) based, reaching to more contemporary architectures.
While CNNs have been foundational in image processing tasks, recent advancements indicate that
transformer-based models have achieved superior accuracy in segmentation tasks, including semantic
segmentation. These will only be discussed in future parts of this document.

15.3.1 Early Approaches: Sliding Window Method
A straightforward yet inefficient approach to semantic segmentation involves the sliding window
technique. In this method, for each pixel in the image, a patch centered around the pixel is extracted
and classified using a CNN to predict the category label of the center pixel.

Figure 15.3: Sliding window approach for semantic segmentation, illustrating the inefficiency due to
redundant computations over overlapping patches.

As depicted in Figure 15.3, this approach is computationally expensive because it fails to reuse
shared features between overlapping patches, leading to redundant calculations.

15.3.2 Fully Convolutional Networks (FCNs)
To address the inefficiencies of the sliding window method, Fully Convolutional Networks (FCNs)
were introduced to the task [390]. FCNs utilize a fully convolutional backbone to extract features
from the entire image, maintaining the spatial dimensions throughout the layers by employing same
padding and 1x1 convolutions. The network outputs a feature map with dimensions corresponding
to the input image, where each channel represents a class. The final classification for each pixel is
obtained by applying a softmax function followed by an argmax operation across the channels.

15.3 Advancements in Semantic Segmentation 685

Figure 15.4: Architecture of a Fully Convolutional Network maintaining input spatial dimensions,
producing a feature map with C×H×W , where C is the number of classes.

Training is conducted using a per-pixel cross-entropy loss, comparing the predicted class probabilities
to the ground truth labels for each pixel.

15.3.3 Challenges in FCNs for Semantic Segmentation
Despite their advancements, FCNs encounter specific challenges:

• Limited Receptive Field: The effective receptive field size grows linearly with the number of
convolutional layers. For instance, with L layers of 3x3 convolutions, the receptive field is
1+2L, which may be insufficient for capturing global context.

• Computational Cost: Performing convolutions on high-resolution images is computationally
intensive. Architectures like ResNet address this by aggressively downsampling the input, but
this can lead to a loss of spatial detail.

15.3.4 Encoder-Decoder Architectures
To overcome these challenges, encoder-decoder architectures have been proposed, such as the model
by Noh et al. [454]. These networks consist of two main components:

• Encoder: A series of convolutional and pooling layers that progressively downsample the
input image, capturing high-level semantic features while expanding the receptive field.

• Decoder: A sequence of upsampling operations, including unpooling and deconvolutions, that
restore the spatial dimensions to match the original input size, enabling precise localization
for segmentation.

The encoder captures rich, abstract feature representations by reducing spatial resolution while
increasing feature depth, whereas the decoder reconstructs fine-grained spatial details necessary for
accurate per-pixel predictions.

686 Chapter 15. Lecture 15: Image Segmentation

While this encoder-decoder design is applied here for semantic segmentation, it is a widely used
architectural pattern in deep learning and extends to many other tasks. For example:

• Machine Translation: Transformer-based sequence-to-sequence models such as T5 [501]
and BART [324] employ an encoder to process input text and a decoder to generate translated
output.

• Medical Image Analysis: U-Net [532] applies an encoder-decoder structure for biomedical
image segmentation, achieving precise boundary delineation in tasks like tumor segmentation.

• Anomaly Detection: Autoencoders use an encoder to learn compressed feature representations
and a decoder to reconstruct inputs, enabling anomaly detection by identifying discrepancies
between the input and reconstruction.

• Super-Resolution and Image Generation: Models like SRGAN [317] employ an encoder to
extract image features and a decoder to generate high-resolution outputs.

As we continue, we will encounter various adaptations of this fundamental encoder-decoder structure,
each tailored to the specific requirements of different tasks.

Figure 15.5: Encoder-decoder architecture for semantic segmentation, featuring downsampling in
the encoder and upsampling in the decoder to achieve pixel-wise classification.

15.4 Upsampling and Unpooling
To enhance spatial resolution in feature maps, we employ upsampling techniques. Until now in this
course, we have not introduced any method for systematically enlarging the spatial dimensions of
tensors in a meaningful way. While we previously used bilinear interpolation to project proposals
onto feature maps after downsampling (14.2.4), we have yet to explore how such techniques can be
adapted for general upsampling—something we will examine in later sections.
Although we can increase tensor size using zero-padding along the borders, this does not introduce
any new spatial information or recover lost details, making it ineffective for true upsampling.
Instead, we require dedicated upsampling methods that intelligently restore missing details while
preserving spatial coherence. Throughout this section, we will explore various approaches that allow
us to increase resolution effectively, ensuring that the upsampled feature maps retain meaningful
information.

15.4 Upsampling and Unpooling 687

Do Interpolated Pixels Need to be “Valid” Image Values?
All of the upsampling and unpooling methods we have discussed (nearest neighbor, bilinear, bicubic,
transposed convolution, etc.) operate in continuous space: they produce real-valued outputs by
combining neighboring pixels or features with real-valued weights. This naturally raises two related
questions:

1. What happens if the resulting pixel/feature values are non-integer or fall outside the usual
image range?

2. When (if ever) do we need to enforce that the upsampled result is a valid image (e.g., integer
RGB values in [0,255])?

Inside a neural network: real-valued feature maps are perfectly fine
Within a convolutional network, tensors represent features, not necessarily display-ready images. In
this setting:

• Feature maps are typically stored as 32-bit floating-point values, and can take on any real
value (positive or negative, large or small).

• Upsampling operations (nearest neighbor, bilinear, bicubic, transposed convolution) simply
produce new floating-point values. There is no requirement that these be integers or lie within
a specific range; subsequent layers and nonlinearities will transform them further.

• Any normalization or scaling applied to the input (e.g., mapping RGB values from [0,255] to
[0,1] or standardizing to zero mean and unit variance) is usually inverted only at the very end,
if we want to visualize or save an image.

From this perspective, “non-integer” or slightly out-of-range values are not a problem at all during
intermediate processing: the network is trained end-to-end to work with these continuous-valued
feature maps.

At the output: producing a valid image for visualization or storage
The situation changes when the goal is to produce a valid image as the final output (e.g., in

super-resolution, image-to-image translation, or generative models). In that case, we typically want:
• Pixel values in a fixed range (for example [0,1] or [0,255]).
• Integer-valued pixels if we are saving to standard formats (e.g., 8-bit uint8 RGB).

Common strategies in this case are:
• Constrain the range with an activation: Use a final activation such as σ(·) (sigmoid) to map

outputs to [0,1], or tanh(·) to map to [−1,1]. During training, the loss is computed against
normalized target images in the same range.

• Post-processing after the network: Allow the network to output unconstrained real values,
then:

1. De-normalize (invert any input normalization, e.g. multiply by standard deviation and
add mean).

2. Clamp values to the valid range, e.g. pixel←min(max(pixel,0),1) or [0,255].
3. Quantize to integers if needed, e.g. pixeluint8 = round(255 ·pixel[0,1]).

688 Chapter 15. Lecture 15: Image Segmentation

• Handling overshoot in higher-order interpolation: Methods like bicubic interpolation can
produce values slightly outside the original range (due to oscillatory cubic kernels). In classical
image processing and in deep learning code, the standard remedy is simple clamping before
display or saving.

In other words, when we care about producing a valid, displayable image, validity is enforced at
the very end by range restriction and (optionally) quantization—not by changing the upsampling
method itself.

Summary: feature maps vs. final images
To summarize:

• For internal feature maps, non-integer and even slightly out-of-range values are entirely
acceptable; the network treats them as continuous signals and learns to use them.

• For final image outputs, we typically normalize during training and then de-normalize, clamp
to a valid range, and quantize at inference time to obtain a proper image representation (e.g.,
8-bit RGB).

Thus, all of the upsampling and unpooling methods discussed in this chapter can be used without
modification inside a network; concerns about “valid pixels” are addressed at the output layer or in a
simple post-processing step when we need a real image rather than a learned feature map.

15.4 Upsampling and Unpooling 689

A crucial variant of upsampling is unpooling, which aims to reverse the effects of pooling operations.
While pooling reduces resolution by discarding spatial details, unpooling attempts to restore them,
facilitating fine-grained reconstruction of object boundaries. However, unpooling alone is often
insufficient for producing smooth and accurate feature maps, as it merely places values in predefined
locations without estimating missing information. This can result in reconstruction gaps, blocky
artifacts, or unrealistic textures. As we will see, more advanced upsampling techniques address these
shortcomings by incorporating interpolation and learnable transformations.
In the decoder architecture proposed by Noh et al., unpooling plays a fundamental role in pro-
gressively recovering lost spatial information. It bridges the gap between the high-level semantic
representations learned by the encoder and the dense, pixel-wise predictions required for precise
classification.
In the following sections, we explore various upsampling strategies, beginning with fundamental
unpooling techniques and gradually progressing toward more advanced methods.

15.4.1 Bed of Nails Unpooling
One of the simplest forms of unpooling is known as Bed of Nails unpooling. To illustrate the concept,
consider the following example: We’re given an input tensor of size C×2×2, and our objective is
to produce an output tensor of size C×4×4.
The method follows these steps:

• An output tensor of the desired size is initialized with all zeros.
• The output tensor is partitioned into non-overlapping regions, each corresponding to a single

value from the input tensor. The size of these regions is determined by the upsampling factor
s, which is the ratio between the spatial dimensions of the output and the input. For example,
if the input is H×W and the output is sH× sW , then each region in the output has size s× s.

• Each value from the input tensor is placed in the upper-left corner of its corresponding region
in the output.

• All remaining positions are left as zeros.
The term "Bed of Nails" originates from the characteristic sparse structure of this unpooling method,
where non-zero values are positioned in a regular grid pattern, resembling nails protruding from a
flat surface.

Limitations of Bed of Nails Unpooling
While conceptually simple, Bed of Nails unpooling suffers from a critical flaw: it introduces severe
aliasing, which significantly degrades the quality of the reconstructed feature maps. By sparsely
placing input values into an enlarged output tensor and filling the remaining positions with zeros,
this method results in a highly discontinuous representation with abrupt intensity changes. These
gaps introduce artificial high-frequency components, making it difficult to recover fine spatial details
and leading to distorted reconstructions.

The primary drawbacks of Bed of Nails unpooling are:
• Sparse Representation: The method leaves large gaps of zeros between meaningful values,

creating an unnatural, high-frequency pattern that distorts spatial information.
• Abrupt Intensity Shifts: The sharp transitions between non-zero values and surrounding

zeros introduce edge artifacts, leading to aliasing effects such as jagged edges and moiré
patterns.

• Loss of Fine Detail: The lack of interpolation prevents smooth reconstructions, making it
difficult to recover object boundaries and subtle spatial features.

690 Chapter 15. Lecture 15: Image Segmentation

Because of these limitations, Bed of Nails unpooling is rarely used in practice. Its inability to
provide a smooth, information-preserving reconstruction makes it unsuitable for tasks requiring
high-quality feature map upsampling.

Figure 15.6: Comparison of a well-sampled image (left) versus one affected by aliasing (right).
The right image exhibits moiré patterns due to insufficient sampling, a phenomenon similar to the
high-frequency distortions introduced by Bed of Nails unpooling. Source: [691].

15.4.2 Nearest-Neighbor Unpooling
A more practical alternative to Bed of Nails unpooling is Nearest-Neighbor unpooling. Instead of
placing a single value in the upper-left corner and filling the rest with zeros, this method copies the
value across the entire corresponding region, ensuring a more continuous feature map.

Figure 15.7: Comparison of Bed of Nails unpooling (left) and Nearest-Neighbor unpooling (right).

15.4 Upsampling and Unpooling 691

The key advantages of Nearest-Neighbor unpooling include:
• Smoother Transitions: By replicating values across the upsampled regions, Nearest-Neighbor

unpooling maintains spatial continuity. In contrast, Bed of Nails unpooling introduces sharp
jumps between non-zero values and large zero-filled areas, which disrupts smooth feature
propagation.

• Reduced Aliasing: The discontinuities introduced by zero-padding in Bed of Nails unpool-
ing create artificial high-frequency patterns, leading to jagged edges and moiré artifacts.
Nearest-Neighbor unpooling minimizes these distortions by ensuring a more uniform intensity
distribution.

• Better Feature Preservation: Copying values instead of inserting zeros retains more useful
information about the original feature map. Since features remain continuous rather than
fragmented by empty gaps, spatial relationships between objects are better preserved.

These properties make Nearest-Neighbor unpooling a more effective choice than Bed of Nails,
particularly for reducing aliasing effects. By ensuring smoother transitions and preventing artificial
high-frequency noise, it produces cleaner and more reliable feature maps, making it more suitable
for deep learning applications.
However, Nearest-Neighbor unpooling still has limitations. Since it simply copies values, it can
produce blocky (unsmooth) artifacts and lacks the ability to generate new information between
upsampled pixels. This makes it unsuitable for capturing fine details, especially when dealing with
natural images or complex textures.
To achieve better reconstructions, more advanced upsampling methods are used. These include:

• Bilinear Interpolation: A smoother alternative that interpolates pixel values using a weighted
average of neighboring points. We’ve already covered it extensively.

• Bicubic Interpolation: Extends bilinear interpolation by considering more neighbors and
applying cubic functions for higher-quality results.

• Max Unpooling: A structured approach that retains important features by reversing pooling
operations using stored indices.

• Transposed Convolution: A learnable upsampling technique that enables neural networks to
reconstruct detailed feature maps through trainable filters.

In the following parts, we will explore each of these methods, highlighting their advantages and
trade-offs in deep learning applications.

15.4.3 Bilinear Interpolation for Upsampling
While nearest-neighbor unpooling provides a simple way to upsample feature maps, it often intro-
duces blocky artifacts due to the direct replication of values. A more refined approach is bilinear
interpolation, which estimates each output pixel as a weighted sum of its surrounding neighbors,
resulting in a smoother reconstruction.
Consider an input feature map of shape C×H×W and an output of shape C×H ′×W ′, where
the spatial dimensions are enlarged (H ′ > H, W ′ >W). Unlike unpooling, which places values at
predefined locations without interpolation, bilinear interpolation calculates each pixel’s intensity by
considering its four nearest neighbors in the original input feature map.

Bilinear Interpolation: Generalized Case
Given an input feature map I of size C×H×W , we

define an upsampled feature map I′ of size C×H ′×W ′.

692 Chapter 15. Lecture 15: Image Segmentation

To compute the value of a pixel at a location (x′,y′) in the upsampled output, we follow these
steps:

• Mapping to the Input Grid: The coordinate (x′,y′) in the output feature map is mapped back
to the corresponding position (x,y) in the input space using the scaling factors:

x =
x′(W −1)

W ′−1
, y =

y′(H−1)
H ′−1

where W ′ and H ′ are the new width and height, and W,H are the original dimensions.
• Identifying Neighboring Pixels: The four closest integer grid points that enclose (x,y) are

determined as:

a = (x0,y0), b = (x0,y1), c = (x1,y0), d = (x1,y1)

where:

x0 = ⌊x⌋, x1 = ⌈x⌉, y0 = ⌊y⌋, y1 = ⌊y⌋.

These four points form a bounding box around (x,y).
• Computing the Interpolation Weights: Each neighboring pixel contributes to the final

interpolated value based on its distance to (x,y). The interpolation weights are computed as:

wa = (x1− x)(y1− y), wb = (x1− x)(y− y0)

wc = (x− x0)(y1− y), wd = (x− x0)(y− y0).

• Normalization: To ensure that the weights sum to one, we apply a normalization factor:

norm_const =
1

(x1− x0)(y1− y0)
.

• Computing the Interpolated Value: The final interpolated intensity at (x′,y′) is then com-
puted as:

I′(x′,y′) = waIa +wbIb +wcIc +wdId .

Figure 15.8: Bilinear interpolation applied to a C×2×2 input tensor, producing a C×4×4 output.
Each upsampled value is computed as a weighted sum of its four nearest neighbors in the original
feature map.

15.4 Upsampling and Unpooling 693

Advantages and Limitations of Bilinear Interpolation
Bilinear interpolation offers clear improvements over nearest-neighbor unpooling when upsampling
feature maps or images. Instead of simply copying the nearest value, each output pixel is computed
as a weighted average of its four closest input pixels, with weights determined by geometric distance.
This produces smoother transitions, reduces blocky artifacts, and better preserves local spatial
relationships than nearest-neighbor methods.

However, bilinear interpolation also has important limitations. Because it relies on only four
neighbors and uses simple linear weighting, it tends to blur high-frequency details: fine textures,
sharp edges, and small-scale patterns can become softened. In effect, bilinear interpolation trades off
blockiness for smoothness, but at the cost of some sharpness and detail.

15.4.4 Bicubic Interpolation for Upsampling
Bicubic interpolation is a more advanced alternative to nearest-neighbor or bilinear upsampling.
Instead of using just four neighbors, bicubic interpolation considers a 4×4 neighborhood (16 pixels)
around each output position and applies a cubic weighting function along each axis. This broader
context and smoother weighting scheme allow the method to better respect local structure and
produce sharper, more detailed upsampled results.

Why Bicubic Interpolation?
The wider support of bicubic interpolation directly addresses the limitations of bilinear interpolation.
By aggregating information from sixteen neighboring pixels and using cubic (rather than linear)
weights, bicubic interpolation can better preserve edges, reduce blurring, and maintain fine textures.
For this reason, it is commonly used as a high-quality default for image resizing and is often preferred
in deep learning pipelines when visually faithful, detail-preserving upsampling is important.

Mathematical Reasoning
Bicubic interpolation extends bilinear interpolation by introducing a cubic weighting function that
smoothly distributes the contribution of each neighboring pixel. While bilinear interpolation assigns
weights based purely on distance (linearly decreasing to zero), the cubic approach tailors these
weights using a function that decays gradually, allowing pixels farther from the target position to
still have a small but meaningful influence.
The commonly used weighting function is piecewise-defined:

W (t) =


(a+2)|t|3− (a+3)|t|2 +1, 0≤ |t|< 1,
a|t|3−5a|t|2 +8a|t|−4a, 1≤ |t|< 2,
0, |t| ≥ 2,

where a typically takes values around −0.5 to balance smoothness and sharpness. The function
ensures nearby pixels carry the most weight, while more distant neighbors still contribute smoothly
rather than being abruptly excluded.
A concise visual and conceptual explanation can be found in this Computerphile video.

https://www.youtube.com/watch?v=poY_nGzEEWM&ab_channel=Computerphile

694 Chapter 15. Lecture 15: Image Segmentation

Bicubic Interpolation: Generalized Case
Assume we have an input feature map I of size C×H×W , and we wish to produce an upsampled
map I′ of size C×H ′×W ′. The bicubic interpolation proceeds as follows:

1. Coordinate Mapping: Map the output pixel location (x′,y′) back to the corresponding
floating-point coordinate (x,y) in the input grid:

x =
x′(W −1)

W ′−1
, y =

y′(H−1)
H ′−1

.

2. Neighbor Identification: Determine the ±1 and ±2 offsets around ⌊x⌋ and ⌊y⌋. This yields a
4×4 set of pixels {Ii, j} centered near (x,y).

3. Applying the Cubic Weights: Use the cubic function W (t) in both the x and y directions:

I′(x′,y′) =
2

∑
i=−1

2

∑
j=−1

W (x− xi)W (y− y j) Ii, j.

Figure 15.9: Bicubic interpolation demonstrated on a C×2×2 feature map, generating a C×4×4
output. Each interpolated value is computed by applying a cubic weighting to the nearest 16 pixels.

Advantages and Limitations
Sharper Details and Continuity. By sampling a larger neighborhood with a smoothly decaying
weight function, bicubic interpolation preserves finer structures, reduces artifacts, and transitions
more smoothly across pixel boundaries than bilinear interpolation.
Better Texture Preservation. Rather than over-smoothing, bicubic interpolation better maintains
texture information by assigning fractional influences to pixels farther than one unit away.
Non-Learnable. Despite these benefits, bicubic interpolation remains a fixed formula that cannot
adapt to complex or domain-specific feature distributions in deep learning.

15.4 Upsampling and Unpooling 695

In contrast, max unpooling or learnable upsampling layers (we’ll learn about those in the
following parts) can dynamically capture where and how to upscale feature maps.
Hence, while bicubic interpolation offers a clear advantage over simpler methods for image resizing
tasks, its fixed nature can be sub-optimal in end-to-end neural networks that require trainable,
context-dependent upsampling.

15.4.5 Max Unpooling
Max unpooling is an upsampling operation designed to “invert” max pooling as faithfully as possible.
Instead of estimating new values via interpolation (as in bilinear or bicubic upsampling), max
unpooling is a routing mechanism: it uses the indices of the maxima recorded during max pooling
to place activations back into their original spatial locations, producing a sparse but geometrically
aligned feature map.
Intuitively, max unpooling acts like a memory of where the network believed the most important
responses were before downsampling. During encoding, max pooling keeps only the largest activation
in each window and remembers where it came from. During decoding, max unpooling re-expands
the feature maps and reinstates those activations exactly at the stored positions, filling all other
locations with zeros. This preserves the encoder’s notion of “where things are” while deferring dense
reconstruction to subsequent convolutions.

Max Unpooling in the DeconvNet of Noh et al. (ICCV 2015)
In the DeconvNet architecture proposed by Noh et al. [454], max unpooling layers are placed
symmetrically to the max pooling layers of the encoder. Each pooling layer performs:

• Max pooling with switches: For each pooling window (e.g., 2×2 with stride 2), the encoder
selects the maximum activation and stores its index (row and column position) inside the
window.

The corresponding max unpooling layer in the decoder then executes three conceptually simple
steps:

1. Re-expand the spatial grid: The decoder allocates an upsampled feature map with the same
spatial resolution as the pre-pooled feature map.

2. Place activations using indices: Each pooled activation is written back into the upsampled
grid at the exact location indicated by its recorded index; all other positions in that pooling
window are set to zero.

3. Refine sparsity via convolutions: This sparse, index-aligned map is passed through convo-
lutional layers that propagate information from strong activations into nearby zero regions,
gradually reconstructing dense feature maps and, ultimately, a segmentation mask.

This encoder–decoder symmetry has two important effects:
• It preserves spatial correspondence between encoder and decoder: high-level features in the

decoder are anchored to the same image regions where they were originally detected.
• It provides a structured scaffold for reconstruction: strong activations sit at semantically

meaningful positions (edges, parts, object interiors), and subsequent convolutions learn to fill
in the details around them.

696 Chapter 15. Lecture 15: Image Segmentation

Figure 15.10: Illustration of max unpooling using recorded pooling indices to restore spatial
activations. Each max-pooled activation is returned to its original location, while all other positions
in the window are set to zero

Why Max Unpooling is More Effective Than Bed of Nails Unpooling
Both max unpooling and Bed of Nails unpooling produce sparse feature maps that are later densified
by convolutions, but they differ crucially in where activations are placed.

Spatial alignment versus arbitrary placement
• Bed of Nails unpooling copies each activation from the low-resolution feature map into a fixed,

predetermined location in the corresponding upsampled block (for example, always the top-left
corner of a 2×2 region), setting all other positions to zero. This ignores where the activation
originally occurred inside the pooling window. As a result, features are systematically shifted
in space, breaking alignment between encoder and decoder.

• Max unpooling, by contrast, uses the stored pooling indices to place each activation back into
its true pre-pooled location. The sparse pattern therefore matches the geometry induced by the
encoder, preserving object shapes, boundaries, and part locations as seen by the max-pooling
layers.

Why zeros in max unpooling are less problematic
Both methods introduce many zeros, but their semantic meaning differs:

• In Bed of Nails unpooling, zeros are inserted according to a fixed pattern that does not reflect
the encoder’s decisions. They appear between activations even in regions where several pixels
were originally moderately strong but not maximal. The decoder then receives an artificial
“checkerboard” structure: a regular grid of isolated nonzeros surrounded by zeros, which can
induce aliasing and unnatural high-frequency patterns unless later convolutions work hard to
undo these artifacts.

• In Max unpooling, zeros appear precisely at positions that were not selected by max pooling.
In other words, they encode the fact that, in that local window, no feature exceeded the chosen
maximum at those positions.

15.4 Upsampling and Unpooling 697

This matches the encoder’s notion of saliency: strong responses are re-instated where they
originally occurred, while weaker or background responses are suppressed. Subsequent
convolutions can therefore treat zeros as “low-confidence” or “background” rather than as
artificial gaps; they naturally diffuse information outward from the high-activation sites,
producing smooth, context-aware reconstructions.

Structured reconstruction
Because max unpooling respects the encoder’s spatial structure, the resulting sparse maps form a
data-driven blueprint for reconstruction:

• Edges and object parts are reintroduced at approximately correct locations, giving decoder
convolutions a meaningful starting point.

• There is no need to learn to correct systematic misalignment (as with Bed of Nails); learning
can instead focus on refining shapes, filling in missing detail, and resolving ambiguities.

In summary, max unpooling remains a non-learnable upsampling operation, but by leveraging
pooling indices it preserves the encoder’s spatial decisions. This makes it substantially more
effective than Bed of Nails unpooling in fully convolutional decoders such as DeconvNet [454],
where accurate alignment between downsampling and upsampling stages is crucial for high-quality
semantic segmentation.

Bridging to Transposed Convolution
Max unpooling restores spatial activations efficiently, but it lacks the ability to generate new details
or refine spatial features dynamically. Since it is a purely index-driven process, it cannot adaptively
reconstruct missing information beyond what was retained during max pooling.
To overcome these limitations, we now explore transposed convolution, a learnable upsampling
method that optimizes filter weights to produce high-resolution feature maps. This allows for
fine-grained spatial reconstructions and greater adaptability compared to fixed unpooling strategies.

15.4.6 Transposed Convolution
Transposed convolution, also referred to as deconvolution or fractionally strided convolution, is
an upsampling technique that enables the network to learn how to generate high-resolution feature
maps from lower-resolution inputs.

Unlike interpolation-based upsampling or max unpooling, which are fixed operations, trans-
posed convolution is learnable, meaning the network optimizes the filter weights to improve the
reconstruction process.
Although called deconvolution, it is not an actual inversion of convolution. Instead, it follows a
similar mathematical operation as standard convolution but differs in how the filter is applied to the
input tensor.

Understanding the Similarity to Standard Convolution
In a standard convolutional layer, an input feature map is processed using a learned filter (kernel),
which slides over the input using a defined stride. At each step, the filter is multiplied element-wise
with the corresponding input region, and the results are summed to produce a single output activation.
In transposed convolution, the process is similar but applied in reverse:

• The filter is not applied directly to the input feature map but instead used to spread its
contribution to the larger output feature map.

• Each input element is multiplied by every element of the filter, and the weighted filter values
are then copied into the output tensor.

698 Chapter 15. Lecture 15: Image Segmentation

• If multiple filter applications overlap at the same location in the output, their values are
summed.

This effectively reconstructs a higher-resolution representation while learning spatial dependencies
in an upsampling operation.

Step-by-Step Process of Transposed Convolution
To illustrate how transposed convolution operates, consider a 2×2 input feature map processed with
a 3×3 filter and a stride of 2, producing a 4×4 output. The process consists of the following steps:

1. Processing the First Element:
• The first input value is multiplied element-wise with each value in the 3×3 filter.
• The weighted filter response is then placed into its corresponding region in the output

tensor, which was initially set to zeros.
2. Processing the Second Element:

• The second input element undergoes the same multiplication with the filter, producing
another set of weighted values.

• These values are positioned in the output grid according to the stride of 2.
• When regions of the output overlap due to filter applications, the corresponding values

are summed instead of overwritten.
3. Iterating Over the Remaining Elements:

• The process is repeated for all input elements, progressively constructing the upsampled
feature map.

• The final reconstructed output is a 4× 4 feature map, demonstrating how transposed
convolution expands spatial resolution while preserving learned feature relationships.

Figure 15.11: Illustration of the first step in transposed convolution: applying the filter to the first
input element.

15.4 Upsampling and Unpooling 699

Figure 15.12: The second input element is processed: its weighted filter values are placed in the
output grid, with overlapping values summed.

Figure 15.13: Final constructed output after processing all input elements.

1D Transposed Convolution
A particularly clear way to build intuition for transposed convolution is to start from a simple 1D
example and view it as a “scale, place, and sum” operation. Consider a transposed convolution that
maps a 2-element input to a 5-element output using a 3-element kernel with stride S = 2 and no
padding.

• Input: u = [a, b]⊤

• Kernel (filter): k = [x, y, z]⊤

• Output: v ∈ R5

The forward computation can be understood in three steps:

700 Chapter 15. Lecture 15: Image Segmentation

1. Scale and place each input element
For each input element, we multiply the entire kernel and place the resulting block into the output at
a location determined by the stride S.

• For the first input a, we form

a · [x,y,z] = [ax, ay, az],

and place it starting at the first output position:

[ax, ay, az, 0, 0].

• For the second input b, we again form

b · [x,y,z] = [bx, by, bz],

but now place it shifted by the stride S = 2. This means its first element aligns with the third
output position:

[0, 0, bx, by, bz].

2. Sum overlapping contributions
The final output v is the elementwise sum of these placed blocks:

v = [ax, ay, az, 0, 0]︸ ︷︷ ︸
from a

+[0, 0, bx, by, bz]︸ ︷︷ ︸
from b

= [ax, ay, az+bx, by, bz]⊤.

The third position receives contributions from both a and b, illustrating how transposed convolution
blends neighboring inputs via overlapping kernel footprints.

3. Why 5 output elements? Role of stride
The output length is determined by the standard 1D transposed convolution formula (no padding):

Nout = S · (Nin−1)+K,

where Nin = 2 (input length), K = 3 (kernel size), S = 2 (stride). Thus,

Nout = 2 · (2−1)+3 = 5.

Intuitively, stride S = 2 means that the two kernel “footprints” are placed two positions apart in the
output, and each footprint spans K = 3 elements, causing them to overlap in the middle.

15.4 Upsampling and Unpooling 701

Figure 15.14: Illustration of 1D transposed convolution with stride S = 2: a 2-element input and a
3-element filter produce a 5-element output via scale, place, and sum

In higher dimensions (e.g., 2D feature maps), exactly the same mechanism applies: each activation
spreads its influence over a local neighborhood, shifted according to the stride, and overlapping
contributions are summed to produce a larger, learned upsampled feature map.

Why use stride S > 1 in transposed convolutions?
In practice, choosing a stride S > 1 in a transposed convolution is precisely how we perform learnable
upsampling in a single layer. For a transposed convolution with stride S, kernel size K, padding P,
and 1D input length I,

O = (I−1) ·S+K−2P

controls the output size. For example, S = 2 approximately doubles the spatial resolution, and S = 4
approximately quadruples it (up to boundary effects). This is why decoder architectures for semantic
segmentation (e.g., U-Net, FCN-style models) or generators in GANs and super-resolution networks
routinely use stride-2 (or larger) transposed convolutions: they efficiently map low-resolution feature
maps back to higher resolutions while learning how information should be distributed into the new
pixels. Implementation-wise, a stride-S transposed convolution is equivalent to inserting S−1 zeros
between input positions and then applying a stride-1 convolution with the same kernel, but deep
learning libraries realize this without explicitly constructing the enlarged, sparse intermediate tensor.

15.4.7 Convolution and Transposed Convolution as Matrix Multiplication
Convolutions are linear operations and can always be written as matrix–vector products. This
viewpoint is useful conceptually (it shows that convolution is just a special sparse linear map) and
practically (it explains why the forward pass of a transposed convolution corresponds to multiplying
by the transpose of the convolution matrix, and why the backward pass of a standard convolution
looks like a transposed convolution).

702 Chapter 15. Lecture 15: Image Segmentation

Standard Convolution via Matrix Multiplication
Consider a 1D convolution with stride S = 1 and no padding. Let

• Input: x = [x1,x2,x3,x4]
⊤ ∈ R4.

• Kernel (filter): w = [w1,w2,w3]
⊤ ∈ R3.

With valid convolution, the output has length

O = I−K +1 = 4−3+1 = 2,

and its entries are

y1 = w1x1 +w2x2 +w3x3, y2 = w1x2 +w2x3 +w3x4.

We can write this as a matrix–vector product

y =Cx,

where C ∈ R2×4 is a Toeplitz matrix constructed from the kernel:

C =

[
w1 w2 w3 0
0 w1 w2 w3

]
.

Then

Cx =

[
w1 w2 w3 0
0 w1 w2 w3

]
x1
x2
x3
x4

=

[
w1x1 +w2x2 +w3x3
w1x2 +w2x3 +w3x4

]
,

which matches the convolution exactly.
Each row of C encodes one position of the sliding kernel:

• Row 1 aligns [w1,w2,w3] with [x1,x2,x3].
• Row 2 shifts this pattern one step to the right, aligning with [x2,x3,x4].
Positions that would fall outside the input are filled with zeros. In higher dimensions (2D images,

3D volumes) and with multiple channels, the same idea produces larger, block-structured Toeplitz
matrices.

Figure 15.15: 1D convolution represented as matrix multiplication y =Cx, where the Toeplitz matrix
C is constructed from the kernel.

15.4 Upsampling and Unpooling 703

Stride S > 1 in standard convolution
For stride S > 1, the convolution still has the form y =CSx for a suitable sparse matrix CS. Intuitively,
the kernel still slides along the input, but we only keep every S-th output. In matrix form, this
corresponds either to:

• Taking a subset of rows from the stride-1 Toeplitz matrix.
• Directly constructing a sparser matrix CS whose rows correspond to windows starting at

positions

1, 1+S, 1+2S, . . .

in the input.

Transposed Convolution as the Matrix Transpose
The transposed convolution associated with a given (discrete) convolution is most cleanly defined
via the transpose of its convolution matrix. If a standard 1D convolution with stride S can be written
as

y =CSx,

then its associated transposed convolution is the linear map

x′ =C⊤S y.

When CS corresponds to a downsampling convolution (e.g., S > 1), this adjoint map typically
increases spatial extent, which is why transposed convolutions are used for upsampling.

For the stride-1 example above, the convolution matrix is

C =

[
w1 w2 w3 0
0 w1 w2 w3

]
∈ R2×4,

so its transpose is

C⊤ =


w1 0
w2 w1
w3 w2
0 w3

 ∈ R4×2.

Given y = [y1,y2]
⊤, the transposed convolution computes

x′ =C⊤y =


w1y1

w2y1 +w1y2
w3y1 +w2y2

w3y2

 .
Each element of y is “spread” over three positions in x′, weighted by the kernel, and overlapping
contributions are summed. For S = 1, both C and C⊤ are Toeplitz matrices, so the adjoint is itself a
normal convolution (with a flipped kernel).

704 Chapter 15. Lecture 15: Image Segmentation

Relating to the [a,b]⊤ and [x,y,z]⊤ Example (Stride S = 2)
We now connect the intuitive scale–place–sum example to the matrix view for stride S = 2. Consider
a standard 1D convolution with:

• Input: v = [v1,v2,v3,v4,v5]
⊤.

• Kernel: k = [x,y,z]⊤.
• Stride: S = 2, no padding.

The output u = [u1,u2]
⊤ is

u1 = xv1 + yv2 + zv3, u2 = xv3 + yv4 + zv5,

so the convolution matrix W ∈ R2×5 is

W =

[
x y z 0 0
0 0 x y z

]
.

Each row corresponds to placing the kernel at positions (1,2,3) and (3,4,5) in the input, reflecting
the stride S = 2.

The associated transposed convolution uses W⊤:

W⊤ =


x 0
y 0
z x
0 y
0 z

 ∈ R5×2.

Given a 2-element input u = [a,b]⊤, the transposed convolution computes

v′ =W⊤u = a


x
y
z
0
0

+b


0
0
x
y
z

=


ax
ay

az+bx
by
bz

 .
Thus the mapping

[a,b]⊤
kernel [x,y,z]⊤, S=2−−−−−−−−−−−→ [ax, ay, az+bx, by, bz]⊤

is exactly the same 1D transposed convolution we described earlier, now written as a single matrix–
vector product v′ =W⊤u.

15.4 Upsampling and Unpooling 705

Figure 15.16: Transposed convolution as the transpose of the convolution matrix: the forward map
uses C⊤S to spread each input activation over multiple output positions

Strides, Upsampling, and the “Normal Convolution” Caveat
The matrix viewpoint is completely general: for any stride S, both convolution and its adjoint remain
linear maps and can always be written as

y =CSx, x′ =C⊤S y,

for some (possibly large and sparse) matrix CS. This makes it clear that:
• The operations are differentiable everywhere, with Jacobians given by CS and C⊤S .
• Gradients with respect to inputs and kernels are just matrix–vector products involving these

matrices or their transposes.
However, there is an important subtlety when S > 1:

• For S = 1, the convolution matrix C is Toeplitz, and its transpose C⊤ is also Toeplitz. In this
case, both the forward convolution y =Cx and the adjoint x′ =C⊤y are normal convolutions
on the same grid, with different (flipped) kernels.

• For S > 1, the forward convolution matrix CS is still Toeplitz (up to zero rows corresponding
to skipped positions), but its transpose C⊤S is no longer Toeplitz. As the stride example
above shows, W⊤ does not have constant diagonals, so there is no single kernel and stride
configuration that realizes x′ = C⊤S y as a single standard convolution on the original input
grid.

This is precisely the sense in which, for S > 1, a transposed convolution cannot be expressed as a
normal convolution acting directly on y: its matrix is not a convolution (Toeplitz) matrix on that grid.
Instead, the usual implementation factorizes the operation into two steps:

1. Zero-insertion (upsampling). Conceptually insert S−1 zeros between consecutive elements
of y, creating an enlarged, sparse feature map.

2. Stride-1 convolution. Apply a normal stride-1 convolution (with an appropriate kernel) to
this upsampled signal.

706 Chapter 15. Lecture 15: Image Segmentation

On the upsampled grid, the second step is again a standard convolution with a Toeplitz matrix.
But on the original grid, the full operator is no longer a single convolution; it is the composition
of upsampling (a fixed linear map) and a stride-1 convolution. Deep learning libraries implement
transposed convolutions in exactly this way for efficiency, rather than explicitly forming C⊤S .

In summary:
• Mathematically, for any stride S, convolution and transposed convolution are linear maps with

an adjoint relationship y =CSx, x′ =C⊤S y.
• For S = 1, both maps are themselves normal convolutions on the same grid.
• For S > 1, the adjoint C⊤S is not a normal convolution on the original grid, but can be

implemented as “upsample (insert zeros) + stride-1 convolution” on a finer grid.
This clarifies why transposed convolutions with stride S > 1 are treated as a distinct primitive in
modern libraries, even though they are still fully linear and differentiable and remain the exact
adjoints of their corresponding strided convolutions.

Advantages of Transposed Convolution
Relative to fixed upsampling operations such as bilinear interpolation or max unpooling, transposed
convolution offers several advantages:

• Learnable weights: The kernel parameters are trained end-to-end, allowing the network to
learn how best to interpolate and refine details for the specific task.

• Trainable spatial structure: Because it is a convolution, the operation naturally captures
local spatial patterns and can reconstruct sharp edges and meaningful structures rather than
merely smoothing.

• Flexible stride and padding: As with standard convolutions, stride, kernel size, and padding
provide fine-grained control over the output resolution, making it easy to design multi-scale
encoder–decoder architectures.

Challenges and Considerations
While transposed convolution is highly effective, it introduces some challenges:

• Checkerboard Artifacts: Overlapping filter applications can create unevenly distributed
activations, leading to artifacts in the output.

• Sensitivity to Stride and Padding: Incorrect configurations can lead to distorted feature
maps or excessive upsampling.

15.4.8 Conclusion: Choosing the Right Upsampling Method
In this chapter we examined several upsampling and unpooling strategies, ranging from simple,
non-learnable schemes to fully learnable transposed convolutions. Each method makes a different
trade-off between computational cost, spatial faithfulness, smoothness, and the ability to recover
or hallucinate fine details. In practice, the “right” choice depends on the task (e.g., semantic
segmentation vs. super-resolution), the downsampling operations used in the encoder (max pooling
vs. strided convolutions), and the amount of computation and complexity you are willing to invest in
the decoder.

15.4 Upsampling and Unpooling 707

Upsampling Method Advantages Limitations

Nearest-Neighbor Un-
pooling / Upsampling

Extremely simple and fast; no
learnable parameters; preserves
exact values of input pixels or
features

Produces blocky, jagged arti-
facts; no notion of continuity;
cannot reconstruct fine details
or smooth transitions.

Bed of Nails Unpooling Simple non-learnable unpool-
ing; preserves original values in
fixed locations; keeps sparsity
structure

Places activations in arbitrary
fixed positions (e.g., always top-
left); breaks spatial alignment
with the encoder; creates unnat-
ural gaps and aliasing; generally
inferior to max unpooling.

Bilinear Interpolation Fast, differentiable, and easy
to implement; produces smooth
transitions and avoids blocky ar-
tifacts

Averages over local neighbor-
hoods, which blurs edges and
textures; cannot recover high-
frequency details lost during
downsampling.

Bicubic Interpolation Uses a larger neighborhood and
cubic weights; typically sharper
outputs and better detail preser-
vation than bilinear

More computationally expen-
sive; still non-learnable and can
introduce mild blurring or ring-
ing near sharp boundaries.

Max Unpooling Restores activations to their
exact locations recorded by
max pooling; preserves spatial
layout of salient features and
encoder–decoder alignment

Produces sparse feature maps
(zeros in non-max positions)
that require subsequent convo-
lutions for refinement; only ap-
plicable when pooling indices
are available.

Transposed Convolu-
tion

Fully learnable upsampling; can
reconstruct or hallucinate high-
frequency structure; flexible
control of output size through
kernel, stride, and padding

Higher computational cost; can
introduce checkerboard arti-
facts if kernel size, stride, and
padding are poorly chosen;
more sensitive to implementa-
tion details.

Table 15.1: Summary of common upsampling and unpooling methods, highlighting their main
advantages and limitations.

Guidelines for Choosing an Upsampling Method
The upsampling strategy should be chosen in concert with the encoder design and the target task.
The following guidelines capture common patterns used in practice:

• Match the encoder’s downsampling when using max pooling.
When the encoder uses max pooling, max unpooling is a natural counterpart: it reuses the
recorded pooling indices to place activations back into their original spatial locations. This
preserves spatial correspondence between encoder and decoder feature maps.

708 Chapter 15. Lecture 15: Image Segmentation

Because the unpooled output is sparse, it should almost always be followed by one or more
convolutional layers to “densify” and refine the feature map. In contrast, Bed of Nails
unpooling does not respect the original pooling geometry and typically leads to misaligned
features and artifacts, so it is best viewed as a simple didactic baseline rather than a practical
choice.

• Use interpolation when you want smooth, non-learnable upsampling.
For tasks where smoothness and simplicity are more important than exact detail reconstruction
(or when a lightweight baseline is sufficient), bilinear interpolation is a robust default. It
avoids blocky artifacts and is inexpensive. Bicubic interpolation is preferred when additional
sharpness is desired and the extra cost is acceptable. In both cases, the upsampled features are
often followed by a standard convolution layer to reintroduce some learnable flexibility.

• Combine simple upsampling with convolution to avoid artifacts.
A widely used pattern in modern architectures is: resize (nearest-neighbor or bilinear)→
convolution. The interpolation step handles the geometric upsampling, while the subsequent
convolution learns to refine and reweight the features. This decoupled design avoids checker-
board artifacts associated with poorly configured transposed convolutions, yet retains learnable
capacity through the convolutional layer.

• Use transposed convolution when learnable upsampling is essential.
Transposed convolutions are often preferred in semantic segmentation decoders, autoen-
coders, super-resolution networks, and GAN generators, where the decoder must learn
how to reconstruct or hallucinate fine details from compact representations. By choosing
appropriate kernel sizes and strides (e.g., even kernel sizes and strides that match the encoder’s
downsampling pattern), transposed convolutions can provide powerful, learnable upsam-
pling. Careful design or additional smoothing (e.g., a small convolution after the transposed
convolution) is recommended to mitigate checkerboard artifacts.

• For encoders without explicit pooling, favor learned, structured upsampling.
In fully convolutional architectures that rely primarily on strided convolutions for down-
sampling, there are no pooling indices to reuse. In such cases, transposed convolutions or
interpolation + convolution blocks provide a natural way to invert the spatial contraction,
since they can be configured to mirror the encoder’s stride pattern and learn how to reconstruct
structured high-resolution outputs.

In summary, nearest-neighbor and Bed of Nails unpooling serve as simple baselines, interpolation
methods provide smooth but non-learnable upsampling, and max unpooling plus transposed convolu-
tions exploit encoder information or learnable filters to recover structure. Most practical decoders
combine these ideas—using indices when available, interpolation when stability and simplicity
matter, and learnable convolutions when detailed reconstruction is crucial.

15.5 Instance Segmentation
Instance segmentation is a critical task in computer vision that aims to simultaneously detect and
delineate each object instance within an image. Unlike semantic segmentation, which assigns a class
label to each pixel without distinguishing between different object instances of the same category,
instance segmentation uniquely identifies each occurrence of an object. This is particularly important
for applications where individual object identification is required, such as autonomous driving,
medical imaging, and robotics.

15.5 Instance Segmentation 709

In computer vision research, image regions are categorized into two types: things and stuff. This
distinction is fundamental to instance segmentation, where individual object instances are identified
at the pixel level.

• Things: Object categories that can be distinctly separated into individual instances, such as
cars, people, and animals.

• Stuff: Object categories that lack clear instance boundaries, such as sky, grass, water, and
road surfaces.

Instance segmentation focuses exclusively on things, as segmenting instances of stuff is not mean-
ingful. The primary goal of instance segmentation is to detect all objects in an image and assign a
unique segmentation mask to each detected object, ensuring correct differentiation of overlapping
instances.
This task is particularly challenging due to the need for accurate pixel-wise delineation while simul-
taneously handling object occlusions, varying scales, and complex background clutter. Advanced
deep learning architectures, such as Mask R-CNN, have significantly improved the performance of
instance segmentation by leveraging region-based feature extraction and mask prediction techniques.
The development of instance segmentation models continues to evolve, driven by the increasing
demand for high-precision vision systems across various domains.

15.5.1 Mask R-CNN: A Two-Stage Framework for Instance Segmentation
Mask R-CNN extends Faster R-CNN, a widely used two-stage object detection framework, by
incorporating a dedicated branch for per-instance segmentation masks. While Faster R-CNN predicts
bounding boxes and class labels, Mask R-CNN further refines this process by generating high-
resolution segmentation masks for each detected object.

Faster R-CNN Backbone
Faster R-CNN builds on a convolutional backbone (e.g., ResNet with or without FPN) that extracts
a shared feature map for the entire image. On top of these features, a Region Proposal Network
(RPN) predicts a set of candidate object bounding boxes (region proposals) together with objectness
scores. For each proposal, features are cropped from the shared feature map (via RoI pooling or
RoI Align) and passed through two parallel heads: a classification head that predicts the object
category via softmax, and a bounding box regression head that refines the proposal coordinates
via regression. This two-stage design yields class-labeled, refined bounding boxes and serves as the
foundation for Mask R-CNN.

Key Additions in Mask R-CNN
Mask R-CNN preserves the overall Faster R-CNN structure while introducing two key modifications
that enable instance-level segmentation:

• A mask prediction head. A lightweight fully convolutional network (FCN) branch predicts
a binary segmentation mask for each detected object instance. Instead of producing a single
segmentation map for the whole image, Mask R-CNN outputs one mask per region of interest
(RoI). The mask head consists of several convolutional layers followed by a deconvolution
(transposed convolution) layer that upsamples RoI features (e.g., from 14×14 to 28×28)
before a final 1×1 convolution produces per-pixel mask logits. The weights of this head are
learned jointly with the detection heads.

710 Chapter 15. Lecture 15: Image Segmentation

• RoI Align for precise feature extraction. Faster R-CNN originally used RoI Pooling, which
quantizes RoI coordinates to discrete bins and introduces misalignment between the RoI
and the underlying feature map. Mask R-CNN replaces this with RoI Align, which avoids
any rounding and uses bilinear interpolation to sample feature values at exact (possibly
fractional) locations. This improves alignment, especially for small objects, and is crucial for
accurate mask boundaries.

As a result, the second stage of Mask R-CNN produces three parallel outputs for each region
proposal:

• Class label, predicted via a softmax classification head.
• Bounding box refinement, predicted by a regression head that outputs coordinate offsets.
• Segmentation mask, predicted by the FCN-based mask branch.

Segmentation Mask Prediction: Fixed-Size Output
A central challenge in instance segmentation is handling objects of widely varying sizes while
keeping computation manageable. Mask R-CNN addresses this by predicting a fixed-size mask for
each RoI and then resizing it to the object’s bounding box in the original image.
Concretely, for each positive RoI:

1. The RPN generates region proposals on top of the backbone feature map.
2. The classification and bounding box regression heads operate on RoI-aligned features to

predict the object category and refine the bounding box coordinates.
3. In parallel, the mask head takes the same RoI-aligned features and outputs a tensor of

shape C×28×28, where C is the number of object classes. Each channel corresponds to a
class-specific mask prediction at a fixed spatial resolution.

4. During inference, the mask corresponding to the predicted class for that RoI is selected,
yielding a single 28×28 mask for that instance.

5. This selected 28×28 mask is then resized to the spatial extent of the refined bounding box
using bilinear interpolation and placed at the appropriate location in the original image
coordinate system.

In other words, the transposed convolution inside the mask head learns to produce a relatively
high-resolution, fixed-size mask in feature space, while a final bilinear interpolation step adapts this
fixed-size mask to the object’s actual size in the input image.

Training Mask R-CNN and Loss Functions
Mask R-CNN is trained end-to-end as a multi-task model, jointly optimizing detection (classification
and bounding boxes) and segmentation. The training objective is the sum of three losses:

• Classification loss Lcls. A standard softmax cross-entropy loss applied to the classification
head to encourage correct object category predictions for each RoI.

• Bounding box regression loss Lbox. A smooth L1 loss applied to the predicted bounding box
offsets for positive RoIs (those that sufficiently overlap a ground-truth object), improving
localization accuracy.

• Mask loss Lmask. A per-pixel binary cross-entropy loss applied to the mask prediction branch.
For each positive RoI, this loss is computed only on the channel corresponding to the
ground-truth class, ignoring all other class channels. This class-specific loss encourages
accurate foreground–background separation and precise object boundaries.

15.5 Instance Segmentation 711

The total loss is given by

L = Lcls +Lbox +Lmask,

where:
• Lcls is the classification loss.
• Lbox is the bounding box regression loss.
• Lmask is the mask prediction loss.

In practice, the backbone network (e.g., ResNet with or without FPN) is first pretrained on a large-
scale image classification dataset such as ImageNet and then fine-tuned on an instance segmentation
dataset such as COCO. During fine-tuning, gradients from all three heads (classification, box
regression, and mask prediction) are backpropagated through the shared backbone and RPN. This
joint optimization improves both detection (bounding box mAP) and segmentation (mask mAP), and
the RoI Align plus mask head design enables accurate, high-resolution instance masks while reusing
the mature Faster R-CNN detection pipeline.

Bilinear Interpolation vs. Bicubic Interpolation
The upsampling step in Mask R-CNN requires resizing segmentation masks to fit detected object
regions. The authors chose bilinear interpolation over bicubic interpolation for the following
reasons:

• Efficiency: Bilinear interpolation is computationally less expensive than bicubic interpolation,
making it suitable for processing multiple objects per image.

• Minimal Accuracy Gains from Bicubic: Bicubic interpolation considers 16 neighboring
pixels, while bilinear uses only 4. Given that Mask R-CNN’s masks are already low resolution
(28×28), bicubic interpolation does not provide significant accuracy improvements.

• Edge Preservation: Bicubic interpolation introduces additional smoothing, which can blur ob-
ject boundaries. Bilinear interpolation maintains sharper mask edges, improving segmentation
performance.

Class-Aware Mask Selection
Unlike traditional multi-class segmentation models, which predict a single mask covering all cate-
gories, Mask R-CNN follows a per-instance, per-class approach:

• The segmentation head predicts C binary masks per object, where C is the number of
possible classes.

• The classification head determines the object’s category.
• The corresponding mask for the predicted category is selected and applied to the object.

This method decouples classification from segmentation, preventing class competition within the
mask and improving segmentation accuracy.

Gradient Flow in Mask R-CNN
Mask R-CNN’s forward pass for mask prediction closely mirrors the backward pass of standard
convolutional networks. Gradient computations are structured as follows:

• The classification and bounding box losses propagate through the detection pipeline, refining
object proposals.

• The segmentation loss propagates gradients through the mask prediction branch, optimizing
instance masks.

• RoI Align ensures spatial alignment, preventing gradient misalignment and improving mask
accuracy.

712 Chapter 15. Lecture 15: Image Segmentation

Expressing these processes as matrix–vector operations clarifies how gradients flow through the
network, aiding optimization and efficient deep learning framework implementation.

Summary
Mask R-CNN extends Faster R-CNN by introducing a per-region mask prediction branch and
RoI Align for accurate feature extraction. The segmentation head predicts a fixed-size 28× 28
binary mask per object, which is then resized using bilinear interpolation. This approach allows for
accurate instance segmentation while maintaining computational efficiency, making Mask R-CNN a
dominant framework in object segmentation applications.

15.5.2 Extending the Object Detection Paradigm
Mask R-CNN introduced a paradigm in which object detection models can be extended to perform
new vision tasks by adding task-specific prediction heads. This flexible approach has led to the
development of new capabilities beyond instance segmentation, such as:

• Keypoint Estimation: Mask R-CNN was further extended for human pose estimation by
adding a keypoint detection head. This variation, sometimes called Mask R-CNN: Keypoints,
predicts key locations such as joints in the human body, facilitating pose estimation.

Figure 15.17: Mask R-CNN extended for keypoint estimation, predicting key locations such as joints
for human pose estimation.

• Dense Captioning: Inspired by the Mask R-CNN paradigm, DenseCap [269] extends object
detection by incorporating a captioning head. This approach, illustrated below, uses an LSTM-
based captioning module to describe detected regions with natural language. We’ll cover this
topic in depth later on.

15.5 Instance Segmentation 713

Figure 15.18: Dense Captioning (DenseCap) extends object detection by adding a captioning head,
enabling textual descriptions of detected objects.

Figure 15.19: Example output of DenseCap: Generated captions describe detected regions with
natural language.

• 3D Shape Prediction: Mesh R-CNN [177] builds upon Mask R-CNN to predict 3D object
shapes from 2D images by adding a mesh prediction head. This enables the reconstruction of
3D object geometry directly from image-based inputs, representing a significant step toward
vision-based 3D reasoning.

714 Chapter 15. Lecture 15: Image Segmentation

Figure 15.20: Mesh R-CNN extends Mask R-CNN with a mesh prediction head, enabling 3D shape
reconstruction from 2D images.

These extensions highlight the versatility of the Mask R-CNN framework and demonstrate how object
detection networks can serve as a foundation for diverse computer vision tasks. By incorporating
additional task-specific heads, researchers continue to expand the boundaries of what can be achieved
using a common underlying object detection architecture. We’ll touch these ideas later on as well.

15.6 Enrichment 15.6: U-Net: A Fully Conv Architecture for Segmentation 715

Enrichment 15.6: U-Net: A Fully Conv Architecture for Segmentation

Enrichment 15.6.1: Overview

U-Net [532] is a fully convolutional neural network designed for semantic segmentation, particularly
in biomedical imaging. Unlike traditional classification networks, U-Net assigns a class label to
each pixel, performing dense prediction. The architecture follows a symmetrical encoder-decoder
structure, resembling a "U" shape. The encoder (contracting path) captures contextual information,
while the decoder (expansive path) refines localization details.

Enrichment 15.6.2: U-Net Architecture

U-Net consists of two key components:
• Contracting Path (Encoder):

– Repeated 3×3 convolutions followed by ReLU activations.
– 2× 2 max-pooling for downsampling, reducing spatial resolution while increasing

feature depth.
– Captures high-level semantic information necessary for object recognition.

• Expansive Path (Decoder):
– Transposed convolutions for upsampling, restoring spatial resolution.
– Skip connections integrate feature maps from the encoder to retain spatial details lost

during downsampling.
– A 1×1 convolution maps feature channels to the segmentation classes.

Figure 15.21: U-Net architecture: The encoder (left) captures context, while the decoder (right)
restores details using transposed convolutions and skip connections. Source: [532].

716 Chapter 15. Lecture 15: Image Segmentation

Enrichment 15.6.3: Skip Connections and Concatenation

Skip connections are a key innovation in U-Net that directly link corresponding encoder and decoder
layers through concatenation. This mechanism enables:

• Preserving Spatial Information:
– Encoder feature maps are concatenated with decoder feature maps at corresponding

levels.
– This ensures that fine-grained details lost due to downsampling are reinstated.

• Combining Semantic and Spatial Features:
– The encoder extracts abstract, high-level semantic features.
– The decoder restores fine details, and concatenation helps merge these representations.

• Enhancing Gradient Flow During Training:
– Skip connections allow gradients to propagate more easily through deep networks,

preventing vanishing gradients.
– This improves convergence and stabilizes the training process.

The concatenation operation is crucial, as it ensures that both low-level spatial features and high-level
semantic features contribute to final pixel-wise classification.

Enrichment 15.6.4: Training U-Net

U-Net is trained end-to-end in a supervised manner, typically using:
• Loss Function:

– The standard loss function for U-Net is Binary Cross-Entropy (BCE) for binary
segmentation tasks.

– For multi-class segmentation, Categorical Cross-Entropy is used.
– When dealing with imbalanced datasets, Dice Loss or a combination of BCE and Dice

Loss is applied.
• Optimization:

– U-Net is typically trained using Adam or Stochastic Gradient Descent (SGD) with
momentum.

• Data Augmentation:
– Given the limited availability of annotated medical data, U-Net heavily relies on aug-

mentation techniques such as:
* Random rotations, flips, and intensity shifts.
* Elastic deformations to improve robustness.

The combination of skip connections, effective loss functions, and augmentation techniques ensures
that U-Net achieves high accuracy even with limited training data.

Enrichment 15.6.5: Comparison with Mask R-CNN

While both U-Net and Mask R-CNN perform segmentation, they differ in:
• Task Type: U-Net performs semantic segmentation; Mask R-CNN performs instance

segmentation.
• Architecture: U-Net follows an encoder-decoder design, while Mask R-CNN uses a two-

stage detection-segmentation approach.
• Application Domains: U-Net is dominant in medical imaging and satellite imagery, whereas

Mask R-CNN excels in object detection and video analytics.

15.6 Enrichment 15.6: U-Net: A Fully Conv Architecture for Segmentation 717

Enrichment 15.6.6: Impact and Evolution of U-Net

Since its introduction, U-Net has significantly influenced segmentation research, inspiring numerous
adaptations and improvements:

• U-Net++ [802]: Incorporates dense connections between encoder-decoder layers to improve
gradient flow and feature reuse.

• 3D U-Net [106]: Extends the architecture to volumetric data, benefiting applications like MRI
and CT scan analysis.

• Residual U-Net [784]: Integrates residual blocks to enhance gradient flow and stabilize
training for deeper architectures.

• Hybrid U-Net Variants: Many modern adaptations replace the convolutional backbone with
newer architectures, such as vision transformers, to enhance feature extraction.

Although Attention U-Net [457] introduces an attention mechanism to selectively focus on relevant
features, we have not yet covered attention mechanisms in this course. However, the core U-Net
structure remains effective even without attention mechanisms and is widely used in practice. With
continuous enhancements, U-Net’s impact on segmentation research persists across various domains.

718 Chapter 15. Lecture 15: Image Segmentation

Enrichment 15.7: Striding Towards SOTA Image Segmentation

Foundational segmentation systems By late 2025, modern segmentation has consolidated around
two complementary families of models:

• Promptable foundation models (e.g., SAM, SAM 2, SAM 3) treat segmentation as answering
queries about an image or video. Given sparse prompts—originally points, boxes, and masks,
and now increasingly text and visual exemplars—they return high-quality masks, largely
independent of any fixed label taxonomy.

• Universal task-trained transformers (e.g., Mask2Former, Mask DINO) treat segmentation
as a closed-set prediction problem. They are trained on a fixed label space and directly output
semantic, instance, or panoptic predictions for all categories in that taxonomy.

Our focus in this section is on the first family. Segment Anything (SAM) [297] reframed interactive
segmentation as large-scale, promptable inference: given geometric hints (points, boxes, or a coarse
mask), the model predicts the corresponding object mask, independent of category names. Its
capabilities are driven both by a transformer-based encoder–decoder and by the SA-1B data engine,
which couples model proposals with large-scale human correction to produce over one billion
high-quality masks. Extending this idea from still images to videos, SAM 2 [513] adds a lightweight
streaming memory that stores compact state across frames, enabling real-time propagation and
interactive correction of masks over long videos; its data engine similarly scales from static images
to large video corpora.

Most recently, SAM 3 [65] unifies this geometric precision with concept-level understanding. Instead
of relying on external detectors for text prompts (as in Grounding DINO→ SAM-style pipelines),
SAM 3 natively supports concept prompts: short noun phrases (e.g., “yellow school bus”), image
exemplars, or combinations of both. The corresponding task, termed Promptable Concept Segmen-
tation (PCS), takes such prompts and returns segmentation masks and identities for all matching
instances in images and videos. Architecturally, SAM 3 shares a vision backbone between an image-
level detector and a memory-based video tracker, and introduces a presence head that decouples
recognition (“is this concept present here?”) from localization, improving open-vocabulary detection
and tracking. In the remainder of this subsection we will treat the SAM family (SAM, SAM 2,
SAM 3) as canonical examples of promptable segmentation; later sections return to SAM 2 and
SAM 3 in more architectural detail.

In parallel, a second line of work focuses on task-specific, closed-world performance. Universal
transformers such as Mask2Former [99] and Mask DINO [330] (covered later in this chapter) are
trained to jointly solve semantic, instance, and panoptic segmentation on a fixed label set (e.g.,
COCO, Cityscapes), typically achieving state-of-the-art mIoU/PQ when the deployment taxonomy
matches the training one. Their outputs are directly aligned with benchmark metrics and do not
require user prompts at inference time.

Text-grounded segmentation: composite vs native
A third, closely related direction is text-grounded segmentation. Before SAM 3, open-vocabulary
segmentation typically relied on composite pipelines. Systems such as Grounding DINO [376] or
OWLv2 [432] first performed grounding—mapping text prompts to boxes and labels—and then
SAM or SAM 2 converted those boxes or points into precise masks. This pattern, often referred to as
Grounded SAM [524], explicitly splits the problem into two stages: (1) a vision–language detector
for text-to-box grounding, and (2) a promptable segmenter for box-to-mask refinement.

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 719

Conceptually, this brings us full circle to the two-stage design of classical detectors such as Mask
R-CNN [209]. There, a Region Proposal Network (RPN) first generates category-agnostic boxes,
and a second-stage head turns each box into class scores and a binary mask. Grounded SAM follows
the same high-level pattern—“boxes first, masks second”—but with a crucial difference in scale
and modularity. Instead of a single backbone with lightweight heads, it chains two large foundation
models: a vision–language detector (Grounding DINO/OWLv2) and a high-capacity segmenter
(SAM/SAM 2). This is attractive from an engineering perspective, because each component can be
trained, deployed, and upgraded independently, but it also means that a single input triggers two
expensive forward passes and two sets of model weights.

SAM 3 alters this landscape by internalizing much of the grounding functionality. Through
concept prompts and the PCS objective, it allows users to query directly for “all instances of red
baseball cap” or “all objects that look like this exemplar patch” and obtain masks and tracks without
a separate grounding detector. Architecturally, SAM 3 still has a logical detector-plus-mask-head
structure, but both pieces share a joint vision–language backbone and are trained end-to-end on
phrase-level supervision. As a result, text, exemplars, boxes, and masks are all expressed in a
single representation, rather than stitched together across separate models. Composite pipelines
remain valuable—for example, when reusing an existing detector stack, when detector outputs
must be logged and audited as first-class artifacts, or when a legacy detection system already
dominates the deployment budget—but SAM 3 offers a simpler, native alternative for language- and
exemplar-driven segmentation.

Deployment landscape: late 2025
In practice, practitioners now choose among three main paradigms, depending on their constraints
and goals.

• Closed-world baselines (Mask2Former/Mask DINO). For applications with a stable label
set (e.g., urban-scene semantics, COCO-style panoptic segmentation, product taxonomies),
Mask2Former and Mask DINO remain the default production choices. They directly optimize
mIoU, PQ, and AP under fixed evaluation protocols and require no prompts at inference time.
In such workflows, SAM-family models are primarily used as annotation accelerators: they
speed up dataset creation (especially on video) and help human annotators correct systematic
failure modes.

• Composite grounded pipelines (Grounding DINO→ SAM). For open-vocabulary scenar-
ios where modularity is paramount, the classic Grounding DINO→ SAM/SAM 2 pattern
dominates. The detector owns responsibility for text-to-box grounding, while SAM refines
each box into a high-quality mask. This effectively recreates a two-stage Mask-R-CNN-style
architecture, but with two heavy backbones instead of one, offering fine-grained control over
intermediate box outputs and making it easy to swap in new detectors without retraining the
segmenter.

• Native concept models (SAM 3). SAM 3 represents the unified frontier: it accepts multimodal
prompts (points, boxes, masks, short text, visual exemplars) and outputs concept-conditioned
instance masks and trajectories in a single forward pass. This simplifies deployment in settings
where a single, unified model for concept-level segmentation and tracking is preferable
to a modular detector+segmenter stack, and where tight coupling between grounding and
segmentation is beneficial.

720 Chapter 15. Lecture 15: Image Segmentation

As helpful complements, universal transformers such as OneFormer [259] and X-Decoder/SEEM-
style models [814] broaden the closed-world trend by training a single model for multiple segmenta-
tion tasks (semantic, instance, panoptic, referring expression), while HQ-SAM [285] and related
variants refine SAM’s boundary quality when fine detail (e.g., hair, thin structures) is critical.

When to prefer specific-task training
The decision between a generic promptable model and a task-trained specialist is driven more by
deployment constraints than by raw accuracy in isolation. Task-specific supervised training with
Mask2Former/Mask DINO (plus domain-curated data and augmentations) is usually preferred if
your system has:

• A stable, audited label space. Classes are fixed, owned by QA/compliance, and changes
require formal review.

• Strict quantitative targets. You must meet or exceed specific thresholds on mIoU, PQ, or AP
under a benchmark-style protocol.

• Non-trivial domain shift or sensing quirks. Examples include medical imaging, remote
sensing, night/rain conditions, or unusual optics (fisheye, industrial microscopes).

• High-stakes boundary quality. Small localization errors are unacceptable, as in defect
inspection, surgical margin estimation, or metrology.

In these regimes, the common pattern is to use SAM-family models upstream to create and
refine labels quickly—especially on video, where SAM 2 and SAM 3’s memory-based tracking
can amortize annotator effort—and then to distill or fine-tune a universal model on this curated
dataset for reliable, closed-world deployment. Open-vocabulary grounding (via Grounding DINO or
SAM 3’s concept prompts) can then be added selectively for exploration, discovery, or monitoring
wherever text-driven queries are genuinely needed.

Example: defect inspection workflow
Consider an automated optical inspection (AOI) pipeline in a factory with a fixed set of surface-defect
classes (scratch, dent, burr, contamination).

• Phase 1: Discovery and data collection with SAM 3. Engineers use SAM 3 interactively
on short video bursts from the production line. Instead of clicking every defect manually,
they prompt with phrases such as “scratch” and “dent” or provide a few reference patches for
each defect type. SAM 3 segments and tracks all matching instances across frames, using its
memory to handle motion and occlusions. Annotators only correct failure cases or ambiguous
regions.

• Phase 2: Training a universal model. The resulting masks and labels form a high-quality,
domain-specific dataset at relatively low labeling cost. A Mask2Former or Mask DINO model
is then fine-tuned on this dataset, learning the plant’s exact optics, materials, and defect
appearances. At deployment, this universal model runs efficiently on the fixed taxonomy and
directly optimizes PQ and edge tolerances under the factory’s evaluation protocol.

• Phase 3: Fallback and extension. SAM 3 (and, when needed, a Grounding DINO→ SAM 2
pipeline) remains available as an interactive backup. It is used to investigate new defect types,
analyze corner cases that the closed-set model mis-handles, and rapidly extend the dataset
whenever the defect taxonomy is updated.

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 721

Enrichment 15.7.1: SAM: Segment Anything Model
Background
Classical segmentation approaches such as U-Net [532] and Mask R-CNN [209] are trained for
fixed, closed-set tasks: they assume a pre-defined label space, require costly pixel-accurate masks
for each class, and directly predict both what to segment (which categories) and how to delineate
them (pixel masks). This tight coupling between model, dataset, and taxonomy makes adaptation
to new domains (e.g., medical, satellite, or artistic images) expensive, and offers little flexibility
at inference time to specify which particular object in a scene should be segmented. Segment
Anything (SAM) [297] breaks this pattern by reframing segmentation as a promptable task: a user
or another system supplies lightweight prompts (points, boxes, or coarse masks), and the model
returns high-quality object masks in real time. SAM is trained both as a segmentation model and as
a large-scale annotation engine, powering the SA-1B dataset (1.1B masks over 11M images) that in
turn supports open-set behavior. Architecturally, SAM relies on Vision Transformers and MAE-style
self-supervised pretraining introduced later in this book (Chapters 17–18 for ViTs and Chapter 21
for self-supervised pretraining); only the essentials are summarized here, and it is useful to revisit
this section after those chapters.

Figure 15.22: Task, model, and data engine. A promptable segmentation task, a model (SAM)
supporting interactive and zero-shot use, and a data engine that scales mask collection to SA-1B;
credit: Kirillov et al. [297].

Core idea, task, and motivation
SAM treats segmentation as answering a generic, prompt-conditioned query rather than predicting a
fixed set of semantic classes. Given an image I and a prompt P, the model outputs multiple candidate
masks and associated quality scores,

fθ : ⟨I, P⟩ 7−→
(
{m(k)}K

k=1, {ŝk}K
k=1
)
, (15.1)

where P may be a foreground/background point, an axis-aligned box, or a coarse mask; {m(k)} are
binary mask hypotheses; and {ŝk} are predicted IoUs used for ranking or automatic selection. In this
formulation, prompts externalize the intent (which object in the scene?), while SAM specializes in
delineation (where exactly is its boundary?).

This decoupling directly addresses the limitations of classical detectors and segmenters, which
must jointly decide what and where from a fixed label set. In closed-set models, anything outside
the training taxonomy is effectively “unknown”, and adding a new category requires collecting
dense masks and retraining. In SAM, intent is supplied externally: detectors, text-grounding models,
or simple heuristics propose regions (boxes or points), and SAM upgrades them to precise masks.
By not baking a semantic label space into the segmentation module, SAM becomes a reusable,
label-agnostic mask engine that composes with many upstream systems.

722 Chapter 15. Lecture 15: Image Segmentation

Three design pillars underpin this formulation:

1. Encode once, decode many. A large ViT encoder, pre-trained as a masked autoencoder,
computes a dense image embedding once per image and caches it. Subsequent prompts reuse
this embedding, so only a lightweight decoder is invoked per query, enabling millisecond-level
interactive updates.

2. Promptable, open-set task. Prompts supply “which thing?” without class labels, allowing
SAM to focus on a largely class-agnostic notion of segmentable objects: regions with closed
boundaries, coherent parts, and consistent appearance. This makes the task naturally open-set
and suitable for zero-shot transfer across many, though not all, domains.

3. Ambiguity awareness. A single prompt is often ambiguous (e.g., a click on a torso could
mean shirt, person, or crowd). SAM therefore predicts several plausible masks {m(k)} and
scores them with {ŝk}, so a user or system can select or refine the hypothesis that best matches
intent instead of averaging incompatible solutions.

Architecture and SA-1B data engine
These ideas are realized through a ViT-based architecture coupled with a self-bootstrapping data
engine:

• Image and prompt encoders; mask decoder. A large ViT image encoder (e.g., ViT-H)
produces a coarse but rich embedding E ∈ RH/64×W/64×C once per image and caches it. A
prompt encoder converts points (2D coordinates with a foreground/background flag), boxes
(corner coordinates), or downsampled masks into a small set of prompt tokens. A transformer-
based mask decoder then fuses prompt tokens with E to produce K mask logits and their
predicted IoU scores in tens of milliseconds on a modern GPU. During training, a min-
over-masks objective matches only the best predicted mask in the set to the ground truth,
encouraging the hypotheses to cover typical whole/part/subpart interpretations instead of
collapsing to a single averaged mask.

• SA-1B via a three-stage data engine. To support broad, open-set behavior, SAM is trained
on SA-1B, a web-scale corpus of ∼1.1B masks over 11M licensed images. This dataset is
constructed by an iterative data engine:

1. Assisted manual phase. Human annotators use early SAM variants as interactive tools to
draw high-quality masks, seeding the dataset.

2. Semi-automatic phase. As SAM improves, it proposes masks given simple prompts (e.g.,
boxes), and annotators mainly verify or lightly correct them, dramatically increasing
throughput.

3. Automatic phase. A strong SAM model runs in a “segment everything” mode: a grid
of prompts across each image yields candidate masks that are filtered and deduplicated
automatically, adding hundreds of millions of masks with minimal human effort.

The result is a diverse collection of masks for objects, stuff, and parts, providing the coverage
needed to learn a broad, class-agnostic notion of objectness.

Zero-shot prompting, interaction, and ambiguity
Because prompts supply intent, SAM can often generalize to new domains without fine-tuning [297].
Pretraining on SA-1B induces a class-agnostic sense of objectness (closed contours, part–whole

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 723

structure, texture and contrast cues). At inference time, prompts are encoded as tokens that condition
the decoder, which attends jointly to these tokens and the cached image embedding E.

A typical interactive loop is:

1. Initial prompt. Start with a positive click near the interior of the target object or a loose box
around it.

2. Select a hypothesis. Inspect the small set of returned masks; pick the one that best matches
intent, often simply the highest-ŝk mask. A low maximum IoU signals that more guidance is
needed.

3. Refine with sparse feedback. If the mask misses a region, add a positive click in the missing
area; if it leaks into background or neighboring objects, add a negative click there. Re-running
the decoder with updated prompts refines the mask while reusing the same image embedding.

4. Accept or reuse. Once satisfactory, the mask is accepted as the final output or reused as a
dense prompt to further tighten boundaries.

In practice, prompts often induce a natural hierarchy of hypotheses: a whole object, a coherent part
(e.g., clothing), and a finer subpart (e.g., a logo). The min-over-masks training encourages SAM to
populate this hierarchy rather than settle on a single compromise mask.

Applications, limitations, and fine-tuning
SAM’s promptable, ambiguity-aware design supports a wide range of workflows:

• Biomedical pathology. On high-resolution tiles (e.g., 2048×2048 at 20×), a positive click
inside a lesion yields whole/part/subpart masks (e.g., lesion core vs. lesion+halo). A few
positive/negative clicks typically suffice to obtain high-quality lesion contours despite scanner
and stain shifts.

• Remote sensing. A coarse box around a city block can be refined into masks that follow roof
footprints rather than roads or vegetation; in “segment everything” mode, a grid of prompts
plus IoU-based filtering and non-maximum suppression yields instance masks that can be
polygonized for GIS layers.

• Creative photo/video editing. A click on hair produces masks at different granularity (entire
person, hair-only). After selecting and lightly refining the hair-only mask, one can generate
high-quality alpha mattes for recoloring or compositing.

• Robotics and 3D perception. Detectors provide coarse boxes; SAM upgrades them to precise
instance masks, which are then used to compute silhouettes and principal axes for grasp
planning, or to associate 2D regions with depth measurements in a 3D pipeline.

• Document layout and UI parsing. Positive clicks on text blocks or UI elements produce
tight component masks that can be vectorized into regions for OCR, reading-order inference,
or accessibility tools, avoiding brittle, hand-crafted heuristics.

Despite its strong zero-shot performance on many natural-image-like domains, SAM is not a
magic solution for all settings. Its notion of objectness is learned from SA-1B, which is still biased
toward web imagery.

724 Chapter 15. Lecture 15: Image Segmentation

In highly specialized or “weird” domains (e.g., certain medical modalities, industrial inspection,
or non-optical sensors), zero-shot performance can be suboptimal, and practitioners routinely fine-
tune SAM or adapt its lightweight components (e.g., via LoRA-style adapters or decoder fine-tuning)
on a modest number of in-domain masks. In such cases, SAM should be viewed as a segmentation
foundation model: it provides a strong, promptable starting point that substantially reduces annotation
and training costs, but high-stakes applications may still require domain-specific adaptation and
careful evaluation.
Summary. A unified prompt-conditioned interface ⟨I,P⟩→masks, an encode-once/decode-many
architecture for low-latency interaction, and a web-scale mask corpus together yield a segmentation
foundation model that generalizes widely without task-specific retraining, serves as a fast interactive
tool across domains, and can be further fine-tuned where necessary to meet stringent domain-specific
requirements.

Figure 15.23: Ambiguity-aware outputs. Each column shows three valid masks produced by SAM
from a single point prompt (green dot). Rows: top = whole object, middle = part, bottom = subpart.
The examples illustrate hierarchical ambiguity under the same cue (e.g., person→backpack→pocket;
bird→torso→head). SAM proposes multiple hypotheses ranked by a predicted IoU, enabling the
user or downstream code to select or refine the intended extent. Credit: Kirillov et al. [297].

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 725

Figure 15.24: Add/remove refinement. Starting from a full bear mask, a negative click removes the
torso to retain only the head, illustrating part-focused refinement. Example created by interacting
with the official demo at segment-anything.com.

This interactive perspective sets up the detailed method next: SAM’s image encoder (a ViT pretrained
via MAE [210]), prompt encoder (including point/box encodings and dense mask prompts), two-way
mask decoder with cross-attention, and training losses (focal + dice with min-over-masks).

Method
Model overview and data flow
SAM follows an encode once, prompt many design [297]. An input image (typically resized to
1024×1024) is passed once through a heavy image encoder to produce a cached dense embedding.
At interaction time, a prompt encoder turns user intent (points, boxes, or a coarse mask) into
compact tokens. A lightweight mask decoder then fuses prompt tokens with the cached image
embedding via two-way attention and produces up to three candidate masks plus a predicted IoU
score to rank them. In interactive use, the newly accepted mask is fed back as a dense prompt for
the next refinement step, forming a fast loop: encode image→ decode mask(s)→ add corrective
prompt(s)→ decode again, until satisfactory alignment.

Figure 15.25: SAM overview. A heavyweight image encoder outputs a cached image embedding;
a prompt encoder converts points/boxes/masks to tokens; a two-way transformer mask decoder
fuses them to predict multiple candidate masks with IoU scores at interactive speed; credit: Kirillov
et al. [297].

Image encoder
The image encoder is a large Vision Transformer (ViT, e.g., ViT-H) initialized from MAE pretrain-
ing [210]. MAE masks a high fraction of image patches and learns to reconstruct them from the
visible ones, yielding strong, general-purpose visual features. Given a 1024×1024 input, the encoder
produces a dense embedding on a lower-resolution grid (e.g., 64×64 tokens) that SAM projects to
a channel dimension C=256 for efficient decoding [297]. This pass is amortized: it runs once per
image and is reused for all subsequent prompts.

https://segment-anything.com/

726 Chapter 15. Lecture 15: Image Segmentation

Prompt encoder
SAM supports sparse and dense prompts in its official release; text enters only indirectly via external
systems:

• Sparse prompts. Points are represented by their (x,y) coordinates plus a learned type
embedding indicating foreground, background, or padding; boxes are represented by their
two corners (top-left, bottom-right), each with positional encodings summed with a corner-
type embedding [297]. These yield d=256-dimensional tokens compatible with the image
embedding.

• Dense prompts. A coarse mask (e.g., a previous prediction) is downsampled and linearly
projected to d=256, then added to the image embedding so that subsequent decoding is
conditioned on the prior mask [297].

• On text prompts. The SAM paper defines prompts broadly and notes that, in principle, text
embeddings (for example from CLIP [498]) could be injected as additional tokens into the
prompt encoder. However, the publicly released SAM and SAM 2 models are trained and
shipped with visual prompts only (points, boxes, masks) and have no built-in text encoder or
phrase-level segmentation supervision [297, 513]. In practice, “text-prompted SAM” systems
route text through a separate vision–language model (e.g., CLIP, Grounding DINO, OWLv2)
to produce boxes or points, which are then fed to SAM/SAM 2 as standard sparse prompts.
Native, end-to-end concept-level text prompting is introduced only later in SAM 3 (covered in
a subsequent part).

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 727

Positional encodings for 2D prompts
Goal and constraint. A prompt (point or box corner) is a continuous image coordinate (x,y).
Its embedding should satisfy two geometric desiderata: (i) locality: vectors for nearby points are
similar and similarity decays with the Euclidean distance ∥p− q∥2; (ii) isotropy: the decay is
direction-agnostic (no axis bias), and the mapping extrapolates to arbitrary resolutions and subpixel
locations.
Why standard PEs fall short. Absolute learned PEs in ViTs tie positions to a fixed grid index,
hurting extrapolation to new resolutions. Separable 1D sinusoidal PEs [644] are continuous but
anisotropic in 2D: concatenating PEx(x) and PEy(y) yields similarities that drop faster along axes
than along diagonals at the same ∥p− q∥2, biasing attention and making mask boundaries “slip”
along x/y.

Figure 15.26: Positional similarity: separable 1D PE vs. 2D random Fourier features.
Each heatmap shows the dot-product between the embedding at the center (origin) and all
other grid locations. With separable 1D sinusoidal PE (concatenating x-only and y-only
sin/cos terms), iso-similarity contours are axis-aligned, producing anisotropy. We mark
two points, P1 (axis-aligned) and P2 (diagonal), chosen so that ∥P1∥ ≈ ∥P2∥; nevertheless
⟨PE1D-sep(0), PE1D-sep(P1)⟩ ≫ ⟨PE1D-sep(0), PE1D-sep(P2)⟩, i.e., d(0,P1)≈ d(0,P2) but the embed-
ding similarity differs markedly—an undesirable bias. In contrast, 2D random Fourier features
(RFF) draw frequencies over the joint (x,y) space, yielding near-isotropic similarity that decays
primarily with Euclidean distance, so the center’s similarity to P1 and P2 is comparable. Inspired
by [343].

SAM’s choice: random Fourier features (RFF). SAM treats prompt coordinates as continuous
and uses a joint 2D Fourier mapping [603]:

γ(x,y) =

[
cos
(
2π B [x̂, ŷ]⊤

)
sin
(
2π B [x̂, ŷ]⊤

)] ∈ R2D, (x̂, ŷ) ∈ [−1,1]2,

where B ∈ RD×2 has i.i.d. entries Bi j ∼N (0,σ2) and (x̂, ŷ) are the normalized coordinates (e.g.,
x̂ = 2(x/W)− 1, ŷ = 2(y/H)− 1). Each row of B defines a sinusoid over a tilted direction (a
linear combination of x and y), so stacking rows yields a bank of multi-frequency, multi-orientation
waves that respect 2D geometry. The final prompt token adds a small learned type embedding (e.g.,
foreground/background for points, corner identity for boxes): t = γ(x,y)+ etype.

728 Chapter 15. Lecture 15: Image Segmentation

Figure 15.27: Fourier feature basis on a plane. Rows of B induce oriented sinusoids at different
spatial frequencies; their stack forms a rich 2D positional code. Credit: explanatory video.

Why RFF helps—two lenses.
• Spectral-bias lens (representation). Coordinate-fed networks learn low frequencies first

(“blurry” fits). Prepending γ(·) injects high-frequency basis functions, letting shallow decoders
express sharp edges with few updates [603]. Empirically, replacing raw (x,y) or separable 1D
PE with RFF improves fine boundary fidelity with fewer corrective clicks.

• Kernel/NTK lens (geometry). Wide networks trained by gradient descent behave like kernel
machines with the Neural Tangent Kernel (NTK) [257]. With B∼N (0,σ2I), the expected
inner product of two encodings depends only on the offset ∆ = p−q:

EB[γ(p)·γ(q)] = exp
(
− 2π

2
σ

2 ∥∆∥2
2
)
,

i.e., a Gaussian RBF (up to constants). Thus, σ controls an isotropic notion of locality: small σ

⇒ wide kernel (smooth, risk of underfitting); large σ ⇒ narrow kernel (sharp, risk of aliasing).
This aligns vector similarity with Euclidean distance—exactly what prompt geometry needs.

Figure 15.28: Kernel regression analogy. A fit is a sum of local bumps; kernel width trades
smoothness for detail. The NTK plays the same role for wide networks. Credit: explanatory video.

https://www.youtube.com/watch?v=iKyIJ_EtSkw
https://www.youtube.com/watch?v=iKyIJ_EtSkw

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 729

Figure 15.29: Kernel width is critical. Too wide⇒ blurred structure (underfit). Too narrow⇒
noisy/aliased (overfit). RFF exposes a single knob—σ—to dial the effective width via the scale of B.
Credit: explanatory video.

From derivation to practice. The RFF mapping arises from Bochner’s theorem: any shift-invariant
positive-definite kernel has a nonnegative Fourier transform k̂(ω) with k(∆) = E

ω∼k̂[cos(2π ω⊤∆)].
Sampling ω from a Gaussian N (0,σ2I) gives a Gaussian RBF kernel; Monte Carlo features γ(·)
approximate it [603]. Normalizing coordinates to [−1,1]2 avoids phase wrapping and makes the
code resolution-agnostic.

Figure 15.30: NTK perspective. RFF turns the network’s effective kernel into a stationary, radial
form whose bandwidth is governed by σ . Tuning σ navigates the bias–variance trade-off. Credit:
explanatory video.

How to tune σ (and what SAM does). Choose σ by a small grid/linear search on validation
data: fix a random B per σ , evaluate a proxy (e.g., mIoU of point-to-mask or reconstruction PSNR
in a coordinate MLP), and pick the best trade-off (sharp boundaries without aliasing). In SAM,
B is sampled once and then frozen; σ is treated as a hyperparameter, keeping the prompt path
parameter-free and fast at inference.

https://www.youtube.com/watch?v=iKyIJ_EtSkw
https://www.youtube.com/watch?v=iKyIJ_EtSkw

730 Chapter 15. Lecture 15: Image Segmentation

Figure 15.31: Too small σ (wide kernel). High-frequency details are missed and outputs look
over-smoothed/blurred. Credit: explanatory video.

Figure 15.32: Near-optimal σ . Fine detail is preserved without a lot of aliasing; quality peaks near
this region. Credit: explanatory video.

Figure 15.33: Fourier features mitigate spectral bias. A coordinate MLP remains blurry at equal
iterations, whereas the same MLP with RFF recovers high-frequency detail much earlier. Credit:
explanatory video; see also [603].

https://www.youtube.com/watch?v=iKyIJ_EtSkw
https://www.youtube.com/watch?v=iKyIJ_EtSkw
https://www.youtube.com/watch?v=iKyIJ_EtSkw

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 731

RFF Effect on SAM. Compared with separable 1D PE, RFF delivers:
• Isotropic locality. Similarity decays with ∥p−q∥2, so point and box-corner tokens condition

the decoder uniformly in all directions, reducing axis bias at boundaries.
• High-frequency readiness. The decoder’s small MLPs receive multi-frequency inputs, enabling

crisp, click-efficient refinements around thin parts and textured edges.

Mask decoder (two-way attention and dynamic heads)
High-level intuition. Once the heavyweight ViT encoder has produced a rich, cached feature map of
the image, the mask decoder turns this static representation into an interactive tool. User prompts
(points, boxes, and optionally a prior mask) are converted into a small set of prompt tokens that act as
sparse “pins” indicating what the user cares about. The mask decoder, implemented as a lightweight
two-layer transformer, runs a short two-way attention procedure: prompt tokens query the image
embedding for visual evidence, and image features in turn query the prompts to understand which
parts of the scene are relevant. This bidirectional exchange yields a set of prompt-aware features and
updated tokens from which the decoder predicts a few candidate masks together with a quality score
for each, enabling fast, interactive refinement.

Figure 15.34: SAM’s lightweight mask decoder. (a) Inputs: prompt tokens plus four learned
output tokens (three mask tokens and one IoU token); if available, the previously accepted mask is
injected as a dense prompt by adding its embedding to the image features. (b) Two stacked two-way
attention blocks: token self-attention fuses prompt cues; token→image attention retrieves spatial
evidence; image→token attention makes image features prompt-aware (positional encodings are
added to image features and the original prompt is re-added to token queries/keys for stability). (c)
Upscaled features feed dynamic heads: mask tokens, via an MLP and dot products, yield multiple
mask hypotheses; the IoU token scores them for ranking/selection. Adapted from [297].

Two-way attention as a conversation. The two-way attention block can be viewed as a two-step
“conversation” between prompts and image:

• Prompts → image (token→image attention). Prompt and output tokens ask the image
embedding: “Where in this feature map is the evidence that supports my click or box?” Each
token pulls in edges, textures, and contextual cues from relevant spatial locations.

• Image→ prompts (image→token attention). Image features then ask back: “Given these
prompts, which of them are relevant for this local patch?” This makes the image embedding
prompt-aware, amplifying features consistent with the prompts and suppressing distractors
(e.g., shadows or adjacent objects).

732 Chapter 15. Lecture 15: Image Segmentation

Because both directions are present, the prompts become evidence-aware and the image becomes
intent-aware; neither side dominates, which is crucial for producing masks that both follow the user’s
clicks and respect the global image structure.

Why this structure? Two-way attention avoids failure modes of one-sided designs: a prompt-only
decoder might hallucinate shapes that match the clicks but ignore global context, while an image-only
decoder might segment the most salient object and disregard the specific prompt. Learned mask
tokens act as dynamic heads that specialize into different plausible extents (e.g., whole object, part,
subpart) without introducing heavy per-pixel branches. A separate IoU token learns to predict the
quality (approximate IoU) of each candidate mask, turning the set of hypotheses into a ranked list. In
practice, this design yields high-quality, multi-mask predictions in tens of milliseconds, supporting
real-time interaction [297].
Step-by-step (one decode).

1. Assemble inputs. Encode user prompts into tokens:
• Points are embedded from their image coordinates and a foreground/background flag.
• Boxes are embedded from corner coordinates.
• An optional coarse-mask token encodes a prior mask in sparse form.

If a previous mask was accepted, it is downsampled, projected, and added as a dense prompt
to the image embedding. This biases features near the existing boundary, making interactive
refinement more efficient in subsequent passes.

2. Add output tokens. Append four learned output tokens to the prompt tokens:
• Three mask tokens, each responsible for producing one candidate mask.
• One IoU token, responsible for predicting the quality score of those masks.

These tokens start as content-agnostic vectors and will be shaped by the two-way attention
blocks into object-specific descriptors.

3. Two-way block #1 (gather evidence). The first two-way attention block runs three sub-steps:

(a) Token self-attention. Prompt and output tokens attend to each other to fuse their cues.
For example, multiple positive clicks on the same object reinforce one instance, while
negative clicks help suppress distractors.

(b) Token→image attention. Tokens query the cached image embedding to retrieve spatial
evidence, pulling in local structure (edges, textures) and part/whole context around the
prompts.

(c) Image→token attention. Image features attend back to the current tokens, becoming
prompt-aware by emphasizing regions that are compatible with the prompts. Positional
encodings are added on the image side, and the original prompt embeddings (with
position encodings) are re-added to token queries and keys to maintain stability and
spatial anchoring [297].

After this block, tokens carry evidence-rich context and the image embedding is already
shaped by user intent.

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 733

4. Two-way block #2 (synthesize and refine). A second, identical two-way block repeats the
three sub-steps on the updated tokens and image features. The first block primarily gathers
evidence; the second synthesizes it, refining object boundaries and resolving ambiguities such
as part-versus-whole choices.

5. Predict masks and scores. Finally, the prompt-aware image embedding is upsampled with
lightweight transposed convolutions to a decoder resolution (e.g., 256×256).

• Each mask token passes through a small MLP to produce a mask embedding. A dot
product between this embedding and the upscaled feature map at each spatial location
yields one logit map per mask token, corresponding to different hypotheses (e.g., whole
object, part, subpart).

• The IoU token is fed through its own MLP to predict a scalar quality score for each mask,
trained to approximate its IoU with the ground-truth mask.

The resulting masks are produced at decoder resolution and then resized to the original image
resolution (or to the box region) for visualization and downstream use. The highest-scoring
mask can be selected automatically, while alternative hypotheses are available for interactive
correction.

Training objective and loss
High-level goal (how to supervise a promptable model). Classical segmentation trains a network to
label all pixels at once. SAM instead learns a conditional mapping ⟨I,prompt⟩ 7→mask(s), so super-
vision must (i) treat points/boxes as inputs, not targets; (ii) compare only predicted masks to ground-
truth; and (iii) support multiple hypotheses because a single prompt can mean whole/part/subpart.
The losses below implement this recipe efficiently at SA-1B scale [297].

Targets and supervision signal. Each training example consists of an image I and a binary,
pixel-accurate instance mask M ∈ {0,1}H×W for a single segment (foreground = 1, background
= 0). SAM is trained to predict a mask M̂ conditioned on a prompt P; it does not predict boxes or
points themselves. During training, prompts are simulated from M (see below). Supervision always
compares M̂ against M (mask–vs–mask); there is no box loss.
Prompt simulation (teaching interactivity without human clicks). To expose the decoder to
realistic inputs, we synthesize prompts P from M:

• Positive / negative points. Sample positives uniformly inside M; sample negatives outside M
(optionally biased near the boundary to mimic corrective clicks).

• Boxes. Use the tight bounding rectangle of M, then apply random scale/aspect jitter; optionally
draw from cropped regions to vary context.

• Dense prior (previous mask). Downsample M (or a perturbed version via erode/dilate) to
form a coarse “dense prompt” used for refinement training.

• Multi-round chains. In a subset of batches, decode once, place corrective points on disagree-
ment regions, and decode again—simulating click–refine loops.

Prompts are inputs; supervision remains purely mask–vs–mask.

734 Chapter 15. Lecture 15: Image Segmentation

Multi-hypothesis supervision (min-over-masks). Given one prompt, the decoder emits up to
three plausible masks {M̂ j}3

j=1 ⊂ [0,1]H×W to capture whole/part/subpart ambiguity. With only one
ground truth M, we compute a segmentation loss for each M̂ j and backpropagate through the best
one:

Lseg = min
j∈{1,2,3}

[
λfocal Lfocal(M̂ j,M)+λdice Ldice(M̂ j,M)

]
.

Intuition: under an ambiguous prompt, we want at least one candidate to match the user’s intent.
The “min” lets the three heads specialize (e.g., one tends to whole, one to part) instead of collapsing
all to the same mask. A strong focal:dice ratio (reported 20:1) emphasizes boundary decisions under
severe fg/bg imbalance [297].

Loss components (what they measure and why).
• Focal loss combats extreme class imbalance by down-weighting easy pixels and amplifying

hard ones near edges. With logits z and post-sigmoid probability p = σ(z), for a target
y∈{0,1} the binary focal loss is

Lfocal(p,y) =−αt(1− pt)
γ log(pt), pt =

{
p, y = 1
1− p, y = 0

with typical γ >0 and αt rebalancing fg/bg. In SAM, this term dominates to focus learning
where it matters most (thin structures, uncertain boundaries).

• Dice loss directly optimizes region overlap (shape agreement). For probabilities M̂ ∈ [0,1]H×W ,

Ldice(M̂,M) = 1− 2⟨M̂,M⟩+ ε

∥M̂∥1 +∥M∥1 + ε
,

where ⟨·, ·⟩ sums pixelwise products and ε stabilizes small masks. Dice penalizes false
positives/negatives at the shape level, complementing focal’s pixel focus.

Figure 15.35: Dice loss intuition. Dice complements focal by measuring region-level overlap: it
decreases as symmetric set difference shrinks, and rises when FP/FN inflate the union. A high
focal:dice weight in SAM targets boundary imbalance while preserving shape fidelity.

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 735

Quality calibration (IoU head). Beyond masks, SAM predicts for each hypothesis a scalar ŝ j that
should approximate the true IoU,

IoU(M̂ j,M) =
|M̂ j ∩M|
|M̂ j ∪M|

.

A simple MSE trains this calibration:

Liou =
1
3

3

∑
j=1

(
ŝ j− IoU(M̂ j,M)

)2
.

At inference, ŝ j ranks candidates and flags low-confidence cases (“add a click?”), matching SAM’s
interactive use.

Total objective and gradients. The overall loss is

L = Lseg +λiouLiou, with λiou = 1 in [297].

Let ℓ j = λfocalLfocal(M̂ j,M) + λdiceLdice(M̂ j,M). If j⋆ = argmin j ℓ j, then ∇Lseg = ∇ℓ j⋆ (other
branches receive no seg-gradients), encouraging diversity across heads while the IoU head learns to
score all candidates.

Why this works (design intuition).
• Prompt-conditioned supervision teaches the decoder to “follow the cue” rather than memorize

taxonomies—key for zero-shot transfer.
• Min-over-masks aligns training with usage: present alternatives, let one match intent, keep

others diverse for ambiguity.
• Focal + Dice balances boundary hardness and global overlap—crucial when fg pixels are

scarce and shapes vary widely.
• IoU calibration closes the loop for interactivity: the model not only proposes masks but also

knows which is best and when to ask for help.

Pseudo-code for interactive inference
Single image, multi-round interaction.

1. Encode once: E← IMAGEENCODER(I) (cache the heavy image embedding).
2. Repeat until accepted:

(a) Encode prompt: P← PROMPTENCODER(points, boxes, Mprev), where Mprev is the
previously accepted mask used as a dense prompt (optional).

(b) Decode: (M̂1,M̂2,M̂3, ŝ1, ŝ2, ŝ3)←MASKDECODER(E,P).
(c) Select & display: j⋆ = argmax j∈{1,2,3} ŝ j; render M̂ j⋆ at image resolution.
(d) Refine or stop: If boundaries deviate, add a positive point to include a missed region or

a negative point to exclude leakage; set Mprev← M̂ j⋆ and repeat. Otherwise, accept the
mask.

736 Chapter 15. Lecture 15: Image Segmentation

Data engine and SA-1B
The authors construct SA-1B via a three-stage engine [297]: assisted manual collection (browser-
based tool powered by early SAM), semi-automatic (detector-seeded prompts with human verifica-
tion), and fully automatic generation using grid prompts and multi-scale crops followed by ranking,
stability checks, de-duplication, hole-filling, and small-component pruning.

Figure 15.36: SA-1B examples. 11M licensed and privacy-protecting images and ∼1.1B masks;
images grouped by masks-per-image to illustrate density and diversity; credit: Kirillov et al. [297].

Dataset properties and diversity
SA-1B is geographically and visually diverse, with broader coverage of object locations and shapes
than prior datasets.

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 737

Figure 15.37: Normalized mask centers. Heatmaps of mask centers across datasets indicate
that SA-1B reduces strong center bias and covers corners/edges more uniformly; credit: Kirillov
et al. [297].

Figure 15.38: Mask properties. SA-1B contains many images with high mask density, a broad
distribution of mask sizes, and comparable or greater concavity diversity than prior datasets; credit:
Kirillov et al. [297].

Figure 15.39: Geographic distribution. Estimated distribution by country shows global coverage;
the top three countries come from different regions; credit: Kirillov et al. [297].

Experiments and ablations
Zero-shot samples across domains

Figure 15.40: Zero-shot qualitative results. Samples from 23 diverse datasets (autonomous driving,
medical, aerial, egocentric, etc.) segmented by SAM without fine-tuning; credit: Kirillov et al. [297].

738 Chapter 15. Lecture 15: Image Segmentation

Interactive point-to-mask evaluation
SAM is evaluated zero-shot on 23 unseen datasets with a simulated interactive protocol (place a
point on the largest error, iterate) and both one-click and multi-click metrics [297]. On the one-click
setting, SAM exceeds prior interactive baselines on 16/23 datasets and the gap reaches +47 mIoU
on some sets; when an oracle picks the best of its three hypotheses (SAM–oracle), it outperforms
all baselines on all 23 datasets [297]. Human quality ratings fall in the 7–9 range (Likert-style) and
SAM’s oracle masks are rated close to ground truth, indicating high fidelity [297]. Multi-click curves
show steady gains with diminishing returns after about ~8 clicks; the training curriculum mirrors
this with sequences up to 11 interactions to teach refinement [297].

Figure 15.41: Zero-shot point-to-mask across 23 datasets. (a) One-click mIoU. SAM (automatic
selection via its IoU head) surpasses RITM on most datasets; the SAM–oracle bar (best-of-3 selection)
is an upper bound, illustrating the benefit of ambiguity-aware decoding. (b) Human study. Mean
mask-quality ratings place SAM–oracle near ground-truth and above prior interactive systems. (c,d)
Multi-click curves. mIoU improves with additional corrective clicks (simulation places the next click
at the largest error); gains taper after ~8 clicks, matching the training curriculum (up to 11 prompts).
Panels adapted from Kirillov et al. [297].

Ablations (highlights)
• Multi-mask hypotheses + min-over training. Predicting multiple masks per prompt and

supervising with a min-over-masks loss lets the model represent whole/part/subpart alternatives
without averaging incompatible solutions; it is a core ingredient in SAM’s ambiguity handling
and one-click strength [297].

• Two-way attention in the decoder. Letting tokens query image features and image features
query back the tokens (prompt-aware feature refinement) improves mask quality versus
token→image only; the authors report this bidirectional variant as particularly helpful for
ambiguous, sparse prompts [297].

• Prompt encodings with Fourier features. Using random Fourier feature (RFF) positional en-
codings for sparse prompts yields near-isotropic geometry and better alignment than separable
1D encodings or raw coordinates, reducing axis-bias in point/box conditioning [297, 603].

• IoU prediction head for ranking. A small head trained to predict the mask IoU enables
reliable automatic selection among the three hypotheses; in aggregate plots, SAM’s auto-
selected mask tracks the oracle closely, validating the calibration [297].

• Interactive curriculum. The evaluation and training are aligned: simulated clicks are placed
on the largest current error, improvement slows after ~8 clicks, and SAM is trained with
sequences up to 11 interactions to learn the refine–correct loop [297].

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 739

Limitations and future directions
• Heavy encoder cost. The ViT-H encoder is computationally expensive; although amortized

for interactivity, deployment on resource-limited devices is challenging. Subsequent works
(e.g., SAM 2) explore efficiency and streaming settings.

• Open-vocabulary text-to-mask. Fully integrated text grounding is limited in SAM; later
systems combine grounding detectors (e.g., Grounding DINO) with SAM for text-to-region
prompts, leading to Grounded-SAM variants.

• Fine structures and thin parts. Performance can degrade for extremely thin or low-contrast
structures; higher-resolution backbones and tailored decoders are active directions.

• Temporal/video. SAM operates on single images; extensions to video streaming and memory-
aware decoding are developed in SAM 2, covered next.

740 Chapter 15. Lecture 15: Image Segmentation

Enrichment 15.7.2: SAM 2: Segment Anything in Images and Videos

Context. We proceed to cover SAM 2 [513], the video-capable successor to SAM [297]. SAM 2
extends promptable segmentation from single images to videos by equipping a SAM-like en-
coder–decoder with a streaming memory that maintains object state over time. As before, we
assume familiarity with encoder–decoder transformers and MAE-style pretraining; full treatments of
Vision Transformers and self-supervised pretraining appear later in the book (as for SAM).

Figure 15.42: SAM 2 overview. SAM 2 extends promptable segmentation to images and videos
by adding a streaming memory that stores compact tokens distilled from prompts and predictions
in earlier frames. A model-in-the-loop SA-V data engine scales training via human-in-the-loop
collection and automatic propagation; credit: Ravi et al. [513].

Core idea: streaming memory for video
SAM 2’s central contribution is a streaming memory bank maintained per tracked instance. Instead
of storing full frames, the system keeps compact tokens summarizing past accepted masks and
prompts. This yields two complementary behaviors:

• Propagation. For each new frame t, the decoder reads instance-specific memory tokens, fuses
them with the current-frame features, and predicts the mask for that frame. Prior masks act
as a strong prior for the object’s location and appearance, so the model effectively refines an
existing estimate rather than re-segmenting from scratch.

• Recovery. When propagation drifts (e.g., due to occlusion or fast motion), a user provides a
corrective prompt on some later frame t⋆. The model produces a corrected mask, encodes it
into new tokens, and writes them into memory. Subsequent frames read this updated state and
continue with the corrected identity, without re-annotating intermediate frames.

Thus SAM 2 preserves SAM’s promptable interface while adding a lightweight mechanism for
temporal consistency and interactive correction in videos.

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 741

Motivation
SAM showed that an “encode once, decode many” architecture with promptable, ambiguity-aware
decoding yields strong zero-shot segmentation on images [297]. Extending this paradigm to videos
introduces additional requirements:

• Identity persistence. The same object must be followed through motion, deformation,
occlusion, disappearance, and reappearance.

• Sparse correction. Users should be able to repair drifts with a few clicks rather than repeatedly
re-prompting from scratch.

• Interactive speed. Per-frame latency must remain low for real-time annotation and editing,
even on long sequences.

A naïve SAM + tracker pipeline struggles on all three fronts: the tracker does not share SAM’s
notion of objectness, corrections on a later frame do not automatically propagate forward, and failures
often require full reinitialization. SAM 2 addresses these limitations by coupling the promptable
decoder to a streaming memory that aggregates compact embeddings of past masks and prompts.
Every new prompt or correction is written into this memory, and each subsequent frame reads the
updated state, so improvements on frame t⋆ immediately benefit frames t>t⋆ without revisiting
earlier predictions.

Figure 15.43: Interactive video segmentation with SAM 2. An initial prompt on frame 1 yields a
masklet (a contiguous run of predictions for one instance) that propagates forward. If tracking drifts,
a single corrective click in a later frame writes a corrected state into memory, allowing SAM 2 to
recover the object and continue propagation with identity consistency; credit: Ravi et al. [513].

Method
Problem setup
Given a video {It}T

t=1 and prompts P provided on one or more frames (points, boxes, or masks),
SAM 2 produces a temporally consistent mask M̂t per frame for the same instance specified by the
prompts. A temporally contiguous run of such predictions for a single instance is called a masklet,
i.e., a sequence of masks belonging to one object track. The system is designed to support:

• Image-only use (T=1), matching SAM.
• One-shot video prompting (prompts on an initial frame only, then fully automatic propagation).
• Sparse interactive corrections on arbitrary later frames, with each correction immediately

influencing future predictions.

742 Chapter 15. Lecture 15: Image Segmentation

What is new compared to SAM
SAM 2 preserves SAM’s basic decomposition (image encoder, prompt encoder, mask decoder) but
augments it with temporal reasoning and a video-scale data engine:

• Streaming memory. For each tracked instance, SAM 2 maintains a dedicated memory bank
of compact (≈ 64-dimensional) tokens distilled from past accepted masks and prompts. These
tokens summarize both local appearance and coarse spatial position, and are much cheaper
to store than full feature maps or frames. At each new frame, a bounded subset of tokens is
retrieved (e.g., based on recency and/or similarity), providing identity cues at roughly constant
per-frame cost.

• Memory-conditioned decoding. The lightweight decoder now conditions on three sources:
current-frame image features, optional prompts on the current frame, and retrieved memory
tokens. This injects temporal context directly into the promptable decoder without heavy
re-encoding or explicit optical flow.

• Masklet supervision and video-scale data engine. Training uses SA-V, a large-scale video
dataset with frame-wise masks grouped into masklets, disappearance/reappearance events,
and model-in-the-loop propagation. Supervision is applied while the memory pathway is
active, so the network learns to write informative tokens and to read them effectively for video
segmentation.

To highlight the evolution from SAM to SAM 2, the following table summarizes key differences.

Table 15.2: SAM vs. SAM 2 at a glance. SAM 2 generalizes SAM from images to videos by
introducing streaming memory, a new Hiera-based backbone, and the SA-V dataset.

Aspect SAM [297] SAM 2 [513]

Domain Images. Images + videos (promptable
VOS).

Key new module – Streaming memory (per-
instance).

Image encoder ViT-H (MAE). Hiera (hierarchical MAE) +
FPN.

Training data SA-1B (11M images). SA-1B + SA-V (∼ 50K videos,
∼ 642K masklets).

Supervision mode Image masks only. Clip-level masks with memory
active.

Per-frame throughput ∼tens of FPS for images. Real-time video (optimized pre-
dictor ∼ 130 FPS per object).

Why streaming memory? Design goals
The streaming memory in SAM 2 is tailored to promptable video segmentation with three main
goals:

• Interactive recovery. A corrective click and its resulting mask are encoded into new memory
tokens that replace outdated information about the object. Later frames then read from this
updated state, so propagation resumes from the corrected configuration rather than from a
stale track.

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 743

• Efficient propagation. The decoder reuses prior memory tokens as a prior over the object’s
location and appearance, reducing the amount of per-frame reasoning required to maintain
a coherent track. Reading a bounded set of compact tokens keeps computation per frame
approximately constant.

• Identity stability. Memory is instance-specific and selective: only the chosen hypothesis (the
accepted mask) is written for that instance. This reduces contamination from competing masks
and helps maintain a stable identity through occlusions, appearance changes, and background
clutter.

High-level data flow
At a high level, SAM 2 processes each frame t through a lightweight streaming pipeline:

1. Image encoding→ The current frame It is passed once through the Hiera+FPN backbone
to produce dense multi-scale features; a main stride-s feature map Ft is cached for use by
memory and the decoder.

2. Memory read→ For each tracked instance, a bounded subset of memory tokens is selected
from its bank (e.g., based on recency and/or similarity). These tokens summarize past masks
and prompts and provide identity-specific context.

3. Prompt encoding (optional)→ Any new clicks, boxes, or masks on frame t are encoded as
prompt tokens Pt , as in SAM.

4. Decoding→ The mask decoder fuses the current-frame features Ft , retrieved memory tokens,
and prompt tokens to predict up to three candidate masks {M̂t, j}3

j=1 with associated IoU scores.
One mask is selected as the active hypothesis for that instance.

5. Memory write→ The selected mask and any prompts are transformed by a memory encoder
into new tokens, which are appended to the instance’s memory bank (evicting the oldest entries
if needed).

Together, these steps implement a constant-cost loop: encode frame→ read memory→ (optional)
encode prompt → decode masks → write memory, sustaining interactive throughput over long
videos.

744 Chapter 15. Lecture 15: Image Segmentation

Streaming memory mechanics
We now outline the memory internals at a slightly more formal level. Let Ft ∈ RC×H×W denote
the main stride-s feature map for frame t. For each tracked instance, SAM 2 maintains a bounded
memory bank

B =
{
(K(j),V (j),π(j))

}
j∈J

, |J | ≤ Nrecent +Nprompt,

where (K(j),V (j)) ∈ RHW×dk ×RHW×dv are spatial key/value tokens distilled from frame j, and
π(j) ∈ Rdo is a compact object pointer that carries instance identity. Recent non-prompted frames
are stored in a FIFO queue, while frames where the user interacted (prompts) are stored in a smaller,
longer-lived queue so that corrections remain influential.

• What is stored. Let M̂t ∈ {0,1}H×W be the chosen mask for an instance at frame t. A
memory encoder gmem gates the backbone features by the mask and projects them to key/value
channels:

F̃t = Ft ⊙Down(M̂t) ∈ RC×H×W , (K(t),V (t)) = gmem(F̃t),

where ⊙ is channel-wise multiplication and Down resamples M̂t to match the stride s. In
practice, gmem is a small conv/MLP stack that compresses channels C→ dk,dv and flattens
spatially to HW tokens. Each token thus summarizes appearance and position for a visible part
of the object. The pointer π(t) is derived from the decoder’s mask token for that instance (or a
learned split of it); if an occlusion head predicts invisibility, a learned “occluded” embedding
is added to π(t) to mark that the object is temporarily not visible.

• How memory is read. Before decoding frame t, keys and values from all entries in B are
concatenated:

KB = [K(j)] j∈J ∈ R(HW |J |)×dk , VB = [V (j)] j∈J ∈ R(HW |J |)×dv .

Queries are obtained by projecting the flattened current-frame features, Qt = φ(Ft) ∈ RHW×dk .
A memory-attention stack computes

MemAttn(Ft ,B) = softmax
(

Qt K⊤B√
dk

+Ψpos

)
VB,

where Ψpos encodes 2D spatial (and short-range temporal) relations, typically via rotary or
relative positional encodings. The object pointers {π(j)} are broadcast and concatenated
to each (K(j),V (j)) to bias attention toward tokens of the target instance. The result is a
memory-conditioned feature map F ′t with the same shape as Ft , which is then fed into the mask
decoder. Keeping |J | small (e.g., a few recent frames plus a few prompted ones) ensures
predictable O(HW · |J |) cost and stable attention.

• How memory is written. After decoding frame t, the system selects one hypothesis per
instance (typically the mask with highest predicted IoU) and then writes (K(t),V (t),π(t)) into
B, evicting the oldest unprompted entry if the bank is full. Because these tokens are derived
from the same Ft and M̂t used by the decoder, every user correction immediately produces a
new, informative memory entry that future frames can read. For multi-object tracking, each
object maintains its own memory bank, while the image encoder and backbone features are
shared across instances.

In summary, SAM 2 augments SAM’s promptable segmentation with a carefully designed streaming
memory that enables efficient propagation, interactive recovery, and stable identities across time,
all while preserving the same user-facing interface (points, boxes, masks) that made SAM broadly
usable on images.

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 745

Prompt encoder
We preserve SAM’s prompt vocabulary but make shapes explicit. For sparse prompts, a 2D point
p=(x,y) in pixel coordinates is normalized to [−1,1]2, then mapped by random Fourier features
γ(p)=[sin(2πBp),cos(2πBp)] ∈ R2m with B ∈ Rm×2 sampled once [603]. The final point token is

ept(p,τ) =Wpt [γ(p)∥etype(τ)] ∈ Rdp ,

where τ ∈ {fg,bg,pad} and etype is a learned embedding. Boxes are encoded by four corner points
with distinct corner-type embeddings and optionally by (xc,yc,w,h) as a second token. Dense
prompts (masks) use a small conv projector h to produce D=C-channel features at stride s, then add
to Ft :

Fprompt
t = Ft +h(Down(Min)),

so the mask acts as a soft spatial prior aligned to the backbone’s feature space [297].

Mask decoder with memory conditioning
Let F ′t be the memory-conditioned map and Pt the (optional) prompt tokens. The decoder is a
compact transformer with two-way token↔image attention as in SAM, extended with memory
conditioning through F ′t :

• Token SA: output tokens (three mask tokens mk and one IoU token u) and prompt tokens
self-attend.

• Token→image CA: token queries attend to F ′t (flattened) to gather spatial evidence (token-to-
image).

• Image→token CA: image queries (from F ′t) attend to token keys to inject prompt/object context
(image-to-token).

High-resolution skips from early encoder stages are fused late to restore detail. As in SAM, we emit
up to K=3 mask logits {Ŷ (k)

t } ∈ RHimg×Wimg (after upsampling by light deconvs) and per-mask IoU
scores {ŝ(k)t }. The mask token state serves as the object pointer π(t) for memory writing. An auxiliary
occlusion head (MLP on a dedicated token or pooled decoder state) predicts visibility ŷocc

t ∈ [0,1] so
invisible frames do not incur mask loss.

Training objective and supervision
Following SAM, we supervise only the best hypothesis per frame (min-over-masks). Let k⋆ =
argmink Lseg(Ŷ

(k)
t ,Yt) with Lseg = λfocLfocal +LDice. The total loss is

L = Lseg(Ŷ
(k⋆)

t ,Yt)︸ ︷︷ ︸
only k⋆

+λIoU

K

∑
k=1

∥∥ŝ(k)t − IoU(Ŷ (k)
t ,Yt)

∥∥
1 +λocc CE(ŷocc

t , yocc
t) ,

skipping Lseg if yocc
t =1. Prompts are simulated as in SAM: positive/negative clicks sampled

inside/outside Yt , jittered boxes from mask bounds, and dense prompts from prior predictions [297].
Crucially, training uses short clips (t1< · · ·<tL) where early frames write memory (M̂tℓ→B) and
later frames read it (F ′tℓ+1

←B), mirroring deployment. Random temporal reversal (with probability
0.5) regularizes for bi-directional propagation. We also apply teacher forcing by occasionally writing
ground-truth masks to memory to stabilize early training, and memory drop (randomly masking
entries in B) to reduce over-reliance on any single view. SA-V clips with disappearance/reappearance
provide explicit supervision for gap-robust propagation [513].

746 Chapter 15. Lecture 15: Image Segmentation

Pseudo-code for streaming interactive inference
1. Initialize Mem← /0.
2. For t=1, . . . ,T :

(a) Ft ← ImageEncoder(It).
(b) Pt ← PromptEncoder(points/boxes/mask at t) (optional).
(c) Rt ← Select(Mem).
(d) ({M̂t, j},{ŝt, j})← MaskDecoder(Ft ,Rt ,Pt).
(e) j⋆← argmax j ŝt, j, output M̂t ← M̂t, j⋆ .
(f) Mem← Update

(
Mem,MemoryEncoder(Ft ,M̂t ,Pt)

)
.

Architecture & Implementation Details

Figure 15.44: Architecture. Each frame is encoded once; memory tokens from prior frames are
retrieved and fused with current features (and optional prompts) via a lightweight decoder to predict
the mask. Predictions are transformed by a memory encoder for use in future frames. Credit:
SAM 2 [513].

Backbone Large ViT-style encoders (e.g., Hiera variants) with MAE initialization produce a dense
feature map per frame, reused within the frame.1

Prompt pathway Identical to SAM for sparse and dense prompts, with random Fourier features for
2D coordinate encoding (Section 15.7.1).
Decoder A compact transformer augments SAM’s two-way attention with a memory cross-attention
branch, outputting up to three masks and their IoU scores per frame.
Streaming memory Memory tokens are kept in a rolling buffer with constant-time selection (e.g.,
windowed or top-k retrieval) to preserve predictable per-frame cost. A memory encoder transforms
the chosen prediction and frame features into new tokens.

Experiments and Ablations
SA-V dataset and data engine
SAM 2 uses a model-in-the-loop engine extended to videos, producing SA-V with tens of millions
of masks and hundreds of thousands of masklets. Qualitative examples appear in Figure 15.45 and
dataset statistics in Table 15.4. The data engine phases demonstrate decreasing clicks and time per
frame as SAM 2 is folded into the loop (see the below data-engine table).

1Architectural variants and checkpoints are cataloged in the official repository [545].

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 747

Figure 15.45: SA-V qualitative examples. Masklets overlaid on sample videos; each color denotes
a distinct masklet. Frames are sampled at 1-second intervals. Credit: SAM 2 [513].

Table 15.3: Data engine phases. Average annotation time per frame, percent of edited frames per
masklet, clicks per clicked frame, and mask alignment to Phase 1 by size. Credit: SAM 2 [513].

Model in loop Time/frame Edited frames Clicks/ Phase 1 Mask Alignment (IoU>0.75)

(s) (%) clicked frame All Small Medium Large

Phase 1 SAM only 37.8 100.00 4.80 – – – –
Phase 2 SAM + SAM 2 Mask 7.4 23.25 3.61 86.4 71.3 80.4 97.9
Phase 3 SAM 2 4.5 19.04 2.68 89.1 72.8 81.8 100.0

748 Chapter 15. Lecture 15: Image Segmentation

Table 15.4: Dataset comparison. SA-V versus common VOS datasets. Disappearance rate indicates
the fraction of frames where the object is absent. Credit: SAM 2 [513]; benchmarks include
DAVIS [485], YouTube-VOS [713], UVO [670], VOST [618], BURST [17], and MOSE [124].

Dataset #Videos Duration (hr) #Masklets #Masks #Frames Disapp. (%)

DAVIS 2017 0.2K 0.1 0.4K 27.1K 10.7K 16.1
YouTube-VOS 4.5K 5.6 8.6K 197.3K 123.3K 13.0
UVO-dense 1.0K 0.9 10.2K 667.1K 68.3K 9.2
VOST 0.7K 4.2 1.5K 175.0K 75.5K 41.7
BURST 2.9K 28.9 16.1K 600.2K 195.7K 37.7
MOSE 2.1K 7.4 5.2K 431.7K 638.8K 41.5
Internal 62.9K 281.8 69.6K 5.4M 6.0M 36.4
SA-V Manual 50.9K 196.0 190.9K 10.0M 4.2M 42.5
SA-V Manual+Auto 50.9K 196.0 642.6K 35.5M 4.2M 27.7

Zero-shot semi-supervised VOS
SAM 2 outperforms decoupled SAM+ tracker baselines across 17 video datasets under various
prompt types (see the below table). The gain is largest for low-click regimes, reflecting the value of
memory for propagation.

Table 15.5: Semi-supervised VOS: zero-shot accuracy across 17 video datasets. Average accuracy
for different first-frame prompts. In the “ground-truth mask” case, masks are passed directly to
XMem++/Cutie without SAM. Credit: SAM 2 [513]; baselines from XMem++ [34] and Cutie [101].

Method 1-click 3-click 5-click Box GT mask

SAM + XMem++ 56.9 68.4 70.6 67.6 72.7
SAM + Cutie 56.7 70.1 72.2 69.4 74.1
SAM 2 64.7 75.3 77.6 74.4 79.3

Segment Anything across 37 datasets
Table 15.6 summarizes average 1- and 5-click mIoU on SA-23 (image) and 14 additional zero-shot
video datasets, along with throughput.

Table 15.6: Segment Anything task across 37 datasets. Average 1- and 5-click mIoU for SAM and
SAM 2 on SA-23 and additional video datasets; FPS from the optimized video predictor. Credit:
SAM 2 [513].

Model Data SA-23 All SA-23 Image SA-23 Video 14 New Video / FPS

SAM SA-1B 58.1 (81.3) 60.8 (82.1) 54.5 (80.3) 59.1 (83.4) / 21.7
SAM 2 SA-1B 58.9 (81.7) 60.8 (82.1) 56.4 (81.2) 56.6 (83.7) / 130.1
SAM 2 Our mix 61.9 (83.5) 63.3 (83.8) 60.1 (83.2) 69.6 (85.8) / 130.1

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 749

Ablations
We summarize the most decision-shaping empirical findings the authors report across the main paper
and appendices, focusing on the pieces that guided design choices (metrics follow VOS convention:
region/boundary mean J&F; for images we use mIoU on the SA benchmarks).

Data mixture vs. architecture. Training only on images (SA-1B) already yields higher image
mIoU for SAM 2 than SAM at substantially higher speed (e.g., with the Hiera-B+ image encoder:
58.9/81.7 1-/5-click mIoU vs. SAM ViT-H 58.1/81.3, while running ∼ 6× faster) and improves
further when mixing videos (SA-V + internal + open VOS) to 61.4/83.7 and large gains on frames
from video datasets (e.g., “14 new Video” average rises from 56.6/83.7 to 69.6/86.0). These tables
isolate the data contribution versus pure architecture, establishing that joint image+video training is
key for transfer to video frames while retaining strong image performance.

Speed/accuracy operating points. For semi-supervised VOS, the authors report real-time
throughput with two encoder scales: Hiera-B+ at 43.8 FPS and Hiera-L at 30.2 FPS on a single
A100 (batch size 1). The larger encoder improves accuracy across DAVIS/YTVOS/LVOS/SA-V,
quantifying the classic capacity–speed trade-off and showing the decoder/memory remain light
enough for interactive use.

Streaming memory design choices. Appendix C details the memory pathway used during
ablations:

• Compact projections. Memory features are projected to 64-D, and the 256-D mask token
(object pointer) is split into four 64-D tokens for cross-attention.

• Position encoding. Memory attention employs 2D RoPE for spatial (and short-range temporal)
structure but excludes the pointer (no fixed spatial locus).

• Encoder reuse. The memory encoder reuses the image encoder’s embeddings instead of a
second backbone.

These choices keep retrieval cheap and stable while improving long-horizon consistency. Although
per-choice deltas are not tabulated as separate lines, these are the components retained in the final
model after iterative experimentation.

Interactive robustness after failure cases. In the online/interactive protocol, SAM 2’s ability to
prompt at any frame plus its streaming memory lets a single corrective click re-acquire objects after
occlusion, unlike decoupled “SAM + tracker” pipelines that require re-annotation of full objects
when drift occurs. Figure-level analyses (e.g., Fig. 2) explicitly compare the number and placement
of clicks needed to recover, supporting the claim that memory is the dominant factor for robustness
under occlusions/long motions in the interactive setting.

Dataset scale and coverage. The SA-V data engine (50.9K videos,∼642.6K masklets) is shown
to be much larger and more diverse (disappearance rates, geography, parts vs. wholes) than prior VOS
datasets—motivating why memory-based propagation is learnable at scale and why performance
saturates for prior methods on SA-V while SAM 2 keeps improving.

Takeaway. The evidence pattern is consistent:
• Joint image+video training establishes the base.
• The streaming memory pathway (with compact 64-D memories + object pointers + RoPE)

translates that base into temporal robustness for occlusions/long motions.
• The decoder remains compact enough to preserve real-time throughput even at 1024-px inputs.

750 Chapter 15. Lecture 15: Image Segmentation

Limitations and Future Directions
We restate the authors’ limitations in spirit and connect each to concrete directions the commu-
nity has begun to pursue. For deeper treatments, see SAMuRAI [723] (motion + memory selec-
tion for tracking), Grounded-SAM [524] and its video-centric follow-up Grounded-SAM 2 [252]
(language-grounded detection/segmentation/tracking), and long-horizon memory variants such as
SAM2Long [125].

• Memory selection at long horizons. The model “may fail to segment objects across shot
changes and can lose track of or confuse objects in crowded scenes, after long occlusions or
in extended videos”. This reflects a bounded, recency-biased FIFO memory that can evict
rare but diagnostic past views. Next steps: learned retention/retrieval policies and compact
identity-aware state (e.g., evolving object vectors); explicit shot-change handling. See also
SAM2Long [125], which explores training-free tree memories to keep multiple hypotheses
over long videos.

• Extreme appearance changes and fast motion. Severe deformations, lighting shifts, or
thin/fast structures can induce drift before correction. Next steps: stronger temporal priors (op-
tical flow cues; longer-range video transformers) and motion-aware selection. SAMuRAI [723]
adds motion modeling and a motion-aware memory selection mechanism on top of SAM 2 for
zero-shot tracking, improving robustness without fine-tuning.

• Dense multi-object interactions. Although SAM 2 can track multiple objects, indepen-
dent per-object decoding can suffer identity swaps under heavy overlap or look-alike in-
stances. Next steps: joint, conflict-aware reasoning (e.g., shared object-level context/graph
layers) and stronger identity cues. Language-grounded pipelines such as Grounded-SAM and
Grounded-SAM 2 [252, 524] help disambiguate identities with text-conditioned detection
before segmentation/tracking.

• Prompt dependence and ambiguity. Ambiguous clicks can bias hypotheses; predicted IoU
is a useful uncertainty signal but not a remedy. Next steps: UI policies that surface low-
IoU regions and actively guide users to high-value clicks; integration with open-vocabulary
grounding to replace ambiguous geometric prompts with unambiguous text prompts (cf.
Grounded-SAM [524]).

• Domain coverage. Despite SA-V’s scale, niche modalities (thermal, medical, satellite) remain
underrepresented. Next steps: continued data-engine iteration with targeted mining/verification
and domain-specific adapters; language-grounded retrieval (as in Grounded-SAM families)
can further lower annotation cost when scaling to new domains.

Implementation note. The official repository provides image/video predictors, checkpoints, note-
books, and an optimized video predictor with compiled kernels suitable for high-throughput VOS.
The docs and Colab demonstrate interactive prompting, memory behavior, and speed/accuracy
trade-offs out-of-the-box.

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 751

Enrichment 15.7.3: Mask DINO: Unified DETR-Style Detection and Segmentation
Motivation and Context
Mask DINO [330] is driven by a natural but ambitious question: Can one build a single DETR-style
Transformer that, under one architecture and one training recipe, is competitive with state-of-the-art
detectors on COCO while also achieving state-of-the-art performance on the major segmentation
tasks (instance, panoptic, semantic) on benchmarks such as COCO and ADE20K? Before Mask
DINO, the strongest models in these regimes were largely specialized: DINO-DETR [327] (built
on DAB-DETR [374] and DN-DETR [328]) on the detection side, and Mask2Former [99] on the
segmentation side. These models already share many ingredients (CNN or ViT backbones, multi-
scale feature pyramids, Transformer encoders/decoders), but are each carefully tuned for their own
objective and loss structure.

A natural baseline is to add a segmentation head on top of DETR or DINO-DETR and either
fine-tune a detection-pretrained model or train the whole system from scratch in a multi-task fashion.
In practice, both variants tend to be unsatisfactory.

Fine-tuning a detector with an added mask head
Suppose we start from a DINO-DETR model pretrained for detection. Its decoder queries

Q = {qi}
Nq
i=1, qi ∈ Rd ,

have been optimized to support classification and box regression, i.e., to predict (ci,bi) where bi ∈R4

is a coarse bounding box. Box losses encourage features that are good at capturing object extent
and location, but do not explicitly enforce fine-grained, boundary-sensitive information. If we now
attach a new mask head and fine-tune with an additional dense loss on masks mi ∈ [0,1]H×W , two
problems arise:

• At the beginning of fine-tuning, the new mask head sees queries qi that are already specialized
for boxes, not for detailed shapes. Early mask predictions are therefore poor, and the gradients
from the mask loss attempt to substantially reshape qi, in conflict with the existing detection
objective.

• Even after long fine-tuning, the model typically converges to a compromise where queries
remain mostly box-oriented and the mask head learns to produce only approximate object
silhouettes. The masks can improve over time, but they tend to lag behind strong segmentation
baselines because the upstream query semantics were never designed with fine pixel-level
accuracy as a primary goal.

In short, simply “bolting on” a mask head after detection pretraining gives the mask branch too little
influence over how queries are formed and used throughout the network.

Training a unified detector+segmenter from scratch
Alternatively, one can train DETR or DINO-DETR from scratch with both detection and segmentation
losses active from the beginning. Here, the queries qi are simultaneously pulled by a sparse, low-
dimensional box loss (e.g., L1 and GIoU on bi) and a dense, high-dimensional mask loss (e.g., BCE
or focal loss on mi). Without architectural mechanisms that explicitly couple how queries access
spatial information, this often leads to:

• Noisy early supervision: Hungarian matching is typically dominated by box and class terms,
so early in training the queries are encouraged to specialize for box-level localization first.
Masks are then supervised on queries whose spatial alignment is still unstable, making mask
gradients noisy and hard to use effectively.

752 Chapter 15. Lecture 15: Image Segmentation

• Gradient conflict: Box regression pushes queries toward features that summarize overall object
geometry, while mask prediction pushes toward features that resolve local boundaries and
textures. In a naïve multi-head setup these signals are not coordinated, so the model can settle
at a compromise where neither detection nor segmentation reaches the level of specialized
methods.

Running two separate models (a detector and a segmenter) avoids some of these issues but is
computationally expensive and still fails to exploit potential synergies: detection predictions are not
explicitly used to guide masks, and masks do not feed back to improve box localization or query
selection.

Mask DINO: aligning detection and segmentation at the query level
Mask DINO addresses these issues by taking DINO-DETR as its detection backbone and adding
a tightly integrated segmentation branch instead of an independent head. Concretely, it brings
in the Mask2Former idea of predicting masks via dot-products between query embeddings and a
high-resolution pixel embedding map, while keeping DINO-DETR’s detection-oriented machinery
(dynamic anchor boxes, mixed query selection, contrastive denoising, multi-scale deformable
attention) largely intact. The core design principle is to align detection and segmentation at the level
of queries and features, so that both tasks are driven by the same semantics and trained jointly from
the earliest layers onward.

Formally, let

Q = {qi}
Nq
i=1, qi ∈ Rd ,

denote the set of decoder content queries produced and refined by DINO-DETR (with Nq queries
and hidden dimension d). Let

E ∈ RH4×W4×d

denote a stride-4 pixel embedding map constructed from backbone and encoder features (the precise
construction of E will be described later). Mask DINO makes the key decision to reuse these refined
content queries as mask queries: the same token qi that predicts an object’s category ci and bounding
box bi is also responsible for its mask mi.

A lightweight mask head turns qi into a mask embedding, and mask logits at stride 4 are obtained
by per-location inner products

ℓi(x,y) = ⟨qi,E(x,y)⟩,

followed by upsampling and a sigmoid to yield a full-resolution mask mi. In parallel, the same qi is
fed to a classification head to produce ci and to a box head to produce bi.

Operationally, this yields a conceptually simple unified architecture in which a single set of
queries feeds three heads in parallel—a class head, a box head, and a mask head—so that (ci,bi,mi)
are all anchored to the same underlying query semantics and benefit from shared supervision.
Detection-oriented components such as dynamic anchors, query denoising, and multi-scale de-
formable attention improve the quality and localization of queries, which in turn sharpens masks;
conversely, dense mask losses help refine query semantics, which can improve classification and
box regression. The remainder of this section explains how Mask DINO inherits and adapts com-
ponents from DAB-DETR and DINO-DETR on the detection side, and from Mask2Former on the
segmentation side, to realize this unified design and to substantially strengthen naïve “add-a-head”
baselines.

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 753

From DAB-DETR and DINO-DETR to Mask DINO
Dynamic anchor boxes in DAB-DETR
Vanilla DETR represents each decoder query as a learned content embedding plus a fixed sinusoidal
positional encoding. In this design, a single vector must implicitly discover both what object it
represents and where that object is likely to be, purely through end-to-end training. Queries therefore
start “geometry-agnostic”: early in training they attend rather uniformly over the feature map, and
the model only gradually learns to concentrate attention near object extents. This makes localization
hard to optimize, slows convergence, and makes performance sensitive to initialization and training
schedule.

DAB-DETR [374] makes this positional component explicit and refinable by turning it into a
4D anchor box that is updated at every decoder layer. Concretely, each query i at decoder layer ℓ is
represented as a pair

q(ℓ)i ∈ Rd , a(ℓ)i =
(
c(ℓ)x ,c(ℓ)y ,w(ℓ),h(ℓ)

)
∈ [0,1]4,

where q(ℓ)i is a content embedding encoding “what” the query looks for (appearance and semantics),
and a(ℓ)i is a normalized box encoding “where” this query currently believes its object lies (box center
and size, relative to the image).

At each decoder layer, a shallow MLP predicts an offset to the previous anchor,

∆a(ℓ)i = fbox
(
q(ℓ−1)

i

)
, a(ℓ)i = a(ℓ−1)

i +∆a(ℓ)i ,

so boxes are refined coarse-to-fine across layers rather than being regressed in a single step from a
fixed prior. This iterative refinement has two important consequences:

• Each layer only needs to predict a small correction to an existing box hypothesis, which is an
easier optimization problem and leads to smoother gradients than one-shot regression from
scratch.

• Early layers can focus on rapidly moving anchors from generic priors toward roughly correct
regions, while later layers spend their capacity on tightening boxes around object boundaries.

In practice this significantly accelerates training and improves detection quality compared to vanilla
and Conditional DETR.

The updated anchor a(ℓ)i is then converted into a positional embedding (via a sinusoidal mapping)
and added to the content query q(ℓ)i before cross-attention, so that each query carries both semantic
and geometric information. In the DAB-DETR implementation built on Deformable DETR, these
anchors play a second, crucial role: their centers are used as reference points for multi-scale
deformable attention. Rather than attending over all spatial locations in each feature map, each query
samples only a small set of offsets around its current anchor, across multiple FPN levels. For a given
query, attention thus operates on a fixed budget of M sampling points per head and per scale, whose
positions are predicted relative to the anchor center. Larger, less precise anchors induce broader
sampling patterns; as anchors are refined, the sampling region narrows around the object.

This “anchor-as-reference” mechanism is both statistically and computationally attractive:
• Statistically, it encodes the idea that evidence for an object should be found near its current

box hypothesis, and that different scales should be consulted depending on the box size.
• Computationally, it reduces the complexity of cross-attention from O(Nq ·HW) dense dot-

products (queries against all spatial positions) to O(Nq ·Nlevels ·M) sampled positions, which
can be orders of magnitude smaller for typical feature map sizes.

754 Chapter 15. Lecture 15: Image Segmentation

As a result, queries no longer waste attention on irrelevant regions: they use their anchors as
geometric “compasses” that determine where to probe the multi-scale feature pyramid.

Figure 15.46: From DETR to DAB-DETR. DAB-DETR replaces DETR’s purely learned positional
queries with 4D anchor boxes that are iteratively refined and used to guide cross-attention. This
explicit geometric prior leads to faster convergence and stronger detection compared to vanilla and
Conditional DETR.

Architecturally, DAB-DETR preserves the DETR backbone–encoder–decoder layout.

Figure 15.47: DAB-DETR architecture. Each decoder query consists of a content embedding
and an associated 4D anchor box. At every decoder layer, the anchor is refined by a box head and
the updated box parameters define reference points and sampling patterns that guide multi-scale
deformable cross-attention.

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 755

Nevertheless, it augments the decoder in two ways (as can be seen in the figure 15.47).
First, decoder queries are now pairs of content embeddings and dynamic anchors, with per-layer box

heads that refine anchors via residual updates.
Second, multi-scale deformable cross-attention is parameterized by the current anchors: their centers

define reference points from which a small set of sample locations is predicted and used to read
from the multi-scale feature maps. The rest of the pipeline (backbone feature extraction, encoder
processing of multi-scale features) remains unchanged.
For Mask DINO, this design is fundamental: the same dynamically refined anchors that make

DAB-DETR and DINO-DETR queries geometrically well-localized for detection will later serve as
strong spatial priors when those queries are reused for mask prediction.

DINO-DETR: improved denoising and query mechanics
While DAB-DETR equips each query with a progressively refined anchor box and anchor-guided
deformable attention, it still largely relies on randomly initialized query embeddings and a single,
somewhat brittle training signal from the Hungarian-matched detection loss. DINO-DETR [327]
builds directly on DAB-DETR and DN-DETR [328] to address these shortcomings. It preserves
dynamic anchor boxes and multi-scale deformable cross-attention, but strengthens the training
dynamics and query initialization via three key ideas:

• Contrastive denoising (CDN) to provide a stable, auxiliary reconstruction task that accelerates
convergence and improves robustness.

• Mixed query selection that uses encoder outputs as data-dependent priors for decoder queries,
avoiding purely “cold-start” learnable queries.

• A “look-forward-twice” box update mechanism that smooths the gradient path through the
box regression heads and leads to more accurate localization.

Together, these make decoded queries not only well-localized (thanks to DAB-style anchors)
but also semantically stronger and more robust—properties that Mask DINO will later exploit when
reusing these queries for mask prediction.

Figure 15.48: DINO architecture. DINO-DETR inherits the DAB-DETR backbone–encoder–
decoder structure and multi-scale deformable cross-attention, while adding denoising, mixed query
selection, and a refined box update strategy. These changes improve training stability, convergence
speed, and detection accuracy, and form the detection backbone on which Mask DINO builds.

756 Chapter 15. Lecture 15: Image Segmentation

Contrastive denoising (CDN): a stable auxiliary objective
In DETR-style models, the main supervision comes from Hungarian-matched predictions: each
decoder layer produces a fixed set of queries, and a bipartite matching assigns some of them to
ground-truth objects while the rest become “no object”. Early in training, when predictions are
essentially random, this matching is unstable and gradients are noisy; queries receive weak, highly
variable signals and learning is slow.

DN-DETR [328] and DINO-DETR [327] address this by adding a denoising branch alongside
the usual “free” (detection) queries. The training queries are split into two groups:

• Detection queries, which behave as in standard DETR: they start from learned embeddings
and anchors, are matched to ground truth via the Hungarian algorithm, and are trained to
discover objects from scratch.

• Denoising queries, which are constructed directly from ground-truth box–label pairs and are
trained to reconstruct the clean targets from corrupted versions.

Concretely, for each ground-truth box–label pair (b,c), the model samples one or more noised
copies

b̃ = b+δbox, c̃ = c+δcls,

where δbox jitters the box center and size (within a controlled range) and δcls may randomly flip the
class to a nearby or “wrong” category. Each corrupted pair (b̃, c̃) is then encoded as a denoising
query (content embedding plus anchor initialized from b̃) and passed through the same decoder as
the detection queries. For these denoising queries, the supervision is direct: the loss compares their
outputs to the clean ground-truth (b,c) from which they were generated, without any Hungarian
matching.

This auxiliary task is intentionally easier than full detection: the model is told which approximate
location and (possibly noisy) label to start from, and only needs to “pull” them back to the correct
object. However, it does not leak information at inference time or make the overall problem trivial:

• At test time, there are no denoising queries and no ground-truth boxes; the decoder runs only
on detection queries, which still must localize and classify objects from scratch using the
standard detection loss.

• During training, detection and denoising queries share the same decoder weights and heads.
Gradients from the denoising branch therefore shape the shared representation: they teach the
decoder how to refine noisy, roughly located hypotheses into accurate boxes and labels, which
directly benefits the harder detection queries once they start receiving meaningful matches.

• Because b̃ can be perturbed by different magnitudes and c̃ can be corrupted, the model
learns robustness to a range of geometric and semantic errors rather than memorizing exact
ground-truth positions.

DINO-DETR further strengthens this idea with a contrastive formulation: denoising queries
are organized so that each one is encouraged not only to match its own ground-truth target, but
also to be clearly better (lower loss) for that target than for other ground truths in the same batch.
This contrastive pressure sharpens the learned representation and reduces confusion between nearby
objects.

Overall, the contrastive denoising (CDN) module supplies strong, stable gradients from the very
beginning of training and makes queries robust to perturbations in both geometry and semantics. In
the context of Mask DINO, these properties are crucial: when denoising is extended from boxes to
masks, queries must learn to recover fine-grained shapes starting from noisy box-based hints, and
CDN provides exactly the kind of robust refinement behavior that this requires.

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 757

Figure 15.49: Contrastive denoising in DINO-DETR. During training, a subset of queries is
reserved for denoising: they are initialized from noised ground-truth boxes and labels and are trained
to reconstruct the original objects without Hungarian matching. These denoising queries share the
decoder with the standard detection queries, providing a stable auxiliary objective that accelerates
convergence and makes the learned queries robust to geometric and semantic perturbations.

Mixed query selection: encoder priors for an image-aware warm start
DAB-DETR equips each decoder query with a dynamic anchor, but the initial queries are still
image-agnostic: at the first decoder layer they are generated from a fixed set of learned content
embeddings and anchors that are identical for every image. The decoder must therefore discover,
purely through end-to-end training, which queries should correspond to which objects in a new
image. Early in training this leads to many queries drifting in empty background regions, unstable
Hungarian matches, and slow convergence.

DINO-DETR [327] replaces this “cold start” by using the encoder as an image-specific proposal
generator. After the encoder has processed the multi-scale features, we obtain a set of encoder
tokens

{e j}Ne
j=1, e j ∈ Rd ,

indexed over all spatial locations and FPN levels. Lightweight heads are applied to these tokens to
predict, for each e j,

• A classification score vector p̂ j (probability over categories).
• A box prediction â j = (ĉx, j, ĉy, j, ŵ j, ĥ j).

These act as dense, coarse proposals: they tell us which encoder locations already look object-like
and what rough boxes they suggest.

Mixed query selection then constructs the decoder’s initial queries from a mixture of these
encoder proposals and a smaller pool of purely learned queries:

1. Score each encoder token e j with a scalar objectness measure (for example, the maximum
foreground class probability derived from p̂ j).

2. Select the top K tokens according to this score; these are the encoder’s “hot spots” that are
most likely to contain objects.

758 Chapter 15. Lecture 15: Image Segmentation

3. For each selected token e j:
• Use its feature e j to initialize a decoder content query q(0)i .
• Use its predicted box â j to initialize the associated anchor a(0)i .

4. Fill the remaining decoder slots with a small number of image-agnostic learned queries (both
content and anchors) to preserve flexibility and allow discovery of objects missed by the
encoder proposals.

The result is that most decoder queries at layer 0 no longer start as generic, image-independent
“slots” scattered over the feature maps. Instead, they are image-aware: their content embeddings and
anchors are initialized from locations and appearances that the encoder already believes correspond
to objects. The decoder’s role becomes primarily refinement: sharpen these coarse proposals, resolve
overlaps and duplicates, and correct mistakes, rather than searching blindly over the entire image.

This has two concrete benefits:
• Faster and more stable training. From the very first epochs, many queries are already

near true objects, so Hungarian matching becomes less random and gradients are less noisy.
Empirically, this accelerates convergence and improves final box AP compared to starting all
queries from learned, image-agnostic embeddings.

• Better queries for downstream tasks. Because the decoder refines proposals that already
roughly localize objects, the resulting query embeddings tend to be semantically meaningful
and spatially well grounded. For Mask DINO, which reuses these same queries for mask
prediction, this is crucial: many queries that will later “paint” masks already correspond to
plausible object candidates rather than arbitrary background locations.

Figure 15.50: Query initialization in DINO-DETR. After the encoder, lightweight classification
and box heads score each encoder token. Mixed query selection chooses the top-ranked tokens
and uses their features and predicted boxes to initialize most decoder content queries and anchors.
A few learned queries are mixed in for diversity. This data-dependent, spatially grounded “warm
start” makes decoder refinement easier and faster than starting from purely learned, image-agnostic
queries.

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 759

“Look-forward-twice” box updates: shorter gradient paths for better localization
DAB-DETR already refines anchors layer by layer, but supervision for boxes is still relatively
indirect: the strongest box losses are applied on the final decoder outputs, and their gradients must
backpropagate through the entire stack of decoder layers and intermediate anchor updates. As depth
grows, this long gradient path can weaken the learning signal reaching early layers, especially for
the box regression branch, making it harder to steadily improve coarse localization.

DINO-DETR introduces a simple but effective modification, often described as “look-forward-
twice”. At each decoder layer ℓ, the box head does not emit a single box prediction, but instead
produces two closely related outputs for each query:

• an intermediate box binter,(ℓ)
i that is used to update the anchor for the next layer, and

• a refined box bref,(ℓ)
i that is supervised directly by the box regression loss.

The intermediate box preserves the residual refinement view introduced in DAB-DETR: it is added
to the current anchor a(ℓ)i to form the next-layer anchor a(ℓ+1)

i = a(ℓ)i +binter,(ℓ)
i . The refined box, in

contrast, is not fed forward but is explicitly compared to ground-truth boxes via the usual L1 and
IoU-based losses at that decoder layer.

This dual prediction effectively creates a short, direct gradient path from the box loss at layer ℓ
back to the parameters of that layer’s box head and to its contributing query features. Instead of
relying solely on losses applied at the very end of the decoder, every layer receives its own box-level
supervision through bref,(ℓ)

i , while binter,(ℓ)
i continues to drive the iterative anchor refinement. In

practice, this improves gradient flow through the box regression branch, stabilizes training, and
yields more accurate localization, particularly for small or thin objects where precise box edges
matter.

For Mask DINO, this refinement is important because the same queries and anchors that benefit
from DINO’s “look-forward-twice” design are later reused as spatial priors for mask prediction.
Better-behaved, well-localized boxes mean that the queries start their mask prediction from anchors
already close to the true object extent, so the subsequent mask head and pixel embedding map can
focus on sharpening boundaries rather than compensating for large geometric errors.

Figure 15.51: Box update in DINO-DETR. Each decoder layer predicts both an intermediate
box (used to update the anchor for the next layer) and a refined box (supervised directly by the
box regression loss at that layer). This “look-forward-twice” design shortens gradient paths for
box supervision and leads to more accurate, stable localization—a property that Mask DINO later
exploits when reusing these queries and anchors for mask prediction.

760 Chapter 15. Lecture 15: Image Segmentation

From Mask2Former to Mask DINO
The detection-oriented lineage culminating in DAB-DETR and DINO is built around box-savvy
queries: each decoder query carries a dynamic 4D anchor box, and multi-scale deformable cross-
attention lets it pull just enough context from a feature pyramid to localize objects with high-quality
bounding boxes. However, segmentation requires more than tight boxes; it needs pixel-level shapes
and boundaries. Mask2Former [99] attacks this problem from the opposite direction: it reinterprets
queries as semantic projectors that “paint” dense masks over a high-resolution pixel embedding map
via simple dot-products. Mask DINO is explicitly inspired by this idea and can be viewed as a fusion
of DINO-DETR’s geometric machinery with Mask2Former’s unified, mask-centric segmentation
pipeline.

Mask2Former: queries as semantic projectors for unified segmentation
Mask2Former treats segmentation as set prediction over mask–class pairs, using a fixed set of
abstract, learnable queries

Q = {qi}
Nq
i=1, qi ∈ Rd .

Each query qi is a slot that is trained to represent one “thing” instance or one “stuff” region. The
architecture has three tightly coupled components:

• Backbone and pixel decoder: multi-scale pyramid and stride-4 pixel map. A CNN/ViT
backbone first produces feature maps at several strides

{Fs}s∈{4,8,16,32}, Fs ∈ RCs×H/s×W/s,

where s is the downsampling factor relative to the input resolution H×W . The pixel decoder
(an FPN-style module) then:

1. Projects each backbone map to a common channel dimension d via 1×1 convolutions,
giving F̃s =Ws ∗Fs.

2. Fuses them in a top-down manner:

G32 = F̃32, Gs = F̃s +Upsample(G2s) (s = 16,8,4),

where Upsample is typically bilinear upsampling to the spatial resolution of Fs. This
builds a coherent multi-scale pyramid {Gs} that combines high-level semantics (from
coarse maps) with fine spatial detail (from shallow maps).

3. Optionally refines each Gs with multi-scale deformable attention (MS-DeformAttn) to
obtain G′s: at every spatial location, MS-DeformAttn uses that location as a query and
samples a small number of adaptive points across all scales, producing a content-adaptive
blend of pyramid features with O(M) samples instead of O(HW) dense attention.

The finest refined map, which we denote G′4 ∈ RH/4×W/4×d , is singled out as the pixel
embedding map. In Mask2Former this is often written as F4; in the Mask DINO context we
will later rename the same object to E to emphasize its role as a generic pixel embedding map.
It lives at stride 4: high enough resolution to capture detailed boundaries, yet downsampled
enough for efficient dense computation.

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 761

• Transformer decoder with masked attention: queries carve out regions. A Transformer
decoder takes the query set Q and lets the queries iteratively refine themselves by attending
to the multi-scale feature maps (typically the {G′s}). The distinctive ingredient is masked
cross-attention: at decoder layer ℓ, each query q(ℓ)i is associated with a current estimated mask
on the stride-4 grid. This mask is used to restrict the spatial positions that the query is allowed
to attend to in the next cross-attention step. Intuitively, the query starts with a broad receptive
field and, layer by layer, focuses its attention onto the pixels that it believes belong to its own
region. This mechanism helps different queries specialize to different objects or stuff regions
and stabilizes training by reducing interference between queries.

• Dot-product mask head: projecting queries onto the pixel map. After several decoder
layers, each refined query q̂i is mapped through a small mask-embedding head to a vector
m̂i ∈ Rd . The stride-4 pixel embedding map G′4 is treated as a dense grid of d-dimensional
vectors. Mask logits are obtained by per-location dot-products:

ℓi(x,y) = ⟨m̂i,G′4(x,y)⟩, (x,y) ∈ {1, . . . ,H/4}×{1, . . . ,W/4},

and then upsampled (typically bilinearly by a factor of 4) and passed through a sigmoid to
produce a soft mask

mi = σ
(
Upsample(ℓi)

)
∈ [0,1]H×W .

In parallel, a classification head applied to q̂i predicts a semantic label ci. Geometrically, m̂i

defines a direction in the d-dimensional embedding space; pixels whose embeddings G′4(x,y)
align with that direction receive high logit values and are included in the mask. The same set
of (ci,mi) pairs can be supervised as instance masks, panoptic segments, or semantic regions
by changing only the loss and aggregation logic.

Putting these components together, the Mask2Former pipeline can be viewed as a coherent flow
from raw pixels to mask–class pairs. An input image

I ∈ RH×W×3

is mapped by the backbone to a multi-scale feature pyramid {Fs}s∈{4,8,16,32}. The pixel decoder then
reshapes this pyramid into a set of task-ready maps {G′s} and, in particular, into a stride-4 pixel
embedding map G′4 ∈ RH/4×W/4×d that serves as a dense, high-resolution canvas for segmentation.

762 Chapter 15. Lecture 15: Image Segmentation

A fixed set of queries Q enters the Transformer decoder, where masked cross-attention lets each
query iteratively carve out its own region by repeatedly attending to {G′s} under the guidance of
its current mask. After several layers, the refined queries are converted into mask embeddings,
and a simple dot-product between each mask embedding and the stride-4 pixel map G′4 produces
low-resolution mask logits, which are finally upsampled and thresholded to yield full-resolution
masks mi(x,y), with a parallel head predicting class labels ci.

Figure 15.52: Mask2Former architecture. An input image I ∈ RH×W×3 is mapped by a backbone
to a multi-scale feature pyramid {Fs}. A pixel decoder refines these into {G′s} and, in particular,
into a stride-4 pixel embedding map G′4 ∈ RH/4×W/4×d (often denoted F4 in the original paper,
and later reused as E in Mask DINO). A fixed set of learnable queries Q ∈ RNq×d interacts with
{G′s} via masked attention in a Transformer decoder, producing refined query embeddings Q̂. A
mask-embedding head maps each q̂i to a vector m̂i, whose dot-products with G′4 yield mask logits
ℓi, upsampled and sigmoided into dense masks mi ∈ [0,1]H×W , while a parallel classification head
predicts labels ci.

From the perspective of DAB-DETR and DINO-DETR, Mask2Former innovates by densifying
the prediction pipeline. Rather than equipping queries with explicit 4D anchors and training them
primarily to regress boxes in R4, it reallocates capacity toward:

• A strong pixel decoder that builds a high-quality multi-scale pyramid and a stride-4 pixel
embedding map suited to pixel-level decisions.

• MS-DeformAttn-based multi-scale fusion inside the pixel decoder, which allows each spatial
location to aggregate a small number of informative samples across all scales instead of
performing dense attention over all positions, and

• A dot-product mask head that treats each query (after a small mask-embedding MLP) as a
semantic direction in the embedding space and uses that direction to assign labels to pixels on
the stride-4 grid.

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 763

In this formulation, queries are no longer geometric anchors tied to 4D boxes; they are semantic
projectors that decide which pixels on a high-resolution embedding canvas belong to which region.

The architectural gap between DINO-DETR/DAB-DETR and Mask2Former
Despite sharing many underlying components (CNN/ViT backbones, multi-scale pyramids, Trans-
former encoders/decoders), the two families crystallize around different objectives and therefore
make different design choices:

• DINO-DETR and DAB-DETR: box-first, sparse geometry. Decoder queries carry dynamic
4D anchor boxes and interact with features via multi-scale deformable attention guided by
reference points. Training emphasizes accurate box regression and classification, supported by
contrastive denoising, mixed query selection, and per-layer box refinement. There is no pixel
decoder producing a dedicated stride-4 embedding map for masks, no dot-product mask head,
and no mechanism to turn each query into a dense mask mi(x,y) over the image plane.

• Mask2Former: mask-first, dense semantics. Decoder queries are purely semantic (DETR-
style content plus positional encodings) and do not maintain explicit 4D anchors. Masked
attention and the pixel decoder are optimized to refine masks on the stride-4 grid, not to itera-
tively refine bounding boxes. As a result, Mask2Former achieves state-of-the-art segmentation
quality, but its box localization lags behind anchor-based detectors such as DINO-DETR and
DAB-DETR: it lacks dynamic anchors, per-layer box updates, and a denoising scheme tailored
to box regression.

These contrasting design commitments create a clear architectural gap. DINO-DETR and
DAB-DETR provide robust, geometry-aware queries and excellent box predictions but no dense
mask head, whereas Mask2Former provides an elegant, unified mask-prediction pipeline but weaker
geometric priors for boxes. Mask DINO is motivated precisely by this complementarity and will
fuse DINO-DETR’s box-savvy queries with a Mask2Former-style pixel decoder and dot-product
mask head so that a single set of queries can jointly support detection and segmentation in the form
of (ci,bi,mi) tuples.

Mask DINO: DINO-DETR queries as Mask2Former-style projectors
Mask DINO closes the gap between box-first DINO-DETR and mask-first Mask2Former by reusing
DINO-DETR’s detection-strength queries as Mask2Former-style semantic projectors on a stride-4
pixel embedding map. Conceptually, the architecture keeps the entire DINO-DETR detector intact,
and attaches a Mask2Former-inspired segmentation branch that interprets the same decoder content
queries as directions in a dense embedding space.

At a high level, the end-to-end flow for an input image

I ∈ RH0×W0×3

is as follows:
• DINO-DETR backbone, encoder, and decoder (detection part, “blue”). As in DINO-

DETR, a CNN/ViT backbone produces multi-scale features, which are consumed by a multi-
scale deformable Transformer encoder. Unified query selection uses encoder heads to pick
high-quality object priors and initialize decoder queries with dynamic anchor boxes. A stacked
decoder with multi-scale deformable cross-attention, contrastive denoising, mixed query
selection, and “look-forward-twice” box refinement converts these into a refined set of content
queries

Qdec = {qi}
Nq
i=1, qi ∈ Rd ,

764 Chapter 15. Lecture 15: Image Segmentation

along with their associated anchors. Per-query class and box heads (inherited from DINO-
DETR) predict logits ci and 4D boxes bi, preserving state-of-the-art detection performance.

• Mask2Former-style pixel decoder and pixel embedding map (segmentation canvas,
“red”). In parallel, a pixel decoder (as in Mask2Former) fuses backbone (and optionally
encoder) features into a refined multi-scale pyramid {G′s}s∈{32,16,8,4}. Its stride-4 output

E ≡ G′4 ∈ RH4×W4×d , H4 =
H0

4
, W4 =

W0

4
,

serves as the pixel embedding map: each location (x,y) holds a d-dimensional embedding
E(x,y) summarizing local appearance and context at stride 4. Subsequent subsections will
refine this description and show how E is constructed from backbone and encoder features.

• Dot-product mask head driven by DINO queries (segmentation part, “red”). The same
refined decoder content queries qi that feed the detection heads are reinterpreted as mask
projectors. A light mask-embedding head maps qi to a mask vector m̂i ∈ Rd , and mask logits
at stride 4 are obtained by per-location dot-products

ℓi(x,y) = ⟨m̂i,E(x,y)⟩, (x,y) ∈ {1, . . . ,H4}×{1, . . . ,W4},

followed by upsampling (typically bilinear ×4) and a sigmoid to produce a full-resolution
mask

mi = σ
(
Upsample(ℓi)

)
∈ [0,1]H0×W0 .

Thus, each single query qi now produces a triplet (ci,bi,mi): a class, a bounding box, and a
dense mask.

Figure 15.53: Mask DINO architecture. The blue part is DINO-DETR: backbone, multi-scale
deformable encoder, and decoder with dynamic anchor boxes, mixed query selection, contrastive
denoising, and per-layer box/class heads. The red part is the Mask2Former-style extension: a pixel
decoder builds a stride-4 pixel embedding map E ∈RH4×W4×d , encoder and decoder gain mask heads,
and the same decoder content queries are used as mask projectors via dot-products with E. Hybrid
box–mask matching and unified denoising train all three outputs (ci,bi,mi) jointly.

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 765

Mask DINO further extends DINO-DETR’s encoder heads, denoising scheme, and Hungarian
matching cost so that boxes and masks are selected, denoised, and matched jointly rather than in
separate pipelines: encoder heads output both box and mask scores for unified query selection;
denoising operates on noised box–label and mask targets; and the matching cost combines classi-
fication, box, and mask terms. In effect, DINO-DETR’s geometry-aware query engine provides
precise localization priors, while Mask2Former’s pixel decoder and dot-product head turn those
same queries into powerful mask projectors on a stride-4 embedding canvas.

This unified design preserves the geometric rigor of DINO-DETR (dynamic anchors, multi-scale
deformable attention, denoising, mixed query selection) while importing Mask2Former’s core insight
that queries can be turned into semantic projectors via dot-products with a stride-4 pixel embedding
map. The remainder of this section unpacks each component in detail, starting from the backbone
and multi-scale features and moving through the pixel decoder, encoder and decoder design, and the
segmentation branch and training losses.

Backbone and Multi-Scale Features
Mask DINO uses a CNN or ViT backbone (e.g., ResNet-50, Swin-L) to produce multi-scale feature
maps

{F32,F16,F8,F4},

where the subscript denotes the stride relative to the input resolution. Each map has shape

Fs ∈ RCs×Hs×Ws , Hs =
H0

s
, Ws =

W0

s
.

A pixel decoder (inherited from Mask2Former) then transforms these backbone features into a
refined pyramid

{F̃s}s∈{32,16,8,4}, {Gs}s∈{32,16,8,4}, {G′s}s∈{32,16,8,4},

where:
• F̃s are lateral projections to a common dimensionality d.
• Gs are FPN-style top–down fused features.
• G′s are refined features produced by multi-scale deformable attention.
Formally, a 1×1 convolution

F̃s =W lat
s ∗Fs, W lat

s ∈ Rd×Cs×1×1,

projects each Fs into a d-dimensional feature space without changing spatial resolution. A top–down
FPN fusion then constructs

G32 = F̃32, G16 = F̃16+Upsample(G32), G8 = F̃8+Upsample(G16), G4 = F̃4+Upsample(G8),

where Upsample is typically stride-2 bilinear interpolation to match the spatial size of the next finer
scale.

Finally, each Gs is refined by multi-scale deformable attention (MS-DeformAttn) to obtain G′s.
The coarser levels G′8,G

′
16,G

′
32 are then fed into the Transformer encoder as multi-scale inputs, while

the pixel embedding map will later be constructed separately from the stride-4 backbone feature Cb
and the stride-8 encoder feature Ce.

766 Chapter 15. Lecture 15: Image Segmentation

Multi-Scale Deformable Attention in the Pixel Decoder
Mask DINO (via Mask2Former) uses MS-DeformAttn [808] both in the encoder and in the pixel
decoder. This subsection focuses on the pixel decoder refinement

Gs −→ G′s,

and explains how queries, keys, values, sampling locations, and attention weights are defined.

Standard global attention (reminder)
In standard dot-product attention, we have

Q ∈ RNq×d , K,V ∈ RNk×d ,

and

Attn(Q,K,V) = softmax
(

QK⊤√
d

)
V. (15.2)

For a single query q ∈ Rd , this reads

α j =
exp(⟨q,k j⟩/

√
d)

∑ j′ exp(⟨q,k j′⟩/
√

d)
, Attn(q,K,V) = ∑

j
α jv j.

Each query attends densely to all Nk keys/values, which is too expensive when K,V come from large
feature maps.

High-level idea of MS-DeformAttn
MS-DeformAttn replaces dense global attention by:

• Sparse attention: each query attends to M sampling locations per head instead of all spatial
positions.

• Multi-scale attention: those sampling locations span multiple pyramid levels (e.g., strides
4,8,16,32).

• Content-adaptive attention: sampling locations and their weights are predicted from the query
itself.

Instead of computing all dot products ⟨q,k j⟩, the module:

1. Predicts where to look (sampling offsets) from the query qp.
2. Samples values Vs′ at those locations across scales.
3. Predicts how strongly to weight each sample from qp via a small linear layer.

There is no explicit dense set of keys; the query implicitly defines both the sampling locations
and the pattern in which sampled values are mixed.

Inputs to MS-DeformAttn in the pixel decoder
Fix a scale s ∈ {4,8,16,32}. The inputs are:

• Queries. The query features are the current fused map

Qs = Gs ∈ Rd×Hs×Ws ,

flattened into Qflat
s ∈ R(HsWs)×d . Each spatial position p = (i, j) corresponds to a query vector

qp = Gs(i, j) ∈ Rd .

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 767

• Keys and values. Keys and values are all laterally projected backbone features

F = {F̃4, F̃8, F̃16, F̃32},

with Ks′ =Vs′ = F̃s′ for each scale s′. These are flattened per scale but are conceptually kept as
separate feature maps.

• Reference points. Each spatial position p = (i, j) at scale s has a normalized reference
coordinate

rp =

(
j

Ws
,

i
Hs

)
∈ [0,1]2,

indicating where in the image this query lives.

Step-by-step computation for a single query
Fix a scale s, a spatial position p, a head index h ∈ {1, . . . ,H}, and a sampling index m ∈ {1, . . . ,M}.

(1) Sampling offsets. From the query qp we predict a 2D offset

∆h,m(p) =W ∆
h,mqp ∈ R2,

where W ∆
h,m ∈ R2×d is a learned matrix. This offset specifies how far, and in what direction, to move

from the reference point rp.
(2) Sampling locations. The normalized sampling location is

φh,m(p) = rp +∆h,m(p) ∈ R2. (15.3)

φh,m(p) is continuous and may fall between pixels. Each sampling point is also associated with a
scale s′h,m ∈ {4,8,16,32} (in practice, each head has a fixed or learned pattern for how its M samples
are distributed across scales).

(3) Sampling values from multi-scale features. At the chosen scale s′h,m, the location φh,m(p)
is interpreted in that feature map’s coordinate frame, and a value vector is obtained via bilinear
interpolation:

vh,m(p) =Vs′h,m

(
φh,m(p)

)
∈ Rd .

(4) Unnormalized attention scores. For each sample we compute a scalar logit

wh,m(p) = u⊤h,mqp,

where uh,m ∈ Rd is a learned vector (or a row of a small linear layer). This plays a role analogous to
⟨q,k j⟩ in standard attention: it scores how much the query wants to use the m-th sample for head h.

(5) Attention weights. For fixed h and p, these logits are normalized across m:

Ah,m(p) =
exp(wh,m(p))

∑
M
m′=1 exp

(
wh,m′(p)

) .
The weights {Ah,m(p)}M

m=1 form a convex combination over the sampled values {vh,m(p)}M
m=1 and

are the sparse analogue of the softmax over all keys in (15.2). The form is chosen to provide:
• Smooth, differentiable importance scores.
• Normalization to control magnitude.

768 Chapter 15. Lecture 15: Image Segmentation

• Content-adaptive weighting of a small learned set of sampling points.
(6) Head output and multi-head output. Each head combines its sampled values as

headh(qp) =
M

∑
m=1

Ah,m(p)Whvh,m(p),

where Wh ∈ Rdh×d is a learned projection and ∑h dh = d. The multi-head output is then

MSDeformAttn(qp) = ConcatHh=1 headh(qp) ∈ Rd .

Residual refinement of Gs

At each scale s, MS-DeformAttn produces a refined feature for each position p via a residual update:

G′s(p) = Gs(p)+MSDeformAttn
(
qp,{F̃s′}s′∈{4,8,16,32}

)
, qp = Gs(p). (15.4)

Thus every scale s ∈ {4,8,16,32} is refined into G′s.

Why weights depend only on the query
In standard attention, weights are α j ∝ exp(⟨q,k j⟩). Here, we do not explicitly maintain a dense set
of keys k j:

• The choice of where to sample is already conditioned on the query via ∆h,m(p) and φh,m(p).
• The content at those positions is captured in vh,m(p).
• We only need a relative ranking among the M samples for each head and position.

The simple bilinear form

wh,m(p) = u⊤h,mqp

is thus sufficient and efficient: the query chooses a pattern, offsets choose where to look, values
encode what is found, and attention weights decide how to mix the sampled patterns.

Cross-attention vs. self-attention
In the pixel decoder:

• Queries are the fused features Gs (or G′s) at a given scale.
• Keys and values are the multi-scale backbone features {F̃s′}s′∈{4,8,16,32}.

Here MS-DeformAttn acts as multi-scale cross-attention: fused features at scale s attend sparsely to
the backbone pyramid.

In the Transformer encoder, queries, keys, and values all come from the same multi-scale set of
encoder features, so MS-DeformAttn plays the role of multi-scale self-attention, analogous to the
encoder in Deformable DETR [808].

In the Transformer decoder, queries are the object queries and keys/values are the encoder’s
multi-scale outputs, so MS-DeformAttn again acts as multi-scale cross-attention from queries to the
encoder memory.

Why all scales G′s must be refined
Although only the stride-4 refined map G′4 is directly used to build the pixel embedding map, Mask
DINO refines every scale s ∈ {4,8,16,32}:

• The FPN fusion is top–down: G4 depends on G8, which depends on G16, and so on. If coarse
maps are unrefined, noise and misalignment propagate down.

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 769

• MS-DeformAttn at scale 4 samples from all scales F̃s′ . If those maps are not semantically
clean, the sampling locations and values seen by G′4 will be inconsistent.

• Coarse scales carry global semantic and shape information; refining them first ensures that
when G′4 samples them, it receives coherent context rather than raw backbone features.

In short, a clean stride-4 representation cannot be built by sampling from unrefined coarse maps;
therefore all Gs must be refined into G′s before G′4 can serve as a high-quality pixel embedding map.

Transformer Encoder and Decoder in Mask DINO
Up to this point we have taken an input image

I ∈ RH0×W0×3

through a backbone and pixel decoder to obtain a refined multi-scale pyramid

{G′s}s∈{4,8,16,32}, G′s ∈ Rd×Hs×Ws , Hs =
H0
s , Ws =

W0
s .

For a typical COCO-style input of H0 ≈ 800, W0 ≈ 1333, the finest map G′4 has resolution H4 ≈ 200,
W4 ≈ 333, while G′32 is much coarser but carries strong semantic context. You can think of {G′s} as
a multi-scale canvas where each location already encodes a blend of local detail and global context
thanks to MS-DeformAttn in the pixel decoder.

Mask DINO now feeds these features into a DINO-style encoder–decoder to produce a set of
refined, box-savvy queries that will later drive both bounding boxes and masks. The goal of this stage
is: given the refined pyramid {G′s}, identify a small set of promising object candidates and iteratively
refine them into high-quality query embeddings q̂i that can support joint (ci,bi,mi) prediction.

Encoder: from refined pyramid to token proposals
With the pixel decoder in place, we start the Transformer stage from the refined multi-scale pyramid

{G′s}s∈{4,8,16,32}, G′s ∈ Rd×Hs×Ws , Hs =
H0
s , Ws =

W0
s .

Mask DINO follows DINO and runs the encoder on the three coarser pyramid levels, typically
s ∈ {8,16,32}, while the stride-4 map is reserved for constructing the pixel embedding map. Coarse
levels provide global semantics and rough shapes, whereas the finest encoder level (s = 8) carries
more detailed edges and boundaries; the encoder’s job is to let every location see just enough of
both.

Concretely, the encoder follows DINO-DETR but replaces dense self-attention with MS-
DeformAttn:

• Each G′s is flattened into a sequence of tokens

Ts ∈ R(HsWs)×d ,

and all scales are processed jointly through Lenc layers of MS-DeformAttn-based self-attention
and feed-forward networks, yielding encoder outputs Ee,s ∈ R(HsWs)×d at each scale.

• In each MS-DeformAttn layer, the queries are the current tokens at positions p on each G′s,
while the keys and values come from the entire multi-scale set {G′s′}s′∈{4,8,16,32} treated as
a single multi-scale memory. For a token qp at position p on level s, the module predicts a
small set of offsets and scales, samples a few values from nearby and cross-scale positions
(via bilinear interpolation), and mixes them with learned attention weights, exactly as in the
MS-DeformAttn formulation described earlier.

770 Chapter 15. Lecture 15: Image Segmentation

• The effect is that each encoder token becomes a context-aware descriptor: a location on G′4
near a dog’s ear can pull in coarse information from G′32 about the overall dog silhouette and
complementary detail from G′8 or G′16, without paying the cost of dense global attention.

On top of these encoder outputs, Mask DINO attaches three lightweight heads that turn tokens
into dense proposals:

• A classification head that predicts how likely each token is to correspond to a foreground
object instance or a stuff region.

• A box head that predicts a coarse 4D bounding box for each token, typically as normalized
coordinates or offsets relative to its spatial location.

• A mask head that predicts a coarse mask for each token by projecting its embedding onto the
stride-4 pixel embedding map E (constructed in the pixel-decoder branch) via a dot-product,
producing early mask logits on the H4×W4 grid.

For every encoder token, this yields an early triplet (ĉ, b̂, m̂). Intuitively, the encoder behaves
like a dense proposal generator. Given the refined pyramid, it produces a heatmap of “interesting”
locations and associated coarse boxes and masks. For example, in an image containing a dog and a
person, tokens around the dog’s torso will tend to have high “dog” scores, a roughly dog-shaped mask,
and a bounding box enclosing the dog; tokens near the person will produce analogous proposals for
the person. Mask DINO will not keep all of these dense proposals; instead, it uses them to initialize
a much smaller set of decoder queries.

Unified query selection: seeding decoder queries and anchors
Rather than starting decoder queries from purely learned embeddings, Mask DINO adopts DINO’s
unified query selection and extends it to take mask quality into account. The idea is to select a small
number of the most promising encoder tokens and turn them into decoder queries with good initial
content and good initial anchor boxes.

For each encoder token, Mask DINO attaches three prediction heads that share their architecture
with the decoder heads. In practice:

• The classification head outputs a foreground class score. This score alone is used to rank
encoder tokens and select the top-ranked features to become decoder content queries.

• The box head predicts a coarse 4D box for each token. These boxes are supervised with the
standard detection loss and will become initial anchors for the decoder.

• The mask head predicts a coarse mask for each token by dot-producting the token with the
high-resolution pixel embedding map E, and is supervised with a mask loss. These coarse
masks are also used to derive tighter boxes that better follow the object support.

During unified query selection, Mask DINO simply takes the top Nq encoder tokens by classifi-
cation confidence, uses their encoder features as the initial content embeddings q(0)i , and uses the
associated predicted boxes (optionally refined using the coarse masks) as the initial anchor boxes
a(0)i . This matches the “unified and enhanced query selection” design in the paper: the three heads
provide detection and segmentation priors on encoder tokens, but the classification score drives
ranking, while the predicted boxes and masks supply supervised initial anchors for the decoder.

Mask DINO then:
• Selects the top Nq encoder tokens according to this unified score (optionally mixing in a small

number of learned queries for robustness).
• Uses the selected encoder features as the initial content embeddings of decoder queries q(0)i .

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 771

• Uses the selected boxes (often refined using the corresponding coarse masks to better fit object
extent) as the initial anchor boxes a(0)i for those queries.

This step converts a dense field of thousands of encoder tokens into a compact set of Nq object
candidates that are already biased toward good shapes. Because masks are usually easier to learn than
precise boxes early in training (pixel-level supervision provides many more gradients than sparse
box corners), the encoder mask head often provides the most reliable early signal. Mask DINO
exploits this by effectively performing mask-enhanced anchor box initialization: boxes derived from
regions with good masks provide stronger geometric priors for the decoder than boxes coming from
box regression alone.

Decoder: from proposals to refined box-aware queries
The decoder then refines these Nq selected queries using the DINO-DETR design, but now with the
added role of supporting mask prediction. Each decoder query carries two coupled components: a
content embedding q(ℓ)i ∈ Rd and an anchor box a(ℓ)i ∈ R4 at layer ℓ.

At a high level, each decoder layer performs three standard Transformer operations, plus per-layer
prediction heads:

• Self-attention over the current set of queries so that different queries can exchange information
and resolve competition when they cover overlapping regions.

• Multi-scale deformable cross-attention from queries to the encoder outputs {Ee,s}, using the
current anchor box a(ℓ)i of each query to define its reference points for MS-DeformAttn. For
query i, the center of a(ℓ)i is normalized and used as the reference; the module then predicts
a small set of offsets and scales, samples values from nearby positions across all scales, and
aggregates them to update q(ℓ)i . This allows each query to pull just the relevant context from
the refined pyramid, focusing on its hypothesized object region.

• A position-wise feed-forward network (FFN) that further refines the updated query embed-
dings.

As in DINO-DETR, each decoder layer also has prediction heads:
• A classification head that predicts class scores from the current query embedding q(ℓ)i .
• A box head that predicts both intermediate and refined boxes from q(ℓ)i , enabling the “look-

forward-twice” mechanism where intermediate boxes become the anchors a(ℓ+1)
i for the next

layer, and refined boxes are directly supervised.
Mask DINO adds:

• A decoder mask head that predicts a mask for each query at selected layers by projecting q(ℓ)i
onto the stride-4 pixel embedding map E via a dot-product, providing additional shape-focused
supervision while boxes are still being refined.

After Ldec decoder layers, we obtain a final set of refined content queries

Q̂ = {q̂i}
Nq
i=1, q̂i ∈ Rd ,

together with their associated refined anchor boxes and the per-layer predictions from intermediate
heads. Each q̂i can be viewed as a compact description of one predicted object or stuff region: it
has been geometrically grounded via dynamic anchors and multi-scale deformable attention, and
semantically shaped by both box and mask supervision. These refined queries are then passed to the
final classification, box, and mask heads described in the next part to produce the model’s (ci,bi,mi)
outputs.

772 Chapter 15. Lecture 15: Image Segmentation

Segmentation Branch and Pixel Embedding Map
The segmentation branch turns refined queries q̂i into dense masks by projecting them onto a stride-4
pixel embedding map, in the spirit of Mask2Former. Conceptually, this is where DINO’s box-savvy
queries become Mask2Former-style semantic projectors.

Constructing the pixel embedding map
Mask DINO constructs a stride-4 pixel embedding map by fusing backbone and encoder features.
Let:

• Cb ∈ RCb×H4×W4 be the stride-4 feature map from the backbone.
• Ce ∈ Rd×H8×W8 be an encoder feature at stride 8, obtained by reshaping the corresponding

encoder tokens Ee,8.
• T be a 1×1 convolution mapping Cb to the Transformer hidden dimension d.
• F be a 2× upsampling operation that brings Ce from stride 8 to stride 4 via bilinear interpola-

tion.
• M be a lightweight segmentation head (for example, a few 3×3 convolutions with normaliza-

tion and nonlinearity) operating on stride-4 features.
The fused pixel embedding map is then

E(x,y) = M
(
T (Cb)(x,y)+F(Ce)(x,y)

)
∈ Rd , (15.5)

for (x,y) on the stride-4 grid (H4×W4). Intuitively, T (Cb) contributes high-resolution local detail
(edges, textures) while F(Ce) injects encoder-level context (which object is likely present at that
location). The head M mixes these signals into a per-pixel embedding E(x,y) that is well-suited for
deciding “which object or region this pixel belongs to.”

Query–pixel dot products as mask logits
Each refined decoder content query q̂i ∈ Rd is then turned into a mask by a simple dot-product with
the pixel embedding map. Formally, the implementation applies a small linear layer to produce a
mask embedding m̂i ∈ Rd and uses

ℓi(x,y) = ⟨m̂i,E(x,y)⟩, (x,y) ∈ {1, . . . ,H4}×{1, . . . ,W4}.

These ℓi are stride-4 mask logits, which are then upsampled to the input resolution and passed
through a sigmoid:

mi = σ
(
Upsample(ℓi)

)
∈ [0,1]H0×W0 .

Geometrically, m̂i defines a direction in the d-dimensional embedding space. Pixels whose
embeddings E(x,y) align strongly with m̂i receive large positive logits and are included in the mask.
For example, if q̂i has learned to represent “this particular dog instance”, then E(x,y) at the dog’s
pixels will be close to m̂i, and ℓi(x,y) will be high there, while background pixels will have low
logits. This is exactly the Mask2Former mechanism, now driven by DINO-style queries.

In parallel, the same q̂i is fed to the class and box heads inherited from DINO-DETR to predict

ci ∈ RC+1, bi ∈ R4.

The crucial point is that the same query representation q̂i is responsible for all three outputs (ci,bi,mi).
Box and mask supervision therefore shape a shared representation rather than training two disjoint
branches. In practice this improves both detection and segmentation: better masks help the model
learn tighter boxes, and better boxes help the model focus its mask predictions.

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 773

Unified Denoising and Hybrid Matching
The final piece is how Mask DINO trains this unified architecture so that queries become simultane-
ously good classifiers, localizers, and mask projectors.

Extending denoising from boxes to masks
DINO-DETR uses contrastive denoising: extra decoder queries are reserved for reconstructing
ground-truth boxes and labels from noised versions of those targets. This stabilizes training and
accelerates convergence for detection. Mask DINO extends this idea to segmentation:

• Ground-truth boxes and masks are perturbed, for example by jittering box coordinates or
slightly eroding/dilating masks, to generate noisy training targets.

• A subset of decoder queries is dedicated to reconstructing the original boxes and masks from
these noised targets, in addition to the standard detection denoising.

Because masks carry finer-grained information than boxes, this mask-aware denoising provides
strong gradients that encourage queries to capture detailed object shapes early in training. For a dog
example, even if the initial box roughly covers the dog and some background, the denoising loss
forces the query to predict a mask that tightly follows the dog’s silhouette, which in turn helps refine
the box in later decoder layers. Empirically, this leads to faster convergence and better mask quality.

Hybrid matching cost for joint detection and segmentation
As in other DETR-style models, Mask DINO uses the Hungarian algorithm to match predicted
queries to ground-truth instances. The key difference is that the matching cost combines classification,
box, and mask terms:

Lmatch = λclsLcls +λboxLbox +λmaskLmask.

Here Lcls is a classification loss (for example cross-entropy or focal loss), Lbox is a combination of ℓ1
and GIoU losses on boxes, and Lmask measures mask quality (for example a combination of binary
cross-entropy and Dice loss on the predicted masks).

This hybrid cost ensures that a query is considered a good match only if it is simultaneously:
• Confident about the correct class.
• Accurate in terms of its bounding box.
• Accurate in terms of its mask.

The same combined losses are then used to train the matched queries. Queries that are good at boxes
but poor at masks, or vice versa, are penalized until they become good at both.

For panoptic segmentation, Mask DINO follows the paper in removing box terms for “stuff”
categories in the matching cost. Boxes are still predicted and used to guide deformable attention
as geometric priors, but they are not penalized for amorphous, image-wide regions where a tight
bounding box is ill-defined. This keeps the box machinery useful for attention while letting masks
carry the main supervision for stuff classes.

Putting these pieces together, the end-to-end flow can be summarized as follows. The image I is
mapped by the backbone and pixel decoder to refined multi-scale features {G′s} and a stride-4 pixel
embedding map E. The encoder turns {G′s} into dense proposal tokens and associated coarse (c,b,m)
predictions. Unified query selection chooses the best proposals and converts them into a compact
set of dynamic anchor queries. The decoder refines these queries using deformable attention and
per-layer heads, producing final query embeddings q̂i that are both geometry-aware and mask-aware.

774 Chapter 15. Lecture 15: Image Segmentation

Finally, each q̂i feeds class, box, and mask heads to produce (ci,bi,mi), trained jointly via
mask-extended denoising and a hybrid matching cost. This closes the loop from I ∈ RH0×W0×3 to a
set of predictions that simultaneously provide class labels, bounding boxes, and dense segmentation
masks.

Empirical Performance, Ablation Insights, Limitations, and Outlook
Mask DINO’s unified design is not only conceptually clean but also empirically strong. On COCO
with a ResNet-50 backbone, Mask DINO consistently improves over both DINO-DETR for detection
and Mask2Former for segmentation, achieving higher box AP and higher mask AP than either
specialized model under comparable training schedules and query budgets [285, 327, 330]. With a
stronger Swin-L backbone and additional detection pretraining on Objects365, Mask DINO reaches
state-of-the-art results among models under one billion parameters, including approximately 54.5
AP for COCO instance segmentation, 59.4 PQ for COCO panoptic segmentation, and 60.8 mIoU
on ADE20K semantic segmentation [330]. These results confirm that a single Transformer, trained
end-to-end on a joint detection–segmentation objective, can match or surpass carefully engineered
task-specific architectures across instance, panoptic, and semantic segmentation benchmarks.

From a methodological perspective, the gains are not accidental; they reflect the way the
tasks reinforce one another through shared queries and losses. Detection-side innovations from
DINO—contrastive denoising, dynamic anchor queries, and multi-scale deformable cross-attention
provide well-localized, geometry-aware queries [327]. Mask2Former’s mask head, in turn, injects
dense pixel-level supervision via the query–pixel dot-product mechanism [285]. In practice, this
synergy manifests as faster convergence and higher final AP: masks help queries learn sharper object
boundaries and category-discriminative features, while strong boxes and anchors help the mask head
focus on the correct regions rather than drifting to nearby distractors.

Ablation insights
The Mask DINO paper backs up this qualitative picture with a series of ablations [330]. While exact
numbers differ across backbones and schedules, several trends are consistent:

• Unified training vs. separate tasks. Training detection and segmentation jointly with shared
queries outperforms training either task alone or combining independently trained detectors
and segmenters. Removing the joint training and using only detection or only segmentation
losses leads to a noticeable drop in both box AP and mask AP. This indicates that both tasks
genuinely benefit from sharing the same query set and feature pipeline instead of competing
for capacity.

• Mask-enhanced query initialization. Mask DINO’s mask-enhanced anchor box initializa-
tion—using early coarse masks from the encoder to tighten anchor boxes before they enter
the decoder—provides a consistent improvement over using box regression alone. Ablations
where anchors are initialized only from box heads (without mask feedback) show degraded
performance, especially in crowded scenes where box-only proposals tend to be too loose or
misaligned around object boundaries.

• Hybrid matching and mask-extended denoising. The hybrid Hungarian cost that combines
classification, box, and mask terms yields better assignments than using detection-only or
mask-only costs. Similarly, extending DINO’s denoising objective from boxes and labels to
include masks stabilizes training and accelerates convergence.

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 775

Ablations that remove the mask term from the matching cost or restrict denoising to boxes
only consistently reduce both detection and segmentation metrics, confirming that the model
learns better queries when it is required to be simultaneously good at classifying, localizing,
and segmenting.

• Encoder proposals and query selection. Removing the encoder-side proposal heads (class,
box, mask) and reverting to purely learned queries degrades final performance and slows down
training. The ablations in [330] show that using encoder proposals to initialize decoder queries
not only improves AP but also makes training more robust to hyperparameters such as the
number of queries Nq and the training schedule length.

Intuitively, these ablations support the view that Mask DINO’s improvements come from a
coherent design rather than from a single trick. The encoder acts as a dense proposal generator; the
unified query selection ensures that only high-quality, mask-consistent candidates reach the decoder;
and the hybrid matching plus denoising tie everything together, forcing each query to become a
compact, multi-purpose representation that works well for class, box, and mask simultaneously.

Limitations and practical caveats
Despite its strong performance, Mask DINO remains squarely in the classical closed-set regime.
The classifier head predicts over a fixed label set (for example, COCO’s 80 thing and 53 stuff
categories), and the model cannot directly recognize categories that were not present in its supervised
training data. In other words, Mask DINO answers “Which of these predefined classes is present
here?” rather than “What object, described in arbitrary language, is present here?”. For many real
applications—long-tail categories, domain-specific entities, evolving taxonomies—this closed-set
assumption becomes a hard limitation.

There are also architectural and computational considerations. The unified encoder–decoder
is still a relatively heavy DETR-style model. Inference cost grows with the number of queries Nq,
and there is a trade-off between accuracy and throughput when scaling Nq or backbone capacity.
Using fewer queries improves speed but tends to hurt AP, especially on crowded scenes; using many
more queries can improve recall but increases memory and latency. Training stability and efficiency
benefit strongly from the denoising and hybrid matching machinery, but also inherit some of the
usual DETR sensitivities to learning-rate schedules, warm-up strategies, and data scale. In practice,
Mask DINO works very well on standard datasets such as COCO, ADE20K, and Cityscapes, but
still requires fine-tuning or continued training to adapt to substantially shifted domains (for example,
medical imaging or aerial imagery).

Summary and outlook: from unified closed set to open vocabulary
In summary, Mask DINO demonstrates that a single DETR-like model can serve as a strong, unified
engine for detection, instance segmentation, panoptic segmentation, and semantic segmentation.
Its central ideas—encoder-driven proposal generation, mask-enhanced query initialization, hybrid
box–mask matching, and mask-extended denoising—show how box prediction and mask prediction
can be made to help each other rather than compete for representational capacity.

However, Mask DINO and its ancestors DINO and Mask2Former are still closed-set recognizers.
The natural next step is to combine this unified query-based formulation with open-vocabulary
recognition: replacing fixed classification heads with language-aware heads that align image regions
to text embeddings. This direction is pursued by models such as Grounding DINO, which aligns
region features with text queries through contrastive training [376], and by Grounded SAM, which
feeds such grounded boxes as prompts into powerful segmentation models like SAM [297, 524].

776 Chapter 15. Lecture 15: Image Segmentation

In the following parts we will build on Mask DINO’s unified query view to understand how these
grounded and promptable architectures extend the same ideas to text-conditioned and eventually
video-conditioned segmentation.

Summary
Mask DINO can be viewed as a culmination of the “closed-set unified recognition” line of work. It
shows that one set of Transformer queries can simultaneously support classification, bounding box
regression, and dense mask prediction; that box and mask supervision can be made to help rather
than compete; and that a single model can reach or exceed the performance of separate detection and
segmentation systems on standard benchmarks [285, 327, 330]. Conceptually, it provides a clean
template: backbone and pixel decoder build a multi-scale canvas, the Transformer core distills it into
a small set of object-centric slots, and lightweight heads turn each slot into a (c,b,m) tuple.

The next frontier, however, is to move beyond fixed taxonomies and toward open-vocabulary and
promptable segmentation. Instead of predicting a class index from a fixed label set, recent models
align image regions with text embeddings, so that a user can query the model with arbitrary phrases
such as “red backpack”, “road damage”, or “company logo”. Grounding DINO extends DETR-style
detection in this direction by replacing the closed-set classifier with a text-conditioned grounding
head [376]. Grounded SAM then composes such open-vocabulary detections with the powerful mask
decoder of SAM, using language-guided boxes as prompts for high-quality masks [297, 524]. More
recently, SAM 2 generalizes promptable segmentation to videos via a streaming memory mechanism
[513], and combinations of Grounding DINO with SAM 2 inherit both open-vocabulary grounding
and long-term temporal consistency.

In this sense, Mask DINO forms an important stepping stone. It establishes that unified, query-
based Transformers are an effective backbone for detection and segmentation in the closed-set
regime. Open-vocabulary models such as Grounding DINO, Grounded SAM, and SAM 2 can then
be seen as extending the same query-based template with language-conditioning and promptable
interfaces, allowing users to move from “predict masks for 80 classes” to “segment whatever I can
describe in natural language”, and eventually to do so consistently over time in videos. Subsequent
parts will build on this connection, showing how these newer models inherit many of Mask DINO’s
architectural ideas while relaxing its closed-set limitation.

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 777

Enrichment 15.7.4: Grounded SAM: From Text Prompts to Any-Object Masks

Grounded SAM [524] is a practical blueprint for open-world segmentation: instead of training
yet another monolithic foundation model, it composes existing expert models for open-vocabulary
detection, promptable segmentation, tagging, captioning, generative editing, and 3D human analysis.
The central idea is simple but powerful. Given an image and a text description, an open-vocabulary
detector (Grounding DINO [376]) localizes regions relevant to the text, and a promptable segmenta-
tion model (SAM [297] or SAM 2 [513]) converts those regions into precise masks. Around this
core, additional experts such as BLIP [334], the Recognize Anything Model (RAM) [782], Stable
Diffusion [531], and OSX [355] are attached to build automatic dense image annotation, controllable
image editing, and text-driven 3D human motion analysis.

Figure 15.54: Architecture and application versatility of Grounded SAM. Top: Grounded SAM
combines Grounding DINO for open-vocabulary detection and SAM for promptable segmentation,
yielding an open-vocabulary detection-and-segmentation pipeline. Middle: Coupled with BLIP and
RAM, it becomes an automatic dense image annotation system that generates captions or tags and
grounds them to image regions. Bottom: Grounded SAM enables downstream applications such
as controllable image editing with Stable Diffusion and promptable human motion analysis when
integrated with OSX. Figure reproduced from Ren et al. [524].

Motivation and context
From closed-set segmentation to open-world understanding
Classical segmentation backbones such as Mask R-CNN or Mask2Former learn on fixed label sets
(for example, the 80 COCO categories) and cannot directly handle unseen concepts.

778 Chapter 15. Lecture 15: Image Segmentation

Mask DINO [330] improved this situation by unifying detection and segmentation in a single
Transformer decoder, but it still assumes a closed vocabulary tied to the training datasets. Extending
such architectures to genuinely open-vocabulary segmentation requires either retraining on large-
scale vision–language corpora or adding a separate recognition head.

In parallel, foundation segmentation models such as SAM [297] and SAM 2 [513] took a different
path. They abandon fixed labels altogether, and instead learn a powerful promptable segmentation
model trained on billions of masks (SA-1B). Given an image and spatial prompts (points, bounding
boxes, or coarse masks), SAM returns high-quality instance masks even for rare or never-before-seen
categories. However, SAM and SAM 2 do not know which object to segment from text; they require
the user to specify prompts in image coordinates.

Open-vocabulary detectors such as Grounding DINO [376] fill the complementary gap. Ground-
ing DINO extends DETR-style detection to arbitrary phrases by aligning region features with text
embeddings, returning boxes and phrase matches for arbitrary natural language queries. Yet Ground-
ing DINO only produces bounding boxes; it does not output segmentation masks and thus cannot be
used directly for fine-grained per-pixel tasks.

Grounded SAM is motivated precisely by these complementary strengths and weaknesses. It
asks: Instead of training another huge model, can one assemble existing open-world detectors and
promptable segmenters into a single pipeline that supports open-vocabulary detection, segmentation,
and more complex tasks?

Model assembly as an alternative to unified training
The introduction of Ren et al. [524] contrasts three families of approaches for open-world vision
tasks.

• Unified models. Large, multi-task models such as UNINEXT or OFA are trained end-to-end on
a mixture of datasets to support multiple tasks in one network. They are conceptually elegant,
but require huge training compute, large curated datasets, and are difficult to maintain or
extend once deployed. Moreover, performance on specialized tasks like open-set segmentation
is often limited by compromises inherent in joint training.

• LLM-as-controller pipelines. Recent systems such as HuggingGPT and Visual ChatGPT
treat vision models as callable tools under the control of a large language model. These
systems are flexible and user-friendly, but remain bottlenecked by the availability and quality
of specialized vision tools for core tasks like segmentation.

• Ensemble foundation models (Grounded SAM). Grounded SAM chooses a middle ground:
instead of training a new foundation model or delegating everything to an LLM, it assembles
existing open-world models into a modular pipeline. Open-vocabulary detection is delegated
to Grounding DINO, pixel-accurate segmentation to SAM or SAM 2, tagging to RAM,
captioning to BLIP, generation to Stable Diffusion, and 3D pose/mesh recovery to OSX. This
decomposition retains the strengths of each expert while enabling new compound tasks like
automatic open-vocabulary dense annotation and prompt-based human motion analysis.

The next parts describe the core detection–segmentation pipeline, then detail how Grounded
SAM composes additional experts around this core.

Core pipeline: from text prompts to segmentation masks
Grounded SAM’s central component is an open-vocabulary detection–and–segmentation pipeline
that takes an image and natural language prompt as input and outputs bounding boxes, category
phrases, and corresponding masks.

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 779

Conceptually, it decomposes open-set segmentation into two steps:

1. Use Grounding DINO to perform open-set detection and obtain bounding boxes associated
with text phrases and confidence scores.

2. Use SAM (or SAM 2 / HQ-SAM variants) to perform promptable segmentation conditioned
on those boxes.

While the paper is largely qualitative and does not introduce new losses or training objectives, it
is useful to formalize this pipeline.

Notation and problem setup
Let I ∈RH×W×3 denote an RGB image and T a text prompt that may contain one or multiple phrases
describing desired targets, for example

T = “Butterfly, bag, shoes, hair, white T-shirt.”.

Grounding DINO tokenizes T into phrases {pk}K
k=1 and produces text embeddings tk. Given (I,T),

the detector predicts a set of N candidate regions

R = {(bi,si,qi)}N
i=1,

where bi is a bounding box in image coordinates, si is a scalar confidence score, and qi ∈ {1, . . . ,K}
is the index of the matched text phrase for that box. Boxes and phrase matches are obtained by
a DETR-style decoder with cross-attention between visual and textual tokens, as detailed in the
Grounding DINO enrichment.

SAM receives the image I and a set of spatial prompts {bi} and returns a collection of binary
masks {Mi} and quality scores {ŝi}, where each Mi ∈ {0,1}H×W is a segmentation mask corre-
sponding approximately to bi. Grounded SAM associates each mask Mi with the phrase pqi and the
combined score si (possibly fused with ŝi).

Formally, the pipeline implements a mapping

(I,T) 7−→ {(pqi ,bi,Mi,si)}N′
i=1,

where N′ is the number of detections remaining after thresholding and non-maximum suppression
(NMS).

Step 1: open-vocabulary detection with Grounding DINO
Grounding DINO [376] encodes the image with a Vision Transformer and the text prompt with a
BERT-style text encoder. Through a multi-stage feature enhancer and cross-modality decoder, it
produces region features aligned with text tokens and predicts:

• Bounding boxes {bi}N
i=1 in (xmin,ymin,xmax,ymax) coordinates.

• Per-box matching scores over phrases, often realized as dot products between region features
and text embeddings, followed by a sigmoid.

Grounded SAM uses the official Grounding DINO implementations for both Base and Large
backbones. Given detection outputs, it applies configurable thresholds:

• A box threshold τbox serves as a primary confidence filter, keeping only regions whose
maximal alignment score with the prompt exceeds a preset value.

780 Chapter 15. Lecture 15: Image Segmentation

• A text threshold τtext further filters the phrase associations for each surviving box, ensuring
that the predicted phrase is strongly aligned with the corresponding region.

Boxes failing either threshold are discarded, and the remaining boxes undergo standard NMS.
The result is a set of high-confidence, text-labeled boxes {(bi, pqi ,si)}N′

i=1.

Step 2: promptable segmentation with SAM
SAM [297] consists of a ViT image encoder, a prompt encoder, and a mask decoder. For Grounded
SAM, the relevant prompt type is the bounding box prompt. For each selected box bi:

1. The image I is resized and padded to 1024×1024 resolution (SAM’s default) and passed once
through the SAM image encoder to obtain an image embedding E ∈ RH ′×W ′×C.

2. The box bi is transformed to the resized coordinate frame and encoded by SAM’s prompt
encoder into a low-dimensional embedding pi.

3. The mask decoder attends to E conditioned on pi, producing several candidate masks M̃(k)
i

and corresponding mask quality scores ŝ(k)i .

In the official pipeline, only the highest-quality mask per box is retained:

Mi = M̃(k⋆)
i , k⋆ = argmax

k
ŝ(k)i .

The combined confidence for the instance can be taken as si (from Grounding DINO), ŝ(k
⋆)

i (from
SAM), or a product of both; the public code uses a simple combination that preserves the detector’s
ranking.

Step 3: merging detections and masks
Once masks are predicted for all boxes, Grounded SAM performs light-weight post-processing:

• Masks with extremely small area or low combined confidence are suppressed.
• Overlapping masks can be resolved by favoring higher-scoring instances, optionally in a

class-wise manner (that is, by phrase).
• The final output is a set of instance masks Mi with their associated phrases pqi and boxes bi,

effectively yielding open-vocabulary instance segmentation.
The following figure illustrates the resulting behavior: arbitrary phrases, including long-tail

species names, can be grounded to both boxes and masks.

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 781

Figure 15.55: Examples of Grounded SAM on diverse text prompts. Given natural language
phrases such as “Butterfly, bag, shoes, hair, white T-shirt”, “Iron Man”, or fine-grained species names
like “Zale horrida” and “Gazania linearis”, Grounded SAM detects corresponding regions (middle
column) and produces precise segmentation masks (right column). Several demonstration images
are sampled from the V3Det dataset [660]; image and figure credit: Ren et al. [524].

Pseudo-code for the core pipeline
The open-vocabulary detection–and–segmentation pipeline implemented in the official repositories
can be summarized as follows.

1 def grounded_sam(image, text_prompt,

2 box_threshold=0.25,

3 text_threshold=0.25,

4 nms_iou_threshold=0.5):

5 """

6 Core Grounded SAM pipeline:

7 open-vocabulary detection (Grounding DINO)

8 + promptable segmentation (SAM).

9 """

10

11 # 1. Open-vocabulary detection with Grounding DINO.

12 # Returns boxes (xyxy in image coords), phrase ids,

13 # and detection scores.

14 boxes, phrase_ids, det_scores = grounding_dino(

15 image=image,

16 text=text_prompt

17)

782 Chapter 15. Lecture 15: Image Segmentation

18

19 # 2. Thresholding and non-maximum suppression.

20 keep = []

21 for i, (b, pid, score) in enumerate(zip(boxes,

22 phrase_ids,

23 det_scores)):

24 if score < box_threshold:

25 continue

26 if phrase_score(pid) < text_threshold:

27 continue

28 keep.append(i)

29 boxes = boxes[keep]

30 phrase_ids = phrase_ids[keep]

31 det_scores = det_scores[keep]

32 boxes, phrase_ids, det_scores = nms(

33 boxes, phrase_ids, det_scores,

34 iou_thresh=nms_iou_threshold

35)

36

37 # 3. Single SAM image embedding.

38 sam_image = preprocess_for_sam(image) # resize+pad to 1024x1024

39 image_features = sam_image_encoder(sam_image)

40

41 # 4. For each box, run SAM mask decoder.

42 masks, mask_scores, phrases = [], [], []

43 for b, pid, score in zip(boxes, phrase_ids, det_scores):

44 box_prompt = encode_box_prompt(b, image_shape=image.shape)

45 candidate_masks, candidate_scores = sam_mask_decoder(

46 image_features, box_prompt

47)

48 # Keep highest-scoring mask for this box.

49 best_idx = candidate_scores.argmax()

50 masks.append(candidate_masks[best_idx])

51 mask_scores.append(candidate_scores[best_idx])

52 phrases.append(id_to_phrase(pid))

53

54 return boxes, masks, phrases, det_scores, mask_scores

Assembling open-world models around Grounded SAM
Beyond open-vocabulary instance segmentation, Grounded SAM serves as a hub connecting multiple
foundation models. The paper and code highlight three particularly impactful compositions, all
illustrated in Figure 15.54.

Automatic dense image annotation with BLIP and RAM
For building large-scale detection/segmentation datasets, manual annotation is expensive. Grounded
SAM integrates:

• RAM [782], a strong image tagging model trained on large-scale image–text pairs, capable of
predicting thousands of semantic tags per image.

• BLIP [334], a vision–language model for captioning and image–text understanding.
Two complementary pipelines are described.

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 783

• Tag-driven annotation (RAM + Grounded SAM). RAM predicts a list of tags {tk} for an
image. These tags are assembled into one or more text prompts T (in practice, long tag lists are
often split into several batches to respect the text encoder’s context length and avoid attention
dilution) and fed to Grounded SAM, which produces boxes and masks for each tag, yielding
dense, open-vocabulary instance annotations without any manual supervision.

• Caption-driven annotation (BLIP + Grounded SAM). BLIP generates a caption describing
the scene. An LLM or simple noun-phrase extractor can convert this caption into a list of
object phrases, again fed into Grounded SAM as the text prompt. This variant is especially
useful in settings where human-like descriptions are more natural than category lists.

From a systems perspective, Grounded SAM supplies spatial grounding (where objects are),
while RAM and BLIP supply semantic coverage (what they are). This composition is explicitly
positioned as a practical recipe for building diverse segmentation datasets without manual labeling.

Controllable image editing with Stable Diffusion
Grounded SAM also acts as a front-end for region-aware image editing with latent diffusion models
such as Stable Diffusion [531]. The high-level pipeline is:

1. Use Grounded SAM with a text prompt like “bench” to obtain a mask M for the target object.
2. Convert M into an inpainting mask (typically a binary map where 1 marks pixels to be

resynthesized) and pass (I,M), together with a new text prompt (for example, “a bench with
floral upholstery”), to Stable Diffusion’s inpainting model.

3. The diffusion model resynthesizes only the masked region while preserving the unmasked
pixels of the original scene.

Figure 15.54 (third row) demonstrates editing a dog’s bench into different textures while main-
taining consistent background and dog appearance. The key insight is that, for controllable editing,
precise region masks are more valuable than global CLIP-style text–image alignment; Grounded
SAM provides exactly such masks given natural language descriptions.

Promptable human motion analysis with OSX
Finally, Grounded SAM integrates with OSX [355], a one-stage 3D whole-body mesh recovery model
that predicts SMPL-X parameters from images. Typically, OSX operates on person crops localized
by an off-the-shelf detector. Grounded SAM replaces this detector with text-driven grounding:

1. A user query such as “the person in white clothes” is passed, together with the input frame,
into Grounded SAM, obtaining a mask and bounding box for the target person.

2. The RGB crop defined by this bounding box is fed into OSX, which estimates 3D body, hand,
and face meshes (background context inside the crop is retained, since it helps resolve pose
and camera ambiguity).

3. Downstream analytics or visualization tools operate on the reconstructed 3D motion.

This composition realizes promptable motion analysis: text specifies which subject to track,
Grounded SAM localizes and segments that subject across frames (often using SAM 2 for video),
and OSX reconstructs the 3D motion.

784 Chapter 15. Lecture 15: Image Segmentation

Architecture and implementation details
Although Grounded SAM introduces no new neural architectures, implementation choices signifi-
cantly affect usability and performance.

Backbones and model variants
The paper and code support several detector–segmenter combinations.

• Grounding DINO variants. Experiments primarily use Grounding DINO-Base and Ground-
ing DINO-Large backbones, which differ in depth and width of the visual backbone (often
Swin transformers) and the text encoder configuration.

• Segmentation backbones. For segmentation, SAM-H (ViT-H backbone) is the default, but the
public demos also support SAM-B and SAM-L, HQ-SAM (a high-quality mask-refinement
variant of SAM), and efficient SAM versions for faster inference.

• Grounded HQ-SAM. “Grounded HQ-SAM” [285] denotes the configuration combining
Grounding DINO-Base with HQ-SAM-H, used in some experiments to probe the effect of
segmentation quality.

Preprocessing and coordinate handling
Coordinate consistency between Grounding DINO and SAM is crucial.

• The input image is read at its original resolution, and Grounding DINO’s preprocessing stack
(typically resizing the shorter side and normalizing) is applied before detection.

• Detected bounding boxes are output either in the resized image frame or in normalized [0,1]
coordinates; they must first be projected back to absolute coordinates on the original image.

• Before segmentation, the original image is resized and padded to SAM’s square input size
(for example, 1024×1024), and the boxes are then rescaled and shifted into this coordinate
system, preserving the spatial correspondence between boxes and content.

The official repositories hide these details behind helper functions, but for reproducibility in
research code it is important to respect this two-stage rescaling.

Thresholds and hyperparameters
Default hyperparameters in the demo scripts include:

• Box threshold τbox in the range [0.25,0.5], controlling detector confidence.
• Text threshold τtext typically around 0.2–0.25, filtering weak phrase–region alignments.
• NMS IoU threshold around 0.5.
• Maximum number of detections per image, often N′ ≤ 100, to keep segmentation overhead

manageable.
In practice, users adjust these according to their application: lower thresholds for recall-oriented

data annotation, higher thresholds for interactive editing.

SAM vs. SAM 2
The original paper [524] and the initial repositories focus on image-level SAM, but subsequent
extensions (Grounded-SAM-2) integrate SAM 2 [513]. In this configuration:

• Grounding DINO is typically run only on key frames to obtain initial boxes.
• SAM 2’s streaming memory tracks and updates masks across subsequent frames, using the

initial boxes and masks as prompts.
This design preserves the text grounding benefits of Grounding DINO while exploiting SAM 2’s

efficient video mask propagation.

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 785

Experiments and analysis
SegInW zero-shot benchmark
The primary quantitative evaluation in the paper is on SegInW (Segmentation in the Wild), a
challenging zero-shot benchmark that unifies 25 segmentation datasets covering diverse domains and
label spaces. SegInW reports mean average precision (mAP) across datasets without any training on
SegInW itself.

Grounded SAM is evaluated as a plug-in on top of Grounding DINO and SAM variants, and
compared to strong open-world segmentation baselines including X-Decoder, ODISE, OpenSeeD,
SAN-CLIP, and UNINEXT. The summary results reported in Ren et al. [524] are:

• A configuration with Grounding DINO-Base and SAM-H (denoted “Grounded-SAM (B+H)”)
achieves 48.7 mean AP, substantially outperforming unified segmentation models such as
OpenSeeD-L (36.7 mean AP) and UNINEXT-H (42.1 mean AP), and also improving over
SAN-CLIP-ViT-L (41.4 mean AP).

• Replacing SAM-H with HQ-SAM-H (“Grounded-HQ-SAM (B+H)”) further improves mean
AP to 49.6, highlighting that segmentation quality can be a limiting factor once detection and
text grounding are strong.

These numbers underscore a central message of Grounded SAM: composing specialized open-
world detectors and segmenters can outperform complex unified models, even without joint training.

Qualitative analysis on long-tail categories
Beyond SegInW, the paper presents numerous qualitative examples, some of which are shown in
Figure 15.55. A notable aspect is robustness to long-tail and fine-grained categories, for example:

• Botanical and entomological species such as “Gazania linearis” and “Zale horrida”.
• Compositional or attribute-rich phrases such as “white T-shirt”, “yellow flower”, or “Iron Man”

(referring to a toy figure).
Because Grounding DINO is trained on large-scale grounding datasets and benefits from CLIP-

like text–image alignment, it can localize such phrases even when segmentation datasets do not
contain corresponding labels. SAM then refines localization to pixel-level masks, yielding high-
quality visualizations.

Effect of segmentation backbones
Although the paper does not present extensive ablation tables, comparisons across segmentation
backbones (SAM vs. HQ-SAM) effectively act as an ablation on the segmentation component.

• Grounded-HQ-SAM consistently improves or matches Grounded-SAM on SegInW, especially
on datasets where boundary precision is critical.

• This suggests that, once text grounding and detection are sufficiently strong, downstream
performance is largely bottlenecked by mask quality, and improvements in SAM-like models
translate directly into better open-world segmentation.

This observation is important for downstream practitioners: upgrading the segmentation back-
bone can yield measurable gains without modifying the detection or training pipeline.

786 Chapter 15. Lecture 15: Image Segmentation

Limitations and the case for a unified model
Grounded SAM is intentionally a systems paper, focusing on model assembly rather than new
architectures. This makes it an excellent practical recipe, but it also exposes structural bottlenecks that
become increasingly problematic as one pushes toward real-time, large-scale, open-set segmentation.
These bottlenecks point directly toward the need for a unified foundation model such as SAM 3,
which will be introduced next.

Redundant encoders and runtime cost
A central limitation of Grounded SAM is computational redundancy. Because the detector (Ground-
ing DINO) and the segmenter (SAM or SAM 2) are distinct models with separate weights, the image
must be processed multiple times.

• Double encoding. The pipeline typically runs a large visual backbone for Grounding DINO
(for example, a Swin-L or ViT-based encoder) to produce open-vocabulary box proposals, and
then runs a second heavy backbone in SAM (for example, ViT-H) to produce mask features.
Even though both stages extract high-level visual features, there is no shared computation
between them, roughly doubling latency and memory usage compared to a single-encoder
design.

• Scaling to large images and video. For high-resolution images or video streams, this double
encoding becomes especially expensive: every frame must be encoded by the detector and
then again by the segmenter. Even with SAM 2’s efficient memory mechanism, the need to
invoke a separate open-vocabulary detector on key frames remains a significant runtime and
deployment cost.

For applications that need interactive performance, deployment on edge devices, or long video
sequences, this two-stage architecture is therefore a poor match. A natural next step is to design
a single shared encoder whose features serve both open-vocabulary localization and pixel-level
segmentation, as pursued by SAM 3.

Boxes as a lossy interface between text and masks
Grounded SAM passes information between the text-conditioned detector and the segmenter only
through bounding boxes. This design is simple and modular, but it introduces an information
bottleneck that limits both accuracy and the expressiveness of open-set segmentation.

• Heuristic coupling and thresholds. The interface between models is governed by hand-
tuned thresholds such as the box score threshold τbox and text score threshold τtext, plus
non-maximum suppression. These hyperparameters control which detections are forwarded to
SAM, but they are not learned jointly with the segmentation objective, and there is no gradient
flow from masks back to text embeddings or detector features.

• Imperfect proxies for shape. Bounding boxes are a coarse, axis-aligned approximation to
object extent. For thin, elongated, occluded, or overlapping objects, boxes may cover large
background regions or multiple instances. SAM is then asked to infer the intended mask
from a noisy, sometimes ambiguous box prompt that was not optimized for SAM’s training
distribution, leading to suboptimal boundaries or missed instances.

From the perspective of open-set segmentation, this means that text grounding and mask pre-
diction live in separate spaces: text directly influences box proposals, but not the mask decoder. A
unified model such as SAM 3 is motivated to let text tokens interact directly with segmentation
tokens, avoiding boxes as the sole communication channel.

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 787

Limited learning of open-set segmentation behavior
Because Grounded SAM assembles pre-trained components without end-to-end optimization, its
ability to learn better open-set segmentation behavior is constrained.

• Frozen experts and no joint training. Grounding DINO, SAM, RAM, and BLIP are typically
used in frozen form. Errors from later stages (such as poor masks) cannot drive improvements
in the detector or text encoder, and dataset-specific supervision cannot be used to jointly refine
all modules in a coherent way.

• Open-vocabulary only in detection. Open-vocabulary capability resides almost entirely in
Grounding DINO’s text–box matching. SAM’s segmentation head remains class-agnostic
and is never explicitly aligned with text embeddings. As a result, the system behaves as an
open-vocabulary detector followed by a generic segmenter, rather than a genuinely text-aware
open-set segmentation model.

A unified architecture can instead learn a single multi-modal representation in which detection
queries, segmentation tokens, and text embeddings are trained together, closing this gap.

Toward SAM 3: fusing detection, text, and segmentation
In summary, Grounded SAM demonstrates that carefully assembling existing open-world detectors,
segmenters, taggers, captioners, generative models, and 3D estimators can yield powerful open-
vocabulary workflows without retraining gigantic unified models. At the same time, its double-
encoder design, reliance on bounding boxes as a lossy interface, and lack of joint optimization limit
both runtime efficiency and the quality of open-set segmentation, especially at scale.

These observations motivate the next step in this sequence of enrichments: SAM 3, covered in
the next subsection. Rather than gluing together a detector and a segmenter, SAM 3 is designed as
a single foundation architecture that unifies text grounding, region localization, and pixel-precise
segmentation within one end-to-end trainable model, addressing many of the structural limitations
highlighted above.

788 Chapter 15. Lecture 15: Image Segmentation

Enrichment 15.7.5: SAM 3: Segment Anything with Concepts
Motivation: from visual prompts to concepts
From promptable visual segmentation to concept-level segmentation
The original Segment Anything Model (SAM) [297] introduced promptable visual segmentation
(PVS): given an image and a visual prompt (points, boxes, or masks), the model returns a high-quality
mask for the object indicated by that prompt. SAM 2 [513] extended this idea to video, adding a
memory-based tracker that propagates masks across frames while still relying on geometric prompts
to specify which object to follow. In both cases, prompts are spatial and instance-specific: the user
must explicitly enumerate the targets by providing a separate local prompt for each object of interest,
and the model only segments objects that have been individually prompted, remaining agnostic to
their semantic categories.

Mask DINO [330] and other DETR-style models unified detection and segmentation under a
fixed label vocabulary, but remained fundamentally closed-set: they predict over a pre-defined list of
categories. Grounded SAM [524] partially broke this limitation by composing an open-vocabulary
detector (Grounding DINO [376]) with SAM or SAM 2. Text prompts such as “a red car” are first
converted to bounding boxes, which are then handed to SAM for mask prediction. This composite
design enables open-vocabulary segmentation but keeps recognition (text-to-box) and segmentation
(box-to-mask) as separate systems, with no single model deciding both whether a concept is present
and how it should be segmented. It also inherits several practical drawbacks: two large models are
executed sequentially (detector then segmentor), increasing latency and memory footprint; there
is no joint optimization of box prediction and mask quality, so errors in the detector (e.g., missed
or mis-localized boxes, confidence miscalibration) propagate directly into the segmentation stage;
and the detector is trained to produce boxes that are optimal for detection metrics rather than for
downstream mask refinement.

SAM 3 [65] is designed to close this gap by changing the underlying objective. It introduces
Promptable Concept Segmentation (PCS), where the input is a concept prompt and the default output
is all instances of that concept, segmented and (for video) tracked with persistent identities. Unlike
PVS—which assumes a user has already selected a specific instance to segment and requires explicit
spatial enumeration of each target—PCS must first decide whether the concept is present anywhere in
the media and then discover and localize every matching instance from a single semantic command.
Crucially, this is done within a single model that jointly learns recognition and segmentation: the
same Perception Encoder backbone and DETR-style decoder are optimized end-to-end for concept
presence, localization, and mask quality, avoiding the error compounding and objective mismatch of
separated detector+segmentor pipelines. In practice, this does not preclude single-object workflows:
users can either fall back to PVS-style visual prompts (points, boxes) or run PCS once and then select
a single predicted instance to refine and track as needed. Concept prompts are defined as either:

• Short noun phrases. Simple text such as “striped cat”, “round cell”, or “hard hat”, restricted
to a noun plus optional modifiers.

• Image exemplars. One or more bounding boxes on example instances, each marked as
positive or negative.

• Text–image combinations. A noun phrase plus positive and negative exemplars to refine or
disambiguate the concept.

In PCS, the model must decide both whether the concept is present at all and, if so, which pixels
and object instances match the prompt across the entire image or video.

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 789

Figure 15.56: Promptable visual segmentation vs. promptable concept segmentation in SAM 3.
The left side illustrates promptable visual segmentation (PVS), where SAM and SAM 2 segment a
single object per prompt using clicks, boxes, or masks. The right side shows SAM 3’s promptable
concept segmentation (PCS), which segments all instances of a concept specified by a short noun
phrase, image exemplars, or their combination. Figure reproduced from [65].

The comparison in Figure 15.56 highlights two regimes.
• Promptable Visual Segmentation (PVS). A user clicks on a particular object (e.g., a cat or a

whale), and the model returns a mask for that specific instance, which SAM 2 can then track
across a video; additional instances require additional, explicitly enumerated prompts.

• Promptable Concept Segmentation (PCS). A user issues a concept prompt like “a striped
cat” or “a round cell”. SAM 3 segments all instances matching that concept in an image or
video, and assigns consistent instance IDs over time. In a downstream single-object setting,
one of these instances can then be selected and treated as the target of interest.

Ambiguity and the need for new data and metrics
Open-vocabulary PCS is inherently ambiguous. Simple noun phrases can be:

• Polysemous. Phrases like “mouse” may refer to an animal or a computer device depending on
context.

• Subjective or vague. Adjectives such as “cozy” or “large” depend on human judgment.
• Boundary-ambiguous. Concepts like “mirror” may or may not include the frame; “toilet roll

holder” may or may not include the roll itself.
• Occluded or blurred. Partial visibility complicates deciding whether an instance should be

included and where its boundaries lie.
Standard closed-vocabulary benchmarks deliberately avoid much of this messiness. Closed-vocabulary
datasets (e.g., LVIS) mitigate these issues by carefully curating class definitions and mask guidelines.
In contrast, SAM 3 targets any simple noun phrase that can be grounded visually, which requires:

• A large, diverse dataset. With millions of unique noun phrases and high-quality instance
masks across images and videos.

• Evaluation protocols. That admit multiple valid interpretations of the same phrase.
• Model components. Specifically designed to decouple recognition (“is this phrase present?”)

from localization (“where are its instances?”) and to handle ambiguous cases.

790 Chapter 15. Lecture 15: Image Segmentation

To this end, SAM 3 introduces a large-scale Segment Anything with Concepts (SA-Co) dataset
and a classification-gated F1 metric (cgF1) tailored for PCS, discussed below in the Experiments part.
The following figure previews qualitative improvements over a strong open-vocabulary baseline.

Figure 15.57: Qualitative comparison of open-vocabulary segmentation. Examples from the
SA-Co benchmark where SAM 3 improves over OWLv2 [432]. For prompts such as “a white flower”,
“young plant”, or “colander”, SAM 3 more accurately identifies the intended objects, handles fine
detail, and avoids common confusions (e.g., masking the pan instead of the colander). Figure
reproduced from [65].

Method: promptable concept segmentation
Task inputs and outputs
Formally, SAM 3 solves the PCS task defined in Section 2 of the paper [65]: given a concept prompt
and a piece of visual media, it must decide whether the concept is present and, if so, detect, segment,
and (for videos) track all matching instances.

Inputs.
• Media. A single RGB image or a short video clip.
• Concept prompt. A global description of the target concept, applied to the entire image or

video. It can take any of the following forms:
– Text-only. A simple noun phrase (NP), such as “striped cat”, “round cell”, or “hard hat”.
– Exemplar-only. One or more image exemplars, given as bounding boxes labeled positive

or negative, defining the concept purely in visual terms.
– Text + exemplars. A noun phrase combined with positive/negative exemplars to refine

or disambiguate the concept.
Unlike PVS prompts, which are tied to a specific instance (a particular click or box), PCS
prompts define the concept and ask the model to find all instances that match it.

Outputs.
• Instance-level outputs. A set of object hypotheses for the concept, each with a bounding

box, an instance mask, and a confidence score (used for cgF1 evaluation and downstream
selection).

• Semantic output. A binary segmentation map indicating, for each pixel, whether it belongs
to any instance of the prompted concept (obtained by aggregating instance masks).

• Video tracks. For videos, a collection of spatio-temporal masklets: sequences of masks with
persistent identities across frames, representing how each instance of the concept moves and
evolves over time.

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 791

Architecture and implementation details
High-level data flow from prompts to outputs
The previous paragraphs defined PCS at the interface level: given a media input (image or short
video) and a concept prompt, SAM 3 returns instance-level hypotheses, semantic masks, and (for
video) temporally consistent masklets. Internally, these outputs are produced by a tightly coupled
but modular architecture:

• Perception Encoder (PE). A shared vision backbone that extracts a multi-scale feature
pyramid for each frame.

• Prompt-conditioned DETR-style detector. Consumes PE features and prompt tokens (text
and exemplars) to predict concept-specific queries, boxes, and masks.

• Global presence head. Decides whether the concept exists anywhere in the input and gates
the local query scores.

• SAM 2-style tracker. Propagates masklets over time using PE features and a memory bank,
periodically re-anchored by the detector.

• Training pipeline and data engine. Jointly shape the PE, detector, and tracker, and provide
large-scale SA-Co supervision tailored to PCS.

At inference time for an image:
• PE. Produces a multi-scale feature pyramid from the input image.
• Prompt encoders. Turn the concept prompt (text and optional exemplars) into a sequence of

tokens.
• Detector. A fusion encoder and DETR-style decoder output query-wise scores, boxes, and

masks.
• Presence head. Gates these scores to yield calibrated instance-level and semantic predictions.

For videos, the same detector runs per frame while the tracker maintains and updates masklets using
a memory bank and periodic re-prompting from the detector.

Figure 15.58: Overview of the SAM 3 architecture. A shared Perception Encoder (PE) backbone
feeds both a DETR-style concept detector (yellow, “new in SAM 3”) and a SAM 2-style tracker
(blue). The detector consumes vision features and prompt tokens (text and exemplars) to find concept
instances, while the tracker propagates masklets over time using a memory bank. Their outputs
are merged to produce concept masks and IDs for each frame. The “Image Encoder” block in the
diagram corresponds to the frozen, spatially aligned branch of the shared Perception Encoder (PE)
backbone. Figure reproduced from [65].

The next paragraphs first detail the Perception Encoder backbone that powers the system, then
describe how its features are consumed by the Detector, Presence head, and Tracker, and finally
summarize the Training stages and Data pipeline that make this unified PCS design effective.

792 Chapter 15. Lecture 15: Image Segmentation

The Perception Encoder (PE)
Motivation: beyond CLIP for dense prediction
Standard contrastive vision–language models such as CLIP [498] excel at zero-shot image-level
classification and retrieval, but they are poorly suited to dense prediction tasks. The CLIP objective
compresses an entire image into a single global vector, and the network is explicitly trained to discard
spatial detail that is not needed to decide which caption matches the image. This is ideal for global
recognition, but problematic for tasks like segmentation and tracking that require precise boundaries
and temporally stable spatial structure.

Conversely, dense models such as SAM 2 [513] are optimized for geometry, not semantics;
they produce excellent masks given geometric prompts, but they do not natively understand open-
vocabulary text. Grounding-style models partially bridge this gap by pairing a CLIP-like encoder
with a detector, but they still treat global semantics and dense geometry as largely separate modules.

The Perception Encoder (PE) [48] is designed as a “better CLIP” that is directly usable for dense
and video tasks. It provides a single large vision trunk whose representations are:

• Semantically expressive. Capable of interpreting open-vocabulary text prompts via con-
trastive vision–language pretraining.

• Spatially precise. Preserving pixel-level geometry and object boundaries required for mask
decoding.

• Temporally stable. Robust under frame-to-frame variations, which is essential for tracking.
This combination is particularly attractive for SAM 3: instead of gluing together a CLIP-like semantic
encoder and a separate dense backbone, SAM 3 can share one alignment-tuned visual encoder across
concept detection, segmentation, and tracking.

Two-stage design: PE Core and alignment-tuned variants
Conceptually, PE provides a single high-capacity visual trunk that is trained once and then adapted
to two usage regimes:

• PE Core: a contrastively trained vision backbone used as the starting point.
• Alignment-tuned variants: PE Language for multimodal language modeling and PE Spatial

for dense prediction and tracking.
PE follows a two-stage training process:

1. Stage 1: Contrastive vision–language pretraining (PE Core). Starting from an OpenCLIP
ViT-L/14 baseline, PE Core is trained on large-scale image and video data with a CLIP-style
contrastive objective. For each image x and paired text y, a vision encoder fθ and a text
encoder gφ produce global embeddings, and a temperature-scaled InfoNCE loss encourages
matched pairs to have high cosine similarity and mismatched pairs to be far apart. Video clips
are treated as additional views with temporal augmentations and shared captions.

2. Stage 2: Alignment tuning from intermediate layers. After contrastive pretraining, PE
Core’s intermediate layers are probed. Lightweight heads are then trained on top of frozen (or
lightly tuned) intermediate features to specialize the encoder for:

• Language alignment (PE Language). Features are projected into a multimodal LM
token space so that downstream LMs can “read” them as visual tokens (e.g., for OCR,
captioning, VQA).

• Spatial alignment (PE Spatial). Features are aligned to dense prediction teachers
(including SAM 2.1) so that final-layer tokens remain geometrically precise while
retaining strong semantics.

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 793

The following figure summarizes this framework: the left block shows contrastive pretraining;
the middle illustrates frozen-feature extraction from intermediate layers; and the right side shows the
two specialized heads, PE Language and PE Spatial.

Figure 15.59: Perception Encoder (PE) framework. PE first undergoes large-scale contrastive
pretraining on images and videos to produce a unified, high-capacity vision backbone (PE Core).
Alignment tuning repurposes intermediate representations via frozen-feature extraction to produce
specialized variants. PE Language focuses on semantic alignment for OCR, captioning, and Q&A;
PE Spatial prioritizes geometric precision for detection, segmentation, depth, and tracking. Figure
taken from [48].

Promptable Concept Segmentation (PCS) places three simultaneous demands on the visual
backbone:

• Semantically expressive. The model must interpret short noun phrases and relate them to
visual content.

• Spatially precise. The model must preserve fine-grained geometry to decode masks and
boundaries.

• Temporally stable. The model must support tracking of masklets across video sequences
without drift.

PE’s two-stage design and dual alignment pathways are specifically constructed to meet these
requirements, enabling SAM 3 to unify open-vocabulary reasoning, dense segmentation, and robust
tracking.

Stage 1: PE Core — contrastive pretraining and robust features
PE Core uses a CLIP-style contrastive objective but with a heavily refined training recipe aimed at
robustness and transfer, rather than just ImageNet accuracy. At a high level, PE Core encodes an
input image x into a grid of patch tokens

z = fθ (x) ∈ RH ′W ′×D,

and an attention-pooling block produces a global embedding h(x) ∈ RD from these tokens. Paired
text y is encoded by a separate text tower into t(y) ∈ RD, and a symmetric contrastive loss is applied
over (h(x), t(y)) across the batch. For video, temporal crops, frame sampling, and shared captions
are used to create additional positive pairs.

The evolution of the PE Core recipe is shown in the following figure.

794 Chapter 15. Lecture 15: Image Segmentation

Figure 15.60: Evolution of the PE pretraining recipe. Ablations of each training improvement over
an OpenCLIP baseline. Inner bars show robustness (average over six benchmarks); outer bars show
ImageNet top-1 accuracy. Several steps—notably progressive resolution training, LAMB optimizer,
tuned augmentation, and masked regularization—significantly boost robustness without increasing
compute. Figure taken from [48].

The main modifications, and how they are implemented, are:
• Progressive resolution. Training begins at low resolution (e.g., 128×128) and progressively

increases to high resolution (e.g., 448×448). Early in training, smaller images reduce FLOPs
and stabilize optimization; later, higher resolutions restore fine detail, improving downstream
dense prediction without requiring a full high-resolution schedule from scratch.

• Large-batch optimization with LAMB. Contrastive learning benefits from very large batch
sizes (tens of thousands of examples) to provide many hard negatives. However, standard
optimizers such as AdamW struggle at this scale. PE therefore uses LAMB (Layer-wise
Adaptive Moments optimizer for Batch training), which computes for each layer l a trust ratio

rl =
∥wl∥2

∥ĝl∥2 + ε
,

where wl are the weights and ĝl is the Adam-style preconditioned gradient. The actual update
is then scaled by rl , so layers with small weights and large gradients receive smaller effective
steps and vice versa. This layer-wise normalization lets the optimizer safely scale to very large
batch sizes without divergence, improving the quality of the contrastive negatives.

• 2D RoPE positional embeddings. Instead of learned absolute positional embeddings tied to
a specific resolution, PE uses 2D Rotary Positional Embeddings (RoPE) applied to query/key
vectors in attention. This encodes relative positions in a resolution-agnostic way, improving
robustness to crops, rescaling, and aspect-ratio changes.

• Attention pooling. PE replaces the standard ViT/CLIP strategy of using a single learned
CLS token for global aggregation with a dedicated attention-pooling module (AttnPool) [48,
758]. This module summarizes the entire spatial feature map after the backbone has finished
processing it, rather than forcing global aggregation to happen inside the backbone itself.

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 795

How global pooling normally works in ViT/CLIP. In a standard ViT, we prepend a learnable
CLS token c0 to the input sequence. During each of the L transformer layers, this CLS token
participates in full self-attention:

cℓ = SelfAttnℓ(cℓ−1,Zℓ−1), ℓ= 1, . . . ,L,

so by the end of the network, cL has absorbed information from every patch. However, this
mechanism has two drawbacks:

– Global mixing leaks into the backbone. Since CLS attends to patches at every layer,
patches also attend back to CLS. This gradually spreads global context into every patch
token. Spatial tokens lose their locality and become “washed out,” which is harmful for
precise mask boundaries.

– A single token must represent everything. The network is forced to compress semantics
into one vector cL through L layers of coupled attention, which makes optimizing both
global semantics and local structure simultaneously difficult.

How PE’s attention pooling works and why it is different. Instead of using the CLS token
as an in-network aggregator, PE treats the backbone purely as a spatial feature extractor. The
ViT backbone outputs a grid of spatial tokens:

Z = {z1, . . . ,zN} ∈ RN×D, N = H ′W ′.

These tokens remain sharply localized because no CLS token is attending to them during
backbone computation.
Only after the final backbone block, PE attaches a lightweight Transformer called the AttnPool
module. It introduces a small set of “query” tokens (often just a single learnable vector q) that
attends once over the frozen spatial features:

Q = q, K = Z, V = Z,

c̃ = Softmax
(

QK⊤√
D

)
V.

Thus, c̃ is a content-weighted average of all patches. Key differences from standard CLS:
– Backbone stays purely spatial. No global token is mixed inside the ViT layers, so patch

tokens maintain strong locality and detailed geometry—crucial for SAM3’s mask head
and tracker.

– Global aggregation happens only at the end. The global representation h(x) is com-
puted by only one or a few AttnPool layers, not by polluting the entire backbone with
global context.

– Pooling is learned, not fixed. Unlike average pooling or CLS propagation, the attention
weights let the model dynamically emphasize concept-relevant regions—for example
focusing on a dog’s head when the query is “striped dog”.

Finally, the pooled vector is defined as:

h(x) = c̃.

796 Chapter 15. Lecture 15: Image Segmentation

Why this is beneficial for SAM 3. SAM 3 needs a backbone that can serve two roles
simultaneously:

1. Provide high-resolution, local, spatially faithful features for mask decoding and
tracking.

2. Provide a global semantic embedding compatible with CLIP-style contrastive pretrain-
ing and concept presence prediction.

A CLS-through-the-backbone design forces global semantics into every patch, making spatial
features less precise. AttnPool solves this tension:

– Spatial tokens stay sharp — ideal for segmentation.
– Global semantic vector h(x) is produced cleanly at the end — ideal for text–image

matching and presence classification.
This late, dedicated pooling step is one of the reasons the Perception Encoder succeeds
as a unified backbone for both global vision–language alignment and dense prediction, a
requirement at the heart of SAM 3.

• Masked regularization. Standard CLIP training only supervises the final global embedding
h(x), so the encoder can in principle rely on a few discriminative regions and ignore the rest
of the image. To encourage PE Core to build coherent, spatially structured features at every
location, the authors add a MaskFeat-style regularizer [48, 687]. For a small fraction of the
batch (roughly 1/16), they create a heavily masked view xmask by dropping a large subset of
patches. Both the original image x and the masked image xmask are passed through the same
encoder, producing token grids

Zfull = {zfull
i }N

i=1, Zmask = {zmask
i }N

i=1.

For all visible positions i (patches that were not masked out in xmask), a token-level alignment
loss is added:

Lmask =
1
|V | ∑i∈V

(
1− cos

(
zfull

i , zmask
i

))
,

where V denotes the set of visible patches and cos(·, ·) is cosine similarity. Importantly,
gradients from the CLIP loss are not backpropagated through the masked branch, so the
regularizer shapes token-level features without perturbing the main contrastive objective [48].
Intuitively, this forces each visible patch in xmask to predict the feature it would have had in
the full image, encouraging the network to model object extent, context, and continuity rather
than relying on a few texture glimpses. For SAM 3, this is exactly the regime encountered
in practice: objects are frequently occluded, partially out of frame, or blurred over time.
Masked regularization trains PE to produce stable, informative tokens even under such partial
observations, which directly benefits PE Spatial’s dense features and, downstream, the SAM 3
detector and tracker.

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 797

Intermediate-layer hypothesis: where do dense features live?
A key empirical observation in the PE paper is that the features best suited for dense prediction do
not reside in the final transformer layer. During contrastive pretraining, the top layers are strongly
optimized for global alignment with text: they pool over space, discard fine spatial details, and
become highly specialized for image-level semantics.

Intermediate layers, by contrast, have:
• Sufficiently high-level semantics to recognize objects and concepts.
• Still-preserved spatial structure, since they have not yet fully collapsed spatial information

into a single global representation.
The following figure compares frozen features from several large vision models, probing each

layer on semantic tasks (captioning) and spatial tasks (self-supervised detection/segmentation).

798 Chapter 15. Lecture 15: Image Segmentation

Figure 15.61: Intermediate layer analysis across models. Frozen features from different layers
are evaluated on a captioning task (left), spatial self-supervision (middle), and PE’s own contrastive
pretraining recipe (right). CLIP-like models excel at semantic tasks in deeper layers but underperform
on spatial tasks; DINO-like models excel at spatial structure but are weaker on language-aligned
tasks. Intermediate layers of PE Core perform well on both, motivating alignment tuning that
leverages these intermediate representations rather than only the final projected features. Figure
taken from [48].

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 799

The authors find that a single late-intermediate layer (for example, layer L near the top of the
stack) strikes the best trade-off: earlier layers are too low-level, and the final layer is too spatially
collapsed. One might imagine aggregating many layers (as in FPNs), but this increases memory
and complexity; instead, PE selects a single strong intermediate layer and, when needed, builds a
lightweight multi-scale pyramid from it. In SAM 3, this design is reflected by:

• Extracting tokens from a chosen intermediate layer of the frozen PE backbone.
• Passing the tokens through a shallow FPN-style adapter to obtain the multi-scale features

required by the detector and tracker.
This avoids re-training the entire massive backbone while still providing dense, semantically rich
feature maps.

Stage 2: alignment tuning and layer selection
Once PE Core is trained, it serves as a generic vision encoder whose layers exhibit different strengths.
A key empirical finding in the PE paper [48] is that the final layer of a contrastive model is often not
the best compromise for downstream tasks: it is highly optimized for global text–image matching,
but tends to over-compress spatial detail. In contrast, intermediate layers can provide a better balance
between semantics and geometry.

To make this precise, the authors perform a layer-wise probing experiment: for each encoder
block l, they freeze PE Core, attach a small task head on top of the features z(l)(x), and mea-
sure performance on semantic tasks (captioning, OCR, VQA) and spatial tasks (self-supervised
detection/segmentation). This reveals two “sweet spot” depths:

• A late–intermediate layer Llang (e.g., block 47 in a 50-block ViT) that performs best on
language-aligned tasks.

• An earlier layer Lspatial (e.g., block 41) that preserves more spatial structure and performs best
on dense prediction tasks.

Stage 2, alignment tuning, then constructs two specialized variants—PE Language and PE Spa-
tial—by branching from these layers and fine-tuning lightweight heads (and, in the spatial case, the
top of the backbone) under regime-specific objectives.

PE Language: visual tokens for multimodal LMs. The PE Language variant adapts PE
Core so that its features can be consumed as tokens by a multimodal large language model (MLLM),
while preserving the benefits of contrastive pretraining.

• Layer selection and architecture. Instead of using the very last layer of PE Core, the authors
branch from the late–intermediate “language-optimal” layer Llang (e.g., block 47), discarding
a few top blocks that are overly specialized for retrieval. A small vision projector (a 2-layer
MLP) maps the tokens z(Llang)(x) into the MLLM’s embedding space, forming a sequence of
visual tokens. These are concatenated with text tokens and fed into an unfrozen Llama-style
MLLM.

• Training data and objective. PE Language is trained on mixed multimodal data: captioning
corpora, OCR-centric datasets, and vision–language QA. The loss is the standard autoregres-
sive next-token prediction on the text side. Gradients backpropagate through the language
model, the vision projector, and the top of the vision encoder, aligning the visual tokens with
the MLLM’s internal language space.

800 Chapter 15. Lecture 15: Image Segmentation

• Effect of alignment. After alignment tuning, a new layer-wise probe shows that, for the PE
Language variant, the final layer now becomes the best-performing layer on language tasks.
In other words, alignment tuning “lifts” the strong intermediate representation up to the end of
the network while preserving the CLIP-trained trunk.

The resulting PE Language encoder is semantically aligned with text and well suited for tasks
where dense geometry is less critical but precise language understanding (e.g., OCR, captioning,
VQA) is paramount.

PE Spatial: dense, geometry-aware features for SAM 3. The PE Spatial variant is tailored
for dense prediction and is the one used by SAM 3. Its goal is to endow the final-layer tokens
with the sharp boundaries and spatial coherence required for segmentation and tracking, without
sacrificing the semantics inherited from PE Core.

• Layer selection. PE Spatial branches from the earlier “spatial-optimal” intermediate layer
Lspatial of PE Core (e.g., block 41), where the representation still closely tracks object layout
and fine geometry. This layer acts as a semantic teacher: its frozen features encode which
regions correspond to which concepts, but they are not yet trained to produce explicit masks.

• Geometric teacher: SAM 2.1 masks. SAM 2.1 is a higher-accuracy variant of SAM 2,
trained with stronger augmentation and improved decoders to maximize boundary fidelity.
It has no language or concept modeling, but produces exceptionally clean, high-frequency
mask logits that capture thin structures and precise edges that CLIP-style contrastive models
typically miss.
For each training image x, the authors run SAM 2.1 offline with a dense grid of point prompts
(typically hundreds of points spread over the image). For each point, SAM 2.1 outputs one or
more mask logits; stacking these over all points yields a 3D tensor

mSAM2.1(x) ∈ RK×H×W ,

where K indexes the point-prompts / mask slots, and each slice m(k)
SAM2.1(x) ∈ RH×W is a logit

mask that is sharply aligned to object boundaries. These masks form a dense, purely geometric
teacher: they encode where objects begin and end, including thin structures and occlusion
boundaries, but carry no text or concept labels.

• Student head and dual distillation objective. Starting from PE Core, they fine-tune the
upper part of the encoder and attach a shallow dense head to produce a matching tensor

mspatial(x) ∈ RK×H×W

from the PE Spatial tokens. The dense head is trained to imitate SAM 2.1’s grid of masks for
the same set of prompts (same grid, same K), so that for each mask slot k and each pixel (u,v),
the student is asked to reproduce the teacher’s logit:

m(k)
spatial(x)[u,v]≈ m(k)

SAM2.1(x)[u,v].

At the same time, a global pooling head on top of PE Spatial is regularized to stay semantically
close to PE Core at depth Lspatial. Concretely, for each image x they minimize

Lsem = λsem
∥∥hspatial(x)−h(Lspatial)

core (x)
∥∥2

2, Lgeom = λgeom LKD
(
mspatial(x),mSAM2.1(x)

)
,

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 801

where:
– h(Lspatial)

core (x) is a global summary (e.g., attention-pooled) from the frozen intermediate
teacher layer Lspatial of PE Core.

– hspatial(x) is the corresponding summary from the PE Spatial student.
– mspatial(x) are dense mask logits predicted from PE Spatial tokens via the shallow decoder.
– LKD is a per-pixel distillation loss (e.g., cross-entropy or KL divergence) that compares

teacher and student logits for every mask slot k and every pixel (u,v).
Intuitively, Lgeom forces the student to reproduce SAM 2.1’s very sharp decision boundaries
everywhere in the image: along object edges, across thin structures, and in occluded regions.
To succeed, the PE Spatial tokens must organize themselves so that nearby pixels on the
same object map to similar features and pixels across boundaries map to clearly separated
features. Compared to the original CLIP-only supervision (which only constrains the global
embedding), this token-level distillation injects detailed geometric structure into the backbone.

Through this dual distillation, PE Spatial inherits semantics from PE Core (via Lsem) and
boundary precision from SAM 2.1 (via Lgeom). The resulting final-layer tokens are both globally
meaningful (for concept prompts and presence prediction) and geometrically sharp (for decoding
instance masks and tracking), making PE Spatial an ideal shared backbone for SAM 3’s PCS detector
and tracker.

Feature visualizations: geometry–semantics tradeoff
The geometry–semantics tradeoff is visible when projecting final-layer features into a 3D color space
(PCA followed by LCh mapping). The figure below compares PE variants on example images.

Figure 15.62: Final-layer PE feature visualizations (PCA to LCh). PE Core (second column)
captures semantics but exhibits noisy, spatially incoherent patterns. Distillation to an intermediate
PE layer (third column) restores coarse spatial coherence but boundaries remain fuzzy. Distillation
only to SAM 2.1 logits (fourth column) produces sharp boundaries but inconsistent semantics
across similar objects. The final PE Spatial model (fifth column) combines both: sharp edges with
semantically consistent regions, ideal for dense concept segmentation and tracking. Figure taken
from [48].

802 Chapter 15. Lecture 15: Image Segmentation

Frozen-feature dense prediction performance
Quantitatively, PE Spatial is evaluated as a frozen backbone on a suite of dense prediction tasks:
zero-shot tracking (DAVIS), semantic segmentation (ADE20K), and monocular depth estimation
(NYUv2). A representative comparison (adapted from the PE paper) is:

Tracking (DAVIS) ↑ Segm. (ADE20K) ↑ Depth (NYUv2) ↓

Encoder Best Last Best Last Best Last

DINOv2-L 58.7 58.2 47.3 47.3 0.297 0.308.
DINOv2-g 58.5 58.5 48.7 48.4 0.279 0.290.
PE CoreG 56.8 42.8 41.5 38.6 0.249 0.309.
PE SpatialG 61.5 61.5 49.3 48.9 0.262 0.275.

Table 15.7: Frozen-feature dense prediction benchmarks. PE Spatial outperforms prior large-scale
backbones on tracking (DAVIS), semantic segmentation (ADE20K), and depth estimation (NYUv2)
when used as a frozen encoder, validating its suitability as a shared backbone for SAM 3’s detection
and tracking components.

Here, “Best” denotes the best checkpoint encountered during training (highest validation perfor-
mance), while “Last” denotes the final checkpoint at the end of training.

The gap between PE Core and PE Spatial illustrates the importance of the spatial alignment stage:
without it, final-layer features are too semantic and spatially coarse for high-quality segmentation
and tracking.

Integration into SAM 3: running example
In SAM 3’s architecture (Figure 15.58), the Perception Encoder provides a multi-scale feature
pyramid shared by:

• DETR-style concept detector. Consumes PE Spatial features plus text and exemplar tokens
to predict concept-conditioned queries, boxes, and masks.

• SAM 2-style tracker. Uses the same PE Spatial features to propagate masklets over time via
a memory bank and transformer-based propagation.

To make the flow concrete, consider a single image I of a crowded street with several red buses
and many other objects, and a prompt P = “red bus”. SAM 3 processes this input as follows.

1. Feature extraction (PE Spatial). The image I is passed through PE Spatial, whose ViT
backbone produces a single high-resolution feature map at a fixed stride (typically 14 or 16).
Because a single-scale feature map is insufficient for detecting objects of very different sizes,
SAM 3 converts this map into a multi-scale pyramid

{F(s)}S
s=1,

where each F(s) is a feature map at a different spatial resolution. A lightweight FPN-style
adapter upsamples the backbone output to create a finer map (stride 4) for small-object and
boundary detail, and downsamples it to create coarser maps (stride 32 or 64) for large objects
and global context. This yields S pyramid levels that jointly capture fine geometry and broad
semantic cues. The detector and mask head consume all {F(s)} rather than a single PE output
because multi-scale context is essential for accurate localization and instance segmentation
across a wide range of object sizes.

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 803

2. Prompt encoding. The text “red bus” is tokenized and encoded into a sequence of text
embeddings. If exemplars are provided (e.g., a positive box on one bus), ROI pooling over
F(s) plus positional and label embeddings yields exemplar tokens.

3. Fusion and decoding. A fusion encoder conditions the visual tokens in {F(s)} on the prompt
tokens via cross-attention, biasing features toward regions that might be “red buses”. A
DETR-style decoder then produces object queries, each predicting a box, a match score to the
concept, and a corresponding mask.

4. Presence gating. A global presence token, operating on PE Spatial’s global context, predicts
whether any “red bus” is present in the image. If the presence score is low, all local detections
are suppressed; if high, local scores are passed through. This separation between global pres-
ence and local localization is directly reflected in the cgF1 metric discussed in the experiments
section.

For video, the same PE Spatial backbone is run frame by frame, and its features are shared by the
detector and the SAM 2-style tracker, which propagates and periodically re-anchors masklets, as
described in the subsequent subsection.

Concept detector and tracker
With the PE Spatial backbone serving as the foundation, SAM 3 constructs its two primary modules:
a prompt-conditioned detector and a video tracker.

DETR-style detector conditioned on prompts
The SAM 3 detector adapts the standard DETR paradigm [64] to be conditional on open-vocabulary
prompts. For each input frame (or image) I, the computation proceeds in three stages.

• Multi-scale visual features. The PE Spatial backbone is a ViT that, for an input of size
H×W , produces a single grid of patch tokens at stride sPE (e.g., sPE = 16). Concretely, the
final token grid can be reshaped into a feature map

FPE ∈ RH ′×W ′×D, H ′ = H
sPE

, W ′ = W
sPE

,

where D is the channel dimension.
Since DETR-style detectors and MaskFormer-style heads benefit from a multi-scale pyramid,
SAM 3 adds a lightweight neck (similar to SimpleFPN) on top of FPE. This neck produces a
set of S feature maps

{F(s)}S
s=1, F(s) ∈ RHs×Ws×C,

at different strides (e.g., 4,8,16,32), using a combination of 1×1 convolutions, upsampling,
and downsampling. High-resolution levels (s = 1,2) are critical for fine mask boundaries,
while coarse levels (s = 3,4) capture large objects and global context. PE Spatial itself is kept
frozen during SAM 3 training; all gradients are confined to the neck, fusion encoder, decoder,
presence head, and tracker.

• Prompt encoders. The prompt is encoded into a sequence of prompt tokens that jointly
represent the noun phrase and any image exemplars.

– Text. The noun phrase is tokenized and passed through a text tower, producing a
sequence of text embeddings {t j}.

804 Chapter 15. Lecture 15: Image Segmentation

– Image exemplars. Each exemplar consists of a bounding box b and a binary label
ℓ ∈ {pos,neg}. For each exemplar, SAM 3 constructs:

* A position embedding encoding the box coordinates b.
* A label embedding for the sign of the exemplar (include vs. exclude).
* An ROI-pooled feature obtained by pooling PE Spatial features from FPE (or from

an appropriate F(s)) over the box region.
These components are concatenated and passed through a small Transformer to yield a
single exemplar token per box, capturing its spatial location, inclusion/exclusion label,
and visual appearance.

The text tokens and exemplar tokens are concatenated into a unified prompt sequence.
• Fusion encoder and DETR decoder. A fusion encoder takes the multi-scale visual tokens

derived from {F(s)} and conditions them on the prompt tokens via cross-attention. In each
layer, visual tokens attend to the prompt sequence, so the resulting feature maps are explicitly
biased toward regions that may match the concept. This design is asymmetric: prompts
influence visual features, but visual features do not update the prompt representation, keeping
the prompt embedding stable across images.
A DETR-like decoder then uses a set of Q learned object queries to attend to these prompt-
conditioned feature maps and produce object-level predictions. Unlike standard DETR, which
predicts over a fixed class vocabulary, each query predicts a binary match score relative to the
input concept.

Decoding, losses, and mask prediction
Each decoder layer refines a set of Q object hypotheses. For query qi at layer ℓ, the head predicts:

• Classification logit. A scalar s(ℓ)i indicating whether qi matches the prompted concept
(conditional on the concept being present at all; the global factorization is handled by the
presence head).

• Bounding box refinement. A box (b̂(ℓ)i) obtained by adding a learned delta to the previous
layer’s box prediction, following iterative refinement as in Deformable DETR [808].

Several architectural and loss-design choices are used to make this detector more robust:
• Box-region positional bias. SAM 3 augments attention with box-region positional bias [361].

For an object query associated with a reference box, attention scores to spatial tokens are
modulated by a learned function of the relative position between the token and the box (e.g.,
whether the token lies inside, near the edges, or far outside). This encourages the model to
focus its attention on the region likely to contain the object, without resorting to multi-scale
deformable attention.

• Dual supervision from DAC-DETR and Align loss. Training uses Hungarian matching
between predicted queries and ground-truth objects, as in DETR, but with two important
refinements:

– DAC-DETR [241] (Divide-And-Conquer) splits queries into groups (such as anchor
and auxiliary branches) and performs matching in a way that stabilizes training and
encourages diverse query utilization. This reduces degenerate behaviors where only a
small subset of queries carry most of the signal.

– The Align loss [62] encourages the classification score to correlate with localization qual-
ity: predictions with high IoU to ground-truth boxes are penalized if their classification
scores are low, and conversely, high scores are discouraged for low-IoU boxes.

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 805

This ties confidence calibration tightly to geometric accuracy, which is crucial in open-
vocabulary PCS where false positives are especially harmful.

The total detection loss combines bipartite-matching losses (box regression and classification)
with these auxiliary terms.

• MaskFormer-style instance masks. Instance masks are produced by a MaskFormer-style
head [98]. A high-resolution pixel embedding map is computed from the top levels of the
feature pyramid (e.g., by upsampling F(1) and fusing with other scales). Each query qi is
projected into a vector of mask coefficients, and the mask logits for query i are given by a dot
product between these coefficients and the pixel embeddings at each location. This yields a
dense mask m̂i ∈ RH×W aligned with the input image.

• Handling mask ambiguity. Certain concepts are inherently ambiguous at the mask level (e.g.,
“wheel” vs. “tire”, or whether to include accessories). To model such ambiguity, the mask
head predicts multiple candidate masks per query (e.g., K variants), each with an associated
confidence. During training, the best-matching candidate (in IoU) is used for supervision;
at inference time, SAM 3 selects the most confident candidate, or, when needed, aggregates
them. This lets the detector represent multiple plausible segmentations for the same object
hypothesis.

Alongside instance masks, a separate semantic head aggregates query predictions into a per-pixel
binary membership map for the prompted concept, yielding the semantic PCS output.

Presence head: decoupling recognition and localization
A central design idea in SAM 3 is to decouple recognition (“is the concept present at all?”) from
localization (“where are its instances?”). The decoder’s object queries are inherently local, making
them well suited for localization but less ideal for deciding global presence, which may depend on
subtle contextual cues.

SAM 3 introduces a learned global presence token whose sole responsibility is to predict whether
the noun phrase NP is present anywhere in the input. Formally, the model factorizes the classification
probability as

p(qi matches NP) = p
(
qi matches NP |NP is present in input

)
· p(NP is present in input), (15.6)

where:
• p(NP is present in input). A single scalar predicted by the presence token using global

context (e.g., pooled features over the entire image or clip). This score is shared by all object
queries and acts as a global gate: if it is low, all local detections are suppressed.

• p(qi matches NP | NP is present in input). Predicted by each proposal query qi from its
local evidence and geometry, conditioned on the concept being present.

SAM 3 employs a decoupled supervision strategy. The presence head is always supervised
with binary cross-entropy based on image-level labels (present vs. absent). The local object queries
qi receive box/mask supervision and matching gradients only on images where the concept is present.
On negative images, they learn simply that all queries should remain “background” under the
presence gate, rather than being forced to hallucinate boxes for a missing concept. At evaluation time,
the global presence score contributes to the IL_MCC term in cgF1, while query-level localization
quality drives pmF1.

806 Chapter 15. Lecture 15: Image Segmentation

Image exemplars and interactive refinement
SAM 3 extends SAM and SAM 2 by allowing exemplars to define or refine the concept, not just
select a single instance. Given a positive bounding box on one object (e.g., a dog), the detector
interprets the exemplar as “find all objects that look like this dog”. Negative exemplars exclude
specific visual modes (e.g., a different fish species) from the concept. As illustrated in Figure 15.63,
adding a negative exemplar on an undesired fish species removes that sub-concept from the predicted
masks while preserving the intended striped fish.

During inference, exemplars are encoded as described above and concatenated with text tokens
into a single prompt token sequence. By adding exemplars iteratively, users can refine both recog-
nition (which visual mode corresponds to the phrase) and localization (which pixels belong to the
intended instances).

Figure 15.63: Interactive refinement with text and exemplars in PCS. The initial concept prompt
“a fish” plus a positive exemplar (green box) leads SAM 3 to segment all fish in the scene. Adding
a negative exemplar (red dashed box) on an undesired species refines the concept so that only the
intended striped fish are kept. Figure reproduced from [65].

Video PCS: detector–tracker factorization
For videos, SAM 3 combines its concept detector with a SAM 2-style tracker. Given a video and
prompt P, the detector finds concept instances on each frame while the tracker propagates existing
masklets forward in time. Let It be the frame at time t, Mt−1 the set of masklets from frame t−1,
and Ot the set of newly detected objects at frame t. SAM 3 defines

M̂t = propagate(Mt−1), Ot = detect(It ,P), Mt = match_and_update
(
M̂t ,Ot

)
. (15.7)

Here:
• Propagation. The tracker predicts the new locations M̂t of previously tracked objects using a

single-frame propagation step similar to SAM 2: track tokens attend to the current PE Spatial
features and a memory bank of past features to update each masklet.

• Detection. The detector runs on It with prompt P to find new instances Ot that match the
concept, including objects that enter the scene or were previously missed.

• Matching and updating. A simple IoU-based matching function associates propagated
masklets M̂t with current detections Ot , forming the updated set of masklets Mt . New detections
that are unmatched spawn new masklets.

To improve temporal robustness, SAM 3 introduces two strategies:
• Masklet detection score. For each masklet, a temporal score accumulates how consistently

it has been re-matched to detector outputs over a sliding window. Masklets whose detection
score falls below a threshold are suppressed, reducing drift and spurious tracks.

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 807

• Periodic re-prompting. At regular intervals, the tracker is re-anchored using high-confidence
detector masks: the tracker’s internal state for a masklet is refreshed from the detector’s current
prediction. This prevents the memory bank from drifting away from the true object when
occlusions or appearance changes occur.

As in the image detector, the mask decoder can output multiple candidate masks per tracked
object along with confidences; SAM 3 then selects the most confident mask on each frame, which
helps resolve per-frame ambiguities in cluttered or low-contrast regions.

Instance refinement with visual prompts
After initial concept detection and tracking, SAM 3 supports finer instance-level refinement with
PVS-style visual prompts (points, boxes) in the SAM 2 fashion. A user can:

• Refine a masklet. Provide positive and negative clicks on a specific object; SAM 3 encodes
the clicks and runs the mask decoder to adjust the mask on that frame.

• Propagate refinements. In video, the refined mask is propagated across the entire sequence
to update the masklet consistently.

In many practical workflows, the user first runs PCS to discover all instances of a concept, then
selects one masklet and refines it with PVS-style prompts, effectively turning PCS into single-object
segmentation or tracking for that chosen instance. This design unifies concept-level prompting (PCS)
with instance-level visual refinement (PVS), providing both global coverage and local precision.

Figure 15.64: Promptable concept segmentation in complex scenes. Examples from the SA-Co
benchmark showing SAM 3 segmenting and tracking multiple instances defined by open-vocabulary
prompts (top: video sequence, bottom: crowded images). Instance IDs remain consistent over
time, even under occlusion and clutter. Negative prompts help exclude look-alike distractors (e.g.,
non-target fruits or objects). Figure reproduced from [65].

Training and data
Training stages
SAM 3 is trained in four stages [65].

• Perception Encoder pre-training. The PE backbone is trained on large-scale vision tasks
(contrastive image and video pretraining with alignment tuning) to learn strong general visual
representations before being used for PCS.

808 Chapter 15. Lecture 15: Image Segmentation

• Detector pre-training. The DETR-style detector is trained with text and exemplar prompts on
SA-Co and related data, supervised with both box and mask objectives and the presence head,
so that it can perform open-vocabulary detection and segmentation conditioned on concept
prompts.

• Detector fine-tuning. The detector is further fine-tuned on curated subsets and external
datasets (e.g., LVIS, COCO, ADE-847) for PCS and related tasks, balancing open-vocabulary
behavior with strong performance on standard benchmarks.

• Tracker training. With the backbone frozen, the tracker is trained on video PCS data
to propagate masklets and maintain identities, using SAM 2-style propagation losses and
consistency objectives.

Data engine and SA-Co dataset
Achieving strong PCS performance requires a large, diverse dataset over many domains. SAM 3
introduces a model- and human-in-the-loop data engine (see the below figure) that iteratively
improves both the dataset and the model.

Figure 15.65: The SAM 3 data engine. Media are mined from a large pool and paired with noun
phrases proposed by an ontology and language models. SAM 3 (and earlier models) generate candi-
date masks, which are verified for quality and exhaustivity by human and AI verifiers. Incomplete or
low-quality masks are sent for manual correction, and the resulting high-quality annotations are fed
back to retrain SAM 3. The figure depicts the mature (Phase 2+) pipeline, where AI verifiers operate
alongside human verifiers rather than the initial human-only stage. Figure reproduced from [65].

The data engine operates in phases.
• Phase 1: Human verification. Initial image–NP pairs are generated using SAM 2 plus

an open-vocabulary detector, and all verification is done by humans, producing the first
SA-Co/HQ subset with millions of pairs.

• Phase 2: Human + AI verification. Human labels from Phase 1 are used to fine-tune Llama-
based AI verifiers for mask quality and exhaustivity, roughly doubling annotation throughput.
Hard negative NPs are mined adversarially to challenge SAM 3.

• Phase 3: Scaling and domain expansion. AI models mine increasingly difficult cases and
broaden coverage to many visual domains, while the ontology is used to expand long-tail
concept coverage.

• Phase 4: Video annotation. The pipeline is extended to videos, using SAM 3 to propose
masklets that are then verified and corrected, focusing human effort on crowded scenes and
likely tracking failures.

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 809

From this process, the authors build several datasets for training and evaluation [65].
• SA-Co/HQ. High-quality image PCS data with about 5.2M images and 4M unique noun

phrases.
• SA-Co/SYN. A synthetic dataset with about 38M phrases and 1.4B masks, generated using a

mature data engine without human involvement.
• SA-Co/EXT. Fifteen external datasets with existing instance masks, enriched with hard

negatives using the ontology.
• SA-Co/VIDEO. About 52.5K videos and 24.8K unique noun phrases, forming approximately

134K video–NP pairs.
The SA-Co benchmark for evaluation contains 207K unique phrases and over 3M media–phrase pairs,
spanning multiple splits (Gold, Silver, Bronze, Bio, and VEval) with varying levels of redundancy
and domain focus. With this architecture, training protocol, and data engine in place, the authors
next quantify how well SAM 3 performs on PCS across images and videos and how each design
choice contributes to the final performance.

Experiments and ablations
Evaluation metrics: why open-vocabulary PCS needs new metrics
Conventional detection metrics such as AP (Average Precision) were developed for closed-set
detection, where the model predicts over a fixed label set and is not judged on its ability to refuse
arbitrary new phrases. In Promptable Concept Segmentation (PCS), every query phrase can be novel,
and evaluation must answer two separate questions:

1. Presence: does the concept appear at all in this image or video?
2. Localization: given that it does, are all instances segmented accurately?

Standard AP collapses these into a single ranking-based score. A model that often hallucinates
confident detections for concepts that are not present can still achieve a seemingly good AP if it
ranks detections well on positive images. This is misaligned with the real PCS goal: “Do you know
when the concept is here, and when it is, can you segment it well?”

SAM 3 therefore evaluates PCS using a calibration-sensitive metric called classification-gated
F1 (cgF1) [65], which explicitly factorizes the task into a localization component and a presence
component.

Localization: positive micro-F1 (pmF1).
A standard F1 score is defined from precision and recall,

F1 =
2Precision ·Recall
Precision+Recall

,

where precision and recall are computed from counts of true positives (TP), false positives (FP), and
false negatives (FN). There are two common aggregation schemes:

• Per-example (macro) F1: compute F1 separately for each image, then average.
• Micro-F1: first sum TP, FP, and FN across all examples, then compute a single F1 from the

totals.
pmF1 is a micro-F1 over instances, restricted to positive media–phrase pairs. Concretely:
• We consider only media–phrase pairs for which the concept is known to be present (at least

one ground-truth instance exists).

810 Chapter 15. Lecture 15: Image Segmentation

• For each such pair, predicted instances (boxes + masks) are matched to ground-truth instances
using an IoU-based one-to-one matching.

• Over all positive pairs, we accumulate instance-level counts

TPpos, FPpos, FNpos,

and define

Precisionpos =
TPpos

TPpos +FPpos
, Recallpos =

TPpos

TPpos +FNpos
,

pmF1 =
2Precisionpos ·Recallpos

Precisionpos +Recallpos
.

The crucial point is what pmF1 ignores: it does not see any media–phrase pairs where the
concept is absent. It answers only:

“When the concept truly appears, how accurately do I detect and segment its instances?”

Presence hallucinations on negative images are handled separately.

Presence classification: image-level MCC (IL_MCC).
To measure whether the model correctly decides if a concept is present, SAM 3 uses an image-

level Matthews Correlation Coefficient (MCC) over all media–phrase pairs. For each pair, the ground
truth provides a binary label

y ∈ {0,1} (absent/present),

and the model predicts ŷ ∈ {0,1} based on its global presence head and query scores. This yields
four pair-level counts:

TP, TN, FP, FN,

and IL_MCC is given by

IL_MCC =
TP ·TN−FP ·FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
.

MCC can be viewed as a correlation coefficient for binary classification: it is 1 for perfect
predictions, 0 for random guessing or a constant classifier, and −1 for perfectly wrong predictions.
It is chosen here for two reasons:

• Robust to class imbalance. SA-Co contains far more negative than positive pairs. A trivial
classifier that always predicts “absent” can achieve high raw accuracy, but its MCC stays near
0. MCC therefore prevents models from exploiting imbalance by always refusing.

• Symmetric treatment of FP and FN. IL_MCC decreases both when the model hallucinates
concepts (many FP on negatives) and when it misses obvious ones (many FN on positives).
Both failure modes matter for PCS deployment.

Intuitively, IL_MCC answers:

“Across all images and phrases, how strongly are my presence predictions correlated with reality,
after accounting for imbalance and both kinds of mistakes?”

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 811

Combined metric: classification-gated F1 (cgF1).
cgF1 combines these two orthogonal requirements into a single scalar:

cgF1 = 100×pmF1× IL_MCC. (15.8)

This multiplicative design acts as a harsh gate. It forces a model to be simultaneously effective at:
• Localization (high pmF1): accurately segmenting instances when the concept is actually

present.
• Calibration (high IL_MCC): reliably predicting “absent” when the concept is missing.
Consider a “hallucination-prone” model that segments every cat perfectly (pmF1 ≈ 1.0) but also

incorrectly claims a cat exists in every empty room (IL_MCC ≈ 0). Its final cgF1 will collapse to
near zero. This ensures that for open-vocabulary deployment, the model learns that silence is golden:
it must confidently refuse to segment irrelevant inputs. Conversely, a conservative model that almost
never hallucinates (high IL_MCC) but misses many true instances (low pmF1) will also obtain a low
cgF1.

cgF1 is thus directly aligned with the core PCS requirement of jointly reliable recognition (“is
the concept here?”) and segmentation (“if so, where and how well?”). Finally, SA-Co/Gold provides
three independent human annotation variants per phrase. To account for semantic and boundary
ambiguity, oracle scores compare model predictions against all variants and take the best match, so
that models are not penalized for choosing one reasonable interpretation among several.

Image PCS with text prompts: large gains over prior work
SAM 3 is evaluated on instance segmentation, box detection, and semantic segmentation for a wide
variety of natural language prompts [65]. Baselines include OWLv2, Grounding DINO, LLMDet,
Gemini 2.5, APE, and DINO-X. Three high-level takeaways emerge:

• Open-vocabulary PCS on SA-Co. On the SA-Co/Gold split, SAM 3 attains a cgF1 of
53.6, more than doubling the performance of OWLv2⋆ (cgF1 ∼26). This corresponds to
roughly 74% of measured human performance. Improvements are even larger on SA-Co
Silver, Bronze, and Bio.

• Closed-vocabulary performance. Zero-shot LVIS mask AP is 48.5, which is notable because
SAM 3 is not optimized for LVIS and yet surpasses prior CLIP-based detectors and approaches
the supervised performance of specialist models from 2022–2023.

• Open-vocabulary semantic segmentation. On ADE-847, PascalConcept-59, and Cityscapes,
SAM 3 outperforms APE—a strong specialist for open-vocabulary semantic segmentation—
demonstrating that the PCS machinery generalizes from instance to pixel-wise semantics.

Qualitative comparisons in Figure 15.57 illustrate that SAM 3 handles long-tail concepts (“cheese-
cloth”, “toilet roll holder”) and cluttered scenes that confuse previous systems such as OWLv2 and
Grounding DINO.

Few-shot adaptation and exemplar prompting
Few-shot transfer is evaluated on ODinW13 and RF-100VL using their native labels as prompts.
Fine-tuned without mask losses, SAM 3 achieves state-of-the-art 10-shot detection, outperforming
Gemini’s in-context learning and specialist detectors such as Grounding DINO.

A particularly compelling aspect is the impact of exemplar prompts. With only a single positive
exemplar:

• SAM 3 substantially outperforms T-Rex2 on COCO, LVIS, and ODinW.
• Joint text+exemplar prompting consistently produces the strongest results.

812 Chapter 15. Lecture 15: Image Segmentation

This suggests that SAM 3’s prompt-conditioning architecture effectively fuses appearance cues
(exemplars) with semantic cues (text), enabling fine-grained discrimination between visually similar
subcategories.

Efficiency of PCS vs. PVS prompting
One of the motivating hypotheses for SAM 3 is that PCS is fundamentally more interaction-efficient
than classical PVS. In PVS (as in SAM 2), each object typically requires an explicit prompt (point,
box, or mask). PCS, by contrast, uses a single semantic prompt to discover all instances of a concept
simultaneously.

This hypothesis is validated on SA-Co/Gold, where cgF1 is plotted against the number of
interactive box prompts:

Figure 15.66: Efficiency of concept vs. visual prompting. cgF1 on SA-Co/Gold as a function of the
number of interactive box prompts. Promptable Concept Segmentation (PCS) with SAM 3 reaches
high cgF1 with a single prompt, while an idealized PVS baseline (segmenting instances one by one)
requires several prompts to catch up. Figure reproduced from [65].

The trends are striking:
• PCS achieves ∼0.72 cgF1 with just one prompt. For a single prompt, PCS already outper-

forms a PVS baseline (roughly ∼0.68 cgF1 at one box prompt), and this PCS level typically
requires four to five PVS prompts in SAM 2-style annotation.

• PVS scales linearly with the number of objects. For scenes with many instances (e.g., “all
screws on the table”), PVS becomes prohibitively costly, whereas PCS remains constant.

• Hybrid prompting delivers the peak performance (∼0.80 cgF1). Use one PCS prompt to
retrieve most instances, then refine with 1–2 visual prompts where needed.

15.7 Enrichment 15.7: Striding Towards SOTA Image Segmentation 813

Domain adaptation and data engine ablations
The SAM 3 data engine produces both human-verified and synthetic annotations. To study domain
adaptation, the authors evaluate on a Food-domain subset using three data sources: high-quality
human annotations (HQ), synthetic annotations from mature SAM 3 teachers (SYN), and naive
pseudo-labels (PL).

Figure 15.67: Scaling behavior on a new domain. cgF1 on a Food domain vs. the amount of
domain-specific training data. Synthetic data generated by SAM 3 plus AI verifiers (SYN) scales
similarly to high-quality human-annotated data (HQ), while naive pseudo-labeled data (PL) saturates
at a lower performance level. Figure reproduced from [65].

Three practical insights emerge:
• Quality matters as much as quantity. SYN data approaches HQ performance, both reaching

cgF1 ∼56 with sufficient training volume.
• Verification is essential. PL data, without verification, plateaus early around cgF1 ∼45,

underscoring that naive pseudo-labeling is insufficient for open-vocabulary tasks.
• Teacher models can self-scale. When paired with an AI verifier, a strong SAM 3 model can

bootstrap high-quality synthetic data for new domains, reducing human annotation cost.

Ablations: identifying key components
A series of ablations isolates which design decisions most affect PCS performance:

• Presence head (improves cgF1 by ∼3.5). Removing the global presence token causes
the model to hallucinate concepts more often, lowering IL_MCC and reducing cgF1. This
confirms that separating global recognition from local localization is critical.

• Hard-negative prompts (improves cgF1 by ∼2.1). Including adversarially mined negative
noun phrases (e.g., “nail” when querying “screw”) is essential for discriminating fine-grained
concepts.

• Ambiguity modeling. Allowing the mask decoder to output multiple candidate masks im-
proves robustness on SA-Co/Gold, where human annotators legitimately disagree about which
pixels belong to a concept.

814 Chapter 15. Lecture 15: Image Segmentation

• Backbone capacity (PE Spatial). Upgrading to the Perception Encoder boosts both PCS and
PVS performance. Compared to SAM 2’s original encoder, PE Spatial yields significantly
stronger tracking, better fine detail, and improved open-vocabulary grounding.

Collectively, these experiments validate the core design of SAM 3: a well-calibrated presence
classifier, strong spatial-semantic features from PE, concept-level prompting, and ambiguity-aware
mask decoding together produce a substantial leap in open-vocabulary segmentation and tracking.

Limitations and future directions
Despite its strong performance, SAM 3 has several limitations that also suggest promising directions
for future work.

Language complexity and reasoning
SAM 3 is intentionally restricted to simple noun phrases. It is not designed to handle long referring
expressions or prompts requiring complex reasoning (e.g., “the person holding the red umbrella
but not standing on the stairs”). While the authors show that SAM 3 can be combined with a
Multimodal Large Language Model (MLLM) to parse such queries into simpler noun phrases and
concept prompts, this is handled outside the core SAM 3 architecture. A natural next step is tighter
integration between PCS models and MLLMs so that reasoning and segmentation are trained jointly.

Ambiguity and annotation effort
Even with three annotations per phrase and an ambiguity-aware evaluation protocol, some prompts
remain intrinsically ambiguous or ungroundable. The data engine partially mitigates this by allowing
annotators to reject such phrases, but this requires substantial human effort and careful guideline
design. Future work could explore uncertainty-aware prompting, where the model can explicitly flag
phrases it cannot reliably ground.

Domain and modality coverage
SA-Co covers many visual domains, but performance still varies across them, and specialized
domains (e.g., medical imaging, scientific microscopy) may require dedicated data collection and
domain-specific ontology expansions. Extending PCS to additional modalities (e.g., 3D scenes,
multi-view setups) or to richer temporal reasoning (beyond short videos) remains an open research
area.

Computational cost and deployment
Although SAM 3 is optimized for efficiency—running in about 30 ms per image with 100+ detected
objects on an H200 GPU and near real-time for a few concurrent video objects—deployment at scale
still requires substantial compute and memory. Lightweight variants or distillation schemes, possibly
leveraging concept-specific student models, could make PCS more accessible in resource-constrained
settings.

Compositionality and structured prompts
Finally, SAM 3 treats each noun phrase largely independently, without explicit modeling of com-
positional structure across multiple prompts (e.g., intersecting or subtracting concepts). Interactive
exemplars partially address this, but richer structured prompting interfaces and corresponding model
architectures could better exploit the compositional nature of language and concepts.

