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ure 3: Linear Classifiers

3.1 Linear Classifiers: A Foundation for Neural Networks

Linear classifiers are a cornerstone of machine learning and form one of the most fundamental
building blocks for modern neural networks.
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Figure 3.1: Neural networks are constructed from stacked building blocks, much like Lego blocks.
Linear classifiers are one of these foundational components.

As illustrated in Figure 3.1, neural networks are constructed by stacking basic components,
with linear classifiers serving as one of the foundational elements. Despite their simplicity, linear
classifiers play a critical role in providing a structured, parametric framework that maps raw input
data to class scores. They naturally extend to more sophisticated architectures, such as neural
networks and convolutional neural networks (CNNs).
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This chapter focuses on linear classifiers and their role in classification problems. To develop a
comprehensive understanding of their behavior and limitations, we will examine linear classifiers
from three perspectives:

* Algebraic Viewpoint: Frames the classifier as a mathematical function, emphasizing the

score computation as a weighted combination of input features and biases.

* Visual Viewpoint: Reveals how the classifier learns templates for each class and compares

them with input images, highlighting its behavior as a form of template matching.

* Geometric Viewpoint: Interprets the classifier’s decision-making process in high-dimensional

spaces, with hyperplanes dividing the space into regions corresponding to different classes.

These viewpoints not only help us understand the mechanics of linear classifiers but also shed
light on their inherent limitations, such as their inability to handle non-linearly separable data or
account for multiple modes in class distributions.

Finally, we introduce the key components of linear classifiers:

* A score function that maps input data to class scores.

* A loss function that quantifies the model’s performance by comparing predictions to ground

truth labels.

While this chapter will focus on understanding these perspectives and defining loss functions,
we will leave the topics of optimization and regularization for the next lecture, where we will discuss
how to effectively train and refine linear classifiers.

Parametric Approach: Linear Classifier
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Figure 3.2: Parametric linear classifier pipeline: The input image is flattened into a vector, multiplied
with weights, and added to a bias vector to produce class scores.

As seen in Slide 3.2, linear classifiers adopt a parametric approach where the input image x (e.g.,
a 32 x 32 x 3 RGB image of a cat) is flattened into a single vector of pixel values of length D = 3072.
This flattening is performed consistently across all input images to maintain structural uniformity.
Given K = 10 classes, the classifier outputs 10 scores, one for each class. This is achieved using the
function:

f(X7W7b) :WX+b7

where W is a learnable weight matrix of shape K x D, and b is a learnable bias vector of shape K.
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The weight matrix W and the bias term b work together to define the decision boundary in a
linear classifier. To build intuition, consider the simple example of a linear equation y = mx+ b in
two dimensions. In this equation:

* m determines the slope of the line, dictating how steeply it tilts.

* b shifts the line vertically, allowing it to move up or down along the y-axis. This effectively

changes where the line crosses the axis, without altering its slope.

Similarly, in a linear classifier, the decision boundary is represented as Wx +b = 0, where:

* The weight matrix W determines the orientation and steepness of the decision boundary in the

input space by defining how the features x combine to produce class scores.

* The bias term b, independent of the input features x, offsets the decision boundary. This shifts

the hyperplane in the feature space, much like b in y = mx + b shifts the line vertically.



3.1 Linear Classifiers: A Foundation for Neural Networks Q1

Enrichment 3.1.1: Understanding the Role of Bias in Linear Classifiers

The bias term b in linear classifiers allows the decision boundary to shift, enabling the model
to handle data distributions that are not centered at the origin. This flexibility is essential, as
demonstrated in the following example:

= Example 3.1 Consider a classification task in 2D space with two data points:
* Red point (Class 1): (1,1).
* Blue point (Class 2): (2,2).
The decision boundary is defined as:

Wx+b=0 = —x—y+b=0.

Without Bias (b = 0):
The decision boundary simplifies to:

wix+wy=0 — y= —%x.
Suppose we want the model to classify:

Red point (1, 1) on one side, and Blue point (2,2) on the other.
Concretely, for (x,y) in Class 1, we want:

wi-14+wy-1>0,
and for Class 2 we want:

wi-2+wy-2<0.

These inequalities become:

wi+wy >0,
2wy + 2wy < 0.

Dividing the second by 2 yields:
wi+wy <0,

which directly contradicts wy +wy > 0. Hence, no choice of (w;,w;) can separate the points without
a bias.

With Bias (b = 3):
* The decision boundary becomes y = —x + 3, shifting the line upward.
* The red point (1, 1) satisfies —x —y+ 3 > 0 (classified as red).
* The blue point (2,2) satisfies —x —y+3 < 0 (classified as blue).
* The bias term enables correct separation of the two points.
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Figure 3.3: Bias shifts the decision boundary (orange line), enabling correct classification of the
two points. Without bias (e.g., green line for the chosen W), no line passing through the origin can
separate the points.

Key Insight: Without the bias term, the decision boundary is constrained to pass through the
origin, making it impossible to correctly separate the two points. Adding a bias term shifts the
boundary, enabling proper classification.

This concept generalizes beyond toy 2D problems. In higher-dimensional spaces, the bias
term provides the flexibility to shift hyperplanes, enabling the classifier to handle real-world data
distributions that are not centered at the origin. Without this flexibility, the model would struggle to
adapt to datasets where the mean of the input features is non-zero or misaligned with the origin.

A Toy Example: Grayscale Cat Image

To build a strong foundation for understanding how linear classifiers work, let us consider a toy
example of a grayscale 2 x 2 image of a cat. Each pixel has a value ranging from 0 to 255, representing
its grayscale intensity. Although real cat images are much larger, this simplified scenario helps
illustrate the key principles with ease.
» Image Representation: The 2 x 2 image is flattened into a column vector with 4 entries,
denoted as:

X= [X1,X2,X3,X4]T.

* Weight Matrix W: The weight matrix W has K rows (one for each class) and 4 columns (one
for each pixel). Each row of W corresponds to a specific class and determines the influence of
each pixel on the classification score.
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* Matrix Multiplication: The input vector x is multiplied with the weight matrix W to produce

a vector of scores:

s = Wx,

where s = [s1,52,...,5x]! represents the scores for K classes.
* Bias Term: A bias vector b of size K is added to the score vector:0 = s + b, resulting in the

final output vector o, where each element represents the adjusted score for a class.

Example for 2x2 image, 3 classes (cat/dog/ship)
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Figure 3.4: A toy example of a grayscale 2 x 2 cat image (Slide 14), stretched into a vector and

passed through a linear classifier.

This simple yet powerful operation demonstrates how linear classifiers map raw data (pixel values)

to class scores using a combination of learned weights and bias terms.

The Bias Trick

In linear classifiers, the bias term b plays a critical role in adjusting the decision boundary. An
alternative way to incorporate the bias is through a technique called the bias trick, which eliminates
the explicit bias vector by augmenting the input data and weight matrix. This approach is commonly
used when the input data naturally has a vector form, such as in tabular datasets.
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Figure 3.5: The bias trick applied to the toy cat example: augmenting the image vector with a
constant 1 and extending the weight matrix to incorporate the bias.

How the Trick Works:

* Augmented Input Representation: To absorb the bias term into the weight matrix, we append
an additional constant value of 1 to the input feature vector. If the original feature vector is
X = [x1,X2,... ,xD]T, the augmented representation becomes:

x = [xl,x2,. -«sXD, I]T.

* Augmented Weight Matrix: The weight matrix W is updated by adding a new column
corresponding to the bias. If W initially has dimensions K x D, the augmented matrix becomes
K x (D + 1), where the last column holds the bias values for each class.

* Unified Matrix Multiplication: The score computation becomes:

s = Wx/,

effectively absorbing the bias into the augmented weight matrix.

Example with Cat Image (Slide 3.5)

To demonstrate the bias trick in action, consider the toy example of a 2 x 2 grayscale image
of a cat introduced earlier (Slide 3.4). Initially, the image was flattened into a vector of 4 pixels,
[p1,p2,P3,pa]”. Using the bias trick, we augment this vector by appending a constant value of 1,
resulting in:

X = [P17p27P37P47 1}T

Simultaneously, the weight matrix W, originally of shape K x 4, is augmented to K x 5 by adding
a new column to account for the bias term. The computation of class scores becomes:

s = Wx/,

where the augmented weight matrix seamlessly integrates the effect of the bias.
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Advantages of the Bias Trick:

» Simplified Notation: The trick reduces the need for separate terms in the computation,
allowing the bias and weights to be handled in a unified framework.

* Ease of Implementation: In frameworks where data is inherently vectorized (e.g., certain
numerical libraries), this method simplifies coding and matrix operations.

* Theoretical Insights: This technique emphasizes that the bias term is simply an additional
degree of freedom, equivalent to a constant input feature with fixed weight.

Limitations in Computer Vision: In computer vision, the bias trick is less frequently used. For
example, in convolutional neural networks (CNNs), this approach does not translate well because the
input is often represented as multi-dimensional tensors (e.g., images), and the convolution operation
does not naturally accommodate the bias trick. Additionally:

* Separate Initialization: Bias and weights are often initialized differently in practice. For
instance, weights may be initialized randomly, while biases might start at zero to avoid
influencing initial predictions.

* Flexibility in Training: Treating bias and weights separately allows more nuanced adjust-
ments during regularization or optimization.

When to Use the Bias Trick: The bias trick is particularly useful for datasets where the input
data is naturally represented as a vector (e.g., tabular data or flattened image data). It simplifies
the mathematical formulation and is computationally efficient in these scenarios. However, when
working with more complex data structures, such as images in their raw tensor form, separating the
bias term often provides more flexibility and practical utility.

This technique highlights the elegance and adaptability of linear classifiers, demonstrating
how small changes in representation can simplify computations while maintaining mathematical
equivalence.

Linear Classifiers: The Algebraic Viewpoint

The algebraic viewpoint provides an elegant mathematical framework to understand linear classifiers.
It emphasizes the role of the weight matrix W and the bias vector b in transforming input features
into scores for each class. This perspective also highlights certain intrinsic properties and limitations
of linear classifiers.

Scaling Properties and Insights

Linear classifiers exhibit a key property: their output scores scale linearly with the input. Consider a
scaled input X' = ¢x (where ¢ > 0 is a constant). When passed through a classifier without a bias
term, the output becomes:

f(X';W) =W(cx) =c- f(x,W).

This means that scaling the input by a constant ¢ directly scales the output scores by c. Slide
3.6 illustrates this with a practical example. A grayscale image of a cat, when uniformly brightened
or darkened (scaling all pixel values by c), results in scaled class scores. Humans can still easily
recognize the cat, but the classifier’s output scores are proportionally reduced. For instance:

f(x,W) =1[2.0,-1.0,0.5], f(cx,W)=1[1.0,—0.5,0.25] (forc=0.5).
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Figure 3.6: Scaling effect in linear classifiers: uniform scaling of inputs leads to proportional scaling
of output scores, as shown in this cat image example.

This feature of linear classifiers may or may not be desirable, depending on the choice of loss
function:
* If the loss function focuses on relative scores, such as cross-entropy, the scaling has no effect
because the final predictions depend only on the relative differences between scores.
* However, in other contexts, absolute score magnitudes might be important, and scaling could
introduce issues.

From Algebra to Visual Interpretability

While the algebraic viewpoint is powerful for mathematical formulation, it can sometimes obscure
the intuition behind the classifier’s behavior. A useful trick to bridge this gap involves reshaping the
rows of the weight matrix W into image-like blocks.

Each row of W corresponds to one class, and reshaping it into the dimensions of the input image
allows us to visualize what the classifier "sees" for each class. These visualizations can provide
insight into:

* What features the classifier considers important for each class.

* How the classifier might misinterpret or confuse one class with another.

* Biases or artifacts present in the dataset, as reflected in the learned weights.

This interpretation naturally leads into the Visual Viewpoint, which we will explore in detail in
subsequent sections. By combining algebraic rigor with visual insights, we can better understand the
strengths and limitations of linear classifiers.

Linear Classifiers: The Visual Viewpoint

The visual viewpoint provides an intuitive way to interpret the behavior of linear classifiers by
visualizing the rows of the weight matrix W reshaped into the input image’s dimensions. This
visualization helps us understand what the classifier "learns" during training and highlights its
strengths and limitations.
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3.3.1 Template Matching Perspective

In a linear classifier, each row of the weight matrix W corresponds to a specific output class. By
reshaping these rows into the shape of the input image, we can view them as class-specific templates.
The score for a given class is computed by taking the inner product (dot product) between the input
image and the corresponding template. This process effectively performs template matching, where
the templates are learned from data.

Interpreting an Linear Classifier: Visual Viewpoint
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Figure 3.7: Visualizing the rows of the weight matrix W as learned templates for each class.

Figure 3.7 illustrates how the rows of W can be visualized as templates. The inner product
measures how well each template "fits" the input image, assigning a score to each class.

This method can be compared to Nearest Neighbor classification:

* Instead of storing thousands of training images, a single learned template per class is used.

* The similarity is measured using the (negative) inner product rather than L1 or L2 distance.
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3.3.2 Interpreting Templates
Visualizing the templates reveals the learned features for each class:

* Plane and Ship Classes: The templates for these classes are predominantly blue, reflecting
the sky and ocean backgrounds common in the training set. A strong inner product with these
templates may incorrectly classify other blue-background objects (e.g., a blue shirt) as planes
or ships. Conversely, planes or ships on non-blue backgrounds might be misclassified.

* Horse Class: The horse class template appears to depict a two-headed horse, as it merges
training images of horses facing left and right into a single representation.

* Car Class: The car class template is red, indicating a dataset bias toward red cars. This can
lead to incorrect classifications for cars of other colors.

These observations highlight limitations of background sensitivity, a single template per class.

3.3.3 Python Code Example: Visualizing Learned Templates
Here’s an example using an SVM classifier (a type of linear classifier) to visualize learned templates:

A L R W N =

# Visualize the learned weights for each class

w = svm.W[:-1, :1 # Strip out the bias term

w = w.reshape(32, 32, 3, 10) # Reshape rows into image format

w_min, w_max = np.min(w), np.max(w)

classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse’,

< 'ship', 'truck']
for i in range(10):
plt.subplot(2, 5, i + 1)

# Rescale weights to 0-2556 range for wvisualization
wimg = 255.0 * (w[:, :, :, i]l.squeeze() - w_min) / (w_max - w_min)

plt.imshow(wimg.astype('uint8'))
cat deer

plt.axis('off")
horse ship truck

plt.title(classes[i])

plt.show()

plane car

dog frog

Figure 3.8: The output of the code (building upon NumPy and Matplotlib) visualizes the rows of the
weight matrix reshaped into the input image format, enabling inspection of the learned templates.
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Template Limitations: Multiple Modes

Linear classifiers are limited by their single-template-per-class constraint:
» Categories with distinct modes (e.g., horses facing left vs. right) cannot be disentangled, as
the classifier learns only one merged template.

Interpreting an Linear Classifier: Visual Viewpoint
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Figure 3.9: The horse class template demonstrates the limitation of learning a single template for a
category with multiple modes.

Looking Ahead

While linear classifiers provide valuable insights, their limitations become apparent in real-world
tasks. Neural networks, which will be introduced later, address these shortcomings by developing
intermediate neurons in hidden layers. These neurons can specialize in features like "red car" or "blue
car" and combine them into more accurate class scores, overcoming the single-template limitation of
linear classifiers.

Linear Classifiers: The Geometric Viewpoint

The geometric viewpoint provides a spatial interpretation of how linear classifiers operate in high-
dimensional input spaces. By treating each stretched input image as a point in a high-dimensional
space, this perspective helps us understand both the capabilities and limitations of linear classifiers.

Images as High-Dimensional Points

Each input image corresponds to a single point in the feature space. For instance, in CIFAR-10,
each 32 x 32 x 3 image represents a point in a 3072-dimensional space. The entire dataset is thus a
labeled set of points, with each label corresponding to a class.

Linear classifiers define the score for each class as a linear function of the input. This corresponds
to carving the high-dimensional space into regions using hyperplanes, where each region is assigned
to a class.
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Interpreting a Linear Classifier: Geometric Viewpoint
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Figure 3.10: Left: Dimensionality-reduced visualization of a dataset. Right: Hyperplanes partitioning
a higher-dimensional space into regions for classification.

In Figure 3.10, the left side provides a simplified view after dimensionality reduction, while the

right shows hyperplanes in the full space. These hyperplanes represent the boundaries where the
classifier transitions between classes.

3.4.2 Limitations of Linear Classifiers

The geometric viewpoint highlights scenarios where linear classifiers fail.

Hard Cases for a Linear Classifier
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Figure 3.11: Examples of classification problems that linear classifiers cannot solve.

Left: Non-Linearly Separable Classes In this example, two classes occupy alternating quad-
rants. A single hyperplane cannot separate these regions, making the data not linearly separable.

Center: Nested Classes Here, one class forms a circular region inside another. The boundary
between the two classes is inherently non-linear, so no hyperplane can effectively separate them.
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Right: Multi-Modal Classes A single class consists of disjoint regions in the space, correspond-
ing to multiple modes (e.g., variations in pose or orientation). Linear classifiers cannot handle such
complexities because they only define a single hyperplane per class.

Historical Context: The Perceptron and XOR Limitation

Linear classifiers were among the first machine learning models introduced. The perceptron,
developed in the late 1950s, was a milestone in artificial intelligence. However, its inability to handle
the XOR function demonstrated the limitations of linear classifiers.

Recall: Perceptron couldn’t learn XOR

Justin Johnson Lecture 3-33 January 12, 2022

Figure 3.12: XOR Function: The perceptron can’t separate blue & green regions with a single line.

As shown in Figure 3.12, the XOR function has two regions (blue and green) that cannot be
separated by a single linear boundary. This limitation highlighted the need for more powerful tools,
eventually leading to the development of neural networks. Unlike linear classifiers, neural networks
can represent non-linear decision boundaries, generalize well to unseen data, and perform efficient
inference.

Challenges of High-Dimensional Geometry

Although this viewpoint provides valuable insights, it has limitations:
* Human Intuition Fails: Geometry behaves differently in high-dimensional spaces, often
defying our intuition based on 2D/3D experiences.
* Linear Limitations: Linear classifiers rely on single hyperplanes, which are inadequate for
handling non-linear or complex data distributions.
Despite these challenges, the geometric viewpoint lays the foundation for understanding why
more advanced models, such as neural networks, are necessary. Neural networks overcome these
issues by learning non-linear decision boundaries, a topic we will explore later.
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Summary: Shortcomings of Linear Classifiers

Linear classifiers, while foundational, exhibit several limitations that are evident through different
viewpoints (Figure 3.11).

Algebraic Viewpoint
Linear classifiers rely on the weighted sum of input features. Without non-linear transformations,
they:

* Cannot model non-linear decision boundaries.

* Are limited in their expressiveness when classes are not linearly separable.

Visual Viewpoint
Visualizing the rows of the weight matrix as templates reveals:
» Templates depend heavily on backgrounds, leading to misclassifications (e.g., ships in non-
ocean scenes).
* Multiple modes within a class (e.g., cars of different colors or orientations) cannot be repre-
sented by a single template.

Geometric Viewpoint
Interpreting data as points in high-dimensional space highlights:
* Linear classifiers fail when class distributions are not linearly separable (e.g., XOR configura-
tion).
* Disjoint or nested regions within a class cannot be handled by a single hyperplane.

Conclusion: Linear Classifiers Aren’t Enough

These limitations necessitate more advanced models capable of non-linear decision boundaries and
hierarchical feature learning, which we explore in subsequent chapters.

Choosing the Weights for Linear Classifiers

To effectively use linear classifiers, we must find a weight matrix W and bias vector b that minimize
misclassification. This involves two core tasks:

* Defining a loss function to quantify how good a choice of W is.

* Optimizing W to minimize the loss function.

In the rest of this chapter, we focus on the first task—choosing an appropriate loss func-
tion—while optimization will be addressed in the next chapter.
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Loss Functions

Loss functions are fundamental to machine learning—they provide a scalar measure of how far a
model’s predictions deviate from the true targets. Learning proceeds by minimizing this loss across
a dataset, typically using gradient-based optimization.

Given a dataset with N examples, the total loss is computed as:

1
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L Li(f(xiaw)’yi)a
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where:
* x; is an input example.
* y; is the corresponding true label.
* f(x;,W) is the model’s prediction given parameters W.
 L; is the loss incurred on a single example.

Core Requirements for Loss Functions

Regardless of the task, certain properties are essential for a loss function to be useful in optimization:

* Differentiability: The loss should be differentiable with respect to the model parameters to
enable the use of gradient-based optimization algorithms such as stochastic gradient descent
(SGD).

* Monotonicity: The loss should increase as the model’s predictions become worse. That is,
the loss should provide a signal that correlates with how "wrong" a prediction is.

* Continuity: Smoothness in the loss landscape helps ensure stable updates during training and
prevents erratic gradient jumps.

* Well-defined domain and range: The loss function should handle valid model outputs and
targets gracefully and return real-valued, finite outputs.

Desirable Properties (Depending on the Task)

Beyond the core requirements, some properties may be beneficial or even necessary depending on
the specific problem, model, or dataset:

* Convexity (for simpler models): Convex loss functions are easier to optimize because any
local minimum is also a global minimum. While deep networks make the full objective
non-convex, convex losses simplify training in linear models.

* Robustness to outliers: In tasks where noisy or mislabeled data is common, a loss function
that does not over-penalize extreme errors (e.g., using absolute error instead of squared error)
can improve generalization.

* Probabilistic or geometric interpretation: Some loss functions correspond to likelihood
maximization under a specific model or enforce geometric margins. These interpretations
often guide their design and applicability.

* Alignment with evaluation metrics: Ideally, the loss should correlate with the metric we
care about at test time (e.g., accuracy, F1 score, BLEU). While exact alignment is not always
feasible, closer alignment often leads to better results.

With these principles in mind, we now turn to specific loss functions commonly used in clas-
sification and regression tasks, beginning with one of the most widely used: the cross-entropy
loss.
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Cross-Entropy Loss

The cross-entropy loss, often used with the softmax function, provides a probabilistic interpretation
of the classifier’s raw scores. For a single input x; and weight matrix W, the raw scores for each class
are given by:

Sj= f(xiaW)ﬁ

where s; represents the score for class j. These scores are unnormalized, and their magnitude or sign
has no direct probabilistic interpretation.

Softmax Function
The softmax function transforms raw class scores {s;} into normalized probabilities {p}, ensuring
that} ;p; =1 and p; > 0. Concretely:

esi

Pi= ¥

where:

* ¢% is the exponentiated score for class j.

* Y . e’ sums these exponentiated values across all classes, serving as a normalization factor.
A large score s results in a disproportionately large exponent e/, making p; close to 1 while other
probabilities remain small.

Advanced Nofte: Bolfzmann Perspective.

Softmax closely resembles a Boltzmann (Gibbs) distribution: each class’s weight is exp(s;), normal-
ized so that }_; p; = 1. Although any mapping that yields a valid probability distribution could be
used, softmax is especially attractive because, in tandem with cross-entropy, the derivative of the loss
with respect to each logit s; collapses to (p; — ;). This concise gradient form is both straightforward
to implement and numerically stable, simplifying training for classification tasks.

Loss Computation
The cross-entropy loss for a single example compares the predicted probability p,, of the correct
class y; with the true label:

Li=— log(py,.),

where p,, is the softmax probability for the correct class. This loss penalizes the model heavily if the
predicted probability for the correct class is small.

Example: CIFAR-10 Image Classification
Consider a CIFAR-10 image (e.g., a cat) with three possible classes: cat (scat = 3.2), car (Scar = 5.1),
and frog (sfrog = —1.7). Using the softmax function:

1. Compute e’ gfcar gStiog,
2. Normalize by summing over all exponentiated scores.
3. Calculate the probability for the cat class, pc,, and compute the loss:

L; = —log(pcat)-
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Cross-Entropy Loss (Multinomial Logistic Regression)
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Figure 3.13: Cross-entropy loss computation for a cat image. Softmax normalizes raw scores into
probabilities, and the loss is computed by comparing with the ground truth.

Properties of Cross-Entropy Loss

* Minimum Loss: The loss is 0 when p,, = 1, meaning the model predicts the correct class
with absolute confidence.

* Maximum Loss: The loss approaches +oo as p,, — 0, heavily penalizing incorrect predictions.
e Initialization Insight: At random initialization, the raw scores s; are small random values.
Probabilities become uniform over C classes:

1

E.

The loss becomes:

1
L;~ —log (C> .

This insight is useful for debugging model implementations.

pj=

Why These Names: Cross-Entropy and Softmax
The terms cross-entropy and softmax both arise from their mathematical origins in information theory

and optimization. Understanding their names clarifies how they work together to form the standard
probabilistic loss for classification.

Cross-Entfropy: Encoding One Distribution Using Another
The word cross-entropy comes from information theory, where it measures how “inefficient” it is to

encode data from one probability distribution using another. Formally, for a true distribution p and a
model prediction g,

H(p,q) =—Y_ p(k)logq(k).
k

The prefix “cross” reflects that the measure crosses the true data distribution p with the model’s
predicted probabilities g: the expectations are taken under p, but the code lengths come from g.
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In classification, the true label is represented by a one-hot vector, so only the correct class y
contributes:

H(p,q) = —logq(y).

This simplifies the cross-entropy loss to the negative log-likelihood (NLL) of the true class: minimiz-
ing it is equivalent to maximizing the probability assigned to the correct label. It penalizes confident
wrong predictions heavily, guiding the model to output calibrated probabilities.

Softmax: Temperature and the Degree of "Softness”
The softmax function transforms raw logits into probabilities through a temperature-controlled
exponential normalization:

eZk/ T

G(Z)k = Z] ezj/f )

where T > 0 is the temperature parameter. This parameter directly determines how “soft” or “peaked”
the resulting probability distribution is.

Role of the Temperature Parameter
The temperature T modulates the confidence level of the model’s output:
* When 7 — 0, the exponentiation strongly amplifies logit differences, making one class domi-
nate—producing an almost one-hot vector (a “hard” arg max).
* When T — oo, the exponentials flatten out, assigning nearly equal probability to all classes—a
uniform distribution.
* When 7 = 1, the scale of logits is preserved, and this is the standard setting used in most
classification networks.

Why t =1 by Default

In most training settings, logits are unconstrained and naturally learn an appropriate scale through
gradient descent. Setting T = 1 keeps the mapping numerically stable while maintaining an inter-
pretable balance between confidence and uncertainty. If T were much smaller, gradients could vanish
due to overconfident probabilities; if much larger, predictions would be too smooth to separate classes
effectively. Thus, T = 1 provides a well-behaved trade-off between expressiveness and stability.

When and Why Temperature Is Changed
Although 7 =1 is used during training, modifying it can serve specific purposes:

* Knowledge distillation. A higher temperature (7 > 1) is used to soften the teacher’s output
distribution, exposing relative confidence between classes and providing richer learning signals
for the student network [219].

* Calibration and uncertainty estimation. At inference, temperature scaling can be applied to
better align predicted probabilities with observed accuracies [195]. The optimal 7 is usually
determined by minimizing negative log-likelihood on a validation set.

* Contrastive and self-supervised learning. In losses such as InfoNCE or CLIP’s contrastive
loss, T controls embedding sharpness: smaller values increase separation between positives
and negatives, while larger ones encourage smoother similarities.
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CE loss is the standard choice for classification, especially when used with the softmax output layer.
But why does it use logarithms, and not something simpler like squared error?
* (1) Mean Squared Error (MSE) used as a loss for classification:

Loss =Y (p;—5))*,
J
where p is the one-hot target and p is the predicted probability vector.
* (2) Replacing exponentials in softmax with squared values:

2
Zj

77
ZkZ%

which preserves normalization but alters the probabilistic and geometric behavior.
We now explain why both of these alternatives are inferior to cross-entropy loss with standard
softmax.

Alternative softmax: p; =

1. Cross-entropy arises naturally from log-likelihood and KL divergence.

Cross-entropy loss is not an arbitrary design—it is grounded in the principle of maximum
likelihood estimation (MLE) for categorical variables. Suppose the true class is y, and the model
assigns it predicted probability p,. Then, under a categorical distribution, the log-likelihood is:

logp(y | x) =log py,
and the corresponding loss is the negative log-likelihood:
Loss = —log py.

This expression generalizes to the full cross-entropy between the true label distribution p (which is
typically one-hot) and the predicted probability vector p:

H(p,p) ==Y pjlogp;.
J

More fundamentally, this quantity appears inside the Kullback-Leibler (KL) divergence, which
measures how far a predicted distribution p is from the true distribution p:

~ Dj ~
KL(p||p) = ijlogﬁ% =H(p,p)—H(p).
7 J

Since H(p), the entropy of the true distribution, is fixed (independent of model parameters),
minimizing the cross-entropy is equivalent to minimizing KL divergence.

Why is this useful? KL divergence is a principled and well-understood measure of distribu-
tional mismatch. By minimizing it, we are not just guessing the correct class—we are learning to
approximate the entire target distribution. This ensures:

* Probabilistic correctness: The model assigns high probability to the true class while properly

normalizing over alternatives.

» Meaningful confidence: The output reflects calibrated uncertainty, not just a one-hot choice.
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* Gradient quality: The loss provides rich feedback even when the prediction is wrong, making
learning faster and more stable.
Thus, cross-entropy’s link to likelihood and KL divergence ensures it is not only mathematically
justified but also practically effective for probabilistic classification.

2. Squared error is poorly aligned with classification objectives.

Using mean squared error (MSE) for classification tasks is both conceptually inappropriate and
mathematically inefficient. MSE assumes that outputs are continuous and independent, which does
not hold in categorical prediction settings.

* Lack of asymmetry:

The MSE loss penalizes the squared difference between the predicted probability vector p and
the one-hot encoded true label p. The loss is defined as:

A )
MSE(p,p) = }.(p; — §;)*-
J
This loss is symmetric: overestimating or underestimating the correct class by the same amount
yields the same penalty. For instance, suppose the true class is class 1. Then:

(1-0.8)% = (1—1.2)> =0.04.

In both cases, MSE assigns the same loss—even though the first prediction is underconfident,
while the second is overconfident and invalid (e.g., p; = 1.2 is not even a valid probability).
This symmetry fails to reflect the inherently asymmetric nature of classification, where
confident wrong predictions are more damaging than slightly uncertain correct ones.

* Weak penalty for confident errors:
MSE penalizes prediction errors quadratically but lacks the steep, exponential-like penalties
needed for classification. Consider predicting a low probability for the true class:

Cross-entropy: —1log(0.01) =~ 4.6

MSE: (1—0.01)* =0.9801.

Cross-entropy provides a much sharper penalty for this confident error, which encourages the
model to avoid placing extremely low probabilities on the correct class. This steepness acts
like a strong corrective force during learning.

* Poor gradient behavior:
While mean squared error (MSE) and cross-entropy (CE) losses may appear similar when
applied directly to predicted probabilities, their gradients behave very differently once we
consider how they flow through the softmax function during backpropagation.
Let’s assume the model outputs logits z;, which are passed through softmax:

. e’
PI= Yeew
to produce class probabilities.

Cross-entropy loss:

ZCE = —ijlogﬁj.
J
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When computing the gradient of CE with respect to logits z;, we obtain a remarkably simple
and well-behaved form:

a.,g/ﬂCE A )
aZj —PiTpi

This gradient is linear in the prediction error and provides a clean, direct learning sig-
nal—especially effective when the model is confidently wrong (e.g., when py ~ 0, the loss
and gradient are large).

Mean squared error:

MsE = Z(ﬁj —Pj)z'

J
The gradient with respect to the predicted probabilities is:

d-Ausk _
dpj

z(ﬁj _pj)7

which appears similar to CE (up to a constant factor). However, when we backpropagate
through the softmax, the full gradient with respect to the logits z; becomes:

0.4 . N .
aMSE =2Y (P — p) Pr(8j— ),
Zj k

which is more complex and involves interactions across all classes. This entangled gradient
signal is harder to interpret and can lead to slower, less stable learning.

Key distinction: Cross-entropy provides a local gradient per logit that depends only on the
predicted probability and the true label. MSE, in contrast, introduces non-local coupling
between logits due to the softmax Jacobian. As a result, cross-entropy produces sharper
corrections, especially when the model is confidently incorrect, while MSE gradients may
become weak or noisy in such regimes.

Conclusion: Although the MSE and CE gradients appear similar at the output layer, their

behavior through the softmax transformation differs significantly. Cross-entropy leads to more

effective training dynamics, which is one reason it is the preferred loss for classification tasks.
* Mismatch with softmax structure:

MSE assumes the outputs p; are independent scalar predictions that can be pushed toward 0

or 1 freely. But softmax outputs are constrained:

Zﬁjzl) ﬁj6(071)
J

This means increasing one class’s probability forces other probabilities to decrease. MSE
ignores this coupling, treating each component separately. As a result, MSE fails to exploit the
inter-class competition inherent to classification, and its gradients don’t reflect how increasing
confidence in one class affects others.

In contrast, cross-entropy is designed specifically for probability distributions. It takes into
account the full predicted vector and compares it to the one-hot true label in a principled,
probabilistic manner.
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3. Using zf /Y z,% instead of softmax breaks probabilistic structure.
Some have proposed using squared logits in place of exponentials to define a normalized output:
.5
pj= .
Y
While this guarantees outputs in [0, 1] that sum to 1, it fails in several key ways:
* No log-likelihood interpretation: This function does not arise from any known probabilistic

model. There’s no equivalent of a negative log-likelihood or KL divergence for guiding

learning.
* Limited expressiveness: The squaring operation is symmetric around 0, so it cannot distin-
guish between positive and negative evidence. For example, z; = —5 and z; = 5 produce the

same result.

» Unstable or flat gradients: Near-zero logits yield gradients close to zero, which can stall
learning. Exponentials in softmax, by contrast, ensure that even small logit differences yield
sharp probability contrasts, especially early in training.

* No exponential separation of scores: Softmax amplifies differences exponentially, creating
a margin-like separation between classes. This is essential for learning sharp decisions in
high-dimensional settings; z> lacks this behavior.

Multiclass SVM Loss

The multiclass SVM loss, also known as the hinge loss (so named because its graphical shape
resembles a door hinge), is a straightforward yet powerful loss function. Its goal is to ensure that the
score of the correct class is higher than all other class scores by at least a predefined margin A. If
this condition is satisfied, the loss is 0; otherwise, the loss increases linearly with the violation.

Loss Definition
For a single training example (x;,y;), the multiclass SVM loss is defined as:
Li=Y max(0,s;— sy, +A),
JFyi
where:
* 5;= f(x;,W);: the score for class j,
* sy,: the score for the correct class,

* A: the margin, typically set to 1.
The total loss across the dataset is the average of individual losses:

1 N
L:N;Li.

Example Computation

Let us compute the multiclass SVM loss for a small dataset containing three images (a cat, a car,
and a frog) from CIFAR-10. The model outputs the following scores for these images across three
classes (cat, car, frog):

Cat Image Scores:  (Scat; Scar, Strog) = (3.2,5.1,—1.7),
Car Image Scores:  (Scat, Scar, Strog) = (1.3,4.9,2.0),
Frog Image Scores:  (Scat, Scar, Strog) = (2.2,2.5,—3.1).



3.6 Loss Functions 111

Loss for the Cat Image
The true class is "cat." The loss is computed as:

Leat = max(O,scaI — Scat + 1) +max(0asfrog — Scat + 1)’

Leat = max(0,5.1—-3.2+1) 4+ max(0,-1.7—3.2+1),
Lcat :29

Multiclass SVM Loss
Given an example (x;, ;)
(x; is image, y; is label)

Let s = f(x;, W) be scores

Then the SVM loss has the form:
cat 1.3 2.2 L= Z max(0,5; — s, + 1)
car | 51 | 49 25 — max(0, 5.1-3.2+1)
+max(0,-1.7-3.2+1)
frog -1.7 2.0 -3.1 = max(0, 2.9) + max(0, -3.9)
Loss | 2.9 - ig "

Justin Johnson Lecture 3 - 62 January 12, 2022

Figure 3.14: SVM loss computation for the cat image. Each term corresponds to a margin violation
for an incorrect class.

Loss for the Car Image
The true class is "car." The loss is:

Lear = maX(Oascat — Scar + 1) + max(oasfrog — Scar + 1)7

Lear = max(0,1.3—-4.9+1)+max(0,2.0-4.9+1),
Leor = 0.
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Multiclass SVM Loss
Given an example (x;, ;)
(x; is image, y; is label)

2

Let s = f(x;, W) be scores

Then the SVM loss has the form:
cat 3.2 1.3 2.2 L= Z max(0,5; — s, + 1)
J#£Yi
car 5.1 4.9 2.5 =max(0, 1.3-4.9+1)
+max(0,2.0-4.9+1)
frog -1.7 2.0 -3.1 = max(0, -2.6) + max(0, -1.9)
=0+0
Loss 2.9 0 -0
Justin Johnson Lecture 3 - 63 January 12, 2022

Figure 3.15: SVM loss computation for the car image. As the car score exceeds the rest by more
than the margin, the loss is 0.

Loss for the Frog Image
The true class is "frog." The loss is:

Lfrog = maX(O,scat — Sfrog + 1) + maX(O,scar — Sfrog + 1)7

Ltrog = max(0,2.2 — (=3.1) + 1) + max(0,2.5 - (=3.1) + 1),
Lirog = 12.9.

Multiclass SVM Loss
Given an example (x;,y;)
(x; is image, y; is label)

Let s = f(x;, W) be scores

Then the SVM loss has the form:
cat 32 13 | 22 | LY o, 4
J#yi
car 5.1 4.9 2.5 =max(0, 2.2 - (-3.1) + 1)
+max(0, 2.5 - (-3.1) + 1)
frog -1.7 2.0 -3.1 = max(0, 6.3) + max(0, 6.6)
=6.3+6.6
Loss 2.9 0 12.9 =129
Justin Johnson Lecture 3 - 64 January 12, 2022

Figure 3.16: SVM loss computation for the frog image. With the correct class score being the lowest,
the loss is the largest.
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Total Loss

The total loss across the dataset is the average of individual losses: L = %(Lcat + Lear +Lfrog) =
3(29+0412.9) =527

Multiclass SVM Loss

Given an example (x;, y;)
(x; is image, y; is label)

Let s = f(x;, W) be scores

Then the SVM loss has the form:
L, = Z max(O, Sj =Sy, + 1)
J#Yi

Loss over the dataset is:

cat 3.2 1.3 2.2
car 5.1 4.9 2.5
frog  -1.7 2.0 -3.1 L=(2.9+0.0+12.9)/3
Loss 2.9 0 12.9 =9l

Justin Johnson Lecture 3 - 65 January 12, 2022

Figure 3.17: Total loss computed as the average of losses over the three images.

Key Questions and Insights

* What happens if the loss sums over all classes, including the correct class? In this case, all
scores would inflate uniformly, adding an extra constant (approx. the predetermined margin)
to the loss. This does not change the model’s preferences over the weight matrix W.

* What if we use a mean instead of a sum for the loss? The loss values are scaled by a factor
of (1/C—1), where C is the number of classes. The model’s behavior remains unaffected.

* What if we square the loss terms? Squaring would alter the loss function’s sensitivity to
large deviations, changing the behavior and preferences over W.

¢ Is the weight matrix W unique when the loss is zero? No, scaling W (e.g., multiplying it by
2) maintains zero loss because the margin condition is still satisfied. Regularization, which
we’ll later discuss thoroughly, helps select a preferred W.

3.6.5 Comparison of Cross-Entropy and Multiclass SVM Losses

Both losses aim to guide the model toward correct predictions, but their behavior differs significantly:
* Score Sensitivity: The SVM loss becomes invariant once the margin condition is satisfied,
while the cross-entropy loss continues to decrease as the correct class score increases.
* Probabilistic Interpretation: The cross-entropy loss provides a natural probabilistic interpre-
tation of predictions, whereas the SVM loss focuses on maintaining a margin.
* Scaling Effects: Scaling scores affects the cross-entropy loss but not the SVM loss, highlight-
ing the need for regularization in SVM-based models.
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Cross-Entropy vs SVM Loss
L; = —log (M> Li = Z maX(O, Sj — Syi + 1)
J#yi

%, exp(s;)
assume scores: Q: What happens to each loss if |
double the score of the correct class

10,-2,3
10, -2, 3] from 10 to 20?
[10,9, 9]
[10, -100, -100] A: Cross-entropy loss will decrease,
and SVM loss still 0

2
Justin Johnson Lecture 3-77 January 12, 2022

Figure 3.18: Impact of scaling on SVM and cross-entropy loss. The CE loss decreases, while the
SVM loss remains unchanged.

Debugging with Initial Loss Values

An effective way to verify whether a model is configured correctly is to examine the loss value
at the very start of training, before any updates have been applied. For both cross-entropy and
margin-based losses (e.g., SVM), there are mathematically predictable loss values when the model
begins with random, unbiased weights.

Cross-Entropy Loss: Expected Initial Value.

Suppose a classifier is initialized such that it produces uniform predictions over all C classes (as
is often the case with random initialization and symmetric weight distributions). That is, the model
assigns each class probability:

Pi= ¢

The cross-entropy loss for a one-hot label p; = §;, becomes:
R R 1
ZCE = —ijlogpj = —logpy, = —logE =logC.
J

So at initialization, we expect the cross-entropy loss to be approximately log C. For example:

C=10 = ZLe~logld=x2.3.

SVM (Hinge) Loss: Expected Initial Value.
For the multiclass SVM or hinge loss (often used in margin-based classifiers), the typical loss
formulation is:

Lsym = Y, max(0, f;— fy+1),
J#y

where f; is the score (logit) for class j, and y is the true class.
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If the scores f; are initialized to be equal or nearly equal (as in uniform random initialization),
then:

fi=fy = fi—fyi+l~lforallj#y.

This means the max terms are all active, and the total loss becomes:

Lsvmr Y, 1=C—1.
J#y

So at initialization, we expect the hinge loss to be approximately C — 1. For example:

cC=10 = ZLvm~0O.

How This Helps Debugging?

Inspecting the initial loss is a fast and effective sanity check. It helps confirm that the model,
label encoding, output activations, and loss function are correctly configured—before any training
begins. While this section focuses on cross-entropy and hinge losses, the principle extends to many
loss functions in both classification and regression.

o If the loss is too low at initialization: This may signal data leakage (e.g., label information
leaking into the inputs), incorrect use of pretrained weights, or even a flaw in the loss imple-
mentation. For example, a cross-entropy loss close to zero implies that the model is already
assigning very high probability to the correct class—unlikely if the weights are truly untrained.

* If the loss is too high: This might indicate degenerate model outputs (e.g., extremely large or
small logits), incorrect label encoding (such as using class indices instead of one-hot vectors),
or numerical instability. In CE, large logit magnitudes with wrong signs can spike the loss
well above logC.

* If the loss deviates significantly from the expected baseline (e.g., logC for cross-entropy
or C — 1 for SVM): This may reflect label mismatches, class imbalance, or improperly scaled
outputs (e.g., skipping softmax or applying wrong activation functions).

In short: Mismatch with expected baseline (e.g., logC for CE or C — 1 for SVM) suggests
issues like misaligned labels, class imbalance, or broken forward pass logic. Checking the initial
loss should be a routine step when setting up models. It helps catch configuration bugs early—often
before training even begins.

Conclusion: SVM, Cross Entropy, and the Evolving Landscape of Loss Functions
* SVM Loss: Suitable for margin-based classification but requires regularization to handle
multiple solutions with zero loss.
* Cross-Entropy Loss: Ideal for probabilistic interpretation and gradient-based optimization,
often preferred in deep learning models.
Both losses have unique advantages, and the choice depends on the application and desired
behavior during training.
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Motivation

From Separability to True Discriminability

In many high-dimensional recognition tasks—such as face verification, speaker recognition, and
product retrieval—standard softmax cross-entropy loss ensures only that the correct class logit
exceeds the others. While this suffices for separability, it does not guarantee discriminability:
features of the same class may be loosely scattered, and different classes may overlap in feature
space. To achieve robust, generalizable embeddings, one seeks compact intra-class clusters and
large inter-class margins.

Angular Formulation on the Hypersphere

A practical approach to achieve this geometric interpretability is to reformulate the decision boundary
in angular terms. Let the feature vector x € R” and class prototype w i € RP represent, respectively,
the sample and the j-th class weight. Both are £;-normalized onto the unit hypersphere:

X - WJ'

F=— W= —d
[lx[|2" 7wl

The cosine similarity between them defines the logit:
zj=sW;%=scosb;, 8; € [0°,180°], (3.1)

where s > 0 rescales logits for numerical stability and gradient control. Under this normalized form,
decisions depend solely on the angular distance between feature and prototype—making 6; a natural
measure of class alignment.

With conventional softmax applied to Eq. (3.1), the binary decision boundary is the angular
bisector cos 0 = cos 6,. A sample infinitesimally closer to its true prototype is already deemed
correct—offering no safety buffer. Thus arose the idea of introducing explicit angular margins.

Historical Progress: Multiplicative Margins and Their Limitations
Early works like L-Softmax [378] and A-Softmax (SphereFace) [379] pioneered margin-based
formulations in angular space. SphereFace enforced a multiplicative constraint by replacing cos 6,
with cos(m8,) for integer m > 1. This effectively narrowed the acceptance cone of the correct class,
requiring samples to align more closely with their class prototype to be correctly classified.

However, cos(m6) is non-monotonic on [0, 7], oscillating across sectors and causing ambiguous
gradients. SphereFace resolved this via a piecewise surrogate

w(0) = (—1)Fcos(mB) —2k, @ [ (thr],

m' m
and an annealing blend

A cosB+ y(0
W(G)ZAHW()’

which starts near cos 6 (large A) and transitions to y(6) (small 1). While conceptually elegant, this
multiplicative margin had several drawbacks:
* Angle-dependent margin. The effective margin shrinks non-uniformly with 8, applying
excessive pressure to hard samples but little to easy ones.
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» Gradient instability. The piecewise function introduces kinks and steep, regime-dependent
slopes, making optimization sensitive to initialization and learning rate.

* Hyperparameter burden. The integer m, annealing schedule, and blending A require manual
tuning.

AM-Softmax (CosFace): The Additive Cosine Margin Solution

AM-Softmax (CosFace) [655, 656] resolves two core issues of earlier margin losses. First, L-
Softmax [378] and A-Softmax (SphereFace) [379] enforce margins by warping angles (e.g.,
cos(m6y)), which requires a piecewise surrogate to remain monotone and a careful annealing
schedule for stability. Second, their angle-dependent pressure pushes hard samples far more than
easy ones, yielding unbalanced gradients and inconsistent intra-class compactness. AM-Softmax
instead applies a fixed additive margin in cosine space, keeping the target strictly monotone and the
optimization simple.

Formulation (single change to the target logit). After ¢/,-normalizing features and weights, logits
are 7; = s cos 6;. AM-Softmax modifies only the correct-class logit:

ZfM'SOftmax =s(cos Oy —m), zj=scos0; (j#Yy), (3.2)
with scale s > 0 and margin m > 0. In the binary normalized case, the decision boundary shifts from
cos0; = cos 6, to

cosf —m=cos6, <= cosbB—cosb, =m, (3.3)

so the target class must win by a fixed cosine gap m—independent of absolute angles.

Why AM-Softmax beats multiplicative/angle-space margins.
* Smooth, bounded, and stable target. AM-Softmax defines its target logit as

0z
== — _gsin 0.

zy = s(cos 6, —m), 30—
Y

This function is C**-smooth, strictly decreasing, and globally bounded by |dz,/d6y| <s. Under
cross-entropy, where dL/dz, = p, — 1, we obtain

JdL
’aey’ =s|py—1|sin6, <s.

This upper bound means that no matter how misaligned the feature is, the gradient magnitude
never exceeds s, giving a uniformly Lipschitz-continuous landscape—changes in angle produce
proportionally limited changes in loss. In optimization terms, this limits gradient variance
across the batch, keeping learning updates stable and predictable. At random initialization,
when feature directions are nearly uniform on the hypersphere, IE[sin2 0, = %, yielding a
consistent average gradient scale of order & (s). This steady “signal power” ensures smooth
convergence without oscillations or exploding updates.

By contrast, multiplicative (angle-space) margins, such as SphereFace, approximate z, ~
scos(m6y). Their gradient,

= ~ —smsin(m0,),
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is m-times steeper, oscillatory, and periodically reverses direction—creating “kinks” between
angular sectors. Each kink acts as a sharp ridge in the loss surface, causing large, erratic
gradient swings (Var[dz,/d6,]«m?) and forcing the use of annealing schedules to gradually
“turn on” the margin. AM-Softmax’s smoothness removes these discontinuities entirely,
yielding a single well-behaved basin of descent.

Intuitively, AM-Softmax feels like descending a gentle, continuous slope—easy to con-
trol—whereas multiplicative margins resemble stepping down a jagged staircase with uneven
steps. The smoother surface means more stable optimization, faster convergence, and far fewer
tuning complications.

Uniform margin and geometric clarity. AM-Softmax applies a fixed additive margin in
cosine space:

cos By, >cosB;+m (Vj#y),

meaning the feature’s similarity to its true prototype must exceed that to every distractor by at
least m. This margin is absolute and identical for all samples, defining a uniform “safety gap”
in cosine similarity.

To understand its effect, note that a “hard” distractor corresponds to a small angle 6; (the
feature is near a wrong prototype), while an “easy” distractor has a large 6; (the feature
is far from any confusion). The largest allowable deviation for the correct class before
misclassification is

max __ .
;" = arccos(cos 6; +m),

so the decision boundary shifts inward by a fixed cosine offset m. A small linearization gives

m
Ay ~ sin@;’

which scales smoothly: when 6; is large (easy case), sin8;~ 1, giving a mild tightening; when
0; is smaller (hard case), the pull is slightly stronger but never extreme.

In effect, AM-Softmax balances the forces applied to all samples—gently encouraging easy
ones to refine alignment, while giving hard ones enough extra pull to escape confusion without
destabilizing gradients.

Numerical illustration (AM m=0.35 vs. A-Softmax m=4). Consider two distractors at
different angular distances from the true prototype:

- Hard distractor: 6; = 60° (cos6; = 0.5). AM-Softmax requires cos 6, > 0.85 =
6;"** ~ 31.8°, halving the decision cone—firm but reasonable separation. A-Softmax
enforces 6" = 60°/4 = 15°, a fourfold contraction that yields excessive gradient
magnitude and slower convergence.

- Easy distractor: 6; = 90° (cos 8; = 0). AM-Softmax gives 6;"* ~ 69.5°, applying only
mild pressure to refine alignment. A-Softmax insists on 22.5°, over-tightening already
safe samples.

In both cases AM-Softmax uses the same additive gap (Acos = m = 0.35), yet its angular effect
self-adjusts via the sphere’s curvature (sin 6;): the pull is adaptive but bounded, preventing
gradient imbalance across the batch.
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Geometric intuition. On the hypersphere, AM-Softmax transforms the softmax bisector
cos 8] = cos 0, into a parallel offset cos 8; — cos 6, = m. Each class thus gains a uniform
spherical cap—a “moat” of cosine width m—that separates prototypes evenly. All classes
retain equally sized, isotropic decision regions, while multiplicative margins distort these
shapes, over-squeezing poles and stretching equators. The additive cosine rule therefore
ensures fair, stable, and geometrically clean separation across the sphere.
Hyperparameters and practice.
* Scale s. Acts as an inverse temperature that sharpens posteriors and scales gradients; typical
settings range from s=30 to s=64 depending on batch size and dataset.
» Margin m. Sets the required cosine lead; values in m € [0.2,0.5] are common. Larger m
strengthens separation but can slow early convergence.
In large-scale face recognition, (s,m) = (64,0.35) is a widely used, robust choice [656]. Compared
to L-Softmax and SphereFace, AM-Softmax achieves stronger, more uniform discrimination with a
simpler, more stable training recipe.

target logit

=== Conventional Softmax

Angular Softmax (m=2, A=0)
Angular Softmax (m=4, X=0)
Angular Softmax (m=4, \=5)
== Additive Margin Softmax (m=0.35)

oF 1 1 1 L 1 L 1 L
0° 20° 40° 60° 80° 100° 120° 140° 160° 180°
angle

Figure 3.19: Target-logit y(6) comparison. AM-Softmax produces a smooth, strictly monotone
target on [0°,90°], in contrast to A-Softmax’s oscillatory piecewise formulation. Adapted from
[655].
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A-Softmax versus AM-Softmax at a glance

A-Softmax (SphereFace) enforces a multiplicative, angle-dependent margin via a piecewise target
y(6) and often requires a blending schedule A, which can yield uneven gradients and nontrivial
hyperparameter tuning. AM-Softmax instead subtracts a fixed margin m in cosine space, producing
a smooth, strictly monotone target and a uniform decision buffer with only two interpretable scalars

(s,m).

/4 4o
Decision Boundary
. . for Class 1
Decision
Boundary
- 4o
Decision Boundary
° <IN for Class 2
e o o W> °e’e 0’ W,
Class2 @ ©® © Class2 © ®o®
Original Softmax Additive Margin Softmax

Figure 3.20: Conceptual comparison between the original softmax and AM-Softmax. A-Softmax
imposes a multiplicative, unfixed angular margin controlled by m (with optional blending 1), whereas
AM-Softmax introduces a fixed hard margin in cosine space via a single m, directly promoting
compact intra-class clusters and larger inter-class separation. Figure courtesy of the AM-Softmax

authors [655].

Why it helps and how it looks in feature space

Training with normalized features and weights makes the classifier rotate features toward the correct
prototype rather than inflate norms. AM-Softmax pushes the decision boundary inward by a constant
buffer in cosine space; compared with the softmax bisector and multiplicative margins, this fixed-gap
rule yields visibly tighter intra-class clusters and larger inter-class spacing, improving open-set
identification and verification.

Softmax NormFace (s=10) SphereFace (m=4, 1=0.5) AM:-Softmax (s=10,m=0.2) AM-Softmax (s=10,m=0.5)

>

Figure 3.21: Feature distributions on the unit sphere across several loss functions in the authors
visualization. AM-Softmax concentrates samples into compact class-aligned cones and enlarges
inter-class gaps relative to conventional softmax and earlier margin losses. Figure courtesy of the
AM-Softmax authors [655].
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Gradient behavior and the role of normalization

Hyperspherical normalization decouples gradient magnitude from raw feature norms: updates mainly
rotate features toward W, and away from impostors instead of amplifying vector lengths. The scale
s sharpens the posterior and proportionally scales gradients—too large an s can reduce numerical
slack. The empirical effect is visualized below.

103 F T T T T
[ w/ feature normalization
w/o feature normalization

feature gradient norm

1 1 | 1 1
0 10 20 30 40 50 60
feature norm

Figure 3.22: Feature-gradient norm versus feature norm for softmax with and without feature
normalization (FN). Without FN, small-norm features can cause large, unstable gradients; with FN
(e.g., s = 30), gradients are well-controlled and primarily adjust directions. Figure courtesy of the
AM-Softmax authors [655].

Implementation pattern

1 # AM-Softmaz forward (NumPy/PyTorch-like pseudocode)
> # X: (N, D), W: (K, D), y: (N,), s: float, m: float

3 Xn = X / np.linalg.norm(X, axis=1, keepdims=True) # (N, D) feature
< mnormalization

4 Wn =W / np.linalg.norm(W, axis=1, keepdims=True) # (K, D) weight
< mnormalization

s cos = Xn @ Wn.T # (N, K) cosine

< similarities
6 logits = s * cos
7 idx = np.arange(X.shape[0])

8 logits[idx, y] = s * (cos[idx, y] - m) # subtract fized
< margin on target
9 loss = cross_entropy(logits, y) # standard CE on

<~ modified logtts
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Experiments and ablations

Benchmarks and observations

Across standard face recognition benchmarks—LFW, BLUFR, and MegaFace—AM-Softmax deliv-
ers consistent gains over plain softmax and comparable or better accuracy than A-Softmax, while
being substantially easier to train. Moderate margins in the range m € [0.30,0.45] strike a practical
balance: they create compact, well-separated embeddings without destabilizing optimization. Be-
yond this range, overly large margins can over-constrain the angular decision regions, leading to
slower convergence or gradient saturation.

Results reported by [655] are summarized in the table below. Identification and verification
results on MegaFace are additionally visualized using the Cumulative Match Characteristic (CMC)
curve—a standard metric for large-scale identification. The CMC curve plots the probability that the
correct identity appears within the top-k retrieved matches; a higher curve (especially at small ranks
such as rank-1 or rank-5) indicates stronger discriminative power and better generalization under
open-set conditions.

When comparing absolute performance numbers, note that differences in backbone architectures
(e.g., ResNet-18 vs. ResNet-64) can affect reported accuracy. Nonetheless, AM-Softmax’s key
advantage is practical: it achieves state-of-the-art discriminative embedding quality without requiring
the delicate annealing schedules or piecewise margin surrogates needed by multiplicative-margin
methods such as SphereFace.

Table 3.1: Verification and identification performance for AM-Softmax versus baselines (numbers
reported by [655]). Among AM-Softmax rows, the best entry per column is bolded.

Loss m LFW 6k BLUFR VR@0.01% BLUFR VR@0.1% MegaFace Rankl@1le6 MegaFace VR@1e-6
Softmax - 97.08% 60.26% 78.26% 50.85% 50.12%
Softmax + 75% dropout - 98.62% 77.64% 90.91% 63.72% 65.58%
Center Loss - 99.00% 83.30% 94.50% 65.46% 75.68%
NormFace - 98.98% 88.15% 96.16% 75.22% 75.88%
A-Softmax (SphereFace) ~1.5 99.08% 91.26% 97.06% 81.93% 78.19%
AM-Softmax 025  99.13% 91.97% 97.13% 81.42% 83.01%
AM-Softmax 030  99.08% 93.18% 97.56% 84.02% 83.29%
AM-Softmax 035  98.98% 93.51% 97.69% 84.82% 84.44%
AM-Softmax 040  99.17% 93.60% 97.71% 84.51% 83.50%
AM-Softmax 045  99.03% 93.44% 97.60% 84.59% 83.00%
AM-Softmax 0.50  99.10% 92.33% 97.28% 83.38% 82.49%
AM-Softmax w/o FN 035 99.08% 93.86 % 97.63% 87.58% 82.66%
AM-Softmax w/o FN 040  99.12% 94.48 % 97.96 % 87.31% 83.11%

Table 3.2: Effect of overlap removal on a modified ResNet-20, as reported by [655]

Setting MegaFace Rankl  MegaFace VR

AM-Softmax (No overlap removal) 75.23% 87.06%
AM-Softmax (Overlap removal) 72.47% 84.44%
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Verification with 1M Distractors

Identification with 1M Distractors

=
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Figure 3.23: CMC (left) and ROC (right) on MegaFace with 10° distractors comparing several losses.
AM-Softmax achieves strong identification and verification performance. Note that Center Loss and
NormFace curves use a deeper ResNet-28 backbone, whereas others use ResNet-20, as clarified by
the AM-Softmax authors [655].

Where AM-Softmax helps, and where it does not
AM-Softmax is most effective when the deployment compares embeddings by cosine similarity; its

fixed angular buffer shapes features into tight, well-separated cones that transfer directly to such
back-ends.

Good fit

* Open-set identification and verification. Tasks that reuse embeddings at inference (e.g., face
recognition, speaker verification) benefit because AM-Softmax tightens intra-class cones and
enlarges inter-class gaps on the unit hypersphere, improving cosine-based matching, reducing
false matches under many distractors, and stabilizing verification thresholds.

* Prototype or cosine back-ends. When inference compares a query embedding to stored
class directions by cosine, AM-Softmax aligns training with the deployment rule and avoids
train—test mismatch. Common patterns include.

— Prototype classifiers. Average support embeddings to form a class prototype and predict
by highest cosine; AM-Softmax’s hyperspherical clustering makes prototypes represen-
tative and decision margins reliable.

— Cosine k-NN over a gallery. Retrieve by nearest neighbors in cosine space; tighter
intra-class cones increase top-k recall and reduce impostor matches.

— Incremental or few-shot updates. Add new classes by storing one or a few prototypes
without retraining the head; the fixed margin leaves “room” on the sphere so unseen
prototypes separate cleanly from existing ones.

Limitations and cautions

* Closed-set-only classification. If evaluation is pure argmax over the training label set and
embeddings are never reused, a well-regularized cross-entropy baseline may match accuracy;
AM-Softmax’s advantage primarily appears in cosine retrieval and verification.

» Hyperparameter sensitivity of (s,m). An over-large margin m makes the target unattainable
early and stalls learning, while an over-large scale s over-sharpens posteriors, amplifies
gradients, and can destabilize optimization; prefer small, conservative adjustments around a
solid default.
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* Noisy labels or overlapping classes. A hard angular buffer over-penalizes ambiguous or
mislabeled samples; prefer a smaller m, sample reweighting, label smoothing, or data cleaning
when noise is present.

* Class imbalance and small batches. Aggressively tightened cones can underfit minority
classes when they are under-sampled; use class-balanced sampling, slightly smaller m, or
class-aware/adaptive margins.

* Domain shift and calibration. The cosine-margin objective optimizes discrimination on the
source domain; probability calibration can degrade under shift, so apply post-hoc calibration
(e.g., temperature scaling) on a target-domain validation set if downstream components
consume probabilities.

* Beyond classification heads. AM-Softmax is designed for classifier embeddings and is not
a drop-in objective for regression, dense prediction, or detection heads without additional
architectural design.

* Normalization trade-offs. normalized features/weights slightly reduce the linear head’s
flexibility; if deployment does not use cosine similarity, the geometric alignment benefit may
be underutilized.

Practical notes on tuning s and m

* Roles. The margin m is a safety buffer in cosine space that sets the required lead of the correct
class over impostors, while the scale s is an inverse temperature that sharpens posteriors and
scales gradients.

* Starting grid. A compact, effective sweep is
(s,m) € {16,30,64} x {0.25,0.30,0.35,0.40,0.45}, with (30,0.35) as a strong default.

* Adjusting m. If loss plateaus high or training accuracy stagnates, decrease m in 0.05 steps; if
convergence is easy but retrieval is loose (small cosine gaps), increase m slightly.

* Adjusting s. If logits saturate early, gradients are spiky, or numerical issues arise, reduce s
toward 16-24; if gradients are flat and separation grows slowly, increase s toward 30—64.

* Order of tuning. Fix s first (e.g., 30), tune m to the largest value that still converges stably,
then refine s for stability and calibration.

* Diagnostics. Monitor training/validation loss, ROC/CMC on a held-out gallery, and angular
statistics such as the mean target cosine cos 6, and the per-sample gap cos 6, — max ., cos 6;;
sustained increases in the cosine gap typically precede improvements in retrieval metrics.



