9.1 Introduction to Training Neural Networks

Starting this lecture, we have covered nearly all the essential components required to train neural
networks effectively. However, several finer details can significantly improve training efficiency,
allowing practitioners to train models like experts. This chapter, along with the following one, will
focus on these details to ensure a comprehensive understanding of practical deep learning techniques.
This discussion is especially crucial before introducing further advancements over ResNets and new
types of CNN architectures.

9.1.1 Categories of Practical Training Subjects

We can broadly classify the subjects related to training into three categories:
* One-Time Setup: Decisions made before starting the training process, including:
— Choice of activation functions
— Data preprocessing
— Weight initialization
— Regularization techniques
* Training Dynamics: Strategies employed during the training process, such as:
— Learning rate scheduling
— Large-batch training
— Hyperparameter optimization
* Post-Training Considerations: Techniques applied after training is complete:
— Model ensembling
— Transfer learning (e.g., reusing pretrained feature extractors while fine-tuning only the
task-specific layers)
This chapter will primarily focus on one-time setup, while the next chapter will cover training
dynamics and post-training considerations.
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Activation Functions

The presence of activation functions in a neural network is critical. Without them, the representational
power of the network collapses dramatically, reducing to a single linear transformation. This chapter
explores various activation functions, beginning with the historically significant but ultimately
ineffective sigmoid function.

Sigmoid Activation Function
One of the earliest activation functions used in neural networks was the sigmoid function, defined as:

1
o(x) = =

The sigmoid function is named for its characteristic ''S''-shaped curve. Historically, it was
widely used due to its probabilistic interpretation, where values range between [0, 1], suggesting the
presence or absence of a feature. Specifically:

* 0(x) =~ | = Feature is strongly present

* 0(x) = 0= Feature is absent

* o(x) represents an intermediate probability

Issues with the Sigmoid Function
Despite its intuitive probabilistic interpretation, the sigmoid function suffers from three critical issues

that make it unsuitable for modern deep learning:
1. Saturation and Vanishing Gradients: The sigmoid function has saturation regions where

gradients approach zero, significantly slowing down training. This issue occurs because the
derivative of the sigmoid function is:

o'(x) = o(x)(1-0o(x))
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Figure 9.1: Sigmoid function visualization, highlighting gradient behavior at x = —10,0, 10. Gradi-
ents are near zero at extreme values, causing vanishing gradients.
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Since o(x) asymptotically approaches O for large negative values and 1 for large positive
values, the derivative ¢’(x) tends toward zero as well. This means that when activations reach
extreme values, the network effectively stops learning due to near-zero gradients.
This effect compounds across layers in deep networks. Since gradient backpropagation
involves multiplying local gradients, the product of many small values leads to an exponentially
diminishing gradient, preventing effective weight updates in earlier layers.

2. Non Zero-Centered Outputs and Gradient Behavior: The sigmoid function produces only
positive outputs, o(x) € (0,1), leading to an imbalance in weight updates. Consider the
pre-activation computation at layer ¢:

n =Yoo (1) +0))
J

where:

. hl@ is the pre-activation output of the i-th neuron at layer /.

« w® and b(¥) are the weight matrix and bias vector at layer /.
Since o(x) is always positive, the gradient of the loss with respect to the weights at layer ¢
follows:

JL oL - (h(g,l))

o~ an® "\
i,j i

The key observation here is that all weight gradients % will have the same sign as the
Wi‘j
upstream gradient %, because G(hg-e_l) ) is strictly positive. This introduces a significant
issue:
* If the upstream gradient is positive, all weight updates will increase in the same direction.

* If the upstream gradient is negative, all weight updates will decrease in the same direction.

Consider what happens when lowed
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y gradient
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w® b® are the weights and bias of layer £ optimal w
vector

What can we say about the gradients on w)? Not that bad in practice:

Gradients on all w®® have the same Only true for a single example,
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Justin Johnson Lecture 10 - 19 February 6, 2022

Figure 9.2: Gradient updates when using sigmoid activation: all gradients with respect to the weights
have the same sign, leading to inefficient learning dynamics and potential oscillations.
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This behavior results in inefficient learning dynamics, where gradient descent updates are
constrained in their movement, leading to oscillations and suboptimal convergence.

While using mini-batch gradient descent alleviates this issue somewhat—since different
samples may introduce varying gradient directions, it remains an unnecessary limitation on
the optimization process.

3. Computational Cost: The sigmoid function requires computing an exponential function,
which is computationally expensive, particularly on CPUs. While when working with GPUs
this increase of computation is rather insignificant, as copying things onto the GPU to perform
the computation takes more time than this operation itself, the computational overhead remains
unnecessary compared to simpler alternatives such as the ReLLU function, which only requires
a thresholding operation.

Additionally, sigmoid’s computational inefficiency becomes more relevant when deploying
models on edge devices or low-power hardware where efficiency is critical and GPU is not
always at hand.

Among these issues, the vanishing gradient problem is the most critical, making sigmoid impracti-
cal for deep networks. The next section explores alternative activation functions that address these
challenges.

The Tanh Activation Function

A closely related alternative to the sigmoid function is the hyperbolic tangent (tanh) activation
function, defined as:

e —e™*

tanh (X) = W

Activation Functions: Tanh
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Figure 9.3: The tanh activation function compared to sigmoid. While tanh is zero-centered, it still
suffers from vanishing gradients in saturation regions.

Unlike sigmoid, which outputs values in the range (0, 1), tanh(x) squashes inputs to the range
(—1,1), making it zero-centered.
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This addresses one of the issues of sigmoid—the fact that its outputs are strictly positive—allowing
gradient updates to have both positive and negative directions, thereby reducing inefficient learning
dynamics.

However, despite its advantage over sigmoid in terms of zero-centering, tanh(x) still exhibits satura-
tion effects. In the extreme positive or negative regions (x > 0 or x < 0), tanh(x) asymptotically
approaches *1, causing its derivative to diminish:

tanh’(x) = 1 — tanh?(x)

Since tanh(x) approaches 1 or -1 in these regions, its derivative tends toward zero, leading to the
vanishing gradient problem. This issue remains a major limitation for deep networks.
Due to this problem, tanh(x) has also become an uncommon choice in modern deep learning
architectures. The next sections introduces activation functions that better preserve gradients,
enabling more stable training in deep networks.

Rectified Linear Units (ReLU) and Its Variants

The Rectified Linear Unit (ReLU) is a widely used activation function in modern deep learning
due to its simplicity and effectiveness. It is defined as:

f(x) = max(0,x)

ReLU has several advantages over sigmoid and tanh:

» Computational Efficiency: It is the cheapest activation function, requiring only a sign check.

* Non-Saturating in Positive Regime: Unlike sigmoid and tanh, ReL.U does not saturate for
positive inputs, avoiding vanishing gradients when x > 0.

» Faster Convergence: Empirical results suggest that ReLU converges significantly faster than
sigmoid or tanh (e.g., up to 6x faster in some cases).

However, ReLLU is not without its drawbacks.

Issues with ReLU
Despite its advantages, ReLU has several notable weaknesses that can impact training stability and
model performance:

1. Not Zero-Centered: Like sigmoid, ReLU outputs are strictly non-negative, leading to a
gradient imbalance issue. Since negative inputs always map to zero, weight gradients for
neurons processing only non-negative activations share the same sign, reducing the efficiency
of gradient updates.

2. The "Dead ReLU'" Problem: If a neuron consistently receives negative inputs, its activation
is always zero, and its gradient remains zero, effectively preventing any updates—this is
known as a "dead ReLU."
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Figure 9.4: ReLLU activation function and its failure cases. When inputs are negative, ReLU neurons
become inactive, leading to dead ReLLUs.

This problem is particularly prevalent when using high learning rates or poor weight initializa-
tion. If all training samples produce negative pre-activations for a neuron, it remains inactive
throughout training.

. Exploding Activation Variance: In deeper networks, ReLLU activations can cause an increase

in activation variance due to their unbounded positive outputs. This can lead to instability
during training, particularly when combined with high learning rates.

Mitigation Strategies for ReLU Issues

Several strategies exist to address these issues, some of which will be discussed in greater detail in
later sections:

* Proper Weight Initialization: Using He initialization [207] ensures that ReLLU neurons

receive diverse activations at the start of training, reducing the likelihood of dead neurons.
Lower Learning Rates with Batch Normalization: Applying batch normalization before or
after the activation function helps control activation variance and stabilizes gradient updates,
mitigating exploding activations.

* Alternative Activation Functions: Other activation functions such as Leaky ReLL.U, Paramet-

ric ReLU (PReLU), and Exponential Linear Unit (ELU) address some of ReLU’s limitations
by modifying how negative inputs are handled. We will explore these alternatives in a later
section.

While ReLLU remains a popular activation function due to its simplicity and computational efficiency,
understanding and addressing its limitations is crucial for designing stable and robust deep learning
architectures.
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Leaky ReLU and Parametric ReLU (PReLU)
A modification to ReLU, called Leaky ReLU, prevents neurons from completely dying by introduc-
ing a small negative slope for negative inputs:

Activation Functions: Leaky RelLU

Does not saturate
Computationally efficient
Converges much faster than
sigmoid/tanh in practice! (e.g. 6x)
will not “die”.
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f(x) = max(ax, x) f(x) = max(ax, x)
a is a hyperparameter, « is learned via backprop
oftena = 0.1
He et al, “Delving Deep into Rectifiers: Surpassing Human-
Maas et al, “Rectifier Nonlinearities Improve Neural Network Acoustic Models”, ICML 2013 Level Performance on ImageNet Cl ication”, ICCV 2015
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Figure 9.5: Parametric ReLU (PReLLU) and Leaky ReLLU. PReLU generalizes Leaky ReLU by
making « a learnable parameter.

f(x) = max(0.01x,x) This variant ensures that neurons never entirely deactivate, preserving
gradient flow while maintaining computational efficiency. A further improvement, called Parametric
ReL.U (PReLU) [207], makes the negative slope & a learnable parameter:

f(x) = max(ox,x)

This means that during training, & is updated alongside the other network parameters. It can be:

* A single shared o across all layers.

* A unique « per layer, learned independently.
While PReLLU is an improvement over standard ReL U, it introduces a non-differentiable point at
x = 0, making theoretical analysis more complex. However, in practice, this non-differentiability is
rarely an issue.

Exponential Linear Unit (ELU)
Exponential Linear Units (ELU) [108] aim to address both the zero-centered output issue and dead
ReLU problem. ELU is defined as:

f(x):{x’ x>0

o(e*—1), x<0
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Activation Functions: Exponential Linear Unit (ELU)
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Figure 9.6: ELU activation function. Unlike ReLLU, ELU allows small negative values for negative
inputs, which improves learning stability.

ELU has several advantages:

* Zero-Centered Outputs: Unlike ReLU, ELU allows negative activations, leading to a mean

output closer to zero. This reduces the gradient imbalance issue present in ReLU, where all
activations are strictly non-negative. Since the weight updates in gradient descent depend
on the activation sign, having outputs symmetrically distributed around zero helps avoid
directional bias in weight updates, leading to more stable and efficient learning.

No Dead Neurons: The negative exponential ensures that neurons always receive a nonzero
gradient, preventing dead neurons (a problem in ReL.U where negative inputs always map to
zero, leading to zero gradients). With ELU, even if a neuron’s input is negative, it will still
produce a small nonzero gradient due to the exponential term, allowing learning to continue.
Robustness to Noise: The negative saturation regime in ELU makes it more resistant to small
input perturbations compared to ReLLU. This is because for highly negative inputs, the ELU
function approaches a stable asymptotic value instead of continuing to decrease indefinitely.
As a result, small variations in input values within the negative region cause only minimal
changes in activation, reducing sensitivity to minor input noise and improving generalization.

The main drawback of ELU is its computational cost, as it requires computing e* for negative
values, making it more expensive than ReLLU on some hardware.

Scaled Exponential Linear Unit (SELU)

Building on the Exponential Linear Unit (ELU), the Scaled Exponential Linear Unit (SELU)
[298] was designed to produce self-normalizing neural networks—models whose activations
naturally converge toward zero mean and unit variance as signals propagate through layers. This
self-stabilizing behavior helps prevent the vanishing or exploding activations that commonly arise
when layer outputs drift in scale through deep compositions.

SELU introduces two fixed constants, & ~ 1.6733 and A ~ 1.0507, in its formulation:

X, x>0

SELU(x) —)L{ .
o(ef—1), x<0



9.2 Activation Functions 325

The positive branch (Ax) slightly amplifies activations to preserve variance, while the negative branch
(Aa(e* — 1)) pushes the mean back toward zero. Together, they form a feedback mechanism that
keeps the activation distribution close to equilibrium—acting like an internal “thermostat” for layer
statistics and sustaining healthy gradient flow by keeping neurons within their responsive range.

Self-Normalization Principle

The self-normalizing property arises from a fixed-point analysis of how the mean and variance evolve
through layers. Assuming approximately independent, zero-mean, unit-variance Gaussian inputs,
SELU was derived so that its expected output statistics satisfy

E[y] =0, Var(y)=1,

and small deviations from these values contract back toward equilibrium over depth. The constants ¢
and A were solved analytically to satisfy these fixed-point equations and verified via the Banach fixed-
point theorem, ensuring that even very deep feedforward networks maintain stable activation and
gradient magnitudes without explicit normalization layers such as Batch Normalization. Empirically,
this allows training hundreds of fully connected layers with minimal degradation.

Requirements and Practical Use
For SELU to exhibit true self-normalization, several conditions must hold:

« Initialization: Weights should follow LeCun normal initialization, ./4"(0, 1/n;,), matching
the fixed-point variance assumption.

* Architecture: The theory assumes fully connected, feedforward layers with approximately
independent activations. Correlated or skip-connected structures (e.g., CNNs, RNNs, or
ResNets) may violate these assumptions and weaken the effect.

* Regularization: Standard dropout disrupts mean and variance; AlphaDropout must be used
instead, which maintains SELU-compatible activation statistics.

Activation Functions: Scaled Exponential Linear Unit (SELU)
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Figure 9.7: SELU activation function. Unlike ELU, SELU has predefined o, A values that ensure
self-normalizing properties under certain conditions.
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Advantages and Limitations

SELU offers an elegant theoretical route to stable activations and consistent gradient flow without
normalization layers. However, its guarantees depend on strict conditions, and its exponential
term adds modest computational cost. In modern architectures, ReLU or GELU combined with
Batch Normalization provides comparable stability with fewer constraints. Nonetheless, for deep
fully connected networks trained under proper initialization and regularization, SELU remains a
theoretically grounded and practically effective choice.

Gaussian Error Linear Unit (GELU)

The Gaussian Error Linear Unit (GELU) is an activation function introduced by Hendrycks and
Gimpel [215], designed to provide smoother, more data-dependent activation compared to ReLLU.
Unlike standard piecewise linear activations, GELU applies a probabilistic approach, allowing
smoother transitions and improved gradient flow.

Definition
The GELU activation function is defined as:

GELU(x) = xP(X < x) =x- % (1 +erf <\%>> :

where erf(+) is the Gaussian error function.
This formulation can be interpreted as applying element-wise stochastic regularization, where
smaller values of x are more likely to be suppressed, while larger values pass through more freely.

Activation Functions: Gaussian Error Linear Unit (GELU)
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Figure 9.8: Visualization of GELU activation, highlighting its smoother transition compared to
ReLU and its probabilistic activation mechanism.
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For computational efficiency, GELU is often approximated as:

2
GELU(x) ~ 0.5x (1 -+ tanh (\/;(x+0-044715x3)>> .

This approximation is commonly used in deep learning frameworks to avoid directly computing
the error function, which can be expensive.

Advantages of GELU

* Smooth Activation Improves Gradient Flow Rather than a hard cutoff at zero, GELU
gradually suppresses negative inputs. This softer transition helps maintain stable gradients
throughout training, mitigating “dead neurons” seen in ReLUs.

* Adaptive, Data-Dependent Sparsity GELU provides a continuous relaxation of dropout:
smaller inputs are more likely to be dampened, while larger inputs pass largely intact. This
implicit stochasticity can enhance regularization and robustness, especially in noisy data
regimes.

* Richer Expressiveness Both ELU and GELU allow negative inputs to contribute to the output,
but they do so in different ways. ELU applies a fixed exponential decay to negative values,
causing them to saturate toward a constant (typically —) for very low inputs. In contrast,
GELU multiplies the input by a smooth probability factor, ®(x), derived from the Gaussian
cumulative distribution. This means that GELU scales negative inputs in a continuous and
data-dependent manner rather than compressing them to a fixed value. As a result, GELU can
preserve subtle variations in the negative range, offering a more nuanced transformation that
improves the network’s ability to model complex patterns.

* Empirical Performance Gains Studies report that models employing GELU frequently
converge faster and generalize better, notably in NLP tasks (BERT, GPT) and vision tasks
(ViT). This benefit is attributed to GELU’s smoother gradient flow and retention of meaningful
negative signals.

Comparisons with ReLU and ELU
* ReLU: Although ReL.U is computationally simpler, it “zeroes out” negative inputs entirely,
risking dead neurons and abrupt gradient cutoffs. In contrast, GELU keeps certain negative
inputs partially active, fostering more informative gradients.
* ELU: ELU reduces saturation for negative values by an exponential term, but still imposes a
fixed shape for negative activations. GELU instead adjusts activation magnitudes continuously
based on their magnitude, preserving a more natural, data-driven activation profile.

Computational Considerations

The primary drawback of GELU is its computational cost. The use of the erf(-) function introduces
additional complexity compared to simpler activations like ReLU. However, its empirical success
in large-scale models, particularly in NLP and vision tasks, often justifies the added computational
overhead.

In summary, GELU is a powerful activation function that enhances model expressiveness and
stability, particularly in architectures relying on self-attention mechanisms. Its widespread adoption
in modern deep learning models, including Transformers, highlights its practical advantages over
traditional activation functions.
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Enrichment 9.2.3: Swish: A Self-Gated Activation Function

Swish, introduced by [504], is a smooth, non-monotonic activation function defined as:

1

f(x):X‘G(BX):X'm

Swish

-5 -4 -3 -2 -1 0 1 2 3

Figure 9.9: Visualization of the Swish activation function for different values of 3. When 8 = 0, the
sigmoid component is constant at 0.5, making f(x) = x-0.5 a linear function. For high values of 3
(e.g., B = 10), the sigmoid approximates a binary step function (yielding near 0 for x < 0 and near 1
for x > 0), so f(x) behaves like ReLU. With the standard choice B = 1, Swish smoothly interpolates
between these two extremes, balancing linearity and nonlinearity for improved gradient flow and
model performance.

where o (fx) is the standard sigmoid function, and f3 is a parameter that controls the shape of
the activation. In the simplest case, = 1, resulting in:

X
C lt4e >

fx) =x-0(x)

Unlike ReLLU, Swish is self-gated, meaning the activation dynamically scales itself based on its
input. This property leads to several advantages in deep learning.

Advantages of Swish
Swish exhibits a combination of desirable properties that make it a strong alternative to ReLU-based
activations:
* Smooth Activation: Unlike ReL U, Swish is continuously differentiable, which helps maintain
stable gradient flow and improves optimization dynamics.
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* Non-Monotonicity: Swish does not strictly increase or decrease across its domain. This
allows it to capture more complex relationships in the data compared to monotonic functions
like ReLU, potentially enhancing feature learning.

* No Dead Neurons: Unlike ReLU, which can lead to permanently inactive neurons (when
weights drive activations below zero), Swish ensures that even negative values contribute to
learning, as o (x) never completely zeroes them out.

* Improved Expressiveness: The self-gating property allows the function to act as a smooth
interpolation between linear and non-linear behavior, adapting dynamically across different
network layers.

 State-of-the-Art Performance: Swish has been empirically shown to outperform ReL.U in
large-scale models like EfficientNet, where careful architecture optimization is crucial [600].

Disadvantages of Swish
Despite its strengths, Swish has some drawbacks:

* Higher Computational Cost: The sigmoid function o (x) requires computing an exponential,
making Swish computationally more expensive than ReLLU. This can be a limiting factor in
resource-constrained environments like mobile or edge devices.

* Lack of Widespread Adoption: Although Swish has shown improvements in performance,
ReLU remains dominant due to its simplicity and efficiency, particularly in standard architec-
tures.

* Sensitivity to 3: While 3 can be a learnable parameter, tuning it effectively across different
architectures is not always straightforward.

Comparison to Other Top-Tier Activations
Swish competes with other top-tier activation functions like GELU, ELU, and SELU. The following
comparisons highlight where Swish stands:

* Swish vs. GELU: Both are smooth and non-monotonic, making them superior to ReLU in
terms of expressiveness. GELU is particularly useful in Transformer models, while Swish has
been optimized for CNNs. Swish has a learnable component (), whereas GELU is entirely
data-driven.

» Swish vs. ELU: ELU is zero-centered and smooth, making it more stable than ReLLU. However,
it enforces a sharp exponential decay in the negative regime, while Swish allows a more gradual
transition. Swish generally performs better in deep networks, especially when 8 is optimized.

* Swish vs. SELU: SELU is explicitly designed for self-normalization and aims to remove the
need for BatchNorm. While SELU works well in fully connected architectures, Swish is more
versatile and better suited for CNNs and Transformers.

* Swish vs. ReLU: ReLLU remains the fastest and most commonly used activation function.
Swish generally outperforms ReL.U in deeper architectures, but the computational cost of the
sigmoid component makes ReLLU preferable in most applications.

Conclusion

Swish is a promising activation function that builds upon ReLU’s strengths while mitigating some of
its weaknesses. It has been particularly effective in CNNs such as EfficientNet and remains a viable
alternative for deep learning models. However, due to its increased computational cost and lack of
widespread adoption, ReLLU continues to dominate in many architectures. Nevertheless, as neural
networks become deeper and more complex, Swish presents a compelling option for researchers
seeking improved optimization and expressiveness.
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Choosing the Right Activation Function

The choice of activation function plays a crucial role in deep learning, impacting gradient flow,
convergence speed, and final performance. However, in most cases, ReLU is sufficient and a
reliable default choice.
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Figure 9.10: Performance comparison of different activation functions. Most modern activations,
such as Swish, GELU, ELU, and SELU, perform similarly to ReLU in practice [503].

General Guidelines for Choosing an Activation Function
Based on empirical findings, the following recommendations can guide activation function selection:
* ReLU is usually the best default choice: It is computationally efficient, simple to implement,
and provides strong performance across various architectures.
* Consider Leaky ReLU, ELU, SELU, GELU or Swish when seeking marginal gains: These
activations can help squeeze out small improvements, particularly in deeper networks.
* Avoid Sigmoid and Tanh: These functions cause vanishing gradients, leading to poor
optimization dynamics and slower convergence.
* Some recent architectures use GELU instead of ReLU, but the gains are minimal: GELU
is commonly found in Transformer-based models like BERT and GPT, but its improvements
over ReL.U are typically small.

Data Pre-Processing

Before feeding data into a neural network, it is crucial to perform pre-processing to make it more
suitable for efficient training. Proper pre-processing ensures that input features are well-behaved,
leading to improved optimization stability and faster convergence.

Why Pre-Processing Matters
Neural networks operate in high-dimensional spaces, and poorly scaled inputs can significantly
hinder learning. The key goals of pre-processing are:

* Centering the Data: Bringing the data closer to the origin by subtracting the mean.
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* Rescaling Features: Ensuring that all features have similar variance to prevent dominant
features from overpowering others during training.

Data Preprocessing

original data zero-centered data normalized data
y -]
7 B
X -= np.mean(X, axis = 0) X /= np.std(X, axis = 0)
(Assume X [NxD] is data matrix,
each example in a row)
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Figure 9.11: Visualization of data pre-processing. The red cloud represents raw input data, the green
cloud shows the effect of mean subtraction, and the blue cloud demonstrates the effect of feature
rescaling.

Without pre-processing, different input features may exist at vastly different scales, making
optimization challenging. By ensuring that inputs have a mean of zero and similar variances, gradient
updates become more consistent across all features.

Avoiding Poor Training Dynamics
Pre-processing mitigates unstable or inefficient training by keeping neuron inputs well-centered and
scaled. When inputs are biased to one side of zero or have widely varying magnitudes, activation
functions respond unevenly—causing gradients to become correlated or vanish. For instance, if all
inputs to a ReLU layer are positive, every neuron operates in its linear regime, and all weight gradients
share the same sign. This restricts the optimizer to move in a single direction, producing inefficient
zig-zag dynamics where updates oscillate rather than progress directly toward the optimum.
Centering inputs around zero introduces both positive and negative activations, allowing gradients
to vary in sign and direction. Scaling to unit variance keeps pre-activations within the responsive
range of nonlinearities (e.g., avoiding saturation in sigmoid or tanh), ensuring gradients remain
balanced and optimization proceeds smoothly.
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Figure 9.12: Unnormalized data can lead to unstable training dynamics: inefficient gradient updates.

Common Pre-Processing Techniques

For images, a widely used technique is Mean Subtraction and Standardization: Compute the
mean and standard deviation of pixel values across the training dataset, subtract the mean, and divide
by the standard deviation.

Less ideal but still very common pre-processing technique for images is simply dividing each
pixel value by 255 to keep them in the range [0, 1].Other data types, such as low-dimensional vectors,
may require more sophisticated transformations beyond simple mean subtraction and scaling. Two
common techniques are:

* Decorrelation: This process transforms the data so that its covariance matrix becomes
diagonal, meaning that the features become uncorrelated with each other. Many machine
learning algorithms, particularly those relying on linear operations, work more efficiently
when the input features are independent. Removing correlations between features can make
optimization more stable and improve convergence rates.

* Whitening: A further step beyond decorrelation, whitening transforms the data such that
its covariance matrix becomes the identity matrix. This means that not only are features
uncorrelated, but they also have unit variance. Whitening ensures that all features contribute
equally to learning, preventing some from dominating due to larger magnitudes. A common
way to achieve whitening is through ZCA (Zero-phase Component Analysis), a variant of
PCA that applies an orthogonal transformation to maintain the structure of the original data
while normalizing its covariance.

Why are these techniques less common for images? While decorrelation and whitening can
be beneficial in feature-based learning systems, they are rarely used in deep learning for image
data. This is because convolutional neural networks (CNNSs) inherently learn hierarchical feature
representations, making the manual decorrelation of input features less necessary. Additionally,
images exhibit strong local correlations (e.g., neighboring pixels tend to have similar intensities),
which CNNs are designed to exploit rather than eliminate. Whitening could disrupt these spatial
patterns, potentially harming the model’s ability to recognize meaningful structures.
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However, for structured datasets, tabular data, or domains like speech recognition, where input
features may exhibit high redundancy, applying decorrelation and whitening can significantly
improve model performance.

A fundamental tool in this domain is Principal Component Analysis (PCA), which helps in
both pre-processing and visualization of high-dimensional embeddings. PCA identifies the principal
axes of variation in the data, allowing us to decorrelate features and, if desired, apply whitening. A
good introduction to PCA can be found in this video by Steve Brunton.

Normalization for Robust Optimization

Another intuitive way to understand the benefits of normalization is by examining how it impacts the
learning process. When input data is unnormalized:

* The classification loss becomes highly sensitive to small changes in weight values.

* Optimization becomes difficult due to erratic updates.

Conversely, after normalization:

* Small changes in weight values produce more predictable adjustments.

* The learning process becomes more stable and easier to optimize.

Data Preprocessing

Before normalization: classification After normalization: less sensitive to
loss very sensitive to changes in small changes in weights; easier to
weight matrix; hard to optimize optimize
e A
A
e
e o\A A
A
A ° A
A
A
o o\A
A
o A
Justin Johnson Lecture 10 - 43 February 6, 2022

Figure 9.13: Visualizing the impact of normalization on optimization.

Maintaining Consistency During Inference

A critical point in pre-processing is ensuring that the same transformations applied during
training must be applied during inference. If the test data is not normalized in the same way as
the training data, the network will fail to generalize correctly.

Pre-Processing in Well-Known Architectures

Different deep learning architectures employ various pre-processing techniques:
* AlexNet: Subtracts the mean image computed across the dataset.
* VGG: Normalizes each color channel separately by subtracting the mean RGB value.
* ResNet: Normalizes pixel values using dataset-wide mean and standard deviation.


https://www.youtube.com/watch?v=fkf4IBRSeEc&ab_channel=SteveBrunton
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Weight Initialization

Choosing an appropriate weight initialization strategy is crucial for training deep neural networks
effectively. Poor weight initialization can lead to problems such as vanishing gradients, exploding
gradients, and symmetry issues, ultimately hindering optimization. In this section, we explore
different initialization techniques, highlighting their advantages and limitations.

Constant Initialization
A naive approach to weight initialization is to assign all weights the same constant value, such as
zero or one. While this may appear harmless, it fundamentally breaks the diversity required for
effective learning. Regardless of the chosen constant, this strategy leads to the symmetry problem:
all neurons in a layer compute identical outputs, receive identical gradients, and therefore evolve
identically. The network fails to learn diverse features, effectively collapsing each layer to a single
neuron.

There are two primary cases to consider: zero initialization and nonzero constant initialization.

Zero Initialization

Initializing all weights and biases to zero represents the most extreme form of the symmetry problem.
When every neuron in a layer begins with identical parameters, they compute the same outputs,
receive identical gradients, and update in exactly the same way—preventing any neuron from learning
a distinct feature. In effect, the entire layer collapses into a single neuron.

Forward Pass
If all weights and biases in a layer are initialized to zero, then for every neuron i:

4)=Ya’ - 0+0=0, 4 =g(0).
J

This means all neurons produce the same activation value, regardless of input. For activations where
g(0) =0, such as ReLU and tanh, every neuron outputs zero. For sigmoid, g(0) = 0.5, yielding a
constant activation across the entire layer.

Backward Pass and Gradient Collapse
The weight gradient for a given neuron is

0L A i ;
i) 5.0 'g/(zz()) 'agi)l'
oW, da,

Since all zl(i) and agi) are identical, the local derivative g’ (zl(i)) and the upstream gradient % are also
4q

identical across neurons. Consequently, all weights receive the same update:

AW o< g'(0) ).

For ReLU, g’(0) = 0, so all weight updates vanish completely:
22 _
ow,

The network cannot learn at all. Even for sigmoid, where g’(0) = 0.25, the gradients are nonzero but

identical across neurons, so symmetry persists—each neuron evolves identically and no specialization
occurs.

0.
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Intuitive View

Zero initialization is like asking every neuron to start with the same opinion and learn from identical
feedback: none will ever disagree or diverge. Without differences in their initial parameters, all
neurons in a layer respond the same way to every input and gradient, leaving the network incapable
of learning complex, varied representations.

Conclusion
Zero initialization causes both symmetry and gradient collapse:
* Neurons produce identical activations (a}i) = agk) for all i, k).
* Gradients vanish for ReLU/tanh or remain uniform for sigmoid.
* The network fails to break symmetry, effectively reducing each layer to a single unit.

Nonzero Constant Initialization
Even when all weights are initialized to a nonzero constant value, such as ¢ = 1, the symmetry
problem remains—though gradients no longer vanish, neurons still evolve identically.

Forward Pass
For any constant ¢ and bias d:

‘/Vl(l-,]) =c, b;’) =d.
Then each neuron’s pre-activation is identical:

o =Lalhetd
j

yielding the same activation al(i) = g(z;) for all i. Thus, every neuron processes inputs in the same

way, eliminating feature diversity.

Backward Pass
During backpropagation,

w5 ) g(4") ).

oW, da,
Since al(i) and g’ (zl(i)) are identical across neurons, all gradients are equal. The update step applies
uniformly to all weights:

Wl(i’j ) — Wl(i’j ) _ o - constant - agf)l.

The weights remain identical over time, and the layer continues to behave as a single neuron.

Summary
Whether initialized to zero or any other constant, all neurons in a layer start in perfect symmetry.
Since they receive identical gradients, they remain symmetric, preventing meaningful learning.

To avoid this collapse, symmetry must be broken through random initialization, where small
differences in initial weights allow neurons to learn distinct features. Randomized schemes such as
Xavier and He initialization achieve this by preserving activation variance while ensuring statistical
diversity—a topic explored next.
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Breaking Symmetry: Random Initialization

To prevent the symmetry problem, weights must be initialized with randomness. A simple approach
is to sample them from a uniform or normal distribution:

Wi’jNU(_\}ﬁ’\}ﬁ> or Wi’jNN(O,GZ),
where n is the number of inputs to the neuron (in case of FC networks, the number of neurons in
the previous layer). This ensures slight variations between neurons, allowing them to learn different
features.
However, naive random initialization is not sufficient. Without controlling variance, deep networks
may suffer from:
* Vanishing Gradients: Small weights lead to progressively smaller activations, causing
gradients to shrink during backpropagation.
* Exploding Gradients: Large weights amplify activations, leading to unstable updates and
divergence.
* Inefficient Optimization: Poor initialization can make optimization highly sensitive to
learning rate selection.
These issues arise because errors accumulate across layers, affecting gradient flow and optimization
stability.

Variance-Based Initialization: Ensuring Stable Information Flow

In deep networks, information must flow through many layers during both the forward and backward
passes. If the magnitude of activations or gradients changes dramatically across layers, learning
becomes unstable: some layers dominate while others effectively stop learning. Variance-based
initialization aims to prevent this by designing weight distributions that keep the scale of signals
statistically consistent throughout the network.

Key Requirements for Stable Propagation
For stable learning, we want the variance of both forward activations and backward gradients to
remain roughly constant across layers:

d
VI, Var[z!] ~ Var[Z ], VI, Var [} ~ Var [8

Here:
o 7 =W!a'~! + b denotes the pre-activation at layer [, before applying the nonlinearity.
» a'=! = g(z/=1) is the previous layer’s activation output.
. % represents the gradient of the loss with respect to the weights at layer /.
These two stability conditions correspond to the two directions of signal flow in a network:
* Forward variance preservation ensures that activations maintain a consistent scale across
layers, preventing values from exploding or vanishing as they move deeper into the network.
* Backward variance preservation ensures that gradients maintain a consistent magnitude as
they propagate backward during training, allowing each layer to receive meaningful updates.
Intuitively, forward propagation is about how information travels through the model’s neurons,
while backward propagation is about how learning signals travel back through its weights. If either
direction suffers distortion—amplification or attenuation—training can collapse.
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Why This Matters
When these variances are not balanced, deep networks exhibit one of two well-known failure modes:
+ Exploding Gradients: If activations grow across layers (Var[z/] > 1), backpropagated gradi-
ents accumulate multiplicatively, producing massive updates and numerical instability (e.g.,
NaN weights).
* Vanishing Gradients: If activations shrink (Var[z/] < 1), gradients decay exponentially as
they move backward, starving early layers of useful learning signals.
These problems compound with depth: even small imbalances in variance per layer can produce
exponential growth or decay across dozens of layers. Hence, proper initialization acts like a “pressure
regulator,” keeping signal magnitudes stable so that gradients remain in a trainable range.

Understanding the Forward Requirement
Forward stability determines how information propagates through depth. Each neuron aggregates its
inputs via the weights and transforms them through a nonlinearity. For neuron i in layer /:

0~ YWD, 1 5.
J

Assuming independent, zero-mean activations a}i) | with variance o2 and weights W,

zero mean and variance 62, the pre-activation variance becomes:

(0-7) drawn with

i 2. 2
Var[zl( )] = Njy - O, - O,

where nj, (the fan-in) is the number of inputs per neuron.

If 62 is too large, Varz] grows exponentially with depth—causing exploding activations:
neurons saturate (sigmoid/tanh) or output excessively large values (ReLLU), both of which degrade
gradients and destabilize training. If 62 is too small, Var[z;] decays exponentially—causing vanish-
ing activations: layer outputs collapse toward zero, losing representational diversity and producing
near-zero gradients. Thus, controlling forward variance is essential not just for numerical stability
but to keep activations within their informative regime, where g'(z) remains nonzero and gradients
can flow.

Understanding the Backward Requirement
Backward stability governs how error signals propagate during gradient descent. Each weight
gradient depends on both the upstream error and the local activation:

0¥ 0L ()
A= T4
an(w) azl(l)

Consequently, the variance of weight gradients satisfies:

Var [M] o< Var [8.,2”] - Var[a;_4].
ow, 27

If the forward pass amplifies activations, gradients magnify as well—eventually exploding. If
activations diminish, gradients vanish, leaving early layers effectively frozen. Hence, the forward
and backward requirements are inseparable: stable gradient flow depends on maintaining
balanced activation variance, and vice versa.

Variance-preserving initialization methods, such as Xavier and Kaiming, are explicitly derived
to satisfy both conditions simultaneously—choosing 62 so that neither activations nor gradients drift
in scale as signals traverse the network.
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Challenges in Practice
Achieving both forward and backward stability simultaneously is difficult because nonlinear activa-
tion functions distort the signal. For example:

* Nonlinearities like ReLLU or tanh change the distribution of activations and their variance.

* The number of input and output connections (fan-in and fan-out) differs across layers.

* Small deviations accumulate multiplicatively in deep networks, amplifying drift.
As a result, ideal variance preservation can only be approximated through careful scaling of the
initial weight distribution.

Toward Practical Solutions
Variance-based initialization provides the foundation for all modern initialization schemes. The
upcoming methods—Xavier (Glorot) and Kaiming (He) initialization—are mathematical realiza-
tions of this principle. Each derives a formula for the optimal weight variance that balances the two
propagation conditions described above, under specific assumptions about the activation function:
» Xavier Initialization: Derived for symmetric, bounded activations like sigmoid and tanh,
balancing forward and backward variance using both the layer’s fan-in and fan-out.
» Kaiming Initialization: Derived for ReLU, which zeros out roughly half of its inputs; it
scales weights by fan-in only, compensating for the lost variance in the negative half.
These initialization schemes exemplify how theoretical variance analysis translates into practical
design. By tuning the weight distribution to the network’s activation behavior, they preserve stable
signal propagation—ensuring that deep networks remain trainable from the very first iteration.

Xavier Initialization

The Xavier Initialization (also known as Glorot Initialization), proposed by Glorot and Bengio
[178], is one of the foundational variance-based initialization techniques in deep learning. Its goal
is to maintain stable signal propagation—ensuring that both activations and gradients preserve a
consistent scale across layers. This approach is especially effective for networks with symmetric
activation functions (e.g., sigmoid, tanh), but less suited to asymmetric rectifiers such as ReL.U,
which require a different scaling strategy (addressed later with Kaiming initialization).

Motivation

For deep networks to train effectively, information must propagate through many layers without
numerical or statistical distortion. Ideally, both activations (forward signals) and gradients (backward
signals) should maintain consistent magnitudes across depth—neither exploding nor vanishing. If
activations grow layer by layer, they saturate nonlinearities and destabilize gradients; if they decay,
neurons receive near-zero inputs, halting learning.

To prevent this, weight initialization must ensure that the variance of signals remains approximately
constant in both directions of propagation:

, , 07 07
i1~ i—1 ~
Var[s'| ~ Var[s'" '], Var[ 55 ] ~ Var [8si+l] .

The first condition preserves the dynamic range of activations in the forward pass, while the second
keeps gradient magnitudes stable during backpropagation. When both hold, each layer transmits
information with a unit signal gain, preventing cumulative distortion as depth increases.
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The central idea of Xavier Initialization is to analytically determine the appropriate weight variance
Var[W] that simultaneously satisfies these two requirements under reasonable statistical assump-
tions about the data and activation function. This principle—balancing forward and backward
variance—forms the mathematical core of variance-preserving initialization schemes.

Weight Initialization: Xavier Initialization

dims = [4096] * 7 “Xavier” initialization: “Just right”: Activations are
hs = [] std = 1/sqrt(Din) ; |
o e ) IO nicely scaled for all layers!
for Din, Dout in zip(dims[:-1], dims[l:]):

|W = np.random.randn(Din, Dout) / np.sqrt(Din)l For convlayers, Din is

peiErEEant Grd ) kernel_size? * input_channels
hs.append(x)

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=-0.00 mean=0.00 mean=0.00 mean=0.00 mean=-0.00
std=0.63 std=0.49 std=0.41 std=0.36 std=0.32 std=0.30
-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1
Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
Justin Johnson Lecture 10 - 58 February 6, 2022

Figure 9.14: Xavier initialization: activations are nicely scaled for all the layers.

Mathematical Formulation
Consider a fully connected layer that transforms input activations Z=1 e R" into output activations
7 eR™:

s'=77"Wi b, 7= f(s"),

where Wi € R "' is the weight matrix, b’ € R" the bias vector, and f(-) a nonlinear activation
function applied element-wise.
At initialization, we seek a choice of Var[W'| that maintains stable variance through the network:

Var[s'] = Var[s"!] = constant.

Since each pre-activation s; = Y,; W/ kz;’l + b! aggregates n'~! independent inputs, its variance can
be expressed as a function of the fan-in, fan-out, and activation statistics. By equating forward and
backward variance terms, Xavier initialization derives an optimal scaling factor for Var[W], yielding
weights that preserve signal magnitude in both passes. This derivation follows under the assumptions
detailed next.

Assumptions
The derivation of Xavier initialization relies on the following key assumptions:
» Assumption 1: The activation function is odd with a unit derivative at 0. This means that:

FO)=1, f=x)=—f). ©.1)

This assumption is satisfied by the tanh function but not by ReLU, which does not have a
well-defined derivative at 0.
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* Assumption 2: Inputs, weights, and biases at initialization are independently and identi-
cally distributed (iid). This ensures that no correlation skews the variance calculations.

* Assumption 3: Inputs are normalized to have zero mean, and the weights and biases are
initialized from a distribution centered at 0. This implies:

E[] =E[W'] =E[b] =0. 9.2)
Given these assumptions, we proceed to derive the initialization method.

Derivation of Xavier Initialization

The derivation of Xavier initialization is based on analyzing how variance propagates through both
the forward and backward passes of a neural network. The goal is to ensure that the variance of
activations and gradients remains stable across layers, preventing vanishing or exploding signals
during training. A more detailed step-by-step derivation can be found in [222]. Here, we summarize
the key results.

Forward Pass: Maintaining Activation Variance
In the forward pass, the activations at layer i are computed as:

s'=77 Wit (9.3)
Applying the activation function f(-), we obtain:

7= f(s"). 9.4)
Our objective is to ensure that the variance of activations remains constant across layers:

Var(7] = Var[z"]. 9.5)
To analyze this, we assume that z~! and W' are independent and zero-centered, giving:

Var[s'] = Var[z ~'W'| = n'~! Var[W'] Var[z"""]. (9.6)

Setting Var[z'] = Var[z"~!], we solve for Var[W]:

Var[W] =

ni-1 9.7)
This means that choosing weights with this variance (depending on the number of neurons in the
previous layer n'~!, for each layer i) ensures that the activations do not shrink or explode as they
propagate through the network.

Backward Pass: Maintaining Gradient Variance
During backpropagation, the gradient of the loss function with respect to the pre-activation s’ at layer
i is given by:

dCost  dCost ,, ;
8Si - 8zi f(S) (98)

The gradients are then propagated backward using:

dCost .dCost
dz—1 ast

9.9)
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To ensure stable gradient flow, we want to maintain constant variance across layers:

d Cost d Cost
Var( 54 ) = Var (8s’+1> . (9.10)
Since W' and agg“ are independent and zero-centered, we get:
d Cost ; ; d Cost
Var ( 3 ) = n' Var[W'] Var <8s’+1> . (9.11)
Setting Var (ags‘?t) = Var (%Sﬁ?t), we solve for Var[Wi]:
; 1
Var[W'] = —. (9.12)
n

This ensures that the gradients do not shrink or explode as they propagate backward.

Balancing Forward and Backward Variance
The variance conditions obtained from the forward and backward pass derivations are:

Var[W] = (from forward pass) (9.13)

w1

; 1
Var[W'] = ot (from backward pass) (9.14)

These two conditions are equal only when n'~! = n’, meaning all layers have the same number of

neurons. However, in most architectures, layers do not have identical sizes, making it impossible to
satisfy both conditions simultaneously.
To resolve this, Glorot and Bengio proposed taking the average of the two results:

2
ni=l+ni’
This balances the variance of activations and gradients across layers. Although itisn’t proven/guaranteed
that this initialization will work, in practice it appears to usually work, making this a common weight
initialization approach.

Var[W] = 9.15)

Final Xavier Initialization Formulation
The final Xavier initialization scheme follows the computed variance. The weights are sampled from
either:

* A normal distribution:

Wi N <0 2> ) (9.16)

Tniml 4 pi

¢ A uniform distribution:

. 6 6
WzNU<_\/ni_l+ni,\/ni_l+ni>. 9.17)

These choices ensure stable propagation of activations and gradients, improving the convergence of
deep networks.
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Limitations of Xavier Initialization

While Xavier initialization improves stability in training deep networks, it is primarily suited for
activations like sigmoid and tanh. However, for ReLU-based networks, which are more common
nowadays as ReLLU and its variants are more suitable activation functions for deep learning, as they
do not satisfy the odd symmetry assumption, a different method—Kaiming He Initialization is
more appropriate [207].

Kaiming He Initialization

Xavier initialization was derived assuming symmetric activation functions such as tanh and sigmoid.
However, modern deep networks frequently use ReLU and its variants, which introduce asymmetry
due to their non-negative outputs. To address this, Kaiming He initialization [207] was designed
specifically for ReLU-based networks.

A more detailed mathematical derivation can be found in [221]. Here, we summarize the key results.

Motivation
The RelLU function is defined as:

ReLU(x) = max(0, x). (9.18)

Unlike tanh or sigmoid, ReLU has a zero-negative property, meaning half of the activations become
zero. This effectively reduces the variance of activations by a factor of 2, requiring an adjustment in
the weight initialization.

Similar to Xavier initialization, the goal is to ensure stable variance across both forward and backward
passes while considering ReLLU’s characteristics.

Weight Initialization: What about RelLU?

dims = [4096] * 7

he = [] Change from tanh to RelU Xavier assumes zero centered
X = np.random.randn(16, dims[0]) activation function
for Din, Dout in zip(dims[:-1], dims[1l:]):
W = np.random.randn(Din, Dout) / np.sqrt(Din) . .
[x = np.maximum(0, x.dot(W))| Activations collapse to zero
hs.append(x) again, no Iearning =(
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.39 mean=0.28 mean=0.20 mean=0.14 mean=0.10 mean=0.07
std=0.58 std=0.41 std=0.30 std=0.21 std=0.15 std=0.10
-1 ] 1 -1 0 1 -1 5 1 -1 0 1 -1 C 1 -1 0 1
Justin Johnson Lecture 10 - 65 February 6, 2022

Figure 9.15: Xavier initialization applied with ReLU: activations collapse to zero due to the mismatch
between the initialization assumptions and the activation function properties. This prevents effective
learning.
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Weight Initialization: Kaiming / MSRA Initialization

ﬁims T] (40961 * 7 RelU correction: std = sqrt(2 / Din) "Just right” — activations nicely
s =
X = np.random.randn(16, dims[0]) scaled for all Iayers

for Din, Dout in zip(dims[:-1], dims[1l:]):

W = np.random.randn(Din, Dout) / np.sqrt(Din)
X = np.maximum(0, x.dot(W))

hs.append(x)

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.57 mean=0.57 mean=0.56 mean=0.55 mean=0.55 mean=0.55
std=0.83 std=0.83 std=0.83 std=0.81 std=0.81 std=0.81
-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1
He et al, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, ICCV 2015
Justin Johnson Lecture 10 - 66 February 6, 2022

Figure 9.16: Kaiming initialization: activations are well-scaled across layers, preserving variance

and enabling stable learning with ReLLU.

Mathematical Notation
We define a neural network layer with the following variables:
o Weight matrix: W), € R+
 Bias vector: b, € R"%+1
* Input activations: x; € R™*
* Pre-activation outputs: y; = x; W + by
* Post-activation outputs: x;4; = f(yx), where f(x) is the ReLU activation function.
* The network’s loss function is denoted by L.
e Gradients of the loss function w.r.t. activations: Ax; = g—fk.

Assumptions
The derivation relies on the following key assumptions:

1. ReLU activation: Defined as:
f(x) =ReLU(x) = max(0,x),
with its derivative:

1, x>0

Fx) = 0, x<0.

This means that, on average, only half of the inputs contribute to the signal.

(9.19)

(9.20)

2. Independent and identically distributed (iid) initialization: Inputs, weights, and gradients

are assumed to be iid at initialization.

3. Zero-mean initialization: Inputs and weights are drawn from a zero-centered distribution:

E[xo] = E[W;] = E[by] = 0.

9.21)
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Forward and Backward Pass Derivation

To determine an appropriate variance for weight initialization, we ensure that variance remains stable
across layers during both forward and backward propagation. If the variance is too high, activations
and gradients explode, leading to instability. If it is too low, activations and gradients vanish, slowing
down learning.

The challenge with ReLU is that it sets all negative inputs to zero, effectively discarding half of the
activation values. This requires adjusting the variance to prevent it from shrinking as it propagates
through layers.

Forward Pass Analysis
The goal is to determine the weight variance that maintains constant variance across layers during
forward propagation:

Var[y,| = Var[yg_1]. (9.22)
Since the transformation follows:
Vi = x Wy + by, (9.23)

applying the variance operator:

Var[yy] = Varx; W] + Var[by]. (9.24)
Assuming b, = 0 at initialization:

Var[yi| = Var[x; Wy]. (9.25)
Given independence between x; and Wg:

Var[yx| = nx Var[Wy| Var|[x]. (9.26)
Since ReL.U eliminates half the activations, the expected variance is:

Var|x;] = %Var[yk,l]. (9.27)
Substituting this:

Var[yi] = ng Var[Wy] % Var[yi_1]. (9.28)

Setting Var[y,] = Var|yx_1]:

Var[W;] = 3 (9.29)

s
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Backward Pass Analysis
Similar reasoning applies to backpropagation, ensuring that gradient variance remains stable:

Var[Ax;] = Var[Ax1]. (9.30)
The gradient follows:

Axy = Ay W (9.31)
Applying the variance operator:

Var[Ax;] = Var[Ay W[ ]. 9.32)

Using independence:

Var[Axy| = ny Var[W] Var[Ayy]. (9.33)
ReLU’s gradient is 1 for positive inputs and O otherwise:
1
Var[Ay;] = EVar[Aka]. (9.34)
Substituting:
1
Var[Axk] = N Var[Wk] 5 Var[Axk+1 ] (935)
Setting Var[Ax;| = Var|[Ax;1]:
2
Var[W;| = —. (9.36)
ng

Final Kaiming Initialization Formulation
Unlike Xavier initialization, which averages forward and backward variance conditions, Kaiming He
initialization naturally satisfies both simultaneously due to the ReLLU-specific factor of 2. The final
weight initialization is:

* Normal distribution:

ng

Wy ~ N (0, 2) : (9.37)

¢ Uniform distribution:

Wy ~U (—\/Z, \/Z> . (9.38)
ng ng

Implementation in Deep Learning Frameworks
Kaiming He initialization is widely supported in deep learning libraries such as PyTorch:

import torch.nn as nn
nn.init.kaiming uniform_(layer.weight, mode='fan_in', nonlinearity='relu')

For normal distribution:
nn.init.kaiming normal_{layer.weight, mode='fan_in', nonlinearity='relu')

This method ensures stable variance and effective training for ReLU-based deep networks.



346 Chapter 9. Lecture 9: Training Neural Networks |

Initialization in Residual Networks (ResNets)

Residual Networks (ResNets) introduce skip connections, which allow the network to learn residual
functions instead of direct mappings. While this architectural design helps address vanishing
gradients, it also violates the assumptions of Kaiming (MSRA) initialization [207].

Why Doesn’t Kaiming Initialization Work for ResNets?
In standard Kaiming initialization, the goal is to maintain a stable variance across layers, ensuring
that:

Var[F (x)] = Varlx]. (9.39)
However, in ResNets, the output of each block is computed as:
X1 =X+ F(x7), (9.40)

where F(x;) is the residual mapping.
If we apply Kaiming initialization naively, we get:

Var(x;,1] = Var[x;| 4+ Var[F (x;)]. (9.41)
Since Var[F (x;)] = Var[x;], this leads to:
Var[x; 1] = 2 Var[x]. (9.42)

This causes the variance to grow with each residual block, leading to exploding activations and
gradients, which disrupts training.

Fixup Initialization
To address this issue, Fixup Initialization [770] proposes a modification to the initialization strategy:
* The first convolutional layer in each residual block is initialized using Kaiming (MSRA)
initialization.
* The second convolutional layer in the residual block is initialized to zero.

Weight Initialization: Residual Networks

[relu If we initialize with MSRA:
F(x) +x then Var(F(x)) = Var(x)
But then Var(F(x) + x) > Var(x)
F(x) I relu variance grows with each block!

X
Residual Block

Zhang et al, “Fixup Initialization: Residual Learning Without Normalization”, ICLR 2019
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Figure 9.17: Fixup Initialization: The first convolution is initialized using Kaiming, while the second
convolution is initialized to zero, ensuring stable variance across layers in ResNets.
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This ensures that at initialization:
Var[x; 1] = Var[x], (9.43)

meaning the variance remains stable across layers at the start of training.
This simple adjustment ensures that deep ResNets can be trained effectively without batch normal-
ization or layer normalization, making Fixup particularly useful in certain settings.

Conclusion: Choosing the Right Initialization Strategy

Weight initialization plays a critical role in stabilizing training dynamics, preventing vanishing or
exploding gradients, and improving optimization efficiency in deep neural networks. The choice
of initialization depends on the network architecture and the activation functions used. Below, we
summarize the most widely adopted initialization strategies and their appropriate use cases:

* Xavier (Glorot) Initialization [178]: Best suited for networks using symmetric activation
functions such as tanh or sigmoid, where maintaining equal variance across layers is crucial.

» Kaiming (He) Initialization [207]: Specifically designed for ReLLU and its variants (Leaky
ReLU, PReLU, etc.), accounting for their asymmetric nature by scaling variance accordingly
to prevent dying neurons.

* Fixup Initialization [770]: Designed for Residual Networks (ResNets), where skip connec-
tions alter the variance accumulation dynamics, requiring an adaptation of Kaiming initializa-
tion to prevent activation and gradient explosion.

* T-Fixup Initialization [247]: Developed for Transformer models, which do not use batch
normalization and suffer from unstable training due to layer normalization effects. T-Fixup
provides an alternative scaling strategy that allows deep Transformers to be trained without
learning rate warm-up.

Ongoing Research and Open Questions
While the above techniques are widely used, weight initialization remains an active area of research
due to several challenges:

* Deeper Architectures: As networks grow deeper, traditional initialization methods may
become insufficient. Methods such as Scaled Initialization [53] and Dynamically Normalized
Initialization are being explored.

* Transformers and Non-Convolutional Architectures: Transformers and other architectures
differ significantly from CNN-based models, requiring specialized initialization strategies
such as T-Fixup.

* Self-Supervised Learning and Sparse Networks: Recent advances in sparse training and self-
supervised learning suggest that certain initialization methods may benefit from adjustments
tailored to these paradigms.

* Adaptive Initialization: Some research explores dynamically adjusting initialization during
training instead of relying on fixed heuristics.

Weight initialization remains a crucial component of deep learning optimization. While methods
like Kaiming and Fixup work well for standard deep networks, ongoing research continues to refine
initialization strategies for emerging architectures. The field is evolving toward more specialized
and adaptive initialization schemes to address challenges posed by depth, architecture type, and
optimization dynamics.
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Regularization Techniques

We have previously discussed L1/L.2 regularization (weight decay) and how batch normalization (BN)
can act as an implicit regularizer. However, in some cases (usually with less modern architectures,
like VGG or AlexNet), these methods are insufficient to prevent overfitting. In such cases, even
when a model successfully fits the training data, it may generalize poorly to unseen test samples
(hence, over-fitting). This issue is typically observed when the validation loss increases while the
training loss continues to decrease during training.

Dropout

A widely used regularization technique to combat overfitting is dropout [585]. The key idea behind
dropout is to randomly set some neurons in each layer to zero during the forward pass, with a
probability p (commonly set to 0.5). This stochastic behavior forces the network to learn redundant
representations, improving generalization.

Regularization: Dropout

In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014
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Figure 9.18: Visualization of dropout: neurons are randomly dropped during training.

Dropout is simple to implement and has proven to be an effective regularization method in deep
networks.
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Regularization: Dropout
p=0.5

def train_step(X):

Example forward
pass with a 3-layer
network using
dropout

" X contains the data """

H1 = np.maximum(0, np.dot(Wl, X) + bl)
Ul = np.random.rand(*H1l.shape) < p

H1 *= Ul

H2 = np.maximum(®, np.dot(W2, H1) + b2)
U2 = np.random.rand(*H2.shape) < p

H2 *= U2

out = np.dot(W3, H2) + b3
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Figure 9.19: Python implementation of dropout in a few lines of code.

Why Does Dropout Work?

One way to understand the effectiveness of dropout is by considering its impact on feature repre-
sentation learning. By forcing the network to function even when certain neurons are randomly
deactivated, dropout encourages the learning of multiple redundant representations, reducing the
reliance on specific neurons or sets of neurons. This helps prevent co-adaptation of features, resulting
in more robust and generalizable representations.

Regularization: Dropout

Forces the network to have a redundant
representation; Prevents co-adaptation of features

M
\\J—> has an ear X ~
N N
< /)4' has a tail .
::\
(7/) * s furry
/"\
O " has claws
VN . ~
1\ /)—» mischievous X—
- look

Lecture 10 - 74

February 6, 2022

Justin Johnson

Figure 9.20: Dropout prevents co-adaptation by enforcing redundant feature representations.

Consider a classification network trained to recognize cats. Without dropout, the network may
learn to identify a cat based on a small, specific set of neurons that respond to features such as "has
whiskers" or "has pointy ears." If these neurons fail to activate (e.g., due to occlusion in an image),
the model may fail to classify the image correctly.

With dropout, the network is forced to distribute its learned representations across multiple neurons.
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For instance, one subset of neurons may respond to features such as "has a tail" and "is furry", while
another may respond to "has whiskers" and "has claws." Because dropout randomly deactivates
neurons during training, the network learns to rely on multiple sets of features instead of a single
subset. This redundancy ensures that even if some neurons are missing at test time, the network still
has enough information to classify the image correctly.

In essence, dropout forces the model to learn diverse and distributed feature representations, making
it more robust to missing or occluded features in unseen images.

Dropout at Test Time

During training, dropout introduces randomness into the network, which is beneficial for regular-
ization. However, at test time, we require a deterministic model to ensure consistent and reliable
predictions. If we were to apply dropout at test time, different subsets of neurons would be randomly
deactivated on each forward pass, making the model’s output highly inconsistent.

Why is a stochastic model at inference problematic? Consider an autonomous vehicle that uses
a neural network to recognize traffic signs. If dropout were applied at test time, different neurons
could be randomly dropped with each forward pass. As a result, the model might predict "Stop
Sign" on one pass and "Speed Limit 60" on another, leading to highly inconsistent and potentially
dangerous decisions.

Another example is medical diagnosis. Suppose a deep learning model is used to analyze medical
images for detecting tumors. If dropout were applied at test time, the model’s prediction for the
presence of a tumor might vary between different forward passes. A doctor using the model would
see conflicting results, making it impossible to rely on the system for accurate medical diagnoses.
To prevent this, we rewrite the network as a function of two inputs: the input tensor x and a random
binary mask z, drawn from a predefined probability distribution:

y=flx,2). (40

To obtain a stable output at test time, we seek the expected value of y, marginalized over all possible
values of z:

Elf(x2)] = [ pla)f(x.2)dz. (9.45)

However, computing this integral analytically is infeasible in practice, requiring an approximation.



9.5 Regularization Techniques 351

Dropout: Test Time Output  Input

(label) (image)

Dropout makes our output random! y = fW (x, Z Random

mask

Want to “average out” the randomness at test-time

y=f() = E[f(x,2)] = f p(D)f (x, 2)dz

But this integral seems hard ...
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Figure 9.21: Mathematical formulation of dropout and the difficulty of marginalizing out the random
variable.

Consider a single neuron receiving two inputs x and y with corresponding weights w; and wy. During
training, with dropout probability p = 0.5, the expected activation is:

1 1 1 1
Ela] = Z(w1x+ woy) + Z(w1x+ 0y) + Z(O}H— 0y) + Z(O)H_ woy). (9.46)

Simplifying, we obtain:

1
Ela] = E(wlx—i—wzy). (9.47)

Dropout: Test Time

Want to approximate y = f(x) = E,[f(x,2)] = fp(z)f(x’z)dz

the integral
Consider a single neuron:
e At test time we have: E[a] = wyx + w,y
" w, During training we have: E[a] = %(wlx + w,y) +%(w1x + 0y)
At test time, drop + % (0x + 0y) + %(Ox + w,y)
° ’ nothing and multiply =%(w1x+w2y)

by dropout probability
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Figure 9.22: Approximation of the expected activation for a single neuron, motivating test-time
scaling.
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Generalizing this result, at test time, we compensate for the randomness introduced during training
by scaling each output by the dropout probability p. That is, at test time, all neurons are active, but
their activations are scaled by p to match the expected output seen during training.

Dropout: Test Time

def predict(X):

H1 = np.maximum(©, np.dot(Wl, X) + bl) * p
H2 = np.maximum(©®, np.dot(W2, H1l) + b2) * p
out = np.dot(W3, H2) + b3

At test time all neurons are active always
=> We must scale the activations so that for each neuron:
output at test time = expected output at training time
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Figure 9.23: Test-time dropout implementation: scaling activations by the dropout probability.

Inverted Dropout

A more common implementation of dropout, known as inverted dropout, simplifies the test-time
scaling process by incorporating it into training. Instead of scaling activations at test time, we
scale them during training. This is achieved by dividing the retained activations by p during
training, ensuring that the expected activations at test time remain the same without any need for
post-processing.

More common: “Inverted dropout”

p=20.5
def train_step(X):

H1 = np.maximum(0, np.dot(Wl, X) + bl)
Ul = (np.random.rand(*H1.shape) < p) / p

HL *= U1 ‘ Drop and scale
H2 = np.maximum(6, np.dot(W2, H1) + b2) . ..
| U2 = (np.random.rand(*H2.shape) < p) / p | durlng tralnlng

H2 *= U2
out = np.dot(W3, H2) + b3

/ test time is unchanged!
def predict(X):

H1 = np.maximum(©, np.dot(Wl, X) + bl)
H2 = np.maximum(®, np.dot(W2, H1) + b2)
out = np.dot(W3, H2) + b3
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Figure 9.24: Python implementation of inverted dropout, where scaling occurs during training.
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Formally, during training:

d="°. (9.48)

At test time, all neurons remain active, and no additional scaling is required.

Where is Dropout Used in CNNs?

In early CNN architectures such as AlexNet and VGG16, fully connected layers (MLPs) were
stacked at the end of the network. Dropout was commonly applied to these layers to prevent
overfitting. However, in modern architectures, fully connected layers have been largely replaced by
global average pooling (GAP) followed by a single fully connected layer. This transition has made
dropout less commonly used in CNNss.

Dropout architectures

Recall AlexNet, VGG have most of their
parameters in fully-connected layers;
usually Dropout is applied there

AlexNet vs VGG-16

Params, M )
. D/“"”“t here! Later architectures (GoogleNet,
ResNet, etc) use global average
o pooling instead of fully-connected

60000

layers: they don’t use dropout at all!

40000

20000 I
: -

convl conv2 conv3 conv4 convs fce6  fc7  fc8

W AlexNet VGG-16
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Figure 9.25: Dropout usage in AlexNet and VGG16: applied to fully connected layers at the end of
the architecture.

Back in 2014, Dropout was an essential component for training neural networks, often succeeding in
reducing overfitting, allowing deeper models to train and provide improved results over shallower
ones. While dropout remains a useful technique in some deep networks, its necessity has diminished
in architectures that rely less on FC layers, or ones incorporating other alternative regularization
mechanisms.

Enrichment 9.5.2: Ordering of Dropout and Batch Normalization

Dropout and Batch Normalization (BN) are commonly used regularization techniques, but their
order in the computational pipeline affects their effectiveness. This section examines the impact of
their ordering and why BN is typically placed before Dropout.
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The placement of Dropout relative to Batch Normalization (BN) can significantly affect training
stability and performance. If Dropout is applied before BN, it modifies activations stochastically,
leading to inconsistent batch statistics:

pp=Emou], of=E[(mou)?’]-Emoul.

Here, m is a binary mask sampled independently per batch. Since different neurons are randomly
dropped each forward pass, the estimated mean pp and variance o3 fluctuate across iterations,
affecting BN’s ability to normalize effectively. This results in:

« Unstable batch statistics: BN normalizes activations using batch-wide estimates of g, 3.
With Dropout applied first, the expected value of activations varies unpredictably due to
random masking, introducing variance into these estimates. Mathematically, since E[m] = p,
where p is the Dropout retention probability, BN effectively normalizes over m ® u, distorting
the expected statistics.

* Inconsistent normalization: BN aims to stabilize activations across training by ensuring a
consistent distribution. However, when Dropout precedes BN, the latter adapts to a distribution
affected by stochastic sparsity rather than the actual underlying feature distribution, leading to
erratic normalization behavior.

* Reduced Dropout effectiveness: BN rescales activations based on mini-batch statistics. If
Dropout zeros out activations before BN, BN may adjust its normalization parameters such that
previously zeroed activations are shifted back to nonzero values. This undermines Dropout’s
intended function of inducing sparsity and reducing co-adaptation between neurons.

To maintain stable normalization while preserving Dropout’s regularization benefits, BN should be
applied before Dropout:

Linear BN o) Dropout -
u z Z.

=)

This ordering ensures:

* Reliable batch statistics: BN operates on unperturbed pre-activations, maintaining consistent
estimates of up,03. Since BN relies on these running statistics for inference, applying it
before Dropout prevents artificially induced variance that could degrade model stability.

* Preserved Dropout effect: Dropout is applied after BN, ensuring that zeroed activations
remain zeroed, rather than being rescaled. This allows Dropout to function as intended,
improving regularization without interference from BN’s normalization step.

* Smoother convergence: When Dropout follows BN, the added stochasticity occurs after
stable normalization, preventing erratic gradient updates while still regularizing the network.

The optimal placement of BN and Dropout can vary depending on the network architecture and task:

* In CNNs, Dropout may be omitted entirely since BN alone can sufficiently regularize.

* In Transformers, Dropout is typically applied to attention weights.

* In large-scale datasets (e.g., ImageNet [254]), Dropout is often used only in deeper layers
where BN alone may not provide enough regularization.
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9.5.3 Other Regularization Techniques

The idea behind dropout introduces a common pattern seen in various regularization techniques:
* Training: Introduce some form of randomness (e.g., Dropout with a random binary mask z,
where y = fiy (x,2)).
» Testing: Average out the randomness (sometimes approximately), ensuring stable determinis-
tic predictions:

y=f(x) =E[fw(xz2)] = /p(z)fw(x,z) dz.

Batch Normalization (BN) also follows this trend. During training, BN normalizes activations using
statistics computed from the mini-batch, making the output of each sample dependent on others
in the batch (which are chosen randomly). At test time, BN uses fixed statistics to remove the
randomness. Thus, BN also fits into this broader category of techniques that introduce randomness
during training but stabilize at test time.

Interestingly, with modern architectures like ResNets and their variants, explicit regularization
techniques such as Dropout are often unnecessary. Instead, regularization is typically achieved
through weight decay (L2 regularization) and BN.

Data Augmentation as Implicit Regularization

Another form of regularization, often not explicitly classified as such, is data augmentation. It
introduces controlled randomness into training data by applying transformations that should not alter
the desired output (e.g., for classification, shouldn’t change the class identity). These augmentations
expand the effective training set size and help improve generalization.

Data Augmentation

Load image
and label

Compute
@ "
Transform image
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Figure 9.26: Data augmentation: random transformations applied before training.

Common augmentation techniques for images include:
* Horizontal flipping (mirroring an image).
* Color jittering (adjusting brightness, contrast, and saturation).
* Random cropping and scaling.
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Since augmentations introduce randomness at training time, test-time predictions must be stabilized.
One approach is to apply a fixed set of augmentations during inference and average the results.

Data Augmentation: Random Crops and Scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

Testing: average a fixed set of crops

ResNet:
1. Resize image at 5 scales: {224, 256, 384, 480, 640}
2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips
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Figure 9.27: Test-time augmentation in ResNet: multiple fixed crops and scales are used to marginal-
ize out randomness.

Augmentation strategies depend on the task and dataset. For example:

* Translation, rotation, shearing, and stretching are useful for robust feature learning.

* Lens distortions may help models adapt to different camera setups.

* Domain-specific augmentations: Some augmentations are only useful for certain tasks. For

example:
— If distinguishing between left and right hands, horizontal flipping should not be applied.
— For classifying cats vs. dogs, flipping is reasonable since a flipped cat/dog is still a
cat/dog (class doesn’t change).

Data Augmentation: Color Jitter

More Complex:

Simple: Randomize 1. Apply PCAtoall [R, G, B]

contrast and brightness pixels in training set

2. Sample a “color offset”
along principal
component directions

3. Add offset to all pixels
of a training image

(Used in AlexNet, ResNet, etc)
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Figure 9.28: Color jittering as an example of augmentation used in AlexNet and ResNet.
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In summary, augmentation is a powerful regularization tool that introduces structured randomness,
forcing models to learn robust representations.

DropConnect

DropConnect [653] is a regularization technique similar to Dropout, but instead of randomly setting
activations to zero, it randomly drops connections (weights) during the forward pass. This means
that rather than deactivating entire neurons, individual weights are set to zero, producing a sparser
and more dynamic network during training.

The key equation for DropConnect is:

y=f(WoM)x+b), (9.49)

where M is a binary mask with the same shape as W, with entries sampled from a Bernoulli
distribution.

Regularization: DropConnect

Training: Drop random connections between neurons (set weight=0)
Testing: Use all the connections

Examples:
Dropout

Batch Normalization
Data Augmentation
DropConnect

Wan et al, “Regularization of Neural Networks using DropConnect”, ICML 2013
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Figure 9.29: DropConnect: Instead of zeroing out neurons like in Dropout, DropConnect randomly
removes weights.

Dropout vs. DropConnect: Comparing Granularities of Randomness

Both Dropout and DropConnect are regularization techniques designed to combat overfitting
by introducing stochasticity during training. They both encourage networks to learn robust and
redundant representations that do not rely excessively on any single neuron or connection. Their
key difference lies in what they randomly disable during training: Dropout removes entire neuron
outputs, whereas DropConnect removes individual weights.

Intuitive Analogy
Imagine a layer as a team of workers collaborating to complete a complex task:
* Dropout is like randomly telling some workers to take the day off. The remaining team must
learn to accomplish the task without them, promoting redundancy and resilience.
* DropConnect, in contrast, keeps all workers on duty but removes a random subset of their
tools. Each worker must still perform, but with limited resources, encouraging more distributed
and adaptive problem-solving strategies.
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This difference in “granularity” fundamentally shapes how each method regularizes the network.

Mechanism and Mathematical View

* Dropout (Neuron-level masking): During training, each neuron’s output activation is set to

zero with probability p:
al(i) — al(i) .m® m® ~ Bernoulli(1— p).

This disables entire activations, forcing other neurons in the layer to develop complementary
features. Dropout is particularly effective in fully connected layers where neurons tend to
co-adapt.

* DropConnect (Weight-level masking): Instead of masking activations, DropConnect ran-
domly sets individual weights to zero before computing pre-activations:

Zl(i) — Z (m(i*j)Wl(i’j)agi)l), mBd) Bernoulli(1 — p).
J
This produces a more fine-grained regularization: each neuron still outputs a value but based

on a random subset of its incoming connections. The result is a smoother, more nuanced form
of noise injection that preserves partial signal flow.

Effectiveness and Practical Differences

* Dropout: Best suited for dense, fully connected layers or smaller convolutional heads, where
deactivating full neurons is an effective way to reduce overfitting. It is simple, efficient, and
widely used as a default regularizer in classification networks.

* DropConnect: More appropriate for very deep or heavily parameterized models (e.g., large
Transformers or RNNs), where eliminating entire activations would excessively disrupt in-
formation flow. By randomly masking individual weights, DropConnect preserves partial
contributions while encouraging robustness at a finer scale.

Inference-Time Behavior
At test time, both techniques remove randomness and replace it with expected scaling:
* For Dropout, activations are scaled by the retention probability (1 — p).
* For DropConnect, the same scaling applies to the weights.
Modern implementations often use inverted dropout, performing this scaling during training in-
stead—ensuring inference remains deterministic and efficient.

Summary
Dropout and DropConnect share the same goal—improving generalization through stochastic regu-
larization—but differ in their level of intervention:

* Dropout: Coarse-grained; disables entire neuron outputs to break co-adaptation.

* DropConnect: Fine-grained; disables individual weights to enforce distributed, resilient

connectivity.

In essence, Dropout acts like “turning off” entire neurons, while DropConnect acts like “cutting
random wires” between them. Both prevent overfitting by making the network less dependent on
specific units or connections, though DropConnect provides a subtler and often more computationally
demanding form of regularization.
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Fractional Max Pooling

Traditional max pooling operations in CNNs use fixed receptive field sizes (e.g., 2 x 2 or 3 x 3) to
downsample feature maps. Fractional Max Pooling [183] introduces randomized pooling regions,
where the size of the pooling regions varies across different neurons and different forward passes.
Instead of a fixed pooling size, each neuron is assigned a pooling region that is sampled randomly.
For example, some neurons may have a 2 x 2 region, while others may have a 1 x 1 region. On
average, each neuron receives a fractional pooling region (e.g., 1.35 receptive field size on average).

Regularization: Fractional Pooling

Training: Use randomized pooling regions
Testing: Average predictions over different samples

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling

Graham, “Fractional Max Pooling”, arXiv 2014
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Figure 9.30: Fractional Max Pooling: randomized pooling regions varying in size across forward
passes.

Effectiveness and Test-Time Strategy:
* This technique increases robustness to slight spatial distortions in input images by introducing
controlled randomness in pooling.
* At test time, instead of using randomized pooling, we take the average of multiple forward
passes to remove randomness while preserving the learned representations.

Stochastic Depth
Stochastic Depth [242] is a regularization technique designed for very deep networks, such as
ResNets with hundreds of layers. Instead of using all layers during every forward pass, it randomly
skips certain layers during training.
Why is this useful?

* It prevents deep networks from overfitting by creating an implicit ensemble of models.

* It allows gradients to flow more easily during backpropagation, reducing the vanishing gradient

problem in extremely deep networks.

During training, each residual block is kept active with probability p;, meaning that the network
effectively learns multiple sub-networks. At test time, all blocks are used, but each block’s contri-
bution is scaled by its probability of survival p;, ensuring consistent behavior across training and
inference.
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The forward pass update rule for stochastic depth is:

H}™ = ReLU(py f (H™: W) +HI™Y). ©-50)

Regularization: Stochastic Depth

Training: Skip some residual blocks in ResNet
Testing: Use the whole network

Examples:
Dropout
Batch Normalization

Starting to become common in
recent architectures!

Pham et al, “Very Deep Self-Attention Networks for

Data Augmentation End-to-End Speech Recognition”, INTERSPEECH 2019
* Tanand Le, “EfficientNetV2: Smaller Models and Faster
DropConnect Training”, ICML 2021

Fractional Max Pooling *  Fanetal, “Multiscale Vision Transformers”, ICCV 2021
. « Bello et al, “Revisiting ResNets: Improved Training and
Stochastic Depth Scaling Strategies”, NeurlPS 2021
*  Steiner et al, “How to train your ViT? Data,
Augmentation, and Regularization in Vision
Transformers”, arXiv 2021

Huang et al, “Deep Networks with Stochastic Depth”, ECCV 2016
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Figure 9.31: Stochastic Depth: at each forward pass, only a subset of layers is used. At test time, all
layers are utilized.

CutOut
CutQOut [121] is a data augmentation technique that removes contiguous sections of input images.
Unlike dropout, which randomly removes activations in intermediate layers, CutOut modifies the
input space directly by masking out regions.
* It forces the network to learn robust representations by making it focus on the remaining
visible parts of the image.
* This improves generalization, especially for small datasets, by preventing reliance on specific
visual features.
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Regularization: CutOut

Training: Set random images regions to 0
Testing: Use the whole image

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect

Fractional Max Pooling
Stochastic Depth
Cutout / Random Erasing

DeVries and Taylor, “Improved Regularization of Convolutional Neural Networks with Cutout”, arXiv 2017

Zhong et al, “Random Erasing Data Augmentation”, AAAI 2020

Justin Johnson

Lecture 10 - 102

Replace random regions with
mean value or random values
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Figure 9.32: CutOut: parts of the image are occluded to prevent over-reliance on specific features.

CutOut is closely related to denoising autoencoders and context encoders, as it forces the network to
understand images in a global rather than local sense.

MixUp

MixUp [771] is a technique that improves generalization by training a network on convex combina-

tions of input images and their labels.

Regularization: Mixup

Training: Train on random blends of images
Testing: Use original images

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect

Fractional Max Pooling
Stochastic Depth
Cutout / Random Erasing
Mixup

A

Lecture 10 - 104

Zhang et al, “mixup: Beyond Empirical Risk Minimization”, ICLR 2018

Justin Johnson

Sample blend
probability from a beta
distribution Beta(a, b)
with a=b=0 so blend

: weights are close to 0/1
08 1.0

06

Target label:
cat: 0.4
dog: 0.6

3, |

Randomly blend the pixels of
pairs of training images, e.g.
40% cat, 60% dog
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Figure 9.33: MixUp: blending two images and their labels to create intermediate samples.
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Instead of feeding original training samples, the model is trained with blended inputs:

X =Axi+(1—2)x;, (9.51)

Y =Ayi+(1=1)y;. (9.52)

where A is drawn from a Beta distribution Beta(a,b). Usually a = b ~ 0, making the weights
close to 0/1 (e.g., 0.9cat, 0.1dog). This improves the results of using this regularization technique, in
comparison with normal distribution (we are less likely to encounter situations of 0.5cat, 0.5dog,
which can make it too hard for the model to learn sometimes).
Why does MixUp work?
* Encourages linear behavior between samples, reducing sharp decision boundaries that can
lead to overfitting.
* Forces the model to learn representations that interpolate well between classes.
* Particularly effective for small datasets, where augmenting the diversity of training samples
significantly improves generalization.

Summary and Regularization Guidelines
To summarize, different regularization techniques are useful in different scenarios:
* Use dropout in fully connected layers of deep networks.
* Batch normalization and augmentations (e.g., flips, color jittering) are almost always useful
if appropriate for the task.
* CutOut and MixUp are particularly effective for small datasets, improving generalization.
* Stochastic depth is valuable for extremely deep architectures, such as ResNets with over 100
layers.



