10.1 Learning Rate Schedules

In this lecture, we continue our discussion on training deep neural networks, focusing on strategies to
improve optimization efficiency. One of the most critical hyperparameters in training is the learning
rate (7). Regardless of the optimizer used—SGD, Momentum, Adagrad, RMSProp, Adam, or
others—the learning rate heavily influences training dynamics.

10.1.1 The Importance of Learning Rate Selection

The choice of learning rate significantly impacts the training process:

SGD, SGD+Momentum, Adagrad, RMSProp, Adam
all have learning rate as a hyperparameter.

loss

Q: Which one of these learning rates
is best to use?

low learning rate

A: All of them! Start with large
learning rate and decay over time

high learning rate

good learning rate

epoch

Justin Johnson Lecture 10 - 36 February 9, 2022

Figure 10.1: Effect of different learning rates on training. Yellow: too high, leading to divergence;
Blue: too low, resulting in slow progress; Green: somewhat high, converging suboptimally; Red:
well-chosen learning rate, ensuring efficient training.

10.1.2

364 Chapter 10. Lecture 10: Training Neural Networks Il

As we can see in the figure 10.1:
* If the learning rate is too high, the training process may become unstable, causing the loss to
diverge to infinity or result in NaNs.
* If the learning rate is too low, training will progress extremely slowly, requiring an excessive
number of iterations to reach convergence.
* A moderately high learning rate may accelerate training initially but fail to reach the optimal
loss value, settling at a suboptimal solution.
* An adequate learning rate achieves a balance between fast convergence and optimal loss
minimization.
Since manually choosing an optimal learning rate can be difficult, a common strategy is to start
with a relatively large learning rate and decay it over time. This approach combines the benefits
of rapid initial learning with stable long-term convergence.

Step Learning Rate Schedule

A widely used method to adjust the learning rate over time is the Step Learning Rate Schedule.
This strategy begins with a relatively high learning rate (e.g., 0.1 for ResNets) and decreases it at
predefined epochs by multiplying it with a fixed factor/factors (e.g., 0.1).

Learning Rate Decay: Step

Training Loss

Step: Reduce learning rate at a few fixed points.
35 Reduce learning rate E.g. for ResNets, multiply LR by 0.1 after epochs
30, 60, and 90.

Learning Rate

010 s

0.00 L

80 100

Justin Johnson Lecture 10 - 37 February 9, 2022

Figure 10.2: Step Learning Rate Decay: The learning rate is reduced by a factor of 0.1 at epochs 30,
60, and 90, indicated by the dashed vertical lines. The blue curve represents the noisy per-iteration
loss, highlighting the inherent variance in training. The light blue curve shows the Exponential
Moving Average (EMA) of the loss, providing a smoother trajectory of the loss progression. The
EMA helps visualize the overall trend despite the noise, demonstrating the impact of learning rate
drops on loss reduction over time.

A complete pass through the training dataset is known as an epoch. The Step LR schedule is designed
to exploit the exponential loss reduction phase observed in deep learning training. Initially, the
loss decreases rapidly, but after a certain number of epochs, progress slows down. At this point,
reducing the learning rate initiates a new phase of accelerated loss reduction. In Figure 10.2, we see
that lowering the learning rate at epoch 30 causes another rapid improvement, and similar effects
occur at epochs 60 and 90.

10.1.3

10.1 Learning Rate Schedules 365

However, Step LR scheduling introduces several hyperparameters:

1. Initial learning rate (7).
2. Decay epochs (when to lower the learning rate).
3. Decay factor (by how much to reduce the learning rate).

These hyperparameters must be tuned manually, often requiring extensive trial and error.

Practical Considerations

One practical approach is to start with a high learning rate, monitor validation accuracy and loss
curves, and reduce the learning rate when progress slows down (i.e., when validation accuracy
plateaus or loss reduction stagnates). This method allows practitioners to adaptively set the decay
points, avoiding the need for fixed schedules.

However, manually adjusting the learning rate can be time-consuming, and automatic methods for
adjusting learning rates over time are often preferred. In the following sections, we explore more
adaptive learning rate schedules that reduce the need for manual intervention.

Cosine Learning Rate Decay

While the Step LR schedule provides significant improvements over using a constant learning rate,
it requires manual selection of multiple hyperparameters. A more automated approach is to use
Cosine Learning Rate Decay, which gradually reduces the learning rate in a smooth and continuous
manner.

Instead of reducing the learning rate at predefined epochs, as done in step decay, the Cosine Learning
Rate Schedule updates the learning rate at each training step.

Learning Rate Decay: Cosine

Training Loss

10 u . . .
Step: Reduce learning rate at a few fixed points.
08 E.g. for ResNets, multiply LR by 0.1 after epochs
30, 60, and 90.
06 R 1 tm
P N Cosine: ag =5 a (1 + cos (?))
o
|
04 Learning Rate
ry J 10
02
08
0.0 06
0 50 100 150 200 250 300
Epoch 04
02
Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017
Radford et al, “Improving Language L by Pre-Training”, 2018 00
Feichtenhofer et al, “SlowFast Networks for Video Recognition”, ICCV 2019
Radosavovic et al, “On Network Design Spaces for Visual Recognition”, ICCV 2019 . 2 b g ochw o)
Child at al, “ ing Long with Sparse " arXiv 2019 P
Justin Johnson Lecture 10 - 38 February 9, 2022

Figure 10.3: Cosine learning rate decay: smoothly reducing the learning rate following a cosine
wave shape.

10.1.4

366 Chapter 10. Lecture 10: Training Neural Networks Il

It does so using the following formula:

at:%ao <1+cos (%r)), (10.1)

where:
* 0 is the initial learning rate.
* ¢ is the current epoch.
* T is the total number of epochs.
This function follows the shape of half a cosine wave, smoothly transitioning from the initial
learning rate to near-zero over the course of training.
Advantages of Cosine Decay:
* Only requires two hyperparameters: the initial learning rate o and the total number of
epochs T.
* Both of these parameters are typically chosen in any training setup, making the approach
intuitive.
Cosine LR decay has been widely adopted in recent deep learning research, appearing in many
high-profile papers at conferences such as ICLR and ICCV.

Linear Learning Rate Decay

The cosine decay function is just one possible shape for reducing the learning rate over time. Another
simple and effective alternative is Linear Learning Rate Decay, which follows the equation:

a,:oco(l—%). (10.2)

Here, the learning rate decreases linearly from o to zero over the training period. It’s important to
note that this learning rate schedule is commonly used in the field of NLP, and is less common in
popular CV papers. Nevertheless, there is no theoretical ground putting the cosine LR decay a clear
winner for the CV research area, and both are applicable.

Learning Rate Decay: Linear

Learning rate

10 Step: Reduce learning rate at a few fixed points.
E.g. for ResNets, multiply LR by 0.1 after epochs
08
30, 60, and 90.
06 R 1 tm
Cosine: ay =3 a (1 + cos (?))
04
. _ 1 t
02 Linear: ar = Qo -7
0.0
0 2‘0 40 60 80 ldO
Epoch
Devlin et al, “BERT: P ining of Deep Bidit ransformers for Language U ing”, NAACL 2018
Liu et al, “RoBERTa: A Robustly Optimizes d BERT Pretraining Approach”, 2019
Yang et al, “XLNet: i i ining for Language L ing”, NeurlPS 2019
Justin Johnson Lecture 10 - 39 February 9, 2022

Figure 10.4: Linear learning rate decay: a simple alternative to cosine decay, reducing the learning
rate linearly over time.

10.1.5

10.1 Learning Rate Schedules 367

Comparison Between Cosine and Linear Decay:
* Cosine decay has a more gradual reduction at the beginning and a steeper drop toward the
end, which may help with fine-tuning.
* Linear decay provides a consistent reduction rate, which can be beneficial for models that
require steady adaptation.
* Both approaches have been used successfully in large-scale models, while the linear decay
was even used in previous SOTA models such as BERT [120] and RoBERTa [380].
In many cases, the choice between these schedules is not critical; they are often selected based
on conventions within a particular research area rather than empirical/theoretical superiority. The
adoption of specific learning rate schedules is often driven by the need for fair comparisons in
research rather than their inherent effectiveness.

Inverse Square Root Decay
Another schedule is the Inverse Square Root schedule, where the learning rate at time step ¢ is defined
as:

o =2 (10.3)

Vi
Unlike schedules such as cosine or linear decay, this approach does not require specifying the total
number of training epochs (7). Although less popular, it was notably used in the Transformer model
[644], making it a relevant approach to mention.

One drawback of this schedule is its aggressive initial decay. The learning rate decreases rapidly
at the beginning of training, meaning the model spends very little time at high learning rates. In
contrast, other schedules, such as cosine or linear decay, tend to maintain a higher learning rate for a
longer period, which can be beneficial for appropriate training pace.

Learning Rate Decay: Inverse Sqrt

Learning rate

Step: Reduce learning rate at a few fixed points.
E.g. for ResNets, multiply LR by 0.1 after epochs

08 30, 60, and 90.
R 1 tm
06 Cosine: ay =5 a (1 + cos (?))
04 . t
Linear: ar=ag(1— -
02
Inverse sqrt: @, = ao/\t
0 2‘0 40 60 80 1(;0
Epoch
Vaswani et al, “Attention is all you need”, NIPS 2017
Justin Johnson Lecture 10 - 40 February 9, 2022

Figure 10.5: Inverse Square Root learning rate decay.

10.1.6

368 Chapter 10. Lecture 10: Training Neural Networks Il

Constant Learning Rate

The last learning rate schedule we present is the constant learning rate, which is the simplest and
most common:

o = 0. (10.4)

This schedule maintains a fixed learning rate throughout training. It is often the recommended starting
point, as it allows for straightforward debugging and quick experimentation before considering more
sophisticated schedules. Adjusting the learning rate schedule should generally be motivated by
specific needs, such as:

* Reducing oscillations or instability in training.

* Ensuring convergence towards an optimal solution without premature stagnation.

* Improving generalization performance by fine-tuning decay behaviors.
Although more advanced schedules may improve final performance by a few percentage points, they
typically do not turn a failing training process into a successful one. Thus, constant learning rates
provide a strong baseline for getting models up and running efficiently.

Learning Rate Decay: Constant!

Learning Rate

Step: Reduce learning rate at a few fixed points.
104 E.g. for ResNets, multiply LR by 0.1 after epochs
_— 30, 60, and 90.
1 tmw
100 Cosine: ay =35 (1 + cos (?))
098 . t
Linear: ar=0ap(1l—=
0.96 T
. P e Inverse sqrt: @ = o/t
Epoch
Constant: ar =
Brock et al, “Large Scale GAN Training for High Fidelity Natural Image Synthesis”, ICLR 2019
Donahue and Simonyan, “Large Scale Adversarial Representation Learning”, NeurIPS 2019
Justin Johnson Lecture 10 - 41 February 9, 2022

Figure 10.6: Constant learning rate decay.

However, the choice of optimizer plays a crucial role in determining the effectiveness of different
learning rate schedules. For instance, when using SGD with Momentum, a more complex learning
rate decay schedule is often essential. This is because momentum accumulates gradients over time,
and if the learning rate is not adjusted appropriately, the optimization process may become unstable
or fail to converge efficiently.

On the other hand, adaptive optimizers such as RMSProp and Adam dynamically adjust learning
rates per parameter based on past gradients. This self-adjusting nature allows these optimizers to
perform well even with a constant learning rate, as they inherently account for gradient magnitudes
and adapt learning rates accordingly.

10.1 Learning Rate Schedules 369

Adaptive Learning Rate Mechanisms

Adaptive learning rate algorithms such as AdaGrad, RMSProp, and Adam attempt to improve
optimization stability by adjusting the learning rate based on gradient statistics. However, relying
purely on adaptive mechanisms introduces challenges. A common question is: why not create a
mechanism that follows the training loss and adjusts the learning rate accordingly?

The main difficulty in implementing such an approach is the presence of numerous edge cases, such
as:

* Noisy loss curves: Training loss fluctuates due to mini-batch noise, making it difficult to

extract meaningful trends.

* Slow convergence: Decaying too early or too aggressively can lead to suboptimal solutions.
Despite these challenges, adaptive learning rate techniques remain an essential tool in deep learning
optimization, particularly for scenarios involving complex architectures and non-stationary data
distributions, in which they tend to shine and provide top-notch results.

Early Stopping

Another crucial technique to determine when to stop training is early stopping. This method helps
prevent overfitting and ensures that the model achieves optimal performance on unseen data. Early
stopping relies on monitoring three key curves during training:

* Training loss: This should ideally decay exponentially over time.

* Training accuracy: Should increase steadily as the training loss decreases, indicating that the

model is learning effectively.

* Validation accuracy: Should also improve, mirroring the decrease in validation loss.

The idea is to select the checkpoint where the model achieves the highest validation accuracy.
During training, model parameters are periodically saved to disk. After training concludes, these
checkpoints are analyzed, and the optimal one is chosen based on validation performance. This
technique is an effective safeguard against overfitting.

How long to train? Early Stopping

Train

Loss Accuracy

Stop training here

Iteration Iteration
Stop training the model when accuracy on the validation set decreases
Or train for a long time, but always keep track of the model snapshot that
worked best on val. Always a good idea to do this!

Justin Johnson Lecture 10 - 42 February 9, 2022

Figure 10.7: Early stopping mechanism: monitoring loss and accuracy trends to determine the best
checkpoint.

370 Chapter 10. Lecture 10: Training Neural Networks Il

Motivation

Section 10.1 reviewed monotone learning-rate (LR) schedules—step (subsection 10.1.2), cosine
(subsection 10.1.3), linear (subsection 10.1.4), inverse-square-root (subsection 10.1.5)—plus a
constant baseline (subsection 10.1.6). These steadily decrease LR to stabilize convergence, but they
often under-explore early and require hand-tuned drop epochs. OneCycle [575, 576] flips the pattern:
it briefly increases LR to a large peak, then anneals for the remainder of training, while momentum
varies inversely. The short high-LR burst adds beneficial stochastic regularization (escaping sharp
minima); the long decay polishes in flat regions—often reaching top accuracy in roughly 1/3-1/10
of the epochs of conventional schedules.

Method: schedule and inverse momentum coupling
What we are scheduling (symbols at a glance)
At each optimizer update r (t =0,1,...,T; T is the total number of updates in the cycle) we control:
* Learning rate 1, (step size at update ¢), bounded by three anchors: start Nmin, peak Nmax
(chosen via the LR-range test; see below figure), and end TNgna (very small, for fine polishing).
* Momentum 7, (inertia/averaging).l We bound it between myi, and my.x and couple it
inversely to LR (low m, when LR is high; high m, when LR is low).
A single scalar peak fraction p € (0, 1) allocates time: the first pT updates rise to Nmax (exploration),
the remaining (1 — p)T decay to Nfina (refinement).

Notation and helper ramps (defined before use)
We describe each phase on its own local timeline.
* Phase lengths. Warm-up length L, := pT’; anneal length L, := (1 —p)T.
» Normalized progress. For any phase of length L, set 7:=¢/L € [0,1]. In Phase 1 we use
T =1/Ly; in Phase 2 we use 7, = (t — pT)/L,.
* Cosine building blocks. The half-cosine ramp-up

he(t) i 1—C()25(7W)

smoothly maps 0 +— 0 and 1 — 1 with zero slope at both ends. Its ramp-down companion is

_ 1
he(t) = 1 —he(t) = “‘;S(”)
which maps 0 — 1 and 1 — 0. Any bounds a — b are obtained by a + (b —a)hc(7) (up) or

a+ (b—a)hc(t) (down).

Why this shape? (intuifion)

Monotone decays excel at refinement but can miss broad basins. OneCycle budgets for both: a short,
high-LR exploration to inject noise and cross sharp valleys, then a long, low-LR refinement to
settle. Stability comes from inverse momentum: near the LR peak we lower momentum (less inertia
during big steps); in the tail we raise it (more damping during tiny steps) [575, 576]. Cosine ramps
give smooth, zero-slope transitions (no kinks or shocks).

!For SGD this is classical momentum; for AdamW interpret 1, as the time-varying B (¢).

10.1 Learning Rate Schedules 371

Step-by-step construction of the schedules
Phase 1 (exploration, 0 <t < pT). With 7, =1¢/L;,

Nt = Nmin + (nmax - nmin) hC(Tl)v My = Mmax — (mmax - mmin) hC(Tl)
Phase 2 (refinement, p7 < ¢t < T). With 7, = (t — pT) /L,
Nt = Nfinal + (nmax - nﬁnal) R(TZ)u m; = Mpin + (mmax - mmin) hC(TZ) .

Putting the two pieces together:

1 —cos(m-%)
Nmin + (Mmax — Mmin) fp, 0t < pT
N = (10.5)
t 1+cos(7 (i:i’))TT
Nfinal T (nmax - Tlﬁnal) > , pT <t<T
1 —cos (71' pLT)
Mmax — (mmax _mmin) f’ 0t < pT
= | ot (10.6)
—cos(m (1fp)T)
\mmin + (mmax - mmin) 5 , pT <t<T

What this guarantees. We begin at (Mmin, 7max), pass the peak at (Nmax, Mmin) With zero-slope
continuity, and finish at (7ginal, 7max). Heuristically, the SGD noise scale scales like n1/(1 —m), so
OneCycle makes it large early (explore) and small late (refine).

Parameterization and defaults
Choose Mmax with the LR-range test (Figure 10.8). Set

n .
Mmin = div_;nﬁ’ div_factor € [3,10],
Nfinal = Mmax final_div_factor € [10°,10%].

final_div_factor’

Use p € [0.2,0.4] (start with 0.3). For SGD or AdamW [392], robust momentum bounds are
Mmax = 0.95, mpin =~ 0.85.

What each hyper-parameter controls

* Mmax (peak LR) — Exploration depth. Higher = bolder, noisier early steps (faster escape;
higher spike risk). Lower = safer but under-explores. Pick just before instability in the range
test.

* Nmin Via div_factor — Launch smoothness. Larger divisor (smaller start LR) = gentler
warm-up (useful for small batches/fragile nets). Smaller = quicker ramp, more early jitter.

* Nfinal Via final_div_factor — Endgame precision. Larger divisor (smaller end LR) =
finer polishing, longer tail. Smaller = finishes sooner, slightly higher floor.

* p (peak fraction) — Explore vs. refine budget. Larger p = more high-LR time (often modest
generalization gains; more instability). Smaller p = earlier refinement (safer for short/fragile
runs).

* Mmpin (momentum dip) — Peak control. Lowering loosens control at the LR peak (bolder,
riskier); raising tightens control (safer, less regularization).

* Mmax (late momentum) — 7ail damping. Higher smooths the anneal (fewer oscillations,
slower response); lower is snappier but jittery.

372 Chapter 10. Lecture 10: Training Neural Networks Il

Diagnostics: the LR range test

Run a short LR range test [575]: increase LR over a few epochs (linearly or exponentially), record
validation loss/accuracy versus LR, and read off a usable LR band. Select 1yax just before divergence
or where accuracy peaks; choose N, where the curve first improves meaningfully. This simple
diagnostic removes guesswork and enables OneCycle.

o ImageNet on AlexNet . Cifar10, Resnet-56; LR range
0.8 J
U I
0.2 il N
ool [T TR A
< VTHINITS
®
5019 £0.6
Z |min_Ir max_Ir <
g - 505
0.1 ¥
&
0.4
0.05 03 —Max Iter=5k
. —Max Iter=20k
Max Iter=100k
0.2
00005 001 0015 002 0025 005 0055 004 0045 0 0.5 1 15 2 25 3
Learning rate Learning Rate
(a) Typical learning rate range test result (b) Learning rate range test result with the
where there is a peak to indicate max_Ir. Resnet-56 architecture on Cifar-10.

Figure 10.8: LR range test diagnostics: (a) typical curve with a clear peak indicating Ny.x and a
shoulder for Nmin (b) ResNet-56 on CIFAR-10 shows a noisier curve that still reveals a practical LR
band. Source: [576].

Empirical picture: CIFAR-10 and ImageNet

On CIFAR-10 with ResNet-56, using the LR band in a single-cycle schedule yields pronounced
speedups and often higher accuracy. Panel (a) in Figure 10.9 contrasts a typical piecewise-constant
baseline (e.g., fixed low LR with scheduled drops) with a OneCycle policy that sweeps between
MNmin ~ 0.1 and Nmax =~ 3.0, reaching higher accuracy in far fewer iterations; panel (b) shows that
longer cycles (larger stepsize) generally improve final generalization by allowing broader exploration
before refinement.

Cifar10, Resnet-56

Cifar10, Resnet-56 CLR=0.1-3.0
T T

| [— 1 T T v ;i : r T
921% | 52.0% [y —
cEaly T e TRk |

| If\
s f | i
Y o J
[

W i T
o7l 0.8 i
éﬂo‘ U} 3 VW\/\\ ‘.Nu\ /\\fw
Y oY
Sl m“ i, W
Soa} ’M Eu:
03 ﬂ | 8o
2 LR=0.35 | 2
o) .
ol ; .) ‘ . , : o |
0 1 2 3 1 H 6 7 8 —Stepsize=1k
Tteration «10% 01 L L L n L L i
o 0 0.4 0.6 0.8 1 12 1.4 16 1.8
: ’ fterats v
(a) Comparison of test accuracies of super- teration L
convergence example to a typical (piecewise con- (b) Comparison of test accuracies of super-
stant) training regime. convergence for a range of stepsizes.

Figure 10.9: Super-convergence on CIFAR-10 with ResNet-56: (a) test accuracy of OneCycle versus
a piecewise-constant schedule (b) test accuracy across different cycle lengths (stepsizes). Source:
[576].

10.1 Learning Rate Schedules 373

These dynamics scale to ImageNet. Figure 10.10 compares standard training (blue) to a 1cycle
policy that displays super-convergence (red/yellow), illustrating that modern backbones (ResNet-
50, Inception-ResNet-v2) can train much faster—on the order of ~ 20 versus ~ 100 epochs in
representative setups—without loss in final accuracy.

Imagenet; Resnet 50; TBS=128 Inception-Resnet-v2; TBS=112
T T i -

[—Original; LR=0.1, WD=1e-4|
— leyele LR=001-1, WD=1¢-5 ork
leyele LR=0.1-1, WD=3e-6

= Original: LR=0.1, WD=1e-4|
lcycle LR=0.1-1, WD=3¢-6
3 lcycle LR=0.1-1. WD=1e-6
0 2 4 6 8 10 12

Iterations %10

(a) Resnet-50 (b) Inception-resnet-v2

Figure 10.10: Scaling to ImageNet: (a) ResNet-50 (b) Inception-ResNet-v2 trained with a standard
LR policy (blue) versus a 1cycle policy that exhibits super-convergence, reducing epochs substantially.
Source: [576].

Intuition and comparisons

Big picture. OneCycle makes the exploration—exploitation trade-off explicit: a short high—learning-
rate (LR) burst to search broadly, followed by a long low-LR anneal to refine. Momentum is coupled
inversely to LR (small m; when 1) is large; large m; when 1, is small) so the optimizer is agile during
exploration and well-damped during refinement. Heuristically, the effective SGD noise scale grows
like 17/(1 —m); OneCycle deliberately makes this large early (regularization, basin jumping) and
small late (precision).

How it differs from the schedules in § 10.1—and what this means in practice.

* Versus step decay (subsection 10.1.2). Difference: step uses abrupt, hand-chosen drops;
OneCycle is a single smooth rise—then—fall. Practice: fewer plateaus and less guesswork
about “drop epochs”, typically faster time-to-target accuracy when drops are not perfectly
tuned. Try: if migrating from step, pick p~0.3; if keeping step, place the largest drop near
t =~ pT to mimic the OneCycle peak.

* Versus cosine decay (subsection 10.1.3). Difference: cosine is smooth but strictly monotone;
OneCycle inserts a deliberate LR rise before a cosine-like tail. Practice: the rise acts as a
stronger regularizer, often reaching flatter minima sooner at the same epoch budget. Try: start
from your cosine baseline, switch to OneCycle with Nmax from the range test and p € [0.2,0.3];
add a very short warm-up if needed.

* Versus linear decay (subsection 10.1.4). Difference: linear steadily shrinks LR from the
start; OneCycle allocates a fixed high-LR window of length pT before decay. Practice: linear
under-spends time at large LR; OneCycle front-loads exploration then refines. 7ry: inject a
brief rise (p~0.2) or switch fully to OneCycle to reduce time-to-quality.

* Versus inverse-square-root (subsection 10.1.5). Difference: 1/+/t drops quickly early,
limiting time at high LR; OneCycle schedules that exploration window (e.g., p~0.3) and
then decays more aggressively to a tiny Mana. Practice: inverse—sqrt is a safe long-run
default for transformers; OneCycle can still help if you cap Nmax and keep p small. Try: for
attention-heavy models, use smaller 1.« and p=0.2; add a very short pre-warm-up if needed.

374 Chapter 10. Lecture 10: Training Neural Networks Il

* Versus constant LR (subsection 10.1.6). Difference: constant LR is flat and simple; OneCycle
adds a peak and a long anneal using four anchors (Nmin, Mmax, Nfinal, P)- Practice: constants
are great for debugging but need manual decay/early-stopping; OneCycle bakes in exploration
and finishing polish, usually reaching equal or better accuracy in fewer epochs. Try: after a
range test, set the three LRs via divisors and choose p.

* With adaptive optimizers / large models (subsection 10.1.7). Difference: OneCycle inverts
momentum relative to LR (for AdamW, interpret m, as 3;(¢)) to stabilize the LR peak and
damp the tail. Practice: works well with SGD+momentum and AdamW; attention layers and
BN statistics are typical sensitivity points near Nmax. 17y: cap Nmax lower than your CNN
default, set p~0.2, and consider a very short warm-up; if you see peak-time spikes, reduce
Nmax, INCrease mpy;, slightly, or shorten p.

When to use—and caveats
Where it shines. Use OneCycle when

* Compute / epochs are limited: you need near-peak accuracy in fewer epochs or shorter
wall-clock than step/cosine baselines.

* You want a strong baseline quickly: only the LR-range test is required to set max; the rest
follows from simple divisors and a single p (section 10.1.9).

* Standard supervised setups: CNNs and transformers trained with SGD + momentum or
AdamW on mid/large datasets, where an early regularization pulse and a long anneal are
beneficial.

* You can run an LR-range test: selecting Nmax empirically is part of the method.

Gray areas—use with care (why, and what to try).

* Very small or very noisy datasets. Why: the LR peak can over-regularize or destabilize. Try:
reduce Nmax by 20-50%; use p=0.2; or switch to cosine with a brief warm-up.

* Attention-heavy models (ViTs/LLMs). Why: large LR can perturb attention/normalization
scales. Try: cap Mmax below your CNN default; set p=0.2; optionally add a short pre—warm-up
(few hundred steps); raise my;, slightly for more control.

* Strong regularization stacks (heavy aug + large WD). Why: the peak adds noise on top of
existing regularizers, risking underfit. 7ry: keep WD fixed and lower Mnax; extend p only if
training loss remains smooth; prefer the cosine tail.

* Tight gradient clipping or tiny microbatches. Why: small clip norms nullify the intended
large steps at the peak. Try: relax clipping (e.g., clip ~ 1) or lower Npax; otherwise use a
monotone cosine schedule.

* BatchNorm drift near the peak. Why: high LR perturbs running means/variances. Try:
reduce TMmax; increase mpi, by 0.02-0.05; shorten p; consider freezing BN stats for a short
window around the peak if absolutely necessary.

Generally not a win (prefer other schedules).

* Already well-tuned long cosine. If your baseline already uses a long, smooth anneal with
strong results, OneCycle’s gains may be marginal. Alternative: keep cosine or inject a very
short initial ramp (small p) for a modest speedup.

* No LR-range test possible. If you cannot estimate Nmax (€.g., streaming/online constraints),
prefer a conservative cosine with warm-up.

* Extremely short runs. If p7° would be only a handful of steps, the peak is poorly resolved.
Alternative: use warm-up — cosine or linear decay.

10.1 Learning Rate Schedules 375

Rule of thumb. If uncertain, start with the recipe in section 10.1.9: range-test Mmax, St Nmin and
Niinal by divisors, choose p=0.3, and adjust only when you observe peak-time spikes (lower 1max /
raise mpy,, / shorten p) or late plateaus (smaller Mgy via larger final_div_factor).

Practical tuning guide
1. Pick the LR band (required). Run the LR-range test; set Nmax just before instability. Set
NMmin = Mmax/div_factor with div_factore [10,25] for stability (use [3, 10] if you want a
faster launch). Set Ngna = NMmax/final_div_factor with final_div_factore [103,10%.
2. Allocate time. Start with p=0.3. If the peak region is spiky, shorten to p=0.2; if validation
keeps improving with longer exploration, consider p=0.35-0.40.
3. Stabilize the peak (priority order).

(a) Reduce Npax by 10-20%.

(b) Increase mpi, by 0.02-0.05 (adds control at the peak).
(c) Increase div_factor (smaller Ny, for a gentler launch).
(d) Optionally shorten p by 0.05.

4. Polish the tail. If the final metric plateaus high, increase final_div_factor (smaller Ngpa).
If time-limited, accept a slightly larger ngnq for a faster finish.

5. Keep the rest steady. Use decoupled weight decay (AdamW/SGD+WD) held constant; avoid
very tight gradient clipping at the peak (clip & 1 is a common ceiling). Ensure the scheduler
steps once per optimizer update.

6. Transformer-specific tip. Map m;, to f;(r) for AdamW; prefer p=0.2 and a slightly smaller
Nmax; add a very short pre-warm-up if attention becomes unstable.

376 Chapter 10. Lecture 10: Training Neural Networks Il

Hyperparameter Selection

Choosing the right hyperparameters is a crucial step in training deep learning models. In this section,
we discuss different strategies for hyperparameter selection and practical methods to make the
process efficient.

Grid Search

A common approach is grid search, where we define a set of values for each hyperparameter and
evaluate all possible combinations. Typically, hyperparameters such as weight decay, learning rate,
and dropout probability are spaced log-linearly or linearly, depending on their nature. For example:

» Weight decay: [107#,1073,1072,107]

s Learning rate: [1074,1073,1072,107]

Given these choices, we have 4 x 4 = 16 configurations to evaluate. If sufficient computational
resources are available, all combinations can be tested in parallel. However, as the number of
hyperparameters increases, the search space grows exponentially, making grid search infeasible for a
large number of parameters.

Choosing Hyperparameters: Grid Search

Choose several values for each hyperparameter
(Often space choices log-linearly)

Example:
Weight decay: [1x104, 1x10-3, 1x102, 1x101]
Learning rate: [1x104, 1x103, 1x102, 1x101]

Evaluate all possible choices on this
hyperparameter grid

Justin Johnson Lecture 10 - 44 February 9, 2022

Figure 10.11: Grid search mechanism for hyperparameter tuning.

Random Search

It is counter-intuitive, but empirical evidence suggests that random search often outperforms grid
search in most scenarios by reaching better results faster. The study [39] explains why. The key
insight is that hyperparameters can be classified into important and unimportant ones:

* Important hyperparameters significantly affect model performance.

* Unimportant hyperparameters have little to no effect.

When we begin training, it is difficult to determine which hyperparameters fall into which
category. In grid search, every combination of hyperparameters is systematically evaluated, meaning
we sample the important parameters in a structured but inefficient manner.

10.2.3

10.2 Hyperparameter Selection

377

Grid Layout

® °
[J {] O g 5 g 5
Eg | £3
T e 2 E o 2 g
g g ° g e
= PY =
[s
o o ®) °® =)
[]
Important Important
Parameter Parameter

Hyperparameters: Random vs Grid Search

Random Layout

Bergstra and Bengio, “Random Search for Hyper-Parameter Optimization”, JMLR 2012

Justin Johnson Lecture 10 - 46 February 9, 2022

Figure 10.12: Comparison of grid search and random search strategies. The green distribution
over the horizontal axis represents the model performance based on the values of the important
hyperparameter, while the orange distribution over the vertical axis represents the performance of the
model based on the values of the unimportant one. As we can see, the yellow distribution is rather
flat, while the green one has a clear pick, corresponding to a parameter value that maximizes the
model’s performance. Random search provides better coverage of the important hyperparameters (as
it allows us to sample more values for each parameter in a fixed number of tries), and with it we
manage to sample the distribution near the pick, as we would like.

For example, in Figure 10.12, consider a scenario with two hyperparameters:
» The vertical axis (orange distribution) represents an unimportant parameter that does not
significantly impact accuracy.
» The horizontal axis (green distribution) represents an important parameter with a small sweet
spot near the middle, which yields the best accuracy.
Using grid search, each value of the important hyperparameter is evaluated for all values of the unim-
portant one. If we have a 3 x 3 grid, we get only three different values for the important parameter,
potentially missing the peak of the green distribution. Since grid search samples systematically,
many trials will be wasted on evaluating different values of the unimportant parameter without
gathering enough information about the critical one.
In contrast, random search selects hyperparameters independently, meaning more trials sample
different values of the important parameter. This increases the likelihood of hitting the peak region
of the green curve at least once, thereby selecting a better-performing model configuration.

Steps for Hyperparameter Tuning

Hyperparameter tuning is one of the most computationally expensive yet crucial stages in model
optimization. When resources are limited, adopting a structured, iterative strategy prevents wasted
effort on uninformative configurations. The following process combines diagnostic sanity checks
with a principled exploration of the hyperparameter space.

378 Chapter 10. Lecture 10: Training Neural Networks Il

Importantly, while grid search systematically evaluates all parameter combinations, research
has shown that random search is typically far more effective in high-dimensional settings [40].
Grid search wastes trials exploring unimportant dimensions uniformly, whereas random sampling
explores a wider variety of promising configurations, often finding strong solutions several times
faster.

1. Check the Initial Loss: Sanity Verification
Before extensive training, verify that the model behaves sensibly at initialization. This early
diagnostic catches systemic bugs or poor scaling before any tuning begins.
* Disable weight decay, dropout, and data augmentation to isolate core dynamics.
* For a softmax classifier with C classes, the expected initial cross-entropy loss is roughly
logC.
* Significant deviations usually signal issues such as:
— Mis-scaled input data (e.g., missing normalization).
— Mis-specified loss function or bug in label encoding.
— Improper initialization (e.g., exploding or vanishing activations).
2. Overfit a Tiny Dataset: Model Capacity Check
Test whether the model can memorize a very small dataset (5—10 minibatches). This step
confirms that the model and optimizer can learn under ideal conditions.
* Train with all regularization disabled.
* The model should reach near-100% training accuracy quickly.
* Failure to overfit indicates deeper issues:
— Learning rate too low or initialization too weak.
— Architecture too shallow or underparameterized.
— Data pipeline or loss computation errors.
3. Find a Viable Learning Rate: Sensitivity Test
Use the full dataset with minimal regularization to determine a good learning rate (LR) range.
« Start with a small L2 penalty (e.g., 107%).
* Try a logarithmic sweep: 10~',1072,1073,10~%.
* The ideal LR produces a steady, exponential loss decrease in the first 100-200 iterations.
* Too high — divergence or NaNs; too low — stagnant loss.
A good learning rate is the foundation of every successful tuning cycle.
4. Run a Coarse Random Search: Global Exploration
Instead of testing every grid combination, sample hyperparameters randomly from broad
distributions for short runs (e.g., 3—5 epochs each).
* Random search covers more unique configurations and avoids wasting trials on irrelevant
parameter combinations.
* Example sampling ranges:
— Learning rate: log-uniform in [10~4, 107'].
— Weight decay: log-uniform in [107°, 1073].
— Dropout: uniform in [0, 0.6].
— Batch size: categorical in {32, 64, 128} (depending on hardware).
* Run 10-20 trials and rank by validation performance.
This step identifies promising regions of the search space without expensive exhaustive
evaluation.

10.2 Hyperparameter Selection 379

5. Refine the Search: Local Exploitation
Focus the next round of random search within narrower ranges around the best-performing
configurations.
« For example, if good learning rates cluster near 2 x 1073, search between 103 and
5x1073.
* Gradually add regularization (dropout, weight decay) or data augmentation if overfitting
appears.
* Train longer (10-30 epochs) to evaluate generalization more accurately.
This step transitions from exploration to fine-tuning, exploiting the discovered “sweet spot.”
6. Analyze Learning Curves: Interpret Behavior
Plot and inspect training/validation loss and accuracy to understand optimization dynamics.
* Validation loss decreasing — under-training; train longer.
* Large train—val gap — overfitting; increase regularization.
* Both high and flat — underfitting; try a larger model or higher LR.
Quantitative metrics are essential, but qualitative curve inspection often reveals misconfigura-
tions faster than automated heuristics.
7. Iterate and Converge: Continuous Refinement
Hyperparameter tuning is inherently iterative. Use results from Step 6 to guide further random
sampling or to introduce advanced techniques:
* Apply learning rate schedules (e.g., cosine decay, OneCycle).
* Use early stopping to save compute on poor configurations.
» Combine the top 3-5 tuned models in an ensemble for improved robustness.
Continue refining until performance saturates or computational limits are reached.

This structured pipeline—diagnose, sanity-check, explore broadly via random sampling, then refine
and interpret—turns hyperparameter tuning from blind trial-and-error into an informed, iterative
optimization process. In practice, random search achieves competitive results with an order of
magnitude fewer trials than grid search, especially when parameters interact nonlinearly.

Interpreting Learning Curves

Analyzing learning curves provides valuable insights into model performance. Some common
learning curve patterns and their implications are:
* Very Flat at the Beginning, Then a Sharp Drop: This typically indicates poor initialization,
as the model fails to make enough progress at the start of training.
— A likely solution is to reinitialize the weights using a more suitable initialization method
(e.g., Xavier or He initialization).
— If the loss remains stagnant, check if the learning rate is too low.

380 Chapter 10. Lecture 10: Training Neural Networks Il

Loss
Bad initialization a prime suspect

time

Justin Johnson Lecture 10 - 56 February 9, 2022

Figure 10.13: A learning curve that is very flat at the beginning and then drops sharply, indicating
poor initialization.

* Plateau After Initial Progress: If the loss decreases at first but then flattens out, the model
may have reached a suboptimal local minimum.
— Introducing learning rate decay (e.g., step decay, cosine decay, or inverse square root
decay) at the right point can help the model escape the plateau.
— Increasing model complexity (e.g., adding more layers or neurons) might be necessary.
— Increasing weight decay or using a more sophisticated optimization method could be
useful if we are stuck in this state.

Loss
Loss plateaus: Try learning
/ rate decay

/
/

/

/
/
/
/
J/
time
Justin Johnson Lecture 10 - 57 February 9, 2022

Figure 10.14: Learning curve plateauing, indicating the need for learning rate decay or weight decay
tuning.

» Step Decay Causing Stagnation: If a sharp drop in the learning rate is applied too early, the
loss may stop improving.

10.2 Hyperparameter Selection 381

— The learning rate should ideally be reduced gradually rather than abruptly.
— Implementing adaptive decay schedules based on validation loss can prevent premature

stagnation.
Loss
Learning rate step decay Loss was still going down when
learning rate dropped, you
decayed too early!
time
Justin Johnson Lecture 10 - 58 February 9, 2022

Figure 10.15: Step decay applied too early, leading to stagnation. Adjusting the decay timing may
help.

* Continued Accuracy Growth: If both training and validation accuracy continue increasing,
training should be extended.

Accuracy Accuracy st.|I| going up, you
need to train longer
Train
time
Justin Johnson Lecture 10 - 59 February 9, 2022

Figure 10.16: Accuracy still increasing, suggesting longer training is needed.

* Large Train-Validation Gap (Overfitting): If training accuracy keeps increasing while
validation accuracy plateaus or drops, overfitting is likely occurring.
— Solutions include increasing regularization, expanding the dataset, or simplifying the
model.

382 Chapter 10. Lecture 10: Training Neural Networks Il

Accuracy Huge train / val gap means
overfitting! Increase regularization,
get more data
Train
time
Justin Johnson Lecture 10 - 60 February 9, 2022

Figure 10.17: Train-validation accuracy gap, indicating overfitting. Regularization techniques may
help.

* Train and Validation Accuracy Increasing Together (Underfitting): If both curves are
increasing but are gap between the train and val accuracy is much lower than expected, the
model might be underfitting.

— Possible solutions include increasing model capacity, training for longer, or reducing
excessive regularization.

Accuracy No or small gap between train / val
means underfitting: train longer, use
a bigger model, maybe higher LR
Train
time
Justin Johnson Lecture 10 - 61 February 9, 2022

Figure 10.18: Underfitting: train and validation accuracy increasing together but at a low level.
Model capacity should be increased.

Beyond loss and accuracy curves, tracking the weight update-to-weight magnitude ratio is
useful for diagnosing training stability:

* A ratio around 0.001 is typically healthy.

¢ If the ratio is too high, learning might be unstable.

10.2 Hyperparameter Selection 383

* If the ratio is too low, learning might be too slow, requiring a learning rate adjustment.
Track ratio of weight update / weight magnitude

assume parameter vector W and its gradient vector dw
param_scale = np.linalg.norm(W.ravel())

update = -learning_rate*dW # simple SGD update

update scale = np.linalg.norm(update.ravel())

W += update # the actual update

print update_scale / param_scale # want ~le-3

ratio between the updates and values: ~ 0.0002 / 0.02 = 0.01 (about okay)
want this to be somewhere around 0.001 or so

Justin Johnson Lecture 10 - 65 February 9, 2022

Figure 10.19: Monitoring weight update to weight magnitude ratio, an important stability metric
during training.

10.2.5

384 Chapter 10. Lecture 10: Training Neural Networks Il

When training multiple models in parallel or sequentially (as seen in Step 6), analyzing different
learning curves helps guide further hyperparameter adjustments. Prior to modern visualization tools
like TensorBoard, interpreting learning progress was challenging. Today, tools such as Wandb,
ML flow, and Comet enable real-time logging and comparison of models, making hyperparameter
tuning more efficient. By leveraging these insights, we can iteratively refine our model selection
process and improve generalization to unseen data.

Model Ensembles and Averaging Techniques

Model ensembling is a widely used technique that can provide an additional 1-2% performance
boost compared to using a single model, regardless of architecture, dataset, or task. The core idea
is to train multiple independent models and, at test time, aggregate their outputs to achieve better
generalization and robustness.

For classification tasks, an effective ensembling method is to average the probability distributions
predicted by different models and then select the class with the highest average probability:

1 N
y = —) P 10.7
y=argmax ; >(y|x) (10.7)

where N is the number of models in the ensemble, and P;(y|x) is the probability distribution predicted
by the i-th model.

While ensembling multiple independently trained models is the most common approach, an
interesting variation involves leveraging a cyclic learning rate schedule to generate multiple
checkpoints from a single training run. This approach, while not mainstream, has been observed to
yield performance gains without requiring us to train different unrelated models. Instead of training
multiple models separately, we save several checkpoints from different training epochs (using cyclic
learning rate scheduling) and ensemble their predictions at test time.

Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple
snapshots of a single model during training!

Cifar10 (L=100,k=24, B=300 epochs)

10!

054 Single Model A] Snapshot Ensemble A\ 10°
04| Standard LR Schedule /) o4 Cyclic LR Schedule [\
034 034 0 2
S 10"
02 02 el
014 6 014 .) £
o ol d q 3 107
=}
74 .
02 NN 2 r\. N 10 | \
N ‘m | v | o | i | v |
5 5 1 2 e 1T s
2l 2 F B YR = F . 104 T T R N
50 2 _— s 50 . =) 0 50 100 150 200 250 300
P " P "
o % 0~ % Epochs
2~ " P —
Cyclic learning rate schedules
Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016 .
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017 can make this work even better!
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.
Justin Johnson Lecture 10 - 68 February 9, 2022

Figure 10.20: Visualization of model ensemble using different checkpoints from a single model
trained with a cyclic learning rate schedule.

10.2.6

10.3

10.3 Transfer Learning 385

Exponential Moving Average (EMA) and Polyak Averaging

In large-scale generative models and other deep learning applications, researchers sometimes use
Polyak averaging [484], which maintains a moving average of the model parameters over training
iterations. Instead of using the final model weights from the last iteration, the model employs an
exponential moving average (EMA) of the weights for evaluation:

Oerma = A Ogpa + (1 — a)et (10.8)

where 6; are the model parameters at iteration ¢, and o is a smoothing coefficient close to 1 (e.g.,
0.999).

Using EMA helps smooth out loss fluctuations and reduces variance in predictions, improving
robustness to noise. This technique is conceptually similar to Batch Normalization [254], but instead
of maintaining moving averages of activation statistics, EMA applies to model weights.

Model Ensembles: Tips and Tricks

Instead of using actual parameter vector, keep a moving
average of the parameter vector and use that at test time
(Polyak averaging)

True:
data batch = dataset.sample data batch()
loss = network.forward(data batch)
dx = network.backward()

x += - learning rate * dx
x_test = 0.995*%x_test + 0.005*Xx

Polyak and Juditsky, “Acceleration of stochastic approximation by averaging”, SIAM Journal on Control and Optimization, 1992.
Karras et al, “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018
Brock et al, “Large Scale GAN Training for High Fidelity Natural Image Synthesis”, ICLR 2019

Justin Johnson Lecture 10 - 69 February 9, 2022

Figure 10.21: Visualization of Polyak averaging, showing how model weights are updated via an
exponential moving average to reduce noise and stabilize training.

Transfer Learning

There is a common myth that training a deep convolutional neural network (CNN) requires an
extremely large dataset to achieve good performance. However, this is not necessarily true if we
leverage transfer learning. Transfer learning has become a fundamental part of modern computer
vision research, allowing models trained on large datasets like ImageNet to generalize well to new
tasks with significantly smaller datasets.

The key idea behind transfer learning is straightforward:

Train a CNN on a large dataset such as ImageNet.

Remove the last layer(s), which are specific to the original dataset.

Freeze the remaining layers and use them as a feature extractor.

Train a new classifier (e.g., logistic regression, SVM, or a shallow neural network) on top of
the extracted features.

B

386 Chapter 10. Lecture 10: Training Neural Networks Il

This concept is applicable not only to CNNs but also to other architectures like Transformers,
making it highly versatile across various deep learning domains. It enables impressive performance
even on datasets with limited training samples.

One compelling example of the impact of transfer learning can be observed in the classification
performance on the Caltech-101 dataset. The previous state-of-the-art methods (before deep learn-
ing, shown in red) performed significantly worse compared to deep learning-based approaches. By
using AlexNet, pretrained on ImageNet, and applying a simple classifier such as logistic regression
(blue) or an SVM (green) on top of the learned feature representations, performance improved
dramatically—even with limited training data.

Transfer Learning with CNNs

1. Train on ImageNet ~ 2.Use CNN as a

e feature extractor Classification on Caltech-101
| s | 1
res | Remove
o
MaxPool MaxPool last layer 293
Conv-512 Conv-512 ©
Conv-512 Conv-512 (2
MaxPool MaxPool g 06
Conv-512 Conv-512 oy
Conv-512 Conv-512 g 04
MaxPool MaxPool > Freeze 8 E 3
Conv-256 Conv256 Z ‘é —+— LogReg DeCAF6 w/ Dropout
o256 o256 these g 02 SVM DeCAF6 w/ Dropout
MaxPool MaxPool = —+— Yang et al. (2009)
Conv-128 Conv-128 0
Conv-128 Conv-128 0 5 ’1\‘0 T1$ Zg 25 30 3B
E— — um Train per Category
Conv-64 Conv-64
Conv-64 Conv-64 j
onshue et 1, "DeCAF: A Desp Convoltons Actaton Festure fo Generic iyl Recagtion’, ML 2014
Justin Johnson Lecture 10 - 74 February 9, 2022

Figure 10.22: Visualization of the transfer learning process and its impact on the Caltech-101 dataset,
which is relatively small compared to ImageNet.

Transfer Learning with CNNs

1. Train on ImageNet 2. UseCNNasa

feature extractor

Image Classification
MaxPool MaxPool 95 89.5 g9 91.4
Conv-512 Conv-512 90 86.8
Conv-512 Conv-512 85 20.7 ‘
MaxPool MaxPool 80 77.2 0y

- ¥ 73.9 .

Convs12 Conv-512 75711 69.970.8 N
Conv-512 Conv-512 70 | 69 -
MaxPool MaxPool 65 ‘ 64 61.8
Conv-256 Conv-256 60 ‘ 5874 56.8
Conv-256 Conv-256 55 ‘ 53.3
MaxPool MaxPool 50 || || ||
Conv-128 Conv-128 R . .
Convi28 s Objects Scenes Birds Flowers Human Object
]] Attriburtes Attributes
Conv 61 Comess m Prior State of the art m CNN + SVM m CNN + Augmentation + SVM
Conv-64 Conv-64

Razavian et a, “CNN Features Off-the-Shlf: An Astounding Baseline for Recognition”, CVPR Workshops 2014

Justin Johnson Lecture 10 - 77 February 9, 2022

Figure 10.23: Transfer learning outperforms dataset-specific solutions across multiple classification
tasks (objects, scenes, birds, flowers, human attributes, etc.).

10.3 Transfer Learning 387

The transfer learning approach is effective across a wide range of image classification tasks.
This simple fine-tuning strategy significantly outperforms tailored solutions designed for specific
datasets, as demonstrated across multiple datasets, including object recognition, scene classification,
fine-grained tasks such as bird and flower classification, and human attribute recognition 10.23.

Transfer learning has also demonstrated its effectiveness in image retrieval tasks. By applying
simple nearest-neighbor search on top of the extracted CNN features, deep learning-based methods
outperformed previous solutions in tasks such as Paris Buildings, Oxford Buildings, etc.

Transfer Learning with CNNs

1. Train on ImageNet 2.UseCNNasa

T feature extractor
e | Image Retrieval: Nearest-Neighbor
MaxPool MaxPool
Conv-512 Conv-512 100
Conv-512 Conv-512 90
MaxPool MaxPool 80
Conv-512 Conv-512
Conv-512 Conv-512 70
MaxPool MaxPool 60
Conv-256 Conv-256 50 45 4
Conv-256 Conv-256
40
MaxPool MaxPool
Conv-128 Conv-128 30
conv126) EoE28 Paris Oxford Scupltures Scenes Object
MaxBool MaxPool Buildings Buildings Instance
Conv-64 Conv-64 . .
Conv-64 Coneel M Prior State of the art ® CNN +SVM m CNN + Augmentation + SVM
Razavian e a, “CNN Features Of-the-Shelf; An Astounding Baseline for Recognition”, CVPR Workshops 2014
Justin Johnson Lecture 10 - 78 February 9, 2022

Figure 10.24: Transfer learning applied to image retrieval tasks, surpassing tailored solutions for
tasks like Paris Buildings, Oxford Buildings, and Sculpture retrieval.

For larger datasets, a more advanced transfer learning approach, known as fine-tuning, can
yield even better results.

Transfer Learning with CNNs

3. Bigger dataset:
1. Train on Imagenet 2. UseCNN as a

Fine-Tuning

feature extractor Continue training
D
Remove CNN for new task!
MaxPool MaxPool |last layer MaxPool o
Conv-512 Conv-512 y Conv-512 Some trICks'
Conv-512 Conv-512 Conv-512 - Train with feature extraction
R R axeosl first before fine-tuning
Conv-512 Conv-512 Conv-512 .
— e s || - Lower the learning rate: use
] > Freeze T ~1/10 of LR used in original
Conv-256 Conv-256 Conv-256 t rainin g
— conease these 2| Sometimes freeze lower
MaxPool MaxPool MaxPool .
Conv-128 Conv-128 Conv-128 layers to save computation
y p
Eomsi2s Com ;128 o128} - Train with BatchNorm in
MaxPool MaxPool MaxPool “ ”
Conv-64 Conv-64 Conv-64 te St mo d €
Conv-64 Conv-64 Conv-64
Justin Johnson Lecture 10 - 80 February 9, 2022

Figure 10.25: Fine-tuning a pretrained model: freezing early layers, training a classifier, then
gradually unfreezing later layers while lowering the learning rate.

388 Chapter 10. Lecture 10: Training Neural Networks Il

Rather than freezing all layers except the last, we can allow some of the later layers to continue
training while keeping the earlier layers fixed. The reasoning behind this approach is:
* Early layers learn general low-level features (edges, textures) that remain useful across datasets.
 Later layers capture more fine-grained details that can be adapted to the new task.
To fine-tune effectively, we typically:
* Train a classifier on top of the CNN while keeping the lower layers frozen.
* Once the classifier is trained, gradually unfreeze higher layers and train with a lower learning
rate (typically ~1/10 of the original learning rate).
* Optionally, freeze early layers entirely while fine-tuning only the last few layers.
Fine-tuning has been shown to provide a substantial performance boost over feature extraction
alone. For example, object detection on the VOC 2007 dataset improved from 44.7% to 54.2%,
while performance on ILSVRC 2013 increased from 24.1% to 29.7% when fine-tuning was applied.

Transfer Learning with CNNs

3. Bigger dataset:
1. Train on Imagenet ~ 2.UseCNNasa g8

feat tract Fine-Tuning
(GG €ature extractor Continue training
[roamss | \ —
Crams | Remove CNN for new task!
MaxPool MaxPool last | ayer MaxPool
Conv-512 Conv-512 Conv-512 . .
convsiz convsiz Object Detection
MaxPool MaxPool MaxPool 60 54.2
Conv-512 Conv-512 Conv-512 [
Conv-512 Conv-512 Conv-512 50 44 7 ‘
MaxPool MaxPool > F reeze MaxPool 40
Conv-256 Conv-256 Conv-256 29.7
Conv-256 Conv-256 these Conv-256 30 ‘ 24.1
MaxPool MaxPool MaxPool 20
Conv-128 Conv-128 Conv-128 ‘
Conv-128 Conv-128 Conv-128 10 ‘
MaxPool MaxPool MaxPool 0
Conv-64 Conv-64 Conv-64 VOC 2007 ILSVRC 2013
— — j —_— M Feature extraction M Fine Tuning
Justin Johnson Lecture 10 - 81 February 9, 2022

Figure 10.26: Fine-tuning provides significant performance improvements on multiple object detec-
tion tasks (VOC 2007 and ILSVRC 2013).

Typically, models chosen for transfer learning are those that perform well on ImageNet. Over
the years, simply switching to better pretrained models on ImageNet has significantly improved
downstream tasks, such as object detection on COCO.

10.3.1

10.3 Transfer Learning 389

Transfer Learning with CNNs: Architecture Matters!

Object Detection on COCO

50 Switching to a larger, better-performing architecture on 46
45 ImageNet (each time), led to a dramatic improvement in 3 9
40 performance on the COCO object detection challenge, 3 6
35 without changing anything else. 29
30
25 19
20 15
15
10 5
5
o 1IN
DPM Fast R-CNN Fast R-CNN | |Faster R-CNN Faster R-CNN| Faster R-CNN Mask R-CNN
(Pre DL) (AlexNet) (VGG-16) (VGG-16) (ResNet-50) | FPN (ResNet- FPN (ResNeXt-
101) 152)
Ross Girshick, “The Generalized R-CNN Framework for Object Detection”, ICCV 2017 Tutorial on Instance-Level Visual Recognition
Justin Johnson Lecture 10 - 83 February 9, 2022

Figure 10.27: Advancements in ImageNet models over the years have led to significant improvements
in object detection performance on COCO.

Transfer learning remains one of the most powerful techniques in deep learning, enabling high-
performance models even in data-scarce scenarios and reducing the need for expensive training from
scratch. By utilizing pretrained models and fine-tuning them effectively, researchers and practitioners
can achieve state-of-the-art results across a wide variety of vision tasks.

How to Perform Transfer Learning with CNNs?

While transfer learning is a powerful technique, the question remains: how should we apply it
effectively when working with CNNs? The optimal transfer learning strategy depends on two main
factors:

* Similarity to ImageNet: How closely the new dataset resembles ImageNet in terms of image

distribution and task.

» Dataset Size: Whether the dataset is large or small.

A practical guideline for choosing a transfer learning strategy is summarized in the following
2x2 table:

1. Small dataset, similar to ImageNet: Use a linear classifier on top of the frozen CNN
features.

2. Large dataset, similar to ImageNet: Fine-tune only a few of the later layers while keeping
early layers frozen.

3. Large dataset, different from ImageNet: Fine-tune a larger portion of the CNN, allowing it
to adapt to the new domain.

4. Small dataset, different from ImageNet: This is the most challenging scenario. One can
attempt either a linear classifier or fine-tuning, but success is not guaranteed.

390

Chapter 10. Lecture 10: Training Neural Networks Il

Transfer Learning with CNNs

% Dataset similar | Dataset very

to ImageNet different from
MaxPool
Conv-512 ImageNet
Conv-512
Maxpool More specific very little | Use Linear You're in trouble...
S P data (10s | Classifier on Try linear
WaxPool to 100s) top layer classifier from
Conv-256 different stages
Conv 256 More generic
MaxPool
Conv-128 . . .
—— / quite alot | Finetune a Finetune a larger
WaxPool of data few layers number
oo (100s to of layers

1000s)

Justin Johnson Lecture 10 - 87 February 9, 2022

Figure 10.28: Guidelines for performing transfer learning based on dataset size and similarity to
ImageNet.

10.3.2 Transfer Learning Beyond Classification

Transfer learning is pervasive—it has become the norm rather than the exception. Beyond standard
image classification, it is widely used in tasks such as object detection and image captioning.
Researchers even experiment with pretraining different parts of a model on separate datasets before
integrating them into a unified model, fine-tuning it for specific tasks.

One such example is presented in [801], where transfer learning is applied in a multi-stage
manner:

Transfer learning is pervasive!
It’s the norm, not the exception

seq2seq

Unified Vision-Language Pre-training el ”‘(‘:‘;‘Z‘:s:“

1. Train CNN on ImageNet
5 = 2. Fine-Tune (1) for object detection

ntid Encader Dcodr on Visual Genome

W e Train BERT language model on lots
of text

. Combine (2) and (3), train for joint
image / language modeling

. Fine-tune (5) for image
captioning, visual question
answering, etc.

e e 3.

% Cows on the high mountain pasture.
i @ 4

Agir with an upside-down umbrell, Aves

» Unified Encoder-Decoder

-

b,

Justin Johnson

Zhou et al, “Unified Vision-Language Pre-Training for Image Captioning and VQA”, arXiv 2019

Lecture 10 - 91 February 9, 2022

Figure 10.29: Multi-stage transfer learning applied to vision-language tasks [801].

1. Train a CNN on ImageNet for feature extraction.
2. Fine-tune the CNN on Visual Genome for object detection.

10.3.3

10.3 Transfer Learning 391

3. Train a BERT-based language model on large-scale text corpora.
4. Combine the fine-tuned CNN and BERT model for joint image-language modeling.
5. Fine-tune the resulting model for tasks such as image captioning and visual question answering

(VQA).

Does Transfer Learning Always Win?

While transfer learning is highly effective, recent research suggests that training from scratch can
sometimes be competitive. In [205], researchers examined whether ImageNet pretraining is necessary
for object detection and found that training from scratch can work well but requires approximately
three times the training time to match performance achieved by pretraining.

Despite this, pretraining followed by fine-tuning remains superior when datasets are small
(e.g., only tens of samples per class). This result is intuitive—having access to pretrained features
provides a strong starting point in cases where the available data is insufficient to learn meaningful
representations from scratch. Moreover, the efficiency of transfer learning makes it practically useful
even for large-scale datasets. Hence, it is always recommended to try transfer learning when we aim
to solve CV tasks.

Transfer learning is pervasive!
Some very recent results have questioned it

COCO object detection .
io My current view on transfer

0.0 e learning:
35.0 .
30.0 \ - Pretrain+finetune makes your
25.0) .
00 N training faster, so practically
150 \ very useful
10.0 - Training from scratch works well
5.0 once you have enough data
0.0
. 35k 106 1« - Lots of work left to be done
-@-Pretrain + Fine Tune Train From Scratch
He et al, "Rethinking ImageNet Pre-Training”, ICCV 2019
Justin Johnson Lecture 10 - 94 February 9, 2022

Figure 10.30: Comparison of training from scratch (orange) vs. pretraining + fine-tuning (blue) on
COCO object detection [205].

Ultimately, while collecting more data remains the best way to improve model performance, transfer
learning provides a practical, efficient, and effective solution for adapting pretrained models to new
tasks.

392 Chapter 10. Lecture 10: Training Neural Networks Il

1. Freezing Most of the Backbone
In most fine-tuning pipelines, the majority of the model—especially early and mid-level layers of a
pretrained network—is kept frozen to retain its general-purpose features. Only a subset of late-stage
layers or newly added modules (e.g., classification heads) are updated:
* Why freeze? To preserve learned representations from large-scale datasets (e.g., ImageNet,
CLIP) and prevent catastrophic forgetting when adapting to smaller datasets [231].
* Minimal regularization need: Since frozen parameters are not updated, there’s no need to
regularize them. Even in partially frozen setups (e.g., layer-wise learning rate decay), mild ¢,
or batch norm tuning may help—but only when the domain shift is significant.

2. Regularizing Small Trainable Heads: Caution With Dropout
When fine-tuning adds only a shallow classification head (e.g., a 1-2 layer MLP or linear probe),
strong regularization like dropout may be too aggressive:
* For shallow heads (1-2 layers): Dropout is rarely used unless the dataset is very small or
prone to label noise. Lighter £, weight decay is typically preferred [340].
* For deeper heads (3+ layers): Moderate dropout (e.g., 0.3-0.5) becomes more effective,
especially in low-data settings where overfitting risk increases.

3. Training From Scratch on Large Datasets
When training a network from scratch (e.g., ViTs or CNNs) on high-volume datasets like ImageNet-
21k or JFT:
* Large batches make BN optional: If batch size is large, the per-batch statistics become
stable, and some models even omit BN entirely [133, 770].
* Data abundance reduces overfitting risk: Regularization is still used, but it shifts from
aggressive £, penalties toward more gentle implicit regularizers such as data augmentations.

4. Implicit and Soft Regularization Prevail
In both fine-tuning and large-scale training, modern pipelines increasingly lean on:
* Data augmentation: mixup, CutMix [747], RandAugment [112] are now dominant forms of
regularization.
* Light weight decay or dropout: Rather than large-scale penalties, milder explicit regularizers
are combined with augmentation and pretraining.

5. Summary
In modern transfer learning workflows:
* Most regularization effort is applied to small newly-trained modules (e.g., MLPs).
* Dropout is more effective when deeper heads are trained (3+ layers), but is sometimes too
harsh for smaller heads.
* BN and ¢, decay are unnecessary for frozen layers, and are often minimal even in unfrozen
ones, if used at all.
* Augmentations and large pretraining data serve as primary generalization & regularization
tools in the fine-tuning and large datasets era.

