
14. Lecture 14: Object Detectors

14.1 Beyond R-CNN: Advancing Object Detection
In the previous chapter we focused on what object detection is (bounding boxes, IoU, AP/mAP,
NMS) and briefly contrasted closed-set vs. open-set detection. We now turn to how detectors are
actually built, starting from the first successful CNN-based systems.

R-CNN showed that applying a deep convolutional network to region proposals could dramati-
cally outperform traditional pipelines, firmly establishing CNNs as the backbone of modern detectors.
The downside was efficiency: for each image, R-CNN runs a separate CNN forward pass on roughly
∼ 2000 region proposals, followed by separate SVMs and bounding box regressors. This heavy,
multi-stage pipeline makes R-CNN slow to train and far too expensive for real-time or large-scale
deployment.

The rest of this chapter follows the historical path toward more efficient and integrated detectors:
• Fast R-CNN shares convolutional features across all proposals and introduces RoI Pooling /

RoIAlign to speed up per-region processing.
• Faster R-CNN learns region proposals with a Region Proposal Network (RPN), removing the

last major hand-crafted component.
• Feature Pyramid Networks (FPNs) exploit multi-scale feature maps to improve detection of

small and large objects.
• Single-stage and anchor-free detectors such as RetinaNet and FCOS further simplify the

pipeline by predicting boxes and classes densely in one pass.
• YOLO-style models show how far we can push real-time, single-shot detection in practice.
Together, these CNN-based detectors form the “classical toolkit” of object detection. While

they are not widely used today (besides YOLO), as we will see, many of their core ideas—feature
sharing, bounding box regression, multi-task losses, and multi-scale features—reappear inside newer
architectures as well.

574 Chapter 14. Lecture 14: Object Detectors

14.1.1 Looking Ahead: Beyond CNN-Based Object Detectors
Even the most refined CNN-based detectors in this chapter share a common structure: convolutional
backbones, dense candidate boxes (anchors or per-pixel predictions), and post-processing with
NMS. Modern work pushes further toward end-to-end architectures that minimize hand-designed
components and treat detection more like a direct set prediction problem.

A key milestone is DETR (DEtection TRansformer) [64], which uses transformers and a set-
based matching loss to predict a fixed-size set of boxes and labels, removing both region proposals
and NMS from the pipeline. Follow-up works such as Re DETR [804] and DINO for detection [327]
refine optimization, query design, and training recipes to improve convergence speed and accuracy,
while Mask DINO [330] extends these ideas to instance and panoptic segmentation.

At the same time, large vision backbones trained with self-supervision or vision-only pretraining,
such as DINOv2 [463] and DINOv3 [569], provide powerful, task-agnostic image representations
that can be plugged into many detection heads (Faster R-CNN, RetinaNet, DETR variants) to boost
performance with minimal task-specific tuning.

In the open-vocabulary setting briefly discussed in Chapter 13, many state-of-the-art systems
build directly on these transformer and backbone advances: Grounding DINO [376], OWL-ViT
and OWLv2 [431, 433], and YOLO-World [100] combine strong image encoders with text encoders
to align region features with natural-language prompts. This allows detectors to move beyond a fixed
label list and answer queries like “red umbrella” or “person holding a phone” in a zero-shot way.

We will study transformers, large vision backbones, and vision–language models in detail later
in the book. For now, our goal is to master the classic CNN-based detectors—R-CNN, Fast
R-CNN, Faster R-CNN, FPN-based two-stage models, and single-stage/anchor-free designs—since
the principles they introduce are the foundation upon which these newer architectures are built.

14.2 Fast R-CNN: Accelerating Object Detection 575

14.2 Fast R-CNN: Accelerating Object Detection
As running a CNN forward pass separately for each of the ∼ 2000 region proposals per image led to
massive computational overhead, despite its performance, R-CNN was too slow for practical usage.

Fast R-CNN [175] was proposed as a major improvement, significantly reducing inference time
while maintaining strong detection accuracy. By reusing shared feature maps instead of processing
each region proposal independently, it eliminated redundant computations and improved efficiency.

14.2.1 Key Idea: Shared Feature Extraction
Instead of running a CNN separately for each proposal, Fast R-CNN applies a deep CNN once to
the entire image.

Figure 14.1: Fast R-CNN architecture: A backbone CNN processes the full image, generating a
feature map. RoI Pooling extracts regions from this shared representation, followed by classification
and bounding box refinement. This significantly improves efficiency while maintaining detection
accuracy.

It does so by extracting a shared feature representation. Then, Region of Interest (RoI) Pool-
ing is used to extract features corresponding to each region proposal from this shared representation.
A small per-region sub-network is then applied to each extracted region to Classify the region into
an object category or background, and refine the bounding box using regression.

576 Chapter 14. Lecture 14: Object Detectors

14.2.2 Using Fully Convolutional Deep Backbones for Feature Extraction
Fast R-CNN leverages deep CNNs to extract features from the entire image in one forward pass.

Figure 14.2: AlexNet as a backbone: Early implementations of Fast R-CNN explored the use of
AlexNet for feature extraction. Only the last two FC layers were used for the per-region network.

Figure 14.3: ResNet as a backbone: More modern implementations utilize ResNet for feature
extraction, leveraging deeper architectures for improved accuracy. In this case, only the last stage
of the network was used for the per-region network, while the rest of the network was used as a
backbone deriving features from the entire image.

An interesting observation is that both approaches use a fully convolutional backbone.
This is deliberate, as a fully convolutional network produces a dense, spatially organized feature map
in which each element corresponds directly to a specific location in the input image.

14.2 Fast R-CNN: Accelerating Object Detection 577

This spatial correspondence is critical for RoI pooling: it allows us to accurately map the
coordinates of a region proposal (generated in the original image space) onto the feature map, so that
the correct features can be “cropped out” and later pooled into a fixed-size representation.

In contrast, if the backbone ended with fully connected layers, the spatial arrangement would
be lost because fully connected layers mix information from all locations. Without a maintained
spatial structure, there would be no straightforward way to project a region proposal onto the
feature map. Consequently, each proposal would have to be processed individually from the image
itself—defeating the purpose of using a shared, efficient feature extractor.

14.2.3 Region of Interest (RoI) Pooling
In Fast R-CNN, we aim to extract feature maps corresponding to each region proposal while ensuring
that the process remains differentiable so we can backpropagate gradients through the backbone
CNN. This challenge is addressed using Region of Interest (RoI) Pooling.

Mapping Region Proposals onto the Feature Map
Region proposals—typically generated by methods such as selective search—are initially defined in
the coordinate space of the original input image. However, because the backbone CNN downsamples
the input by a factor k (e.g., k = 16), these coordinates must be mapped onto the feature map. This
transformation is given by:

x′ =
x
k
, y′ =

y
k
, w′ =

w
k
, h′ =

h
k

where (x,y,w,h) represents the original coordinates and dimensions of the region proposal on
the input image, and (x′,y′,w′,h′) represents the corresponding region on the feature map.

Since this division typically results in non-integer values (e.g., x′ = 9.25), the coordinates are
quantized—usually by taking the floor function:

x′′ = ⌊x′⌋, y′′ = ⌊y′⌋, w′′ = ⌊w′⌋, h′′ = ⌊h′⌋

This snapping operation ensures that proposals align with the discrete grid of the feature map,
making it possible to extract features corresponding to each proposal.

Dividing the Region into Fixed Bins
Once the region proposal is mapped onto the feature map, the corresponding feature region is divided
into a fixed number of bins. This binning ensures that all proposals—regardless of their original
aspect ratio—are resized to a common spatial dimension. For example, if the target output size is
7×7, the extracted region is divided into 7×7 roughly equal spatial sub-regions.

Max Pooling within Each Bin
For each bin, max pooling is applied across all the activations in that sub-region. This operation
selects the maximum value within each bin, reducing variable-sized proposals to a uniform output
shape while preserving strong feature responses. The output of RoI pooling for each proposal has a
fixed spatial size, e.g., 7×7×C, where C is the number of channels in the feature map.

578 Chapter 14. Lecture 14: Object Detectors

Figure 14.4: RoI Pooling Process. Each region proposal is mapped onto the feature map, divided
into fixed bins, and max-pooled to a fixed output size for classification and bounding box refinement.

Summary: Key Steps in RoI Pooling
1. Scaling Region Proposals: The bounding box proposals are initially given in the coordinate

space of the original image. Since the backbone CNN downsamples the input by a factor k
(e.g., k = 16), the proposals must be scaled accordingly.

2. Extracting Feature Patches: The scaled bounding boxes are mapped to the corresponding
feature map locations, ensuring alignment with the CNN’s output resolution.

3. Dividing into Sub-Regions: Each extracted feature patch is divided into a fixed grid of bins
(e.g., 7×7), regardless of the original proposal size.

4. Max Pooling per Sub-Region: Within each bin, max pooling is applied to obtain a single
representative feature value.

5. Fixed Output Size: The final output for each proposal is a tensor of shape(num_proposals,
num_channels, output_size, output_size), making it suitable for downstream classification and
bounding box regression.

The RoI Pooling operation can be implemented in PyTorch using a custom function that extracts
fixed-size feature maps from region proposals. There is a nice implementation of [473] that follows
the steps outlined earlier. If you want to understand how this method works in more detail, this is a
good place to start.

Limitations of RoI Pooling
A key limitation of RoI pooling is the quantization error introduced during the coordinate snapping
process. Since features are assigned to discrete grid locations using floor division, minor localization
errors may occur, reducing detection accuracy. This problem becomes more prominent in tasks
requiring precise bounding box localization.

14.2 Fast R-CNN: Accelerating Object Detection 579

Figure 14.5: Impact of quantization in RoI Pooling. When mapping a region proposal onto the feature
map (red), quantization (orange) can result in the loss of relevant object information (highlighted in
dark blue) while also introducing unwanted features from adjacent areas (green). This misalignment
reduces localization precision, as certain parts of the object may be omitted, while non-object features
may be included in the pooled representation. Figure taken from [143].

In addition, the fact that sub-regions are not always of the same size is also weird and may prove
to be sub-optimal. Due to these problems, an improved approach called RoIAlign emerged. RoIAlign
eliminates quantization errors by using bilinear interpolation instead of rounding coordinates to the
nearest discrete pixel. In the next section, we will explore how RoIAlign refines feature extraction
to improve object detection accuracy. Although not used in Faster R-CNN, it made its way to
consequent papers like Mask R-CNN that we’ll cover later.

14.2.4 RoIAlign
In RoIAlign we avoid any quantization (rounding) of the coordinates. Instead, we sample the feature
map using bilinear interpolation to obtain sub-pixel accuracy and preserve alignment. The idea is to
compute a linear combination of feature values based on their Euclidean distance to the sampling
point. By doing so, each sub-region in the region of interest contributes a weighted average of the
feature map’s values, thus preventing misalignments introduced by discrete rounding.

580 Chapter 14. Lecture 14: Object Detectors

RoIAlign: A Visual Example
To further understand how RoIAlign works in practice, we follow a step-by-step example inspired by
Justin’s lecture and [473], of which the code snippets are taken (with extra documentation I added
to make it a bit more clear). This example applies RoIAlign to a region proposal of a cat image
projected onto the activation/feature map. For simplicity, we use an output size of 2×2, meaning the
proposal is divided into four equal-sized sub-regions (bins), and we extract a single representative
value per bin. In practice, output sizes of 7×7,14×14 are more reasonable and common.

Step 1: Projection of Region Proposal onto the Feature Map
First, we map the region proposal onto the feature map without quantization. The projected region is
divided into 2×2 bins.

Figure 14.6: Projection of the region proposal onto the feature map, dividing it into 2×2 bins.

Step 2: Selecting Interpolation Points in Each Bin
In RoIAlign, each bin within a region proposal is divided into regularly spaced sampling points
to avoid quantization errors. Instead of snapping to the nearest discrete grid like in RoI Pooling,
RoIAlign selects four interpolation points per bin to estimate the feature value using bilinear
interpolation.

For each bin, four sample points are computed as follows:
• (x1,y1) – Top-left interpolation point
• (x1,y2) – Bottom-left interpolation point
• (x2,y1) – Top-right interpolation point
• (x2,y2) – Bottom-right interpolation point
As reminder, here is the part of the code in the RoIAlign method, used to compute the points to

interpolate within each region of the projected proposal.

1 for i in range(self.output_size):

2 for j in range(self.output_size):

3 x_bin_strt = i * w_stride + xp0 # Bin's top-left x coordinate

4 y_bin_strt = j * h_stride + yp0 # Bin's top-left y coordinate

14.2 Fast R-CNN: Accelerating Object Detection 581

5

6 # Generate 4 points for interpolation (no rounding!)

7 x1 = torch.Tensor([x_bin_strt + 0.25 * w_stride]) # Quarter into the

bin↪→

8 x2 = torch.Tensor([x_bin_strt + 0.75 * w_stride]) # Three-quarters

inside↪→

9 y1 = torch.Tensor([y_bin_strt + 0.25 * h_stride]) # # Quarter into

the bin↪→

10 y2 = torch.Tensor([y_bin_strt + 0.75 * h_stride]) # Three-quarters

inside↪→

11

12 # Bilinear interpolation will be performed at (x1, y1), (x1, y2), (x2,

y1), and (x2, y2), and these values will be used to compute the

final bin output for the per-region network.

↪→

↪→

For each bin (sub-region), two sample points are taken along both the x-axis and y-axis, creating
a total of 2×2 = 4 sample points. The interpolation points are systematically selected as:

{x1,x2}×{y1,y2}

ensuring comprehensive coverage within the bin.

Figure 14.7: Selection of four interpolation points in each sub-region for bilinear interpolation.

Why Choose 0.25 and 0.75 for Sampling? Instead of selecting points at the exact center of
each bin (0.5) or at its edges (0.0 and 1.0), RoIAlign samples points at 0.25 and 0.75 of the bin’s
width and height. This design choice serves several purposes:

• Avoiding boundary artifacts: Sampling at 0.0 (bin edges) can cause rounding errors or
unexpected shifts due to floating-point imprecision. Sampling at 0.25 and 0.75 keeps the
points well inside the bin, ensuring they stay within the intended spatial region.

582 Chapter 14. Lecture 14: Object Detectors

• Capturing feature variation: Sampling at just one location (e.g., the center at 0.5) might miss
important variations within the bin. By selecting two points per axis, we better approximate
the feature distribution in that region.

• Consistent coverage: This approach systematically captures more representative “average”
features, reducing the impact of noise and ensuring smooth gradient flow during backpropaga-
tion.

While RoIAlign typically uses a 2×2 grid of sample points per bin, some implementations allow
configurable sampling ratios, such as 3×3 or higher, to improve approximation accuracy at the cost
of additional computation.

By eliminating quantization artifacts and ensuring precise feature extraction, this step signifi-
cantly enhances the quality of extracted region features, making RoIAlign an essential improvement
over RoI Pooling.

Step 3: Mapping Sampled Points onto the Feature Grid
Each of the four sampled points per bin lies within the continuous feature map, requiring us to
determine its surrounding discrete grid points for bilinear interpolation. Given a sampled point (x,y),
it is enclosed by four neighboring integer grid points:

• a : (x0,y0) – Top-left corner
• b : (x0,y1) – Bottom-left corner
• c : (x1,y0) – Top-right corner
• d : (x1,y1) – Bottom-right corner

Figure 14.8: Mapping of the selected interpolation points onto the discrete grid of the feature map.
Each sampled point is enclosed by four neighboring grid points, which will be used in bilinear
interpolation.

In our example, in the bottom-right bin, we consider a sampled point at (x2,y2) = (6.5,5.8) that
is also the bottom-right point within the bin. The nearest integer grid points that enclose it are:

a = (x0 = 6,y0 = 5), b = (x0 = 6,y1 = 6), c = (x1 = 7,y0 = 5), d = (x1 = 7,y1 = 6).

14.2 Fast R-CNN: Accelerating Object Detection 583

These four points are used for interpolation, ensuring that each sampled feature value is derived
from its surrounding grid points rather than being snapped to the nearest one.

To determine these enclosing grid points programmatically, we perform the following computa-
tions:

1 # Find the integer corners surrounding (x, y)

2 x0 = torch.floor(x).type(torch.cuda.LongTensor)

3 x1 = x0 + 1

4 y0 = torch.floor(y).type(torch.cuda.LongTensor)

5 y1 = y0 + 1

6

7 # Clamp these coordinates to the image boundary to avoid out-of-range indexing

8 x0 = torch.clamp(x0, 0, img.shape[1] - 1)

9 x1 = torch.clamp(x1, 0, img.shape[1] - 1)

10 y0 = torch.clamp(y0, 0, img.shape[0] - 1)

11 y1 = torch.clamp(y1, 0, img.shape[0] - 1)

12

13 # Extract feature values at the four surrounding grid points

14 Ia = img[y0, x0] # Top-left corner

15 Ib = img[y1, x0] # Bottom-left corner

16 Ic = img[y0, x1] # Top-right corner

17 Id = img[y1, x1] # Bottom-right corner

These four feature values (Ia, Ib, Ic, Id) serve as the basis for bilinear interpolation. Instead of
directly snapping (x,y) to the nearest feature grid location, we compute a weighted average of these
values, using their relative distances as interpolation weights.

By mapping sampled points onto discrete grid locations in this manner, RoIAlign ensures that
every proposal maintains precise alignment with the backbone’s feature map, preserving sub-pixel
accuracy and avoiding misalignment errors caused by quantization.

Step 4: Computing Bilinear Interpolation Weights
Once the four nearest integer grid points for a sampled point (x,y) have been identified, we compute
weights that determine each corner’s contribution to the interpolated value. These weights are based
on the relative distances between (x,y) and the four grid points.

Normalization Constant and Its Interpretation The normalization constant is given by

norm_const =
1

(x1− x0)(y1− y0)
,

which is the inverse of the area of the rectangle formed by the grid points (x0,y0), (x1,y0), (x0,y1),
and (x1,y1). In many cases, including our example, this rectangle is a unit square (i.e., x1− x0 = 1
and y1−y0 = 1), so the normalization constant is 1. This constant ensures that the computed weights
form a convex combination that sums to 1.

Weight Computation for Each Corner For a sampled point (x,y) = (6.5,5.8), assume the
four surrounding grid points are:

(x0,y0) = (6,5), (x1,y0) = (7,5), (x0,y1) = (6,6), (x1,y1) = (7,6).

584 Chapter 14. Lecture 14: Object Detectors

We compute the distances:

x1− x = 7−6.5 = 0.5, x− x0 = 6.5−6 = 0.5,

y1− y = 6−5.8 = 0.2, y− y0 = 5.8−5 = 0.8.

The weight for each grid point is the product of the fractional distances along the x and y axes,
meaning, each weight is determined by how far the sampled point is from a particular corner,
considering both x and y distances. The horizontal and vertical contributions are combined as:

- (x1−x)/(x1−x0)� Fraction of the width from (x,y) to the right boundary. - (x−x0)/(x1−x0)
� Fraction from (x,y) to the left boundary. - (y1− y)/(y1− y0)� Fraction of the height from (x,y)
to the bottom boundary. - (y− y0)/(y1− y0)� Fraction from (x,y) to the top boundary.

Therefore, for the top-left corner (denoted wa), the weight is given by:

wa = (x1− x) · (y1− y) = 0.5×0.2 = 0.1.

Similarly, for the top-right corner (denoted wc):

wc = (x− x0) · (y1− y) = 0.5×0.2 = 0.1.

For the bottom-left corner (denoted wb):

wb = (x1− x) · (y− y0) = 0.5×0.8 = 0.4,

and for the bottom-right corner (denoted wd):

wd = (x− x0) · (y− y0) = 0.5×0.8 = 0.4.

Thus, the weights satisfy

wa +wb +wc +wd = 0.1+0.4+0.1+0.4 = 1.0.

Figure 14.9: Computing interpolation weight for the top-left corner (wa). Since the sampled point is
far from this corner, its weight is relatively low: (wa = 0.1).

14.2 Fast R-CNN: Accelerating Object Detection 585

Figure 14.10: Computing interpolation weight for the top-right corner (wc). Since this point is
equidistant from wa, the weights are equal (wa = wc = 0.1).

Figure 14.11: Computing interpolation weight for the bottom-left corner (wb). Since the sampled
point is much closer to this corner, its weight is significantly higher: (wb = 0.4).

586 Chapter 14. Lecture 14: Object Detectors

Figure 14.12: Computing interpolation weight for the bottom-right corner (wd). This weight is
identical to wb, because the sampled point (x,y) is symmetrically placed between b,d.

Step 5: Computing the Interpolated Feature Value
Once the interpolation weights have been determined, we compute the interpolated feature value at
(x,y) as a weighted sum of the four surrounding feature grid values:

fxy = wa fx0y0 +wb fx0y1 +wc fx1y0 +wd fx1y1

Each weight determines the contribution of the corresponding grid point to the interpolated value.
Since closer grid points have higher weights, they exert more influence over the final value than
those further away.

Example Computation For the sampled point (x,y) = (6.5,5.8), using previously computed
weights:

wa = 0.1, wb = 0.4, wc = 0.1, wd = 0.4

and the corresponding feature values from the activation map:

Ia = f6,5, Ib = f6,6, Ic = f7,5, Id = f7,6

we compute the interpolated feature value as:

f6.5,5.8 = (0.1× f6,5)+(0.4× f6,6)+(0.1× f7,5)+(0.4× f7,6)

14.2 Fast R-CNN: Accelerating Object Detection 587

Step 6: Aggregating Interpolated Values
After computing the interpolated feature values for all sampled points, we aggregate them using
either:

• Average pooling: The final value is the mean of all interpolated feature values.
• Max pooling: The final value is the maximum of all interpolated values.
In Justin’s example, max pooling is used:

bin value = max(v1,v2,v3,v4)

Final Output After iterating over all bins, the final RoI feature map is constructed, with each
bin containing an aggregated value from bilinear interpolation. The per-proposal network then uses
this structured feature representation for classification and bounding-box regression.

Figure 14.13: Final RoIAlign result: Each bin’s value is determined via bilinear interpolation and
pooling.

Key Takeaways
• RoIAlign eliminates the quantization error of RoI Pooling by leveraging bilinear interpolation.
• The interpolation process ensures precise feature extraction, leading to improved localization

accuracy.
• The final feature map maintains a fixed size per RoI, making it compatible with subsequent

per-region classifiers and regressors.
Hence, RoIAlign is a core component of modern architectures used for detection and segmenta-

tion like Mask R-CNN.

588 Chapter 14. Lecture 14: Object Detectors

RoIAlign Important Implementation Parts in PyTorch
Following the implementation of [473], here are the important code snippets that illustrate how
RoIAlign works, helping to see how the process looks like from start to finish.

1 def _roi_align(self, features, scaled_proposal):

2 """Given feature layers and scaled proposals return bilinear interpolated

3 points in feature layer

4

5 Args:

6 features (torch.Tensor): Tensor of shape <channels x height x width>

7 scaled_proposal (list of torch.Tensor): Each tensor is a bbox by which we

8 will extract features from features Tensor

9 """

10

11 _, num_channels, h, w = features.shape

12

13 # (xp0, yp0) = top-left corner of projected proposal, (xp1, yp1) =

bottom-right corner.↪→

14 xp0, yp0, xp1, yp1 = scaled_proposal

15 p_width = xp1 - xp0

16 p_height = yp1 - yp0

17

18 '''

19 If we want to output a nxn tensor to the per-proposal network, then

output_size=n.↪→

20 The number of sub-regions we'll produce, like in RoIPool, will be nxn as

well.↪→

21 The height and width of each sub-region will be equal, as the regions are

now of exactly the same size,↪→

22 but crucially we no longer snap to integer boundaries.

23 Each sub-region's representative value will be a linear combination of the

pixel values↪→

24 that this sub-region covers (via bilinear interpolation).

25 '''

26 w_stride = p_width / self.output_size # The width of each sub-region

27 h_stride = p_height / self.output_size # The height of each sub-region

28

29 interp_features = torch.zeros((num_channels, self.output_size,

self.output_size))↪→

30

31 for i in range(self.output_size):

32 for j in range(self.output_size):

33 # top-left x coordinate of the i-th sub-region

34 x_bin_strt = i * w_stride + xp0

35 # top-left y coordinate of the j-th sub-region

36 y_bin_strt = j * h_stride + yp0

37

38 # generate 4 points for interpolation (no rounding!)

39 x1 = torch.Tensor([x_bin_strt + 0.25*w_stride]) # quarter in the

bin (x-axis)↪→

14.2 Fast R-CNN: Accelerating Object Detection 589

40 x2 = torch.Tensor([x_bin_strt + 0.75*w_stride]) # three-quarters

in the bin (x-axis)↪→

41 y1 = torch.Tensor([y_bin_strt + 0.25*h_stride]) # quarter in the

bin (y-axis)↪→

42 y2 = torch.Tensor([y_bin_strt + 0.75*h_stride]) # three-quarters

in the bin (y-axis)↪→

43

44 '''

45 We sample 2 points along x (0.25 and 0.75 of the bin width)

46 and 2 points along y (0.25 and 0.75 of the bin height).

47 This yields 2 x 2 = 4 sample points per bin.

48

49 Why at 0.25 and 0.75?

50 1) Avoid boundaries: Sampling at 0 or 1 might cause

rounding/boundary issues.↪→

51 2) Capture variation: Multiple sample points per bin help

represent↪→

52 the internal structure better than a single center point.

53 3) Consistent coverage: 0.25 and 0.75 systematically offer an even

"spread"↪→

54 in each dimension, approximating the average effectively.

55 '''

56

57 for c in range(num_channels):

58 # features[0, c] is the single-channel feature map for channel c

59 img = features[0, c]

60 v1 = bilinear_interpolate(img, x1, y1)

61 v2 = bilinear_interpolate(img, x1, y2)

62 v3 = bilinear_interpolate(img, x2, y1)

63 v4 = bilinear_interpolate(img, x2, y2)

64

65 '''

66 v1, v2, v3, v4 are the bilinear-interpolated values at the four

sample points.↪→

67 We average these 4 values to get a single value for bin (i, j) and

channel c.↪→

68 Note: In some cases, one might take max instead of average

69 (mimicking max pooling). This is what Justin shows in the lecture.

Hence, he takes max(v1, v2, v3, v4) instead.↪→

70 '''

71 interp_features[c, j, i] = (v1 + v2 + v3 + v4) / 4

72

73 return interp_features

We now understand the RoIAlign high-level flow. Next, let us examine how bilinear interpolation
works for the four regularly sampled points inside each bin, of which we’ll compute the output bin
value for the per-proposal network later.

590 Chapter 14. Lecture 14: Object Detectors

1 def bilinear_interpolate(img, x, y):

2 ''' We are given a point (x,y) that might not be a pixel coordinate,

3 and we want to interpolate its feature value from the surrounding pixels.

4 '''

5

6 # find the integer corners that surround (x, y)

7 x0 = torch.floor(x).type(torch.cuda.LongTensor)

8 x1 = x0 + 1

9 y0 = torch.floor(y).type(torch.cuda.LongTensor)

10 y1 = y0 + 1

11

12 # clamp these coordinates to the image boundary to avoid indexing out of

range↪→

13 x0 = torch.clamp(x0, 0, img.shape[1] - 1)

14 x1 = torch.clamp(x1, 0, img.shape[1] - 1)

15 y0 = torch.clamp(y0, 0, img.shape[0] - 1)

16 y1 = torch.clamp(y1, 0, img.shape[0] - 1)

17

18 # top-left, bottom-left, top-right, bottom-right corner values

19 Ia = img[y0, x0]

20 Ib = img[y1, x0]

21 Ic = img[y0, x1]

22 Id = img[y1, x1]

23

24 '''

25 Next, we compute the weights for each corner. The idea:

26 - (x1 - x) -> how far we are from the right edge in the x direction

27 - (x - x0) -> how far we are from the left edge in the x direction

28 - (y1 - y) -> how far we are from the bottom edge in the y direction

29 - (y - y0) -> how far we are from the top edge in the y direction

30

31 We multiply these "partial distances" and then normalize by the total

"area"↪→

32 ((x1 - x0)*(y1 - y0)) so that wa+wb+wc+wd = 1.

33 '''

34

35 norm_const = 1 / ((x1.type(torch.float32) - x0.type(torch.float32)) *

36 (y1.type(torch.float32) - y0.type(torch.float32)))

37

38 wa = (x1.type(torch.float32) - x) * (y1.type(torch.float32) - y) *

norm_const↪→

39 wb = (x1.type(torch.float32) - x) * (y - y0.type(torch.float32)) *

norm_const↪→

40 wc = (x - x0.type(torch.float32)) * (y1.type(torch.float32) - y) *

norm_const↪→

41 wd = (x - x0.type(torch.float32)) * (y - y0.type(torch.float32)) *

norm_const↪→

42

43 # final bilinear interpolation: weighted sum of the four corners

44 return torch.t(torch.t(Ia) * wa) + torch.t(torch.t(Ib) * wb) + \

45 torch.t(torch.t(Ic) * wc) + torch.t(torch.t(Id) * wd)

14.3 Faster R-CNN: Faster Proposals Using RPNs 591

14.3 Faster R-CNN: Faster Proposals Using RPNs
14.3.1 Fast R-CNN Bottleneck: Region Proposal Computation

Although Fast R-CNN optimized the detection pipeline, the slowest component remained the region
proposal generation. The external algorithm used, such as Selective Search, was still running on the
CPU, making it a major bottleneck.

Figure 14.14: Problem: Despite Fast R-CNN’s optimizations, runtime is still dominated by region
proposal computation. Selective Search runs on the CPU and remains the slowest part of the pipeline.

As shown in Figure 14.14, even though feature extraction and classification were now efficient,
generating proposals using heuristic-based methods still consumed a significant portion of the
runtime.

14.3.2 Towards Faster Region Proposals: Learning Proposals with CNNs
The natural next step in improving object detection efficiency was to replace the handcrafted,
CPU-based proposal generation process with a learnable, CNN-based alternative. Faster R-CNN
introduced the Region Proposal Network (RPN) [523], an architecture that predicts object proposals
directly from the feature maps produced by the backbone CNN. This approach integrates proposal
generation into the deep learning pipeline, eliminating the need for slow external algorithms.

The key idea behind RPNs is:
• Use convolutional feature maps to directly predict high-quality object proposals.
• Train the proposal generator jointly with the rest of the detection pipeline.
• Make the entire object detection process fully differentiable and GPU-accelerated.
By replacing Selective Search with an RPN, Faster R-CNN eliminates the last major bottleneck

in Fast R-CNN and makes object detection significantly faster while maintaining high accuracy. In
the next section, we will explore the details of Region Proposal Networks and their role in Faster
R-CNN.

592 Chapter 14. Lecture 14: Object Detectors

14.3.3 Region Proposal Networks (RPNs)
How RPNs Work
Instead of using a separate region proposal algorithm, RPNs generate proposals directly from the
shared feature map produced by a deep CNN backbone. The process follows these steps:

1. Feature Extraction: The backbone CNN extracts a feature map from the input image while
preserving spatial alignment.

2. Anchor Generation: At each spatial location on the feature map, predefined anchor boxes (of
multiple sizes and aspect ratios) serve as candidate proposals.

3. Objectness Classification: A small convolutional layer predicts whether each anchor contains
an object.

4. Bounding Box Regression: For positive anchors, another convolutional layer predicts the
transformation required to refine the anchor into a better-fitting bounding box.

Since the RPN operates directly on the shared feature map, it adds minimal computational
cost—it is simply a small set of convolutional layers applied to the extracted backbone features. This
allows the model to generate high-quality proposals without needing separate, slow region proposal
methods.

Anchor Boxes: Handling Scale and Aspect Ratio Variations
In object detection, objects appear in diverse shapes and sizes. A single fixed-size proposal per
spatial location would fail to capture this variability. To address this, RPNs generate proposals using
a set of predefined anchor boxes at each spatial location on the feature map. Each anchor serves as
a reference box that can be classified and refined to better fit actual objects.

Figure 14.15: Anchor boxes and their classification: Positive (green) anchors contain objects, while
negative (red) anchors do not.

At each spatial location, RPNs generate K anchors with:
• Different scales – Capturing small, medium, and large objects.
• Different aspect ratios – Adapting to tall, square, and wide objects.

14.3 Faster R-CNN: Faster Proposals Using RPNs 593

Figure 14.16: Examples of K anchor boxes at a single location, illustrating different sizes and aspect
ratios.

The original Faster R-CNN paper used 9 anchors per location (3 scales × 3 aspect ratios). For
each anchor, the RPN predicts:

• Objectness Score – A binary classification indicating whether the anchor contains a fore-
ground object or belongs to background. Conceptually, this is just logistic regression: for
each anchor we want a probability p(object | anchor). In practice, most implementations
parameterize this as two logits per anchor (foreground and background) and apply a softmax
followed by a cross-entropy loss. For the binary case, this two-logit softmax formulation is
mathematically equivalent to a single-logit sigmoid (standard logistic regression); it is simply
more convenient to implement and extend to multi-class settings.

• Bounding Box Transform – A transformation (tx, ty, tw, th) refining the anchor box.
These predictions are made using a small CNN applied to the feature map. The classification

branch outputs a 2K-channel score map (for K anchors per location), i.e., for each spatial location it
predicts two logits (foreground / background) for each of the K anchors. If the RPN feature map has
spatial size 5×6, this corresponds to a tensor of shape 2K×5×6 per training image. The regression
branch outputs a 4K-channel transform map per spatial location, yielding an output tensor of shape
4K×5×6 per training image.

Figure 14.17: RPN predicting objectness scores and bounding box transforms for each anchor.

594 Chapter 14. Lecture 14: Object Detectors

Bounding Box Refinement: Aligning Anchors to Objects
Even with multiple anchors per location, an anchor may not perfectly match an object’s true
dimensions. To improve localization, the RPN predicts a refinement transformation, similar to what
R-CNN and Fast R-CNN do for final detections. For details on bounding box transformations, refer
to Section 13.3.1.

The refinement transformation is parameterized as follows:

tx =
bx− px

pw
, ty =

by− py

ph
, tw = ln

(
bw

pw

)
, th = ln

(
bh

ph

)
where (px, py, pw, ph) are the anchor box parameters and (bx,by,bw,bh) are the refined bounding

box parameters.

Figure 14.18: For positive anchors (green), the RPN predicts a transformation (orange) that converts
the anchor to the ground-truth bounding box (gold).

Unlike traditional proposal generation methods, RPNs train the proposal generation process
jointly with the feature extraction backbone, allowing the network to learn proposals that are
well-suited for the final detection task. This integration improves both accuracy and computational
efficiency.

Training RPNs: Assigning Labels to Anchors
To train a Region Proposal Network (RPN), we must assign labels to the anchor boxes, distinguishing
between positive, negative, and neutral examples. This labeling process is crucial for optimizing
both classification (objectness score) and bounding box regression.

• Positive anchors: Anchors that have an IoU ≥ 0.7 with at least one ground-truth box are
considered positive.

• Negative anchors: Anchors with IoU < 0.3 with all ground-truth boxes are labeled negative.
• Neutral anchors: Anchors with an IoU between 0.3 and 0.7 are ignored during training.
Since anchor boxes serve as a reference for object detection, positive anchors are used to

compute both classification and regression losses.

14.3 Faster R-CNN: Faster Proposals Using RPNs 595

Negative anchors, on the other hand, only contribute to the classification loss, ensuring the RPN
learns to distinguish objects from background effectively.

Loss Function for RPN Training
The RPN is trained using a multi-task loss function that jointly optimizes object classification and
bounding box regression:

L({pi},{ti}) =
1

Ncls
∑

i
Lcls(pi, p∗i)+λ

1
Nreg

∑
i

p∗i Lreg(ti, t∗i)

where:
• pi is the predicted probability of anchor i containing an object.
• p∗i is the ground-truth label (1 for objects, 0 for background).
• ti is the predicted bounding box transform for anchor i.
• t∗i is the ground-truth bounding box transform.
• Lcls is the binary cross-entropy loss for object classification.
• Lreg is the smooth L1 loss applied only to positive anchors.
• Ncls and Nreg are normalization terms.
• λ is a balancing factor, typically set to 10.
This loss function ensures that classification and bounding box regression are optimized

simultaneously.

Assigning Ground-Truth Bounding Boxes to Anchors Each positive anchor is assigned
to the ground-truth box that has the maximum IoU with it. This ensures that the best-matching
ground-truth object supervises the training of the anchor’s bounding box regression.

• If an anchor has IoU≥ 0.7 with multiple ground-truth boxes, it is assigned to the object with
which it has the highest IoU.

• Each ground-truth box must be matched to at least one anchor. If no anchor has IoU≥ 0.7
with a given ground-truth box, the anchor with the highest IoU is forcibly assigned to it.

This matching process ensures that all ground-truth objects are covered by at least one
anchor, enabling the RPN to propose accurate regions for all objects in an image.

Smooth L1 Loss for Bounding Box Regression
To refine anchor boxes into accurate region proposals, Faster R-CNN employs the smooth L1 loss,
which is defined as:

Lreg(ti, t∗i) =

{
0.5(ti− t∗i)

2, if |ti− t∗i |< 1
|ti− t∗i |−0.5, otherwise

This loss behaves like an L2 loss (squared error) when the error is small, ensuring smooth
gradients for small offsets. However, for larger errors, it switches to an L1 loss (absolute error),
preventing large outliers from dominating the training process.

Why Smooth L1 Instead of L2 Loss?
• Robustness to Outliers: Unlike the L2 loss, which heavily penalizes large errors, the smooth

L1 loss reduces the influence of extreme outliers.

596 Chapter 14. Lecture 14: Object Detectors

• Stable Training: The transition from quadratic to linear loss ensures that large localization
errors do not cause excessively high gradients, making optimization more stable.

• Better Localization: Since bounding box predictions can have large variations, the smooth
L1 loss allows more effective training, focusing on improving the fine alignment of predicted
boxes.

By integrating the smooth L1 loss into the RPN’s training objective, Faster R-CNN achieves
more accurate and stable region proposals, leading to improved object detection performance.

Why Use Negative Anchors?
Negative anchors (IoU < 0.3) play a crucial role in training the RPN. Without them, the model
would lack supervision on how to classify background regions, leading to an excess of false positives.
Negative anchors:

• Ensure the RPN learns to reject background regions by reinforcing the binary classification
task.

• Provide a balance between object detection and background rejection, making the system
more robust (ensuring that the RPN does not overfit to detecting only foreground objects).

Enrichment 14.3.3.1: Training Region Proposal Networks (RPNs)

The Region Proposal Network (RPN) [522] is a learnable module for generating class-agnostic
object proposals from convolutional feature maps. Below is a complete walkthrough of the training
process.

1. Input Feature Map
Given an input image I ∈ RH×W×3, a CNN backbone (e.g., VGG-16, ResNet-50) produces a feature
map of spatial dimensions:

F ∈ RH ′×W ′×C′ , where H ′ = H/s,W ′ =W/s.

The stride s reflects total downsampling (often s = 16).

2. Sliding Window: Shared 3×3 Conv
A shared 3×3 conv is applied across all spatial locations to extract intermediate features:

1 # Shared intermediate 3x3 conv

2 rpn_conv = nn.Conv2d(C_prime, 512, kernel_size=3, padding=1)

3 inter_features = F.relu(rpn_conv(featmap)) # (B, 512, H', W')

Each spatial location corresponds to a position in the original image and will be associated with
K anchor boxes.

3. RPN Heads: Anchor-wise Classification and Regression
Two parallel 1×1 conv layers produce:

• Objectness scores: 2K channels (foreground vs. background for each anchor),
• BBox deltas: 4K channels (∆x,∆y,∆w,∆h for each anchor).

1 rpn_cls_logits = nn.Conv2d(512, 2 * K, kernel_size=1)(inter_features)

2 rpn_bbox_deltas = nn.Conv2d(512, 4 * K, kernel_size=1)(inter_features)

14.3 Faster R-CNN: Faster Proposals Using RPNs 597

These outputs are reshaped to (B,H ′×W ′×K,2) and (B,H ′×W ′×K,4) respectively during
training for loss computation, to associate each anchor with its corresponding predictions:

1 rpn_cls_logits = rpn_cls_logits.permute(0, 2, 3, 1).reshape(B, -1, 2)

2 rpn_bbox_deltas = rpn_bbox_deltas.permute(0, 2, 3, 1).reshape(B, -1, 4)

4. Anchor Labeling and Ground Truth Assignment
To train the network, we must determine which anchors are positive (object), negative (background),
or ignored. For this, we compute the IoU (Intersection-over-Union) between each anchor and each
ground-truth box:

• Positive: An anchor is labeled positive if it has an IoU ≥ 0.7 with any GT box, or if it is the
highest-IoU anchor for a given GT.

• Negative: Labeled background if it has IoU ≤ 0.3 with all GT boxes.
• Ignored: Anchors with intermediate IoU scores are not used in the loss.

1 labels, matched_gt_boxes = assign_labels(all_anchors, gt_boxes)

2 # labels: 1 = positive, 0 = negative, -1 = ignore

3 pos_inds = torch.where(labels == 1)[0] # Indices of positive anchors

4 fg_bg_inds = torch.where(labels != -1)[0] # Anchors involved in loss

5. Bounding-Box Regression Targets
For each positive anchor, we compute the offset required to transform the anchor into its assigned
ground-truth box. These offsets form the regression targets.

Each target is parameterized as:

∆x =
xgt− xanchor

wanchor
, ∆y =

ygt− yanchor

hanchor
, ∆w = log

wgt

wanchor
, ∆h = log

hgt

hanchor
.

These values measure:
• The relative translation (∆x,∆y) of the ground-truth box center w.r.t. the anchor box.
• The log-scale change (∆w,∆h) needed to stretch the anchor’s width/height to match the ground

truth.

1 bbox_targets = compute_regression_targets(anchors[pos_inds],

matched_gt_boxes[pos_inds])↪→

2 # Shape: (N_pos, 4)

These targets serve as supervision: the network learns to predict these deltas for each positive
anchor.

6. Loss Computation
The RPN is trained using a multi-task loss:

LRPN =
1

Ncls
∑

i
Lcls(pi, p∗i)+λ · 1

Nreg
∑

i
⊮{p∗i =1} ·Lreg(ti, t∗i),

where:
• pi: predicted objectness logits (before softmax),
• p∗i : binary GT label (1 for object, 0 for background),

598 Chapter 14. Lecture 14: Object Detectors

• ti: predicted regression deltas (rpn_bbox_deltas),
• t∗i : GT regression target (bbox_targets).

1 cls_loss = F.cross_entropy(rpn_cls_logits[fg_bg_inds], labels[fg_bg_inds])

2 reg_loss = smooth_l1_loss(rpn_bbox_deltas[pos_inds], bbox_targets)

3 total_loss = cls_loss + lambda_ * reg_loss

Note: During training, we do not decode or apply the predicted deltas to anchors. Instead, we
supervise the raw predicted deltas directly, using regression targets computed from fixed anchor–GT
box pairs. This ensures stable optimization, as the anchors remain fixed while the network learns to
output precise (∆x,∆y,∆w,∆h) shifts. Only at inference time do we apply these predicted offsets to
anchors to produce proposal boxes.

Figure 14.19: Left: Region Proposal Network (RPN). Right: Example detections using RPN
proposals on PASCAL VOC 2007 test. The method detects objects in a wide range of scales and
aspect ratios. Source: [522]

Inference: Generating Region Proposals
At inference time, the RPN processes all anchor boxes across the image and filters out low-confidence
proposals to retain the most relevant ones. The process consists of the following steps:

1. Compute objectness scores: The classification branch predicts an object score for each
anchor box.

2. Sort proposals by objectness score: The top-scoring anchors are retained for further process-
ing.

3. Apply Non-Maximum Suppression (NMS): Overlapping proposals with a high IoU are
removed, keeping only the most confident detections.

4. Select the top N proposals (e.g., 300 proposals) as final region proposals for Fast R-CNN.

By filtering out redundant and low-confidence proposals, this step improves both efficiency and
accuracy, ensuring that only the most relevant regions are processed by the detector.

14.3 Faster R-CNN: Faster Proposals Using RPNs 599

RPNs Improve Region Proposal Generation
Compared to previous region proposal methods like Selective Search, RPNs introduce several key
advantages:

• Speed: RPNs operate directly on the backbone’s shared feature map as a small conv head.
Proposal generation becomes a single GPU pass instead of a slow, separate CPU algorithm.

• Learned “Objectness”: Because the RPN is trained jointly with the detector, it learns which
regions in feature space are likely to contain any object, rather than relying on hand-crafted
low-level grouping cues. This produces proposals that are more relevant to the downstream
detection task (fewer obvious background regions, more boxes covering real objects).

• More Precise Localization: Each positive anchor is not only classified as “object vs.
background,” but also refined by a learned bounding box regressor that predicts offsets
((tx, ty, tw, th)). This allows the network to adjust coarse anchors to tightly hug the true object
boundaries, resulting in proposals that overlap ground-truth boxes much more accurately than
the fixed, heuristic boxes from Selective Search.

Thus, Faster R-CNN achieves real-time object detection by integrating RPNs and Fast R-CNN
into a unified pipeline.

14.3.4 Faster R-CNN Loss in Practice: Joint Training with Four Losses
Joint Training in Faster R-CNN
Unlike previous object detection pipelines where region proposal generation and object classification
were trained separately, Faster R-CNN jointly trains both the RPN and the object detector. This
results in a fully end-to-end learnable system with a four-part loss function:

L = LRPN
cls +LRPN

reg +LFast R-CNN
cls +LFast R-CNN

reg

• LRPN
cls – Classifies anchor boxes as object vs. background.

• LRPN
reg – Refines anchor boxes to generate high-quality proposals.

• LFast R-CNN
cls – Classifies refined proposals into object categories.

• LFast R-CNN
reg – Further refines bounding box localization.

By training the RPN together with the detection network, the region proposal generation and
object detection become more aligned, improving both efficiency and accuracy.

How RPN Improves Inference Speed
Before Faster R-CNN, Fast R-CNN significantly reduced inference time compared to R-CNN by
sharing computations. However, it still relied on external region proposal methods such as Selective
Search, which were computationally expensive. Faster R-CNN eliminates this bottleneck by using
RPN to generate region proposals directly from the feature map.

600 Chapter 14. Lecture 14: Object Detectors

Figure 14.20: Comparison of inference time between R-CNN, SPP-Net, Fast R-CNN, and Faster
R-CNN. RPN reduces the test-time speed from 2.3s in Fast R-CNN to 0.2s in Faster R-CNN.

Key Takeaways:
• Eliminating external region proposals – Instead of using a separate CPU-based region

proposal method (e.g., Selective Search), Faster R-CNN predicts region proposals using
CNNs.

• Fully convolutional region proposals – The RPN operates as a small, efficient convolutional
network on top of the shared feature map.

• Dramatic speedup – With RPN, the overall test-time speed improves from 2.3s in Fast
R-CNN to just 0.2s in Faster R-CNN, making real-time object detection more feasible.

By integrating joint training, region proposal learning, and feature sharing, Faster R-CNN
achieves significant improvements over previous detectors, making it one of the most influential
object detection models.

14.3 Faster R-CNN: Faster Proposals Using RPNs 601

14.3.5 Feature Pyramid Networks (FPNs): Multi-Scale Feature Learning
Detecting objects of varying scales is a fundamental challenge in object detection. Traditional
methods attempted to improve scale invariance by constructing an image pyramid, where the
image is resized to multiple scales and processed separately by the detector. This approach is
computationally expensive since the network must process the same image multiple times.

Figure 14.21: Illustration of the classic image pyramid approach, where the detector is applied to
multiple resized versions of the image to improve small-object detection. However, this method is
computationally expensive.

Feature Pyramid Networks: A More Efficient Approach
Rather than resizing the image, Lin et al. (2017) [359] proposed leveraging the inherent hierarchical
structure of convolutional neural networks (CNNs). Since CNNs naturally extract features at multiple
resolutions due to their deep architecture, FPNs attach independent detectors to features from
multiple levels of the backbone. This enables the model to handle objects at different scales without
requiring multiple forward passes.

602 Chapter 14. Lecture 14: Object Detectors

Figure 14.22: Applying object detectors at different stages of a CNN backbone. However, early-stage
features suffer from limited receptive fields and lack access to high-level semantic information,
reducing detection performance.

Enhancing Low-Level Features with High-Level Semantics
A major drawback of using early-stage CNN features for object detection is that they lack semantic
richness. Lower layers in CNNs retain high spatial resolution but primarily capture edges and
textures, whereas deeper layers encode more complex features but at a lower resolution. This results
in a trade-off: high-resolution features lack meaningful context, while low-resolution features are
more informative but spatially coarse.

To address this, FPNs introduce top-down connections that propagate high-level information
back to lower-resolution feature maps.

Figure 14.23: Top-down feature fusion in Feature Pyramid Networks. High-level features are
progressively upsampled and combined with low-level features to enhance their semantic richness
before detection.

14.3 Faster R-CNN: Faster Proposals Using RPNs 603

Specifically, the process consists of the following steps:

1. Each feature map from the backbone undergoes a 1×1 convolution to change its channel
dimensionality. This ensures that features from different levels are compatible when combined.

2. The highest-level feature map (smallest spatial size, richest semantic information) is directly
used as the starting point for the top-down pathway.

3. The lower-resolution feature maps are then progressively upsampled using bilinear interpola-
tion or transposed convolution (also known as deconvolution) to match the spatial resolution
of the next finer feature map.

4. The upsampled feature map is then element-wise added to the corresponding feature map
from the backbone (which retains high spatial resolution but lacks deep semantic information).

5. Finally, the fused feature maps are further processed by a 3×3 convolution to smooth out
artifacts introduced by upsampling and fusion before being used for object detection.

How Upsampling Works in FPNs
Upsampling is a crucial operation in FPNs since it allows coarse but high-level features to be brought
into alignment with finer-resolution feature maps. This is typically done in one of two ways:

• Bilinear Interpolation: A non-learnable method we’ve covered that interpolates pixel values
based on surrounding features, and can be used to produce smooth upscaled feature maps.

• Transposed Convolution (Deconvolution): A learnable operation that applies upsampling
with trainable filters, allowing the network to learn an optimal way to refine features during
backpropagation. We’ll cover it in more detail later, when we’ll discuss segmentation.

By applying these top-down connections, FPNs create a hierarchical feature representation where
all levels of the feature pyramid benefit from deep semantic information. This significantly
improves object detection performance, especially for small objects, by ensuring that all feature
levels contribute meaningful information to the final detections.

Combining Results from Multiple Feature Levels
Once object detections are generated from multiple feature levels, they must be merged to produce a
final prediction. The standard approach is to apply Non-Maximum Suppression (NMS) across all
detections:

• Sort all detected bounding boxes by confidence score.
• Iteratively suppress overlapping boxes with lower confidence, ensuring that redundant

detections do not appear in the final output.

Advantages of FPNs
Feature Pyramid Networks offer several key advantages over traditional multi-scale detection
approaches:

• Efficient multi-scale feature extraction – The network processes the image only once, rather
than at multiple scales.

• Enhanced small-object detection – Lower-resolution feature maps retain fine details while
incorporating high-level semantics.

• Lightweight and scalable – The additional computational cost of FPNs is minimal compared
to constructing an image pyramid.

By efficiently integrating information from different levels of a CNN, FPNs have become a
standard component in modern object detection architectures, including Faster R-CNN.

604 Chapter 14. Lecture 14: Object Detectors

The Two-Stage Object Detection Pipeline
Faster R-CNN is a two-stage object detector, meaning the detection process is divided into two
sequential steps:

1. Stage 1: Region Proposal Generation
• The backbone CNN processes the entire image once to generate a feature map.
• The Region Proposal Network (RPN) applies convolutional layers to the feature map

and outputs a set of region proposals, each with an objectness score and bounding box
transform.

• The top N proposals (e.g., 300) are selected using Non-Maximum Suppression (NMS)
to remove redundant boxes.

2. Stage 2: Object Detection and Classification
• The extracted feature map is cropped using RoIPooling, producing fixed-size feature

vectors for each proposal.
• Each proposal is classified into an object category or background.
• A final bounding box refinement transformation improves localization accuracy.

Figure 14.24: Visualization of Faster R-CNN as a two-stage object detector. The first stage (blue)
generates region proposals, while the second stage (green) classifies objects and refines the proposals.

This two-stage approach provides high accuracy but comes at the cost of increased computational
complexity. Faster R-CNN significantly improves inference speed over its predecessors, yet the
sequential pipeline—first generate proposals, then run a per-proposal classifier and regressor—still
limits real-time performance.

A natural follow-up question is: do we really need a separate second stage at all? Notice that
the RPN in Stage 1 is already a small, fully convolutional network that scans the feature map and
predicts both an objectness score and bounding box offsets for many locations. In other words, it is
almost a detector by itself—just with a very simple label space (“object vs. background”).

14.4 RetinaNet: A Breakthrough in Single-Stage Object Detection 605

This observation motivated a new family of single-stage object detectors. Instead of first
proposing regions and then classifying them, these models predict object categories and bounding
boxes directly from the feature maps in one pass, removing the explicit proposal stage.

In the following sections, we will study this paradigm through RetinaNet [360], which introduces
the Focal Loss to tackle severe class imbalance in dense prediction, and FCOS [617], a fully convolu-
tional anchor-free detector that further simplifies the design. Later, after introducing Transformers,
we will return to this idea with DEtection TRansformer (DETR) [64], a modern single-stage
detector that formulates object detection as a set prediction problem.

14.4 RetinaNet: A Breakthrough in Single-Stage Object Detection
RetinaNet [360] was a major breakthrough in object detection, becoming the first single-stage
detector to surpass the performance of top two-stage methods such as Faster R-CNN. It is based on
a ResNet-101-FPN or ResNeXt-101-FPN backbone, where the Feature Pyramid Network (FPN)
serves as the neck. By leveraging FPN, RetinaNet effectively handles multi-scale object detection
while maintaining high efficiency.

14.4.1 Why Single-Stage Detectors Can Be Faster
Single-stage object detectors predict object categories and bounding boxes directly from feature
maps, eliminating the need for a region proposal step. Unlike Faster R-CNN, which processes only
a few thousand region proposals per image, single-stage detectors like RetinaNet operate on a dense
grid of anchor boxes—potentially processing over 100,000 candidate regions in a single forward
pass.

• Efficiency: Instead of applying a second-stage classifier per proposal, RetinaNet classifies
objects in a single step, reducing inference time.

• Parallelization: Since all predictions are made in parallel, one-stage detectors can fully utilize
modern hardware like GPUs.

However, despite these advantages, single-stage detectors historically struggled with class
imbalance, which RetinaNet successfully addresses.

606 Chapter 14. Lecture 14: Object Detectors

Figure 14.25: Inference speed comparison of RetinaNet and other detectors. Single-stage detectors
like RetinaNet are significantly faster than two-stage detectors, such as FPN Faster R-CNN.

14.4.2 The Class Imbalance Problem in Dense Detection
One of the main challenges in single-stage detection is extreme foreground–background class
imbalance. Because these detectors make predictions densely over the entire feature map, they
evaluate tens of thousands (sometimes over 100,000) of anchors per image, while only a tiny fraction
of them actually overlap a ground-truth object.

Concretely, this means that the vast majority of anchors are easy background examples. This
imbalance causes two related problems:

1. Inefficient training: Most negative anchors are trivial to classify as background, so their
individual loss and gradients are very small. Yet they still consume most of the computation in
each forward/backward pass. The network spends a lot of effort repeatedly confirming “this is
background” instead of learning from the relatively few informative foreground examples and
hard negatives.

2. Domination of the loss by easy negatives: Although each easy background anchor contributes
only a tiny loss, their sheer quantity means their summed contribution can overwhelm the
loss from the few positive anchors. In this regime, a degenerate solution that simply predicts
“background” almost everywhere can achieve low average loss and high raw accuracy, while
completely failing to detect objects (very low recall). The optimizer is therefore biased toward
modeling the majority background class well, rather than learning strong features for the rare
foreground class.

This issue is much less severe in two-stage detectors like Faster R-CNN, where the RPN filters
out most background regions before the second-stage classifier, leaving a more balanced subset
of positive and negative proposals for training.

RetinaNet’s key contribution is to tackle this imbalance at the loss level, introducing the Focal
Loss to down-weight easy negatives so that training focuses on the scarce, informative examples.

14.4 RetinaNet: A Breakthrough in Single-Stage Object Detection 607

14.4.3 Focal Loss: Addressing Class Imbalance
RetinaNet introduced the focal loss to tackle the severe class imbalance inherent in one-stage
detectors. Instead of resorting to heuristic sampling or hard-negative mining, focal loss modifies
the standard cross-entropy (CE) loss by down-weighting the loss contribution of well-classified
examples, thereby shifting the model’s focus toward hard, misclassified examples.

The focal loss is defined as:

FL(pt) =−(1− pt)
γ log(pt)

where:
• pt is the predicted probability for the ground-truth class.
• γ is the tunable focusing parameter.
For comparison, the standard cross-entropy loss is:

CE(pt) =− log(pt)

By introducing the modulating factor (1− pt)
γ , the focal loss reduces the loss for examples that

are already well-classified (i.e., when pt is high). For instance, with γ = 2:
• If pt = 0.9, then (1−0.9)2 = 0.01, and the loss becomes approximately 0.01×− log(0.9)≈

0.01×0.105 = 0.00105. In contrast, the standard CE loss would be about 0.105.
• If pt = 0.5, then (1−0.5)2 = 0.25, and the loss is 0.25×− log(0.5)≈ 0.25×0.693 = 0.173.
• If pt = 0.2, then (1−0.2)2 = 0.64, and the loss is 0.64×− log(0.2)≈ 0.64×1.609 = 1.029.
These examples illustrate that as the prediction confidence pt increases (i.e., for easy examples),

the modulating factor quickly shrinks the loss, allowing the model to focus its learning capacity on
the hard examples where pt is lower.

An α-balanced variant of the focal loss can further address class imbalance by assigning different
weights to positive and negative examples:

FL(pt) =−αt(1− pt)
γ log(pt)

Here, αt is chosen to down-weight the loss for the dominant class (usually the background). In
practice, selecting γ = 2 and an appropriate α (e.g., 0.25) has been shown to yield robust results.

608 Chapter 14. Lecture 14: Object Detectors

Figure 14.26: Focal loss modifies the standard cross-entropy loss by incorporating a modulating
factor (1− pt)

γ . This factor down-weights the loss for well-classified examples. For instance, when
γ = 2, the loss for examples with high confidence (e.g., pt ≈ 0.9) is significantly reduced, while
the loss for moderately difficult examples (e.g., pt ≈ 0.5 or pt ≈ 0.2) remains similar to that of the
standard cross-entropy loss. Setting γ too high (such as γ = 5) can overly suppress the loss even
for examples that are not trivial, potentially eliminating valuable learning signals. Thus, γ = 2 is
often chosen as a good compromise, effectively reducing the loss from very easy examples while
preserving enough gradient for harder examples. Source: [360].

Figure 14.27: Cumulative distribution functions (CDFs) of the normalized loss for background
(negative) and foreground (positive) examples under different values of γ . As γ increases, the loss
contribution from easy negatives is dramatically reduced, which flattens the loss distribution for
background examples. Importantly, with γ = 2, the loss for foreground examples remains nearly
unchanged, ensuring that the model still learns effectively from the scarce positive examples. This
selective down-weighting is crucial for mitigating class imbalance. Source: [360].

14.4 RetinaNet: A Breakthrough in Single-Stage Object Detection 609

In summary, focal loss is a key innovation in RetinaNet that directly addresses class imbalance
by dynamically down-weighting the loss from easy examples. This enables training a dense one-
stage detector effectively without resorting to complex sampling heuristics, ultimately achieving
state-of-the-art accuracy while maintaining fast inference speeds.

14.4.4 RetinaNet Architecture and Pipeline
Backbone and Neck (FPN)
RetinaNet uses a standard ImageNet–pretrained backbone (e.g., ResNet-50/101 or ResNeXt-101)
to produce a hierarchy of feature maps (commonly denoted C3,C4,C5). Early backbone stages are
high-resolution but semantically weaker; late stages are semantically strong but very coarse. The
Feature Pyramid Network (FPN) is a lightweight top-down pathway with lateral connections that
fuses these signals to create a new set of semantically strong, multi-scale maps P3, . . . ,P7. Concretely:

• P5 is obtained from C5 by a 1×1 lateral conv; P4 and P3 are formed by upsampling the higher
level and adding a lateral projection from C4 and C3 respectively, followed by a 3×3 conv for
smoothing.

• P6 and P7 extend the pyramid for very large objects via stride-2 3×3 convs (e.g., P6 directly
from C5, then P7 from P6 with a ReLU in between).

Each level has a well-defined stride relative to the input image, typically {8,16,32,64,128} pixels
for P3–P7. Thus, one spatial location at Pℓ summarizes roughly a strideℓ× strideℓ patch of the
input. High-resolution P3 captures small objects; low-resolution P6,P7 capture large ones and global
context.

Dense Anchors (per FPN level)
Detection is made dense by tiling anchors—predefined box prototypes—at every spatial location of
every pyramid level. RetinaNet assigns each level a base side length

sℓ ∈ {32,64,128,256,512} for P3, . . . ,P7,

so that level Pℓ is responsible for objects whose side lengths are O(sℓ). To cover shapes and nearby
scales without exploding the search space, A = 9 anchors are placed per location by combining

aspect ratios r ∈ {1/2, 1, 2} and in-octave scales mk ∈ {20, 21/3, 22/3}.

Given (sℓ,mk,r), an anchor’s width and height are

wℓ,k,r = sℓ mk
√

r, hℓ,k,r = sℓ mk /
√

r,

which preserves the anchor’s area near (sℓmk)
2 while adjusting its shape by r = w/h.

Why fractional scales like 21/3? RetinaNet partitions each octave (a doubling of size) into three
equal steps in log2 space. The multiplicative ratio between adjacent scales is 21/3 ≈ 1.26. This yields
anchors that (i) are evenly spaced in scale (no “holes” between 32 and 64, etc.), (ii) avoid redundant
near-duplicates that arise with coarse integer jumps, and (iii) keep coverage smooth across object
sizes. Intuitively, if an object’s true size lies between powers of two, one of the three in-octave scales
will land close enough that the regressor only needs to make a small, stable adjustment.

Across P3–P7, this construction spans effective side lengths from roughly 32 to 512 pixels (and
intermediate in-octave values), producing on the order of 105 anchors per image—ample coverage
for size and shape, while remaining efficient due to shared convolutions over the pyramid.

610 Chapter 14. Lecture 14: Object Detectors

Two Lightweight Prediction Heads (shared across pyramid levels)
RetinaNet attaches two small, fully convolutional “heads” to every FPN level; their weights are
shared across levels for parameter efficiency (the two heads do not share weights with each other):

• Classification head: a subnetwork of four 3×3 conv layers with 256 channels (each followed
by ReLU), ending in a 3×3 conv that outputs A×C per-class logits per spatial location. A
sigmoid is applied independently to each of the C classes (no softmax over classes), which
pairs naturally with the Focal Loss.

• Box regression head: an identically shaped subnetwork that ends in A×4 outputs per location,
parameterizing relative offsets (tx, ty, tw, th) from the anchor.

Bias initialization for stability. To counter the extreme initial imbalance, RetinaNet initializes the
final classification-layer bias to

b =− log
(

1−π

π

)
, π = 0.01,

so the network starts with a low prior probability for foreground, reducing spurious early gradients
from the vast background set.

Inference (single pass)
All FPN levels are processed in parallel, producing a total of O(105) anchor predictions per image.
After a low score threshold (e.g., 0.05), RetinaNet applies per-class NMS (e.g., IoU 0.5) and keeps
the top-K detections (e.g., K=100).

Figure 14.28: RetinaNet pipeline. A backbone + FPN produces a multi-scale feature pyramid.
Two lightweight heads (classification and box regression) operate densely on each pyramid level,
predicting A×C class scores and A×4 box deltas per location in a single stage

Why this works (and what was missing before)
Architecturally, RetinaNet is deliberately simple: it keeps the RPN’s efficient, fully convolutional
template but upgrades to multi-class classification and full box refinement over a feature pyramid.
The historical blocker for single-stage accuracy was not the architecture but the extreme class
imbalance inherent to dense prediction. RetinaNet’s breakthrough is to pair this streamlined design
with the Focal Loss, which down-weights the flood of easy negatives so the classifier learns from
scarce positives and hard examples. The result is two-stage–level accuracy with single-stage speed.

14.5 FCOS: An Anchor-Free, Fully Convolutional Detector 611

14.5 FCOS: An Anchor-Free, Fully Convolutional Detector
FCOS [617] is an anchor-free one-stage detector that casts detection as a dense, per-pixel prediction
problem. Instead of matching ground-truth boxes to a large, hand-designed set of anchors (sizes,
aspect ratios, and assignment rules), every spatial location on a feature map can vote for an object by
predicting its class and the distances from that location to the four sides of the object’s box. This
removes anchor hyperparameters and simplifies both the design and the training pipeline.

14.5.1 Core Pipeline and Supervision
Backbone and Feature Maps
A backbone (e.g., ResNet) with FPN produces a pyramid of feature maps {P3, . . . ,P7}. A location
(x,y) on a pyramid level with stride s corresponds to an input coordinate x̃ = x · s+δ , ỹ = y · s+δ

(with a fixed offset δ such as s/2).

Positive/Negative Assignment
For each feature-map location, FCOS checks whether its mapped coordinate (x̃, ỹ) lies inside any
ground-truth box B = (x0,y0,x1,y1). If not, the location is negative (background). If yes, it is positive
and is assigned to (i) that class and (ii) a single box, chosen as the smallest-area box among those
covering (x̃, ỹ) to favor supervision from small, harder objects.

Distance-From-Point Regression Targets
For a positive location, regression targets are the distances to the four sides of its assigned box:

l∗ = x̃− x0, t∗ = ỹ− y0, r∗ = x1− x̃, b∗ = y1− ỹ.

At inference, predicted distances (l, t,r,b) are converted back to a box (x̃− l, ỹ− t, x̃+ r, ỹ+b).

Figure 14.29: Left: FCOS regresses (l, t,r,b) at each positive location to recover the box. Right:
ambiguity resolution assigns a location inside multiple boxes to the smallest box

612 Chapter 14. Lecture 14: Object Detectors

14.5.2 Multi-Level Prediction with FPN
As in RetinaNet, FCOS uses FPN to divide the problem by object size rather than by anchor scale.
Each level is responsible for a range of object sizes (typical choices):

P3 : (0,64] pixels, P4 : (64,128], P5 : (128,256],

P6 : (256,512], P7 : (512,∞)

This assignment reduces label ambiguity across scales and lets a single set of prediction heads
operate reliably at all pyramid levels.

Figure 14.30: FCOS with FPN: each level specializes to a size range, improving supervision and
reducing scale ambiguity

14.5.3 Centerness: Definition, Role, and Intuition
Why Centerness
Any location inside a ground-truth box is a valid positive, but locations near the edges tend to yield
lower-quality boxes: one or more distances (l∗, t∗,r∗,b∗) are small on one side and large on the other,
making the regression ill-conditioned. FCOS introduces a third head that predicts a centerness score
to quantify how central a location is w.r.t. its assigned object.

Target and Shape
The centerness target is

centerness∗ =

√
min(l∗,r∗)
max(l∗,r∗)

· min(t∗,b∗)
max(t∗,b∗)

.

It is the geometric mean of horizontal and vertical “balancedness.” At the exact center, l∗ = r∗ and
t∗ = b∗, so centerness∗ = 1. As a point drifts toward an edge on either axis, the corresponding ratio
shrinks toward 0, and so does the score. The square root moderates the decay so that moderately
off-center locations are not over-penalized.

14.5 FCOS: An Anchor-Free, Fully Convolutional Detector 613

How It Is Used
• Training: The centerness head is trained with a binary cross-entropy loss to regress centerness∗.

In addition, FCOS weights the localization loss of a positive location by centerness∗, down-
weighting inherently low-quality positives (near edges) during box regression.

• Inference: The final detection confidence is score = class_prob×centerness. This suppresses
spurious boxes predicted from peripheral locations without requiring extra post-processing
heuristics.

Figure 14.31: Three parallel heads per location: classification, (l, t,r,b) regression, and centerness;
centerness calibrates confidence by proximity to the object center

14.5.4 Localization with IoU Loss
Computation in Distance Parameterization
Let the predicted distances be (l, t,r,b) and the targets (l∗, t∗,r∗,b∗) for the same positive location.
Define predicted and target areas

Ap = (l + r)(t +b), Ag = (l∗+ r∗)(t∗+b∗).

Because both boxes are anchored at the same location, the intersection width and height are

wI = min(l, l∗)+min(r,r∗), hI = min(t, t∗)+min(b,b∗),

and the intersection area is AI = wI ·hI . The IoU is

IoU =
AI

Ap +Ag−AI
, Lreg =− log(IoU) or 1− IoU.

Why IoU, not L1

IoU loss is scale-invariant and holistic: it couples all four distances to maximize overlap. In
contrast, L1/smooth-L1 penalize each side independently and over-weight large boxes. Variants
such as GIoU/DIoU/CIoU can further stabilize optimization, but vanilla IoU already yields strong
localization in FCOS.

614 Chapter 14. Lecture 14: Object Detectors

14.5.5 Multi-Task Objective and Training Scheme
Per image, let P be the set of positive locations across all pyramid levels and N+= |P| (with a
small ε to avoid division by zero). FCOS minimizes

Ltotal = Lcls︸︷︷︸
focal, pos+neg

+λreg
1

N+
∑

i∈P
centerness∗i Lreg,i︸ ︷︷ ︸

IoU on positives, weighted by centerness∗

+λctr
1

N+
∑

i∈P
BCE(ĉi,centerness∗i)︸ ︷︷ ︸

centerness head on positives

,

where:
• Lcls is the Focal Loss over all locations (positives and negatives), mitigating extreme fore-

ground–background imbalance
• Lreg is the IoU loss in the distance parameterization for positives only
• The regression term is weighted by centerness∗ to de-emphasize inherently low-quality edge

positives
• λreg,λctr balance localization and centerness terms; practical defaults often set them to 1

At inference, the per-class probability is multiplied by the predicted centerness before NMS. Thus,
focal loss addresses class imbalance, IoU loss optimizes overlap quality, and centerness calibrates
both training weights (for localization) and test-time confidences.

14.5.6 Inference
Single forward pass over the FPN yields class scores, distances, and centerness for every location.
Predictions with low class score are filtered; remaining scores are multiplied by centerness; distances
are converted to boxes; per-class NMS produces final detections.

14.5.7 Advantages of FCOS
FCOS introduces several improvements over anchor-based detectors:

• Simpler Design: Eliminates the need for anchor boxes, reducing hyper-parameter tuning.
• Computational Efficiency: Avoids anchor box computations, reducing memory and process-

ing overhead.
• Better Foreground Utilization: Unlike anchor-based methods, which only consider a subset

of anchors, FCOS treats every feature map location inside a ground-truth box as a positive
sample.

• Improved Detection Quality: The centerness mechanism suppresses low-quality predictions,
reducing false positives.

By leveraging fully convolutional architectures and eliminating the complexities of anchor boxes,
FCOS provides a simple yet powerful alternative to traditional object detection methods.

14.6 Enrichment 14.6: YOLO - You Only Look Once 615

Enrichment 14.6: YOLO - You Only Look Once

Enrichment 14.6.1: Background

YOLO (You Only Look Once) revolutionized object detection by treating it as a single regression
problem, enabling real-time detection without requiring multiple passes over an image.

First introduced by Redmon et al. in [518], YOLO has continuously evolved (from YOLOv1
to more advanced versions) by improving accuracy while maintaining real-time performance. Its
success stems from:

• Speed: YOLO’s one-pass approach makes it significantly faster than two-stage detectors,
enabling applications in autonomous driving, surveillance, and real-time video analysis.

• Global Reasoning: By processing the entire image at once, YOLO reduces false positives
from overlapping region proposals and makes more context-aware predictions.

Thanks to these advantages, YOLO remains one of the most widely used object detection frameworks,
consistently setting new benchmarks for real-time applications.

Enrichment 14.6.2: Step-by-Step: How YOLOv1 Processes an Input Image

YOLOv1 (You Only Look Once) is a single-stage object detector that predicts bounding boxes and
class probabilities in one unified forward pass. Below, we outline how YOLOv1 processes an image
from start to finish.

1. Input Image and Preprocessing
• Dimensions: YOLOv1 typically expects an image resized to 448×448.
• Normalization: In practice, pixel values may be scaled (e.g., to [0,1] or [−1,1]) to help

training stability.
• This preprocessed image is fed into the network as a PyTorch Tensor of shape[

batch_size,3,448,448
]
.

2. Feature Extraction (DarkNet + Additional Convolution Layers)
YOLOv1 is composed of:

1. DarkNet, which produces a high-level feature map from the input image. DarkNet is a series
of convolutional layers interspersed with activations (Leaky ReLU) and sometimes batch
normalization.

2. Additional convolution layers that further refine the 1024-channel output of DarkNet.

Eventually, these convolutions yield a feature map of shape
[
batch_size,1024,S,S

]
, where S is grid

dimension, a hyperparameter that fits our feature extraction process (in YOLOv1, S = 7). Hence,
YOLOv1 divides the image conceptually into a 7×7 grid.

3. Flattening and Fully Connected Layers
After the final convolutional layer, the 7×7×1024 feature map is:

• Flattened into a 1D vector of length 7×7×1024 = 50176.
• Passed into a Linear(50176, 4096) layer, a Leaky ReLU, and a dropout layer.
• Finally, passed into a linear output layer of size S×S× (5B+C), where:

– S = 7 is the number of grid cells per dimension.
– B = 2 is the number of bounding boxes each cell predicts.

616 Chapter 14. Lecture 14: Object Detectors

– C = 20 is the number of classes (for the PASCAL VOC Dataset).
This yields an output tensor of shape:[

batch_size, 7, 7, (5×2+20)
]
=
[
batch_size, 7, 7, 30

]
.

The final layer is linear: it produces real-valued outputs that are trained, via a sum-of-squared-errors
loss, to approximate normalized targets (e.g., coordinates and confidences in [0,1]).

4. Understanding the Output Format
Concretely, each cell’s part of the final output includes:

1. (x,y): Center offsets for box 1 within the cell, in [0,1].
2. w,h: Width and height for box 1, also in [0,1].
3. confidence: A single scalar in [0,1] for how likely the predicted box is valid (the bounding

box overlaps an object).
4. The same 5 parameters for box 2 (x,y,w,h,confidence).
5. C class probabilities for the cell, also in [0,1].

5. Parameterization and Normalization
Although the final layer is linear, YOLOv1 parametrizes its targets so that most predicted quantities
naturally lie in [0,1]:

• x̂, ŷ are trained to represent the center of the box relative to the grid cell that predicts it, with
targets in [0,1]. At inference time, we convert them to absolute image coordinates using the
cell indices (cx,cy) and the grid size S.

• ŵ, ĥ are trained to represent the box width and height relative to the full image size, again with
targets in [0,1]. The loss uses

√
w and

√
h to emphasize errors on small boxes.

• The confidence output for each box is trained to regress to

C = P(object) · IoU(box,gt) ∈ [0,1],

where IoU is the intersection-over-union with the ground-truth box.
• The class probabilities are conditional probabilities P(classc | object) at the cell level, with

targets given by one-hot vectors over the C classes.
Thus, even though the network’s outputs are unconstrained real numbers, the combination of
normalized targets and an L2 loss encourages them to behave like probabilities and normalized
coordinates.

6. Converting Predictions to Actual Bounding Boxes
Inside each cell, we do:

x̂abs =
cx + x̂

S
, ŷabs =

cy + ŷ
S

,

where cx,cy is the grid cell’s top-left integer index (e.g., (2,3) if we are in row 2, column 3) and
S = 7. Then,

ŵabs = ŵ× image_width, ĥabs = ĥ× image_height.

The bounding box corners become:

xmin = x̂abs− ŵabs
2 , ymin = ŷabs− ĥabs

2 , xmax = x̂abs +
ŵabs

2 , ymax = ŷabs +
ĥabs

2 .

Thus each cell contributes up to B = 2 bounding boxes in absolute image coordinates.

14.6 Enrichment 14.6: YOLO - You Only Look Once 617

7. Loss and Training (High Level)
YOLO’s loss function balances three main terms:

• Localization Loss: Penalizes bounding box coordinate errors (x,y,w,h) for the box in each
cell that is responsible for an object. The loss uses

√
w and

√
h to give relatively more weight

to small boxes.
• Confidence Loss: Penalizes errors in the objectness confidence. It pushes confidence toward

1 for responsible boxes in cells that contain objects, and toward 0 for all boxes in cells that do
not contain objects.

• Classification Loss: A sum-of-squared-errors (L2) loss on the class probabilities, applied only
to cells that contain an object.

To balance these contributions, the loss up-weights localization (λcoord = 5) and down-weights the
confidence loss for background cells (λnoobj = 0.5).

The full loss function is:

L = λcoord

S2

∑
i=1

B

∑
j=1

1obj
i j

[
(xi− x̂i)

2 +(yi− ŷi)
2]

+λcoord

S2

∑
i=1

B

∑
j=1

1obj
i j

[
(
√

wi−
√

ŵi)
2 +(

√
hi−

√
ĥi)

2]
+

S2

∑
i=1

B

∑
j=1

1obj
i j

(
Ci−Ĉi

)2

+λnoobj

S2

∑
i=1

B

∑
j=1

1noobj
i j

(
Ci−Ĉi

)2

+
S2

∑
i=1

1obj
i ∑

c∈classes

(
pi(c)− p̂i(c)

)2
.

Here the confidence target for each predicted box is defined as

Ci = P(object in cell i)× IoU(predicted box,ground truth),

so that Ci = 0 for cells without objects, and Ci equals the IoU for the “responsible” box in cells that
contain an object. This ties the confidence both to object presence and to localization quality.

8. Why It Works (and Its Trade-offs)
• Efficiency: Only a single CNN forward pass is needed. This is much faster than multi-stage

pipelines like R-CNN.
• Grid-Based Reasoning: Each cell “looks” at local features and tries to detect objects centered

there, simplifying the logic behind region proposals.
• No Anchors in YOLOv1: The network directly learns bounding box shapes, which can be

good for moderate object scale variety, but struggles for extremely small or large aspect ratios.
Later YOLO versions added anchor priors for more robust shape handling.

618 Chapter 14. Lecture 14: Object Detectors

9. Final Detections and NMS
Once the forward pass is done, YOLOv1 typically:

• Converts each cell’s bounding box predictions into absolute coordinates as described.
• Filters out boxes with low confidence.
• Applies Non-Maximum Suppression (NMS) to reduce duplicates—keeping only the highest

confidence box for each object.
The final set of bounding boxes with class labels becomes YOLO’s detection result.

Summary
1. Input (448×448)→ DarkNet + Conv→ Flatten→ Fully Connected (4096D)→ Linear→

Sigmoid.
2. Output shape:

[
batch_size,7,7,(5×2+20)

]
.

3. Each (7×7) cell: x,y,w,h,confidence︸ ︷︷ ︸
box 1

, x,y,w,h,confidence︸ ︷︷ ︸
box 2

, class probabilities.

4. σ(·) ensures values in [0,1]. The predicted offsets are scaled to the full image, producing final
bounding boxes.

5. Loss includes coordinate errors, objectness confidence errors, and classification errors.
6. Post-processing merges overlapping boxes (NMS).

This pipeline captures what YOLOv1 does and why it does it in a simple, end-to-end fashion: object
localization, classification, and bounding-box regression are all learned jointly in one pass.

Figure 14.32: YOLO pipeline: A single CNN processes the entire image, predicts bounding boxes
and class probabilities, and applies NMS to refine detections. Source: [518].

14.6 Enrichment 14.6: YOLO - You Only Look Once 619

Enrichment 14.6.3: Evolution of YOLO

Over time, multiple versions of YOLO have been developed to address its limitations:
• YOLOv2 (2017) [516]: Introduced anchor boxes, batch normalization, and multi-scale

training, improving both accuracy and generalization.
• YOLOv3 (2018) [517]: Added Darknet-53 as a backbone, feature pyramids, and objectness

scores, significantly boosting detection accuracy.
• YOLOv4 (2020) [47]: Focused on increasing efficiency with new activation functions (Mish),

better data augmentation, and optimization techniques.
• YOLOv5+ (2020s+): Introduced by Ultralytics, leveraging PyTorch and adding modern

training techniques such as mosaic augmentation and hyperparameter tuning.
Each version improves upon the previous, refining accuracy, robustness, and efficiency, so-

lidifying YOLO as one of the most influential object detection models in real-time applications.

14.7 Conclusion: The Evolution of Object Detection
Object detection has undergone significant advancements over the years, with each iteration improv-
ing both speed and accuracy. This chapter traced the evolution of object detectors, highlighting key
innovations that have shaped modern detection frameworks.

From R-CNN to Faster R-CNN: Learning Region Proposals
Early object detection models, such as R-CNN, relied on region proposal methods like Selective
Search to generate candidate object regions. While effective, R-CNN suffered from slow inference
times, as it required passing each region through a CNN separately.

Fast R-CNN improved this process by computing feature maps once for the entire image and
then applying RoI Pooling or RoIAlign to extract features for each proposal, significantly reducing
inference time. However, it still relied on external region proposals, which remained a computational
bottleneck.

Faster R-CNN introduced Region Proposal Networks (RPNs), replacing hand-crafted region
proposal methods with a trainable, CNN-based approach. This enabled fully end-to-end training,
where the region proposals were learned jointly with the detector. While Faster R-CNN achieved
high accuracy, its two-stage nature still made it slower, and also more computationally expensive.

Improving Multi-Scale Detection: Feature Pyramid Networks (FPN)
While Faster R-CNN was a breakthrough, it struggled with detecting objects at different scales,
especially smaller ones. To address this, Feature Pyramid Networks (FPNs) were introduced,
leveraging the multi-scale hierarchical features of CNNs to enhance object detection at different
resolutions. By integrating top-down pathways that fused low-level spatial details with high-level
semantic information, FPNs became a crucial addition to many detection architectures.

RetinaNet: A Breakthrough for One-Stage Detectors
While two-stage detectors like Faster R-CNN were dominant, they were computationally expensive,
motivating the need for faster alternatives. RetinaNet was a milestone in object detection as it was
the first single-stage detector to surpass two-stage detectors in accuracy, all while maintaining
significantly higher speed.

620 Chapter 14. Lecture 14: Object Detectors

RetinaNet introduced Focal Loss, addressing the issue of class imbalance between foreground
and background objects. By down-weighting easy samples and focusing on harder examples, it
improved training efficiency and allowed single-stage networks to perform on par with or better than
their two-stage counterparts. RetinaNet, like Faster R-CNN, leveraged FPNs for multi-scale feature
extraction, making it robust for detecting objects across different sizes.

FCOS: Moving Toward Anchor-Free Detection
While RetinaNet and previous detectors relied on anchor boxes (predefined bounding box templates),
FCOS took a different approach. It introduced an anchor-free detection framework, treating object
detection as a per-pixel regression problem, similar to semantic segmentation. Instead of relying on
predefined priors, FCOS predicted bounding boxes directly at each spatial location. This simplified
the detection pipeline by removing anchor hyperparameters while maintaining strong performance.

YOLO: A Widely Used Real-Time Detector
Parallel to these developments, the YOLO (You Only Look Once) family of detectors emerged as
a dominant force in real-time applications. YOLO takes a different approach by treating detection
as a global regression problem, dividing the image into a grid and predicting bounding boxes and
class probabilities in a single forward pass. Over successive versions, YOLO has been continuously
refined for accuracy and efficiency, making it one of the most popular and influential object detection
frameworks.

Looking Ahead: Transformers and SOTA Detectors
While this chapter focused on CNN-based object detectors, modern detection frameworks have
evolved further with transformer-based architectures. Models such as the DEtection TRans-
former (DETR) and its variants eliminate explicit region proposal mechanisms and instead treat
detection as a set prediction problem using attention. In parallel, strong self-supervised vision trans-
formers (for example, DINOv2) provide powerful backbone representations that can be fine-tuned
for detection and segmentation tasks. As we progress in this document, we will explore several
examples of state-of-the-art (SOTA) detectors that leverage transformers to push the boundaries of
both accuracy and efficiency.

Summary
Modern object detection has progressed from region-based CNNs to one-stage and transformer-based
architectures:

• R-CNN introduced region-based detection but was very slow.
• Fast/Faster R-CNN amortized feature computation and learned region proposals via RPNs,

enabling end-to-end training.
• FPNs added multi-scale feature hierarchies, improving performance on small objects.
• RetinaNet showed that one-stage detectors can match and surpass two-stage accuracy using

Focal Loss.
• FCOS and such detectors simplified design by predicting boxes directly at each location.
• The YOLO family popularized real-time, grid-based detection.
• Transformer-based detectors (e.g., DETR) remove proposal stages entirely and rely on

attention over image features.
These developments build on one another to yield today’s accurate, efficient, and scalable

detection frameworks; later chapters will revisit them in the context of transformer-based vision
models.

14.8 Enrichment 14.8: Detection Transformer (DeTR) 621

Enrichment 14.8: Detection Transformer (DeTR)

The Detection Transformer (DeTR) [64] is a seminal work that brought the transformer architecture
into the object detection domain. Developed by Facebook AI Research (FAIR), DeTR introduced a
novel framework that reformulates object detection as a direct set prediction problem, eliminating
many traditional hand-crafted components like anchor boxes, region proposals, and non-maximum
suppression (NMS).

Figure 14.33: Overview of the DeTR architecture. An image is passed through a CNN backbone
(e.g., ResNet-50) to produce a feature map. These features are flattened and fed into a transformer
encoder. A decoder attends to learned object queries and outputs a fixed number of predictions, each
corresponding to a potential object. Adapted from [64].

Architecture Overview
• The input image is first encoded by a convolutional backbone (e.g., ResNet-50), yielding a

spatial feature map.
• The flattened feature map is treated as a sequence and passed through a transformer encoder.
• A transformer decoder receives a fixed number N of learned object queries and produces a

corresponding set of N object predictions.
• Each prediction outputs both a class label and a bounding box.

Why Transformers for Detection?
DeTR leverages the global self-attention of transformers to enable long-range dependency modeling
across the image. Whereas CNN-based detectors often rely on local context and multi-scale heuristics
to infer object presence, transformers can integrate information from the entire image holistically in
a single forward pass.
However, this global modeling comes with a key design shift: DeTR produces a fixed-size set of
predictions—typically N = 100—for every image, regardless of how many objects are present. This
architectural choice is critical: it allows DeTR to frame detection as a set-to-set matching problem,
enabling end-to-end training using a bipartite matching loss.
This design immediately raises a natural question: What happens when the number of actual objects
is fewer than N?
We address this in the next subsection, where we explore how DeTR matches predictions to targets
using bipartite matching, and how “no-object” padding plays a central role in the loss function and
training dynamics.

622 Chapter 14. Lecture 14: Object Detectors

Enrichment 14.8.1: Matching Predictions and GT with No-Object Padding

Building on the transformer encoder–decoder and self-attention mechanisms introduced in later
chapters, DEtection TRansformer (DETR) [64] revisits object detection as a set prediction problem.
Instead of producing a variable number of candidate boxes that must be filtered by anchors and
non-maximum suppression (NMS), DETR passes image features through a transformer and predicts
a fixed-size set of N object candidates per image (typically N = 100), each trained to correspond to
at most one object (or a dedicated “no-object” slot).

Challenge:
Most images contain fewer than N objects. This creates a mismatch between the number of
predictions and the number of ground-truth annotations (M < N). How can we supervise all
predictions consistently?

Solution: No-Object Padding
To address this, DETR pads the ground-truth set with “no-object” entries—placeholder targets
that carry a special background class label. The model is trained to recognize these as background
predictions.

• Let the image contain M annotated boxes.
• The padded target set is expanded to size N, by appending N−M dummy targets with a

designated “no-object” class label.
• This allows a one-to-one matching between predicted boxes and targets using the Hungarian

algorithm, even when many targets are artificial.

Figure 14.34: Prediction–Ground Truth Matching in DeTR. DETR always outputs a fixed number
N of predictions per image. To supervise all predictions uniformly, the ground-truth set is padded
with “no-object” entries so its size matches N. The Hungarian algorithm computes an optimal
one-to-one matching between predictions and padded targets. Most predictions are matched to
background entries, regularizing the model to produce confident “no-object” classifications for
irrelevant tokens.

Hungarian Matching:
Matching is solved globally using the Hungarian algorithm, which assigns each prediction to exactly
one target (real or padded) to minimize the total matching cost:

Lmatch(i, j) = λcls ·CE(ĉi,c j)+λL1 · ∥b̂i−b j∥1 +λGIoU ·
(
1−GIoU(b̂i,b j)

)

14.8 Enrichment 14.8: Detection Transformer (DeTR) 623

Implementation Snippet:

1 # Assume:

2 # targets = List[Dict] with keys 'boxes' and 'labels'

3 # num_queries = fixed number of DETR outputs (e.g., 100)

4 padded_targets = []

5

6 for tgt in targets:

7 boxes = tgt["boxes"] # [num_objects, 4]

8 labels = tgt["labels"] # [num_objects]

9

10 num_objs = boxes.size(0)

11 pad_size = num_queries - num_objs

12

13 # Pad with dummy boxes and no-object class label (e.g., 91 for COCO)

14 padded_boxes = F.pad(boxes, (0, 0, 0, pad_size)) # [num_queries, 4]

15 padded_labels = F.pad(labels, (0, pad_size), value=no_object_class)

16

17 padded_targets.append({

18 "boxes": padded_boxes,

19 "labels": padded_labels

20 })

Why This Matters:
This matching-and-padding design:

• Eliminates the need for anchor boxes or NMS.
• Supervises every prediction, even those matched to background.
• Enables fully end-to-end training with standard classification and regression losses.

By framing detection as bipartite matching, DETR achieves a clean and interpretable training
objective. In the following subsection, we’ll detail the final loss function and how it combines
classification, L1 distance, and GIoU penalties over the matched pairs.

Enrichment 14.8.2: Hungarian Matching Loss and Bounding Box Optimization

After performing bipartite matching between predicted and ground truth boxes (see section 14.8.1),
DETR computes a loss over these matched pairs to optimize both class predictions and bounding box
regressions. This is known as the Hungarian loss, and it operates over a permutation of predictions
that minimizes the overall cost.

Step 1: Optimal Bipartite Matching
Let the ground truth set be y = {y1, . . . ,yN}, padded with “no-object” entries if the image contains
fewer than N objects. Each element yi = (ci,bi) contains a class label ci ∈ {1, . . . ,K}∪{∅} and
a bounding box bi ∈ [0,1]4. Similarly, let ŷ = {ŷ1, . . . , ŷN} be the N predictions, where each ŷ j =
(ĉ j, b̂ j).

We now seek a permutation σ̂ ∈SN (the set of all permutations over N elements) that minimizes
the total matching cost:

624 Chapter 14. Lecture 14: Object Detectors

σ̂ = argmin
σ∈SN

N

∑
i=1

Lmatch(yi, ŷσ(i)).

This permutation defines a unique one-to-one mapping between each ground truth box and a
model prediction.

Step 2: Matching Cost Definition
The pairwise cost function accounts for classification and box quality:

Lmatch(yi, ŷσ(i)) =−1{ci ̸=∅} · p̂σ(i)(ci)+1{ci ̸=∅} ·Lbox(bi, b̂σ(i)),

where:
• p̂σ(i)(ci) is the predicted probability for class ci,
• Lbox is a bounding box regression loss (see below),
• 1 denotes the indicator function (equal to 1 when the condition holds, 0 otherwise).
The indicator ensures that background (ci =∅) entries do not contribute to the loss.

Step 3: Final Loss Computation
Once the optimal matching σ̂ is found, the Hungarian loss is computed as:

LHungarian(y, ŷ) =
N

∑
i=1

[
− log p̂σ̂(i)(ci)+1{ci ̸=∅} ·Lbox(bi, b̂σ̂(i))

]
.

In practice, DETR downweights the classification loss for no-object classes by a factor of 10 to
reduce class imbalance effects.

Bounding Box Loss: Smooth L1 and GIoU Components
Once a ground truth box bi is matched with a predicted box b̂σ(i) (via the Hungarian algorithm),
DETR computes a localization loss that balances numerical precision and spatial alignment. This
is achieved through a combination of Smooth L1 (Huber) loss and Generalized IoU (GIoU) loss.

1. Smooth L1 Loss (Huber Variant) The Smooth L1 loss—also known as the Huber loss—is
a robust alternative to standard L1 or L2 losses. It behaves like an L2 loss near zero (ensuring smooth
gradients) and like an L1 loss for larger errors (ensuring robustness to outliers). Formally:

SmoothL1(x) =

{
0.5 · x2

β
, if |x|< β

|x|−0.5 ·β , otherwise

The hyperparameter β controls the transition point between the quadratic and linear regimes. For
DETR, β = 1.0 is typically used. This makes the box regression more stable, especially during early
training.

14.8 Enrichment 14.8: Detection Transformer (DeTR) 625

1 # Smooth L1 (Huber) loss for bounding box regression

2 import torch.nn.functional as F

3

4 smooth_l1 = F.smooth_l1_loss(

5 pred_boxes, target_boxes,

6 reduction="none", beta=1.0

7)

Despite being a coordinate-wise loss, Smooth L1 doesn’t account for the box’s spatial shape or
overlap. This is where GIoU comes in.

2. Generalized IoU (GIoU) Loss Intersection over Union (IoU) is a classic metric for bounding
box overlap:

IoU(A,B) =
|A∩B|
|A∪B|

.

However, IoU suffers from a key weakness: if two boxes do not overlap, IoU is 0, providing no
learning signal—regardless of how close the boxes are spatially.

To overcome this, [527] proposed the Generalized IoU (GIoU):

GIoU(A,B) = IoU(A,B)− |C \ (A∪B)|
|C|

,

where C is the smallest enclosing box that fully contains both A and B. This makes GIoU sensitive to
the spatial distance between non-overlapping boxes.

• C is found by taking the tightest box covering both A and B, using min and max operations
over the corners.

• When A and B overlap perfectly, GIoU reduces to IoU.
• When A∩B = /0, GIoU is negative, providing a gradient toward reducing their separation.

Figure 14.35: Illustration of GIoU behavior. Although both examples have IoU = 0, the left
prediction is spatially closer to the ground truth box than the right. GIoU correctly assigns a higher
similarity to the left, allowing for useful gradients even when IoU = 0. Credit: Jinsol Kim.

626 Chapter 14. Lecture 14: Object Detectors

1 from torchvision.ops import generalized_box_iou

2

3 # GIoU loss: 1 - GIoU score

4 giou = generalized_box_iou(pred_boxes, target_boxes)

5 giou_loss = 1.0 - giou

3. Combining Smooth L1 and GIoU Each loss captures a different notion of box quality:
• Smooth L1 (Huber): Enforces numerical closeness between box coordinates (good for center,

width, height alignment).
• GIoU: Encourages spatial alignment and overlap—especially helpful when predictions are far

from the target.
DETR combines the two:

Lbox(bi, b̂σ(i)) = λL1 ·SmoothL1(bi, b̂σ(i))+λGIoU ·
(
1−GIoU(bi, b̂σ(i))

)
,

where λL1,λGIoU are loss weights (e.g., 5.0 and 2.0 in the DETR paper).

Conclusion
By blending coordinate-wise error with geometric overlap, DETR ensures that the model:

• Learns to predict numerically accurate box coordinates,
• Gains spatial awareness even when predictions are initially far off,
• Receives informative gradients during all training phases.
This elegant combination supports DETR’s end-to-end detection approach. Now that we’ve

explored how predictions are matched and optimized via loss functions, we proceed to examine
the architecture and flow of DETR, from feature extraction to transformer decoding and output
prediction.

Enrichment 14.8.3: Architecture Overview

DETR integrates convolutional and transformer-based modules in an end-to-end object detection
pipeline. The overall architecture consists of:

1. A convolutional backbone (e.g., ResNet-50 or ResNet-101) that extracts dense visual features.
2. A transformer encoder-decoder that models global interactions and predicts N object candi-

dates.
3. A bipartite matching and loss computation mechanism to supervise predictions (see sec-

tion 14.8.2).

1. CNN Backbone
The input image X ∈ R3×H0×W0 passes through a CNN backbone (e.g., ResNet-50), producing an
activation map:

f ∈ RC×H×W , where C = 2048, H = H0/32, W =W0/32.

These activations represent coarse spatial features extracted by the CNN. A 1×1 convolution reduces
the channel dimension from C to d = 256, yielding d-dimensional patch embeddings. These are then
flattened into a sequence of HW tokens, each representing a spatial location.

14.8 Enrichment 14.8: Detection Transformer (DeTR) 627

2. Transformer Encoder
Each of the HW flattened patch vectors is enriched with a 2D sine/cosine positional encoding and
then passed through a standard transformer encoder (multi-head self-attention + MLP with residuals
and LayerNorm). Unlike NLP models (e.g., BERT, GPT), DETR uses longer sequences (HW ≈ 900)
but with smaller hidden size (d = 256) to accommodate memory constraints.

Figure 14.36: Overall DeTR architecture. A CNN backbone extracts image features that are fed into
a transformer encoder. The decoder receives N learned object queries to generate predictions.

628 Chapter 14. Lecture 14: Object Detectors

3. Learned Object Queries and Transformer Decoder

Figure 14.37: Transformer architecture in DETR. The encoder aggregates image features. The
decoder uses learned object queries to generate one output per prediction slot. Adapted from [64].

The decoder takes in N = 100 learnable vectors called object queries, each intended to produce
one detection result. These vectors are randomly initialized and updated during training to “ask”
different questions about the image content.

• The encoder outputs serve as keys and values.
• The learned queries serve as queries in the decoder’s cross-attention layers.
This mirrors the original Transformer decoder from [644], adapted for detection instead of

autoregressive text generation.

4. Interpreting Object Queries
Each object query can be imagined as an attention-driven question, probing the image for different
object types or regions.

Figure 14.38: Specialization of object queries across COCO images. Each prediction slot learns to
attend to specific regions and box sizes. Color represents box scale and orientation. Source: [64].

14.8 Enrichment 14.8: Detection Transformer (DeTR) 629

For example, in the above figure 14.38, the colored boxes might be asking the following
questions:

• “What small object is in the bottom-left?”
• “Is there something large in the center?”
Through training, each query vector specializes, covering distinct spatial areas, object sizes, or

semantics. This is visualized in the following figure.

5. Why Attention is a Natural Fit
Transformers are inherently suited for modeling pairwise relationships—making them a natural
match for object detection, where understanding spatial interactions is key.

Figure 14.39: Attention as Bounding Box Proxy. Entries in the attention matrix may reflect spatial
relationships between image regions—suggesting how attention can implicitly capture bounding
box-like structures. This interpretation, proposed by Yannic Kilcher.

Hence, the encoder’s attention matrix (HW ×HW) can be viewed as modeling how each spatial
location attends to others—implicitly capturing potential object extents. Though DeTR does not
exploit this directly, it highlights how attention mechanisms align naturally with the structure of
visual tasks, hinting at promising directions for future work in detection and region proposal learning.

Enrichment 14.8.4: DeTR Results, Impact, and Follow-Up Work

The introduction of DEtection TRansformer (DeTR) [64] marked a turning point in object detection
by demonstrating that transformer-based architectures can achieve strong results without anchors or
non-maximum suppression (NMS). DeTR generalizes remarkably well across:

• Objects of varying sizes: from small to large.
• Different object counts: from sparse to cluttered scenes.
• Challenging layouts: producing high-quality and coherent predictions.

DeTR’s learned object queries attend to semantically meaningful regions in the image. Some queries
specialize in detecting small objects, others cover large or central regions, and many converge to
interpretable modes that persist across datasets.

From Detection to Segmentation
Thanks to its global attention mechanism and fixed set of learned queries, DeTR can be extended to
perform panoptic segmentation. Instead of just bounding boxes, DeTR predicts a binary mask for

https://www.youtube.com/watch?v=T35ba_VXkMY

630 Chapter 14. Lecture 14: Object Detectors

each detected object in parallel. These masks are then merged using pixel-wise argmax, yielding
instance segmentation results.

Figure 14.40: Object-wise mask prediction in DeTR. Binary masks are predicted independently
for each object query. These are later merged using a pixel-wise argmax operation, enabling detailed
instance-level segmentation. Adapted from [64], Figure 8.

Figure 14.41: Panoptic segmentation with DeTR-R101. DETR can segment both “things” (object
instances) and “stuff” (amorphous background regions) in a unified manner. The consistency and
alignment of masks show that DETR learns strong spatial and semantic priors. Adapted from [64].

Real-World Usage: HuggingFace Implementation
The practicality of DeTR has led to wide adoption in research and industry. For example, the
HuggingFace Computer Vision Course provides a user-friendly notebook for fine-tuning DeTR on
custom datasets, demonstrating its flexibility:

Try DETR fine-tuning here

Follow-Up Works and Extensions
Since its release, DeTR has inspired a rich line of research focused on addressing its main limita-
tions—particularly training speed and convergence—while extending its capabilities:

• DAB-DeTR [374] was one of the first major improvements. It introduced dynamic anchor
boxes by injecting learnable reference points into the object queries. This allowed the model
to more effectively initialize and refine box predictions throughout training, leading to faster
convergence and improved accuracy.

• DN-DeTR [328] further addressed the slow training issue by adding a denoising training
objective. During training, noisy object queries are added and explicitly supervised, which
stabilizes learning and accelerates convergence. This technique makes DeTR more competitive
in terms of training time without sacrificing accuracy.

https://github.com/johko/computer-vision-course/blob/main/notebooks/Unit%203%20-%20Vision%20Transformers/Fine-tuning%20Vision%20Transformers%20for%20Object%20detection.ipynb

14.8 Enrichment 14.8: Detection Transformer (DeTR) 631

• Re-DETR [804] builds on both prior ideas and rethinks the decoder itself. It enables iterative
refinement of predictions across decoder layers, where each stage progressively improves upon
previous outputs. This dramatically speeds up convergence and reduces the computational
footprint—bringing DeTR closer to real-time inference scenarios.

• Finally, NMS Strikes Back [594] challenges one of DeTR’s founding principles: the removal
of non-maximum suppression. This work shows that reintroducing a lightweight form of
NMS can help refine predictions and improve performance in crowded scenes—suggesting
that hybrid approaches can sometimes outperform purist, end-to-end designs.

Broader Impact
DeTR reshaped object detection by:

• Eliminating the need for hand-designed anchors and post-processing.
• Enabling a unified architecture for detection, segmentation, and panoptic tasks.
• Inspiring a new wave of research around set prediction in vision.

Its clean, end-to-end formulation led to more interpretable and modular designs, with applications
extending beyond vision to robotics, remote sensing, and beyond.

Conclusion
DeTR is a prime example of how Vision Transformers (ViTs) can be used to build practical, high-
performance systems in computer vision. Despite being architecturally different from traditional
CNNs, ViTs can now tackle nearly every major vision task—classification, detection, segmentation,
and more.

The takeaway: Vision Transformers are an evolution—not a revolution. They offer a different lens
through which we solve the same core problems. But with strong hardware alignment (favoring
matrix multiplications over convolutions), ViTs often train and run faster than CNNs at comparable
FLOPs. More importantly, they provide a seamless path toward multi-modal understanding, as seen
in models like CLIP and Vision-Language Models (VLMs), empowering unified reasoning across
image, text, and video.

632 Chapter 14. Lecture 14: Object Detectors

Enrichment 14.9: Grounding DINO: DINO with Grounded Pre-Training

Enrichment 14.9.1: Motivation and Problem Setting
Motivation and Problem Setting
Classical object detectors such as Faster R-CNN or RetinaNet assume a closed-set label space:
the model is trained and evaluated on a fixed, finite list of categories (e.g., the 80 COCO classes).
This assumption is incompatible with many real applications, where users wish to detect arbitrary
concepts specified at test time by free-form text prompts (e.g., “person holding a red ball”, “traffic
light with a red arrow”). In this regime, models must understand language and localize novel
categories without box-level supervision for every possible concept.

Grounding DINO [376] addresses this problem by “marrying” a strong DETR-style detector
(DINO-DETR [327]) with grounded pre-training on large-scale image–text data. The model is
designed to:

• Support closed-set detection on standard datasets such as COCO by fine-tuning on box-
annotated data.

• Enable open-set detection by conditioning on prompts containing arbitrary category names or
phrases.

• Handle referring expression comprehension (REC), where the input is a single phrase (e.g.,
“the man in a red shirt”) and the goal is to localize exactly the described instance.

The following figure (reproduced from [376]) highlights the conceptual difference between closed-set
detection and open-set phrase grounding, and illustrates an image-editing application obtained by
coupling Grounding DINO with Stable Diffusion [531].

Figure 14.42: Closed-set vs. open-set detection in Grounding DINO. (a) Closed-set detectors
predict boxes over a fixed label set. (b) Grounding DINO conditions on free-form text prompts and
is evaluated on novel categories and REC benchmarks. (c) Example image editing application by
combining Grounding DINO with Stable Diffusion [376]. Figure adapted from [376].

14.9 Enrichment 14.9: Grounding DINO: DINO with Grounded Pre-Training 633

Grounding DINO: Multi-Level Language Fusion
Grounding DINO transforms the closed-set detector DINO-DETR into an open-vocabulary learner
by injecting language supervision at three tightly coupled stages of the architecture [376]. Rather
than processing the image in isolation and classifying boxes against a fixed vocabulary, Grounding
DINO treats detection as a progressive alignment between visual features and a text prompt (e.g.,
“furry animal on grass”). The same BERT-extracted text embeddings are threaded through the feature
enhancer (encoder), the language-guided query initialization, and the cross-modality decoder, so that
all components operate in a shared vision–language space.

Figure 14.43: From closed-set to open-set detection. Grounding DINO conceptually divides
a DINO-DETR-style detector into three phases and injects text into each [376]. (A) A Feature
Enhancer performs early, bi-directional fusion between image and text features, supervised by
encoder-level detection and contrastive grounding losses (Contrastive Loss A). (B) Language-guided
query selection initializes decoder queries from encoder tokens that are most similar to the text in a
shared feature space. (C) A Cross-modality decoder iteratively refines queries via image and text
cross-attention, with decoder-level detection and grounding losses (Contrastive Loss B).

Enrichment 14.9.2: Method
Core idea and progressive fusion philosophy
Grounding DINO [376] upgrades the strong closed-set detector DINO-DETR [327] into an open-
vocabulary detector by replacing fixed classifier weights with region-to-phrase matching in a
shared embedding space. Instead of predicting logits over a pre-defined label set, each region
representation is compared (via dot products) to text-token embeddings produced by a BERT
encoder. The same text features are woven into the network at three points so that early image–
text alignment directly supports query initialization and final decoding. Architecturally, Grounding
DINO combines a DETR-style set-prediction detector equipped with multi-scale deformable attention
(from Deformable DETR/DINO-DETR [327, 808]) with GLIP-style grounded pre-training on large
detection + caption corpora [338], but with much stronger cross-modal fusion in both encoder and
decoder.

It is helpful to view the architecture as a three-phase refinement cascade on top of a dual encoder.
These phases are conceptual stages within a single end-to-end forward pass: they are not trained
separately. In every training step, the model runs through Phases A, B, and C once, and losses from
the encoder and decoder are backpropagated jointly.

634 Chapter 14. Lecture 14: Object Detectors

• Phase A: Feature Enhancer encoder. A bi-directional image–text fusion encoder with
deformable attention and dense encoder-level grounding (Contrastive Loss A). It produces
grounded image and text tokens, encoder-level box predictions, and a dense region–to–token
similarity map, whose rows are anchored to spatial image locations and whose columns
correspond to text tokens. Although the image features are repeatedly updated by self- and
cross-attention, these layers only change the contents of the token vectors: they never reorder
the sequence or modify each token’s associated positional/reference coordinates. The i-th
output token therefore still corresponds to the same backbone cell (position pi, scale si) as
the i-th input token. This preserved spatial correspondence allows Phase B to interpret each
row of X̃IX̃⊤T as a spatial heatmap over the prompt and to convert high-scoring image tokens,
together with their encoder-predicted boxes, into dynamic decoder anchors.

• Phase B: Language-guided query selection. A deterministic module that uses the Phase-A
similarity map and encoder box predictions to seed decoder queries at text-relevant locations
with dynamic anchors.

• Phase C: Cross-modality decoder. A DINO-DETR-style decoder enriched with text cross-
attention and decoder-level grounding (Contrastive Loss B). It refines this query set into final
region–phrase predictions.

Each phase refines the previous one: Phase A aligns dense tokens and learns encoder-level box
predictions; Phase B converts the strongest region–text matches into sparse queries with dynamic
anchors; Phase C iteratively refines these queries using image and text, producing final boxes and
open-vocabulary scores. Importantly, bounding boxes are predicted in both Phase A and Phase C:
the encoder boxes (of Phase A) provide deep supervision and good anchors, while the decoder boxes
(of Phase C) are the final outputs.

Phase A: Feature Enhancer and encoder-level grounding
Phase A operates on top of two unimodal encoders and gradually pulls their tokens into a shared
vision–language space. Crucially, all subsequent attention and feed-forward blocks act on the
features of each token while preserving the token ordering and its associated positional information:
a token that originated from backbone cell (xi,yi) on level si remains the i-th image token throughout
the Feature Enhancer. Attention may aggregate information from many locations and from text, but
it never changes which spatial cell a given token index refers to. At the end of Phase A we therefore
still have:

• Grounded image tokens whose indices and positional encodings anchor them to specific
receptive-field regions in the image.

• Grounded text tokens tied to individual words or sub-words in the prompt.
• Encoder-level box predictions attached to each image token.
• A dense similarity matrix M = X̃IX̃⊤T that can be read as a region–to–token map, because rows

correspond to spatially anchored image tokens and columns to text tokens.
Phase B will compress this dense similarity information into a sparse set of text-guided queries, and
all of this is trained jointly via Contrastive Loss A.

Inputs and notation (dual encoder).
• Image backbone (Swin Transformer). A Swin Transformer [386], pre-trained on large-

scale classification and optionally further tuned in a DINO-DETR detector [327], produces
multi-scale feature maps

X (s)
I ∈ RHs×Ws×dimg , s ∈ {1, . . . ,S}.

14.9 Enrichment 14.9: Grounding DINO: DINO with Grounded Pre-Training 635

Each map is projected by a 1× 1 convolution to a shared hidden dimension d = 256 and
flattened to a sequence

X (s)
I ∈ RNs×d , Ns = HsWs.

Concatenating all scales yields the image token sequence

XI ∈ RNI×d , NI =
S

∑
s=1

Ns,

where each row is tied to a specific spatial location and stride in the feature pyramid.
• Text backbone (BERT with sub-sentence prompts). The text branch uses a BERT-base

encoder [120]. The prompt T is a single string of phrases separated by delimiters (e.g., “cat
. baseball glove . fire hydrant .”), a format that will later support sub-sentence
masking. After tokenization and BERT encoding, a linear projection maps BERT’s hidden
states into the same dimension d:

XT ∈ RNT×d , NT ≤ 256.

At this stage, XI ∈ RNI×d and XT ∈ RNT×d share dimension d, but originate from disjoint pre-
training regimes (vision vs. language). The Swin backbone has never seen text; BERT has never
seen images. Phase A is responsible for pulling these two streams into a shared, grounded space.

Multi-scale deformable attention (MSDeformAttn).
Before describing the Feature Enhancer sub-blocks, it is helpful to recall the multi-scale de-

formable attention module reused from Deformable DETR [808] and DINO-DETR [327]. It appears
both in the encoder (Phase A) and in the decoder (Phase C).

Suppose the backbone outputs S feature levels:

X (s)
I ∈ RHs×Ws×d , Ns = HsWs, NI =

S

∑
s=1

Ns.

Each token corresponds to a scale s and a coordinate p = (x,y) with normalized reference point
r(s)i ∈ [0,1]2.

Dense self-attention baseline.
Standard self-attention over all image tokens would compute, for queries Q, keys K, and values

V ,

SA(i) =
NI

∑
j=1

αi jVj, αi j = softmax j

(
QiK⊤j√

dk

)
,

with O(N2
I) complexity and no explicit use of the multi-scale structure beyond positional encodings.

Multi-scale deformable attention.
Deformable attention replaces dense summation with sparse, geometry-aware sampling. For

each query token i, head h, scale s, and sampling index k ∈ {1, . . . ,K}, the module predicts:
• Offsets ∆p(h,s,k)

i ∈ R2.
• Unnormalized weights A(h,s,k)

i ∈ R.

636 Chapter 14. Lecture 14: Object Detectors

Sampling locations in normalized coordinates are

p(h,s,k)
i = r(s)i +∆p(h,s,k)

i .

Feature values are obtained via bilinear interpolation on scale-s feature maps:

v(h,s,k)i = BilinearSample
(
X (s)

I ,p(h,s,k)
i

)
∈ Rd/H .

After normalizing A(h,s,k)
i over all (s,k) for each head to obtain Ã(h,s,k)

i , deformable attention produces:

MSDeformAttn(i) =
H

∑
h=1

W out
h

(
S

∑
s=1

K

∑
k=1

Ã(h,s,k)
i v(h,s,k)i

)
,

where W out
h are per-head output projections. Complexity is O(NIHSK), linear in the number of

tokens.
In the Feature Enhancer (Phase A), this operation refines each image token before any image–text

cross-attention. A token at stride 16 near a cat’s ear, for example, can sample:
• Finer details from stride-8 features (fur texture, edge details).
• Similar-scale neighbors from stride-16 features (shape continuity).
• Coarser context from stride-32 features (overall body and background).
In the decoder (Phase C), the same module is used as cross-attention from queries to image

features. Each query q(l)k has a current anchor box (cx,cy,w,h), which is converted into one or several
reference points across scales. For each head and scale, the module predicts offsets and weights,
samples a few positions near the anchor, and aggregates them as above. This lets each query:

• Look locally around its current box guess across all scales.
• Refine its internal representation with multi-scale evidence.
• Prepare for text fusion by providing a geometry-aware visual summary to the subsequent

text cross-attention.
This MSDeformAttn block is therefore the main mechanism by which Grounding DINO inherits the
efficiency and multi-scale robustness of Deformable DETR/DINO-DETR [327, 808].

After defining MSDeformAttn, we can now describe the four sub-blocks of each Feature Enhancer
layer. At layer ℓ, we keep image tokens X (ℓ)

I ∈ RNI×d and text tokens X (ℓ)
T ∈ RNT×d; each layer

applies:

1. Deformable self-attention on image tokens using MSDeformAttn.
2. Masked self-attention on text tokens.
3. Image-to-text cross-attention.
4. Text-to-image cross-attention, followed by modality-specific FFNs.

We describe these in turn.

(A1) Deformable self-attention on image tokens.
Using the MSDeformAttn module described above, the image stream is refined as

X̂ (ℓ)
I = MSDeformSelfAttn

(
X (ℓ)

I

)
, X̂ (ℓ)

I ∈ RNI×d .

14.9 Enrichment 14.9: Grounding DINO: DINO with Grounded Pre-Training 637

Here X (ℓ)
I is the concatenation of all backbone scales; each token has an associated reference point

across the multi-scale pyramid, and MSDeformSelfAttn aggregates a small, learned set of samples
around that point across all levels. Conceptually, each patch token becomes a compact, geometry-
aware summary of its local multi-scale neighborhood, rather than a raw backbone descriptor, which
stabilizes the subsequent cross-modal alignment.

(A2) Text self-attention with sub-sentence mask.
Text tokens are refined by masked self-attention:

X̂ (ℓ)
T = SelfAttn

(
X (ℓ)

T ,masksub-sent
)
, X̂ (ℓ)

T ∈ RNT×d .

In open-vocabulary detection, the prompt is typically a concatenation of many category phrases and
referring expressions. Naive word-level attention would let “cat” attend to “baseball glove”, mixing
unrelated semantics. Grounding DINO avoids this by constructing a sub-sentence mask from simple
punctuation conventions:

• Prompt formatting. The prompt is written as a single string where phrases are separated by
delimiters (e.g., “.”).

• Segment assignment. After tokenization, each token is assigned a segment id according to
which phrase it belongs to.

• Masked attention. The attention mask masksub-sent permits attention only within the same
segment; cross-phrase entries are set to zero, yielding a block-diagonal pattern.

For example, for

"a small brown dog . red car . person wearing a blue hat .",

we obtain segments such as:
• Segment 0. Tokens of “a small brown dog”.
• Segment 1. Tokens of “red car”.
• Segment 2. Tokens of “person wearing a blue hat”.

Tokens inside each phrase still see all of their local context (adjectives, prepositions, compound
nouns), while phrases remain cleanly separated as independent detection targets. This sub-sentence
representation is exactly the option found empirically best in the Grounding DINO paper [376], and
it is reused wherever text self-attention appears.

Sub-sentence text representation
The paper compares three ways of encoding prompts [376]:

• Sentence-level. Each phrase is encoded in a separate BERT pass and pooled; this preserves
intra-phrase structure but is inefficient and discards token-level detail.

• Word-level. All phrases are concatenated and encoded jointly with full self-attention; this is
efficient but allows spurious cross-phrase interactions.

• Sub-sentence-level. All phrases are encoded jointly, but self-attention is masked to stay within
each phrase, as in (A2). This keeps intra-phrase context, prevents cross-phrase contamination,
and amortizes BERT computation.

This representation is used consistently in both Phase A and Phase C whenever text attention appears.

638 Chapter 14. Lecture 14: Object Detectors

Figure 14.44: Text representation levels in Grounding DINO. (a) Sentence-level: separate
encoding per phrase. (b) Word-level: joint encoding with full self-attention across all tokens. (c) Sub-
sentence-level: joint encoding with masked self-attention restricted within each phrase. Grounding
DINO adopts (c) to obtain clean, separable embeddings for each category while amortizing BERT
computation across phrases [376].

(A3) Image-to-text cross-attention (I→ T): text tokens collect visual evidence.
Once the unimodal streams have been strengthened, Phase A begins cross-modal fusion. First,

text tokens query the image tokens:

X̃ (ℓ)
T = CrossAttnI→T

(
Q = X̂ (ℓ)

T , K = X̂ (ℓ)
I ,V = X̂ (ℓ)

I

)
, X̃ (ℓ)

T ∈ RNT×d .

In matrix shapes:

Q(ℓ)
T =WqX̂ (ℓ)

T ∈ RNT×dq ,

K(ℓ)
I =WkX̂ (ℓ)

I ∈ RNI×dk ,

V (ℓ)
I =WvX̂ (ℓ)

I ∈ RNI×dv ,

with learned projections Wq,Wk,Wv. The attention matrix is

A(ℓ)
T←I = softmax

(
Q(ℓ)

T K(ℓ)⊤
I√

dq

)
∈ RNT×NI ,

where each row gives weights from one text token to all image tokens. The cross-attended update is

Û (ℓ)
T = A(ℓ)

T←IV
(ℓ)
I ∈ RNT×dv .

With a residual path back to dimension d, the new text tokens are

X̃ (ℓ)
T = X̂ (ℓ)

T +Û (ℓ)
T .

Each row of X̃ (ℓ)
T is thus a mixture of:

• A linguistic component coming from the original BERT embedding X̂ (ℓ)
T .

• A visual component given by a weighted sum of image tokens V (ℓ)
I .

14.9 Enrichment 14.9: Grounding DINO: DINO with Grounded Pre-Training 639

For the token encoding “cat”, the corresponding row of A(ℓ)
T←I peaks on image locations that look like

cats (fur, face, whiskers), so the visual component aggregates those regions. The residual connection
keeps the text token anchored in language space while adding an image-dependent correction that
reflects how this particular image instantiates “cat”. Shape-wise, the number of text tokens remains
NT ; only their contents change.

(A4) Text-to-image cross-attention (T → I): image tokens pull semantics from text.
Next, information flows in the opposite direction: image tokens query the now image-conditioned

text tokens:

X̃ (ℓ)
I = CrossAttnT→I

(
Q = X̂ (ℓ)

I , K = X̃ (ℓ)
T ,V = X̃ (ℓ)

T

)
, X̃ (ℓ)

I ∈ RNI×d .

In matrix form,

Q(ℓ)
I =W ′qX̂ (ℓ)

I ∈ RNI×dq ,

K(ℓ)
T =W ′k X̃ (ℓ)

T ∈ RNT×dk ,

V (ℓ)
T =W ′v X̃ (ℓ)

T ∈ RNT×dv ,

and

A(ℓ)
I←T = softmax

(
Q(ℓ)

I K(ℓ)⊤
T√

dq

)
∈ RNI×NT , V̂ (ℓ)

I = A(ℓ)
I←TV (ℓ)

T ∈ RNI×dv .

With a residual path,

X̃ (ℓ)
I = X̂ (ℓ)

I +V̂ (ℓ)
I .

Each row of X̃ (ℓ)
I therefore becomes a mixture of:

• A visual component inherited from the backbone and deformable self-attention.
• A semantic component given by a weighted sum of text tokens that best explain that region.

For a patch on the cat’s ear, the corresponding row of A(ℓ)
I←T has high weight on the tokens of the “cat”

phrase (and possibly modifiers such as “small” or “brown”) and low weight on unrelated phrases such
as “fire hydrant”. The updated feature becomes a visually grounded but text-aligned representation
of that patch. Importantly, while the feature vector mixes information from many locations and
tokens, the index of each image token (and its reference point in the pyramid) still tells us from which
patch of the input it originated; attention moves information, not coordinates. The image token grid
and multi-scale structure remain intact; only the feature vectors are rotated in the joint space.
(A5) FFNs, progressive alignment, and Contrastive Loss A.

After the two cross-attention directions, modality-specific FFNs with residual connections are
applied:

X (ℓ+1)
I = FFNI

(
X̃ (ℓ)

I

)
, X (ℓ+1)

T = FFNT
(
X̃ (ℓ)

T

)
.

Stacking Lenh layers yields a sequence of transformations

(X (0)
I ,X (0)

T)→ (X (1)
I ,X (1)

T)→ ··· → (X (Lenh)
I ,X (Lenh)

T),

640 Chapter 14. Lecture 14: Object Detectors

where at each level:
• Text tokens evolve from generic BERT embeddings into mixtures of linguistic content and

the image regions that instantiate each phrase in the current image.
• Image tokens evolve from purely visual patches into mixtures of visual content and the phrase

embeddings that best describe them.
Because both branches live in Rd , we can form the similarity matrix

M = X̃IX̃⊤T ∈ RNI×NT ,

which is precisely the dense region–to–token similarity map mentioned above, now written explicitly
as an image-token–to–text-token affinity matrix. Concretely:

• Row i of X̃I is the embedding z⊤i ∈ R1×d of the i-th image token, which originated from a
specific backbone cell (a patch at location (xi,yi) on some feature level) and now encodes a
context-enriched representation of that patch.

• Row j of X̃T is the embedding t⊤j ∈ R1×d of the j-th text token, anchored to a particular word
or sub-word (e.g., “cat”, “glove”, “blue”) within its phrase.

The entry

Mi j = z⊤i t j

is therefore the compatibility between the patch-level token at spatial location i and the word-level
token j. Each row of M is a score vector over all words for a single spatial token, and each column is
a score vector over all spatial tokens for a single word. It is thus natural to interpret M as a dense
region–to–token affinity map, which Phase B will reuse for language-guided query selection.

To drive this alignment, Grounding DINO attaches detection heads directly to the encoder
outputs and applies Contrastive Loss A [338, 376]. Each image token zi (row of X̃I) is treated as a
candidate region:

• Box regression (encoder-level boxes). For each image token zi, which is tied to a particular
backbone cell with center (xi,yi) and stride si, a small MLP predicts a 4D box vector

b̂i = (ĉx, ĉy, ŵ, ĥ)

in normalized image coordinates. Conceptually, the head starts from a default box centered
at the token’s patch center (xi,yi) with a size proportional to the feature-map stride si, and
learns offsets and scale changes around this default (mirroring the reference-point box parame-
terization used in Deformable DETR and DINO-DETR [327, 808]). Hungarian matching is
then applied between the set of encoder-level predictions {b̂i} and ground-truth boxes, with a
cost that combines classification (from the contrastive scores) and geometry (L1 and GIoU) as
in DETR-style detectors [64]; matched tokens are trained with L1 and GIoU losses. These
encoder-level boxes are not the final outputs: they (1) provide deep supervision that teaches
each encoder token to propose a box anchored at its own patch, and (2) supply the dynamic
anchors that Phase B will reuse when initializing decoder queries.

• Contrastive classification (Contrastive Loss A). Instead of a fixed classifier matrix, classifi-
cation is performed by comparing zi to all text tokens t j (rows of X̃T):

ui j = z⊤i t j, j = 1, . . . ,NT .

14.9 Enrichment 14.9: Grounding DINO: DINO with Grounded Pre-Training 641

For a token zi matched (via Hungarian) to a ground-truth box annotated with a phrase, a
small subset of text tokens (those belonging to that phrase) are labeled as positives; all
other tokens are negatives. This yields a highly imbalanced multi-label problem: per image
token, the vast majority of word tokens are negatives, just as most anchors in dense detectors
are background. Grounding DINO therefore uses a focal-style multi-label contrastive loss
(inspired by GLIP [338]), which down-weights easy negatives and focuses learning on hard
negatives and the few positive token matches. In effect, this applies a CLIP-style contrastive
objective at dense spatial locations, while addressing the severe foreground–background
imbalance that arises in detection.

Gradients from Contrastive Loss A propagate through all Feature Enhancer layers, training the
network to use its cross-attention blocks so that corresponding region and phrase features become
similar and unrelated pairs become dissimilar. To summarize, by the end of Phase A, X̃I and X̃T form
a well-aligned pair of token sets, M = X̃IX̃⊤T behaves as a high-quality region–to–word affinity map,
and each image token carries an encoder-level box prediction b̂i that will be exploited in Phase B.

Figure 14.45: Grounding DINO framework. A Swin image backbone and a BERT text backbone
feed a multi-layer Feature Enhancer with deformable image self-attention and bi-directional image–
text cross-attention. A language-guided query selection module then selects encoder tokens highly
similar to the text prompt to initialize many decoder queries. A cross-modality decoder alternates
query self-attention, deformable image cross-attention, and text cross-attention to produce text-
grounded detections [376].

642 Chapter 14. Lecture 14: Object Detectors

Phase B: Language-guided query selection
Phase B takes the dense, grounded encoder tokens from Phase A and converts them into a sparse set
of decoder queries that are already biased toward text-relevant regions. Crucially, Phase B is a loss-
free, deterministic transformation executed inside the same forward pass: it does not introduce new
parameters or a separate training stage. Instead, it harvests the information created by Contrastive
Loss A—both the affinity matrix M = X̃IX̃⊤T and the encoder-level box predictions b̂i—to build a
strong “warm start” for the decoder.

After Phase A we have X̃I ∈ RNI×d and X̃T ∈ RNT×d . Each image token X̃I[i, :] is still associated
with a particular spatial cell in the backbone pyramid: it originated from a specific feature map level
si and grid location (xi,yi) (a patch of the input image), inherited that position’s reference point
for deformable attention, and now carries an encoder-level box prediction b̂i anchored around that
patch. Cross-attention has mixed information between patches and phrases, but the token indices
and positional encodings retain the link “token i↔ receptive-field region centered at (xi,yi)”.

(B1) Scoring encoder tokens by text similarity.
Using the grounded features, Grounding DINO reuses the similarity matrix

S = X̃IX̃⊤T ∈ RNI×NT , (14.1)

where Si j measures how similar image token i is to text token j. To obtain a single relevance
score per image token,

si = max
j

Si j, i = 1, . . . ,NI. (14.2)

This asks, for each spatial token: Does this look strongly like any word or phrase in the prompt? The
max pools over all words and avoids rewarding locations that weakly match many unrelated words.

The indices of the top Nq tokens under this score,

INq = TopNq

(
s1, . . . ,sNI

)
, Nq ≈ 900 in the reference configurations, (14.3)

are taken as language-guided encoder locations [376]. These are precisely the tokens that Phase A
and Contrastive Loss A have already made strongly aligned with some phrase.

(B2) From encoder tokens to dynamic anchor boxes.
Each index i ∈INq corresponds to:
• A spatial position (xi,yi) and stride si in the feature pyramid (the patch from which the token

originated).
• An encoder-level box prediction b̂i = (ĉx, ĉy, ŵ, ĥ) in normalized image coordinates, produced

in Phase A by the encoder head.
Following DAB-DETR and DINO-DETR [327, 374], Grounding DINO uses these encoder-level
predictions directly as dynamic anchor boxes for decoder queries:

• Anchor centers. The initial anchor center (cx,cy) of the query is set equal to the predicted
center (ĉx, ĉy).

• Anchor sizes. The initial anchor size (w,h) is set equal to (ŵ, ĥ), adapting to small objects at
fine scales and large objects at coarse scales.

There is no separate box regression in Phase B: Phase B simply copies the encoder’s prediction b̂i

into the query’s anchor parameterization.

14.9 Enrichment 14.9: Grounding DINO: DINO with Grounded Pre-Training 643

The tuple

(cx,cy,w,h) := b̂i

is then embedded (via the same sinusoidal box encoding + learned projections used in DAB-
DETR/DINO-DETR) into a positional query vector. Because these anchors come from data-
dependent encoder predictions instead of a fixed grid, they adapt to each image’s object sizes
and locations. Conceptually, Phase A has already told us where each phrase is likely to appear;
Phase B turns those encoder boxes into starting points for the decoder. The subsequent refinement of
these anchors into final boxes happens in Phase C, not in Phase B.

(B3) Content embeddings and mixed query selection
As in DAB-DETR/DINO-DETR [327, 374], each decoder query is factored into:
• A positional part given by an (embedded) anchor box (cx,cy,w,h).
• A content part given by a learnable embedding in Rd , independent of spatial location.

Concretely, the model maintains a bank of content embeddings

Econtent ∈ RNq×d ,

which is a parameter matrix learned over the whole training set. For a single image, these Nq rows
become the content part of that image’s queries. For a mini-batch of size B, the same bank is tiled
across the batch, yielding a tensor of shape RB×Nq×d . In this sense, the content embeddings are
“shared across images”: the same Nq learnable query vectors are reused for every image, but their
positional part (the anchor boxes) is image-dependent.

Grounding DINO adopts DINO-DETR’s mixed query strategy, in which the same content bank
Econtent is combined with anchors coming from three different sources:

• Purely learned queries. A subset of queries uses anchors that are also learned parameters,
not tied to any encoder token or text. Intuitively, these queries act as generic “questions” that
the decoder asks about every image, such as:

– “Is there any large object roughly in the center of the image?”.
– “Is there a small, elongated object near the top edge?”.
– “Is there a blob-like region with strong contrast anywhere?”.

Because both their content and positional parts are image-agnostic, they can learn reusable
priors about common object layouts and backgrounds. They also ensure that, even if the
language signal is weak or noisy, the decoder still has some DINO-like, text-free queries
probing the scene.

• Objectness-guided queries (DINO-style). Following DINO-DETR [327], a second subset
of queries uses anchors taken from encoder tokens that look object-like, according to a
generic objectness score from the encoder-level detection head (language-agnostic foreground
likelihood, as in DINO). These anchors inherit:

– Centers and sizes from the encoder’s box predictions at those tokens.
– No direct dependence on the prompt text in their selection.

Conceptually, these queries play the role of “proposal-like” queries: they start on regions the
encoder suspects to contain some object, regardless of which phrase is being asked. Grounding
DINO keeps a small number of such DINO-style queries mainly for stability and backward
compatibility with the strong closed-set detector it builds upon.

644 Chapter 14. Lecture 14: Object Detectors

• Language-guided queries. Finally, a large subset of queries uses anchors derived from the
language-guided indices INq in (B1)–(B2). For each selected encoder token i ∈INq , we take
its encoder-level prediction

b̂i = (ĉx, ĉy, ŵ, ĥ)

and set the query’s anchor to (cx,cy,w,h) = b̂i. These anchors are then embedded (via
sinusoidal encodings and learned projections) and combined with rows of Econtent to form the
initial query set. Because the indices were chosen by high image–text similarity, these queries
start exactly on regions that Phase A has already aligned strongly with some phrase in the
prompt.

In the reference configurations, language-guided queries occupy the majority of the query budget
(hundreds out of the total Nq = 900 queries), while the remaining queries are split between purely
learned and DINO-style objectness-guided anchors. The exact numerical split is a hyperparameter
rather than a core design point; what matters is that:

• Language-guided queries dominate, tightly coupling many queries to the prompt.
• Purely learned queries provide text-agnostic priors and a safety net when text supervision is

weak or missing.
• Objectness-guided queries retain a small pool of DINO-like, proposal-style anchors focused

on visually salient regions, independent of the textual phrasing.
In all cases, the content embeddings are shared across images, but the anchors (and thus the positional
encodings) are recomputed per image, so each image still has its own Nq queries.

Formally, the language-guided part of the selection can be summarized as:

1 def language_guided_query_selection(X_I, X_T, num_queries):

2 # X_I: [N_I, d] grounded image features (Phase A outputs)

3 # X_T: [N_T, d] grounded text features

4

5 # 1. Compute image�text similarity

6 S = X_I @ X_T.T # [N_I, N_T]

7

8 # 2. Collapse over text to get one relevance score per image token

9 s = S.max(dim=1).values # [N_I]

10

11 # 3. Take top-k indices as language-guided encoder locations

12 indices = s.topk(num_queries).indices # [num_queries]

13 return indices

Intuition: Phase B as a warm start.
In DINO-DETR, encoder-based queries are chosen using generic objectness scores, so the

decoder must discover both where objects are and what they are [327]. Grounding DINO retains this
idea but adds a strong language-guided path. Phase A + Contrastive Loss A make tokens overlapping,
say, a “cat” box highly similar to the “cat” text tokens; Phase B then:

• Keeps some purely learned and objectness-guided queries to probe object-like regions in a
prompt-agnostic way.

• Adds many more queries whose anchors are copied directly from the highest-scoring image
tokens under the prompt, i.e., tokens that already look like some phrase in the text.

14.9 Enrichment 14.9: Grounding DINO: DINO with Grounded Pre-Training 645

The decoder in Phase C therefore starts from a rich mixture of queries: some asking general,
text-free questions about the scene, and many already centered on plausible objects that Phase A
believes correspond to the current prompt. This dramatically shrinks the decoder’s search space and
makes it much easier to converge to accurate, text-grounded detections.

Phase C: Cross-modality decoder and Contrastive Loss B
Phase C takes the full query set constructed in Phase B—dominated by, but not limited to, language-
guided queries—and refines it into final region–phrase predictions by repeatedly attending to image
features (for geometry and appearance) and text tokens (for semantics). As with Phase A, this
decoder is trained jointly in a single end-to-end optimization: Contrastive Loss B is applied on top
of its outputs at each training step.

Phase C uses a DINO-DETR-style decoder with an additional text cross-attention block. It takes
as input:

• Initial queries Q(0) ∈RNq×d with content and anchor components (some purely learned, some
objectness-guided, many language-guided).

• Grounded image features X̃I ∈ RNI×d from Phase A.
• Grounded text features X̃T ∈ RNT×d from Phase A.
At decoder layer l, four sub-blocks are applied:

1. Query self-attention.

Q̂(l) = SelfAttn
(
Q(l)),

enabling queries to communicate, share information, and suppress duplicates (e.g., two queries
that see the same object can negotiate which one will take responsibility).

2. Image deformable cross-attention (reuse of MSDeformAttn).

Q̃(l) = MSDeformCrossAttn
(
Q̂(l), X̃I

)
,

where each query, using its current anchor as reference, applies the same MSDeformAttn
mechanism as in Phase A, but now as cross-attention from queries to image tokens. This lets
each query sample a small set of positions around its anchor across all image scales, refining
its geometric and appearance representation while keeping complexity linear.

3. Text cross-attention (new relative to DINO-DETR).

Q̄(l) = CrossAttntext
(
Q̃(l), X̃T

)
,

allowing each query to aggregate information from text tokens and decide which phrases best
explain its current visual evidence. Conceptually, the query “asks” the prompt: given what I
see around my anchor, am I a “red car”, a “person in blue hat”, or background?

4. Feed-forward network.

Q(l+1) = FFN
(
Q̄(l)).

After Ldec = 6 layers, each query qi = Q(Ldec)
i encodes a candidate object with refined geometry,

visual features, and text alignment.

646 Chapter 14. Lecture 14: Object Detectors

Decoder-level supervision (Contrastive Loss B).
The final queries are supervised similarly to DINO-DETR but with open-vocabulary classifica-

tion [327, 376]:
• Box regression (decoder boxes). Hungarian matching assigns each ground-truth region–phrase

pair to at most one query, and matched queries predict boxes trained with L1 and GIoU losses.
These decoder-level predictions, not the encoder boxes, are the final outputs used at inference
time; they refine the initial anchors copied from Phase A.

• Region-to-phrase contrastive classification (Contrastive Loss B). For each matched query
qi and text token t j, logits

ûi j = q⊤i t j

are computed and trained with a focal-like contrastive loss [376]. As in Phase A, each positive
query is associated with a small subset of positive text tokens (those belonging to its ground-
truth phrase), while all remaining tokens are negatives. The imbalance is even more severe
here: most queries are background (or redundant) and most text tokens are irrelevant for any
given query. Using a focal term again down-weights the many easy negatives (queries that
clearly do not match a phrase, or phrases that clearly do not match a query) and forces the
model to concentrate on hard negatives and the few positive region–token pairs.

The overall training objective combines encoder- and decoder-level terms (plus standard DETR-
style auxiliary losses on intermediate decoder layers). Conceptually,

L = λA L box+contr
enc +λB L box+contr

dec + auxiliary terms,

where L box+contr
enc is Contrastive Loss A on encoder tokens and L box+contr

dec is Contrastive Loss B on
decoder queries. Both losses are active from the beginning of training; there is no staged optimization.
Encoder boxes are optimized to become good anchors and a strong grounding signal, while decoder
boxes are optimized to become accurate final predictions.

At inference, any phrase can be used without retraining: the prompt is encoded once, encoder
and decoder run as usual, query–text dot products are computed, scores are aggregated at the phrase
level, and NMS is applied over boxes whose scores exceed the chosen threshold for the phrase. This
enables true open-vocabulary detection.

Connections to prior work and overall impact
The main ingredients of Grounding DINO can be traced as follows:

• DETR-style set prediction. Inherited from DETR [64], providing a query-based, order-free
framework for detection.

• Multi-scale deformable attention. Adopted from Deformable DETR and DINO-DETR [327,
808], enabling efficient, high-resolution, multi-scale processing in both encoder (Phase A) and
decoder (Phase C).

• Mixed query selection and denoising training. Taken from DINO-DETR [327], stabilizing
optimization and improving convergence.

• Grounded contrastive losses and large-scale grounding data. Inspired by GLIP [338], now
applied to Transformer encoder tokens and decoder queries instead of DyHead regions.

• New components specific to Grounding DINO. Introduced in [376]:
– A bi-directional Feature Enhancer that combines deformable self-attention with sym-

metric image–text cross-attention to produce deeply grounded encoder features.

14.9 Enrichment 14.9: Grounding DINO: DINO with Grounded Pre-Training 647

– Language-guided query selection based on encoder-level image–text similarity and
encoder boxes, seeding many queries at text-relevant regions.

– Text cross-attention in each decoder layer to keep queries in direct dialogue with the
prompt throughout refinement.

– Sub-sentence text representation that cleanly separates category phrases while amor-
tizing BERT computation.

This progressive fusion—global grounding in the encoder, text-guided query seeding, and iterative
query–text dialogue in the decoder—yields strong zero-shot transfer (around 52.5 AP on COCO
zero-shot detection) while remaining compatible with standard supervised fine-tuning on downstream
detection datasets [376].

The following table summarizes how Grounding DINO compares to other open-set detectors.
Grounding DINO is distinctive in: (i) using a strong Transformer detector (DINO-DETR) as its
base, (ii) fusing text at three levels (Phases A, B, C), and (iii) operating on sub-sentence prompts for
fine-grained grounding.

Table 14.1: Comparison of open-set object detectors (adapted from Table 1 in [376]). “Partial
label” denotes training on only part of the labels (e.g., base categories). Models are grouped by base
detector, fusion pattern, CLIP usage, and text representation level.

Model Model Design Text Prompt
Represent. Level

Closed-Set
COCO Zero-Shot Transfer Referring Detection

RefCOCO/ +/ g

Base Detector Fusion CLIP COCO LVIS ODinW

ViLD [193] Mask R-CNN – ✓ Sentence ✓ Partial label Partial label – –
RegionCLIP [795] Faster R-CNN – ✓ Sentence ✓ Partial label Partial label – –
FindIt [312] Faster R-CNN A – Sentence ✓ Partial label – – Fine-tune
MDETR [272] DETR A,C – Word – Fine-tune Zero-shot – Fine-tune
DQ-DETR [375] DETR A,C – Word ✓ Zero-shot – Fine-tune –
GLIP [338] DyHead A – Word ✓ Zero-shot Zero-shot Zero-shot –
GLIPv2 [769] DyHead A – Word ✓ Zero-shot Zero-shot Zero-shot –
OV-DETR [750] Deformable DETR B ✓ Sentence ✓ Partial label Partial label – –
OWL-ViT [433] – – ✓ Sentence ✓ Partial label Partial label Zero-shot –
DetCLIP [726] ATSS – ✓ Sentence – Zero-shot Zero-shot – –
OmDet [793] Sparse R-CNN C ✓ Sentence ✓ Zero-shot – – –
Grounding DINO [376] DINO-DETR A,B,C ✓ Sub-sentence ✓ Zero-shot Zero-shot Zero-shot Zero-shot

648 Chapter 14. Lecture 14: Object Detectors

Enrichment 14.9.3: Architecture and Implementation Details
Architecture and training setup
From an implementation standpoint, Grounding DINO instantiates the dual-encoder, single-decoder
design [376] with a small and a large configuration:

• Image backbone. The image encoder is a Swin Transformer [386], either Swin-T (lightweight)
or Swin-L (high-capacity). Both produce a four-level feature pyramid (e.g., strides 1/4,1/8,1/16,1/32).
For detection, Grounding DINO follows DINO-DETR’s multi-scale “4scale” setup [327]:
several pyramid levels (typically three or four) are fed into deformable attention so that queries
can aggregate fine details and coarse context. After a 1×1 projection, all image tokens live in
a shared hidden dimension d = 256, with a typical token count NI > 104 per image [376].

• Text encoder. The text branch is a BERT-base encoder [120] applied once per image to
a concatenated, sub-sentence-masked prompt (Section 14.9.2). After a linear projection
to d = 256, we obtain text tokens XT ∈ RNT×d with NT ≤ 256. These tokens are reused
throughout Phase A (Feature Enhancer), Phase B (query selection), and Phase C (decoder), so
their representation quality and length bound directly affect both accuracy and memory.

• Feature Enhancer and decoder depth. The cross-modal Feature Enhancer is implemented
as a 6-layer module that alternates deformable self-attention on image tokens, masked self-
attention on text tokens, and bi-directional image–text cross-attention (Section 14.9.2). Its
outputs feed (i) encoder-level detection heads for Contrastive Loss A and (ii) the language-
guided query selection in Phase B. The cross-modality decoder then applies 6 layers of query
self-attention, image deformable cross-attention, text cross-attention, and FFNs, mirroring
DINO-DETR but with the extra text branch [327, 376].

• Compute regime. Swin-T variants are trained on 16 V100 GPUs with global batch size 32,
while Swin-L variants use 64 A100 GPUs with batch size 64 [376]. The dominant memory and
compute terms scale with NI (image tokens), NT (text tokens), and the number of queries Nq:
deformable attention is linear in NI , but the dense similarity S = X̃IX̃⊤T is O(NINT). In practice,
limiting NT (sub-sentence prompts, token cap ≤ 256) and using multi-scale deformable
attention instead of dense attention are key to keeping training feasible.

After feature enhancement, the language-guided query selection module (Phase B) operates
purely on indices and metadata: it uses the encoder’s similarity matrix S ∈RNI×NT and encoder-level
boxes b̂i to choose the top-Nq image tokens as anchor sources and to assign them dynamic anchor
boxes (positional part), while attaching a shared bank of learnable content embeddings to form the
full query set (Section 14.9.2). No new parameters are introduced in this phase; it is a deterministic
routing mechanism inside the same forward pass.

Losses and supervision
Training follows a DETR-like set prediction formulation [64, 327] with two levels of supervision:

• Encoder-level heads attached to X̃I implement Contrastive Loss A (Phase A), providing dense
supervision and dynamic anchors.

• Decoder-level heads attached to Q(l) (at each decoder layer, and especially the last) implement
Contrastive Loss B (Phase C), providing the final predictions.

For each predicted query at the decoder (and similarly for selected encoder tokens), the model
outputs a bounding box and a vector of logits over text tokens.

14.9 Enrichment 14.9: Grounding DINO: DINO with Grounded Pre-Training 649

• Box regression. Each prediction is parameterized as a normalized box (ĉx, ĉy, ŵ, ĥ). After
Hungarian matching between predictions and ground-truth region–phrase pairs, matched boxes
are trained with a combination of L1 loss and GIoU loss [527], exactly as in DETR-style
detectors [64, 327]. At the encoder level, this teaches patch tokens to localize objects directly
at their originating spatial cells and yields dynamic anchors; at the decoder level, it produces
the final detection boxes used at inference.

• Classification via contrastive focal loss. Instead of predicting over a fixed label set, each
encoder token or decoder query zi is compared to all text tokens t j by dot product,

ui j = z⊤i t j,

so that ui j scores how compatible prediction i is with token j. This yields a vector of logits
over text tokens, not over a closed vocabulary. A contrastive focal loss, following GLIP [338],
is applied per token [376]:

– Positives are the tokens belonging to the phrase that labels the matched ground-truth box
(e.g., all tokens in “small brown dog”).

– Negatives are all other tokens in the prompt, including tokens of other phrases and
implicit background.

Focal weighting is crucial here: the number of negatives per prediction is very large (dozens to
hundreds of tokens), while the number of positives is tiny (a few tokens per phrase). The focal
term down-weights easy negatives and up-weights hard, confusing ones, preventing the loss
from being dominated by background tokens and letting the model focus on subtle distinctions
between similar phrases. Contrastive Loss A and Contrastive Loss B share this structure but
operate at different locations (encoder tokens vs. decoder queries); the paper reuses the same
focal-style formulation for both [376].

• Matching. Hungarian matching uses a weighted sum of three costs: classification, box L1,
and GIoU, with weights 2.0:5.0:2.0, respectively [327, 376]. The final training loss reuses the
same components but with weights 1.0:5.0:2.0. Intuitively, the higher weight on the box L1
term in both matching and loss reflects the importance of precise localization, while contrastive
classification is still strong enough to enforce correct phrase assignment.

• Auxiliary supervision. As in DINO-DETR [327], auxiliary prediction heads after each de-
coder layer provide deep supervision, stabilizing training in the multi-layer decoder. Grounding
DINO extends this idea by also attaching heads to the encoder outputs, so Contrastive Loss A
shapes the Feature Enhancer from the earliest layers onward. In practice, both encoder- and
decoder-level heads use the same loss components (contrastive focal classification + box L1 +
GIoU), but they serve different roles: encoder heads learn good anchors and dense grounding,
while decoder heads learn the final, text-grounded detections.

650 Chapter 14. Lecture 14: Object Detectors

Enrichment 14.9.4: Experiments and Ablation
Quantitative trends on COCO, LVIS, ODinW, and RefCOCO
Grounding DINO is evaluated in zero-shot, few-shot, and full fine-tuning regimes on COCO, LVIS,
ODinW, and referring expression benchmarks (RefCOCO/+/g) [376]. Rather than focusing on
specific numbers from Tables 2–5, it is more useful here to highlight the main patterns and relative
comparisons.

• COCO detection: With a Swin-T backbone pre-trained on large-scale detection and grounding
data (e.g., Objects365, GoldG), Grounding DINO attains zero-shot COCO AP in the high-
40s, outperforming both DINO-DETR and GLIP with comparable backbones by a few AP
points [327, 338, 376].
Moving to a larger Swin-L backbone and richer pretraining (e.g., Objects365, OpenImages,
GoldG) pushes zero-shot COCO performance into the low-50s AP range without any COCO
images seen during pretraining, setting a strong zero-shot baseline among fully detector-style
methods [376]. After COCO fine-tuning, the Swin-T variant reaches AP in the low-60s,
slightly surpassing a Swin-L DINO baseline despite using a smaller backbone, indicating that
language-guided fusion directly benefits classic supervised detection as well.

• LVIS long-tailed detection: On LVIS, a zero-shot Grounding DINO model with Swin-T
and broad pretraining (e.g., Objects365+GoldG+Cap4M) achieves overall AP in the mid-20s,
slightly ahead of GLIP-T under similar constraints but still below DetCLIP-style models that
leverage even larger caption corpora [196, 338, 376, 727]. The key observation comes after
fine-tuning: Grounding DINO’s LVIS AP climbs into the low-50s, overtaking DetCLIPv2
with the same backbone while relying on less pretraining data [376]. This suggests that its
region–to–phrase formulation transfers particularly well once some task-specific supervision
is available.

• ODinW (Open-World Detection in the Wild): On the ODinW benchmark, which aggregates
many small detection datasets with diverse label spaces [197], Grounding DINO with a Swin-T
backbone matches GLIP-v2 in average AP across tasks while offering improved median AP,
indicating more stable performance on difficult or low-data domains [376, 769]. With a Swin-L
backbone, Grounding DINO surpasses strong alternatives such as Florence in both average
and median AP, despite using fewer parameters, reinforcing that the multi-level grounding
architecture scales well with backbone capacity [376, 745].

• Referring expression comprehension (RefCOCO/+/g): For RefCOCO/+/g, zero-shot perfor-
mance is moderate and broadly comparable to GLIP-type models, which is expected because
these referring-expression benchmarks require fine-grained grounding and nuanced language
understanding [376]. Once fine-tuned on REC data, however, Grounding DINO with Swin-T
already reaches accuracies close to 90% on most RefCOCO splits, and the Swin-L variant
pushes these numbers slightly higher, achieving state-of-the-art or near state-of-the-art results
among compared REC models [376]. Qualitatively, the model handles complex referring
phrases (e.g., “the person on the left holding an umbrella”) significantly better than detectors
that only use language as a global tag.

Overall, the empirical results show a consistent pattern: with no COCO or LVIS supervision,
Grounding DINO already achieves strong zero-shot detection performance across diverse datasets;
with task-specific fine-tuning, it matches or surpasses specialized closed-set detectors, confirming
that its open-vocabulary design does not compromise classical supervised accuracy [376].

14.9 Enrichment 14.9: Grounding DINO: DINO with Grounded Pre-Training 651

Ablation insights and lessons
Table 7 in [376] and related ablations systematically disable individual components under a controlled
Swin-T / Objects365 pretraining setting, evaluated in zero-shot on COCO and LVIS. Exact numbers
depend on the precise training recipe, but the relative deltas are stable and highlight which language-
aware components matter most.

• Encoder-level image–text fusion (Feature Enhancer). Removing the 6-layer bi-directional
Feature Enhancer and using purely visual encoder features (while keeping the rest of the
architecture intact) produces the largest degradation. In the reported setting, COCO zero-shot
AP drops by roughly 3.5 points and LVIS zero-shot AP by about 4–4.5 points compared to the
full Grounding DINO model with encoder fusion enabled (Table 7, model #0 vs. #1 in [376]).
The loss is particularly pronounced on LVIS rare categories, where many classes never appear
in the supervised detector training but are present in the grounding pretraining data. Lesson:
early, deep, bi-directional grounding in the encoder is the primary driver of open-vocabulary
strength.

• Language-guided query selection. Replacing Grounding DINO’s language-guided query
selection with DINO-style generic encoder output queries (selected solely by objectness scores,
independent of text) consistently weakens zero-shot performance. In the Swin-T / Objects365
ablation, COCO zero-shot AP drops by about 1.5–2.0 points and LVIS zero-shot AP by
roughly 3.0 points when text similarity is not used to rank encoder tokens (Table 7, model #1
vs. #2 in [376]). When queries are instead seeded from tokens with high image–text similarity,
the model recovers those points and, in particular, detects more rare LVIS categories with fewer
high-confidence but semantically wrong boxes. Lesson: initializing queries at text-relevant
locations, instead of generic objectness hotspots, is crucial for robust open-vocabulary.

• Text cross-attention in the decoder. Removing the dedicated text cross-attention block from
each decoder layer (while keeping encoder-level fusion and language-guided query selection)
produces a further but smaller drop. The ablation reports a decrease of roughly 0.5–1.0 AP
on COCO and about 1.5–2.0 AP on LVIS (Table 7, model #2 vs. #3 in [376]). The decoder
still localizes objects reasonably well, but classification degrades, especially when multiple
similar objects or fine-grained attributes are present (e.g., colors, clothing attributes). Lesson:
iterative query–text interaction in the decoder refines both localization and semantics beyond
what encoder fusion and text-guided seeding alone can provide.

• Sub-sentence text prompts. Changing from the sub-sentence representation to a flat, word-
level representation (joint attention across all tokens without phrase masking) leads to a
small but consistent drop, on the order of 0.5 AP on LVIS zero-shot evaluation (Table 7,
model #3 vs. #4 in [376]). Grouping words into short, coherent phrases (and masking attention
across unrelated phrases) primarily reduces interference between categories that happen to
co-occur in the same prompt. Lesson: how the text is structured and masked matters; enforcing
phrase-level locality makes cross-attention more stable and less noisy.

Taken together, the ablations support a clear picture: Grounding DINO’s gains do not come from
a single trick but from a stack of language-aware design choices. The encoder’s Feature Enhancer
establishes an aligned vision–language space and accounts for the largest share of the zero-shot AP
improvements; language-guided query selection then ensures that decoding starts at semantically
meaningful locations rather than generic objectness peaks; and text cross-attention in the decoder
lets queries repeatedly refine their interpretation of both the image and the prompt. Sub-sentence
prompts provide an additional, low-cost layer of stability by structuring the text input in a way that
matches how detection categories are typically used in practice [376].

652 Chapter 14. Lecture 14: Object Detectors

Enrichment 14.9.5: Grounding DINO 1.5

Grounding DINO 1.5 [525] advances the original model along two largely independent axes while
preserving the same dual-encoder / cross-modality decoder and set-prediction formulation:

1. A stronger contrastive training recipe, in which decoder queries are contrasted against text
tokens from all images in the mini-batch, not just their own image’s prompt.

2. Scaling and efficiency variants, instantiated as a high-capacity Pro model (ViT-L backbone,
Grounding-20M data) and an Edge model with an efficient feature enhancer and an EfficientViT
backbone for real-time inference.

Architecturally, the detection head, Hungarian matching, and open-vocabulary scoring remain
unchanged; what changes is how contrastive supervision is constructed across the batch and how the
encoder’s fusion cost is traded off against throughput in the Edge variant.

Batch-level contrastive supervision and cross-image negatives
Original Grounding DINO applies its main contrastive loss image-wise: for an image Ib with prompt
Tb, only queries from Ib and tokens from Tb participate in Contrastive Loss B. Tokens that belong to
prompts of other images in the mini-batch are never seen as explicit negatives for Ib.

Grounding DINO 1.5 instead treats the mini-batch as a single pool of region queries and text
tokens. Conceptually, one can think of forming a batch-level joint prompt

Tbatch = T1 . T2 TB

whose tokens are collected into a shared set

XT,batch =
{

t j
}Nbatch

T
j=1 .

In practice, the implementation can encode each image’s prompt separately and then pool the
resulting tokens; the key change is the loss: decoder queries from all images are contrasted against
all text tokens produced in the batch.

Concretely, after the cross-modality decoder (Phase C), each image Ib yields a set of queries
{qb,k}k, each matched (via Hungarian assignment) to a ground-truth box with an associated phrase
segment or to a “no object” label, exactly as in Grounding DINO [376]. For a positive query qb,k
matched to a phrase segment T (b,k) ⊂ Tb, Contrastive Loss B in Grounding DINO 1.5 is constructed
so that:

• Positive tokens are those in the matched phrase segment T (b,k).
• Negative tokens include not only all other tokens in Tb, but also tokens from prompts Tb′ of

other images Ib′ in the same mini-batch.
From the loss’s point of view, a query on image I1 that should align with “dog” must not only give
low scores to unrelated words like “car” inside T1, but also explicitly reject tokens such as “cat”,
“bus”, or “red umbrella” that correctly describe objects in I2, . . . , IB but are absent from I1. This
turns every batch into a richer source of hard negatives than the original image-wise training, while
leaving the model architecture unchanged.

14.9 Enrichment 14.9: Grounding DINO: DINO with Grounded Pre-Training 653

Figure 14.46: Grounding DINO 1.5 framework. (a) The dual-encoder / cross-modality decoder
architecture from Grounding DINO [376] is retained. (b) During training, region queries from all
images in a mini-batch participate in a batch-level contrastive loss against all text tokens in the batch,
so that phrases that truly describe other images act as hard negatives. Figure adapted from [525].

Intuitively, this batch-level contrastive supervision does two things:
• It increases the effective number and diversity of negatives seen per query at each optimization

step, beyond what a single image’s prompt can provide.
• It explicitly teaches the model to say “no” to plausible phrases that are valid elsewhere in the

batch but not in the current image, which empirically reduces open-vocabulary hallucinations
and improves rare-category recall on LVIS [525].

The paper reports consistent gains of roughly +1–2 AP in zero-shot COCO and on LVIS rare
categories when switching from the original image-wise loss to the batch-level variant, under
otherwise comparable settings [525].

Scaling axis: Grounding DINO 1.5 Pro
On top of the new training recipe, Grounding DINO 1.5 Pro scales the model capacity and data:

• Backbone. The vision backbone is upgraded to ViT-L/14 at higher resolution (e.g., 336×336)
while keeping the same type of dual-encoder / cross-modality decoder design [525].

• Data. A new Grounding-20M dataset with over 20M grounding images is introduced, substan-
tially enlarging the grounding supervision pool compared to the original Grounding DINO
training recipe [376, 525].

• Performance. With batch-level contrastive training and the larger backbone and data, the
Pro model reaches around 54.3 AP on COCO zero-shot detection and roughly 55.7 AP on
LVIS-minival zero-shot, a sizeable improvement over the Swin-L version of Grounding DINO
and over DetCLIP-style baselines on LVIS [525, 727].

Crucially, these gains do not come from architectural changes in the detector head: the decoder,
query formulation, and set-prediction loss remain as in Grounding DINO. The improvements are
attributed to (i) the stronger batch-level contrastive training, (ii) the larger ViT-L backbone, and (iii)
the much broader grounding corpus.

654 Chapter 14. Lecture 14: Object Detectors

Efficiency axis: Grounding DINO 1.5 Edge and the efficient feature enhancer
While the Pro models target maximal zero-shot and fine-tuned performance, the Edge models target
deployment on resource-limited hardware. The main architectural novelty here is an efficient feature
enhancer that reduces the cost of encoder fusion:

• Single-scale cross-modality fusion. Instead of running multi-scale deformable self-attention
over all feature pyramid levels (e.g., P3–P6) interleaved with text cross-attention, the Edge
enhancer restricts cross-modality fusion to a single high-level feature map (typically the
stride-32 P5 level). Self-attention on this map uses standard multi-head self-attention, which is
easier to optimize and deploy than custom deformable kernels.

• External cross-scale injection. Information from lower-level maps P3 and P4 is injected into
P5 outside the main cross-modality loop, via lightweight cross-scale fusion (e.g., upsampling
and 1× 1 convolutions or simple attention). This preserves multi-scale context without
repeatedly applying heavy, multi-level deformable attention.

• Efficient backbone. The image backbone is swapped to EfficientViT-L1, which is specifically
designed for fast multi-scale feature extraction on edge devices, while the BERT text encoder
and decoder heads follow the original Grounding DINO design [525].

Importantly, the detection formulation remains identical: Edge models still output a set of boxes and
phrase scores per image, trained with Hungarian matching, box regression losses, and region-to-token
contrastive classification as before. The efficient feature enhancer simply computes the encoder
features more cheaply, making it possible to reach, after TensorRT optimization, around 75.2 FPS
with roughly 36.2 AP on LVIS-minival zero-shot on edge-class GPUs [525].

Figure 14.47: Original vs. efficient feature enhancer. (a) Grounding DINO uses multi-scale
deformable self-attention inside the feature enhancer, repeatedly fusing all pyramid levels with text.
(b) Grounding DINO 1.5 Edge confines cross-modality fusion to the high-level P5 map with vanilla
self-attention and uses a separate cross-scale fusion module to inject P3/P4 information, preserving
multi-scale context at much lower cost. Figure adapted from [525].

In summary, Grounding DINO 1.5 can be viewed as:
• A training upgrade (batch-level contrastive supervision with richer cross-image negatives)

that both Pro and Edge variants share.
• A scaling track (Pro) that combines this training with a ViT-L backbone and a 20M-image

grounding corpus for state-of-the-art open-vocabulary performance.
• An efficiency track (Edge) that re-engineers the feature enhancer and backbone for real-time

open-set detection on edge devices, without changing the detector head or output format.

14.9 Enrichment 14.9: Grounding DINO: DINO with Grounded Pre-Training 655

Enrichment 14.9.6: Limitations and Outlook

Grounding DINO and Grounding DINO 1.5 illustrate how to integrate a strong DETR-style detector
with grounded pre-training for open-set detection, but several limitations remain:

• Prompt-driven hallucination. Like other open-vocabulary detectors and vision–language
models, Grounding DINO can still hallucinate objects that are strongly suggested by the
prompt but absent in the image (e.g., predicting a “unicorn” box when asked, given a vaguely
horse-like shape). Grounding DINO 1.5’s batch-level contrastive training mitigates this by
forcing queries to explicitly reject phrases that are correct for other images in the batch but
wrong for the current one [525], yet hallucination remains an important open challenge.

• Rare categories and long-tail distributions. On LVIS, Grounding DINO shows significantly
lower performance on rare categories compared to frequent ones (e.g., 18.1 vs. 32.7 AP in a
zero-shot Swin-T model) [376]. This reflects both the DETR family’s challenges with rare
classes and the limited coverage of rare concepts in available grounding data.

• Box-only outputs. Grounding DINO predicts bounding boxes but not masks. In segmentation
pipelines, it must be coupled with models such as Grounded SAM and SAM 2 (in the following
chapter on segmentation), which take its boxes as prompts. This decoupling can propagate
localization errors to masks.

• Computational cost. Although more efficient than some alternatives (e.g., GLIPv2 and
Florence) [745, 769], Grounding DINO still requires substantial pretraining compute and
multi-dataset curation. Grounding DINO 1.5 improves training efficiency via batch-level
prompting and an efficient feature enhancer [525], but end-to-end open-set detection remains
more expensive than closed-set detectors.

• Semantic granularity. Even with sub-sentence prompts, distinguishing fine-grained attributes
(e.g., “person wearing a red hat” vs. “person wearing a blue hat”) can be challenging without
high-quality attribute-level grounding data.

Despite these limitations, Grounding DINO establishes a compelling template for open-set detectors:
• Combine a strong DETR-style detector (here, DINO-DETR) with grounded language pre-

training.
• Use deep cross-modal fusion in the encoder, text-guided query selection, and cross-modality

decoding.
• Scale training with batch-level contrastive objectives, as in Grounding DINO 1.5.

Subsequent enrichments in this chapter (OWL-ViT and OWLv2) will show complementary ap-
proaches that rely more heavily on CLIP-style vision–language encoders and less on DINO-DETR-
style detection heads, providing a broader view of the open-set detection design space.

656 Chapter 14. Lecture 14: Object Detectors

Enrichment 14.10: OWL-ViT: Open-Vocabulary Detection with ViTs

Enrichment 14.10.1: Motivation and context

OWL-ViT (“Open-World Localization Vision Transformer”) [433] shows that a pure image–text
contrastive model, pre-trained only on image-level captions and without any box supervision, can
serve as a strong backbone for an open-vocabulary detector once lightweight detection heads are
attached and fine-tuned on box-level annotations. This stands in contrast to DINO-DETR [327] and
Grounding DINO [376]:

• DINO-DETR is a closed-set detector trained with a deformable encoder–decoder Transformer
and Hungarian set prediction loss, using fixed class embeddings and no language information.

• Grounding DINO injects text tokens into both the encoder and decoder, performing deep early
fusion between vision and language and learning the detector jointly on caption and grounding
corpora.

• OWL-ViT, by contrast, starts from a contrastively pre-trained vision–language model (LiT /
CLIP) and keeps its image and text encoders largely decoupled during detection fine-tuning:
images go through a ViT, queries go through a text Transformer, and they only meet at the
very last layer via dot products.

This late-fusion design has a practical advantage over Grounding DINO: image embeddings can be
precomputed and indexed offline, while text prompts can be embedded on the fly. In large-scale
retrieval or detection-as-search scenarios, this enables querying new categories without re-running
the vision backbone for the entire corpus, which is not possible with Grounding DINO’s tightly
coupled encoder–decoder design.

Enrichment 14.10.2: Method
Overview of the approach

Figure 14.48: OWL-ViT approach. Image-level contrastive pretraining (left) followed by transfer
to open-vocabulary detection (right), where per-patch tokens are fed to classification and box heads
and scored against text or image queries. Figure reproduced from Minderer et al. [433].

14.10 Enrichment 14.10: OWL-ViT: Open-Vocabulary Detection with ViTs 657

Figure 14.48 summarizes OWL-ViT’s two-stage recipe:

1. Stage 1: Image-level contrastive pretraining (offline). Before any detection data or bounding
boxes are used, OWL-ViT starts from a generic dual-encoder vision–language model trained
on large-scale image–caption pairs with a CLIP/LiT-style contrastive objective [433, 498,
757]. A Vision Transformer [133] processes each image x into a sequence of visual tokens
(patch embeddings, optionally preceded by a [CLS] token). These token representations
are then collapsed into a single global image embedding zv ∈ RD, either by reading out the
[CLS] token (CLIP-style) or by Multi-head Attention Pooling (MAP, LiT-style) [757], where
a few learnable pooling queries attend over all spatial tokens. The text encoder ft works in
an analogous way: it receives the entire caption c as a token sequence (e.g., “a bird sitting
on a tree”), produces a sequence of hidden states, and then uses a designated final token (the
end-of-sequence, EOS, state) as the global caption embedding zt ∈ RD. Internally, every text
token is represented in the same D-dimensional space, but only this EOS-like summary vector
participates in the contrastive loss. Both zv and zt are ℓ2-normalized, and a symmetric InfoNCE
loss pulls zv toward its paired zt and pushes it away from other captions in the batch, and
symmetrically for zt . This stage therefore learns a shared D-dimensional embedding space for
global images and global captions only: there is no region-level supervision, no phrase-level
supervision, and no bounding box annotations at all. Pretraining is run to convergence on
billions of image–text pairs, yielding generic encoders fv and ft that map images and text
sequences to vectors in the same space; these encoders are later reused (or replaced by public
CLIP checkpoints) when OWL-ViT is trained as a detector.

2. Stage 2: Transfer to open-vocabulary detection (task-specific fine-tuning). After Stage 1
has converged (or when starting from a pre-existing CLIP/LiT checkpoint), the global pooling
used for the contrastive head (MAP or [CLS]-based readout) is discarded, and the pretrained
ViT trunk is repurposed as a dense feature extractor. The sequence of visual tokens Hv =
{hv

i }N
i=1 is reshaped into an H×W grid, and two lightweight heads are attached directly to

each token so that every token acts as a candidate object prediction. The box regression head
is a small MLP that predicts offsets and log-scales relative to a fixed prior box centered at the
token’s grid location; by adding a bias so that the default box is centered on the corresponding
image patch, OWL-ViT learns only local deformations around this prior, introducing a strong
“location bias” that stabilizes localization and speeds up convergence [433]. For classification,
each token representation hv

i is linearly projected into the shared D-dimensional image–text
embedding space to yield zi ∈ RD. Query strings qk (category names, short phrases, or
captions) are passed through the same text encoder ft as in Stage 1; for each query, the final
EOS state is taken, projected (if needed), and ℓ2-normalized to obtain a query embedding
ek ∈ RD. Thus both zi and ek live in exactly the same D-dimensional space, and classification
reduces to a temperature-scaled cosine similarity sik ∝ z⊤i ek between token i and query k. For
each training image, the per-image query set consists of all categories annotated as present or
explicitly absent in that image, plus a random sample of additional category names from the
global federated vocabulary (Objects365, Visual Genome, and related datasets), so that each
image sees on the order of fifty negative categories [433]. Detection training then fine-tunes
the encoders and heads jointly on detection datasets using a DETR-style bipartite matching
loss [64]: Hungarian matching assigns each ground-truth box to at most one token prediction,
ℓ1 and generalized IoU losses supervise box regression for matched pairs, and a sigmoid focal
loss over the per-image query set handles the large, federated, partially annotated label spaces.

658 Chapter 14. Lecture 14: Object Detectors

In practice, the new detection heads use relatively large learning rates, while the pretrained
image and text encoders are updated with substantially smaller learning rates, so Stage 2
gently adapts the global image–text space from Stage 1 while endowing individual ViT tokens
with localized, open-vocabulary detection capability.

Pretraining: global contrastive alignment (CLIP / LiT style)
Let fv denote the ViT image encoder and ft the text encoder. Given an image x, the ViT processes it
into a sequence of patch tokens

Hv = {hv
1, . . . ,h

v
N} ∈ RN×Dv ,

where N is the number of patches and Dv the hidden dimension. To apply an image-level contrastive
loss, these tokens must be aggregated into a single global image representation zv. OWL-ViT follows
the contrastive “dual encoder” setups of CLIP and LiT, and therefore supports two aggregation
strategies depending on the underlying pretraining recipe [498, 757]:

• [CLS] token pooling (CLIP-style). For CLIP-based checkpoints, a learnable [CLS] token is
prepended to the patch sequence. After the final Transformer block, its hidden state is taken
(after layer normalization and a linear projection) as the global image embedding zv.

• Multi-head Attention Pooling (MAP, LiT-style). For LiT-style pretraining [757], OWL-ViT
instead uses Multi-head Attention Pooling (MAP) [757] to aggregate patch tokens. A small
set of learnable pooling queries Qpool ∈ RM×Dv attends over the patch tokens via multi-head
attention:

Opool = MHA
(
Qpool, K = Hv,V = Hv) ∈ RM×Dv .

The M pooled outputs are then averaged (or linearly combined) to form zv ∈ RDv . Intuitively,
MAP allows the model to “look back” at all spatial locations with several learnable queries,
and to combine them into a global summary that can, for example, focus more strongly on
salient foreground objects than on background.

In both cases, the text encoder maps the caption c to a single caption embedding zt ∈ RD,
typically taken from the final end-of-sequence (EOS) token. Both zv and zt are projected into a
shared space of dimension D and ℓ2-normalized. For a batch of B image–caption pairs {(xb,cb)}B

b=1,
OWL-ViT uses the symmetric CLIP/LiT InfoNCE loss [498, 757]:

Lpretrain =
1
2

Li→t +
1
2

Lt→i,

where, writing suv =
1
τ
(zv

u)
⊤zt

v for a learned temperature τ ,

Li→t =−
1
B

B

∑
b=1

log
exp(sbb)

∑
B
j=1 exp(sb j)

, Lt→i =−
1
B

B

∑
b=1

log
exp(sbb)

∑
B
j=1 exp(s jb)

.

This aligns each image embedding with its own caption and repels it from all other captions (and
symmetrically for captions). Crucially, this stage is purely global: the model never sees bounding
boxes or region–phrase pairs, and has no notion of object location yet. All localization ability is
introduced only in the second, detection-specific stage.

14.10 Enrichment 14.10: OWL-ViT: Open-Vocabulary Detection with ViTs 659

Detection head: encoder-only dense prediction with location bias
To convert the pretrained encoders into an open-vocabulary detector, OWL-ViT removes the global
pooling (MAP or [CLS]-based) and retains the full grid of ViT output tokens as dense features. For
an input image resized to a fixed resolution (e.g., 768×768), the last ViT block produces a sequence

Hv = {hv
1, . . . ,h

v
N}, hv

i ∈ RDv ,

which can be reshaped into a 2D grid (e.g., 24×24 tokens for ViT-B/32). OWL-ViT then attaches
two lightweight heads to each token, turning every token into a candidate prediction:

• Box regression head with location bias. A small MLP MLPbox takes hv
i and predicts four

real-valued offsets

(∆cx,∆cy,∆ logw,∆ logh)i = MLPbox(hv
i).

Each token i is associated with a fixed prior center (cx,i,cy,i) in image coordinates (obtained
by arranging the tokens on a regular grid) and a prior scale si proportional to the patch size /
feature stride. The final box prediction b̂i = (ĉx,i, ĉy,i, ŵi, ĥi) is obtained as

ĉx,i = cx,i + si ∆cx, ĉy,i = cy,i + si ∆cy, ŵi = si exp(∆ logw), ĥi = si exp(∆ logh).

In other words, before learning, the box for token i is biased to be centered on its own grid
patch with size proportional to that patch; the network only needs to learn local deformations
around this default anchor, similar in spirit to Region Proposal Networks [522]. This location
bias significantly accelerates convergence and improves final AP compared to predicting
absolute coordinates from scratch [433].

• Classification via text-derived weights and sampled negatives. Instead of learning a fixed
classifier over a closed label set, OWL-ViT reuses the shared image–text embedding space
learned during contrastive pretraining. A linear projection Wcls maps each visual token to a
per-object embedding

zi =Wclshv
i ∈ RD,

followed by ℓ2-normalization. A text query qk (category name, phrase, or short description) is
encoded by the same text encoder,

ek =
ft(qk)

∥ ft(qk)∥2
∈ RD,

and acts as the classifier weight vector for “class” k. The logit for token i and query k is a
temperature-scaled cosine similarity

sik =
1
τ

z⊤i ek,

where the temperature τ is inherited from pretraining and optionally fine-tuned. There is no
explicit background neuron. Instead, OWL-ViT uses independent sigmoid focal losses over a
per-image query set, and a token is treated as background at inference time if its maximum
score over all queries falls below a confidence threshold.

660 Chapter 14. Lecture 14: Object Detectors

For each training image, the per-image query set is constructed from the federated vocabulary
as follows [433]:

– All categories annotated as present in the image (positives).
– All categories annotated as absent (known negatives), where such annotations are avail-

able.
– Additional “pseudo-negative” categories randomly sampled from the global federated

label space (Objects365, Visual Genome, and possibly LVIS/COCO) until each image
sees at least about 50 negative categories.

These sampled negatives are crucial: by repeatedly presenting category names that do not
match the image, the detector learns to drive their logits down, which is what enables robust
open-vocabulary rejection rather than over-triggering on rare classes.

The resulting architecture is an encoder-only, dense detector: there is no Transformer decoder
and no learned object queries. However, OWL-ViT still follows DETR’s set-prediction paradigm
by using a bipartite matching loss between the N token-level predictions and the (typically much
smaller) set of ground-truth objects [64].

Training objective and federated label spaces
Detection training primarily uses Objects365 and Visual Genome with their native label vocabularies
and then evaluates on LVIS and COCO [433]. The overall training loop mirrors DETR’s bipartite
matching formulation [64], but replaces softmax with sigmoid focal classification and treats the label
space in a federated manner.

For a given training image, let {b j,C j}M
j=1 denote the M ground-truth objects, where b j ∈R4 are

bounding boxes and C j ⊆ Vd is the (possibly multi-label) set of categories annotated for object j in
the source dataset vocabulary Vd . Let Q ⊆ V be the per-image query set used for this image; it is
constructed as in [433] by combining:

• All categories annotated as present (+) or explicitly absent (−) in the image (from Vd).
• Additional “pseudo-negative” categories sampled from the global federated vocabulary V

until there are at least about 50 negatives per image.
For each query k ∈Q, the text encoder ft produces an embedding ek ∈RD, and the detector produces
logits sik for each token i ∈ {1, . . . ,N} as in the previous paragraph.

Bipartite matching. Following DETR, OWL-ViT computes a bipartite matching between the M
ground-truth objects and the N token-level predictions using the Hungarian algorithm [64]. Let b̂i be
the predicted box for token i and let σ be the optimal matching

σ : {1, . . . ,M}→ {1, . . . ,N}∪{∅},

that minimizes a matching cost

Lmatch(j, i) = λcls L
match

cls (j, i)+λℓ1 ∥b̂i−b j∥1 +λgiou Lgiou(b̂i,b j),

where Lgiou is the generalized IoU loss [527]. In practice, the weights (λcls,λℓ1 ,λgiou) are chosen
following DETR-style practice; see Minderer et al. [433] for the exact values.

14.10 Enrichment 14.10: OWL-ViT: Open-Vocabulary Detection with ViTs 661

Focal classification loss. For classification, OWL-ViT uses sigmoid focal cross-entropy [360]
instead of softmax, to support multi-label annotations and per-image query sets. For a logit sik and
binary target yik ∈ {0,1}, define

pik = σ(sik), FL(pik,yik) =−α yik (1− pik)
γ log pik− (1−α)(1− yik) pγ

ik log(1− pik),

with (α,γ) following the standard RetinaNet-style settings used in the original implementation [433].
Given the matching σ , the classification targets are defined as follows. For a matched pair (j, i =
σ(j)) and query k ∈Q,

yik =

{
1, if k ∈ C j,

0, if k ∈Q \C j,

so the token is trained to be positive for all labels in C j and negative for the remaining queries.
For unmatched tokens i (i.e., i /∈ Im(σ)), all targets are zero, yik = 0 for all k ∈Q, so they act as
“no-object” background. The classification loss for one image is then

Lcls =
1
|Q|N

N

∑
i=1

∑
k∈Q

FL
(

pik,yik
)
,

normalized over all tokens and queries for that image.

Box regression loss. Only matched tokens receive box regression supervision. Writing j(i) for the
unique ground-truth object assigned to token i by the matching (when it exists), the box loss for one
image is

Lbox =
1
M

M

∑
j=1

(
∥b̂σ(j)−b j∥1 +Lgiou(b̂σ(j),b j)

)
,

with the convention that terms with σ(j) =∅ are skipped.

Total detection loss and federated masking. The total detection loss for one image is

Ldet = λcls Lcls +λℓ1 Lℓ1 +λgiou Lgiou,

where Lℓ1 and Lgiou are the ℓ1 and gIoU components of Lbox. Because federated datasets such as
Objects365, Visual Genome, and LVIS annotate overlapping but non-identical label vocabularies,
OWL-ViT computes classification losses only over the per-image query set Q for the current dataset
and masks gradients for categories outside this vocabulary. This loss masking prevents the model
from interpreting unannotated objects as negatives for labels defined only in other datasets (e.g., a
“car” present but unannotated in Visual Genome must not be treated as negative evidence for the
LVIS “car” class), while still benefiting from additional pseudo-negative queries sampled from the
global vocabulary.

Image- and text-conditioned detection
A key advantage of OWL-ViT’s symmetric design is that both image and text can act as queries
without architectural changes. For text-conditioned detection, class names or phrases are encoded
with ft and used directly as classifier weights. For image-conditioned detection, a reference image
(or a crop) is passed through the same vision encoder fv, and MAP produces a global embedding
that is used as a query vector. When multiple reference images are available, their embeddings are
mean-pooled to form a single query.

662 Chapter 14. Lecture 14: Object Detectors

The following figure shows qualitative one-shot image-conditioned detections: OWL-ViT cor-
rectly selects instances of the reference species even when text prompts fail for fine-grained cate-
gories.

Figure 14.49: One-shot image-conditioned detection. Center images serve as reference queries;
OWL-ViT detects matching instances in the cluttered target images (left and right). Figure reproduced
from Minderer et al. [433].

Enrichment 14.10.3: Architecture variants and ablations

The authors evaluate three backbone families: pure ViT backbones (B/32, B/16, L/16, H/14), hybrid
CNN+ViT backbones (denoted hybridCNN, where a ResNet trunk produces a convolutional feature
map that is flattened into tokens and fed to a ViT head), and pure ResNet-only models. The following
figure summarizes two consistent trends:

• For small model sizes and tight FLOPs budgets, hybridCNN backbones (ResNet trunk + ViT
head) are more compute-efficient than pure ViTs, achieving competitive AP at lower cost.

• As the FLOPs budget grows, pure ViTs scale better: they reach higher AP on LVIS overall
and, more importantly, systematically achieve higher zero-shot AP on LVIS rare categories
than both hybridCNN and pure ResNet backbones, indicating a stronger bias toward semantic
generalization (reasoning about unseen categories) rather than just localizing a fixed set of
known classes.

Figure 14.50: Effect of backbone architecture on detection performance. Comparison of pure
ViT, hybridCNN (ResNet trunk + ViT head), and pure ResNet backbones. Pure ViTs scale better
than hybrid and ResNet backbones, especially for zero-shot rare categories. Figure reproduced from
Minderer et al. [433].

14.10 Enrichment 14.10: OWL-ViT: Open-Vocabulary Detection with ViTs 663

Scaling and transfer from image-level to object-level performance
A central empirical question is whether better image-level contrastive pretraining actually translates
into better open-vocabulary detection. The following figure plots zero-shot ImageNet accuracy
(after pretraining) vs. zero-shot LVIS AP on rare categories (after detection fine-tuning) across many
pretraining configurations (backbone type, model size, image resolution, number of pretraining
examples).

Two patterns emerge:
• High image-level performance is necessary but not sufficient for high object-level performance:

the correlation between pretraining and LVIS rare AP is strong but imperfect (Pearson r ≈
0.73).

• The right-hand plots show that, for a fixed architecture, longer contrastive pretraining (more
image–text examples) improves both ImageNet accuracy and LVIS AP, while additional
detection fine-tuning provides a smaller but consistent boost.

These results suggest a kind of lock-in effect: the semantic capacity of the detector is largely
determined during image-level pretraining. Fine-tuning on detection data can teach localization, but
it cannot easily recover semantic knowledge that the contrastive model never acquired.

Figure 14.51: Transfer from image-level to object-level performance. Left: each dot corresponds
to a different image–text pretraining configuration and its best LVIS rare AP after detection fine-
tuning; high image-level accuracy is necessary but not sufficient for high object-level AP. Right:
scaling the number of pretraining examples and model size improves both ImageNet accuracy and
LVIS detection AP. Figure reproduced from Minderer et al. [433].

Quantitative results on LVIS: open-vocabulary and zero-shot detection
The below table summarizes representative LVIS v1.0 validation results from Minderer et al. [433].
Following the paper, APLVIS is AP over all categories and APrare

LVIS measures rare categories; for the
zero-shot setting, labels for rare categories are removed from all detection training data.

664 Chapter 14. Lecture 14: Object Detectors

Table 14.2: Open-vocabulary LVIS results. All numbers are from Minderer et al. [433]. “Base”
rows use LVIS base annotations during training; lower block uses unrestricted open-vocabulary
training on Objects365 and Visual Genome.

Method Backbone Training data APLVIS APrare
LVIS

ViLD-ens [193] ResNet-50 LVIS base 25.5 16.6
ViLD-ens [193] EffNet-B7 LVIS base 29.3 26.3
RegionCLIP [795] R50x4-C4 LVIS base 32.3 22.0
OWL-ViT [433] ViT-H/14 (LiT) LVIS base 35.3 23.3
OWL-ViT [433] ViT-L/14 (CLIP) LVIS base 34.7 25.6

GLIP [338] Swin-L O365 + GoldG + captions 26.9 17.1
OWL-ViT [433] ViT-B/16 (LiT) O365 + VG 26.7 23.6
OWL-ViT [433] ViT-L/16 (LiT) O365 + VG 30.9 28.8
OWL-ViT [433] ViT-H/14 (LiT) O365 + VG 33.6 30.6

OWL-ViT thus improves over ViLD and GLIP on both overall AP and zero-shot rare categories,
especially when scaled to large ViT backbones and trained on Objects365+VG. For example, the
ViT-H/14 LiT model achieves 33.6 APLVIS and 30.6 APrare

LVIS, substantially higher than GLIP’s
26.9/17.1.

One-shot and few-shot image-conditioned detection on COCO
For COCO image-conditioned detection, OWL-ViT compares against SiamMask [236], CoAE (One-
Shot Object Detection with Co-Attention and Co-Excitation) [232], and AIT [90]. The following
table reports AP50 for seen and unseen category splits.

Table 14.3: One- and few-shot image-conditioned detection on COCO (AP50). Results from
Minderer et al. [433]. OWL-ViT uses an R50+H/32 hybrid backbone; k denotes the number of
reference images per category.

Split 1 Split 2 Split 3 Split 4 Mean

Seen categories

SiamMask [236] 38.9 37.1 37.8 36.6 37.6
CoAE [232] 42.2 40.2 39.9 41.3 40.9
AIT [90] 50.1 47.2 45.8 46.9 47.5
OWL-ViT (k = 1) [433] 49.9 49.1 49.2 48.2 49.1
OWL-ViT (k = 10) [433] 54.1 55.3 56.2 54.9 55.1

Unseen categories

SiamMask [236] 15.3 17.6 17.4 17.0 16.8
CoAE [232] 23.4 23.6 20.5 20.4 22.0
AIT [90] 26.0 26.4 22.3 22.6 24.3
OWL-ViT (k = 1) [433] 43.6 41.3 40.2 41.9 41.8
OWL-ViT (k = 10) [433] 49.3 51.1 42.4 44.5 46.8

On unseen categories, OWL-ViT with a single reference image nearly doubles AIT’s mean AP50
(41.8 vs. 24.3), and using ten reference images further boosts performance to 46.8 AP50.

14.10 Enrichment 14.10: OWL-ViT: Open-Vocabulary Detection with ViTs 665

This illustrates how the symmetric vision encoder can be exploited for powerful image-conditioned
detection without modifying the architecture.

Training and data ablations
The paper includes a detailed ablation study on LVIS and COCO, varying training data, optimizer
settings, prompts, and augmentation [433]. Some key findings (differences relative to a ViT-B/32
baseline trained on O365+VG):

• Training data matters most. Using only Visual Genome captions without Objects365
grounding data reduces APLVIS and APrare

LVIS by roughly 14 points, while using only OpenImages
reduces them by about 7 points. Jointly using O365 and VG is important for both breadth and
grounding.

• Differential learning rates for image vs. text encoders. Forcing the same learning rate for
both encoders significantly hurts rare categories (around −8 points in APrare

LVIS). In practice,
the vision encoder is fine-tuned with a smaller learning rate than the text encoder, similar to
domain adaptation methods such as ReCLIP [238].

• Prompt ensembling. Using multiple textual templates (e.g., “a photo of a {class}”, “a {class}
in the scene”) and averaging their embeddings improves rare-category AP by around 5 points
compared to a single, fixed template.

• Random negative categories. Adding random negative labels per image yields a modest
but consistent improvement in zero-shot AP, especially on rare categories, showing that hard
negatives sharpen the classifier.

• Mosaic augmentation and localization heuristics. Mosaic-style augmentations and simple
heuristics (merging overlapping instances, adding a location bias, filtering cropped boxes)
each contribute one or two AP points; removing mosaics harms performance more than simply
training for more epochs.

Comparison with Grounding DINO and OWLv2
From the perspective of this chapter, OWL-ViT and Grounding DINO represent two ends of the
open-vocabulary detection design space.

• Fusion strategy. OWL-ViT uses late fusion: image and text encoders are independent, and
the only interaction is in the dot product between image features and query embeddings at
the detection head. Grounding DINO [376] uses early and deep fusion, injecting text tokens
into both the encoder and decoder via cross-attention. This makes Grounding DINO stronger
at phrase grounding and region–phrase alignment, but also makes it harder to reuse as a
stand-alone image or text encoder.

• Backbone training. OWL-ViT relies heavily on large-scale contrastive pretraining and fine-
tunes the pretrained ViT and text encoder with relatively small learning rates. Grounding
DINO jointly trains (or fine-tunes) its vision backbone and text branch on grounding corpora,
often starting from ImageNet- or CLIP-style initialization.

• Detection head. Both models reuse the DETR-style box losses (ℓ1 + GIoU) together with
one-to-one Hungarian matching between predictions and ground-truth objects, but Grounding
DINO adds a full Transformer decoder with learned object queries, whereas OWL-ViT is
encoder-only and uses dense per-patch tokens as predictions.

Subsequent work OWLv2 [432] scales this recipe further with larger backbones, more data, and
improved training, pushing LVIS zero-shot performance close to or beyond Grounding DINO while
preserving the simplicity and retrieval-friendly, decoupled design.

666 Chapter 14. Lecture 14: Object Detectors

For example, Minderer et al. report that OWLv2 improves LVIS rare-category AP by more than
ten points over the best OWL-ViT v1 configuration, closing most of the gap to fully task-specific
detectors.

Enrichment 14.10.4: Limitations and outlook

Despite its strong performance and clean design, OWL-ViT has several limitations:
• Dense, relatively slow inference. Because every ViT patch token predicts a box and scores

against all query categories, large OWL-ViT models (e.g., ViT-H/14) can be significantly
slower than one-stage CNN detectors, especially when many queries are used. In practice, the
authors report a few frames per second on high-end GPUs for large models [433].

• Bounding boxes only. OWL-ViT predicts boxes but not masks. For segmentation, it must be
combined with downstream modules such as SAM/SAM2 or Mask DINO (Chapter 15).

• Dependence on pretraining quality. The lock-in effect discussed above means that poor
contrastive pretraining cannot be fully compensated during detection fine-tuning. Choosing
strong image–text pretraining (e.g., LiT [757], improved CLIP variants, or domain-adapted
models such as ReCLIP [238]) is crucial.

• Limited relational reasoning. Purely per-patch scoring against independent queries makes
it harder to model relational phrases (e.g., “person holding a red umbrella”) compared to
architectures like Grounding DINO that fuse language deeply into the encoder–decoder.

Nonetheless, OWL-ViT has had substantial impact. Its pattern of “frozen vision–language
backbone + lightweight detection head with text-derived classifier weights” has been adopted
by many later systems, including OWLv2 [432], frozen-VLM detectors, and YOLO-style open-
vocabulary models. In later sections, OWLv2 will reappear as a stronger, scaled-up variant that
pushes the same design further in both accuracy and robustness.

14.11 Enrichment 14.11: OWLv2: Scaling Open-Vocabulary Detection 667

Enrichment 14.11: OWLv2: Scaling Open-Vocabulary Detection

Enrichment 14.11.1: Motivation and context

OWL-ViT v2 (often abbreviated OWLv2) [432] asks a simple question: if OWL-ViT already turns
a contrastively pretrained vision–language model into an open-vocabulary detector, can detection
performance be scaled further without collecting more human box annotations. The answer comes
from self-training on web data. Instead of hand-labeling new detection datasets, OWLv2 uses
OWL-ViT itself as a pseudo-annotator on the WebLI image–text corpus, generating billions of noisy
boxes and category labels that are then used to train stronger “student” detectors.

This strategy contrasts with models such as GLIP, DetCLIP, and Grounding DINO [338, 376,
795], which improve open-vocabulary detection primarily by designing more powerful encoder–
decoder architectures and pretraining on curated grounding datasets with explicit region–phrase
supervision. OWLv2 instead keeps the simple OWL-ViT detection head and late-fusion dual
encoders, and concentrates effort on data scaling and training efficiency. The resulting OWL-ST
recipe (“OWL Self-Training”) scales to roughly two billion Web images and yields a ViT-G/14
detector with about 47.2 AP on rare LVIS categories in the zero-shot setting [432], substantially
improving over OWL-ViT v1 while preserving the retrieval-friendly, encoder-only design.

Enrichment 14.11.2: OWLv2: Self-training pipeline (OWL-ST)
Overview of the three-stage recipe
OWLv2 (often referred to as OWL-ST in the paper) is best understood as a strictly sequential
self-training pipeline built around OWL-ViT [433]. A strong, but relatively expensive, OWL-ViT
detector first plays the role of a frozen annotator that pseudo-labels a massive multilingual web
corpus (WebLI [264]) with boxes and phrases. A student detector with the same basic architecture
but larger backbones (CLIP or SigLIP ViTs) is then trained on these noisy pseudo-boxes using an
efficiency-optimized training loop. Finally, for benchmarks such as LVIS, the self-trained student
can be optionally fine-tuned on human annotations and weight-ensembled with its pre-fine-tuning
version to balance in-distribution accuracy and open-world robustness. Figure 14.52 sketches these
stages.

Figure 14.52: OWLv2 overview. A frozen OWL-ViT CLIP-L/14 “annotator” produces pseudo-boxes
and labels for WebLI images (left); a student detector is then self-trained on these pseudo-annotations
with architectural and training-efficiency tweaks (middle); finally, the student can optionally be
fine-tuned or weight-ensembled on standard detection corpora such as LVIS. Figure reproduced from
Minderer et al. [432].

668 Chapter 14. Lecture 14: Object Detectors

1. Stage 0: Annotator pretraining (OWL-ViT). The annotator is a standard OWL-ViT detec-
tor [433] built on a CLIP ViT-L/14 backbone. It is obtained by first contrastively pretraining
CLIP on web-scale image–caption pairs and then training OWL-ViT for detection on human-
annotated datasets such as Objects365, OpenImages V4, LVIS, and Visual Genome. This
yields a strong open-vocabulary detector that can respond to arbitrary text queries with dense
boxes and scores. In principle, any sufficiently strong OWL-ViT variant could serve as
annotator, but OWLv2 consistently uses the public CLIP-L/14 OWL-ViT checkpoint in all
experiments [432].

2. Stage 1: Pseudo-annotation of WebLI with the annotator. The frozen OWL-ViT annotator
is run on images from WebLI [264], a massive multilingual web image–text collection. For
each WebLI image x, OWLv2 must decide which phrases to ask the annotator to look for.
It constructs a query list by merging a fixed, human-curated dictionary of standard object
categories with image-specific N-grams extracted from the caption:

Q(x) = Vcurated︸ ︷︷ ︸
fixed across images

∪ VN-gram(x)︸ ︷︷ ︸
caption-derived, image-specific

.

OWL-ViT is applied once per image with this merged query list, producing a dense set of
candidate boxes and phrase scores. All boxes whose scores exceed a moderate inclusion
threshold (e.g., 0.1) are retained as pseudo-annotations, provided the image has at least one
prediction above a higher confidence level (e.g., 0.3) [432]. These settings deliberately favor
quantity over purity: instead of keeping only the top-1 box per image, OWLv2 harvests many
moderately confident boxes, trading some label noise for a huge effective training set.

3. Stage 2: Self-training the student detector (OWL-ST). A student detector with the same
overall design as OWL-ViT but larger backbones (e.g., CLIP ViT-G/14 or SigLIP ViT-G/14)
is then trained on the pseudo-labeled WebLI data. In OWLv2’s main scaling experiments,
backbones are initialized from CLIP or SigLIP checkpoints rather than from the annotator’s
detection weights [432], so the student effectively learns detection “from scratch” under the
supervision of the frozen annotator. Architecturally, the student remains very simple: a ViT
image encoder, a text encoder, and lightweight per-patch heads. There is no Transformer
decoder and no learnable query embedding set; all predictions are anchored directly to ViT
patch tokens.

Detection objective: dense encoder-only open-vocabulary detection
The OWLv2 detector adopts the encoder-only, one-box-per-token recipe of OWL-ViT [432,
433]: detection heads are attached directly to ViT patch tokens; there is no Transformer decoder.
Unlike classic one-stage detectors (e.g., RetinaNet or FCOS), supervision is still formulated
as a DETR-style set-prediction problem with bipartite matching rather than heuristic IoU-
threshold assignment.
For a training image x with pseudo-annotations {(b j,y j)}M

j=1 (pseudo boxes b j and phrases y j

from the OWL-ViT annotator), OWLv2 forms an image-specific query set

Q(x) = Vcurated ∪ Vimage(x) ∪ Vneg(x),

14.11 Enrichment 14.11: OWLv2: Scaling Open-Vocabulary Detection 669

where Vcurated is a fixed vocabulary of human-curated object names, Vimage(x) collects the
image-specific phrases that actually appear as pseudo-labels for x (e.g., N-grams from its
WebLI caption or curated names, depending on the pseudo-annotation run), and Vneg(x) are
“pseudo-negative” phrases sampled from other images that are guaranteed never to be positives
for x but act as hard negatives on the text side [432].
All queries k ∈Q(x) are encoded into text embeddings, and the image is passed through the
ViT encoder to yield patch embeddings {hi}N

i=1. On top of each token i OWLv2 adds three
lightweight heads:

• An objectness head predicting a scalar score oi that estimates how likely the token
corresponds to an object at all.

• A box head predicting a single candidate box b̂i (center coordinates and size) for that
token.

• A classification head producing logits sik for all queries k ∈Q(x), typically implemented
as scaled dot products (equivalently, cosine similarities after ℓ2-normalization) between
visual and text embeddings, as in OWL-ViT.

To reduce computation, OWLv2 computes classification and box losses only for the top-K
tokens by objectness during training (about 10% of tokens); the objectness head is trained
so that tokens which later obtain high classification scores also receive high objectness
scores [432].

Training: bipartite matching, not IoU-threshold mining
Let I (x) ⊂ {1, . . . ,N} be the top-K tokens selected by objectness. As in OWL-ViT [433],
OWLv2 uses a DETR-style Hungarian matching loss to define positives among these tokens.
Concretely, for each image x the model solves a one-to-one assignment between the M pseudo
boxes {b j} and the selected tokens {i ∈I (x)}:

π
∗ = argmin

π

M

∑
j=1

[
Ccls
(
sπ(j),y j

)
+λbox Cbox

(
b̂π(j),b j

)]
,

where π ranges over one-to-one assignments from boxes to tokens, Ccls is the sigmoid / focal
classification cost for phrase y j, and Cbox combines an ℓ1 distance and a (G)IoU-based cost
between b̂i and b j [433]. Matching is therefore not a pure IoU-threshold rule: the assignment
jointly prefers tokens that have both high phrase score and good geometric overlap with the
pseudo box.
The resulting permutation π∗ induces binary labels tik ∈ {0,1} over all token–query pairs:

tik = 1 iff ∃ j s.t. i = π
∗(j) and k is the query corresponding to y j,

and tik = 0 otherwise (including all tokens that are unmatched and all negative or pseudo-
negative queries). Because each pseudo box b j is matched to one token at most, the model
is explicitly discouraged from producing many redundant positives around the same object:
overlapping tokens compete in the matching, and only the best one is treated as a positive,
while the others become background and are down-weighted by the focal loss.

670 Chapter 14. Lecture 14: Object Detectors

The overall detection loss decomposes into a dense classification term and a regression term
applied only to matched tokens:

Ldet = ∑
i∈I (x)

∑
k∈Q(x)

Lcls
(
sik, tik

)
︸ ︷︷ ︸

sigmoid / focal classification over queries

+ λbox

M

∑
j=1

Lbox
(
b̂π∗(j),b j

)
︸ ︷︷ ︸

ℓ1+GIoUonmatchedtokensonly

,

with a separate loss on the objectness scores oi that encourages high objectness precisely for
those tokens that end up with strong classification scores [432].

Inference and overlapping boxes
At inference time, no matching is solved: the model runs the encoder once, predicts a box
b̂i and query logits {sik}k for (essentially) all tokens, and keeps token–query pairs whose
detection score σ(sik) exceeds a threshold for the user-specified queries. Thanks to the one-
to-one training objective inherited from OWL-ViT, the model tends to produce at most one
high-scoring token per object and query, so heavy non-maximum suppression is not strictly
required in the DETR sense. In practice, implementations can still apply light per-query top-K
filtering and/or NMS to prune occasional near-duplicate boxes, especially when many queries
are evaluated or when pseudo-labels are noisy.

How can the annotator produce boxes for phrases it never saw during detection training?
A subtle but important point is that the OWL-ViT annotator does not rely only on its supervised
detection data (Objects365, OpenImages, LVIS, Visual Genome) to recognize concepts.
Its visual and textual backbones are initialized from CLIP-style contrastive pretraining on
hundreds of millions of image–text pairs, which already align a very broad vocabulary of
phrases with corresponding visual patterns [433]. Detection training then mainly teaches
OWL-ViT where to put boxes, while its knowledge of what phrases such as “platypus”, “dog
wearing sunglasses”, or “rusty bicycle” look like is inherited from this large-scale image–text
pretraining.

• Teacher zero-shot capability. Given a caption-derived N-gram such as “dog wearing
sunglasses”, OWL-ViT embeds the phrase with its text encoder and compares it to
per-patch image features, exactly as in CLIP-style zero-shot classification. Even if
no detection dataset ever contained that phrase as a box label, the shared embedding
space already makes the corresponding patches stand out, so OWL-ViT can often draw
a pseudo-box zero-shot [432, 433]. In other words, detection is treated as localized
retrieval inside the image rather than as pure supervised classification over a fixed label
set.

• Captions as prompts. The N-gram does not ask the annotator to guess blindly; it acts
as an explicit prompt that says “look for this thing in this image”. For example, if the
caption contains “two drones flying over a city”, OWL-ViT is directly encouraged to
search for regions that match the text “drone”, even if its own detection training never
included a dedicated “drone” category. When the phrase genuinely describes something
in the image, CLIP-style alignment usually yields at least a roughly correct box.

• What if the annotator is wrong or misses the object. For any single image, the
annotator can certainly fail: it may hallucinate a box for a non-visual phrase (e.g., “click
here”), or miss a small, occluded instance entirely. However, WebLI contains the same
concept in many different images and captions.

14.11 Enrichment 14.11: OWLv2: Scaling Open-Vocabulary Detection 671

Across thousands of occurrences of “golden retriever” or “drone”, the teacher’s correct
localizations are consistent (similar dogs or drones in similar regions), whereas its
mistakes are visually diverse and inconsistent.
When the student is trained on billions of such pseudo-labels, gradient descent naturally
fits the consistent patterns and fails to fit the idiosyncratic errors, effectively denoising
the teacher’s supervision over the whole corpus [432].

Why can OWLv2 outperform its own annotator instead of copying its mistakes? Intu-
itively, if the student only ever sees the teacher’s outputs, one might worry that it cannot do
better than the teacher. OWLv2 overcomes this in three complementary ways.

• Many more (noisy) examples than the annotator ever saw. The annotator was trained
on tens of millions of human-labeled boxes. The student, in contrast, is trained on
pseudo-boxes for billions of WebLI images (when counting all mosaics and confidence
thresholds), which is one to two orders of magnitude more supervision [432]. Even if
each pseudo-box is imperfect, the sheer number of partially correct instances for each
concept lets the student learn richer and more robust visual features than the annotator
ever could.

• Larger backbones and more compute-efficient training. OWLv2 students use larger
vision backbones (e.g., SigLIP ViT-G/14) than the CLIP ViT-L/14 annotator, and the
Stage 2 training loop (token dropping, objectness-based instance selection, mosaic
augmentation) is engineered to push far more data through these large models within
a fixed compute budget. Empirically, Minderer et al. show that these students achieve
substantially higher LVIS rare-category AP and ODinW mean AP than the original
OWL-ViT teacher, even though the teacher provided all pseudo-labels [432].

• Signal versus noise at web scale. For a concept like “hydrant”, the teacher might localize
it correctly in many images and miss or mislabel it in others. The correct localizations
all share recognizable visual structure, whereas the errors are scattered over unrelated
backgrounds. Over billions of examples, the student can only consistently reduce its
loss by latching onto the stable pattern (true hydrants) rather than the inconsistent noise.
Thus, instead of copying the teacher’s individual mistakes, OWLv2 averages them out
and retains only what is statistically supported across the corpus.

What happens to objects that are not in the query set? A complementary concern is how
an open-vocabulary detector can handle objects that are present in an image but never appear
in that image’s curated+N-gram query list. Here it is crucial that OWLv2 trains conditionally
on the query set Q(x) of each image [432].

• Conditional supervision per image. For a given training image x, the student is only
asked: “Given this particular list of phrases Q(x), which tokens correspond to which
phrases?”. If “fire hydrant” is not in Q(x), then hydrants in that image are simply
ignored by the loss for that phrase: they are neither positives nor explicit negatives for
“fire hydrant”. The model is not told that hydrants are background; it is merely not
supervised about them in this particular image.

• Coverage across WebLI. Across billions of WebLI images, most semantically mean-
ingful concepts (“hydrant”, “escalator”, ...) do appear as queries in many other images,
either via curated labels or via N-grams extracted from captions. Those other images do
contribute gradients for these phrases, so the student still receives substantial supervision
for each common concept, just not from every image in which it happens to appear.

672 Chapter 14. Lecture 14: Object Detectors

• Role of CLIP/SigLIP initialization for genuinely rare phrases. For truly rare or
unseen phrasings, the CLIP or SigLIP initialization already provides a coarse alignment
between text and image embeddings. OWLv2’s self-training mainly improves localiza-
tion, calibration, and robustness for phrases that the annotator can already tentatively
ground. As in CLIP zero-shot classification, entirely new test-time prompts can still be
handled if they lie in the semantic neighborhood of phrases seen during pretraining or
self-training.

Thus, the absence of a phrase from Q(x) for a particular image does not forbid the model from
ever detecting that concept; it simply means that this image does not contribute any signal
for that phrase. Over the full WebLI corpus, consistent concepts accumulate many positive
examples, while idiosyncratic or spurious N-grams (e.g., “click here”) fail to form a coherent
visual pattern and are effectively ignored by the student during training.

Scaling the objective to billions of pseudo-boxes. The real difficulty in Stage 2 is not the
loss itself but making it computationally feasible to run this dense, open-vocabulary objective
on billions of pseudo-labeled images with tens of thousands of queries per image. Minderer et
al. therefore introduce three complementary efficiency mechanisms [432]:

• Token dropping (static visual pruning). After a few ViT blocks, OWLv2 computes
a simple saliency proxy for each token (per-channel feature variance) and discards the
least informative tokens for the remainder of the network. Uniform background patches
(sky, walls, large textureless regions) have low variance and are pruned; tokens that
carry edges, textures, and object structure are kept. This halves (or more) the sequence
length for all subsequent layers and detection heads, cutting FLOPs and memory while
preserving object-centric regions.

• Objectness head and dynamic instance selection. Even after token dropping, naively
comparing every remaining token to every query in Q(x) is prohibitively expensive
when |Q(x)| can be 104–2×104. OWLv2 therefore adds a lightweight objectness head
that predicts a scalar score for each token [432].
During training, only the top-K tokens (typically a small fraction of the retained tokens)
ranked by objectness are passed through the full open-vocabulary classification head
and incur the expensive dot-product loss against all queries in Q(x); the box head itself
remains dense and is applied to all tokens. Tokens with low objectness are treated as
background and bypass the classification head.
Objectness is learned jointly with detection: tokens that are repeatedly associated with
pseudo-boxes are encouraged to have high objectness, creating a self-reinforcing mech-
anism that focuses compute on object-like regions. This strategy focuses computation
where objects are likely to appear and largely decouples the training cost from the size
of the text vocabulary [432].

• Mosaic augmentation at web scale. Finally, OWLv2 increases the number of distinct
scenes seen per optimizer step using large mosaics: instead of a single WebLI image, the
input is a grid (e.g., up to 6×6) of different images tiled into one canvas [171, 432]. All
pseudo-boxes are geometrically transformed into mosaic coordinates, and the detector
is trained as if this were a single large image. In the default configuration, each mosaic
contains on average about 13.2 raw images. Scaling plots therefore report the total
number of raw images seen as

raw images seen≈ 13.2× (# of mosaics).

14.11 Enrichment 14.11: OWLv2: Scaling Open-Vocabulary Detection 673

Within a fixed budget of optimizer steps, mosaics allow the student to experience roughly
an order of magnitude more distinct scenes than a standard one-image-per-step loop,
which is critical for exploiting WebLI’s diversity.

Conceptually, Stage 2 turns OWL-ViT’s pseudo-labels into a dense but noisy supervision
signal that a much larger, more compute-efficient student can exploit. Whereas the annotator
itself was only trained on tens of millions of human-labeled boxes, the student is exposed
to billions of pseudo-boxes covering far more phrases and visual situations than the teacher
ever saw [432]. Over this huge dataset, consistent visual–linguistic patterns (e.g., what “dog
wearing sunglasses” typically looks like) reinforce one another, while spurious N-grams and
mislocalized boxes fail to generalize. Combined with the CLIP/SigLIP initialization and the
compute-aware training tricks above, this explains how the OWLv2 student can eventually
surpass its OWL-ViT teacher by a large margin on both LVIS rare categories and open-world
benchmarks such as ODinW.

4. Stage 3: Optional fine-tuning and weight ensembling. For standard benchmarks such as
LVIS, a self-trained OWLv2 student can optionally be fine-tuned on the target dataset using its
native annotations. As observed in robust fine-tuning work [699], this creates a tension: pure
self-training yields excellent zero-shot and ODinW performance but underperforms on LVIS
base categories, while full fine-tuning improves LVIS AP but partially erodes open-world
generalization. OWLv2 addresses this by weight-space ensembling: the final model is a convex
combination

θens = λ θST +(1−λ)θFT,

where θST and θFT denote the self-trained and fine-tuned checkpoints and λ ∈ [0,1] controls
the trade-off between robustness and in-domain accuracy [432, 699]. By sweeping λ , Minderer
et al. obtain a Pareto frontier of models that can be tuned to favor LVIS, ODinW, or a balanced
mix, all without changing the architecture or retraining from scratch.

These stages are executed strictly in order: pseudo-label generation is performed offline with a
frozen OWL-ViT annotator; the student is then trained end-to-end on pseudo-annotations; any dataset-
specific fine-tuning and weight ensembling happen only after self-training has converged. There is
no joint training of annotator and student, and the annotator is never updated using pseudo-labels.

Enrichment 14.11.3: OWLv2: Pseudo-label spaces and Web-scale annotation
Curated vs. N-gram label spaces
A central design question in OWLv2 is which phrases to use when querying the OWL-ViT annotator.
Unlike standard detectors with a fixed class list, OWL-ViT can score arbitrary text; OWLv2 exploits
this by constructing, for every WebLI image, a query list that mixes human-curated object names
with free-form phrases extracted from the caption [432]. Minderer et al. systematically study three
label spaces:

• Curated vocabulary. A fixed, human-designed list obtained by merging the category names
of standard detection datasets (LVIS, Objects365, OpenImages V4, Visual Genome), followed
by simple normalization such as lowercasing and deduplication of synonyms and plural forms
(Appendix A.1 of [432]). This yields a few thousand canonical object labels that are shared
across all images and closely aligned with evaluation benchmarks such as LVIS and ODinW.

674 Chapter 14. Lecture 14: Object Detectors

• Machine-generated N-gram vocabulary. For each WebLI image x, OWLv2 extracts word
N-grams up to length 10 from the associated caption and related text fields, after removing
stop words and very generic phrases such as “click here” or file-type indicators, and capping
the number of queries per image (Appendix A.2 of [432]). The resulting VN-gram(x) is image-
specific and captures idiosyncratic phrases that never appear in curated taxonomies, but it also
introduces label noise whenever the caption is only weakly related to the visual content.

• Union of curated and N-grams. The two label spaces are combined so that the annotator
sees both benchmark-aligned category names and image-specific phrases:

Q(x) = Vcurated∪VN-gram(x).

Every OWL-ViT forward pass uses this merged query list; there is no splitting of ground truth
by source, and from the student detector’s perspective there is just one pool of pseudo-boxes
with associated phrases.

The following figure summarizes quantitatively how these three label spaces affect downstream
detection, and in particular how the extra coverage from N-grams trades off against their higher
noise level.

Figure 14.53: Effect of pseudo-label space on OWLv2 performance. Student detectors are trained
on pseudo-annotations generated from curated labels only (blue circles), N-grams only (orange
squares), or the union of both (green diamonds), and evaluated on LVIS and ODinW. Left: LVIS
frequent classes, which largely overlap with the curated taxonomy. Middle: LVIS rare classes,
which emphasize long-tail concepts. Right: ODinW “in-the-wild” datasets. Figure reproduced from
Minderer et al. [432].

The three panels make the trade-off between clean but narrow and wide but noisy supervision
visible:

• Curated-only (clean but narrow). On LVIS frequent classes (left), the curated-only student
achieves the highest or nearly highest AP for a given number of examples, reflecting that
curated labels provide relatively clean pseudo-boxes on categories the teacher knows well. On
LVIS rare classes and ODinW (middle and right), the same blue curve lags behind, because
many long-tail concepts never appear in the curated list at all, so the student simply never
receives labels for them.

14.11 Enrichment 14.11: OWLv2: Scaling Open-Vocabulary Detection 675

• N-grams-only (wide but noisy). The N-gram-only student substantially improves AP on LVIS
rare and ODinW compared to curated-only, showing that caption-derived phrases do expose
the long tail and enable better open-world generalization. At the same time, on LVIS frequent
classes its orange curve sits consistently below the blue curve: if N-grams were as clean as
curated labels, these curves would coincide. This systematic gap on familiar categories is how
the additional label noise introduced by N-grams manifests in the plots.

• Union of curated and N-grams (best trade-off). The union model recovers most of the
curated model’s strength on LVIS frequent classes while matching or exceeding the N-gram
model on LVIS rare and ODinW. Its green curve is close to blue on the left panel but clearly
above both blue and orange in the middle and right panels, indicating that combining an
anchored, benchmark-aligned vocabulary with a noisy but broad N-gram explorer yields the
best overall balance between precision on known classes and recall on open-world concepts.

Why the union matters: anchor and explorer
Using the union of curated and N-gram vocabularies is not redundant; it compensates for comple-
mentary failure modes.

• Curated vocabulary as an anchor. Web captions are frequently incomplete or metaphorical:
an image can clearly contain a dog while the caption says only “my best friend enjoying
the weekend”. If OWLv2 relied only on N-grams, the annotator would be asked to look for
“best friend” and “weekend”, but never for the canonical label “dog”. The curated dictionary
acts as a safety net: regardless of how the caption is phrased, every image is always queried
for common objects such as “person”, “dog”, and “car”, which stabilizes supervision on
benchmark-aligned categories and prevents obvious objects from being systematically missed.

• N-grams as an explorer. Conversely, curated lists are static and cannot cover the combinatorial
richness of web text. They describe “dog” and “sunglasses” but not necessarily “dog wearing
sunglasses” or rare fine-grained entities such as “Monarch on a Zinnia”. N-grams promote
these caption phrases to first-class labels, allowing the annotator to create pseudo-boxes for
concepts that never appear in any standard taxonomy. Across billions of images, the consistent
visual patterns behind phrases such as “drone”, “bento box”, or “steampunk toaster” reinforce
each other, whereas non-visual or idiosyncratic phrases fail to form a coherent pattern and are
effectively suppressed by scale.

In this sense, the curated vocabulary acts as an anchor that keeps supervision aligned with
canonical benchmarks and protects recall on standard categories, while the N-grams act as an
explorer that pushes supervision into the long tail of web concepts; the union label space lets the
student benefit from both.

676 Chapter 14. Lecture 14: Object Detectors

Effect of pseudo-label confidence thresholds on downstream detection
The label space determines what can, in principle, be labeled; confidence thresholds determine
how much of that potential supervision survives filtering. OWLv2 therefore ablates the confidence
threshold τ used to keep OWL-ViT pseudo-boxes, training otherwise identical students with τ ∈
{0.1,0.3,0.5,0.7} and evaluating them on LVIS and ODinW [432].

Figure 14.54: Effect of pseudo-label confidence thresholds on OWLv2 performance. Each curve
corresponds to a different confidence threshold τ used when filtering OWL-ViT pseudo-annotations
(legend on the right). The x-axis counts the total number of pseudo-labeled examples seen during
training, including repetitions. Figure reproduced from Minderer et al. [432].

Reading Figure 14.54 from left to right, each curve first improves as the student sees more
pseudo-labeled examples and then gradually saturates once the available pseudo-labels have been
revisited many times. The position and height of this saturation encode how OWLv2 trades off label
quality against scale:

• High thresholds shrink the dataset and hurt generalization. The red curves corresponding
to τ = 0.7 consistently saturate earliest and at the lowest AP, especially for LVIS rare classes
and ODinW. Minderer et al. report that increasing τ from 0.1 to 0.7 reduces the number of
usable WebLI images from roughly 5 billion to a few hundred million. After this smaller pool
has been seen a few times, the student runs out of new, informative examples, and the red
curves flatten while others continue to improve.

• Moderate thresholds keep hard examples without collapsing under noise. The blue and
gray curves corresponding to τ = 0.1 and τ = 0.3 remain the highest in the “Unseen classes”
and “In the Wild” panels, while matching the best performance on frequent LVIS classes.
Lower thresholds admit many more medium-confidence detections, which include a mix
of genuinely hard positives and some false positives. If this additional supervision were
dominated by noise, these curves would deteriorate or oscillate; instead, their steady upward
trend indicates that, at WebLI scale, the student successfully averages out inconsistent labels
while benefiting from the extra diversity.

• Noise manifests primarily as an efficiency penalty. When we compare low-threshold curves
(e.g., τ = 0.1,0.3) against stricter ones at the same position on the x-axis early in training, the
low-threshold models sometimes lag slightly behind. This is the cost of noise: the student must
process more pseudo-labeled examples to statistically separate signal from spurious boxes.
Crucially, these curves do not saturate prematurely. As training continues and more examples
are seen, the low-threshold models overtake the high-threshold ones and reach higher final AP.

14.11 Enrichment 14.11: OWLv2: Scaling Open-Vocabulary Detection 677

Thus, in OWLv2 the additional noise from low thresholds is not a hard ceiling on performance,
but an efficiency penalty that WebLI’s scale can amortize.

Together, the label-space and threshold ablations support OWLv2’s overall philosophy. A broad
union label space ensures that most semantically meaningful concepts can, at least sometimes,
be named and localized, while low-to-moderate confidence thresholds maximize the number and
diversity of training examples. Because the student can process WebLI at this scale (using dense
one-stage training, token dropping, objectness-based instance selection, and mosaic augmentation),
it is able to distill a noisy but extremely rich pseudo-label stream into detectors that outperform their
OWL-ViT teachers on both benchmark categories and truly in-the-wild objects.

Enrichment 14.11.4: Architecture and training efficiency
Student detector: OWL-ViT with efficiency tweaks
The student detector in OWLv2 retains the basic OWL-ViT structure [433]: a ViT image encoder fv,
a text encoder ft , and lightweight box and classification heads attached to per-patch visual tokens.
The detection objective is the same dense one-stage loss as in OWL-ViT: open-vocabulary sigmoid
(often focal) classification over a per-image query set, combined with ℓ1 and generalized IoU losses
on bounding boxes, with positives defined by an IoU threshold (e.g., ≥ 0.5) between predicted
and (pseudo) ground-truth boxes [432, 433]. There is no Transformer decoder and no Hungarian
matching; supervision is fully dense over the patch grid. Queries include both positive category
names and randomly sampled “pseudo-negative” labels from other images, just as in OWL-ViT.

What changes in OWLv2 is how this detector is trained at web scale. The main additions are:
• Token dropping for cheap ViT forward passes and lower memory use.
• An objectness head for focusing classification on likely object patches.
• Mosaic augmentation to expose the student to far more distinct images per training step.

Token dropping
OWLv2 adopts a form of dynamic token sparsification inspired by methods such as DynamicViT
and Token Merging [49, 512]. After a subset of early Transformer blocks, the model computes a
simple saliency score for each patch token, for example based on its feature variance across channels,
and drops a fixed fraction (e.g., 50%) of the least informative tokens from subsequent layers [432].
This reduces the number of tokens processed by later, more expensive layers without modifying the
underlying ViT backbone or its final feature stride. During self-training, token dropping provides a
substantial reduction in FLOPs and memory; at inference time, the full set of tokens can be used.

Objectness head and instance selection
Running open-vocabulary classification against a very large label space (hundreds of thousands
of queries) for every token is prohibitively expensive. To decouple training cost from vocabulary
size, OWLv2 adds an objectness head that predicts a scalar objectness score for each token. During
self-training, only the top fraction of tokens by objectness (roughly 10% in the experiments) are
passed through the full classification head and incur the expensive open-vocabulary loss [432].

Importantly, objectness is itself learned. Its supervision signal comes from the eventual classi-
fication scores: tokens that repeatedly receive high classification probabilities for some query are
encouraged to have high objectness, so the objectness head learns to anticipate where interesting
objects are likely to appear. This mechanism is reminiscent of efficient DETR variants that use dense
objectness priors to restrict decoding to promising locations [730], but adapted to the encoder-only,
patch-based setting of OWL-ViT.

678 Chapter 14. Lecture 14: Object Detectors

Mosaic augmentation and the “13.2×” factor
To maximize the number of distinct images seen under limited training steps, OWLv2 uses large
mosaic grids that tile multiple WebLI images into a single training example. Similar to copy-paste and
mosaic augmentations used in CNN detectors, grids of varying sizes (e.g., 1×1 to 5×5) are sampled,
and pseudo-boxes are geometrically transformed into the corresponding mosaic coordinates [432].

In the configuration used for the main scaling experiments, a single mosaic contains on average
about 13.2 distinct raw images. Mosaics thus allow the student to process roughly an order of
magnitude more images than a standard single-image training loop within the same compute budget.
Consequently, the “total examples seen” reported on the x-axis of the scaling plots should be
interpreted as the effective number of raw images processed (approximately 13.2× the number of
optimizer steps).

Enrichment 14.11.5: Scaling behavior, results, and trade-offs
Scaling laws and “student surpasses teacher”
One of the main contributions of OWLv2 is an empirical study of scaling laws for open-vocabulary
detection under self-training. The following figure illustrates performance (e.g., LVIS rare AP)
against the total number of WebLI examples seen during self-training, for several model sizes and
architectural variants.

Figure 14.55: Scaling behavior of OWLv2 under self-training. Zero-shot LVIS performance
improves steadily as the number of self-training examples and model size increase. Students trained
on pseudo-annotations eventually surpass the OWL-ViT annotator, and the Pareto frontier over
compute budgets shifts upward with more data and larger backbones. Figure reproduced from
Minderer et al. [432].

Several consistent patterns emerge [432]:
• Self-training is beneficial even at moderate compute. For reasonable training budgets,

students already outperform the frozen OWL-ViT annotator that generated their pseudo-labels,
demonstrating a clear “student surpasses teacher” effect.

• Detection exhibits familiar log-linear scaling. As in large-scale classification and language
modeling, performance grows roughly log-linearly with compute and data once models are in
the high-data regime.

14.11 Enrichment 14.11: OWLv2: Scaling Open-Vocabulary Detection 679

• Model size vs. training duration trade-off. For in-distribution benchmarks such as LVIS,
larger backbones (e.g., ViT-L/14) dominate smaller ones once sufficient data is seen, but for
heavily out-of-distribution settings (ODinW), it can be better to train a smaller backbone for
longer rather than a larger one for fewer updates.

• Largest model. A SigLIP ViT-G/14 student trained with OWL-ST reaches mid-40 AP on
LVIS rare categories (around 46–47 AP depending on the exact training and ensembling setup),
which at the time of publication represents one of the strongest reported LVIS rare results
among open-vocabulary detectors [432].

Fine-tuning vs. open-world generalization
Like many contrastively trained vision–language models, OWLv2 exhibits a trade-off between per-
formance on a specific target dataset and robustness to distribution shift [498, 699]. The below figure
illustrates this trade-off using LVIS (target dataset) and ODinW13 (out-of-distribution benchmark).

Figure 14.56: Trade-off between fine-tuned and open-world performance. Self-training on WebLI
improves both LVIS and ODinW13 performance (red dots). Fine-tuning on LVIS further improves
LVIS AP but reduces ODinW13 AP (light blue squares). Weight-space ensembling between the
self-trained and fine-tuned checkpoints (purple diamonds) yields a strictly better Pareto frontier,
partially restoring open-world robustness at almost no extra cost. Figure reproduced from Minderer
et al. [432].

Without fine-tuning, OWLv2 models already deliver strong zero-shot performance across many
datasets (LVIS, ODinW13, Objects365, OpenImages) thanks to the diversity of WebLI pseudo-
annotations. Fine-tuning on LVIS further boosts performance on LVIS categories but tends to
degrade open-world generalization. Weight-space ensembling between self-trained and fine-tuned
checkpoints offers a simple way to shift this trade-off, recovering much of the ODinW performance
while maintaining high LVIS AP [432].

680 Chapter 14. Lecture 14: Object Detectors

Enrichment 14.11.6: Comparison to Grounding DINO and limitations
OWL-ViT / OWLv2 vs. Grounding DINO
From the perspective of Chapter 14, OWLv2 and Grounding DINO [376] represent two complemen-
tary strategies for scaling open-vocabulary detection.

• Architecture and fusion. Grounding DINO starts from a DINO-DETR-style encoder–decoder
with multi-scale deformable attention and injects text tokens deep into both encoder and
decoder via cross-attention, enabling strong phrase grounding and fine-grained region–text
alignment. By contrast, OWLv2 retains OWL-ViT’s dual-encoder, late-fusion design: image
and text are encoded separately and only interact in the final dot-product similarity between
per-patch features and query embeddings. This makes OWLv2 much closer to CLIP-style
retrieval models and simplifies reuse of the encoders for other tasks.

• Training data. Grounding DINO relies on curated grounding datasets (e.g., Objects365,
GoldG, Cap4M) with box-level text supervision [376]. OWLv2’s main gains come from
scaling to roughly two billion pseudo-annotated WebLI images, produced automatically from
captions with minimal filtering [432].

• Inference behavior. Grounding DINO’s tightly coupled encoder–decoder must be re-run
whenever the text prompt changes, which can be expensive when exploring many complex
prompts. OWLv2 inherits OWL-ViT’s decoupled, encoder-only inference: image features
can be precomputed and indexed, while new text queries are embedded on the fly. This is
advantageous for large-scale retrieval and detection-as-search applications.

• Performance. At publication time, OWLv2’s SigLIP ViT-G/14 student achieved state-of-the-
art zero-shot rare-category AP on LVIS, substantially outperforming OWL-ViT v1 and strong
baselines such as F-VLM and DetCLIP [311, 432, 726]. Grounding DINO remains competitive
and often superior for phrase-level grounding and tasks that require tight coupling between
language and detection, especially when trained with strong region–phrase supervision.

Limitations and outlook
Minderer et al. highlight several limitations of OWLv2 [432].

• Compute and data cost. Self-training at the scale of billions of images and large ViT
backbones demands substantial compute and infrastructure. Scaling further is in principle
effective but quickly becomes impractical without more efficient architectures or training
recipes.

• Trade-off between specialization and robustness. Fine-tuning on a target detection dataset
improves performance on its label space but reduces robustness to distribution shift and
sensitivity to prompt wording, similar to CLIP fine-tuning [699]. Weight ensembling mitigates
but does not completely remove this trade-off.

• Noise and bias in pseudo-labels. Although OWLv2 shows that simple pseudo-annotations
can be surprisingly effective at scale, they still inherit biases from the annotator, the label
space, and the WebLI corpus. Improving pseudo-label quality or incorporating uncertainty
estimates could further enhance performance.

Despite these limitations, OWLv2 demonstrates that a relatively simple OWL-ViT-style detector,
combined with web-scale self-training, can close much of the gap to more architecturally complex
open-vocabulary detectors. It also provides an important precedent for future work that treats
detection as a scalable web-learning problem, much like modern image and language models.

