2.1

Introduction to Image Classification

Image classification is one of the most fundamental tasks in computer vision and serves as the
cornerstone for a wide range of applications in artificial intelligence. The objective of image
classification is straightforward: given an input image, the algorithm must assign a category label
from a predefined set of classes. For instance, an algorithm might label an image as one of several
categories, such as "cat," "dog," or "car".

Despite its simplicity in concept, image classification presents a host of challenges when applied
to real-world scenarios. Humans effortlessly recognize objects in images due to our ability to
intuitively interpret visual information. However, computers face significant hurdles due to the
semantic gap, which refers to the difference between the raw pixel values of an image and the
high-level semantic information we perceive.

When processing an image, a computer sees only a grid of numbers representing pixel intensities.
Even minor changes, such as variations in viewpoint, lighting, or background, can drastically alter
these pixel values, making it difficult to map them to a consistent semantic label. Moreover, intra-
class variations, such as differences in appearance among individual objects within the same category,
add another layer of complexity.

To address these challenges, image classification has evolved from early heuristic-based methods
to modern data-driven approaches that leverage machine learning and deep learning. By analyzing
large datasets of labeled images, these algorithms learn patterns and statistical dependencies that
enable them to generalize across diverse examples.

This chapter begins by exploring the foundational concepts of image classification, including
its historical background and early techniques. It then delves into common datasets used for
classification, providing insights into their importance and structure. Building on this foundation, we
introduce the nearest neighbor algorithm as our first learning-based method, followed by a discussion
on hyperparameter tuning, data hygiene, and cross-validation. Finally, the chapter highlights the
pivotal role of image classification in powering more advanced computer vision tasks, such as
object detection and image captioning, and examines the transition from raw pixel-based methods to
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feature-based approaches driven by deep learning.

By the end of this chapter, readers will gain a solid understanding of the principles and challenges
of image classification and will be equipped with the knowledge to implement their first machine
learning algorithm for visual recognition.

Image Classification Challenges

Image classification is a fundamental yet challenging task in computer vision. It requires algorithms
to bridge the "semantic gap"—the disparity between human perception and raw pixel data processed
by machines. This gap arises because machines interpret images as tensors (multidimensional arrays,
or a generalization in n dimensions of matrices) of pixel values, devoid of inherent semantic meaning.
This section explores the critical challenges in image classification, highlighting the complexities of
achieving robust and accurate recognition.

The Semantic Gap

Humans perceive images intuitively, instantly recognizing objects and their context. Machines,
however, see images as grids of numbers—pixel values in a tensor representation. For example, an
image might be represented as a H x W x C tensor, where H and W denote the height and width of
the image, and C represents color channels. These raw values lack semantic information, making it
challenging for algorithms to deduce meaningful patterns.
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Figure 2.1: Images are represented as grids of pixel values, lacking inherent semantic meaning.

2.2.2 Robustness to Camera Movement

Images captured from different camera angles or positions can vary significantly in their pixel
values, even when depicting the same scene. For example, photographing a cat from different angles
produces vastly different pixel grids, despite representing the same object.
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Challenges: Viewpoint Variation

=

All pixels change when
the camera moves!
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Figure 2.2: Changes in camera position or angle result in varying pixel grids, complicating classifi-

cation.

2.2.3 Intra-Class Variation

Objects within the same category can exhibit substantial visual differences. For example, cats of
different breeds or fur colors might look entirely distinct in terms of pixel patterns.

Challenges: Intraclass Variation
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Figure 2.3: Cats of different breeds show significant visual differences, a phenomenon known as
intra-class variation.

2.2.4 Fine-Grained Classification
Distinguishing between visually similar categories, such as specific breeds of cats, requires a
more granular understanding of features. Fine-grained classification demands algorithms that can
differentiate subtle variations within a category, such as fur patterns or ear shapes.
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Challenges: Fine-Grained Categories

Maine Coon Ragdoll American Shorthair
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Figure 2.4: Fine-grained classification requires distinguishing subtle differences within visually
similar categories.

2.2.5 Background Clutter

Objects in images often blend into complex or cluttered backgrounds, making it challenging to
isolate the target object. For instance, a cat sitting amidst foliage may be difficult to distinguish due
to natural camouflage or similar textures.

Challenges: Background Clutter
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Figure 2.5: Background clutter can obscure target objects, complicating image classification.

2.2.6 lllumination Changes
Lighting conditions significantly impact the appearance of objects in images. A cat photographed
in daylight might look very different when captured under dim lighting, even though its semantic
identity remains unchanged.
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Challenges: lllumination Changes
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Figure 2.6: Variations in illumination conditions affect object appearance, requiring robust algo-

rithms.

2.2.7 Deformation and Object Scale

Objects are not rigid entities; they deform and appear at varying scales within images. For example,
a cat lying stretched out versus curled up occupies different shapes and scales in an image.

Challenges: Deformation
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Figure 2.7: Objects can deform and appear at varying scales, posing challenges for classification.

2.2.8 Occlusions

Partial visibility of objects adds another layer of complexity to image classification. For instance, a
cat partially hidden under a pillow, with only its tail visible, might be easily recognized by humans
based on contextual reasoning. However, such occlusions often hinder algorithmic performance, as
they obscure critical features necessary for classification.
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Challenges: Occlusion

Justin Johnson Lecture 2 - 18 January 10, 2022

Figure 2.8: Occlusions, such as partial visibility of objects, obscure critical features and hinder
classification.

Summary of Challenges

Image classification presents a range of challenges rooted in the complexities of visual data and
the semantic gap between raw pixel values and meaningful categories. Developing effective algo-
rithms requires bridging this gap while ensuring robustness to variations in viewpoint, illumination,
occlusion, deformation, and other real-world conditions.

Traditional approaches to image classification, such as edge detection and corner detection
combined with feature descriptors and matching, offered foundational insights into the problem.
However, these classical methods often struggled to adapt to the diversity and unpredictability of
real-world scenarios, limiting their effectiveness in practical applications.

The emergence of learning-based methods, particularly deep learning, has transformed the
landscape by providing more robust and scalable solutions. These methods leverage techniques
such as data augmentation and feature extraction to learn hierarchical representations directly from
raw data. This ability to adapt and generalize across varying conditions has propelled significant
advancements in classification performance, making these approaches the dominant paradigm in the
field.

In the following sections, we will delve into these challenges and explore how learning-based
methodologies address them.

Image Classification as a Building Block for Other Tasks

Image classification serves as a foundational task in computer vision, enabling advancements in a
variety of related applications. Its ability to assign meaningful labels to visual data allows more
complex tasks to be framed as extensions of classification. In this section, we explore how image
classification supports tasks such as object detection, image captioning, and decision-making in
board games.
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2.3.1 Object Detection

Object detection extends image classification by identifying not only the types of objects present in
an image but also their locations. A robust image classifier can be utilized as a core component of an
object detection pipeline by classifying regions within an image.

One approach is to use a sliding window technique, where the image is divided into overlapping
subregions. Each subregion is classified as either belonging to the background or containing an
object. For regions identified as containing objects, the classifier further determines the type of
object present. While this approach is computationally intensive and has limitations in handling
scale and aspect ratio variations, it demonstrates how image classification can be repurposed to solve
more advanced tasks.

Image Classification: Building Block for other tasks!

Example: Object Detection

Background
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Figure 2.9: Using sliding windows for object detection: classifying regions as background or
containing an object.

Image Classification: Building Block for other tasks!

Example: Object Detection
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Figure 2.10: Using sliding windows for object detection: classifying regions containing objects (e.g.,
person).
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Image Captioning

Image captioning involves generating a natural language description of the content in an image, a task
that can also be framed as a sequence of classification problems. Given a fixed vocabulary of words,
the algorithm determines the most fitting word at each step, effectively performing classification
repeatedly until a complete sentence is formed.

For example, starting with an input image, the first classification might yield the word "man,"
followed by "riding," then "horse," and eventually a "STOP" token to indicate the end of the caption.
This process demonstrates how a robust image classifier can form the backbone of a more complex
multimodal task that bridges vision and language.

Image Classification: Building Block for other tasks!

Example: Image Captioning

What word
to say next?

Caption:
Man
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Figure 2.11: Image captioning as sequential classification: determining the first word (e.g., "man").

Image Classification: Building Block for other tasks!

Example: Image Captioning

riding What word
to say next?

Caption:
Man riding
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Figure 2.12: Image captioning as sequential classification: determining the next word (e.g., "riding").
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Image Classification: Building Block for other tasks!

Example: Image Captioning

What word
to say next?

Caption:
Man riding horse

<STOP>
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Figure 2.13: Image captioning: determining the end of the sentence with a "STOP" token.

2.3.3 Decision-Making in Board Games
Board games such as Go provide another example of framing a complex task as a classification
problem. Each position on the board can be viewed as an input to the algorithm, with the goal of
classifying which position is most optimal for the next move. This approach enables algorithms to
make strategic decisions by treating each potential move as a classification instance, demonstrating
the versatility of image classification as a problem-solving tool.

Image Classification: Building Block for other tasks!

Example: Playing Go

Where to
play next?
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Figure 2.14: Board games like Go framed as classification problems: determining the optimal next
move.
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Summary: Leveraging Image Classification

Image classification is not just an isolated task but a fundamental building block for diverse appli-
cations in computer vision and artificial intelligence. By leveraging classification in tasks such as
object detection, image captioning, and decision-making, researchers have been able to extend its
utility and address increasingly complex problems. This underscores the importance of developing
robust image classifiers, as they form the foundation for solving more sophisticated challenges.

Constructing an Image Classifier

Designing an image classifier is a complex process that cannot be reduced to a simple function like
def classify_img(...), which takes an image tensor and directly outputs a category label. This
complexity arises from the inherent challenges of translating raw pixel values into meaningful cate-
gories. Over time, the field has transitioned from feature-based methods to data-driven approaches,
reflecting the increasing complexity of real-world applications.

Feature-Based Image Classification: The Classical Approach

Traditional strategies for building an image classifier rely on explicit feature extraction and rule-based
classification:

* Edge Detection: Algorithms like the Canny Edge Detector [63] are used to identify object
boundaries by detecting abrupt changes in pixel intensity.

* Keypoint Detection: Techniques such as the Harris Corner Detector [203] locate distinctive
features like corners in the image.

* Rule-Based Classification: Incorporating human knowledge, explicit rules are devised to
classify objects based on extracted features. For example, cats might be identified by triangular
ears and whiskers.

While this approach provides a structured framework, it faces critical challenges:

* Variability: Real-world objects exhibit significant variations, such as cats with or without
whiskers.

* Failure Points: Feature detectors often fail under challenging conditions, such as poor lighting
or occlusion.

* Scalability: Adding new categories requires rewriting rules and redesigning algorithms,
limiting adaptability.
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An Image Classifier

def classify_image(image):

Some magic here?

return class_label

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm
for recognizing a cat, or other classes.
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Figure 2.15: Attempting to classify images using hard-coded features is highly challenging.

You could try ...

B rind edges

Find corners N é 4\ >
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Figure 2.16: Edges and corners as features for classification: an incomplete solution.

2.4.2 From Hand-Crafted Rules to Data-Driven Learning

Machine learning revolutionized image classification by replacing manual feature engineering with
automated learning from data. This modern approach is defined by three key steps:

1. Dataset Collection: Collect a large dataset of images and their corresponding human-
annotated labels.

2. Model Training: Train a machine learning model to learn patterns and representations directly
from the dataset.

3. Prediction and Evaluation: Use the trained model to predict labels for unseen images and
evaluate performance using metrics like accuracy or log-likelihood.
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This pipeline, illustrated in Figure 2.17, modularizes the process into two core functions:
train(images, labels) and predict(model, test_images).

Machine Learning: Data-Driven Approach

1. Collect a dataset of images and labels
2. Use Machine Learning to train a classifier
3. Evaluate the classifier on new images

Example training set

def train(images, labels):
achine learnin
return model

def predict(model, test_images):

return test_labels
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Figure 2.17: A data-driven pipeline for training and evaluating machine learning-based image
classifiers.

2.4.3 Programming with Data: The Modern Paradigm

Data-driven approaches redefine how we "program" computers. Instead of hard-coding rules, we
train models by providing labeled datasets, allowing the algorithm to learn from examples. This shift
offers significant advantages:
* Scalability: Easily adapts to new categories by adding labeled data.
* Robustness: Handles diverse conditions, such as lighting changes and occlusions, without
manual adjustments.
* Automation: Eliminates the need for explicit, domain-specific rules, making it suitable for
complex, real-world tasks.
For example, a data-driven model trained on images of animals learns nuanced distinctions—like
fur patterns and body shapes—directly from the data, avoiding the need for manually encoding such
rules.

2.4.4 Data-Driven Machine Learning: The New Frontier

Datasets are the foundation of modern machine learning, enabling models to learn directly from
examples. Unlike traditional algorithm-driven approaches, where progress relied on better feature
engineering, data-driven methods depend on the quality, diversity, and scale of datasets.
Why Data Dominates:
* Generalization: Models trained on diverse datasets can generalize to unseen data better than
those relying on hand-crafted features.
* Flexibility: New tasks and domains require only new data, not redesigned algorithms.
* Empirical Strength: Data-driven methods align closely with real-world variability, capturing
patterns that are infeasible to encode manually.
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The growing emphasis on datasets reflects a paradigm shift in machine learning research, where
the quality of data often outweighs incremental algorithmic improvements. This approach empowers
models to tackle the complexities of real-world visual data effectively.

In the next section, we delve into the critical role of datasets in machine learning, exploring how
they shape the development and performance of image classification models.

Datasets in Image Classification

Datasets form the backbone of modern machine learning and computer vision, defining the scope and
quality of what algorithms can learn. Over the years, datasets in image classification have evolved in
scale, complexity, and diversity, shaping the trajectory of the field. In this section, we explore some
of the most prominent datasets used in image classification, their characteristics, and their role in
advancing research.

MNIST: The Toy Dataset

The MNIST dataset [316] is one of the earliest and most iconic datasets in machine learning. It
consists of 28 x 28 grayscale images of handwritten digits (0-9), making it a 10-class classifica-
tion problem. With 50,000 training images and 10,000 test images, MNIST has been pivotal in
demonstrating the power of early machine learning algorithms.

While MNIST is often referred to as the Drosophila of computer vision, it is considered a
toy dataset due to its simplicity and small size. Achieving high accuracy on MNIST does not
necessarily translate to success on more complex datasets, limiting its utility in benchmarking
modern algorithms.

Image Classification Datasets: MNIST
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Figure 2.18: MNIST: A dataset of handwritten digits, often used as a toy benchmark.

CIFAR: Real-World Object Recognition

The CIFAR-10 dataset [306] represents a significant step forward in dataset complexity. It contains
10 classes of objects (e.g., airplane, automobile, bird, cat) with 32 x 32 x 3 RGB images. The dataset
includes 50,000 training images (5,000 per class) and 10,000 test images (1,000 per class).
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CIFAR-10 strikes a balance between complexity and computational feasibility, making it ideal
for research and teaching purposes. In this course, CIFAR-10 is the primary dataset for homework
assignments.

CIFAR-10 has a cousin, CIFAR-100, which has similar statistics but with 100 categories instead
of 10. These 100 categories are grouped into 20 superclasses, each containing five finer-grained
classes. For example, the Aquatic Animals superclass includes classes like beaver, dolphin, otter,
seal, and whale.

Image Classification Datasets: CIFAR10

airplane
automobile 10 classes
bird 50k training images (5k per class)
cat 10k testing images (1k per class)
deer 32x32 RGB images
dog
fro.
. We will use this dataset for
horse .
. homework assignments
ship
truck

xxxxxxxxxxxx oy, 1 Tiny Images”, 009,
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Figure 2.19: CIFAR-10: A dataset for object classification with 10 categories.

Image Classification Datasets: CIFAR100
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50k training images (500 per class)
10k testing images (100 per class)
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20 superclasses with 5 classes each:
Aguatic mammals: beaver, dolphin,

otter, seal, whale
Trees: Maple, oak, palm, pine, willow
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Figure 2.20: CIFAR-100: An extension of CIFAR-10 with 100 categories.
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ImageNet: The Gold Standard

ImageNet [118] is a cornerstone dataset in computer vision, widely used for benchmarking image
classification algorithms. It comprises over 1.3 million training images across 1,000 categories,
with approximately 1,300 images per category, alongside 50,000 validation images and 100,000 test
images.

Collected from the internet, ImageNet images vary in resolution but are typically resized to
256 x 256 x 3 for training and evaluation. Its scale and diversity challenge algorithms to generalize
effectively, making it ideal for assessing robustness.

Image Classification Datasets: ImageNet
1000 classes

~1.3M training images (~1.3K per class)
- e A ave 50K validation images (50 per class)

E g e ‘ 100K test images (100 per class)

Performance metric: Top 5 accuracy
- Algorithm predicts 5 labels for each
image; one of them needs to be right

égyp(\an cat Persian cat Siamese cat tabby

dalmatian keeshond miniature schnauzer slandard schnauzer giant schnauzer

Deng et al, “ImageNet: A Large-Scale Hierarchical Image Database”, CVPR 2009
Russakovsky et al, “ImageNet Large Scale Visual Recognition Challenge’, 11CV 2015
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Figure 2.21: ImageNet: A dataset of 1,000 categories pivotal to computer vision progress.

ImageNet’s top-5 accuracy metric allows the algorithm to succeed if the correct label appears
among its top 5 predictions, accommodating label ambiguities and noise in the data.

Image Classification Datasets: ImageNet
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Figure 2.22: ImageNet top-5 accuracy: A widely adopted evaluation metric.
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2.5.4 MIT Places: Scene Recognition

While datasets like ImageNet focus on object recognition, the MIT Places dataset [797] emphasizes
scene classification, with categories like classrooms, fields, and buildings. This shift from object-
centric to scene-centric data broadens the scope of image classification research, enabling algorithms
to analyze broader contexts in visual data.

Image Classification Datasets: MIT Places
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Figure 2.23: MIT Places: A dataset for scene classification, focusing on diverse environmental
contexts.

2.5.5 Comparing Dataset Sizes

Figure 2.24 compares the sizes of these datasets in terms of the total number of pixels in their training
sets. The y-axis, plotted on a logarithmic scale, reveals a clear trend:

* CIFAR is roughly an order of magnitude larger than MNIST.

* ImageNet is approximately two orders of magnitude larger than CIFAR.

* MIT Places is yet another order of magnitude larger than ImageNet.

This trend reflects the increasing scale of datasets over time, driven by the need for diverse
and comprehensive training data. Larger datasets like ImageNet yield more convincing results but
demand significant computational resources, which is why smaller datasets like CIFAR remain
popular for teaching and prototyping.
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Classification Datasets: Number of Training Pixels
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Figure 2.24: Comparing dataset sizes: MNIST, CIFAR, ImageNet, and MIT Places.

2.5.6 Omniglot: Few-Shot Learning

As datasets grow larger, an emerging research direction focuses on learning from limited data. The
Omniglot dataset [51] exemplifies this shift by providing only 20 examples per category. Omniglot
contains handwritten characters from over 50 different alphabets, emphasizing the challenge of
few-shot learning, where algorithms must generalize from minimal examples.

Image Classification Datasets: Omniglot
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Figure 2.25: Omniglot: A dataset for few-shot learning, with minimal examples per category.

2.5.7 Conclusion: Datasets Driving Progress

Datasets set the limits of model capabilities, with larger and more diverse datasets enabling break-
throughs in image classification. Specialized datasets like Omniglot address challenges like few-shot
learning, emphasizing the evolving needs of the field. In data-driven methodologies, the quality and
diversity of datasets remain pivotal in advancing computer vision.
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Nearest Neighbor Classifier: A Gateway to Understanding Classification

The Nearest Neighbor (NN) classifier is one of the simplest and most intuitive machine learning
algorithms. While seemingly elementary, it introduces key concepts that are foundational to the field
of classification. By starting with Nearest Neighbor, we gain a clear understanding of the principles
of classification and the practical challenges that arise in real-world scenarios, particularly when
working with high-dimensional data.

Why Begin with Nearest Neighbor?

The Nearest Neighbor algorithm serves as an excellent starting point for exploring machine learning
for several reasons:

» Simplicity: The algorithm’s straightforward design—based on memorizing data and compar-
ing distances—makes it easy to understand and implement.

* Foundational Concepts: It introduces the idea of similarity metrics, the importance of
distance functions, and the impact of training data quality.

» Real-World Limitations: Despite its theoretical appeal, Nearest Neighbor highlights practical
challenges such as high inference time, sensitivity to noise, and the curse of dimensionality,
motivating the development of more sophisticated algorithms.

By dissecting the Nearest Neighbor classifier, we lay the groundwork for understanding modern

approaches to robust classification.

Setting the Stage: From Pixels to Predictions

The fundamental task of a classifier is to assign a category label to an input image, bridging the gap
between raw pixel data and semantic meaning. For example, given an image of a cat, the classifier
should return the label "cat." Achieving this requires a method for comparing the input image to
previously seen examples and determining the most appropriate label.

Nearest Neighbor does this by comparing the test image to all training images and selecting the
label of the most similar one. This approach, while naive, provides valuable insight into the role of
similarity in classification and serves as a stepping stone toward more advanced machine learning
models.

The following sections detail the algorithm, its components, and the practical considerations for
its use.

Algorithm Description

The Nearest Neighbor classifier operates using two primary methods:
* train: Memorizes the training data and corresponding labels without any additional compu-
tation.
* predict: For a test image, computes the distance to all training images using a similarity
function or distance metric. The label of the most similar training image is returned as the
prediction.
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First classifier: Nearest Neighbor

def train(images, labels): Memorize all data
and labels

return model

def predict(model, test_images): Predict the label of
' = : the most similar
training image

return test_labels
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Figure 2.26: Nearest Neighbor classifier: memorize training data and predict based on the closest

match.

2.6.4 Distance Metrics: The Core of Nearest Neighbor
The distance metric determines how "similar" two images are. The most common choices include:
* L1 Distance (Manhattan Distance): Computes the sum of absolute differences between

corresponding pixel values:

L1 Distance = Y |x; — i

n

i=1

Distance Metric to compare images
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Figure 2.27: L1 distance example: a simple and interpretable metric.
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* L2 Distance (Euclidean Distance): Computes the root of the sum of squared differences:

n
L2 Distance = | Y (x; — y)?
i=1

K-Nearest Neighbors: Distance Metric
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Figure 2.28: Comparison of L1 and L2 norm constraint regions in two dimensions.

— Left: The L1 norm constraint |w; |+ |wz| = ¢ defines a region bounded by four linear segments,
forming a diamond. This shape arises because the absolute value function grows linearly and
independently in each coordinate, so all points satisfying the constraint lie along lines where
the sum of the horizontal and vertical distances equals c.

- Right: The L2 norm constraint w? +w3 = ¢? forms a circle, as it includes all points at Euclidean
distance ¢ from the origin (0,0). The quadratic form symmetrically penalizes all directions,
yielding a smooth, round boundary.
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K-Nearest Neighbors: Distance Metric
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Figure 2.29: Decision Boundaries for L1 vs. L2 Metrics. In distance-based methods (e.g., nearest
neighbors), the choice of distance metric shapes the decision regions:
* L1 (Manhattan): Diamond-shaped boundaries (as points at the same L1 distance form axis-
aligned corners).
* L2 (Euclidean): Circular (or spherical) boundaries, since points equidistant in Euclidean
space lie on circles (or spheres).

What does this look like?
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Figure 2.30: Limitations of L1 distance: visually dissimilar objects with similar colors may be
incorrectly classified.

Each metric produces different decision boundaries, as shown in Slide 2.29. However, these
pixel-based metrics often fail to capture semantic similarity. For instance, as demonstrated in Slide
2.30, visually dissimilar objects with similar colors (e.g., a ginger cat and an orange frog) may appear
"close" under L1 or L2 distance.
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Extending Nearest Neighbor: Applications Beyond Images

While the Nearest Neighbor classifier is typically discussed in the context of image classification, its
principles can be extended to other domains and data types, provided a suitable distance function is
defined.

Using Nearest Neighbor for Non-Image Data
One compelling example of Nearest Neighbor applied to non-image data involves the analysis
of academic papers. In this context, similarity between documents is measured using TF-IDF
similarity (Term Frequency—Inverse Document Frequency). This metric captures the importance
of words in a document relative to a collection of documents, emphasizing unique and meaningful
terms while downplaying common ones like “the” or “and.”
* Term Frequency (TF): Measures how often a term appears in a document, providing a sense
of relevance within that document.
* Inverse Document Frequency (IDF): Reduces the weight of terms that appear frequently
across many documents, as these are less likely to be unique or significant.
* TF-IDF Score: Combines TF and IDF to assign a weight to each term in a document, capturing
its importance within a specific context.

Academic Paper Recommendation Example

K-Nearest Neighbors: Distance Metric

Pl ration via Deformation
o

19080149142 pal
show similar | discuss

1506 06543,2 -
show simiar | discuss

=] MER TS ATy
i

of s roatod
o ha o

http://www.arxiv-sanity.com/1906.02739v1

Justin Johnson Lecture 2 - 68 January 10, 2022

Figure 2.31: Nearest Neighbor using TF-IDF similarity for academic paper recommendations.

Using TF-IDF scores, we can represent each academic paper as a feature vector. Nearest Neighbor
can then be employed to find similar papers by comparing these vectors in feature space. As
illustrated in Figure 2.31, querying for a specific paper returns its closest neighbors based on
semantic similarity.
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In practice, we often retrieve not just the single nearest document, but the top k most similar
papers. Here, k denotes the number of neighbors returned (for example, k = 5 yields the five most
similar papers). This approach is commonly referred to as k-Nearest Neighbors.

This example highlights the flexibility of Nearest Neighbor for non-image data. By choosing
an appropriate similarity metric such as TF-IDF, we can uncover meaningful relationships between
documents and build effective recommendation systems.

Key Insights
The versatility of Nearest Neighbor and K-means clustering stems from their reliance on distance
metrics. This allows these algorithms to adapt to various applications, including:

* Recommending academic papers based on content similarity.

* Grouping documents into clusters for topic modeling.

* Analyzing user behavior in recommendation systems.

This flexibility makes these methods powerful tools not only in computer vision but also in
broader machine learning contexts.

Hyperparameters in Nearest Neighbor

The performance of the Nearest Neighbor classifier depends on two hyperparameters:

* k: The number of nearest neighbors.

* Distance Metric: Determines how similarity between images is computed.

Selecting the best hyperparameters is challenging because they cannot be directly learned from
training data.

Some strategies we can think of to select model hyperparameters include:

1. Using the Entire Dataset: Selecting hyperparameters that optimize performance on the
training set is misleading. For example, kK = 1 will perform good in this case, and may lead to
overfitting and poor generalization.

2. Train-Test Split Without Validation: While better than the previous method, this approach
lacks a clear mechanism to evaluate model performance on unseen data.

3. Train-Validation-Test Split: The recommended practice is to split data into three sets:

* Training Set: Used for fitting the model.

* Validation Set: Helps tune hyperparameters and assess overfitting.

» Test Set: Evaluates the final model after all hyperparameters are fixed.
The test set is only evaluated once, at the very end, as emphasized in Slide 2.32. Although
scary (as we tend to develop an algorithm spending a lot of time) as the resultant algorithm
may prove to be ineffective on the test data, this is the correct data hygiene approach. The test
set should only be used once, and near the end of the development.
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Setting Hyperparameters

Idea #1: Choose hyperparameters that BAD: K = 1 always works
work best on the data perfectly on training data

| Your Dataset l

Idea #2: Split data into train and test, choose BAD: No idea how algorithm
hyperparameters that work best on test data will perform on new data
| train ‘ test ‘

Idea #3: Split data into train, val, and test; choose

Better!
hyperparameters on val and evaluate on test

| train ‘ validation ‘ test ‘
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Figure 2.32: Train-validation-test split for robust evaluation.

2.6.7 Cross-Validation

For smaller datasets, k-fold cross-validation is a widely used strategy for reliable model evaluation
and hyperparameter tuning. Note: this method should not be confused with k-nearest neighbors; it
refers to a technique for assessing a model’s generalization ability.

In k-fold cross-validation, the available dataset is first split into two parts:

* A dedicated test set, held out and untouched until the final evaluation.

* A training+validation set, which is used for model selection and cross-validation.

This training+validation set is then partitioned into k equally sized folds. For each of the k
iterations, one fold is treated as a temporary validation set, and the remaining k — 1 folds are used for
training.
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The process is repeated k times such that every fold serves as validation exactly once. The
resulting performance metrics (e.g., accuracy or loss) are averaged across the k runs to produce a
more stable and reliable estimate of model quality.

Setting Hyperparameters

Cross-validation on k

o3t : Example of 5-fold cross-validation for
the value of k.

Each point: single outcome.

The line goes through the mean, bars
indicated standard deviation

(Seems that k ~ 7 works best
for this data)

-20 [ 0 0 ) £) 100 120
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Figure 2.33: Cross-validation accuracy for different values of k. Each dot represents an individual
trial, and the mean accuracy across folds is shown by the line. In this example, k = 7 yields the
highest average validation performance, so it is selected.

This method provides a robust mechanism for hyperparameter selection and model comparison,
particularly when limited data makes a single train-validation split unreliable. It is important to
emphasize that the test set is never used during cross-validation. It remains completely separate
and is reserved for the final, unbiased evaluation of the trained model, only after all tuning is
complete.

While cross-validation is computationally feasible and valuable for smaller datasets or shallow
models, it becomes impractical for large-scale datasets or deep learning models due to the repeated
training involved. For such cases, a single train-validation split is typically used during training
instead (often paired with mechanisms such as early stopping).
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2.6.8 Implementation and Complexity
The simplicity of Nearest Neighbor allows for a straightforward implementation:

import numpy as np

Nearest Neighbor Classifier

class NearestNeighbor:

def __init_ ( )=
pass
def train( X y):
"" X is N x D where each row is an example. Y is 1-dimension of size N """ . L.
Memorize training data
Xtro= X
ytr=y
def predict( X))

“* X is N x D where each row is an example we wish to predict label for """
num_test = X.shape[0]

Ypred = np.zeros(num_test, dtype = .ytr.dtype)

for i in xrange(num_test):

distances = np.sum(np.abs( Xtr - X[1,:]), axis = 1)
min_index = np.argmin(distances)
Ypred[i] = .ytr[min_index]

return Ypred
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Figure 2.34: train method: Memorizing training data.

import numpy as np

Nearest Neighbor Classifier
class NearestNeighbor:
def __init_ ( ):
pass

def train( 2 X ¥)s
"* X is N x D where each row is an example. Y is 1-dimension of size N """

Xtro= X
Jytr=y
def predict( X))

“* X is N x D where each row is an example we wish to predict label for """
num_test = X.shape[©]

Ypred = np.zeros(num_test, dtype = .ytr.dtype)

for i in xrange(num_test):

For each test image:

) ; i Find nearest training image
distances = np.sum(np.abs( Xtr - X[1,:]), axis = 1) .
min_index = np.argmin(distances) Return label of nearest image
Ypred[i] = .ytr[min_index]

return Ypred
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Figure 2.35: predict method: Computing similarity and predicting the closest label.

Complexity:

* Training: O(1), as it simply stores the data.

* Inference: O(n), as every test image is compared against all n training images. This makes
inference computationally expensive, particularly for large datasets.

Faster or approximate versions of Nearest Neighbor exist, taking advantage of spatial data
structures like KD-trees to accelerate the search process.
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Visualization of Decision Boundaries

Decision boundaries illustrate the regions in the input space assigned to different classes. For a 2D
toy dataset, the decision boundaries of Nearest Neighbor are highly irregular and sensitive to outliers.

Nearest Neighbor Decision Boundaries
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Figure 2.36: Decision boundaries for Nearest Neighbor on a 2D dataset.

Outliers can create "islands" of incorrect predictions, as shown in Slide 2.37. This sensitivity
makes k = 1 particularly problematic.

Nearest Neighbor Decision Boundaries
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Figure 2.37: Outliers disrupting decision boundaries in Nearest Neighbor classification.

Improvements: k-Nearest Neighbors

The k-Nearest Neighbors (k-NN) algorithm improves upon Nearest Neighbor by considering the &
closest neighbors and using a majority vote to determine the predicted label. This smooths decision
boundaries and reduces the impact of outliers.
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Using more neighbors helps
reduce the effect of outliers

K-Nearest Neighbors

K=1 K=3

Justin Johnson Lecture 2 - 62 January 10, 2022

Figure 2.38: k-Nearest Neighbors (k = 3): Smoother decision boundaries and reduced outlier
influence.

However, k-NN introduces challenges such as ties between classes when k > 1. These ties can
be resolved using heuristics like selecting the label of the nearest neighbor or weighting votes by
distance.

Limitations and Universal Approximation

With infinite training data, Nearest Neighbor can theoretically approximate any function. This is
due to its capacity to memorize and interpolate training examples. As more points are added, the
decision boundaries become increasingly fine-grained, capturing ever subtler data patterns.

K-Nearest Neighbor: Universal Approximation

As the number of training samples goes to infinity, nearest
neighbor can represent any(®) function!

20 Training points

—— True function

S0 e Training points
075 —— Nearest Neighbor function
050
025
0.00
0.0 02 0.4 06 08 10
X
(*) Subject to many technical conditions. Only continuous functions on a compact domain; need to make assumptions about spacing of training points; etc.
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Figure 2.39: A step towards a dense coverage with Nearest Neighbor.

However, the practicality of this property is severely limited by the curse of dimensionality. For
high-dimensional data, the number of required training samples grows exponentially. For example:
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« In 2 dimensions, uniform coverage requires 4> = 16 points.

+ In 3 dimensions, 4° = 64 points are necessary.

* For even modestly sized images like 32 x 32, the number of possible binary images is as-
tronomical: 23232 ~ 103%8, far exceeding the number of elementary particles in the visible
universe (=~ 10°7).

Problem: Curse of Dimensionality

Curse of dimensionality: For uniform
coverage of space, number of training points
needed grows exponentially with dimension

Number of possible Number of elementary particles
32x32 binary images: in the visible universe: ...
232x32 10308 ~ 1097
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Figure 2.40: The curse of dimensionality: limitations of KNN in high-dimensional spaces.

This exponential growth renders dense coverage impossible for real-world datasets, as highlighted
in Slide 2.40. Furthermore, we are often dealing with real-valued RGB images of even higher
resolutions, adding to the complexity.

Using CNN Features for Nearest Neighbor Classification

Pixel-based distance metrics, such as L1 and L2 distances, often fail to capture semantic similarity.
As highlighted in Slide 2.30, objects with similar pixel intensities, such as a ginger cat and an orange
frog, may be incorrectly classified as similar despite their clear visual and categorical differences.
This limitation underscores the need for more sophisticated representations that go beyond raw pixel
comparisons.

A promising solution is to replace raw pixel distances with feature distances derived from
convolutional neural networks (CNNs). CNNs are adept at capturing higher-level semantic
information by learning hierarchical feature representations directly from data. These features can
effectively bridge the gap between low-level pixel values and meaningful object categories, enabling
Nearest Neighbor classifiers to make more informed predictions, bridging the semantic gap L1 or L2
metrics applied to raw pixel values face.
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Nearest Neighbor with ConvNet features works well!

Devlin et al, “Exploring Nearest Neighbor Approaches for Image Captioning”, 2015
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Figure 2.41: Nearest Neighbor with CNN features: improved semantic similarity.

Slide 2.41 demonstrates the effectiveness of this approach, showcasing improved classification
performance when CNN-derived features are paired with Nearest Neighbor classifiers. By leveraging
these features, the algorithm becomes more robust to variations in lighting, scale, and viewpoint,
which are challenging for pixel-based metrics to handle.

This method has proven particularly effective in various tasks, including image captioning. In
their work [119], Devlin et al. (2015) proposed an approach that combines Nearest Neighbor with
CNN features to generate captions for images. The algorithm retrieves the most similar image from
the training set (based on CNN feature similarity) and reuses its caption as the prediction. While
simplistic, this method delivered coherent and contextually relevant captions.

Nearest Neighbor with ConvNet features works well!

Example: Image Captioning with Nearest Neighbor

14 A bedroom with a A cat sitting in a
bed and a couch. bathroom sink.
* A train is stopped at A wooden bench in
. === 3 train station. front of a building.
\ ——
h.\. /
Devlin et al, “Exploring Nearest Neighbor Approaches for Image Captioning”, 2015
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Figure 2.42: Nearest Neighbor captioning: retrieving captions from the closest matching image.

These are examples as to how Nearest Neighbor classifiers, when augmented with learned
features, can tackle complex tasks beyond basic classification.
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Conclusion: From Nearest Neighbor to Advanced ML Frontiers

The Nearest Neighbor classifier highlights the balance between simplicity and capability, offering
theoretical guarantees such as universal function approximation. However, its reliance on raw pixel
metrics limits its practical applications, particularly in high-dimensional spaces. By incorporating
feature representations from CNNs, Nearest Neighbor classifiers can overcome many of these
limitations, improving performance in tasks ranging from image classification to captioning. These
advancements pave the way for exploring even more sophisticated machine learning algorithms and
architectures in subsequent sections.



