6.1

Introduction: The Challenge of Computing Gradients

In the previous lecture, we explored how neural networks exploit non-linear space warping to form
complex decision boundaries—far surpassing the capabilities of linear classifiers. While activation
functions like ReLLU make this possible, they introduce a key question:

How do we efficiently compute gradients for neural networks with millions or billions of
parameters?

Traditional numerical or purely symbolic differentiation methods quickly become:

* Scalability Bottlenecks: Deriving gradients manually does not scale to deep networks.

* High Computational Complexity: Efficient gradient computation is non-trivial at large
scales.

* Limited Modularity: Any architectural modification (e.g., adding layers, changing the loss)
requires recalculating derivatives from scratch.

196 Chapter 6. Lecture 6: Backpropagation

6.1.1 A Bad Idea: Manually Deriving Gradients

(Bad) Idea: Derive VL on paper
s= f(e; W) = Wa Problem: Very tedious: Lots of matrix
L — Z max(0,; — 5y, +1) calculus, need lots of paper

i#i Problem: What if we want to change
= Z max(0, W;. -z +W,,.-x+1) loss? E.g. use softmax instead of
7Y SVM? Need to re-derive from

scratch. Not modular!

N
L= %ZL, FAY W
i=1 k

N
1 p
=0 max(0, W x4+ Wy, cx 1) AW

N

Problem: Not feasible for very
complex models!

i=1 j#y; k
1 N
Vwl=Vw | % > Z max(0, Wy, @+ Wy, .-z + 1)+ XY WE
i=1 j#y; k
Justin Johnson Lecture 6 - 6 January 26, 2022

Figure 6.1: Manually deriving gradients for a simple linear classifier using the SVM loss. This
process becomes infeasible for deep networks.

One naive approach is to derive all gradients by hand. As shown in Figure 6.1, it might be doable
for basic linear models. Nevertheless, it also clearly demonstrates some of the problems described in
the introduction (very tedious and error-prone), and mostly, it gives us a hint to how complex this
process will be for more complex models like neural networks, with many layers and millions up to
billions of parameters. Hence, this approach is impractical, and we need to think of a better idea to
compute gradients for the neural network optimization task.

6.1.2 A Better Idea: Utilizing Computational Graphs (Backpropagation)

Better Idea: Computational Graphs

s=Wx Li = Zj:#yi maX(O, Sj — Syi + 1)

X
S _

/i@ s (scores) @ 0 L
v (=)

R(W)

Justin Johnson Lecture 6-7 January 26, 2022

Figure 6.2: Computational graphs provide a structured, automatic approach to computing gradients.

6.2 Toy Example of Backpropagation: f(x,y,z) = (x+y)z 197

A more robust solution is to represent computations as a computational graph:

* Each node in the graph performs a specific operation (e.g., addition, matrix multiplication, or
more complex operations like ReLU based on more basic primitives).

* Edges represent the flow of intermediate values (outputs of one operation become inputs to
the next).

» Backpropagation can be used to automatically compute the gradient at each node by systemat-
ically applying the chain rule in reverse. Hence, each node in the graph only does simple local
computations (derives the downstream gradients using a multiplication of the local gradient
and the upstream gradient received from a following node). We’ll see several examples of
backpropagation later to understand what do we mean by that and what makes it important.

Why Use Computational Graphs?
* Modularity: Swap loss functions, activation layers, or architectures without manually re-
deriving gradients.
* Scalability: Supports deep networks with millions of parameters, keeping computations local
to each node.
* Automation: Greatly reduces human error and development time.

6.2 Toy Example of Backpropagation: f(x,y,z) = (x+y)z

Backpropagation:
Simple Example

f,y,z)=(x+y) z
eg.x=-2,y=5,z2=-4

’1. Forward pass: Compute outputs

Chain Rule
q=x+y| f=q-z of aqof| [oq
2. Backward pass: Compute derivatives a - aa_q a =1 ‘
Want: i % g Downstrean/'!' LocaII '}Jpstream
ax ! ay ! aZ Gradient Gradient Gradient
Justin Johnson Lecture 6 - 27 January 26, 2022

Figure 6.3: Computational graph representation of f(x,y,z) = (x+ y)z, showing forward and back-
ward passes. Intermediate values of the forward pass are presented in green on-top of the graph
edges, while the corresponding backpropagation values are presented in red below the edges.

Consider a simple function:

feyz) = (x+y)z,

withx=—-2,y=35, and z = —4.

198 Chapter 6. Lecture 6: Backpropagation

6.2.1 Forward Pass

We traverse the graph from left to right:
cg=x+y=-24+5=3.
. f:qz:3><(—4):—12

6.2.2 Backward Pass: Computing Gradients
To find 2, 2L 9L we apply the chain rule:

v e
.g;:q:3
. 8q2z:_4'
-?y[—‘;g ‘;;]—(—4)><1:—4
o gi; % _ (4)x1=—4

6.3 Why Backpropagation?
6.3.1 Local & Scalable Gradients Computation

1
Another Example few) = T Garerwimwn

Backward pass: Compute gradients

w0 2.00

Local Gradient

6[1]_ 1
oxlxl — x2

x0 -1.00

w1 -3.00

x1 -2.00

w2 -3.00

Downstream Upstream
Gradient Gradient
Justin Johnson Lecture 6 - 36 January 26, 2022

Figure 6.4: During backpropagation, each node in the computational graph computes its downstream
gradients using the local gradient (computed based on the local operation over the input. For
instance, if we denote the input to the node as x and the node computes %, then the local gradient is
% [%] = —xiz) and the upstream gradient that is simply given as input from subsequent nodes.

As we’ve seen in the above examples, within the computational graph, each node performs only
local gradient calculations. This is the core principal behind backpropagation, making it scalable and
practical. Therefore, in order to make sure we clearly understand why, we’ll zoom out and provide a
high-level overview looking only at an abstract node in a computational graph independently.

6.3 Why Backpropagation? 199

Suppose a node f outputs z from inputs x and y. Given an upstream gradient 8715 (the partial
derivative of the loss L w.r.t. z), the node only needs:
° aZ
dx’
%
ay’

to compute:

oL _ox oL oL _o: oL
ox dx dz' dy Iy = Iz’

Z
Downstream f
radients 0z
. — | Local oL
gradients a7
Upstream
gradient

Justin Johnson Lecture 6 - 32 January 26, 2022

Figure 6.5: Visualizing the backpropagation process for a node f that is given as inputs x, y and
outputs z. As can be seen, the backpropagation gives us the upstream gradient from subsequent node
in the graph, and we are only left with the local gradients computation: %, 3—; in order to compute

the downstream gradients: %, % allowing us to continue the graph traversal in the backpropagation

process.

The local multiplication by ‘3—5 (the upstream gradient) ensures each node can be implemented
and debugged independently, enabling large-scale networks to remain tractable. This demonstrates
the power and essence behind backpropagation for complex models, making it the go-to approach
for gradients computation in neural networks optimization.

6.3.2 Pdairing Backpropagation Gradients & Optimizers is Easy
While backpropagation efficiently provides the necessary gradients for each parameter, we still
need gradient-based optimizers to use those gradients in gradient descent updates. In practice,
we pair backprop with methods like Stochastic Gradient Descent (SGD) or AdamW, which
adjust parameters based on the gradients to minimize the loss. This synergy—automatic gradient
computation via backprop, combined with iterative updates via gradient descent—enables neural
networks to learn effectively from large and complex datasets.

6.3.3

6.34

6.3.5

200 Chapter 6. Lecture 6: Backpropagation

Modularity and Custom Nodes

Because the computation graph decomposes into local operations, we can define specialized nodes
for common functions. For example, a “sigmoid node” encapsulates the sigmoid function:

1

W=t

and uses the known derivative 6’(x) = 6(x) (1 — o (x)) to backpropagate efficiently. This approach:
» Simplifies the computational graph, reducing intermediate steps.
* Improves memory efficiency (fewer nodes, less storage for intermediate values).
* Allows us to treat the sigmoid as a single, optimized building block in our network, making
the graph more semantically meaningful.

1
Another Example F@w) = T —Garerwimrwy S WoXo + wixy + wy)

Backward pass: Compute gradients

1 Computational graph is not
O'(ZE') = T unique: we can use primitives
]. + e z that have simple local gradients

w1 -3.00

Sigmoid
1.00 | A\ 100 AN 7 3N\ 187 0.73
x1 o]\ 0 5% @
a(z) =1 / (1 + ex)
w2 300 [Downstream] = [Local] * [Upstream]
0.20 = 1—)* *1.0=0.2
o a e™* 1+e™

Sigmoid local _~_ — - _
gradient: dx [o(] (14 e%)2 < 1+e* 1 a(x))o(x)

Justin Johnson Lecture 6 - 46 January 26, 2022

Figure 6.6: A “sigmoid node” (in the blue rectangle) can replace multiple low-level operations (the
intermediate nodes encapsulated within). Its known derivative simplifies backpropagation.

Utilizing Patterns in Gradient Flow

Backpropagation is not just a mechanical process of computing derivatives; it follows structured
gradient flow patterns that help us analyze and design computational graphs more effectively.
By understanding these patterns, we can quickly construct computational graphs, debug gradient
propagation issues, and optimize network structures.

Addition Gate: The Gradient Distributor

The add gate acts as a gradient distributor during the backward pass. When a function locally
computes the output as the sum of its inputs, the local gradients for each input are simply 1. Thus, the
downstream gradient for each input is equal to the upstream gradient, making it straightforward
to propagate gradients backward.

This pattern also provides an intuition about how gradient flow behaves in models that use
addition operations, such as residual connections in deep networks which we’ll extensively cover
later.

6.3 Why Backpropagation? 201

Copy Gate: The Gradient Adder

The copy gate (or copy node) is a trivial operation in the forward pass—it simply duplicates its input.
However, it is useful when the same term appears in multiple parts of a computational graph.

For instance, weight matrices are shared across different parts of a loss function:

* In one path, they compute intermediate values such as h = Wx+ b.

* In another path, they contribute to the regularization term (e.g., L1/L2 regularization).
Since the weight matrix is reused, the backward pass must account for all gradient contributions.
The copy gate accumulates gradients by summing all upstream gradients and passing the combined
result as its downstream gradient.

Interestingly, the add and copy gates are dual operations:

* The forward operation of the add gate behaves like the backward operation of the copy gate.

* The forward operation of the copy gate behaves like the backward operation of the add gate.

Multiplication Gate: The Gradient Swapper

The multiplication gate (or mul gate) swaps the roles of its inputs in the backward pass. For the
function

flxy)=x-y,
the local gradients are

of _, 9 _
ox dy -

Hence:
* The downstream gradient for y is x times the upstream gradient,
* The downstream gradient for x is y times the upstream gradient.
This mixing of gradients can lead to:
* Exploding gradients: Large products magnify updates, destabilizing training,
* Vanishing gradients: Small products reduce gradient magnitudes, slowing convergence.

Max Gate: The Gradient Router

The max gate selects the largest input value in the forward pass and routes the entire upstream
gradient to that winning input in the backward pass. All other inputs receive zero gradient. While
intuitive, this creates gradient starvation: only one path in the computational graph receives a
nonzero gradient, potentially slowing learning.

202

Chapter 6. Lecture 6: Backpropagation

Patterns in Gradient Flow

add gate: gradient distributor

mul gate: “swap multiplier”

3 2
2 N 7 5%3=15 ™\ 6
4 x@ 2 3 ;@ 5
2 2*5=10
copy gate: gradient adder max gate: gradient router
7 4
7 ar 0 y 5
4+2=6 7 5 ,. 9
2 9

Justin Johnson Lecture 6 - 50 January 26, 2022

Figure 6.7: Visualization of gradient flow patterns: (1) Add gate—gradient distributor, (2) Copy
gate—gradient adder, (3) Multiplication gate—gradient swapper, and (4) Max gate—gradient router.

6.4 Implementing Backpropagation in Code

Now that we understand gradient flow patterns, how can we implement backpropagation in practice?
One approach is to compute the flat gradient code. This method directly computes gradients step
by step without leveraging modular APIs such as PyTorch’s autograd. While simple, it lacks
flexibility.

def f(wd, x0, wl, x1, w2):

Backprop Implementation: S0 = w0 * X0
” ” . . s1 = wl x x1
Flat” gradient code: ¢5ryard pass: I
Compute output s3 = 52 + w2

w0 200 L = sigmoid(s3)

X0 -1.00 Base case

grad_L = 1.0
grad_L * (1 - L) %L

grad_s3 =

wl grad_w2 = grad_s3
grad_s2 = grad_s3
x1 grad_s@ = grad_s2
grad_sl = grad_s2
w2 -3 grad_wl = grad_sl * x1
020 grad_x1 = grad_sl * wl
grad_w@ = grad_s@ * x0
grad_x@ = grad_s@ * w@

Justin Johnson Lecture 6 - 53 January 26, 2022

Figure 6.8: A pseudo-implementation of forward and backward passes in a flat gradient backpropa-
gation implementation.

6.5 A More Modular Approach: Computational Graphs in Practice 203

Flat Backpropagation: A Direct Approach

The forward pass follows naturally from the computational graph, while the backward pass appears
as a reversed version of it. The process begins with the base case:

grad_L=1.0

(i.e., the gradient of the loss with respect to itself is 1), and then we propagate gradients in reverse
order.
A step-by-step breakdown:
* The loss is computed after applying a sigmoid activation, so we begin by computing the local
gradient of the sigmoid function:

L o) =00 (1-0()).

Since o (x) is the output of the sigmoid function (denoted as L), we get:
grad_s3=grad_L-(1—L)-L.

* The add gate distributes grad_s3 equally to its inputs, propagating gradients further back in
the graph.

* The final two mul gates act as swapped multipliers, computing gradients for each input based
on the values of the other.

Why Flat Backpropagation Works Well.
Despite its simplicity, this approach correctly computes gradients without manually deriving them.
However, it has major limitations:
* Non-Modular: Any change in the model or loss function requires rewriting the gradient code
from scratch.
* Hard to Scale: Flat implementations do not easily extend to deep architectures with many
layers.

A More Modular Approach: Computational Graphs in Practice

A more structured way to implement backpropagation is to use a computational graph API. Instead
of manually coding backward passes, we represent the entire model as a graph structure that:

* Stores nodes corresponding to computations.

* Automatically computes gradients by traversing the graph in reverse order.

* Allows modifications to loss functions and architectures without rewriting gradient code.

204 Chapter 6. Lecture 6: Backpropagation

Backprop Implementation: Modular API

Graph (or Net) object (rough pseudo code)

ph(object):

forward(inputs):
1. [pass inputs to input gates...]
2. forward the computational graph:

or gate in self.graph.nodes_topologically sorted():

0 @ gate.forward()
020 irn loss # the final gate in the graph outputs the loss

def backward():

or gate reversed(self.graph.nodes_topologically sorted()):
gate.backward() # little piece of backprop (chain rule applied)

rn inputs_gradients

Justin Johnson Lecture 6 - 61 January 26, 2022

Figure 6.9: API for a computational graph, requiring an implementation of both the forward and
backward methods.

6.5.1 Topological Ordering in Computational Graphs

A computational graph provides an efficient way to manage computations, enabling automatic
differentiation and modularity. The graph structure follows a topological ordering, meaning:

» Each node appears before all nodes dependent on it in the forward pass.

* In the backward pass, the nodes are traversed in the reverse order.
This ensures that gradients are properly propagated through the network, following the dependencies
established in the forward pass.

6.5.2 The API: Forward and Backward Methods

A computational graph framework defines an API with two essential functions:

1. forward(): Computes and stores intermediate values for later use in backpropagation.
2. backward(): Applies the chain rule to compute gradients by traversing the graph in reverse.

Many deep learning frameworks, such as PyTorch, TensorFlow, and JAX, implement automatic
differentiation engines based on this principle. These frameworks eliminate the need for manually
coding derivatives, making it easier to train deep models.

6.5.3 Advantages of a Modular Computational Graph

Using a computational graph for backpropagation offers several advantages over flat backpropagation:
* Modularity: Changing the model architecture or loss function only requires modifying the
forward function, and the backward function is computed automatically.
* Scalability: Works efficiently for deep networks with millions or billions of parameters.
* Automatic Differentiation: Frameworks can compute gradients dynamically, reducing the
need for manual derivative calculations.
This modular approach enables modern deep learning frameworks to handle complex architec-
tures efficiently while abstracting away the tedious details of gradient computation.

6.6 Implementing Backpropagation with PyTorch Autograd 205

6.6 Implementing Backpropagation with PyTorch Autograd

A practical example of a modular approach to implementing backpropagation is PyTorch’s Autograd
engine. In PyTorch, functions that support automatic differentiation inherit from
torch.autograd.Function. These functions must implement two key static methods:

* Forward: Computes the node’s output and stashes values required for the backward pass.

* Backward: Receives the upstream gradient and propagates it back using local derivatives.

Example: PyTorch Autograd Functions

class Multiply(torch.autograd.Function):

X @staticmethod
.z def forward(ctx, x, y): Need to stash some
;*/) - ctx.save_for_backward(x, y) “—— values for use in
= Z=X*xYy backward
i turn z
y re
@staticmethod
(x,y,z are scalars) def backward(ctx, grad_z): +«——— Upstream
gradient

X, y = ctx.saved_tensors
grad_x =y * grad_z # dz/dx * dL/dz Multiply upstream
grad_y = x * grad_z # dz/dy * dL/dz| and local gradients
return grad_x, grad_y

Justin Johnson Lecture 6 - 62 January 26, 2022

Figure 6.10: Example of PyTorch Autograd implementation for a multiplication gate (z = x-y).

6.6.1 Example: Multiplication Gate in Autograd

Consider a simple multiplication operation z = x -y, implemented in PyTorch Autograd:

1. The forward method computes z and saves x and y for the backward pass in a dedicated
context variable ctx.

2. The backward method retrieves x and y as it receives the context from the forward pass, and
the upstream gradient. It then applies the chain rule, and returns the downstream gradients:

oo oo
ox 97 dy 0z *

This pattern generalizes to all operations in a computational graph, allowing PyTorch to handle
backpropagation automatically.

6.6.2 Extending Autograd for Custom Functions

Developers can extend PyTorch’s Autograd by defining their own Function classes, implementing
custom forward and backward methods. By doing so, new differentiable operations can be
seamlessly integrated into neural network models.

206 Chapter 6. Lecture 6: Backpropagation

An interesting example is PyTorch’s implementation of the sigmoid activation function, which
follows this modular API:

#ifndef TH_GENERIC_FILE

#define TH_GENERIC_FILE "THNN/generic/Sigmoid.c" PyTOrch Sigmoid Iayer
#else
void THNN_(Sigmoid_updateOutput)(FOrWard
THNNState *state,
THTensor *input, 1
THTensor *output) 4—0—(m) —
¢ 1 4=e=*
THTensor_(sigmoid) (output, input);
}

void THNN_(Sigmoid_updateGradInput)(
THNNState *state,
THTensor *gradOutput,
THTensor *gradInput,
THTensor *output)

THNN_CHECK_NELEMENT (output, gradOutput);

THTensor_(resizeAs) (gradInput, output); Backward
TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, gradOutput, scalar_t, output,
scalar_t z = *output_data;
*gradInput_data = *gradOutput_data * (1. - z) * z; (1 — 0’(.’13)) U(:t)
)i
¥
sendif Source
Justin Johnson Lecture 6 - 67 January 26, 2022

Figure 6.11: Example of PyTorch’s sigmoid layer implementation with automatic differentiation.

By chaining multiple such autograd functions, we construct computational graphs, enabling both
inference (forward pass) and training (backward pass). This is the core essence of PyTorch.

6.7 Beyond Scalars: Backpropagation for Vectors and Tensors

So far, we have discussed backpropagation in the context of scalar-valued functions. However,
real-world neural networks involve vector-valued functions, requiring us to extend backpropagation
to gradients and Jacobians.

Recap: Vector Derivatives

xER,yER x€RN,yeR x € RN,y e R

Regular derivative: Derivative is Gradient: Derivative is Jacobian:
dy dy
X
% cr ——€R", —Z € RN*M
dx ox 0x
<6y> _9y (ay _9;
If x changes by a small a.] = a_ -
. . X/ i 0x;:
amount, how much 0x t axl LJ t
will y change? For each element of x, For each element of x, if it
if it changes by a small changes by a small amount
amount then how then how much will each
much will y change? element of y change?
Justin Johnson Lecture 6-71 January 26, 2022

Figure 6.12: Recap of scalar derivatives, gradients, and Jacobians.

6.7 Beyond Scalars: Backpropagation for Vectors and Tensors 207

6.7.1 Gradients vs. Jacobians

« Gradient (Scalar-Valued Function): For a function f : RY — R, the gradient is the vector of
partial derivatives:

_[af 9f af
Vf(X)— Tm? TXQ’.“’M

In a typical neural network setting, f might be a loss function .Z’(6) of the model parameters
0, and V_Z tells us how to update the parameters to minimize the loss.

« Jacobian (Vector-Valued Function): For a function F : RY — RM the Jacobian is an M x N
matrix where each entry

JF;
8xj

J,‘j =

represents how each input dimension x; affects each output dimension F;. Rows of this matrix
can be seen as gradients of individual output components. In neural networks, this arises very
often when we compute local derivatives for a node in the graph, as if the inputs to the node
are vectors X, y and the output is a vector z, and each vector has its own number of elements
(Dy,Dy,D;) then the local "gradients’ (derivatives) in this case are Jacobian matrices: dz/dx is
of dim [D, x D] and dz/dy is of dim [Dy x D,].

By understanding both gradients and Jacobians, we see why backpropagation must handle
vector-valued outputs (e.g., a network’s logits or output features) rather than only scalar-valued loss
functions. Modern frameworks automatically compute these matrix derivatives, enabling efficient
training in multi-output scenarios. We’ll now explore how the backpropagation process we’ve seen
earlier generalizes to support such functions.

6.7.2 Extending Backpropagation to Vectors

Backprop with Vectors

Dx\

Loss L still a scalar!
Local

Jacobian matrices

> %] [0,xD) >
Downstream ox f
Gradients Matrix-vector 62
multiply o~ [D x D] aL
/ ay / ’ a3, Dz
Dy y 0z a a0z
aL / 0z Upstream Gradient
D a/ 9 For each element of z, how
Y much does it influence L?
Justin Johnson Lecture 6 - 75 January 26, 2022

Figure 6.13: A node f receiving two vectors x € RP~ and y € RP» and producing z € RP:. We extend
backpropagation to handle vector inputs and outputs.

208 Chapter 6. Lecture 6: Backpropagation

In earlier sections, we focused on backpropagation when both inputs and outputs to a node were
scalars. Real-world neural networks, however, typically process and produce vectors or even higher-
dimensional fensors. This section provides a detailed look at how backpropagation extends to these
more general scenarios.

We now move from a node that received scalars x,y and returned a scalar z, to a node that
handles:

» x € RPr and y € R?> (input vectors),

+ z € RP: (output vector).

Although the output is now a vector, the overall loss function L (e.g., a training objective) remains
a scalar. Therefore:

dL D.

z E R ”,
~—

upstream gradient

tells us how sensitive L is to each component z;. The local gradients % and g—; become Jacobian

matrices:
0z 0z
87 c RDZXDX7 87 c RDZXD),.
X y

By applying the chain rule, the downstream gradients % and % each become:

oL (dz\'9L AL (dz\'IL
ox \dx/ 9z’ dy \dy/) 9z’
where each result has the same dimension as the corresponding input vector (D, or Dy).

6.7.3 Example: Backpropagation for Elementwise RelLU

Jacobian is sparse: off-diagonal entries

Backprop with Vectors all zero! Never explicitly form Jacobian;
instead use implicit multiplication
4D input x: 4D output y:
[1] —— — [1]
(2] —— f(x)=max(0,x) —— [0
[3] — (elementwise) |~ [3]
[-1] — — [0]
4D dL/dx: [dy/dx] [dL/dy] 4D dL/dy:
(4] — [1 114] [4]
(0] [00 1[-1] [-1] Upstream
[5] —— [0010][5] [51] gradient
[0] — I 0]1[9] [9]
Justin Johnson Lecture 6 - 81 January 26, 2022

Figure 6.14: Backprop through an elementwise ReLLU node. Negative inputs produce zeros in the
output (and zero gradients), while positive inputs pass gradients through.

6.7 Beyond Scalars: Backpropagation for Vectors and Tensors

209

Consider an elementwise ReLU applied to a vector x € R*. For example:

X = — y=max(0,x) =

S WO =

If the upstream gradient (the sensitivity of the loss L w.r.t. each element of y) is

4
oL —1
dy |5’
9

we must compute %. Conceptually, the local Jacobian % is a 4 x 4 diagonal matrix:

1 000
0 00O
0 01 of’
0 00O

where the diagonal element is 1 if x; > 0 and O otherwise. This multiplication yields:

4
oL |0
ox |5
0
. Jacobian is sparse: off-diagonal entries
Backprop with Vectors all zero! Never explicitly form Jacobian;
instead use implicit multiplication
4D input x: 4D output y:
[1] [1]
[-2] "I f(x) = max(0,x) - [0]
[3] (elementwise) [3]
[1] —— — [0]
4D dL/dx: [dy/dx] [dL/dy] 4D dL/dy:
(4] - oL —[4]—
[0] + (6_L> B (6_) , ifx;>0—1[-1] Upstream
[5] —lox)i 0 i otherwise — 51 Bradient
[0] - ' —[9]——
Justin Johnson Lecture 6 - 82 January 26, 2022

Figure 6.15: A more memory-efficient approach: do not form % explicitly. Instead, reuse the input

mask (i.e., which elements of x are positive).

6.74

6.7.5

210 Chapter 6. Lecture 6: Backpropagation

Efficient Computation via Local Gradient Slices

High-dimensional neural network operations, such as matrix multiplications or convolutions, often
have massive Jacobians when viewed formally. Storing or iterating over all partial derivatives
explicitly is impractical. Instead, we exploit local gradient slices to determine how each input
component affects the output, then combine these slices via standard matrix multiplications.

Backpropagation with Matrices: A Concrete Example
Consider a matrix multiplication:

Y =XW,

where X € RV*P W € RP*M and Y € RV*M | We have a scalar loss L, and the upstream gradient

% is also an (N x M)-shaped matrix.

Numerical Setup.
Let N =2,D =3, and M = 4. Suppose:

32 1 —1
X:{i i—f} W=1[2 13 2
321 =2
Multiplying gives Y € R?*4. Concretely,
-1 -1 2 6
Y_XW_[S 2 11 7]
In the backward pass, we receive:
% 12 3 -39
Y |-8 1 4 6|
Example: Matrix Multiplication v: INxM]
. [(1-1 2 6]
x: [NxD] w:[DxM] . . . _ o
(2131 [3]21-1 Matrix Multiply y = xw 211 7]
[- 21132 L= p :
=22 { 3|2 1_2]] Yij le’kwk’J dL/dy: [NxM]
dL/dx: [NxD] : Sl
x: [Nx
[-8146]
[[Local Gradient Slice:
[? 2?2 2] ;
d d
dL/Xm’l Vl,z/ X1,1 D
= - (dL/dy)
Y2,1 = X3,1W1,1 + X 0Wy 1 + Xp3W3
Justin Johnson Lecture 6 - 99 January 26, 2022

Figure 6.16: Computing a “gradient slice” for a single element X; ;. Rather than storing the entire
local Jacobian, we only determine how X; ; influences each output element of Y, then combine that
slice with the relevant elements of g—‘L{.

6.7 Beyond Scalars: Backpropagation for Vectors and Tensors

211

Slice Logic for One Input Element.
Focusing on a single entry, e.g. X; | = 2:

* Only row 1 of Y depends on X ;.

* Each element y; ,, is updated by xi 1 - Wy .

* The second row y» . is unaffected, so its local gradient is zero.
Hence, for X 1, the local gradient slice % has the form:

Wil W12 W13 Wid4
0 0 0 0

Next, we take the elementwise product with g—‘L{ over the same region to compute %]. Numerically:

JL
wi.=[3,2,1, —1], ﬁ:[2, 3,-3,9].

So

h =3%x242x3+1x(=3)+(~1)x9=0.

Example: Matrix Multiplication

y: [NxM]
: : [-1-1
- 2132 = , .
[-3 4 2] { . 1_2]] Vi j le,kwk'] 4L/dy: [N<M]
k — -
dL/dx: [NxD] {}
E@ z z }'— Local Gradient Slice:
dL/dx; 4 ->
= (dy/dx ;) - (dL/dy) ooc

= (W1,;) : (dl-/dyl,;)
=3*%2+2*3+1*(-3)+(-1)*9=0

Justin Johnson Lecture 6 - 103 January 26, 2022

Figure 6.17: Another view of the slice approach for X ;. Only the first row of Y receives a nonzero

local gradient from this input element.

Another Example: X, 3.
For X5 3 =2:

* Only row 2 of Y depends on it.

* Each element y, ,, is updated by (x23 - w3).

* The first row is unaffected (local gradient is zero).
Ifwy. =3, 2,1, —2], then

JL __
dx3 3

X (=8)+2x 14 1x44(—2)x6=—24+2+4—12=—30.

212 Chapter 6. Lecture 6: Backpropagation

Example: Matrix Multiplication

y: [NxM]
. [(1-1 2 6]
x: [NxD] w:[DxM] | . . _
(2 13] [321-1] Matrix Multiply y = xw [5 211 7]
G213 R R Afdy:]
dL/dx: [NxD] []
(o? 21 | Local Gradient Slice:
[? 2[30]] by /dx -
dL/dx; 3 ‘ ‘
oy L E213]

(W3,:) : (dL/dVZ,)
3*(-8)+2*1+1*4 +(-2)*6 =-30

Justin Johnson Lecture 6 - 105 January 26, 2022

Figure 6.18: Similarly, X» 3 affects only the second row of Y. By repeating this logic for all elements,
we derive the standard matrix-multiplication backprop formulas.

6.7.6 Implicit Multiplication for the Entire Gradient

While the slice-by-slice perspective shows how each input entry influences each output entry, in
practice we combine all slices at once with matrix multiplication. Concretely:

oL (LN v OL 1 (0L
ax‘(w)w’ W~ (8Y>'

These expressions produce the exact same result as summing the contributions from each local slice
individually—without constructing the full ((N x D) x (N x M)) Jacobian.

Example: Matrix Multiplication

y: [NxM]
: wi[DxM] [1-12 6]
[Xz[’\ixi’]] [321-1] Matrix Multiply y = xw [5 211 7]
- 2132 .= . .
o { 32 17211 Yij le"‘w"'f dL/dy: [NxM]
— k — [23-39]
E:Il_éd):(L:(a[N_ng} [-8146]
[-24 9 -30] dL/dx = (dL/dy) w'
(NxD] [NxM] [MxD] Easy way to remember:
It’s the only way the
dL/dw = X (dL/dy) shapes work out!
[DxM] [DxN][NxM]
Justin Johnson Lecture 6 - 108 January 26, 2022

Figure 6.19: By using vector/matrix multiplications and slicing logic, we avoid forming massive
Jacobians in memory.

6.7 Beyond Scalars: Backpropagation for Vectors and Tensors 213

Why Slices Are the Solution.

* Memory Savings: Instead of building a giant Jacobian, we focus on local slices (each shaped
like Y, and effectively, a row of Y that is not Os) and multiply them with the matching row
of % to get the corresponding element of the downstream gradient. The local slices can
be discarded each time after we finish the computation of the corresponding element of the
downstream gradient.

* Efficiency: In practice, we skip per-element slicing entirely and jump to (g—‘L{) WT and
X' (%) using fast BLAS/GPU kernels.

* Scalability to High Dimensional Tensors: For high-rank tensors (e.g., images), the same prin-
ciple applies. We typically flatten or reshape dimensions to perform the relevant multiplications
in a similarly efficient manner.

This implicit backprop approach avoids the exponential growth of explicit Jacobian storage,

making gradient-based learning feasible even for large-scale neural networks.

A Chain View of Backpropagation

Another way to understand backpropagation is to see the computational graph as a chain of functions
operating on intermediate variables. Suppose we have:

x1= filxo), x2=falx1), ..., L= fa(x3),

where f1 outputs the scalar loss L. This chain perspective is especially useful when exploring
different modes of automatic differentiation.

Reverse-Mode Automatic Differentiation

Reverse-Mode Automatic Differentiation

gL

Dy D, D, D; scalar

Matrix multiplication is associative: we can compute products in any order
Computing products right-to-left avoids matrix-matrix products; only needs matrix-vector

cha oL <6x1) (6x2> <6x3) < OL) Whj\t iffwe\llvant
amn _— = grads of scalar
rule 6x0 axo 6x1 axZ ax3 input w/respect

. to vector
ar output [DO X Dl] [Dl X DZ] [D2 X D3] [D3] outputs?

or inputs

Justin Johnson Lecture 6 - 112 January 26, 2022

Figure 6.20: Reverse-mode automatic differentiation can exploit the associativity of matrix multipli-
cation to replace potentially expensive matrix-matrix products with matrix-vector products, moving
from right to left.

214 Chapter 6. Lecture 6: Backpropagation

When a scalar loss L appears at the end of the computational graph, reverse-mode automatic
differentiation efficiently calculates gradients with respect to a large number of parameters. By
traversing the chain from L backward, matrix-vector products replace matrix-matrix products, which
is much more efficient for high-dimensional problems.

Forward-Mode Automatic Differentiation

Forward-Mode Automatic Differentiation

d f
scalar D, D, D, D,

Computing products left-to-right avoids matrix-matrix products; only needs matrix-vector

Beta im \I;Lk% mentation in PyT orch! https://pytorch.org/tutorials/intermediate/forward ad usage.html|

‘ou can also

Chain GX3 _ (ax()) (ax1> (axZ) (ax3) Zmplen;ent)
- orward-mode AD
rule aa aa axo axl axz using two calls to

reverse-mode AD!

[Do] [DO X Dl] [D1 X DZ] [DZ X D3] (Inefficient but

elegant)

Justin Johnson Lecture 6 - 115 January 26, 2022

Figure 6.21: Forward-mode automatic differentiation is useful for computing the derivatives of scalar
inputs with respect to multiple outputs. While not commonly used in deep learning, it is widely
applied in physics simulations and sensitivity analysis.

In contrast to reverse-mode automatic differentiation, which is optimized for computing derivatives
of a scalar loss with respect to many parameters, forward-mode automatic differentiation is more
suitable when:
* A single scalar input (or a few inputs) affects many outputs, and we need derivatives of all
outputs with respect to this input.
* The computational graph is narrow but deep (e.g., computing derivatives with respect to
time-dependent variables in simulations).

When Is Forward-Mode Aufomatic Differentiation is Useful?
While forward-mode differentiation is rarely used in deep learning, it plays a crucial role in other
scientific and engineering domains, including:
* Physics Simulations: Understanding how changes in fundamental constants (e.g., gravity,
friction) affect entire system dynamics.
* Sensitivity Analysis: Evaluating how small variations in input parameters propagate through a
model, which is essential for robust system design.
* Computational Finance and Engineering: Where derivative calculations are needed for risk
modeling and structural analysis.
Unlike reverse-mode differentiation, which propagates gradients backward, forward-mode propa-
gates derivatives forward through the computation graph, making it efficient for computing derivatives
with respect to a few key inputs.

6.7 Beyond Scalars: Backpropagation for Vectors and Tensors 215

6.7.6 Computing Higher-Order Derivatives with Backpropagation

Backprop: Higher-Order Derivatives

Xo fy X4 f, L QdL/dxlﬁdL/deL(dL/dxo)-v

Do D, scalar D, Do scalar

Backprop! o .
This is implemented in

Hessian / vector multiply PyTorch / Tensorflow!

6 2 L Hessian matrix a 2 L a aL] (if v doesn’t

—— Hofsecond v = : depend on x,)

6xg derivatives. axg axO axo 0
[Dg X Dy [Do x D] [Dy]

Justin Johnson Lecture 6 - 121 January 26, 2022

Figure 6.22: Using backpropagation to compute Hessian-vector products as an efficient way to
obtain second-order derivatives.

So far, we have focused on first-order derivatives, which capture how small changes in parameters
affect the loss function. However, higher-order derivatives, such as Hessians (matrices of second-
order partial derivatives), provide additional insights.

Why Compute Hessians?
The Hessian matrix H = V2L captures second-order effects, helping in:
* Second-Order Optimization: Methods like Newton’s method and quasi-Newton methods (e.g.,
L-BFGS) use Hessian information for faster convergence.
* Understanding Model Sensitivity: Hessians quantify how different parameters interact and
influence optimization.
* Regularization and Pruning: Hessian-based techniques help in feature selection and gradient-
based network pruning.

Efficient Hessian Computation: Hessian-Vector Products
A naive approach to computing the Hessian matrix explicitly is infeasible in large-scale models (as it
requires storing an RY*N matrix). Instead, we use Hessian-vector multiplication:

Hv=V(VL-v),

which allows us to obtain second-order information efficiently without forming the full Hessian
matrix.

216 Chapter 6. Lecture 6: Backpropagation

Application: Gradient-Norm Regularization

Backprop: Higher-Order Derivatives

Xo fy x;_ L 2 du/dx, f'a dL/dxgnom | dL/dxg]?

Do D, scalar D, Do scalar

Backprop! o .
This is implemented in

PyTorch / Tensorflow!
Example: Regularization to penalize the norm of the gradient

R = |25 = (25)- (2) amteonn=2 (53 (52)

Gulrajani et al, “Improved Training of Wasserstein GANs”, NeurlPS 2017

Justin Johnson Lecture 6 - 122 January 26, 2022

Figure 6.23: An example of using second-order derivatives: Regularizing the gradient norm to
improve optimization stability.

One practical application of higher-order derivatives in deep learning is penalizing the gradient norm:
RW) = [[VwL|3.

Computing ﬁR (W) involves second derivatives of L. With backpropagation for higher-order terms,
we can approximate or compute this regularization effectively, potentially improving model training
by smoothing out rugged loss landscapes.

Automatic Differentiation: Summary of Key Insights

Automatic differentiation (AD) provides a unified framework for efficiently computing derivatives of
complex functions expressed as computational graphs. Backpropagation, as used in deep learning, is
a specific instance of this framework—corresponding to reverse-mode automatic differentiation.

* Reverse-mode automatic differentiation (backpropagation). In deep learning, we typically
minimize a scalar loss with respect to millions of parameters. Reverse-mode AD propagates
sensitivities backward through the computational graph, allowing all partial derivatives of a
scalar output to be computed in a single backward pass. This makes it the method of choice
for large-scale neural network training.

* Forward-mode automatic differentiation. Forward-mode AD pushes derivatives forward
from the inputs instead of backward from the output. It is most efficient when there are few
input variables but many outputs—such as in scientific computing, sensitivity analysis, and
physical simulations—where the goal is to measure how a single parameter affects multiple
outcomes.

* Higher-order derivatives. The same computational principles that underlie backpropagation
can be extended to compute higher-order derivatives, including Hessians and Hessian—vector
products. These quantities capture curvature information, enabling more refined optimization
strategies.

6.7 Beyond Scalars: Backpropagation for Vectors and Tensors 217

* Second-order methods and regularization. Hessian-based quantities support advanced
techniques such as second-order optimization (e.g., Newton’s method) and curvature-aware
regularization, which can improve convergence speed and stability in challenging loss land-
scapes.

Taken together, these insights highlight that backpropagation is not merely a training algorithm,
but a powerful instance of the broader concept of automatic differentiation. The same underlying
ideas—propagating derivatives through computational graphs—form the mathematical foundation
for a wide spectrum of applications, from deep learning optimization to scientific modeling and
engineering simulations.

