
12. Lecture 12: Deep Learning Software

12.1 Deep Learning Frameworks: Evolution and Landscape
Deep learning software frameworks enable researchers and engineers to efficiently prototype, train,
and deploy neural networks. This chapter explores key frameworks, their underlying computational
structures, and comparisons between static and dynamic computation graphs. Each framework is
providing different trade-offs between usability, performance, and scalability.

Figure 12.1: Overview of major deep learning frameworks and their affiliations.

Some notable frameworks include:
• Caffe (UC Berkeley) – One of the earliest frameworks, optimized for speed but limited in

flexibility.
• Theano (U. Montreal) – A pioneer in automatic differentiation, but now discontinued.

518 Chapter 12. Lecture 12: Deep Learning Software

• TensorFlow (Google) – Popular for production deployments; originally focused on static
computation graphs.

• PyTorch (Facebook) – An imperative, Pythonic framework with dynamic computation graphs,
widely used in research.

• MXNet (Amazon) – Developed by multiple institutions, designed for distributed deep learning.
• JAX (Google) – A newer framework optimized for high-performance computing and auto-

differentiation.
While many frameworks exist, PyTorch and TensorFlow dominate deep learning research and

deployment. The following sections explore these frameworks in detail, starting with computational
graphs and automatic differentiation.

12.1.1 The Purpose of Deep Learning Frameworks
Deep learning frameworks provide essential tools that simplify the implementation, training, and
deployment of neural networks. They abstract away low-level operations, enabling users to focus on
model design and experimentation rather than manual gradient computations or hardware-specific
optimizations. The three primary goals of deep learning frameworks are:

• Rapid Prototyping: Frameworks allow researchers to quickly experiment with new architec-
tures, optimization techniques, and data pipelines. High-level APIs simplify model definition,
while flexible debugging tools enable faster iteration.

• Automatic Differentiation: Modern frameworks automatically compute gradients via back-
propagation, eliminating the need for manual derivative calculations. This accelerates research
and reduces implementation errors.

• Efficient Execution on Hardware: Frameworks optimize computations for GPUs & TPUs,
leveraging parallel processing and efficient memory management to accelerate training and
inference.

12.1.2 Recall: Computational Graphs

Figure 12.2: Computational graphs in deep learning. These graphs define the sequence of
operations for training and inference, enabling automatic differentiation and optimization.

12.2 PyTorch: Fundamental Concepts 519

Neural networks are represented as computational graphs. The graphs define the sequence of
operations required to compute outputs and gradients during training. A graph consists of:

• Nodes: Represent mathematical operations (e.g., Sigmoid).
• Edges: Represent data flow between operations, forming a directed acyclic graph (DAG).

During training, frameworks use computational graphs to:

1. Forward Pass: Compute the output by passing data through the graph.
2. Backward Pass: Compute gradients via backpropagation, traversing the graph in reverse.
3. Optimization Step: Update parameters using computed gradients.

Understanding computational graphs is crucial, as different frameworks implement them in distinct
ways. The next sections explore how PyTorch and TensorFlow utilize these graphs, comparing
dynamic vs. static computation strategies.

12.2 PyTorch: Fundamental Concepts
PyTorch is a deep learning framework that provides flexibility, dynamic computation graphs, and
efficient execution on both CPUs and GPUs. It introduces key abstractions:

• Tensors: Multi-dimensional arrays similar to NumPy arrays but capable of running on GPUs.
• Modules: Objects representing layers of a neural network, potentially storing learnable

parameters.
• Autograd: A system that automatically computes gradients by building computational graphs

dynamically.

12.2.1 Tensors and Basic Computation
To illustrate PyTorch’s fundamentals, consider a simple two-layer ReLU network trained using
gradient descent on random data.

1 import torch

2 device = torch.device('cpu') # Change to 'cuda:0' to run on GPU

3 N, D_in, H, D_out = 64, 1000, 100, 10 # Batch size, input, hidden, output

dimensions↪→

4

5 #Create random tensors for data and weights

6 x = torch.randn(N, D_in, device=device)

7 y = torch.randn(N, D_out, device=device)

8 w1 = torch.randn(D_in, H, device=device)

9 w2 = torch.randn(H, D_out, device=device)

10 learning_rate = 1e-6

11

12 for t in range(500):

13 # Forward pass: compute predictions and loss

14 h = x.mm(w1) # Matrix multiply (fully connected layer)

15 h_relu = h.clamp(min=0) # Apply ReLU non-linearity

16 y_pred = h_relu.mm(w2) # Output prediction

17 loss = (y_pred - y).pow(2).sum() # Compute L2 loss

18

520 Chapter 12. Lecture 12: Deep Learning Software

19 # Backward pass: manually compute gradients

20 grad_y_pred = 2.0 * (y_pred - y)

21 grad_w2 = h_relu.t().mm(grad_y_pred)

22 grad_h_relu = grad_y_pred.mm(w2.t())

23 grad_h = grad_h_relu.clone()

24 grad_h[h < 0] = 0 # Backpropagate ReLU

25 grad_w1 = x.t().mm(grad_h)

26

27 #Gradient descent step on weights

28 w1 -= learning_rate * grad_w1 # Gradient update

29 w2 -= learning_rate * grad_w2

PyTorch tensors operate efficiently on GPUs by simply setting:
device = torch.device('cuda:0').

12.2.2 Autograd: Automatic Differentiation
PyTorch’s autograd system automatically builds computational graphs when performing operations
on tensors with requires_grad=True. These graphs allow automatic computation of gradients via
backpropagation.

1 x = torch.randn(N, D_in)

2 y = torch.randn(N, D_out)

3 w1 = torch.randn(D_in, H, requires_grad=True)

4 w2 = torch.randn(H, D_out, requires_grad=True)

The forward pass remains unchanged:

1 h = x.mm(w1)

2 h_relu = h.clamp(min=0)

3 y_pred = h_relu.mm(w2)

4 loss = (y_pred - y).pow(2).sum() # Compute loss

PyTorch automatically tracks operations and maintains intermediate values, eliminating the need
for manual gradient computation. We backpropagate as follows:

1 loss.backward() # Computes gradients for w1 and w2

Gradients are accumulated in w1.grad and w2.grad, so we must clear them manually before
the next update:

1 with torch.no_grad(): # Prevents unnecessary graph construction

2 w1 -= learning_rate * w1.grad

3 w2 -= learning_rate * w2.grad

4

5 w1.grad.zero_()

6 w2.grad.zero_()

Forgetting to reset gradients is a common PyTorch bug, as gradients accumulate by default.

12.2 PyTorch: Fundamental Concepts 521

12.2.3 Computational Graphs and Modular Computation
PyTorch dynamically constructs computational graphs during forward passes, enabling automatic
differentiation and backpropagation. Each tensor operation that involves requires_grad=True
contributes to the computational graph.

Building the Computational Graph
The computation graph begins when we perform operations on tensors with requires_grad=True.
Consider the following forward pass:

1 h = x.mm(w1) # Matrix multiply (fully connected layer)

2 h_relu = h.clamp(min=0) # Apply ReLU non-linearity

3 y_pred = h_relu.mm(w2) # Output prediction

4 loss = (y_pred - y).pow(2).sum() # Compute L2 loss

This sequence of operations results in the following computational graph:
• x.mm(w1) creates a matrix multiplication node with inputs x and w1, producing an output

tensor with requires_grad=True.

Figure 12.3: First computational node in the graph. The matrix multiplication x.mm(w1) creates
the first node in the computational graph.

• .clamp(min=0) applies a ReLU activation, forming another node.

522 Chapter 12. Lecture 12: Deep Learning Software

Figure 12.4: ReLU activation node. The ReLU function introduces a non-linearity while maintain-
ing the computational graph structure.

• .mm(w2) applies another matrix multiplication, producing the final prediction.

Figure 12.5: Final matrix multiplication node. The output prediction y_pred is produced by
matrix multiplication with w2.

Loss Computation and Backpropagation
After computing the loss, we backpropagate through the graph to compute gradients:

1 loss.backward() # Computes gradients for w1 and w2

During this process:
• (y_pred - y) creates a subtraction node with inputs y_pred and y.
• .pow(2) squares the result, creating a new node.

12.2 PyTorch: Fundamental Concepts 523

• .sum() sums the squared differences, outputting a scalar loss.

Figure 12.6: Loss computation node. The final loss is computed as a scalar output in the computa-
tional graph, allowing backpropagation to all inputs requiring gradients.

Once gradients are computed, they are stored in w1.grad and w2.grad. However, PyTorch
accumulates gradients by default, so they must be cleared before the next update (grad.zero_()):

1 with torch.no_grad(): # Prevents unnecessary graph construction

2 w1 -= learning_rate * w1.grad

3 w2 -= learning_rate * w2.grad

4 w1.grad.zero_()

5 w2.grad.zero_()

Forgetting to reset gradients is a common mistake in PyTorch. Although probably a design flaw in
PyTorch, as we usually don’t want to accumulate gradients, we need to be aware of that when we
create models.

Extending Computational Graphs with Python Functions
PyTorch’s autograd system allows users to construct computational graphs dynamically using Python
functions. When a function is called inside a forward pass, PyTorch records all tensor operations
occurring within it.

1 def custom_relu(x):

2 return x.clamp(min=0) # Element-wise ReLU

3 h_relu = custom_relu(h)

Although this function improves code readability, PyTorch still constructs the same computational
graph as if we had used .clamp(min=0) directly.

524 Chapter 12. Lecture 12: Deep Learning Software

Custom Autograd Functions
PyTorch’s automatic differentiation works by building a computational graph out of primitive
operations (e.g., add, mul, exp) and then applying the chain rule. In most cases this is sufficient, but
sometimes we want:

• To treat a whole computation as a single semantic unit in the graph (cleaner, fewer nodes,
less bookkeeping).

• To override the automatically derived backward with a numerically more stable or more
efficient formula.

For this, PyTorch lets us define custom operations by subclassing torch.autograd.Function

and explicitly specifying forward and backward.

Motivating Example: Sigmoid
A naive Python implementation of the sigmoid is:

1 def sigmoid(x):

2 return 1.0 / (1.0 + torch.exp(-x))

This looks harmless, but it can introduce numerical issues in deep networks:
• For very large negative inputs x≪ 0, we compute torch.exp(-x) = exp(large positive),

which overflows to inf in float32. The forward result is still 1/(1+∞)≈ 0, so we might
not notice.

• However, during backward, autograd differentiates through these primitives and uses the same
intermediate inf values. Expressions such as ∞

(1+∞)2 or ∞ ·0 can appear, which numerically
become nan, even though the true derivative is 0.

Mathematically, the derivative of the sigmoid is

σ
′(x) = σ(x)(1−σ(x)),

and this is perfectly stable: once we know y = σ(x) ∈ (0,1), the product y(1− y) is always bounded
in [0,0.25] and never overflows. So a more stable strategy is:

1. Compute y = σ(x) in the forward pass.
2. Save y.
3. Compute the gradient in backward using y(1− y) instead of recomputing exponentials.

This is exactly what a custom autograd function allows us to do.

1 class Sigmoid(torch.autograd.Function):

2 @staticmethod

3 def forward(ctx, x):

4 # Forward as usual (PyTorch's built-in sigmoid is already stable;

5 # here we reimplement it for illustration).

6 y = 1.0 / (1.0 + torch.exp(-x))

7 # Save only the stable output y for backward.

8 ctx.save_for_backward(y)

9 return y

12.2 PyTorch: Fundamental Concepts 525

1 @staticmethod

2 def backward(ctx, grad_y):

3 # Retrieve saved output

4 (y,) = ctx.saved_tensors

5 # Use the stable formula seen earlier

6 grad_x = grad_y * y * (1.0 - y)

7 return grad_x

8

9 def sigmoid(x):

10 return Sigmoid.apply(x)

Figure 12.7: Custom autograd function for sigmoid. Left: the naive implementation expands into
several primitive nodes (exp, add, div), each with its own backward. Right: the custom Sigmoid is
a single node with a hand-crafted, numerically stable backward.

Once defined, we can use the new sigmoid as any other PyTorch operation:

1 x = torch.randn(10, requires_grad=True)

2 sigmoid_out = sigmoid(x)

3 sigmoid_out.sum().backward()

In practice, this level of control is rarely needed for basic operations: PyTorch’s built-in functions
(torch.sigmoid, torch.softmax, etc.) are already implemented internally using optimized and
stable autograd functions.

Custom Functions become most useful when implementing new layers, composite operations,
or specialized losses where we know a better backward formula than the one autograd would derive
automatically.

526 Chapter 12. Lecture 12: Deep Learning Software

Summary: Backpropagation and Graph Optimization
• Any operation on a tensor with requires_grad=True extends the computational graph.
• PyTorch dynamically records these operations and stores just enough context (saved tensors)

to evaluate gradients efficiently via the chain rule.
• Forgetting to reset gradients (e.g., omitting optimizer.zero_grad()) causes gradients to

accumulate across iterations, leading to incorrect updates.
• Graph structure can be optimized using custom autograd functions: they fuse multiple

primitive ops into a single node, can implement numerically stable backward formulas, and
provide more meaningful graph semantics than low-level primitives alone.

A solid understanding of PyTorch’s computational graphs—and how to customize them when
necessary—is essential for debugging, improving numerical robustness, and optimizing the perfor-
mance of deep learning models.

12.2.4 High-Level Abstractions in PyTorch: torch.nn and Optimizers
PyTorch provides a high-level wrapper, torch.nn, which simplifies neural network construction by
offering an object-oriented API for defining models. This abstraction allows for more structured and
maintainable code, making deep learning models easier to build and extend.

Using torch.nn.Sequential

The torch.nn.Sequential container allows defining models as a sequence of layers. Below, we
define a simple two-layer network with ReLU activation:

1 import torch

2

3 N, D_in, H, D_out = 64, 1000, 100, 10

4 x = torch.randn(N, D_in)

5 y = torch.randn(N, D_out)

6

7 model = torch.nn.Sequential(

8 torch.nn.Linear(D_in, H),

9 torch.nn.ReLU(),

10 torch.nn.Linear(H, D_out)

11)

12

13 learning_rate = 1e-2

14 for t in range(500):

15 y_pred = model(x)

16 loss = torch.nn.functional.mse_loss(y_pred, y)

17 loss.backward()

18

19 with torch.no_grad():

20 for param in model.parameters():

21 param -= learning_rate * param.grad

22

23 model.zero_grad()

• The model object is a container holding layers. Each layer manages its own parameters.
• Calling model(x) performs the forward pass.
• The loss is computed using torch.nn.functional.mse_loss().

12.2 PyTorch: Fundamental Concepts 527

• Calling loss.backward() computes gradients for all model parameters.
• Parameter updates are performed manually in a loop over model.parameters().
• Calling model.zero_grad() resets gradients for all parameters.

Using Optimizers: Automating Gradient Descent
Instead of manually implementing gradient descent, PyTorch provides optimizer classes that handle
parameter updates. Below, we use the Adam optimizer:

1 import torch

2

3 N, D_in, H, D_out = 64, 1000, 100, 10

4 x = torch.randn(N, D_in)

5 y = torch.randn(N, D_out)

6

7 model = torch.nn.Sequential(

8 torch.nn.Linear(D_in, H),

9 torch.nn.ReLU(),

10 torch.nn.Linear(H, D_out)

11)

12

13 learning_rate = 1e-4

14 optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

15

16 for t in range(500):

17 y_pred = model(x)

18 loss = torch.nn.functional.mse_loss(y_pred, y)

19 loss.backward()

20

21 optimizer.step()

22 optimizer.zero_grad()

• The optimizer is instantiated with torch.optim.Adam() and receives model parameters.
• Calling optimizer.step() updates all parameters automatically.
• Calling optimizer.zero_grad() resets gradients before the next step.
This approach is both cleaner and less error-prone than manual updates.

528 Chapter 12. Lecture 12: Deep Learning Software

Defining Custom nn.Module Subclasses
For more complex architectures, we can define custom nn.Module subclasses:

1 import torch

2

3 class TwoLayerNet(torch.nn.Module):

4 def __init__(self, D_in, H, D_out):

5 super(TwoLayerNet, self).__init__()

6 self.linear1 = torch.nn.Linear(D_in, H)

7 self.linear2 = torch.nn.Linear(H, D_out)

8

9 def forward(self, x):

10 h_relu = self.linear1(x).clamp(min=0)

11 y_pred = self.linear2(h_relu)

12 return y_pred

13

14 N, D_in, H, D_out = 64, 1000, 100, 10

15 x = torch.randn(N, D_in)

16 y = torch.randn(N, D_out)

17

18 model = TwoLayerNet(D_in, H, D_out)

19 optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)

20

21 for t in range(500):

22 y_pred = model(x)

23 loss = torch.nn.functional.mse_loss(y_pred, y)

24 loss.backward()

25

26 optimizer.step()

27 optimizer.zero_grad()

• Model Initialization: The __init__ method defines layers as class attributes.
• Forward Pass: The forward() method specifies how inputs are transformed.
• Autograd Integration: PyTorch automatically tracks gradients for model parameters.
• Training Loop: The optimizer updates weights based on computed gradients.

Key Takeaways
• torch.nn.Sequential simplifies defining networks as a stack of layers.
• Optimizers automate gradient descent, making training loops cleaner.
• Custom nn.Module subclasses provide flexibility for complex architectures.
• Autograd handles differentiation automatically, eliminating the need for manual backward

computations.
Using torch.nn and optimizers streamlines model development, making PyTorch a powerful

and expressive framework for deep learning.

12.2.5 Combining Custom Modules with Sequential Models
A common practice in PyTorch is to combine custom nn.Module subclasses with torch.nn.Sequential
containers. This enables modular and scalable architectures while maintaining the expressiveness of
object-oriented model design.

12.2 PyTorch: Fundamental Concepts 529

Example: Parallel Block
The following example defines a ParallelBlock module that applies two linear transformations to
the input independently and then multiplies the results element-wise:

1 import torch

2

3 class ParallelBlock(torch.nn.Module):

4 def __init__(self, D_in, D_out):

5 super(ParallelBlock, self).__init__()

6 self.linear1 = torch.nn.Linear(D_in, D_out)

7 self.linear2 = torch.nn.Linear(D_in, D_out)

8

9 def forward(self, x):

10 h1 = self.linear1(x)

11 h2 = self.linear2(x)

12 return (h1 * h2).clamp(min=0) # Element-wise multiplication followed

by ReLU↪→

13

14 N, D_in, H, D_out = 64, 1000, 100, 10

15 x = torch.randn(N, D_in)

16 y = torch.randn(N, D_out)

17

18 model = torch.nn.Sequential(

19 ParallelBlock(D_in, H),

20 ParallelBlock(H, H),

21 torch.nn.Linear(H, D_out)

22)

23

24 optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)

25

26 for t in range(500):

27 y_pred = model(x)

28 loss = torch.nn.functional.mse_loss(y_pred, y)

29 loss.backward()

30 optimizer.step()

31 optimizer.zero_grad()

• The ParallelBlock applies two separate linear layers to the input.
• The outputs are multiplied element-wise before applying ReLU.
• The Sequential container stacks multiple ParallelBlock instances, followed by a final

linear layer.
• Using this approach allows rapid experimentation with modular neural network components.

Although this example is not very smart and not thing we should in practice, it demonstrates well
the ability to create building blocks using torch and thus create using this abstraction some complex
neural networks with ease.

530 Chapter 12. Lecture 12: Deep Learning Software

Figure 12.8: ParallelBlock module design: The implementation of the ParallelBlock and its
corresponding computational graph visualization.

Figure 12.9: Stacking multiple ParallelBlock instances in a Sequential model. The left side of
the figure shows the computational graph produced.

12.2.6 Efficient Data Loading with torch.utils.data

Training deep neural networks efficiently requires a robust data pipeline. PyTorch provides the
torch.utils.data module, which abstracts away data loading, shuffling, batching, and paralleliza-
tion—ensuring that model computation and data preparation can run concurrently. The two key
components are:

• Dataset: Represents a collection of samples. You can use built-in classes like TensorDataset
for in-memory tensors or implement a custom Dataset that reads from files or databases.

• DataLoader: Wraps a Dataset to provide mini-batching, shuffling, and multi-process data
loading. It also supports pinned memory for faster GPU transfer.

12.2 PyTorch: Fundamental Concepts 531

Example: Using DataLoader for Mini-batching
The example below demonstrates how to use DataLoader with synthetic data for mini-batch training.

1 import torch

2 from torch.utils.data import TensorDataset, DataLoader

3

4 # 1. Create a simple in-memory dataset

5 N, D_in, H, D_out = 64, 1000, 100, 10

6 x = torch.randn(N, D_in)

7 y = torch.randn(N, D_out)

8

9 dataset = TensorDataset(x, y)

10

11 # 2. Create a DataLoader with batching and parallel loading

12 loader = DataLoader(

13 dataset,

14 batch_size=8,

15 shuffle=True, # Shuffle each epoch for stable training

16 num_workers=2, # Parallel CPU workers for background loading

17 pin_memory=True # Speeds up host�GPU transfers

18)

19

20 model = TwoLayerNet(D_in, H, D_out)

21 optimizer = torch.optim.SGD(model.parameters(), lr=1e-2)

22

23 # 3. Training loop using the DataLoader

24 for epoch in range(20):

25 for x_batch, y_batch in loader:

26 y_pred = model(x_batch)

27 loss = torch.nn.functional.mse_loss(y_pred, y_batch)

28

29 loss.backward()

30 optimizer.step()

31 optimizer.zero_grad()

This setup automatically handles mini-batch creation, shuffling, and memory prefetching. With
num_workers > 0, the CPU preloads data while the GPU trains on the previous batch, preventing
GPU idle time—a crucial optimization for large datasets.

Best Practices
• Use shuffle=True to avoid order bias and improve gradient diversity.
• Adjust num_workers to match your CPU cores (typical range: 2–8) for best throughput.
• Set pin_memory=True when training on GPU to accelerate host–device transfers.

Handling Multiple Datasets
In practice, data often comes from multiple sources—different domains, modalities, or tasks. PyTorch
offers flexible tools to combine and balance these datasets efficiently.

532 Chapter 12. Lecture 12: Deep Learning Software

Concatenating Datasets
When datasets share the same structure (e.g., same feature dimensions), use ConcatDataset to
merge them into a single unified dataset.

1 from torch.utils.data import ConcatDataset, DataLoader

2

3 dataset_a = TensorDataset(torch.randn(100, 20), torch.randn(100, 1))

4 dataset_b = TensorDataset(torch.randn(200, 20), torch.randn(200, 1))

5

6 combined = ConcatDataset([dataset_a, dataset_b])

7

8 loader = DataLoader(

9 combined,

10 batch_size=16,

11 shuffle=True,

12 num_workers=4

13)

This approach interleaves samples from all datasets proportionally to their sizes. It is ideal for
combining related sources (e.g., merging multiple corpora or image datasets).

Weighted Sampling Across Datasets
If some datasets are much smaller or more important, you can balance sampling probabilities using
WeightedRandomSampler. This ensures underrepresented data appears more frequently in training
batches.

1 from torch.utils.data import WeightedRandomSampler

2

3 # Example: emphasize smaller dataset (dataset_a)

4 weights = [1.0 / len(dataset_a)] * len(dataset_a) + \

5 [1.0 / len(dataset_b)] * len(dataset_b)

6

7 sampler = WeightedRandomSampler(weights, num_samples=len(weights),

replacement=True)↪→

8

9 balanced_loader = DataLoader(

10 combined,

11 batch_size=16,

12 sampler=sampler,

13 num_workers=4

14)

Weighted sampling is especially useful for:
• Imbalanced datasets. For example, when rare classes need more representation during

training.
• Multi-source training. Combining labeled and unlabeled data or datasets from distinct

domains.
• Curriculum learning. Gradually increasing sample difficulty or diversity over time.

12.2 PyTorch: Fundamental Concepts 533

Streaming or Multi-modal Data
For more dynamic or heterogeneous sources (e.g., loading text and image pairs), subclass IterableDataset
to yield samples from multiple streams in real time, or define a custom Sampler to coordinate multi-
modal alignment.

1 from torch.utils.data import IterableDataset

2

3 class MultiSourceStream(IterableDataset):

4 def __iter__(self):

5 for x_img, x_txt in zip(image_stream(), text_stream()):

6 yield preprocess(x_img, x_txt)

This design is common in large-scale vision–language or multi-task training pipelines, where data
arrives asynchronously or from external APIs.

Summary
DataLoader and its related utilities form the backbone of efficient training in PyTorch. They
decouple data I/O from model computation, provide clean abstractions for multi-source or imbalanced
data, and make large-scale experiments reproducible and scalable across CPUs and GPUs.

12.2.7 Using Pretrained Models with TorchVision
PyTorch provides access to many pretrained models through the torchvision package, making it
easy to leverage existing architectures for various vision tasks.

Using pretrained models is as simple as:

1 import torchvision.models as models

2

3 alexnet = models.alexnet(pretrained=True)

4 vgg16 = models.vgg16(pretrained=True)

5 resnet101 = models.resnet101(pretrained=True)

• These models come with pretrained weights on ImageNet, making them suitable for transfer
learning.

• Fine-tuning pretrained models often leads to faster convergence and better performance on
new tasks.

• torchvision.models provides a wide variety of architectures beyond AlexNet, VGG, and
ResNet.

Key Takeaways
• Custom modules and torch.nn.Sequential can be combined to quickly build complex

models while maintaining modularity.
• Data loading utilities such as torch.utils.data.DataLoader facilitate efficient mini-

batching and dataset management.
• TorchVision provides pretrained models, making it easy to leverage state-of-the-art archi-

tectures for various vision tasks.

534 Chapter 12. Lecture 12: Deep Learning Software

12.3 Dynamic vs. Static Computational Graphs in PyTorch
A fundamental design choice in PyTorch is its use of dynamic computational graphs. Unlike
static graphs, which are constructed once and reused, PyTorch builds a fresh computational graph
for each forward pass. Once loss.backward() is called, the graph is discarded, and a new one is
constructed in the next iteration.

While dynamically building graphs in every iteration may seem inefficient, this approach provides
a crucial advantage: the ability to use standard Python control flow during model execution. This
enables complex architectures that modify their behavior on-the-fly based on intermediate results.

Example: Dynamic Graph Construction
Consider a model where the choice of weight matrix for backpropagation depends on the previous
loss value. This scenario, though impractical, demonstrates PyTorch’s ability to create different
computational graphs in each iteration.

Figure 12.10: Example of a dynamically constructed graph: The model structure changes at each
iteration based on previous loss values.

In dynamic graphs, every forward pass constructs a unique computation graph, allowing for
models with varying execution paths across different iterations.

12.3.1 Static Graphs and Just-in-Time (JIT) Compilation
In contrast, static computational graphs follow a two-step process:

1. Graph Construction: Define the computational graph once, allowing the framework to
optimize it before execution.

2. Graph Execution: The same pre-optimized graph is reused for all forward passes.

While PyTorch natively operates with dynamic graphs, it also supports static graphs through Torch-
Script using Just-in-Time (JIT) compilation. This allows PyTorch to analyze the model’s source
code, compile it into an optimized static graph, and reuse it for improved efficiency.

12.3 Dynamic vs. Static Computational Graphs in PyTorch 535

12.3.2 Using JIT to Create Static Graphs
To convert a function into a static computational graph, PyTorch provides torch.jit.script():

1 import torch

2

3 def model(x):

4 return x * torch.sin(x)

5

6 scripted_model = torch.jit.script(model) # Convert to static graph

Alternatively, PyTorch allows automatic graph compilation using the @torch.jit.script annota-
tion:

1 import torch

2

3 @torch.jit.script

4 def model(x):

5 return x * torch.sin(x)

Figure 12.11: TorchScript: Using JIT compilation to convert PyTorch models into static graphs for
optimization.

12.3.3 Handling Conditionals in Static Graphs
Static graphs struggle with conditionals because they are typically fixed at compile time. However,
PyTorch’s JIT can represent conditionals as graph nodes, enabling runtime flexibility.

536 Chapter 12. Lecture 12: Deep Learning Software

Figure 12.12: Conditionals in static graphs: JIT inserts a conditional node to handle different
execution paths.

This allows some degree of flexibility while retaining the benefits of graph optimization.

12.3.4 Optimizing Computation Graphs with JIT
One advantage of static graphs is that they enable graph-level optimizations. PyTorch JIT can
automatically fuse operations such as convolution and activation layers into a single efficient
operation.

Figure 12.13: Operation fusion in static graphs: Layers such as Conv + ReLU are combined into a
single operation to improve efficiency.

This optimization is performed once, eliminating the need to optimize in every iteration.

12.4 TensorFlow: Dynamic and Static Computational Graphs 537

12.3.5 Benefits and Limitations of Static Graphs
Advantages of Static Graphs:

• Graph Optimization: The framework optimizes computation before execution, improving
speed.

• Operation Fusion: Frequently used layers (e.g., Conv + ReLU) are merged into a single
operation.

• Serialization: Models can be saved to disk and loaded in non-Python environments (e.g.,
C++).

Challenges of Static Graphs:
• Difficult Debugging: Debugging static graphs can be challenging due to indirection between

graph construction and execution.
• Less Flexibility: Unlike dynamic graphs, static graphs struggle with models that modify their

execution path.
• Rebuilding Required: Any model change requires reconstructing the entire graph.

12.3.6 When Are Dynamic Graphs Necessary?
Certain architectures require dynamic graphs due to their execution dependencies on input data:

• Recurrent Neural Networks (RNNs): The number of computation steps depends on input
sequence length.

• Recursive Networks: Hierarchical models, such as parse trees in NLP, require dynamic
execution paths.

• Modular Networks: Some architectures dynamically select which sub-network to execute.
A well-known example is the model in [270], where part of the network predicts which module

should execute next.

12.4 TensorFlow: Dynamic and Static Computational Graphs
TensorFlow originally adopted static computational graphs by default (TensorFlow 1.0), requiring
users to explicitly define a computation graph before running it. However, in TensorFlow 2.0, the
framework transitioned to dynamic graphs by default, making the API more similar to PyTorch.
This shift caused a significant divide in the TensorFlow ecosystem, as older static-graph code
intertwined with newer dynamic-graph code, creating confusion and bugs.

12.4.1 Defining Computational Graphs in TensorFlow 2.0
In PyTorch, the computational graph is built implicitly: any operation performed on a tensor with
requires_grad=True is automatically tracked. TensorFlow 2.0 (TF2), by contrast, introduced
eager execution as the default mode—operations execute immediately like standard Python code,
producing concrete values rather than symbolic graph nodes. This makes TF2 intuitive and debug-
gable but requires an explicit mechanism for recording operations when gradients are needed. That
mechanism is the tf.GradientTape.

Understanding tf.GradientTape

The GradientTape is TensorFlow’s dynamic autodiff engine, analogous to PyTorch’s implicit
autograd. It acts like a “recorder”: while active, it logs all operations on watched tensors (typically
all tf.Variable objects) and can later “play back” those operations to compute gradients.

• Entering a with tf.GradientTape() as tape: block begins recording.

538 Chapter 12. Lecture 12: Deep Learning Software

• Any operation involving watched variables is logged on the tape.
• Exiting the block stops recording.
• Calling tape.gradient(loss, [vars]) replays the tape backward to compute exact gradi-

ents via the chain rule.
This explicit opt-in design prevents unnecessary gradient tracking (e.g., during inference) and

gives developers fine-grained control over which computations are differentiable.

1 import tensorflow as tf

2

3 # Setup data and parameters

4 N, Din, H, Dout = 16, 1000, 100, 10

5 x = tf.random.normal((N, Din))

6 y = tf.random.normal((N, Dout))

7 w1 = tf.Variable(tf.random.normal((Din, H)))

8 w2 = tf.Variable(tf.random.normal((H, Dout)))

9

10 learning_rate = 1e-6

11

12 for t in range(1000):

13 # Begin recording operations on the tape

14 with tf.GradientTape() as tape:

15 h = tf.maximum(tf.matmul(x, w1), 0) # ReLU

16 y_pred = tf.matmul(h, w2)

17 diff = y_pred - y

18 loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))

19

20 # Compute gradients of loss w.r.t parameters

21 grad_w1, grad_w2 = tape.gradient(loss, [w1, w2])

22

23 # Parameter updates (in-place, safe for tf.Variables)

24 w1.assign_sub(learning_rate * grad_w1)

25 w2.assign_sub(learning_rate * grad_w2)

This process mirrors PyTorch’s autograd but with more explicit control: GradientTape defines
the graph’s lifetime (inside the with block), rather than relying on implicit global tracking. The
resulting computation graph is ephemeral—destroyed after gradient computation unless the tape is
declared as persistent=True (allowing multiple gradient calls).

Key differences from PyTorch
• PyTorch automatically tracks gradients for all tensors with requires_grad=True. Tensor-

Flow records only within the GradientTape context.
• TensorFlow’s graph is discarded after use unless marked persistent.
• GradientTape offers fine-grained control: you can record subsets of operations or specific

variables only.

12.4 TensorFlow: Dynamic and Static Computational Graphs 539

12.4.2 Static Graphs with @tf.function

While TF2 defaults to eager (imperative) execution for flexibility, static computation graphs are still
essential for deployment and optimization. To combine both worlds, TensorFlow introduces the
@tf.function decorator, which traces Python functions into optimized static graphs—comparable
to torch.jit.script() in PyTorch.

Motivation
Eager execution simplifies experimentation but adds Python overhead per operation. Static graphs,
on the other hand, allow TensorFlow to perform ahead-of-time optimizations: operation fusion (e.g.,
combining matmul + bias_add), kernel selection, memory reuse, and XLA compilation. Using
@tf.function, developers write natural Python code while TensorFlow transparently traces and
compiles it.

1 @tf.function # Compiles to a static graph on first call

2 def training_step(x, y, w1, w2, lr):

3 with tf.GradientTape() as tape:

4 h = tf.maximum(tf.matmul(x, w1), 0)

5 y_pred = tf.matmul(h, w2)

6 loss = tf.reduce_mean(tf.reduce_sum((y_pred - y) ** 2, axis=1))

7

8 grad_w1, grad_w2 = tape.gradient(loss, [w1, w2])

9 w1.assign_sub(lr * grad_w1)

10 w2.assign_sub(lr * grad_w2)

11 return loss

12

13 # Regular Python loop, but graph executes under the hood

14 for t in range(1000):

15 current_loss = training_step(x, y, w1, w2, learning_rate)

Here, @tf.function traces the computation during its first execution, then caches the resulting
static graph for reuse—removing Python overhead and enabling runtime optimizations. This achieves
up to 2–10× speedups for heavy workloads while preserving eager-like syntax.

Summary of Modes
• Eager mode. Operations run immediately, ideal for debugging and experimentation.
• GradientTape. Dynamically records operations for automatic differentiation, similar to

PyTorch’s autograd.
• @tf.function. Converts eager code into a reusable static graph, fusing and optimizing opera-

tions for deployment.
Together, these tools give TensorFlow 2.0 both the interactivity of PyTorch and the performance

advantages of static compilation—bridging the flexibility–efficiency trade-off that defined earlier
deep learning frameworks.

540 Chapter 12. Lecture 12: Deep Learning Software

12.5 Keras: High-Level API for TensorFlow
Keras provides a high-level API for building deep learning models, simplifying working with models.

1 import tensorflow as tf

2 from tensorflow.keras.models import Sequential

3 from tensorflow.keras.layers import InputLayer, Dense

4

5 N, Din, H, Dout = 16, 1000, 100, 10

6

7 model = Sequential([

8 InputLayer(input_shape=(Din,)),

9 Dense(units=H, activation='relu'),

10 Dense(units=Dout)

11])

12

13 loss_fn = tf.keras.losses.MeanSquaredError()

14 opt = tf.keras.optimizers.SGD(learning_rate=1e-6)

15

16 x = tf.random.normal((N, Din))

17 y = tf.random.normal((N, Dout))

18

19 for t in range(1000):

20 with tf.GradientTape() as tape:

21 y_pred = model(x)

22 loss = loss_fn(y_pred, y)

23 grads = tape.gradient(loss, model.trainable_variables)

24 opt.apply_gradients(zip(grads, model.trainable_variables))

Keras simplifies training by providing:
• Predefined layers: Easily stack layers with Sequential().
• Common loss functions and optimizers: Use built-in losses and optimizers like Adam.
• Automatic gradient handling: opt.apply_gradients() simplifies parameter updates.

We can further simplify the training loop using opt.minimize() by defining a step function:

1 def step():

2 y_pred = model(x)

3 loss = loss_fn(y_pred, y)

4 return loss

5

6 for t in range(1000):

7 opt.minimize(step, model.trainable_variables)

12.6 TensorBoard: Visualizing Training Metrics 541

12.6 TensorBoard: Visualizing Training Metrics

Figure 12.14: TensorBoard visualization: Loss curves and weight distributions during training.

TensorBoard is a visualization tool that helps monitor deep learning experiments. It allows users to
track:

• Loss curves and accuracy during training.
• Weight distributions and parameter updates.
• Computational graphs of the model.
While originally designed for TensorFlow, TensorBoard now support PyTorch via the

torch.utils.tensorboard API. However, modern alternatives such as Weights and Biases
(wandb) and MLFlow provide additional functionality, making them popular choices for tracking
experiments.

12.7 Comparison: PyTorch vs. TensorFlow
• PyTorch:

– Imperative API that is easy to debug.
– Dynamic computation graphs enable flexibility.
– torch.jit.script() allows for static graph compilation.
– Harder to optimize for TPUs.
– Deployment on mobile is less streamlined.

• TensorFlow 1.0:
– Static graphs by default.
– Faster execution but difficult debugging.
– API inconsistencies made it less user-friendly.

• TensorFlow 2.0:
– Defaulted to dynamic graphs, similar to PyTorch.
– Standardized Keras API for ease of use.
– Still retains static graph capability with tf.function.

542 Chapter 12. Lecture 12: Deep Learning Software

Conclusion
Both PyTorch and TensorFlow 2.0 now support both dynamic and static graphs, offering flexibility for
different use cases. PyTorch remains the preferred choice for research due to its intuitive imperative
style, while TensorFlow is still widely used in production, particularly in environments requiring
static graph optimization.

