
8. Lecture 8: CNN Architectures I

8.1 Introduction: From Building Blocks to SOTA CNNs
Convolutional Neural Networks (CNNs) have revolutionized computer vision by providing state-
of-the-art results in image classification, object detection, and many other tasks. While previous
chapters introduced the core building blocks of CNNs—convolutional layers, activation functions,
normalization techniques, and pooling layers—the question remains: how do we structure these
components into effective architectures?

This chapter explores the historical progression of CNN architectures, focusing on key models
that have shaped modern deep learning. We ground our discussion in the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC), which has served as a driving force for innovation in deep
learning-based image classification.

8.2 AlexNet
In 2012, a breakthrough in the field of computer vision—and the winner of the ImageNet classification
challenge—was AlexNet [307]. While modern architectures are significantly deeper, AlexNet
marked the beginning of deep convolutional networks. It accepted input images of spatial dimensions
227×227, with three color channels, leading to an input tensor shape of 3×227×227 per image,
and a total input batch shape of N×3×227×227.

AlexNet consisted of:
• Five convolutional layers, interleaved with max pooling layers.
• Three fully connected layers, finalizing the classification with a softmax output.
• ReLU non-linearity, one of the first architectures to introduce it.
• Local Response Normalization (LRN), a now obsolete normalization technique used before

BatchNorm.
• Multi-GPU training, splitting the model across two NVIDIA GTX 580 GPUs, each with

only 3GB of memory.
Despite its relatively simple design, AlexNet was hugely influential, accumulating over 100,000

citations since its publication.

298 Chapter 8. Lecture 8: CNN Architectures I

This makes it one of the most cited works in modern science, surpassing even landmark research
in information theory and fundamental physics.

8.2.1 Architecture Details
Let us analyze AlexNet layer by layer, focusing on output dimensions, memory consumption, and
computational cost.

First Convolutional Layer (Conv1)
The first convolutional layer has Cout = 64 filters, kernel size K = 11×11, stride S = 4, and padding
P = 2. The output spatial size is computed as:

W ′ =
W −K +2P

S
+1 =

227−11+2(2)
4

+1 = 56 (8.1)

Thus, the output tensor shape is 64×56×56.

Memory Requirements
Assuming 32-bit floating-point representation (4 bytes per element), the output tensor storage
requirement is:

(Cout×H ′×W ′)×4
1024

=
(64×56×56)×4

1024
= 784KB (8.2)

Number of Learnable Parameters
The weight tensor shape is Cout×Cin×K×K = 64×3×11×11, with an additional bias term per
channel:

Total Params = (64×3×11×11)+64 = 23,296 (8.3)

Computational Cost
Each output element requires a convolution with a Cin×K×K receptive field, leading to the following
Multiply-Accumulate operations (MACs):

#MACs = (Cout×H ′×W ′)× (Cin×K×K) (8.4)

= (64×56×56)× (3×11×11) = 72,855,552≈ 78M MACs (8.5)

Note: In practice, 1 MAC = 2 FLOPs, since each multiply-accumulate consists of both a
multiplication and an addition.

Max Pooling Layer
The first pooling layer follows the ReLU activation and has a 3×3 kernel with stride S = 2, reducing
the spatial size:

W ′ = ⌊(W −K)/S+1⌋= ⌊(56−3)/2+1⌋= 27 (8.6)

Thus, the output tensor shape is 64×27×27.

8.2 AlexNet 299

Memory and Computational Cost
• Memory: 64×27×27×4/1024 = 182.25 KB.
• MACs: Since pooling takes only a maximum over a 3×3 window, the cost is:

(Cout×H ′×W ′)× (K×K) = (64×27×27)× (3×3) = 0.4M MACs. (8.7)

Max pooling is computationally inexpensive compared to convolutions.

8.2.2 Final Fully Connected Layers
The final three layers form a Multi-Layer Perceptron (MLP):

• Flatten Layer: Flattens the 256×6×6 tensor into a 9216-dimensional vector.
• First FC Layer: Maps 9216 to 4096 neurons.
• Second FC Layer: Maps 4096 to another 4096 neurons.
• Final FC Layer: Maps 4096 to 1000 output classes (ImageNet categories).

Computational Cost
For the first fully connected layer:

FC Params = (Cin×Cout)+Cout (8.8)

= (9216×4096)+4096 = 37,725,832 (8.9)

#MACs = 9216×4096 = 37,748,736. (8.10)

The process continues for the other FC layers, culminating in a final output of 1000 neurons for
classification.

Figure 8.1: The AlexNet architecture, including a table summarizing memory, parameters, and
FLOPs per layer.

300 Chapter 8. Lecture 8: CNN Architectures I

8.2.3 Key Takeaways from AlexNet
• The memory footprint is largest in the early convolutional layers.
• Nearly all parameters are stored in the fully connected layers.
• Most computational cost (FLOPs) occurs in convolutional layers.

Figure 8.2: Trends in AlexNet: memory usage in early conv layers, parameter-heavy FC layers, and
computational cost concentrated in convolutions.

8.2.4 ZFNet: An Improvement on AlexNet
In 2013, most competitors in the ImageNet challenge used CNNs following AlexNet’s success. The
winner, ZFNet [752], was essentially a refined, larger version of AlexNet.

Figure 8.3: The ZFNet architecture and its improvements over AlexNet.

8.3 VGG: A Principled CNN Architecture 301

Key Modifications in ZFNet
• The first convolutional layer was adjusted to use a 7×7 kernel with stride 2, instead of 11×11

with stride 4 in AlexNet. This resulted in finer spatial resolution in early layers.
• Increased number of parameters and computation, leading to improved performance.

The main lesson from AlexNet and ZFNet: larger networks tend to perform better, but architec-
ture refinement is critical.

8.3 VGG: A Principled CNN Architecture
Historical Context.
Proposed in the 2014 ImageNet challenge by Oxford’s Visual Geometry Group ([572]), VGG
demonstrated the power of systematically deepening CNNs. In contrast to ad-hoc predecessor
designs like AlexNet, VGG introduced a uniform blueprint for increasing depth using only small
kernels and structured downsampling.

Figure 8.4: Comparison of AlexNet vs. VGG: model size, parameter count, and FLOPs.

Core Design Principles.
VGG’s architecture rests on three simple rules:

1. All convolutions are 3×3, stride=1, pad=1.
2. All pooling is 2×2 max-pool with stride=2.
3. After each pool, the number of channels doubles.

These guidelines enabled much deeper networks than earlier CNNs, yet kept computations relatively
manageable.

8.3.1 Network Structure
Five hierarchical stages group VGG’s convolutional layers:

• Stages 1–3: [conv−conv−pool].
• Stages 4–5: [conv−conv−conv−[conv]−pool].

302 Chapter 8. Lecture 8: CNN Architectures I

Popular variants are:
• VGG-16 with 16 total convolutional layers,
• VGG-19 with 19 layers (extra conv in stages 4,5).

Figure 8.5: AlexNet vs. VGG-16 and VGG-19, highlighting VGG’s deeper, more uniform design.
(Slide 8.4)

8.3.2 Key Architectural Insights
Small-Kernel Convolutions (3×3)
VGG replaces larger kernels (e.g. 5×5, 7×7) with multiple (3×3) layers in sequence:

• Fewer Parameters: A 5×5 layer (C→C) needs 25C2 params vs. (2×3×3) = 18C2 for two
(3×3) layers—saving ∼ 28%.

• Fewer FLOPs: A single 5×5 convolution requires 25C2HW MACs, whereas two stacked
3×3 layers require only 18C2HW MACs, reducing the computational cost significantly.

• Additional Non-Linearities: Each (3×3) block adds an extra ReLU, enhancing representa-
tional power.

• Equivalent Receptive Field: Stacked (3×3) kernels can mimic a 5×5 or 7×7 receptive
field with less cost.

Pooling 2×2, Stride=2, No Padding
Each max-pool halves the spatial resolution. This systematically shrinks (H×W) by a factor of 2 at
each stage, reducing compute in subsequent conv layers while retaining key feature activations.

Doubling Channels After Each Pool
Every time (H×W) halves, VGG doubles the channel dimension:

• Keeps Compute Balanced: Halving spatial size cuts the feature map area by 1
4 . Doubling

channels multiplies it by 2, netting an overall consistent computational load.
• Deep Hierarchical Features: As resolution shrinks, more channels capture increasingly

complex patterns.

8.3 VGG: A Principled CNN Architecture 303

8.3.3 Why This Strategy Works
Balanced Computation.
Downsampling by 1

2 in height/width decreases memory usage fourfold, while doubling channels
boosts parameter usage. These changes roughly offset, so deeper stages keep a similar cost to earlier
ones.

Influence on Later Architectures.
ResNet, DenseNet, and other modern CNNs commonly adopt the “halve spatial dimension, dou-
ble channels” approach, ensuring that even as networks grow deeper, no single layer becomes
exorbitantly expensive.

8.3.4 Practical Observations
• Depth over Large Kernels: Multiple small convs outperform fewer large-kernel layers,

enabling higher nonlinearity and fewer parameters.
• Uniform Design Eases Scaling: A consistent set of kernel and pooling choices fosters more

predictable performance and simpler scaling options.
• Increased Memory & FLOPs: VGG’s deeper nature raises parameter counts and compute

demands, making it significantly—less suited to edge devices and real-time applications.
Despite higher resource usage, VGG’s straightforward, principled design pioneered deeper networks
and influenced countless subsequent CNN architectures (e.g., ResNet, EfficientNet) that build on its
core ideas and refine efficiency.

8.3.5 Training Very Deep Networks: The VGG Approach
The VGG architecture, introduced by Simonyan and Zisserman in their 2014 paper [572], demon-
strated that increasing network depth significantly improves image classification performance.
However, training very deep networks posed major challenges, particularly due to vanishing gradi-
ents and optimization difficulties. To address these issues, the authors employed an incremental
training methodology, gradually increasing network depth rather than training a very deep model
from scratch.

Incremental Training Strategy
Training deep networks directly can lead to convergence issues and unstable optimization. Instead of
initializing a deep model from scratch, the authors adopted a progressive approach:

1. Starting with a Shallow Network: Training began with an 11-weight-layer model (VGG-11),
which had a manageable depth and was easier to optimize.

2. Gradual Depth Expansion: Once the shallower network was successfully trained, additional
layers were introduced incrementally, leading to deeper configurations (VGG-13, VGG-16,
and VGG-19).

3. Weight Initialization from Pretrained Networks: Instead of random initialization, each
deeper model inherited the trained weights from the previous, shallower model, allowing
training to start from a well-optimized state.

This approach mitigated the effects of vanishing gradients, as earlier layers received meaningful
gradient updates at every stage of training. Additionally, it allowed the optimization process to adapt
gradually to increased depth, ensuring better convergence.

304 Chapter 8. Lecture 8: CNN Architectures I

Optimization and Training Details
The VGG networks were trained using stochastic gradient descent (SGD) with the following
hyperparameters:

• Batch size: 256
• Momentum: 0.9
• Weight decay: 5×10−4

• Initial learning rate: 0.01, reduced by a factor of 10 when validation accuracy plateaued.
This careful hyperparameter tuning, coupled with the incremental training approach, allowed the

authors to successfully train very deep networks without the extreme instability seen in naive deep
model training.

Effectiveness of the Approach
The results demonstrated that depth improves performance, provided that training is managed
correctly. The VGG-16 and VGG-19 models achieved almost state-of-the-art performance on the
ImageNet dataset, proving that deeper architectures can learn richer feature representations when
properly optimized.

This method of progressively increasing network depth became a foundational approach in
training deep networks at that time, and influenced later architectures such as ResNet, which further
addressed optimization challenges through residual connections (more on these later).

8.4 GoogLeNet: Efficiency and Parallelism
In the 2014 ImageNet challenge, GoogLeNet by Szegedy et al. [596] introduced an efficiency-
focused architecture that significantly reduced computational cost while improving performance.

Figure 8.6: Comparison of AlexNet, VGG, and GoogLeNet, highlighting the architectural evolution
toward efficiency.

8.4 GoogLeNet: Efficiency and Parallelism 305

Unlike VGG, which relied on deep stacks of 3×3 convolutions, GoogLeNet employed paral-
lelized computation within Inception modules, along with aggressive downsampling at the early
stages of the network, and replaced the large MLP at the end of the CNN with Global Average
Pooling (GAP) and a single FC layer. These innovations made it more suitable for real-world
deployment, aligning with Google’s need for efficient, large-scale model inference. We’ll now review
each important aspect regarding the architecture and how it helped shaped future architectures.

8.4.1 Stem Network: Efficient Early Downsampling
A key challenge in convolutional networks is the high computational cost at early layers, where
feature maps still have large spatial dimensions. GoogLeNet tackled this by incorporating an
aggressive stem network to downsample the input as early as possible.

Key properties of the stem network:
• Early Downsampling: Reduces the input resolution from 224×224 to 28×28 in just a few

layers.
• Efficient Convolution-Pooling Sequence: Uses a combination of 7×7 and 3×3 convolutions

with max pooling, minimizing computation while retaining spatial information.
• Comparison to VGG-16: The same spatial downsampling in VGG-16 is significantly more

expensive:
– Memory Usage: GoogLeNet requires only 7.5MB, whereas VGG-16 requires 42.9MB

(5.7× more).
– Learnable Parameters: GoogLeNet has only 124k parameters, compared to VGG-16’s

1.1M (8.9× more).
– Computational Cost: GoogLeNet performs 418M MACs, while VGG-16 requires 7.5B

MACs (17.8× more).

Figure 8.7: The stem network in GoogLeNet, highlighting its efficient early downsampling.

306 Chapter 8. Lecture 8: CNN Architectures I

8.4.2 The Inception Module: Parallel Feature Extraction
One of the key innovations of GoogLeNet is the Inception module, a computational unit designed
to process feature maps at multiple scales in parallel.

By introducing parallel branches with different receptive fields, this module enables efficient
feature extraction while allowing the network to scale in depth without excessive computational
overhead.

Key Advantages of the Inception Module:
• Multi-Scale Feature Extraction: Different kernel sizes capture patterns ranging from fine-

grained details to high-level structures.
• Parallel Computation: Instead of stacking convolutions sequentially, multiple paths operate

simultaneously, enhancing representation capacity.
• Computational Efficiency: 1× 1 convolutions act as bottlenecks, reducing feature map

dimensionality before expensive operations, minimizing FLOPs.
• Enhanced Gradient Flow: The presence of multiple paths mitigates the risk of vanishing

gradients as it is more likely that at least some branches provide strong error signals during
backpropagation.

Figure 8.8: The Inception module visualized, with the first occurrence in the network highlighted.

Why Does the Inception Module Improve Gradient Flow?
Deep networks often suffer from vanishing gradients, where early layers receive increasingly
weaker updates during backpropagation. The Inception module alleviates this issue through its
parallel structure, which improves gradient propagation in three key ways:

• Independent Gradient Paths: Each branch processes activations separately and maintains its
own set of parameters. This reduces the likelihood that all branches simultaneously produce
near-zero gradients. If one path contributes weak updates, another—operating at a different
scale—can still carry strong signals.

8.4 GoogLeNet: Efficiency and Parallelism 307

• Summation of Gradients: The outputs of all branches are concatenated before passing to the
next layer. Consequently, during backpropagation, their gradient contributions are aggregated:

∂L
∂x

=
k

∑
i=1

∂L
∂oi

∂oi

∂x

where oi is the output from branch i, and x represents the input feature maps. Since multiple
gradient paths are combined, the total error signal is less likely to diminish unless all branches
saturate simultaneously.

• Redundancy and Robustness: Different branches specialize in different spatial contexts—some
capturing fine textures (1× 1), while others focus on larger structures (3× 3, 5× 5). This
diversity prevents any single failure from critically weakening gradient propagation, ensuring
stable training dynamics.

Structure of the Inception Module
Each Inception module consists of four parallel branches, designed to extract diverse features
efficiently:

• 1× 1 Convolution: Reduces channel dimensions before expensive operations, improving
computational efficiency while selecting relevant features.

• 3×3 Convolution: Captures mid-scale features, often preceded by a 1×1 compression layer.
• 5× 5 Convolution: Extracts large-scale patterns, again typically following 1× 1 convolu-

tion, acting as a feature selection mechanism, reducing the computational complexity of the
convolution operation.

• Max Pooling + 1× 1 Convolution: Downsamples features while preserving dominant
activations, with a subsequent 1×1 layer for additional refinement.

By combining these diverse pathways, the Inception module enables deep architectures with
improved gradient propagation, computational efficiency, and strong feature representation.

8.4.3 Global Average Pooling (GAP)
Unlike previous architectures like AlexNet and VGG, which relied on fully connected layers (MLP
head) at the end, GoogLeNet introduced Global Average Pooling (GAP) as a more efficient
alternative.

Key benefits:
• Parameter Reduction: VGG’s fully connected layers contained most of the network’s

parameters. Replacing them with GAP dramatically reduces learnable parameters.
• Lower Computational Cost: GAP minimizes the number of floating-point operations

(FLOPs), making inference faster.
• Prevents Overfitting: Large fully connected layers tend to overfit; GAP forces the network to

use global spatial information instead.

308 Chapter 8. Lecture 8: CNN Architectures I

Figure 8.9: GoogLeNet replaces fully connected layers with Global Average Pooling (GAP), drasti-
cally reducing parameters and FLOPs.

8.4.4 Auxiliary Classifiers: A Workaround for Vanishing Gradients
Before Batch Normalization (BN), training deep networks suffered from the vanishing gradi-
ent problem, where early layers received weak updates, slowing convergence. To counter this,
GoogLeNet introduced Auxiliary Classifiers—intermediate classification heads that reinforced
gradient signals and stabilized training. These weren’t used in the inference stage post training
though, and were only introduced to enable the training of this relatively deep architecture.

Why Were Auxiliary Classifiers Needed?
• Gradient Weakening in Deep Models: As depth increased, gradients from the final classifi-

cation loss diminished, making weight updates of earlier layers ineffective.
• Optimization Instability: Weak gradients led to poor convergence, requiring extensive tuning

to make training work.

How Do They Help?
• Stronger Gradient Flow: Intermediate classification losses inject useful gradients into early

layers, preventing stagnation.
• Implicit Regularization: Mid-layer features must be discriminative, reducing reliance on

final layers.
• Faster Convergence: Reinforcing useful patterns at multiple depths speeds up learning.

Auxiliary Classifier Design
Each auxiliary head mimics the final classifier but is placed at an intermediate layer:

• 5×5 average pooling (stride=3) for spatial reduction.
• 1×1 convolution (128 filters) for channel compression.
• Two fully connected layers (1024, then 1000 outputs).
• Softmax classifier.

8.4 GoogLeNet: Efficiency and Parallelism 309

During training, their losses contribute to the total objective (typically weighted by 0.3), ensuring
they guide learning without dominating.

Figure 8.10: Auxiliary classifiers in GoogLeNet, placed at intermediate layers to aid gradient flow.

Gradient Flow and Regularization
• Improved Gradient Propagation:

– Gradient Shortcuts: Auxiliary classifiers provide alternative paths for gradients, reducing
their decay over depth.

– Early Feature Learning: Mid-network supervision ensures meaningful representations
emerge sooner.

• Implicit Regularization:
– Encouraging Early Discrimination: Forces mid-level features to be useful on their own.
– Multi-Task Effect: Training on intermediate classifications improves generalization.

Relevance Today
With the introduction of Batch Normalization and Residual Connections, auxiliary classifiers have
become obsolete. However, they played a crucial role in pioneering deep architectures before these
stabilizing techniques were developed.

Conclusion
Auxiliary classifiers were an essential workaround for training deep networks before BN. By
injecting intermediate supervision, they improved gradient flow, acted as implicit regularizers, and
accelerated convergence. While no longer common, they highlight the importance of effective
gradient propagation in deep learning design.

310 Chapter 8. Lecture 8: CNN Architectures I

8.5 The Rise of Residual Networks (ResNets)
8.5.1 Challenges in Training Deep Neural Networks

As we have seen with VGG and GoogLeNet, training deep neural networks in 2014 required
numerous training tricks. Even with these techniques, increasing the network depth often led to
degraded performance. However, in 2015, a breakthrough came with the introduction of Residual
Networks (ResNets) by He et al. [206].

One of the key research discoveries that preceded ResNets was Batch Normalization, which we
previously covered. BatchNorm allowed deeper models such as VGG and GoogLeNet to be trained
without additional tricks. However, the introduction of residual connections in ResNets was another
crucial innovation that enabled much deeper networks to train successfully.

Figure 8.11: ResNets in 2015 compared to previous top-performing models in the ImageNet
classification challenge. The error rate dropped significantly (≈ 0.5 error of previous year) while
the number of layers increased (x 7).

8.5.2 The Need for Residual Connections
The number of layers in top-performing ImageNet models increased dramatically with ResNets,
from 19 layers in VGG-19 and 22 layers in GoogLeNet to 152 layers in ResNet-152. This increase in
depth was only possible due to residual connections, which allowed deeper models to be optimized
effectively. The introduction of ResNets led to a significant drop in classification error rates, from
6.7% in 2014 with GoogLeNet to 3.6% with ResNets.

However, why weren’t batch normalization and other techniques sufficient? Before the introduc-
tion of residual connections, deeper models often performed worse than shallower models. Initially,
researchers hypothesized that this degradation was due to overfitting. However, when examining
the training performance of smaller and larger networks, they found that the deeper models were
actually underfitting rather than overfitting, suggesting an optimization problem.

8.5 The Rise of Residual Networks (ResNets) 311

Figure 8.12: A comparison of a 56-layer network and a 20-layer network. The 20-layer model
performs better on the test set, while the 56-layer model underfits on the training set, indicating
optimization difficulties.

This observation was counterintuitive—deeper models should, in theory, be able to mimic
shallower models by copying their layers and learning identity mappings. However, in practice,
deeper models struggled to approximate the identity function where needed.

8.5.3 Introducing Residual Blocks
Deep networks often suffer from the vanishing gradient problem, making it difficult for early
layers to learn meaningful features. Residual connections were introduced to alleviate this issue by
reformulating the mapping that a block of layers must learn.

Figure 8.13: A comparison between a plain block (left) and a residual block (right). The shortcut
connection enables direct gradient flow and allows layers to learn an identity mapping if needed.

312 Chapter 8. Lecture 8: CNN Architectures I

Rather than forcing layers to learn a direct mapping H(x), a residual block is designed to learn a
residual function F (x) such that:

H(x) = F (x)+x.

Here, x is the input to the block and F (x) is typically the output of a series of convolutional layers.
The shortcut connection directly adds x to the output of the residual branch.

Intuition Behind Residual Connections
• Easier Learning of the Identity: If the optimal transformation is close to the identity, the

residual branch can learn to output zeros, so that the block’s overall function is nearly x. This
makes it much easier to train very deep networks.The shortcut thus provides an alternate path
for the gradient to flow directly from later layers to earlier ones.

• Flexible Feature Refinement: Even if the residual branch is not perfectly optimized, the
network can still rely on the shortcut to preserve useful information. The extra non-linearity
introduced in the residual branch adds expressiveness without forcing the entire block to
deviate dramatically from the identity.

By enabling layers to essentially “skip” learning complex transformations when unnecessary,
residual blocks allow very deep networks to be trained more efficiently and reliably.

8.5.4 Architectural Design of ResNets
ResNets combine the best aspects of both VGG and GoogLeNet:

• VGG-style regularity: ResNets are structured into stages, where each residual block consists
of two 3x3 convolutional layers.

• Stage-wise downsampling: The first block in each stage reduces the spatial resolution (via
stride-2 convolutions) while doubling the number of channels, like in VGG.

• GoogLeNet-inspired efficiency: ResNets incorporate a stem network at the beginning and
use global average pooling at the end, eliminating fully connected layers.

Figure 8.14: ResNet structure: A stack of residual blocks, where each block consists of two 3x3
convolutional layers with a shortcut connection.

8.5 The Rise of Residual Networks (ResNets) 313

8.5.5 Bottleneck Blocks for Deeper Networks
ResNets also introduced an improved residual block design called the bottleneck block, inspired by
GoogLeNet’s inception module. Instead of using two 3x3 convolutions per block, the bottleneck
block includes:

• A 1×1 convolution to reduce dimensionality (4C→C)
• A 3×3 convolution for feature extraction (C→C)
• A 1×1 convolution to restore dimensionality (C→ 4C)
This change enables deeper networks with slightly reduced computational costs.

Figure 8.15: Bottleneck residual block: Using 1x1 convolutions before and after the main 3x3
convolution reduces computational costs while increasing depth.

Figure 8.16: Switching to bottleneck blocks allowed a smooth transition from ResNet-34 to deeper
models like ResNet-50, ResNet-101, and ResNet-152, while improving efficiency.

314 Chapter 8. Lecture 8: CNN Architectures I

8.5.6 ResNet Winning Streak and Continued Influence
The introduction of ResNets in 2015 revolutionized deep learning, particularly in the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC). ResNets dominated the competition, securing
first place in all five main tracks, including image classification, object detection, and segmentation.
Their ability to scale to depths previously considered untrainable led to a significant reduction in
classification error rates, with ResNet-152 achieving a top-5 error rate of just 3.6%, far outperforming
previous state-of-the-art architectures.

Beyond ImageNet, ResNets proved highly effective in broader computer vision tasks. They
became a fundamental backbone for models tackling object detection and segmentation, leading to
state-of-the-art performance on the COCO (Common Objects in Context) dataset [358]. COCO
is a large-scale dataset designed for object detection, segmentation, and captioning, featuring over
200,000 labeled images across 80 object categories. The dataset’s diversity and complexity make it a
critical benchmark for evaluating model generalization beyond classification.

ResNets’ impact extended to COCO challenges, where they enabled significant improvements in
object detection frameworks such as Faster R-CNN and Mask R-CNN (which we’ll cover extensively
later). Their superior feature extraction capabilities provided more robust representations, leading to
more precise bounding box localization and segmentation masks. These results solidified ResNets
as the dominant architecture for both classification and detection tasks, influencing deep learning
research for years to come.

Even today, ResNets remain a cornerstone of deep learning. Variants like ResNeXt, Wide
ResNets, and ResNet-D have refined the architecture further, while modern Transformer-based
vision models still incorporate residual connections inspired by ResNets’ fundamental design.

8.5.7 Further Improvements: Pre-Activation Blocks
A later study found that switching the order of operations within residual blocks—from Conv-BN-
ReLU to BN-ReLU-Conv—further improved accuracy. These pre-activation blocks help refine
gradient flow and boost network performance [208].

Figure 8.17: Pre-activation residual block, which improves accuracy by reordering the batch normal-
ization and activation functions.

8.5 The Rise of Residual Networks (ResNets) 315

8.5.8 Architectural Comparisons and Evolution Beyond ResNet
The 2016 ImageNet Challenge: Lack of Novelty
The 2016 ImageNet competition saw no major architectural breakthroughs. Instead, the winning
team employed an ensemble of multiple models, leveraging the strengths of different architectures
to achieve superior accuracy. While effective in practice, this approach did not introduce fundamental
innovations or new design principles for deep networks.

Comparing Model Complexity and Efficiency
By 2017, several architectures had competed for dominance in computer vision, each offering a
trade-off between accuracy, computational cost, and memory efficiency.

Figure 8.18: Comparison of ResNets with other architectures such as VGG, GoogLeNet, Inception,
and others in terms of accuracy, model complexity, and computational cost.

Figure 8.18 provides a comparative analysis of top-performing models across these dimensions.
Key observations from this comparison:

• Inception Models: Google’s Inception series, culminating in Inception-v4 (2017), consis-
tently achieved top-tier accuracy. However, these models were computationally expensive and
had a high memory footprint due to their complex multi-branch structures.

• VGG Networks: Although instrumental in the transition to deeper CNNs, VGG models were
no longer competitive in accuracy and remained highly inefficient in both computation and
memory usage.

• GoogLeNet (Inception-v1): Despite being more parameter-efficient than VGG, GoogLeNet
did not perform as well as the best models in terms of accuracy.

• AlexNet: The first breakthrough deep CNN in 2012, AlexNet was now vastly outperformed
by newer architectures. While it had many learnable parameters, it was not computationally
expensive but significantly lagged in accuracy.

• ResNets: Residual Networks remained among the top architectures, striking a balance between
accuracy, simplicity, and efficiency. They provided strong generalization with moderate
computational demands compared to Inception-based models.

316 Chapter 8. Lecture 8: CNN Architectures I

Beyond ResNets: Refinements and Lightweight Models
While ResNets set a new standard for deep learning architectures, further refinements and specialized
models emerged in later years. Some notable advancements include:

• ResNeXt: A modular extension of ResNet, ResNeXt introduced a grouped convolution
strategy, inspired by Inception’s parallel paths, achieving better accuracy without significantly
increasing computational cost.

• MobileNets and ShuffleNets: Recognizing the need for efficient models suitable for edge
devices, researchers developed lightweight architectures such as MobileNets and ShuffleNets.
These models used depthwise separable convolutions and grouped convolutions to reduce
computational complexity while maintaining competitive performance. We will cover these
extensively in later sections.

The landscape of CNN architectures continued evolving post-ResNets, with a focus on improving
computational efficiency and extending deep learning capabilities beyond high-performance GPUs
to mobile and embedded platforms.

